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Abstract
We review the screening nature and many-body physics foundation of the van der Waals
density functional (vdW-DF) method [Berland K et al 2015 Rep. Prog. Phys. 78 066501], a
systematic approach to construct truly nonlocal exchange–correlation energy density
functionals. To that end we define and focus on a class of consistent vdW-DF versions that
adhere to the Lindhard screening logic of the full method formulation. The
consistent-exchange vdW-DF-cx version [Berland K and Hyldgaard P 2014 Phys. Rev. B 89
035412] and its spin extension [Thonhauser T et al 2015 Phys. Rev. Lett. 115 136402]
represent the first examples of this class; in general, consistent vdW-DFs reflect a concerted
expansion of a formal recast of the adiabatic-connection formula [Hyldgaard P et al 2014
Phys. Rev. B 90 075148], an exponential summation of contributions to the local-field
response, and the Dyson equation. We argue that the screening emphasis is essential because
the exchange–correlation energy reflects an effective electrodynamics set by a long-range
interaction. Two consequences are that (1) there are, in principle, no wiggle room in how one
balances exchange and correlation, for example, in vdW-DF-cx, and that (2) consistent
vdW-DFs have a formal structure that allows them to incorporate vertex-correction effects, at
least in the case of levels that experience recoil-less interactions (for example, near the Fermi
surface). We explore the extent to which the strictly nonempirical vdW-DF-cx formulation can
serve as a systematic extension of the constraint-based semilocal functionals. For validation,
we provide a complete survey of vdW-DF-cx performance for broad molecular processes, for
the full set of 55 benchmarks in GMTKN55 [Goerigk L et al 2017 Phys. Chem. Chem. Phys.
19 32184] and comparing to the quantum-chemistry calculations that are summarized in that
paper. We also provide new vdW-DF-cx results for metal surface energies and work functions
that we compare to experiment. Finally, we use the screening insight to separate the vdW-DF
nonlocal-correlation term into pure-vdW-interaction and local-field-susceptibility effects and
present tools to compute and map the binding signatures.
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1. Introduction

The van der Waals (vdW) density functional (vdW-DF)
method [1–16] is a systematic approach to construct robust,
truly nonlocal approximations for the exchange–correlation
(XC) energy functional Exc[n] in density functional theory
(DFT). It provides a computationally efficient account [17,
18] of dispersion forces while keeping a seamless integration
with the local (spin) density approximation [4, 10, 19–24]
(LDA) in the homogeneous electron-gas (HEG) limit. The
aim is to extend the success of the constraint-based semilocal
generalized-gradient approximations [25–27] (GGAs), such
as PBE [28] and PBEsol [29], relying exclusively on the non-
local variation in the electron density n (r). Traditional (GGA-
based) DFT works well for systems characterized by dense
electron concentrations, e.g., individual (small) molecules and
hard (bulk) materials [30, 31]. However, more is needed to
accurately describe systems that are sparse [12, 32], that is,
have important low-density regions across which vdW forces
and other truly nonlocal-correlation effects contribute signifi-
cantly to the cohesion, structure, and function. The vast classes
of molecular crystals and complexes, layered materials, poly-
mers and biochemical systems are important examples of such
sparse matter.

The versions and variants [3–5, 8, 9, 11, 16, 40–44] of the
vdW-DF method enable strictly parameter-free, nonempirical
DFT calculations for general (sparse or dense) matter [12, 30,
32, 45].

The vdW-DF method is based on an exact reformulation
of the adiabatic connection formula (ACF) [22, 25, 46], as dis-
cussed in references [10, 12, 47] and as further detailed within.
We enforce current conservation on the electron-gas response
description [10]. The ACF and current-conservation founda-
tion has a number of advantages. The vdW-DF versions and
variants can, for example, be subjected to a formal coupling-
constant analysis [14, 15, 48–51] to isolate kinetic-energy,
kinetic-correlation-energy, and electron–electron interaction
binding contributions. This analysis provides a refined map-
ping [14, 52] of where, for example, the vdW interactions
between molecules and at surfaces originate in space [10,
53–59]. The coupling-constant scaling analysis can also be
used to discuss the choice of Fock-exchange mixing in vdW-
DF-based hybrids [13, 15].

At the heart of all constraint- and ACF-based XC func-
tional designs lie an analysis of the electron-gas response to
an external potential, δΦω

ext, oscillating at a specific frequency
ω, and causing density changes δnω

λ . The response function
χλ(ω) = δnω

λ/δΦ
ω
ext is investigated as a function of an assumed

reduction, Vλ ≡ λV, of the electron–electron interaction V.
The ACF then provides a formal determination of the XC

energy as an average over the coupling constant λ,

Exc = −
∫ 1

0
dλ

∫ ∞

0

du
2π

Tr{V χλ(iu)} − Eself. (1)

The trace ‘Tr’ is often taken in a spatial representation of
the response function, 〈r|χλ(ω)|r′〉 ≡ χλ(r, r′;ω), using the
electron–electron interaction matrix element V(r − r′) = |r −
r′|−1. For an illustration of how the ACF and how individual
vdW-DF contributions appear when all spatial arguments are
written out, we refer the readers to reference [60]. Here we
stick with a compact notation, noting that traces are invariant
under basis-set changes and that our discussion of the role of
Lindhard screening [61–63] would otherwise become overly
cumbersome. The last term of equation (1) is the electron self-
energy, given by Eself = Tr{n̂V̂}/2, where n̂(r) denotes the
operator for the electron density at r.

The vdW-DF method rests on the observation that the
vdW interactions are an inherent part of the XC energy func-
tional [1, 64, 65] and should be treated on the same foot-
ing as all other electron–electron interaction energy effects.
Like the subsequent and related VV10 [66], rVV10 [67],
and rVV10-corrected XC formulations [68–72], the vdW-
DF versions and variants describe all forces directly on
the foundation of the full electron-density variation [9, 10,
14, 45, 47]. We do not rely on an atom-centered vdW
account, in contrast to the Grimme dispersion-correction
schemes [33, 73–75], the Becke–Johnsson exchange-hole
scheme [76–78], the Wannier-based vdW formulation [79],
the Tkatchenko–Scheffler formulation [80], and the associ-
ated self-consistent screening extension [81]. We also avoid
the need for an auxiliary determination of the atomic dipolar
(or multipolar) susceptibilities and the choice of a damping
function or a Coulomb-range-separation parameter that must
otherwise be used to avoid double counting. The vdW-DF
method simply helps us design explicit, truly nonlocal XC den-
sity functionals for standard, yet vdW-inclusive, ground-state
DFT calculations.

For practical approximations, i.e., vdW-DF versions, we
start with a nonlocal, double-pole model for the plasmon prop-
agator, termed Sxc, references [4, 9, 12, 47]. This propagator
adapts the HEG plasmon description [19, 20, 82–86], used
in early LDA [21, 22, 83], to the logic of the gradient expan-
sion [4, 47, 87, 88] of formal many-body perturbation theory
(MBPT). The propagator reflects the local-energy variation
of an internal (sometimes called inner) GGA-type semilocal
functional [4, 8–10, 12, 89]. It therefore effectively reflects the
local-field response χ̃(ω) = χ(ω)/[1 + Vχ(ω)] and screening
in a weakly perturbed electron gas.
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Figure 1. Comparison of rev-PBE-D3 (the DFT-D3 correction [33] of revPBE [34], light blue), of vdW-DF [4] (the original
general-geometry version of the vdW-DF method, orange), and of vdW-DF-cx [9] (the 2014 consistent-exchange method update, red)
performance for all of the (intra-plus inter-molecular) noncovalent-interaction benchmark sets defined in the GMTKN55 molecular-testing
suite [35]. The bars contrast mean-absolute energy deviation (MAD) and root-mean-square deviation (RMSD) values in kcal mol−1,
although capped for the IDISP (actual vdW-DF MAD = 7.61) and WATER27 (actual vdW-DF MAD = 9.53) benchmark sets. We used the
spin extension of the vdW-DF method [11], where relevant, and the QUANTUM ESPRESSO plane-wave code package [36], with a set of
previously tested [13, 15, 37] norm-conserving pseudopotentials from the ABINIT package [38]. The Makov–Payne correction scheme [39]
were used for charged-system calculations, affecting results for benchmark sets marked by an asterisk.

For explicit vdW-DF designs, we typically proceed to
extract a nonlocal-correlation energy contribution [4, 8, 9, 12,
45],

Enl
c ≈

∫
du
4π

Tr{S2
xc − (∇Sxc · ∇V/4π)2}, (2)

by expanding to second order in terms of Sxc. The derivation
of this truncated expression for Enl

c has been documented sev-
eral places, for example, in references [4, 7, 12, 17, 60]; it
will also emerge naturally in our discussion of the full vdW-
DF method and of consistent vdW-DF versions, below. For
layered geometries we can also retain the full nonlocal-
correlation description subject to a slightly different approx-
imation for the local-field response [2, 3, 6].

The vdW-DF approximations for the full XC energy, that
is, vdW-DF versions and variants,

EvdW−DF
xc = Ein

xc + δE0
x + Enl

c , (3)

contain a cross-over exchange term [9] δE0
x, reflecting the

choice of gradient-corrected exchange. The vdW-DF formu-
lation equation (3) captures local and general nonlocal corre-
lation effects in Ein

xc and Enl
c , respectively. The exchange effects

are captured in the semilocal functional E0
xc ≡ Ein

xc + δE0
x.

This review paper highlights the nature and discusses poten-
tial advantages of focusing the vdW-DF framework on the
class of consistent designs, i.e., designs that seek to implement
the full screening logic of the ACF [9, 10, 45]. The key idea,
developed within, is that approximations to exchange are inde-
pendent of the coupling constant [14, 48, 90] and must com-
pletely reside in the approximations to χ̃(ω). This implies that
we can use the Dyson equation, reflecting Lindhard screen-
ing [61–63], to balance exchange and correlations in the
vdW-DF designs. In practice, for consistent vdW-DF designs,
there should be no binding-energy consequences of retaining

a cross-over exchange component δE0
x in equation (3). This is

effectively true in the consistent-exchange vdW-DF-cx version
[9], and in the consistent spin-extension, svdW-DF-cx [11].

Figure 1 demonstrates that there are advantages in terms
of accuracy and robustness in moving from the original vdW-
DF version [4] and to consistent (spin) vdW-DF-cx. The figure
compares the mean absolute deviation (MAD) and root-mean
square deviation (RMSD) values obtained for the set of all
(inter- and intra-) molecular noncovalent-interaction bench-
mark sets that are part of (and defined in) the GMTKN55
benchmark suite [35]. The computational details will be given
in section 5. The performance on individual interaction prob-
lems can vary, but the vdW-DF-cx performance is significantly
better than that of vdW-DF. The vdW-DF-cx has just a GGA-
level exchange and should, in the GMTKN55 survey [35]
be compared with (one of) the best-performing dispersion-
corrected GGA, namely revPBE-D3 [33, 34] (also shown).
Again, the vdW-DF-cx is seen to fare better, statistically
speaking. In addition, vdW-DF-cx is seen to perform as well
as revPBE-D3 when we broaden the comparison to the full
GMTKN55 benchmark suite in section 6.

This revPBE-D3/vdW-DF/vdW-DF-cx performance com-
parison highlights the importance of balancing exchange and
correlation in XC functionals [9, 12, 22, 25, 45]. The first
two functionals differ only in the choice of nonlocal corre-
lation, whereas the last two differ only in the exchange, and
hence in the exchange–correlation balance. The regions of
smooth density variations (regions with low-to-medium val-
ues of the scaled density gradient, s = |∇n|/(2π2)1/3/(2n4/3)
generally dominate in the description of molecular interactions
[9, 10]. We have documented that this also holds for nonco-
valent interactions [9, 10, 14, 53, 56]. This implies that the
Langreth–Vosko (LV) MBPT analysis [91] underpins the dom-
inant part of the vdW-DF-cx exchange description [9]—yet LV
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exchange has not previously impressed anybody for molecules
[92]. Meanwhile, the revPBE exchange choice [34] largely fol-
lows the hole-based design logic [93] of PBE [28] but avoids
one constraint that strengthens PBE and PBEsol relevance for
bulk matter that has a dense electron distribution [29].

The revPBE exchange [34] is a good choice for molecules
[35], but that is clearly not enough: figure 1 shows that
vdW-DF performs significantly worse than revPBE-D3. Mean-
while, picking a good nonlocal correlation term (that helps
vdW-DF-cx perform slightly better than revPBE-D3 for non-
covalent interactions, figure 1) is also not enough, for the same
reason. Rather, it is the foundation in the Lindhard screen-
ing logic [10, 12, 61–63] that puts vdW-DF-cx ahead of both
revPBE-D3 and vdW-DF, even for molecular problems.

So far the vdW-DF-cx version has proven itself useful and
accurate for descriptions of a range of dense and sparse-matter
problems. Successful applications include the study of tradi-
tional bulk-matter cohesion, structure, thermo-physical prop-
erties [9, 45, 94, 95], and vacancy formation [96], as well
as of binding, structure, vibrations, polarization, elastic prop-
erties, phase transitions, defects, and dynamics in molecu-
lar, polymer, and layered materials [45, 97–112]. This is,
for example, relevant for development of ionic liquids, bat-
teries, thermo-electrics, and organic solar-cell materials [98,
113–118]. The vdW-DF-cx version tends to overestimate the
binding energy in some layered systems [12, 119, 120], but
remains accurate on structure [68, 121]. It works for both intra-
and for inter-molecular bonds [9, 11, 13–15, 44, 122–124], for
hybrid organic–inorganic perovskites [125], and for analysis
and design of porous-materials gas storage [11, 45, 126–128]
and of surface pacification [129]. It also works for studies of
the role of polycyclic aromatic hydrocarbons in interstellar H2

formation [130], of electric-field driven reactions [131], and
of mechanochemical cocrystal formation [132]. Use of vdW-
DF-cx is also helping the understanding of the crossover from
physisorption to weak chemisorption in molecular adhesion
[11, 133–145], of catalysis [146–148], of hydrogen tunneling
[149], of magnetic coupling between adsorbates [150], and of
charge transfer and electron transport in and through molecu-
lar adsorbates [151–153]. It is therefore worth exploring why
(spin) vdW-DF-cx works well.

However, the use of screening to balance exchange and cor-
relation (as in vdW-DF-cx) may find use also in future nonlocal
XC functional designs. The purpose of this review paper is
therefore more than presenting a re-derivation of vdW-DF-cx
itself. We focus on developing the concepts, and we explore
and map the nature of binding contributions in both traditional
bulk and in weaker vdW-interaction problems. The paper sup-
plements reference [10] that began the work to interpret the
vdW-DF method.

The paper has 8 major objectives. We emphasize that there
exist (1) a formally exact vdW-DF framework that is closely
tied to the screening nature of an effective electrodynamics, (2)
powerful guiding principles for making consistent approxima-
tions, and (3) a way to simultaneously account for and balance
vdW forces [1, 12, 64, 65, 154–158] and the screening [61–63,
159] & vertex-correction effects [86, 160–164] that all affect

the electron-gas response and zero-point energy (ZPE) dynam-
ics in concert. Our approach is to (4) discuss what we need
for crafting a robust nonlocal-correlation functional and (5)
show that those needs can be accommodated, in an Occam
approach, leading to so-called consistent vdW-DF versions,
like vdW-DF-cx [9]. We find that current conservation [10]
and compliance with the Lindhard–Dyson logic of screening
[61–63] plays a critical role in balancing exchange and correla-
tion effects in such consistent vdW-DF designs. For consistent
vdW-DFs, the current conservation [10] implies an automatic
charge conservation for the vdW-DF XC hole, i.e., the essential
DFT criterion [10, 45] that the quasi-particles remain neutral
[22, 25]. There has only been few prior discussions of the vdW-
DF method foundation in a screening approximation [6, 7, 10,
45, 53, 165].

We furthermore (6) identify systems and problems that test
the Occam solution strategy behind vdW-DF-cx and (7) sum-
marize the results of such validation checks, whether pre-
viously reported or provided here. As such the review and
analysis paper also contains new results in the form of (a) broad
molecular benchmarking, (b) tests of performance for metal
surface energies and work functions, and (c) mappings of the
spatial variation in binding in bulk Si, Na, and W as well as
in aC60 dimer and a graphene bilayer. In addition, the paper
contains (d) demonstrations of the non-additivity of binding
among carbyne wires, carbon nanotubes, and C60 fullerenes.

There has only been comparatively few prior numerical
explorations of the spatial distribution of the vdW-DF binding
contributions [10, 14, 53–59]; here we are therefore adding
(8) a practical approach to separately track the variation in
binding contributions arising from pure vdW interactions and
from nonlocal vertex corrections (and related screening effects
defined by an implicit cumulant expansion [12, 86]). This is
done both for the carbyne-wire, the graphene-bilayer, and the
Si, Na, & W bulk problems.

We note that to systematically extend the GGA success, we
must deliver accuracy in concurrent descriptions of both sparse
and dense matter [9, 32, 42, 45]. We hope to simultaneously
succeed in predicting diverse properties with just one robust,
transferable, and strictly-parameter-free functional. Consistent
vdW-DF versions, like vdW-DF-cx [9] (together with its spin
extension svdW-DF-cx [11],) aspire to work as such a general-
purpose tool for all types of materials and their combination
[45].

The paper is organized as follows. The next section 2 dis-
cusses the nature of nonlocal-correlation effects, including
vdW interaction effects, but also noting the central role of ver-
tex corrections. Section 3 provides a formal presentation of
the design logic of constraint-based XC functionals, contrast-
ing a direct path (leading to semilocal GGAs) and the indirect
approach (leading to the vdW-DF method).

Section 4 discusses the design logic of the recent consistent-
exchange vdW-DF-cx version. Section 4 also interprets the
nature of XC functional contributions in such consistent vdW-
DF versions, noting that vdW-DF-cx can be sorted into a local-
field and a Dyson-correction component; the former reflects
vertex corrections (plus related screening effects [86, 163,
164]) and the latter reflects pure vdW interactions. Section 4

4



J. Phys.: Condens. Matter 32 (2020) 393001 Topical Review

furthermore highlights the importance of key vdW-DF-cx fea-
tures: (a) seamless integration [4, 166], (b) an underlying
MBPT analysis of response in the electron gas [4, 7, 11, 91],
(c) current conservation [10], and, in particular, (d) compliance
with the Dyson/Lindhard screening logic [61–63].

Section 5 contains a summary of computational details
while section 6 contains results and discussions that validate
trust in the class of consistent vdW-DF designs. The section
also contains an exploration of the role that nonlocal vertex
corrections and related screening effects [85, 86, 163, 164]
play in material binding.

Finally, section 7 contains a summary and conclusions
and there are four appendices detailing: (A) the relation of
an exponential re-summation and screening, (B) the vdW-DF
double-pole plasmon-propagator model, the electrodynamics-
response nature of terms arising in a full (non-truncated)
implementation of the vdW-DF method, (C) a discussion of
how to include higher-order expansion terms in Enl

c , and (D)
universal-kernel evaluations of both a pure-vdW contribu-
tion and of a cumulant contribution that describes nonlocal
vertex-type screening effects in consistent vdW-DF versions.

2. Nature of nonlocal correlations

Figure 2 summarizes the fundamental idea of DFT and the
need for developing truly nonlocal, vdW-inclusive function-
als. The figure simultaneously highlights that there is some-
thing extremely right with the charge-conservation criterion
that underpins the design of traditional semilocal XC func-
tionals (i.e., GGAs) and that there are important conceptual
reasons for correcting and extending the GGA logic [10, 64,
65, 91, 158].

2.1. Ubiquitous vdW interactions challenge DFT

The top left panel of figure 2 shows schematics of a physical
systems in which electrons experience full electron–electron
interactions V; every electron interacts with each and every
other electron, as illustrated by arrows. This interacting
problem defines the behavior of molecules and materials but,
except in small systems, there is no realistic approach to obtain
exact solutions under general conditions. The top right panel
shows that DFT nevertheless succeeds with an, in princi-
ple, correct yet computationally tractable determination of the
ground state density n(r) and energy Etot. It does so by con-
sidering an equivalent system of noninteracting quasi-particles
(shown as hexagons) moving in some effective single-particle
potential (represented by the change in background color). The
effective potential is a functional derivative of the XC energy
functional Exc.

The top right panel of figure 2 also summarizes the core
problem for practical use of DFT: deciding exactly how we
should place the nut (electron) in its nutshell (a surrounding
so-called XC hole). Together, the electron–XC-hole pairs form
neutral composites. However, such quasi-particles have an
internal structure with charged components (the electron and
the associated GGA-type XC hole [10]) and thus an inherent
electrodynamics response.

Figure 2. Nature of the DFT formulation (top right panel), of the
electron–electron interaction problem (top left panel) and the DFT
need for systematic inclusion of vdW interactions, for example,
among disjunct material fragments (bottom panel). The top panels
show schematics of the DFT mapping of the interacting system onto
a quasi-particle problem with independent-particle dynamics
defined by an effective potential (green background). Each electron
is wrapped in a screening cloud forming neutral electron–XC-hole
composites (shown as pentagons), which in local (LDA) or
semilocal (GGA) DFT are fairly compact and cannot reflect the
density beyond a low-density region between, for example,
molecules [6, 32]. The bottom panel illustrates the inherent
limitations of LDA/GGA. The panel shows a schematic of a vdW
interaction problem: two density fragments, each with electrons
(exemplified by blue dots) and associated XC holes (green shells),
are separated by a characteristic length R (reflecting a typical
intermolecular separation). We can ignore the electrostatic and other
types of binding across the intermediate density void (represented
by a vertical dashed line). However, the neutral electron–XC-hole
composites do have an internal zero-point energy (ZPE) dynamics.
They act as antennas, and cause mutual electrodynamics couplings
that produce a vdW force between the fragments [1, 3, 4, 10, 12, 64,
65, 91, 158].

The XC hole describes the tendency of an electron at point
r to inhibit presence of other electrons at point r′. The com-
bination of each electron and of its associated XC hole forms
neutral complexes that serve as noninteracting quasi-particles
in practical DFT calculations. Screening and exchange effects
strongly influence the electron-gas behavior and will wrap
an electron (at position r) in a matching XC hole nxc(r; u =
r′ − r). An important guideline is that this XC hole must be of
exactly opposite charge,∫

du nxc(r; u) = −1. (4)

The details in how we approximate this hole are important:
the XC energy is given by the Coulomb coupling inside the
composite electron–XC-hole quasi-particles

Exc ≡
1
2

∫
r

∫
r′

n(r) nxc(r; r′ − r)
|r − r′| . (5)

While equation (5) may appear as simple electrostatics, it
also reflects the ZPE dynamics of the electrons relative to their
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associated XC holes [10, 64, 65]. The collective excitations,
i.e., plasmons identified by some general eigenvalue index η
and frequencyωη, typically dominate in the specification of the
electron gas response. Accordingly, the XC energy approxima-
tions must contain a leading term reflecting the plasmon ZPE
[10, 25, 158]:

Exc ≈ EZPE
pl =

∑
η

ωη

2
. (6)

Since ωη depends on the electron-density variation, the
leading-term approximation, equation (6), allows an ele-
gant representation of gradient effects on the XC energy
equation (5) at surfaces [25]. Of course, most formulations
of the LDA [19–23, 84] and the design of the popular
constraint-based GGAs, such as PBE [28] and PBEsol [29],
proceed by modeling fairly compact XC holes [93] nxc(r; u);
the details are set subject to the charge-conservation criterion
equation (4). However, the plasmon ZPE picture, equation (6),
and the XC hole picture, equation (5), can be reconciled by
noting that we can link the energy density of a semi-local XC
functional to an assumed plasmon dispersion, references [2–4,
7, 12, 25].

The bottom panel of figure 2 illustrates the conceptual
problems for semilocal density functional approximations.
The problems (for the design of vdW-inclusive functionals)
are that the XC hole is typically seen as compact, having a
modified Gaussian shape in LDA and GGA [19, 20, 84, 93,
167], and as static, without a ZPE dynamics [1, 10, 65, 77,
78]. The first assumption directly affects our description of the
electrodynamics, as the XC hole also defines an approximate
dielectric function, equation (20) below. Maggs, Rapcewicz,
and Ashcroft addressed the second assumption, pointing
out that a static view of the XC hole is incomplete. LDA
and GGAs hide and sometimes ignore the electrodynamics
coupling between the electron–XC hole systems [10, 64, 65].
The argument was originally cast in terms of diagrams [64,
65, 91], that is, insight from MBPT that goes beyond the
input for specifying the details of the GGA-type descriptions
[26, 64, 91, 168]. However, the argument can be summarized
by evaluating changes in EZPE

pl induced by the electrodynamics
coupling among electron–XC-hole complexes [10, 65].

The bottom panel of figure 2 shows a simple one-
dimensional model with two disjunct density fragments
(assumed to reside on either side of the dashed line). It focuses
the discussion on the virtual dynamics of electrons (nega-
tive balls on either side) and highlights the central GGA
problem: the electron–XC-hole pairs are seen as compact and,
for example, entirely confined inside a given electron-density
fragment.

For a simple illustration of GGA limitations, we assume
that the GGA-type descriptions (for either fragment) can be
summarized by just one characteristic plasmon frequency
ωpl,0. The frequency ωpl,0 describes the electron–XC-hole
dynamics given by relative displacement coordinates xi=1,2;
for simplicity, we also here assume that the characteristic plas-
mon dynamics can be represented as a quantum harmonic
oscillator with an effective spring-constants k (illustrated in
the lower panel) and some effective mass meff , chosen such

that ωpl,0 =
√

k/meff. Adapting reference [25], we can repre-
sent the GGA-type XC energy for the combined but disjunct
double-fragment system using

Hdis =
∑
i=1,2

meff

2

(
dxi

dt

)2

+
1
2

kx2
i , (7)

as we also assume no density overlap of the fragments. How-
ever, the model, equation (7), is fundamentally flawed.

The point is that each GGA-type quasi-particle, i.e., the
electron–XC-hole complex, is a rattler that is formed by
charged components (although it is neutral overall). As such,
they are antennas transmitting and receiving due to the ZPE
dynamics [10, 64, 65, 158]. We cannot ignore the near-field
electrodynamics coupling among GGA-type XC-hole/electron
systems, even when considering disjunct fragments [10, 65].
Specifically, at electron displacements x1 and x2 and at mean
(GGA-type quasi-particle) separation R12, there will be a near-
field Hamiltonian contribution

Hnear−field = −2x1 x2

R3
12

. (8)

The systems with mutual electrodynamics coupling,
equations (7) and (8), can be solved by a simple canoni-
cal transformation yielding new coupled-harmonic-oscillator
frequencies [56]:

ω± =

√
ω2

pl, 0 ±
2

meffR3
12

. (9)

In this simple model, the net ZPE energy gain by the electro-
dynamics coupling is

ΔExc ≈ ΔEZPE
pl ∼ δEvdW, (10)

δEvdW =
1
2

(ω+ + ω− − 2ωpl,0) ∝ −R−6
12 , (11)

and thus represents the asymptotic vdW attraction. The
electrodynamics-coupling argument [1, 10, 56, 64, 65, 158],
and insight from the underlying MBPT characterizations, can-
not easily be cast directly as an explicit refinement of a
semilocal XC hole, nor in a semilocal functional [91].

2.2. Inclusion of vdW forces in formal DFT

For an introduction on how the vdW-DF method includes such
nonlocal-correlation effects, we need formal definitions of the
electron-gas problem and for the MBPT solution approach.
At any given coupling constant λ, we separate the Hamil-
tonian Hλ = H0 + Vλ into a single-particle and the elec-
tron–electron interaction part. We use ψ̂(r) to denote the
operator for removing an electron at r. The operators for the
local density and for the kinetic energy are n̂(r) = ψ̂+(r)ψ̂(r)
and T̂ = − 1

2

∫
rψ̂

+(r)∇2
rψ̂(r), respectively. The noninteracting

Hamiltonian part H0 also contains a (single-electron) potential
Vext representing, for example, the electron–ion interacting.
For deriving the ACF and the results behind our coupling-
constant analysis, it is convenient to let H0 include an extra
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single-particle potential term that keeps the solution den-
sity independent of λ [22, 25, 46]. The temporal arguments
of operators, like δn̂(r, t) = n̂(r, t) − 〈n̂(r)〉, reflect the time-
propagation under Hλ.

Also, we define time-ordered Green functions and den-
sity–density correlation functions

gλ(r, r′; t − t′) = −i〈T{ψ̂(r, t), ψ̂+(r′, t′)}〉λ, (12)

χλ(r, r′; t − t′) = −i〈T{δn̂(r, t), δn̂(r′, t′)}〉λ. (13)

Here ‘T’ denotes the operator of time ordering [86, 167,
169] and the subscripts ‘λ’ identify the coupling constant for
which we evaluate ground-state expectation values. The quasi-
particle dynamics equation (12) is evaluated for a given spin
and we assume that g be can treated as diagonal in the spin
indices, for simplicity of our discussion. As noted in the intro-
duction, we use a compressed operator-type notation for their
temporal Fourier transforms, for example, using gλ(ω) as a
shorthand that represents the full coordinate variation

gλ(r, r′;ω) = 〈r|gλ(ω)|r′〉. (14)

The Green function g0(ω), describing the dynamics in the
absence of the electron–electron interaction Vλ, is available
from an explicit construction from the solutions of H0. The
quasi-particle dynamics can then, in principle, be determined
by a Dyson equation

gλ(ω) = g0
λ(ω) + g0

λ(ω)σ(ω)gλ(ω), (15)

where σ(ω) denotes the self-energy representing the effects
of the electron–election interaction Vλ on the quasi-particle
dynamics [167, 169].

An external-potential fluctuation, δΦext(r′, t) =
δΦω

ext(r
′)e−iωt will, at coupling constant λ, produce a

density response

δnω
λ(r) =

∫
r′
〈r|χλ(ω)|r′〉δΦω

ext(r
′), (16)

where ω > 0 is assumed, without loss of generality.
The vdW-DF method succeeds in tracking the ZPE-

coupling effects of the electron–XC-hole systems by relying
on a new (not semi-local) framework for the design of XC
energy functionals [2–4, 9, 10, 12, 45, 47]. Formally, the XC
energy is given by the electron–electron correlation function
χ(ω) through the ACF, equation (1) or by the XC-hole formu-
lation, equation (5), using the formal specification [10, 170]

nxc(r; r′ − r) = −δ(r − r′)

− 2
n(r)

∫ ∞

0

du
2π

∫ 1

0
dλ 〈r|χλ(iu)|r′〉. (17)

Both the XC hole and the XC energy functional is there-
fore critically dependent on a correct inclusion of the ZPE
dynamics of the collective excitations of the electron gas, i.e.,
plasmons, defined as poles of χλ(iu) or as nodes of the
corresponding Lindhard dielectric function κλ(iu)
= (1 + Vλχλ)−1. The tracking of energy shifts by the
coupling of the electron and plasmons ZPE dynamics is, for

example, the defining step in the early LDA specifications
[21, 22], based on a Green function calculation of electron
quasi-particle energy shifts [83].

Effectively, in the vdW-DF method we employ an exact
recast of the ACF and hence of the true XC energy

Exc =

∫ ∞

0

du
2π

Tr{ln(κACF(iu))} − Eself. (18)

The recast is defined by an effective longitudinal dielectric
function [10, 47]:

κACF(ω) ≡ exp

(
−

∫ 1

0
dλVχλ(ω)

)
. (19)

The derivation fits in this sentence, inserting equations (19)
into (18) leads immediately back to equation (1).
Equations (18) and (19) provide a formulation of the
exact XC energy as an electrodynamics problem. This is
convenient for discussing dispersive interactions acting in
concert with all other interaction effects in the electron gas.

We note in passing that the utility focus is the right way
to think of the MBPT progress that we have made in the
Chalmers–Rutgers vdW-DF team [1–4, 6–12, 45, 47, 56,
171]. In the vdW-DF method we seek to obtain implicit
designs of nonlocal XC functionals, starting from a GGA-level
description to model the plasmon dispersion [3, 4, 6, 8, 9, 11].
The vdW-DF team first saw equation (18) as an approximative
mean-value evaluation of the coupling-constant integration in
the ACF [2–4, 8]. We soon realized that discussing the deriva-
tion is moot: an explicit derivation from the traditional ACF,
equation (1), would only be relevant if we actually intended to
start from some explicit approximations for χλ(ω). We do not.

The vdW-DF method is crafted in the electron-gas tradi-
tion [45]. The complexity of a direct MBPT evaluation has
always prompted XC developers to instead look at the for-
mal structure of diagrams and MBPT as a guide [9, 10, 21,
22, 25, 26, 46, 83, 89, 91, 172–174]. The vdW-DF method
does not magically vanish the challenges of brute-force MBPT.
It does, however, turn the table and make it easier to lever-
age insight from electrodynamics [1–3, 10, 47, 53, 59, 64, 65,
158, 165, 171, 175–182], conservation laws [4, 10, 45, 83,
183], and the theory of screening [6, 10, 61–63, 157–159, 179,
184–187].

We are free to take equations (18) and (19) as the vdW-DF
framework [10] and focus on finding good physically moti-
vated approximations for κACF(iu). Our framework is, after
all, an exact rewrite of the formally exact ACF [10, 47]. The
success of the overall vdW-DF program [1–4, 6, 8–10, 12,
32] shows that this is indeed possible. Emphasizing a current-
conservation criterion [10] and the Lindhard screening logic
[62, 63] leads to better accuracy in the consistent spin vdW-
DF-cx version [9, 11, 45]. This is exciting, for it points to the
soundness of the vdW-DF design strategy. We do not think it
is a total coincidence.

In fact, taking equations (18) and (19) as the starting point
for approximations is a direct reflection of some well-known
MBPT successes. First, the dielectric function formulation
equation (19) is inspired by a cluster expansion of electron-gas
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screening [86, 163]. Second, using equation (18) to describe
internal-energy contributions, equation (18), permits a suc-
cinct MBPT discussion of the nature and magnitude of vdW
and Casimir forces [158]. Both of these points are detailed
further in this review.

The ACF recast as an effective electrodynamics,
equations (18) and (19), also reflects an explicit construc-
tion of an associated effective (λ-averaged) density-density
correlation function χACF(ω), developed and discussed in
references [10, 12, 45, 47]. We first observe that working
with an effective ACF electrodynamics function to represent
the XC energy effects in DFT has a direct physical meaning
to most DFT practitioners: the form of κACF(ω) reflects the
density correlations in the exact XC hole,

nxc(r; r′ − r) = −δ(r − r′)

− 1
2πn(r)

∫ ∞

0

du
2π

∇2
r〈r| ln(κACF(iu))|r′〉.

(20)

To see this, we write out the off-diagonal matrix elements of
the ACF dielectric function

〈r| ln(κACF(iu))|r′〉 = −
∫ 1

0
dλ

∫
r′′

V(r − r′′)〈r′′|χλ(iu)|r′〉,
(21)

and use the Gauss-condition on the Coulomb interaction
matrix element, ∇2

rV(r − r′) = −4πδ(r − r′). We find∫ 1

0
dλ 〈r|χλ(iu)|r′〉 = 1

4π
∇2

r〈r| ln(κACF(iu))|r′〉, (22)

which, in turn, proves equation (20).
We also observe that the traditional ACF contains a λ-

averaging of weighted χλ(ω) contributions while we seek a
representation of the effective response χACF(ω) to leverage
the electrodynamics insight that underpins vdW interactions
[1, 64, 65, 158]. The effective response χACF(ω) is given in
terms of a set of λ-averaged poles of χλ(ω), i.e., plasmons of
the effective ACF electrodynamics. We are not aware of any
explicit formulation of the coupling-constant variation of the
collective excitations themselves (nor could we be sure that
such an approach is tractable). In the vdW-DF method we over-
come this challenge by instead setting the effective response
form implicitly [10],

− V χACF(ω) ≡ 1 − exp

(
−

∫ 1

0
dλV χλ(ω)

)
, (23)

so that it reflects a Lindhard-type relation [10, 62]

κACF(ω) = (1 + VχACF(ω))−1. (24)

This is motivated because there is physical meaning in the
effective ACF electrodynamics and deviating from the screen-
ing logic is an uncontrolled approximation [63].

In fact, since the ACF recast, given by equations (20) and
(18), should be seen as a proper electrodynamics problem,
it must reflect an effective long-range interaction, denoted

VACF ∼ Vλeff . Working with an effective long-range interac-
tion always makes it essential to pursue a consistent han-
dling of screening effects [10, 61–63]. As indicated, the ACF
electrodynamics (Vλeff and κACF(ω)) is defined by an effec-
tive coupling constant value 0 < λeff < 1, as discussed in
section 3. For a given external potential change δΦω

ext (assumed
to oscillate at frequency ω), the ACF recast leaves no wiggle
room in how we balance the external field change δEω

ext(r) =
−∇δΦω

ext and the resulting induced polarization field δPω(r)
(unless we make an uncontrolled approximation in the Dyson
equation for the electron-gas response). The ACF dielec-
tric function κACF also allows us to define a local potential
δΦω

loc ≡ κ−1
ACF(ω)δΦω

ext and an associated local electric field
δEω

loc(r) = −∇δΦω
loc. Mutually consistent, local-field and

external-field susceptibilities must be defined

α̃(r, r′;ω) = δPω(r)/δEω
loc(r

′), (25)

αext(r, r′;ω) = δPω(r)/δEω
ext(r

′). (26)

The local-field susceptibility α̃(ω) corresponds to an effective
polarization insertion [169] χ̃ACF(ω) that must also adhere to
the Lindhard screening logic [10]:

κACF(ω) = 1 − Vχ̃ACF(ω). (27)

Working with the effective susceptibilities, equations (25) and
(26), also provides an intuitive picture. This picture can be used
to simplify our discussion of nonlocal-correlation effects in
the vdW-DF method and thus help guide approximations to
equation (18).

We can compute (within an approximation to the ACF elec-
trodynamics description) both the resulting density change δnω

and the polarization field δPω produced by the induced current.
However, current-conservation and the continuity equation
stipulates that these results must be related [10, 47],

δnω = χACF(ω)δΦω
ext = ∇ · αext(ω) · ∇δΦω

ext (28)

= χ̃ACF(ω)δΦω
loc. (29)

The second line follows because equations (24) and (27) imply
an effective Dyson-type equation [10], which can also be
expressed

χACFV = χ̃ACFV + χ̃ACFVχ̃ACFV + · · · . (30)

Our approximation for the dielectric function must therefore
contain explicit longitudinal projections [10]:

χACF(ω)V = ∇ ·αext(ω) · ∇V , (31)

χ̃ACF(ω)V = ∇ · α̃(ω) · ∇V. (32)

The longitudinal projection is, in turn, essential for making
robust approximations for the associated dielectric function,
κACF(ω). Assume that ε(ω) = 1 + 4πα̃(ω) denotes an approx-
imation for a dielectric tensor function that aims to reflect
the effective electrodynamics. To ensure current conservation
[10], we must use the longitudinal projection

κlong(ω) ≡ ∇ · ε(ω) · ∇G, (33)

where G = −V/4π denotes the Coulomb Green function.
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The need for a longitudinal projection has direct implica-
tions for the vdW-DF method, as is also further discussed
in appendix B. For consistent vdW-DF approximations, like
vdW-DF-cx [9], we focus on making ACF dielectric-function
approximations that have this explicit longitudinally projec-
tion. That is, we focus on formulations where we effectively
use

κACF(ω) → κlong(ω) = ∇ · ε(ω) · ∇G, (34)

inside formal vdW-DF functional specification, equation (18).
We observe that using the projected form equation (33)

is consistent with the vdW-DF framework, equation (18). To
show this we note that the exact XC functional specification,
equation (18), can equally well be written

Exc =

∫ ∞

0

du
2π

Tr{ln(1 − χ̃ACF(iu)V)} − Eself. (35)

This follows simply by writing out a Taylor expansion of
the logarithm and using the invariance of the trace over spa-
tial coordinates. Given equation (35), it is clear that we are
always in a position to explicitly enforce the longitudinal pro-
jection and to ensure current conservation via equation (33).
The projection is systematically used in the evaluation of the
nonlocal-correlation term, for example, in its truncated form
equation (2), reference [12].

Mahan used the formal ‘ln(κ)’ structure of equation (18)
to compute the interaction of disjunct fragments by an elec-
trodynamics coupling [158]. Mahan’s analysis was cast in
model susceptibilities. In the vdW-DF method, equation (1),
we inherit the Mahan ‘ln(κ)’ analysis [158], leading us not
only to the above-summarized electrodynamics interpretation
of the ACF, but also directly to a formal XC-energy evaluation
[10, 158]:

∫ ∞

0

du
2π

Tr{ln(κACF(iu))} = EZPE
pl + Eres

α̃ . (36)

The terms are given by the residuals in the complex-frequency
contour integral [22, 25, 63, 158], that is implied in the ACF,
equation (1). The leading component is just the ZPE sum,
equation (6), of plasmons, defined as the zeros of κACF(ω), ref-
erence [10]. The term Eα̃ is the sum of residuals produced at
the poles of α̃(ω). As such, this term is set by the poles of
κACF(ω), references [10, 158].

The vdW-DF framework and method are naturally set up to
capture the Ashcroft ZPE-coupling mechanism for the vdW
interactions because of the electrodynamics recasting. This
follows because the ACF contour integral [22, 25] reflects the
collective excitations, and the nature of such plasmons depends
on the system-specific electrodynamics coupling among the
set of electron–XC-hole composites [10, 158]. There is no
need to make an assumption of a harmonic behavior for
plasmons (as we did for illustration purposes above).

For example, for two disjunct fragments, the binding
energy contribution from the XC energy binding reduces
to the expected asymptotic form of the vdW interaction
[10],

ΔExc →ΔEAB
vdW = −

∫
du
4π

TrA{αA
ext · Tdip

AB ·αB
ext · Tdip

AB},

(37)
where Tdip(r, r′) ≡ −∇r∇r′V(r − r′). In equation (37), we
have used subscripts on the dipole–dipole coupling, Tdip

AB, to
emphasize that we consider components connecting points in
the spatially disjunct regions. The result equation (37) fol-
lows simply by expanding the logarithm in the formal recast,
equation (18) to second order in χACF(iu) using equation (34)
and the nature of an assumed electrodynamics approximation,
ε(ω) = 1 + 4πα̃(ω).

The result, equation (37), corresponds exactly to the start-
ing point of the Zaremba–Kohn description of physisorption
[184, 185] and holds as long as we can ignore interaction-
induced changes in the density, reference [10]. At the same
time, equation (18) and vdW-DF are set up to track such vdW
attractions (and other nonlocal-correlation effects) also when
they occur within materials fragments or between fragments
with a finite density overlap [2–4, 10, 12, 45].

2.3. Inclusion of GGA-type screening effects

In the following sections, supported by appendix A, we explain
how the vdW-DF method adapts the second susceptibility term
Eres
α̃ of equation (36) to secure a consistent description both of

vdW interactions and of general screening effects, including
vertex corrections.

We recall that the electron-gas is a many-particle system
and that the bare Coulomb form, |r1 − r2|−1, of the interac-
tion matrix element can only directly describe the situation
with exactly two electrons at play. Vertex corrections quan-
tify the extent that an actual interaction event (for example,
defining the quasi-particle dynamics) differs from the bare
Coulomb interaction [167, 169]. In MBPT, we handle a large
part of all the interaction consequences by collecting these
raw-Coulomb modifications into an effective form, described
by an interaction vertex Γ, while keeping track of double
counting. The approach is exact when consistently imple-
mented [89, 168, 169, 188, 189]. As we shall summarize in
section 3, the extent of vertex corrections also directly controls
the formal differences between constraint-based GGAs and
LDA, when starting from an RPA-like model analysis [25, 91,
174, 190]. The top panel of figure 3 shows a Dyson expansion
for the electron Green function where the fourth term is a sim-
ple example of a contribution containing an interaction vertex
correction.

The handling of vertex corrections in the vdW-DF method
works both in the HEG limit and in the presence of density
gradients. For example, the recent (s)vdW-DF-cx version [9,
11] competes favorably with constraint-based GGAs, even in
materials with a dense electron distribution. A high accuracy
for (s)vdW-DF-cx (and for the related variants, vdW-DF-C09
and vdW-DF-optB86b [41, 42]), is documented both for oxide
ferroelectrics [45, 191], for the structural and thermo-physical
properties of metals [42, 94, 95], and for many other types of
problems, as mentioned in the introduction.

The term Eres
α̃ is formally the sum of residuals at the poles

of κACF(ω), but that observation does not reflect how we put
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Figure 3. Feynman-diagram solutions for the quasi-particle dynamics of a level having recoil-less interactions with a surrounding itinerant
electron gas, described by the ZPE dynamics of plasmons ωη (shown as wiggly lines). The level can be a core level or an extended state near
the Fermi surface [85, 86, 163, 164]. The (core-)level Green function G0 is shown by arrow lines. Panel (a) illustrates a traditional Dyson
expansion for the interacting or screened Green function G, with the fourth term illustrating the nature of vertex corrections. Panel (b)
illustrates the elegance and nature of the linked-cluster expansion or cumulant solution [86, 159–162] for G(t − t′); in the time domain it is
sufficient to consider a single connected diagram as the exponential re-summation provides an automatic inclusion of, for example, all vertex
contributions (in the absence of recoil [86, 163, 164]). Panel (c) illustrates that the G0W approximation for the electron self energy underpins
the corresponding frequency-domain formulation [164] of this cumulant expansion, equation (67).

the material susceptibility to work in the vdW-DF method.
Within a single-particle picture, such as the Hartree–Fock
(HF) approximation, Mahan derived the simple form [158],

Eres,HF
α̃ = −

∑
ξ

ωsp
ξ

2
, (38)

where ωsp
ξ denotes the single-particle excitation energies.

Mahan’s characterization of vdW interactions [158] provides
an XC-energy determination, via equation (36), that is consis-
tent with the random phase approximation (RPA) for spatially
inhomogeneous systems [10]. The RPA is a special limit of
the vdW-DF method, reference [10], but the vdW-DF method
aims to go beyond RPA in keeping vertex corrections.1

In the vdW-DF method, we use a bootstrap approach to
nucleate the nonlocal-correlation functionals around GGA
ideas [4, 8, 10]. This is done instead of the RPA reliance of a
lowest-order approximation for the local-field response func-
tion. DFT wisdom suggests keeping local exchange and cor-
relation together [25] as done, e.g., in the screened-exchange
description for local correlations in LDA [21, 22]. Vertex cor-
rections are of central relevance for the success of LDA [19,
20, 25, 84]. However, vertex corrections are also essential for
an accurate description of screening and electron correlations
in cases with a pronounced density gradient. In a discussion of
the quasi-particle dynamics, they can be succinctly described
in cases with recoil-less interactions [85, 86, 163, 164], and we
seek to port that insight.

Specifically, we rely on an effective model component,
Exc,α �= Eres,HF

α̃ , that reflects the non-vdW parts of a GGA-
like XC functional. It does that in terms of a simple, scalar
model susceptibility form α(ω). We note that a local-field

1 We note that both RPA and the vdW-DF method evaluate the XC energy as a
formal contour-integral counting of ZPE shifts [10, 158]. The formal structures
of the XC specification in RPA and the vdW-DF method are identical, just
given by different models of the longitudinal dielectric functions [10].

susceptibility, like α̃ or α, naturally contains nonlocal-
correlation effects also when they arise within a density frag-
ment. Such fragments can be molecules or traditional bulk
matter, cases where a GGA can be expected to work. In prac-
tice, we nucleate this vdW-DF start around a so-called internal
functional Ein

xc that retains all of the vertex correction effects
entering the LDA specification. The vdW-DF method then
tries to capture additional gradient-corrected vertex correc-
tions through an exponential re-summation [86, 163, 164] in
Exc,α.

Collective excitations are expected to contribute signifi-
cantly also in the GGA-type description Exc,α. A proper GGA
definition already exhausts most of the plasmon term EZPE

pl
in the implicit XC functional specification, equation (36). We
can assume that most of the screening effects, including ver-
tex corrections [85, 86, 163, 164], are already included in the
GGA. It is primarily the pure vdW interaction term, denoted
Enl

c, vdW (and given by the logic described in subsections 2.1
and 2.2) that is missing from the GGA account when the GGA
is used to describe sparse-matter systems. The formal struc-
ture of equation (36) is highly useful since the contour inte-
gral tracks all screening effects in the electron gas [10, 158].
It allows us to isolate the pure vdW-type interactions in a
term with an explicit longitudinal projection, as discussed in
section 2.2.

In this paper we focus on the class of consistent vdW-
DF versions (like the vdW-DF-cx version [9]), that arise with
an indirect strategy for XC-functional design (as defined and
detailed below) and that also adhere to the Dyson/Lindhard
screening logic [10, 12]. The design approach can be seen as
simply trusting the ACF guiding principle for the vdW-DF
method [4, 7, 10, 12, 14, 45]. What consistent vdW-DF ver-
sions do, in practice, is to renormalize the physics content of
the equation (36) contributions:

Eres
α̃ − Eself → Exc,α, (39)
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EZPE
pl → Enl

c, vdW. (40)

This leads to a revised functional specification

EDF
xc = Exc,α + Enl

c, vdW. (41)

What we have effectively implemented in the recent
consistent-exchange (spin-)vdW-DF-cx version [9–11, 45], is
thus a pure vdW term Enl

c, vdW which aims to supplement the
non-vdW parts of a GGA-type description (in Exc,α).

The reorganization, equations (36), (39), and (40), reflects
the interpretation of the vdW-DF method as a mutual elec-
trodynamics coupling of GGA-type XC holes [10]. The same
GGA-like screening logic [10] (defined by formal input Ein

xc)
enters in both terms of equation (41). The form of Enl

c, vdW,
expressed in terms of the physics content of Ein

xc, is another
key vdW-DF step [4, 7, 11, 12, 45], that will be summarized
later.

3. Screening in formal DFT

Here we present a more systematic discussion of the role
of screening in formulations of local, semi-local, and non-
local XC energy functionals. We motivate the design logic
of the vdW-DF method in general. By stressing the role of
an effective Dyson equation and a current-conservation cri-
terion, we also prepare for our subsequent presentation (in
section 4) of the consistent-exchange vdW-DF-cx version and
for an analysis of the screening nature of the vdW-DF-cx
components.

3.1. Response in the electron gas

The exact XC energy functional for DFT calculations is given
by formal response theory through the ACF [22, 25, 46],
equation (1). To detail the discussion, it is convenient to intro-
duce the longitudinal Lindhard dielectric function [61–63]:

κλ(ω) = (1 + Vλχλ(ω))−1. (42)

Here χλ(ω) denotes the Fourier transform of equation (13). It
is also convenient to define a screened or effective many-body
interaction

Wλ(ω) = κλ(ω)−1Vλ. (43)

given by the integral equation

Wλ(ω) = Vλ + Wλ(ω)χ̃λ(ω)Vλ. (44)

This screened interaction is independent of the spin of scatter-
ing electrons [169].

The Lindhard analysis of screening gives

χ̃λ(ω) = χλ(ω)κλ(ω), (45)

κλ(ω) = 1 − Vλχ̃λ(ω), (46)

reflecting a Dyson equation for the density–density correlation
function

χλ(ω) = χ̃λ(ω) + χ̃λ(ω)Vλχ̃λ(ω) + · · ·

= χ̃λ(ω) + χ̃λ(ω)Vλχλ(ω). (47)

The interaction-kernel function χ̃λ(ω) of equation (47)
describes the local-field density response [169, 188]. The
density change δnω

λ , equation (16), induced by an external
potential δΦω

ext, can equivalently be expressed

δnω
λ = χ̃λ(ω)δΦω

loc, (48)

with Φω
loc ≡ κ−1

λ (ω)δΦω
ext.

Physics insight on the local-field response χ̃λ (or equiv-
alently on screening) leads to guidelines for the design of
density functional specifications. For example, a Hubbard-
type analysis of the HEG density response [19, 20, 25, 84,
190, 192] to a potential perturbation δΦω

loc(q) (defined by fre-
quency ω and wavevector q) modifies the RPA by inclusion of
a vertex-correction function γ(q = |q|):

χ̃λ(q,ω) =
χ̃λ=0(q,ω)

1 + V(q)γ(q)χ̃λ=0
. (49)

Here V(q) denotes the Fourier transform of the elec-
tron–electron interaction matrix element

V(q = |q|) ≡
∫

dr
eiq·(r−r′)

|r − r′| =
4π
q2

. (50)

The functionγ(q) approximates the interaction vertexΓ at con-
ditions that holds for the HEG. The Hubbard-type response
approximation corresponds to the density–density correlation
function [25]:

χλ(q,ω) =
χ̃λ=0(q,ω)

1 − λb(q,ω)
, (51)

b(q,ω) = V(q)[1 − γ(q)]χ̃λ=0(q,ω). (52)

The wavevector arguments reflect a Fourier transform in (r −
r′) of, for example, 〈r|χλ(ω)|r′〉. The Hubbard approximation
for the HEG response, equations (51) and (52), makes it possi-
ble to provide an analytical evaluation of the coupling-constant
integral. The result is a formal, Hubbard-based specification of
the HEG XC energy [25]:

EHub
xc =

∫
du
2π

dq
(2π)3

ln(a(q,ω = iu))
[1 − γ(q)]

− Eself, (53)

a(q,ω) ≡ [1 − b(q,ω)]. (54)

The form equation (53) reduces to the RPA result for the homo-
geneous gas in the limit γ(|q|) → 0. The longitudinal projec-
tions, equations (32) and (34), are implicit in the Hubbard-type
specification of the HEG XC energy, equation (53). This fol-
lows because the translational invariance ensures that a(q,ω)
is diagonal in q space.

The success of DFT for descriptions of traditional, dense
material can be seen as a consequence of including vertex cor-
rections, that is, taking γ(|q|) �= 0. The RPA description fails
but an MBPT characterization of response in the near-HEG
limit, and of the role of the V(q)γ(|q|) variation at q → 0 in par-
ticular, formally guides the design of the LDA and GGA XC
energy functionals [25, 26, 89, 91, 168, 189]. In practice, the
effects of the important V(q = 0)γ(|q| = 0) value is absorbed
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into the modern QMC-based specification [23] of the LDA XC
energy functional ELDA

xc , [25, 91].
Going beyond LDA, the initial analysis work concentrated

on setting a quadratic nonlocal form [1, 65, 89, 173, 193]:

Exc ≈ ELDA
xc − 1

2

∫
r

∫
r′

Kxc[n](r, r′)
(
n(r) − n(r′)

)2
. (55)

For DFT calculations, XC functional specifications can be
obtained by considering the global density variation n(r)
and enforcing XC hole conservation, as done in the aver-
aged/weighted density approximations (ADA/WDA) [173].
They can also be obtained in a perturbation analysis, consid-
ering small density fluctuations n(r) = n0 + δn(r) around a
constant (average) density n0. In the near-HEG limit, the ker-
nel Kxc is translational invariant, set by the average electron
density, and given by the Fourier components

Kxc(q) ≡
∫

dr eiq·(r−r′) Kxc(r − r′). (56)

For density perturbations, δnq(r) = δnqeiq·r of a given
wavevector q �= 0, the near-HEG results equation (55)
becomes [91]:

Exc ≈ ELDA
xc + Kxc[n](q) |δnq|2. (57)

Using the Hubbard response description the MBPT result
for the near-HEG kernel is [91]

Kxc(q) = −2 V(q)γ(q = |q|), (58)

and thus formally set by the q variation of the Hubbard-vertex
function γ(q). The kernel momentum dependence is expressed
[47, 91, 174]:

Kxc(q = |q|) = Kxc(0) +
π

8k4
F

Z(q)q2. (59)

The q = 0 contribution can be ignored since it is already part
of the LDA specification [91]. The corrections for semi- and
nonlocal XC functionals are reflected in the dimensionless
quantity Z(q).

The nature of the local-field response, and hence screen-
ing can, in principle, be computed from a diagram analysis
[169]; in practice, such analysis is made primarily to extract
design guidelines, for example, references [89, 91, 168, 174,
189]. The local-field response can be further separated into
spin components of the interaction kernel [188],

χ̃λ(ω) ≡
∑
μ,ν

Pμ,ν
λ (ω). (60)

Here Pμ,ν
λ (r1, r2;ω) describes how the μ-spin density at posi-

tion r1 is affected by a local potential acting on the ν-spin
density at position r2. The vdW-type nonlocal-correlation dia-
gram [64, 65, 91]—figure 1c in reference [189] and figure 4c
in reference [91]—has diagonal as well as off-diagonal com-
ponents.

The semilocal (or GGA) XC functionals can, in general, be
expressed by the specification of a local energy-per-particle
variations ε0

xc(r):

E0
xc =

∫
r
n(r) ε0

xc(n(r), s(r)). (61)

A closely related representation is also useful for a discussion
of vdW-DF-cx and other nonlocal-correlation XC functional
versions [14, 55, 57],

Exc =

∫
r
n(r) εxc[n](r). (62)

This latter form merely reflects an expression of the energy
density for the XC functional; the energy-per-particlevariation
is then, as indicated, a functional of the electron density vari-
ation. We shall mostly use the energy-per-particle concept for
local and semilocal functionals, as indicated by the superscript
‘0’ in equation (61).

In the LDA, the εLDA
x/c variation is entirely specified by the

local value of the Fermi vector kF(r) = (3π2n(r))1/3. In the
near-HEG limit, relevant for the GGA design, the value of ε0

xc

also depends on the scaled form of the local density gradient
[4, 7, 25],

s(r) =
|∇n(r)|

[2n(r)kF(r)]
. (63)

For small periodic density variations δnq(r) = δnqeiq·r, the
length of the density gradient is itself proportional to q = |q|,
and the same applies to the value of the scaled gradient s,
equation (63). Following references [7, 47, 91, 174] and using
equation (55), we extract the perturbation limit

ε0
xc − εLDA

xc →−εLDA
x

Zxc

9
s2. (64)

Here Zxc = Z(q → 0) is asserted from exchange-like Pμ=ν(ω)
diagram contributions [7, 89, 91, 174]. Since Zxc is given by the
γ(q → 0) limit, vertex corrections also guide the GGA designs
[91, 174].

For a motivation of the design choices made in the vdW-DF
method, we will, below, consider a relation between the quasi-
particle dynamics, expressed for spin ν, and

∑
μWλ(ω)Pμ,ν

λ (ω).
The effective interaction kernel is here

Pλ(ω) =
∑
μ

Pμ,ν
λ (ω) (65)

and we suppress the spin dependence for simplicity in the dis-
cussion; in the standard class of spin-balanced problems, we
have Pλ(ω) = χ̃λ(ω)/2.

3.2. Screening and exponential re-summation

Exponential re-summation [86, 159, 160, 167] and canonical
transformation are related solution strategies for the interact-
ing electron gas problem. The central idea is that the many-
particle interactions are effectively screened. For example, the
use of a canonical transformation [159, 194–196] Hλ → H̃λ =
ÛHλÛ†, can produce a significant cancellation of the leading
many-particle interaction terms (in H̃λ) with a suitable choice
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of the unitary operator U [159]. The corresponding transfor-
mation of the many-particle wavefunction is often expressed

Ψ̃(r1, . . . , rN) = exp(J̃)Ψ(r1, . . . , rN), (66)

in terms of a so-called Jastrow factor [194, 195] J̃. This factor
is chosen to partly reflect electron correlation and suppress Ψ̃
values whenever |ri − rj| values are small [194]. The implied
screening simplifies the numerical evaluation of the interac-
tion effects, as used, for example, in quantum Monte Carlo
calculations [195, 196].

To set the stage for our discussion of screening, we con-
sider the Green function description of the dynamics of a
quasi-particle

gλ(ω) = g0(ω) [1 + σλ(ω)gλ(ω)]

≡ g0(ω) exp(Jλ(ω)), (67)

in the presence of an electron–electron interaction and screen-
ing. The Dyson correction factor, in the square brackets,
is here cast as a cluster or cumulant formulation [86, 163,
164], defined by an exponential factor Jλ(ω). This factor
is seen as analogous to the Jastrow factor, although in the
present MBPT context. The Green function g(ω) reflects the
single-electron excitations to vacuum [169], and the spatial
variation defines corresponding orbitals of the quasi-particle
dynamics.

Figure 3 shows related Feynman-diagram solutions for
the so-called plasmaron model [85, 86, 163, 164], assuming
recoil-less interactions. The dynamics of each quasi-particle
level, or orbital, is described by an orbital-specific Green func-
tion G. In a single-particle description it is described by G0,
represented by arrows; the coupling to other quasi-particle lev-
els is ignored. The wiggly lines represent approximations to
the screened interactions, for example, given by the so-called
plasmon propagator

Sλ(ω) ≡ −Vλχλ(ω), (68)

that tracks Wλ(ω) − Vλ, references [21, 22, 83, 85, 86]; the
full Green function solution G then captures the characteris-
tic screening (that affects given quasi-particle level) by the
surrounding electron gas, as described by the ZPE dynamics
of plasmons [85, 86, 163]. The same formal expansion can
also be used to describe the dynamics of a level interacting
with virtual vibrational excitations [164]. The top panel of
figure 3 shows the form of a traditional Dyson expansion sub-
ject to assumption of recoil-less interactions, making it clear
that vertex corrections play an important role in setting the
quasi-particle dynamics.

The bottom left panel of figure 3 shows the elegance of
the cumulant approach for solving the time evolution G(t) of a
specific orbital, again under the assumption of recoil-less inter-
actions. This cumulant approach adapts the ideas of the linked-
cluster expansion [167] to the description of the quasi-particle
dynamics [86, 160, 161]. The point is that the linked-cluster
expansion reduces to just a single connected diagram for which
there exists a complete analytical solution [86, 163, 164].

Importantly, the cumulant expansion provides an automatic
inclusion of all screening and vertex correction effects, rel-
ative to a stated approximation for the plasmon (or phonon)
propagator. The underlying assumption of recoil-less inter-
actions holds, for example, for a description of core levels
[85, 86] but also for quasi-particle states near the Fermi level
[163]. More generally, the exponential-re-summation idea can
be used to extract potentially highly accurate solutions from
MBPT, focusing on simple diagrams [86, 163, 164].

The bottom-right panel of figure 3 shows the cumulant-
expansion idea as represented instead in the frequency domain
[164], highlighting a formal similarity with the GW approx-
imation [163, 188]. In frequency space, the expansion of
the quasi-particle dynamics in the electron-plasmon coupling
yields [164]:

G0(ω)eJλ(ω) = G0(ω)[1 + Jλ(ω) + · · · ]

= G0(ω)[1 + σ(1)
GWλ

(ω)G0(ω) + · · · ], (69)

σ(1)
GWλ

(ω) = i
∫
ω′
G0(ω − ω′)Wλ(ω′), (70)

again under assumption of recoil-less interactions. Setting the
exponential re-summation factor,

Jλ(ω) = σ(1)
GWλ

(ω)G0(ω), (71)

allows us to capture vertex corrections implicitly. The use of
this exponential re-summation factor allows a GW (1)-based
account to be meaningful for metals, at least near the Fermi
level [163, 164].

The vdW-DF method aims to capture the vdW forces with-
out loosing the response and screening logic that underpins
the GGA success. The electron-gas response provides a formal
definition of the XC hole, equation (17), and, in turn, the ACF
functional specification, equation (5). The screening, includ-
ing vertex-correction effects, enters in the specifications of the
local-field response [6, 7, 25, 89, 91, 174, 189] χ̃λ(ω) as well
as in the Dyson-equation specification equation (47) of χλ(ω),
and hence in κ−1

λ (ω).
The cumulant expansion [86, 163], analyzed in frequency

space [164], is a guide for understanding the vdW-DF design
logic. Screening in vdW-DF is described by constructing a
scalar, but fully nonlocal, model for a local-field susceptibility
α(ω) that reflects a GGA-type response behavior.

Figure 4 shows, in panels (a) through (c), a compact for-
mulation of the complete Feynman-diagram evaluation of
the electron thermo-dynamical potential [167], the screening
WP of the effective interaction [188], and the quasi-particle
dynamics [169], respectively. The triangle represents the gen-
eral electron–electron interaction vertex form, denoted Γ,
while arrows here depict the fully interacting electron Green
functions g. The wiggly lines represent the screened interac-
tion W. All internal coordinates (at interaction vertices) are
integrated out.

Importantly, the linked-cluster result (panel a), also
defines full specifications of both the interaction screening
Wλ(ω)Pλ(ω) (panel b) and of σλ(ω)gλ(ω) ≈ Jλ(ω) (panel c);
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Figure 4. Formal linked-cluster result for the total energy in the
interacting electron gas (panel a). We suppress spin indices on
electron Green functions g and on the screened electron–electron
interaction W; the triangle denotes the full vertex function. The same
vertex function also enters the formal specifications of the
spin-resolved local-field response function P(ω) and of the electron
self-energy σ(ω). The cluster expansion result leads to a relation
between the factor W(ω)P(ω) (panel b) and the Dyson-correction
factor σ(ω)g(ω) (panel c). The former screens and thus defines the
effective electron–electron interaction [188], while the latter guides
a cumulant-expansion approximation for the quasi-particle
dynamics [86, 163, 164].

they arise by pulling out W and g, respectively. The common-
origin argument motivates a mutual relation

σλ(ω)gλ(ω) ∼ −Wλ(ω)Pλ(ω)

= −Vλχλ(ω)/2, (72)

where we focus on the quasi-particle dynamics for a given spin,
and where the last line holds when Pλ(ω) = χ̃λ(ω)/2. The
Hedin equations [188] prove equation (72) when expressed in
a form with full frequency integration, appendix A.

We see equation (72), and the usefulness [86, 163, 164]
of the cumulant expansion idea, equations (69)–(71), as a
guide to construct χ̃ACF approximations, for use in the vdW-DF
method. By relying on an exponential re-summation, we can
build from a simple model local-field susceptibility α(ω), as
long as we also enforce the projection equation (32). A GGA-
like internal functional is a good place to nucleate this response
modeling [4, 7, 8, 10].

The vdW-DF design strategy for truly nonlocal functionals
thus consists of a sequence of steps. First we use

κint = 1 − χ̃intV

∼ 1 + 4πα(ω) ≡ ε(ω), (73)

to implicitly define an internal (or lower-level) dielectric-
function approximation ε(ω); this follows by partial integration
since ∇2V = −4π. Second, we use

ε(ω) = exp(Sxc(ω))

= 1 + Sxc(ω) + · · · , (74)

to cast the associated scalar-model susceptibility α(ω)—and
hence χ̃ACF(ω)—through an exponential re-summation,

4πα(ω) = Sxc(ω) +
∞∑
j=2

1
j!

(Sxc(ω)) j, (75)

in an effective plasmon propagator Sxc. As indicated by the
subscript, this effective plasmon propagator is set so that
it is consistent with the energy-per-particle variation of an
internal semilocal XC functional [8, 10, 12], as summarized
in appendix B. Finally, we use equation (32) together with
an effective Dyson equation (30) to complete the specifica-
tion of the integrand κACF(ω) ≈ κlong(ω) in the ACF recast,
equation (18). These steps describe a full implementation of
the vdW-DF method; for the design of the popular general-
geometry vdW-DF versions, the resulting description is also
expanded in Sxc, references [4, 7, 12].

We note that the implied combination of an exponen-
tial re-summation, equation (74) and a Dyson expansion,
equation (30), captures higher-order and truly nonlocal corre-
lation effects [1, 12, 65, 91]. This internal semilocal XC func-
tional has no correlations beyond those reflected in LDA [4,
7]. In other words, all gradient-corrected and truly nonlocal-
correlation effects must emerge from the third of the above-
listed steps. Still, the summation in Sxc(ω) provides the
proper framework for capturing screening and vertex effects in
α(ω). Meanwhile, the combination of equations (30) and (32)
ensures a longitudinal projection in κ−1

ACF(ω) = 1 + VχACF(ω).
This projection is, as discussed in section 2.2, sufficient to
ensure that equation (18) also captures the asymptotic vdW
interactions.

For a more detailed motivation of the vdW-DF design
strategy, we consider an exponential re-summation for the
Lindhard screening function

κ−1
λ (ω) ≡ exp(−Fλ(ω)) (76)

= 1 + Vλχλ(ω) = 1 − Sλ(ω). (77)

For a particular coupling constant λ, we have a direct specifi-
cation of the screening

Fλ(ω) ≡ ln (κλ(ω))

= (1 − κ−1
λ ) +

1
2

(1 − κ−1
λ )2 + · · ·

= (−Vλχλ) +
1
2

(−Vλχλ)2 + · · ·

= Sλ(ω) +
1
2

Sλ(ω)2 + · · · . (78)

The re-summation can be expected to converge fast, Fλ ≈ Sλ

as it describes the electrodynamics directly in terms of the
screened response χλ(ω). We also note that

κ−1
λ (ω) = 1 + Vλχλ(ω)

= 1 + Wλχ̃λ(ω)

∼ 1 − 2σλ(ω)gλ(ω) (79)

follows from equation (72). Again, the factor of 2 arises
from summation over spin contributions in the quasi-particle
description. equation (79) is consistent with a classic MBPT
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text-book demonstration [169] that the electron–electron inter-
action energy can be computed both from knowledge of
the external-field response χ(ω) and from the σ(ω)g(ω)
product.

Taking equations (78) and (79) together suggests that we
can set the exponential factor in the dielectric function

Fλ(ω) ∼ 2σλ(ω)gλ(ω). (80)

This identification should be compared with the re-summation
factor Jλ(ω) that characterizes the quasi-particle dynamics,
equation (71), and the Jastrow factor J̃ in equation (66).

We observe that the vdW-DF reliance on exponential re-
summations of dielectric functions, equations (19), (76), and
(80), provides the correct formal structure for capturing a
range of important vertex effects in the electron-gas response.
We recall that the cumulant formulation, equation (76), for
κ−1
λ (ω) was, in fact, originally set up to capture the range of

vertex-correction and hence screening effects for a core elec-
tron interacting with the itinerant electron gas [86]. This was
expressed through the quasi-particle dynamics in the plas-
maron model [85, 86]. Hedin as well as Gunnarsson and
co-workers noted and demonstrated that the model ability to
capture the range of vertex corrections for recoil-less interac-
tions has broader use. It works, for example, for descriptions of
quasi-particles near the Fermi surface [163, 164]. Finally, we
find that the Hedin equations, appendix A, suggests the con-
nection equation (72) between the quasi-particle dynamics and
the cumulant or exponential re-summation, equation (76), for
κACF(ω).

Of course, for the ACF specification equations (18) and
(19) we seek a λ-averaged evaluation of the response. By
construction [10, 47] we have

−
∫ 1

0
dλVχλ(ω) = ln(κACF(ω)), (81)

while equation (78) gives

∫ 1

0

dλ
λ

ln(κλ(ω)) ≈ −
∫ 1

0

dλ
λ

Vλχλ(ω)

= −
∫ 1

0
dλVχλ(ω). (82)

That is, we can see ln(κACF(ω)) as a mean-value evaluation
given a characteristic exponent

FACF(ω) ≡ ln(κACF(ω)) ∼ Fλeff(ω). (83)

We finally note that treatingκACF(ω) like an actual Lindhard
dielectric function κλeff (ω) is fully consistent with the logic of
the coupling-constant analysis of XC functionals [14, 48–51,
90, 197]. For example, based on the coupling-constant anal-
ysis of the consistent-exchange vdW-DF-cx version [14, 15],
we find that the actual XC functional EDF

xc should be seen as a
suitable average of the λ = 0 (all-exchange) limit and λ→ 1
(strongly correlated) limit [15]. This observation reflects the
behavior in the associated XC holes [14]. The correspond-
ing response description differs from that of the physical

system but it is still defined by a long-range particle interac-
tion, VACF ∼ Vλeff .

Overall, we are led to trust a lower-level internal
response description for a characterization of Fint(ω) ≈
ln(κint(ω)) − Sxc(ω), precisely because we rely on exponential
re-summation. We note that a direct use of equations (69)–(71)
leads to an explicit specification,

Fλeff (ω) ∼ 2σ(1)
GWλeff

(ω)g0(ω) ? (84)

However, this would be an uncontrolled approximation
because we do not know the extent that we have thus respected
the longitudinal projection. We also do not know the value of
λeff . Instead, in the vdW-DF method, we seek to retain the ele-
gance of the cumulant-expansion approach [86, 163, 164] with
an implicit construction of α from Sxc. We do that by setting
Sxc = ln(ε), where ε ≈ κint denotes an approximation set by an
internal functional.

3.3. Electrodynamics nature of XC functionals

We make three observations to further motivate and detail the
logic of the vdW-DF method and the formulation of the con-
sistent vdW-DF versions. The exact vdW-DF framework con-
tains the constraint-based semilocal functionals as a limit [4,
7, 10, 12]. This makes it possible to also discuss the connec-
tion between the semilocal and the truly nonlocal functionals
in some detail.

First, the identification of the ACF recast, equations (18)
and (19), with the screening at some effective coupling con-
stant (0 < λeff < 1), equation (83), implies that we should
leverage insight from the theory of light–matter interactions
and screening [63] in the vdW-DF designs.

It is, for example, interesting to use equation (79) to dis-
cuss optical excitation of a quasi-particle orbital of energy εr.
We assume that we are at a frequency ω far from collective
excitations and that there is only a limited amount of actual
transitions, meaning Iσ(ω) → 0. The imaginary part of the
right-hand side of equation (79) is then, for ω ≈ εr, set by
the spectral density, i.e., set by the relevant inelastic excitation
from εr up to the vacuum level [169]. Meanwhile, the imag-
inary part of the left-hand side of equation (79) is given by
Iχ(ω), and effectively set as an evaluation of Fermi’s golden
rule for inelastic transitions [63]. The transition rate must, at
ω ≈ εr, have significant contributions from such optical exci-
tations to the vacuum level. It is gratifying that the real part of
the model dielectric function κλ(ω ≈ εr) define the screening
of such excitations.

Moreover, since we have build both χ̃ACF(ω) and gλeff (ω)
from exponential re-summations, we expect the two expan-
sions to be related. We note that the cumulant approach for
the quasi-particle dynamics, given by equation (72), has accu-
racy near the Fermi level (and for localized orbitals). This
suggests that our exponential re-summation for ε(ω) has the
formal structure to be accurate for screening at corresponding
frequencies.

For a practical design framework, we set the exponential
re-summation [8, 12, 47]

ε(ω) = eSxc(ω). (85)
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from an internal semi-local XC functional

Ein
xc =

∫ ∞

0

du
2π

Tr{ln(ε(iu))} − Eself

=

∫ ∞

0

du
2π

Tr{Sxc(iu)} − Eself. (86)

The formal structure is the same as that used for a direct design
of GGA functionals, equation (89), as discussed below. This
allows us to use equation (86) to set the details of Sxc(ω)
approximation, as summarized in appendix B and elsewhere
[4, 7, 9, 12].

Second, approximations for the ACF electrodynamics and
for κACF(ω) should be built in compliance with constraints and
with the Lindhard screening logic [63].

We should seek approximations that adhere to the Dyson
equation [61, 62], equation (30) for the effective ACF electro-
dynamics response. This follows because we should think of
the ACF recast as reflecting an actual electrodynamics, given
by a long-ranged interaction VACF ∼ Vλeff .

Also, approximation for this ACF electrodynamics must be
made subject to a current-conservation criterion [10], that is,
κACF(ω) ≈ κlong(ω). We are constructing a ground-state XC
functional that reflects an electrodynamics coupling of the ZPE
dynamics of XC holes, equation (36). However, zero-point
vibrations, like plasmons, involve electron currents and we
should view vdW-inclusive XC functionals (for ground state
DFT) as a limit [198, 199] of time-dependent DFT [200] or of
current-density functional theory [201, 202].

The longitudinal projection, equation (33), is hardwired
into the resulting vdW-DF functional description of nonlocal-
correlation effects, equation (2), as explained below. As
detailed in section 4, the consistent-exchange vdW-DF-cx ver-
sion seeks to enforce both the Dyson criterion, equation (30),
and the longitudinal projection in the full nonlocal-functional
specification.

Third, the physics of the ACF electrodynamics and dielec-
tric function κACF(ω) ≈ κlong(ω) is at the same time partly
known and incompletely explored. Equations (21) and (22)
provide a direct link between the formally exact XC hole,
equation (17), and κACF(ω). On the one hand, we know
a lot about this ACF dielectric function when it is used
to describe semilocal functionals via equation (22). On
the other hand, the Mahan and Ashcroft analysis of the
nature of vdW forces [64, 65, 158], as well as the Ander-
son–Langreth–Lundqvist–Dobson launching of the vdW-DFs
[1, 2, 166, 203–205], suggest that we must seek truly nonlocal
formulations of nxc and κACF(ω).

In the vdW-DF method, we seek to port the GGA experi-
ence in the former to enhance the quality of the latter.

3.4. Nonlocal and semilocal XC functionals

Interestingly, our analysis of the screening nature of function-
als leaves us with two suggestions for actual designs, a direct
and an indirect formulation. They differ in how we connect the
physics content of approximations like equation (34) to the
underlying formally exact (λ-averaged) response description
contained in equation (1).

The direct approach is using equation (77) to just recoup
the standard ACF

Exc ≡
∫ ∞

0

du
2π

Tr{〈(1 − κ−1
λ (iu))〉λ} − Eself

=

∫ ∞

0

du
2π

Tr{〈Sλ(iu)〉λ} − Eself, (87)

where we have used

〈Aλ〉λ ≡
∫ 1

0

dλ
λ

Aλ. (88)

to define the λ averaging.
The direct-design approach can also formally be seen

as a result of both truncating the exponential re-summation
equation (19) and the logarithm in equation (18) to lowest rel-
evant order in Vχλ(ω). Since equation (87) is, in principle,
exact by itself, it is clear that there are important cancellations
in ACF recasting and in the exponential summation. Use of a
direct approach (relying directly on the original ACF formu-
lation), equation (87) is a highly motivated design strategy, as
long as we are actually able to directly assert a good, robust
approximation for 〈(1 − κ−1

λ (iu))〉λ = −
∫ 1

0 dλVχλ(iu).
In practice, the direct design strategy rests on making sys-

tematic approximations that are based on formal MBPT for
the HEG and for the weakly-perturbed electron gas [4, 7, 10,
11, 13–15, 21, 23, 25, 26, 28, 29, 48, 50, 64, 65, 89, 91, 168,
174]. The electron response is dominated by plasmons, i.e.,
collective excitations defined as zeros of the dielectric func-
tion of the system. We thus expect the semilocal (GGA) func-
tional descriptions to be fairly approximated by a simple model
for a plasmon propagator S′

xc. We can, for example, use the
formulation inspired by a formal MBPT gradient expansion
[47, 87],

Exc ≈ E0
xc ≡

∫ ∞

0

du
2π

Tr{S′
xc(iu)} − Eself, (89)

appendix B. The specification (89) is equivalent to LDA/GGA
formulations given the semilocal XC hole

n0
xc(r; r′ − r) = −δ(r − r′)

− 1
2πn(r)

∫ ∞

0

du
2π

∇2
r〈r|S′

xc (iu)) |r′〉

(90)

It is a problem that use of even a double-pole plasmon
approximation for Sxc

′ leads to a GGA-type functional in the
direct-design approach. As summarized in appendix B and in
references [4, 7, 10, 12], the local energy-per-particle varia-
tion εin

xc(r) of the semi-local internal function Ein
xc specifies the

local plasmon dispersion [4, 7, 25], and invariably reduces the
XC functional specification equation (90) to that of a semilocal
form. The semilocal XC functional form has no clear mecha-
nism for reflecting truly nonlocal correlation effects, including
pure vdW attraction [64, 65, 91], section 2.

The indirect, or vdW-DF, approach, is to instead exploit
equations (18) and (19) for higher-order expansions in the
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plasmon propagator, building from equation (85). The expo-
nential re-summation ε(ω) = exp(Sxc(ω)) is, by itself, exclu-
sively used to reflect a GGA behavior minus pure vdW
forces.

However, the indirect design provides a balanced account
of general interactions by also explicitly enforcing a longitu-
dinal projection [4, 10], that is, in the vdW-DF method, we
use equation (34), with ε(ω) inserted for ε(ω), to define the
XC functional

Exc ≈ EDF
xc ≡

∫ ∞

0

du
2π

Tr{ln(κlong(iu))} − Eself. (91)

The implicit ACF approximation,κACF ≈ κlong, secures a strict
enforcement of current conservation in the description of the
electrodynamics response [10].

The vdW-DF method is, to our knowledge, the first example
of this indirect (Dyson-based) functional design approach.
There is seamless integration with the underlying GGA for-
mulation, given by ε(ω) = exp(Sxc(ω)), as long as we prop-
erly balance exchange and correlation terms, as discussed in
section 4.

To define specific versions in this vdW-DF method we
assert the local field response, given by χ̃ACF(ω)V , from a
trusted MBPT analysis [4, 7, 91]. It is sufficient to formu-
late the input in terms of an effective scalar local-field sus-
ceptibility, given by α = αI and equation (75), where I is
the unit matrix in spatial coordinates; the associated (internal-
functional) approximation for the scalar dielectric function
is given ε = εI with ε(ω) = 1 + 4πα(ω). We use the MBPT
analysis to set the gradient-corrected exchange of the internal
semilocal XC functional, equation (86), and thus the details of
the approximation for the vdW-DF plasmon propagatorSxc(ω),
appendix B. The description of χ̃ACF(ω)V then follows by the
exponential re-summation, equation (75).

The lowest-order contribution in equation (94) is just the
internal functional itself. The vdW-DF method has a leading
term given as

EDF
xc,n=1 =

∫ ∞

0

du
2π

Tr{∇Sxc(iu) · ∇G} − Eself

= Ein
xc, (92)

where G = −V/4π. The last line follows since ∇2G = 1.
The vdW-DF method yields a nonlocal-correlation energy

approximation [2–4],

Enl
c =

∫
du
2π

Tr{ln(∇ε(iu) · ∇G) − ln(ε(iu))}, (93)

that is set entirely by the density variation [1, 6, 32, 53, 59,
165, 180, 205–211] and hence by occupied orbitals [31].

The vdW-DF version specifications [4, 8, 9, 11, 12] are
given by equations (91), (34), (86) and (93). They are, in prin-
ciple, strictly nonempirical [4, 10, 12, 30, 45] since the eval-
uation of equation (93) is defined by a systematic expansion
in a known approximation for the plasmon propagator Sxc. In
practice, the resulting functional specification, equation (3),
normally includes a cross-over term, δE0

x.

Moreover, in the popular general-geometry vdW-DF ver-
sions [4, 5, 7–9, 12, 40–43, 212] the formal nonlocal-
correlation energy specification equation (93) is expanded to
second order in Sxc, using G = −V/4π and

χACFV ≈ −∇
[

Sxc +
1
2

S2
xc

]
· ∇G + (∇Sxc · ∇G)2. (94)

The two terms grouped in the square bracket in equation (94)
are part of an expansion for χ̃ACF, while the third term
is the lowest-order contribution to the screening implied in
equation (30). The combination of the second and third terms
in equation (92) defines equation (2). However, we may also
retain more or all steps in the expansion, equation (94), as
done in the immediate precursor, namely the layered-geometry
vdW-DF0 version [2, 3, 6].

Importantly, when expanding to order n = 2 (or more), we
arrive at a truly nonlocal form for the description of nonlo-
cal correlations. The vdW-DF method comes with a universal-
kernel evaluation [4, 5] of the nonlocal-correlation term

Enl
c =

1
2

∫
r

∫
r′

n(r)φ(n(r), n(r′), s(r), s(r′)) n(r′). (95)

The universal-kernel evaluation, the definition of associated
effective potential, and its use in efficient DFT calculations are
detailed elsewhere [7, 12, 17, 18, 47, 60, 171].

Also, the nonlocal-correlation evaluation equation (95) has
seamless integration [4, 5] with LDA and it is consistent
with equation (55). This follows both because it nominally
involves a double spatial integral over the density distribu-
tion and because equation (2) is easily shown to vanish in the
HEG limit [4]. At the same time, neither equation (95) nor
equation (55) should be seen as just a two-density-point sum-
mation, for example, as discussed in reference [10]. It captures
the mutual electrodynamics coupling of two electron–XC-hole
systems (that are centered at positions r and r′).

It should be noted that the input ε(ω) to any such vdW-DF
version or variant, reflects the screening that exists in the GGA
dielectric function ε(ω) = exp(Sxc(ω)). As such, the vdW-DF
method provides a systematic extension that captures vdW
forces as already screened by, for example, itinerant electrons
[10, 64, 65].

Finally, we mention that care must be taken when build-
ing the full vdW-DF functional designs from an understand-
ing of screening contained in a GGA functional. We nucleate
the description around an internal semi-local functional Ein

xc.
Appendix B documents that it is therefore sufficient to approxi-
mate ln(ε(ω)) = Sxc(ω) by a double-plasmon-pole approxima-
tion Sxc(ω) that reflects the logic of a gradient expansion [4,
47, 87]. However, the nonlocal-correlation effects cannot be
limited to the vdW binding mechanism discussed in section 2,
references [10, 64, 65]. The second term of equation (36) must
also reflect the exponential re-summation implied in asserting,
Sxc(ω) = ln(ε).

The second term Exc,α in equation (41) reflects the poles of
α(ω) = (ε(ω) − 1)/4π. We keep local XC effects together in
Ein

xc, and hence in Sxc(ω), so clearly Exc,α �= Eres,HF
α − Eself. By

the cumulant expansion [86, 163, 164], the electron dynam-
ics (in g0(ω)−1gλeff (ω)) also reflects terms that are quadratic
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in Sxc and thus truly nonlocal (as we detail in appendices
B through D). If the inner functional Ein

xc already reflected
gradient-corrected correlation, we could be double counting.

The vdW-DF solution strategy is that of the Occam’s
razor, that is, to simply set the semilocal inner functional
as LDA plus gradient-corrected exchange. The idea is to let
the vertex correction effects in GGA correlation emerge in
Exc,α, rather than dealing with a potential double counting.
However, this Occam solution strategy is only partly moti-
vated by the analysis in references [86, 163, 164]. Important
semilocal-correlation effects, for example, reflecting vertex
corrections might be missing and we must validate that vdW-
DF designs also works for traditional dense-matter challenges,
for example, references [45, 95, 191].

4. Screening effects in consistent vdW-DF
versions

This section summarizes the rationale for the consistent-
exchange vdW-DF-cx version. It does so in terms of illustra-
tions of accuracy in computing the density variation and based
on formal MBPT arguments. The section furthermore presents
a detailed analysis of the underlying electrodynamics descrip-
tion. This section therefore discusses a different splitting of
vdW-DF-cx terms than what is presented in equation (3).
Appendix C explains how the electrodynamics nature of the
vdW-DF method suggests an ordering of general nonlocal-
correlation-energy terms, going beyond the truncated expan-
sion of the vdW-DF nonlocal-correlation energy.

Finally, to make it possible to compute and thus explore
the electrodynamics analysis in practice, this section presents
universal-kernel calculations of the individual pure-vdW and
cumulant components. They describe the functional contribu-
tions to quadratic order in Sxc and appendix D provides details
of the universal-kernel derivation and evaluation.

4.1. Look how good the densities are: molecular libration
modes and hard-matter thermo-physics

The key DFT concept is the electron density variation. There
are concerns that while many of the recent XC density func-
tional developments may improve the description of energies,
they tend to destroy the description of the electron densi-
ties [220]. We share the opinion that the real test of a func-
tional usefulness and robustness lies in its ability to accu-
rately predict the electron density variation in general systems.
Of course, it is also relevant to test the accuracy in descrip-
tions of reaction and process energies, for example, as in
figure 1. However, to be useful as a general-purpose tool [45],
DFT with the vdW-DF-cx [9] approximation must be accu-
rate on the electron density from soft molecular matter [98,
99], where there are important sparse regions [32], and to hard
traditional matter [45, 95], where the electron distribution is
dense.

Good discriminators for quality in the density description
are highly accurate predictions of atomic structure, of atomic
vibrations and phonons, as well as of surface-specific work
functions. The relevance of the first discriminator follows from

the Hohenberg–Kohn theorem [221]: the structure-optimized
nuclei positions Ri must uniquely reflect the ground-state den-
sity variation n(r). The relevance of the third follows since the
work function reflects the variation (across the surface) in the
full electrostatic potential Φ(r) that acts on the electrons; the
work functions and work-function shifts (computed for spe-
cific surfaces) is an established indicator of quality of XC func-
tionals, for example, as discussed and used in references [25,
89, 222–226].

The relevance of finding accurate vibrations follows since
we work in the standard Born–Oppenheimer or adiabatic for-
mulation of DFT. We do not treat the nuclei dynamics directly,
since the problem only depends parametrically on the nuclei
positions, denoted Ri. Instead we compute DFT results for
another (related) electrostatic potential ΦRi(r), that influences
a given nucleus i. It contains the Hartree potential from the
electron density as well as the electrostatic-potential contri-
butions that are produced at the rest of the nuclear positions,
Rj �=i. For an infinitesimal displacement, the restoring force on
nucleus i must be given exclusively by ΦRi (r), as discussed,
for example, in reference [7]. These restoring forces are a
direct reflection of the electron-density variation, n(r), and
they define the phonons, and vibrations in general [227].

Figure 5 highlights the vdW-DF-cx performance on density
quality. The figure summarizes two sets of vdW-DF-cx studies
of the oligoacenes molecular crystals and of thermo-physical
properties in the full set of nonmagnetic transition metals [95,
98, 99]. Computational details are given in the cited papers.
Both panels assess the density-quality performance in term of
the first (structure) and second (vibration) discriminators. We
shall return to a discussion of a quality assessment of vdW-
DF-cx in terms of the surface work function discriminator in
section 6.

The top panel documents that the vdW-DF-cx results for
the weak libration and rocking modes of the naphthalene
crystals are in exceptional agreement with low-temperature
measurements [99, 213]. It is important to note that this
vdW-DF-cx phonon prediction is computed free of all exper-
imental input, on structure or otherwise. The phonon disper-
sion is computed for the lattice constants and structure angles
that result with full stress and atomic relaxations in vdW-DF-
cx. The vdW-DF-cx structure predictions are, in turn, in close
agreement with low-temperature measurements across the set
of oligoacene structures [98]. The vdW-DF-cx is found able to
predict the molecular structure and vibrational response ahead
of synthesis.

We also demonstrated that vdW-DF-cx structure predic-
tions are accurate enough to, in principle, motivate (com-
putationally costly) GW and Bethe–Salpeter calculations of
the molecular-crystal optical response ahead of experimen-
tal input [98]. The ability to genuinely predict, for example,
solar-cell function before actual synthesis has potential for
accelerating, for example, molecular-based green-technology
developments. Here, we take the set of oligoacene results [98,
99] as a validation that consistent vdW-DF-cx functional is
accurate on the electron-density variation in sparse, molecular
matter.
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Figure 5. Top panel: phonon dispersion for the set of intermolecular
(libration and rocking) modes in naphthalene, contrasting neutron
measurements [213] (black) and vdW-DF-cx calculations (red)
obtained with full stress and atomic-position relaxations [99]. The
phonons are computed at the vdW-DF-cx result for the lattice
constants and structure angles. Bottom panel: comparison of
vdW-DF-cx and PBE, PBEsol, and AM05 [214] performance for
nonmagnetic transition metals. The panel summarizes calculations
in ground-state DFT but corrected using the quasi-harmonic
approximation [215] that is evaluated from full phonon calculations
[216] in each of the XC functionals. These calculations were
performed in the plane-wave code VASP [217, 218] using normal or
hard PAW setups (as noted by the legend). The atomic reference
energies are, however, corrected by a study of the atomic spin
polarization, as obtained using the proper spin vdW-DF-cx
implementation that is available in QUANTUM ESPRESSO [11,
36, 95, 219]. The panel compares, among the functionals, the
percentage errors (bars) as well as standard deviation (vertical lines)
for the set of thermo-physical properties in a comparison with
room-temperature measurements. The panels are adapted with
permission from references [99] and [95], respectively. Copyright
(2016 and 2017) by the American Physical Society.

The bottom panel of figure 5 illustrates what vdW-DF-
cx can do for characterizing transition-metal structure and
thermo-physical properties at room temperature. As discussed
in references [95, 113, 121], the vdW-DF-cx not only works
well at describing the structure at a Born–Oppenheimer level,
in raw DFT, but it has a robust description of the phonons

that emerge with variations of both cubic and hcp lattices,
for bulk and layered structures. At least for some of the
cubic nonmagnetic transition-metal cases, we could have just
compared our raw-DFT vdW-DF-cx structure characterization
with measurements of structure and cohesive energy that are
also back-corrected for ZPE and thermal expansion effects
[228–230]. However, the back correction introduces a fur-
ther dependence on experimental input. Instead we chose to
combine the robust phonon description of vdW-DF-cx (and
of highly successful GGA descriptions: PBE [28], PBEsol
[29], and AM05 [214]) with the quasi-harmonic approxima-
tion [215, 216] for a full (or native) DFT determination of ZPE
and thermal-expansion effects as a function of temperature
[95].

The panel shows a comparison of performance for the set
of thermo-physical properties: volume, main lattice constant
(often denoted a, extracted for both cubic and hcc lattice struc-
tures), cohesive energy, bulk modulus and thermal-expansion
coefficient. These are computed at room temperature and can
be compared directly with room-temperature measurements.
Also, since the data set of nonmagnetic transition metal is
sufficiently large, we can extract meaningful statistical aver-
ages of deviations (denoted ‘errors’ in reference [95] and in
the panel) for this important class of systems with a dense
electron distribution. In the vdW-DF-cx case, we provide this
hard-matter benchmark not only for the normal PAW set up
of VASP [217, 218] but also (as noted by a subscript) with
the ‘hard’ PAW setup to test convergence of the Enl

c evaluation
[18]. Also, for the study of cohesive energies, we relied on the
QUANTUM ESPRESSO implementation of spin vdW-DF-cx
[11] to describe the atom reference energy, finding a systematic
improvement [95].

The bottom panel figure 5 suggests that vdW-DF-cx is
highly accurate on structure and vibrations and therefore on the
electron-density description in dense matter. The transition-
metal benchmarking result supplements other findings of
good vdW-DF-cx performance on structure (and vibrations).
Besides low-temperature comparisons with oligoacene and
polyethylene measurements [98, 99, 103, 107], we mention
that the vdW-DF-cx is found accurate on describing polariza-
tion of PbTiO3 and vdW-bound layered materials [9, 45, 68,
113, 121, 230].

4.2. Charge and current conservation in vdW-DF

We believe that the vdW-DF-cx robustness advantages fol-
low from the emphasis on conservation laws in the full vdW-
DF method. We explicitly enforce current conservation in the
response descriptions, equation (34), and this also ensures
an automatic compliance with charge conservation for the
vdW-DF XC hole [10].

Adapting equation (20), the full vdW-DF XC hole is

nDF
xc (r; r′ − r) = −δ(r − r′)

− 1
2πn(r)

∫ ∞

0

du
2π

∇2
r〈r| ln(κlong(iu))|r′〉.

(96)
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The Fourier transform of this XC hole is

nDF
xc (r; q′) =

∫
u
eiq′ ·u nDF

xc (r; u = r′ − r). (97)

Overall XC hole conservation, equation (4), mandates
that nDF

xc (r; q′ → 0) = −1. This is equivalent to demanding
ΔnDF

xc (r; q′ → 0) = 0 where ΔnDF
xc is used to identify all XC

hole contributions that originate from the ln(κlong) part of the
vdW-DF specification.

For our discussion it is convenient to explore the formal
connections to a characterization of light–matter interactions
[47]. Because we use a scalar representation of the model sus-
ceptibility, the current-conservation criterion, equation (32),
reduces to

χ̃ACF(ω)V = ∇α(ω) · ∇V. (98)

However, the external-field susceptibility, given by
equation (31), remains a tensor given by the analysis
behind equation (28). To make the identification we simply
expand αext in terms of χ̃ (and thus α), sorting the contribu-
tions according to the number m of times that χ̃ enters in the
associated Dyson equation (30):

αext =

∞∑
m=1

αm. (99)

We note that

χACFV =

∞∑
m=1

(∇α · ∇V)m, (100)

and it follows that α1 = αI while

αm�2 = α(∇V)(∇α · ∇V)m−2(∇α) (101)

are matrix contributions defined by the outer product of the
first ∇V and the last ∇α.

The evaluation of the vdW-DF method relies on expanding
every instance of α(iu) (entering in equation (99)), in terms of
Sxc to some order given jk, using equation (75). The implied
effects on the optical-response description can be sorted

αext =

∞∑
n=1

∞∑
m�n

∑
i

α(i)
m,n, (102)

according to both m and to the total number n = j1 + j2 +
· · ·+ jm of Sxc factors. An index i is used to keep track of the
different ways that a multiple expansion complies with the m
and n’s. Those details are not written out here as they have no
relevance for the present discussion.

Each of the susceptibility terms of equation (102) corre-
sponds to the XC hole contribution

ΔnDF,(i)
xc,m,n = ∇2

r′

∫
r′′
∇r · A(i)

m,n(r, r′′) · ∇r′′V(r′′ − r′), (103)

where

A(i)
m,n(r, r′′) =

1
2πn(r)m

∫ ∞

0

du
2π

α(i)
m,n(r, r′′; iu). (104)

Evaluating the Laplacian and performing a partial integration
yields

ΔnDF,(i)
xc,m,n = 4π∇r · ∇r′Am(r, r′), (105)

where

∇r · ∇r′ ≡
{

∂

∂x
∂

∂x′
+

∂

∂y
∂

∂y′
+

∂

∂z
∂

∂z′

}
. (106)

The longitudinal projection leading to the form equation (105)
is thus sufficient to ensure explicit charge conservation for each
partial XC-hole contribution, ΔnDF,(i)

xc,m,n(r; q′ → 0) = 0.

4.3. vdW-DF versions and variants

The original general-geometry vdW-DF1 version [4] did not
fully rely on the logic of the vdW-DF method (as summa-
rized above); instead it relied on equations (2) and (3), that
is, using a formulation in which the semilocal functional com-
ponent E0

xc is not firmly linked to the internal functional Ein
xc.

In effect, there is a presence of a cross-over component δE0
x =

E0
xc − Ein

xc. The same is, in principle, true for all other present
general-geometry vdW-DF versions and variants [8, 9, 16,
40–43]. It is also true for the precursor, the layered geometry
vdW-DF0 version [3, 6].

The reason for originally tolerating a cross-over term δE0
x

is a build-in frustration in the present vdW-DF designs. On the
one hand, the exchange content of Ein

xc must help curb nonlo-
cal correlation contributions from low-density regions [1, 6, 9,
10, 12, 65, 171]. This motivated picking an LV form [7, 91,
174] for the exchange enhancement factor Fx(s) = 1 + μLVs2

in the internal functional. On the other hand, the LV exchange
[91] is not, in itself, a good exchange description and leads
to poor descriptions of, for example, atomization energies of
molecules.

In the original layered- and general-geometry vdW-DF ver-
sions [3, 4], we picked revPBE as the functional exchange
choice, entering in E0

xc. The idea was simply to minimize
potential for double counting [6] and the argument was given
by demonstrating that this original exchange choice for vdW-
DF essentially eliminates all binding from exchange in the case
of layered materials and noble gas atoms [3, 4, 6].

The emphasis on plasmon consistency in (spin) vdW-DF-
cx means that the actual vdW-DF-cx exchange (in E0

x) is also
given by the LV analysis [7, 91, 174], at scaled gradients s <
2–3. At small s, this LV behavior is similar to the PBEsol gra-
dient expansion [29]. However vdW-DF-cx (PBEsol) builds
from the LV handling of a screened-exchange (from a pure-
exchange) analysis of the q → 0 response limit [7, 174]. Since
the PBEsol exchange enhancement (at small s) is in turn sim-
ilar to that used in vdW-DF-C09 [41] and vdW-DF-optB86b
[42], these variants are thus related to the consistent-exchange
vdW-DF-cx [9].

The exchange choice in other vdW-DF variants and in vdW-
DF2 [8] is picked from other considerations.

The vdW-DF family of XC functionals comes with a
highly effective Roman–Soler algorithm [17] for evaluating
Enl

c . It also comes with an open-source library, termed LIB-
VDWXC, for massively-parallel computations of this scheme
[18]. While based on (parallel) fast-Fourier transforms, the
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scheme (and the library) can easily be adapted to all-electron
calculations on radial grids [231]. Generally, the Enl

c evalua-
tion has excellent scaling [18] and it is never a speed hindrance
compared to, for example, a GGA in a plane-wave code, for a
given choice of the wavefunction energy cut off.

A full, first-principle nonlocal-DFT characterization of
truly large organic and even biological systems is today possi-
ble. The biophysics potential is illustrated by a recent subsys-
tem and linear-scaling but first-principle DFT study of struc-
ture and molecular dynamics in a tobacco mosaic virus in an
explicit aqueous solution [232].

The virus study used the related rVV10 nonlocal-
correlation functional [66, 67] as implemented in CP2K [233]
and a modern TIER0 supercomputer [232]. However, in com-
putational terms, rVV10 and vdW-DF differ essentially by
looking up different universal-kernel files [4, 7, 67]; in QUAN-
TUM ESPRESSO [36, 219], the rVV10 implementation is, in
part, adapted from the subroutines for vdW-DF calculations
[11, 36]. The rVV10 and vdW-DF share the Roman–Soler [17]
evaluation scheme which seems to present no computational
bottleneck up to at least a million atoms [232].

4.4. Rationale for consistent-exchange vdW-DF-cx

A simple argument makes it clear that the Dyson equation,
equation (30), uniquely specifies the correct balance between
vdW-DF exchange and correlation terms. The exchange exclu-
sively resides in χ̃ACF (as it must be independent ofλ) while the
rest of the Dyson-equation terms can exclusively contribute to
the nonlocal-correlation term. However, as the ACF effectively
reflects an actual long-range interaction, VACF, the Dyson
equation (and Lindhard screening logic) leaves no wiggle
room between local- and external-field response components
[62, 63].

The recent consistent-exchange vdW-DF-cx version [9,
45] seeks to restore compliance with this electrodynamics
guide for the vdW-DF method. Effectively, this means that
we must use Ein

xc to specify the exchange component. A com-
plete elimination of the cross-over term δE0

x is not possible in
present vdW-DF versions, given by equation (3). However, the
exchange component of vdW-DF-cx is chosen to effectively
eliminate the adverse effects of δE0

x �= 0 in the description of
binding.

Part of the motivation for taking the consistent-exchange
vdW-DF-cx path is a concern about conservation laws. The
effect of using a traditional or direct GGA-type specification
for the semilocal functional component E0

xc = Ein
xc + δE0

x can
be seen as shifting to a direct-design approach, Sxc → Sxc

′,
exclusively in the leading equation (94). This corresponds to
an adjusted vdW-DF method framework:

EDF′
xc ≡

∫ ∞

0

du
2π

Tr
{

ln
(
κlong(iu) + δS (iu)

)}
,

= EvdW−DF
xc

+

∫ ∞

0

du
2π

Tr
{

ln
(

1 + κ−1
long(iu)δS(iu)

)}
, (107)

where δS ≡ Sxc
′ − ∇S · ∇G. It is not clear when the second

term of equation (107) complies with the current-conservation
logic of the vdW-DF method [9]. Also, if we assume some
other approach to enforce charge conservation in E0

xc, it is not
clear how that input can easily be merged with the conservation
constraints in the present vdW-DF versions. The Occam razor
approach of consistent vdW-DF implementations is to try to
avoid such potential complications.

Over and above that, we recommend the vdW-DF-cx for
general-purpose use because it aims to be true to the underly-
ing MBPT logic. It does not break the Dyson/Lindhard logic
of screening, and avoids an uncontrolled approximation [63].
Also, it exclusively relies on analysis of quantum Monte Carlo
(QMC) data (in the LDA correlation [23] part of Ein

xc) and of
MBPT (in the screened-exchange [7, 91, 174] part of Ein

xc).
Of course, the vdW-DF-cx alignment with the full vdW-DF
method idea is only perfect when the materials binding arises
in regions with small to moderate values of the scaled gradi-
ents s < 2–3, as discussed elsewhere [9, 10]. That criterion
is, however, expected to hold in bulk problems and for cova-
lent binding in molecules. It often holds also for intermolecular
binding cases [10].

Finally, sticking to the vdW-DF-cx logic holds another
advantage: since all functional components are set directly in
terms of Sxc, it makes it easier to seek systematic improvements
in nonlocal-correlation functionals [9, 10, 12].

4.5. Spin vdW-DF-cx: a systematic extension

Spin effects enter the vdW-DF description because spin polar-
ization adjusts the plasmon dispersion [22], and hence the
plasmon propagation [11]. The vdW-DF propagator form Sxc

is set by a semilocal functional Ein
xc and it is thus entirely

given by LDA correlation and by gradient-corrected exchange,
appendix B. Spin effects on the latter are exactly specified by
an exact spin-scaling result [27]. Spin effects on the former
are believed to be well described by the analysis in references
[23, 24]. In the vdW-DF method, with the present choice of
plasmon-propagator model, there is only one possible specifi-
cation of spin effects on Sxc.

The implication is that there exists a proper spin exten-
sion of the vdW-DF method, reference [11]. The extension
is uniquely defined for any given choice of the internal func-
tional if we strictly follow the Occam design strategy: exclud-
ing gradient-corrected correlation in Ein

xc and sticking with the
simple, gradient-expanded Sxc, appendix B and references [4,
12]. The natural spin extension (of a given vdW-DF version)
results by simply continuing to use Sxc to determine all terms
of the full vdW-DF method specification, equation (91). While
the standard vdW-DF versions, given by equation (3), also con-
tain an exchange cross-over term, δE0

x, the spin extention is still
uniquely determined since the exact spin-scaling criterion [27]
also defines spin-polarization effects on δE0

x.
Figure 6 summarizes a study of the weak chemisorption of

graphene. We use a 6 layer unit-cell slab and a lateral unit-cell
choice that is indicated by the white frame in the top panel. It
was chosen to also permit a comparison with RPA calculations
[235, 236]. The formulation of spin vdW-DF [11] permitted
us to complete the bottom-panel comparison of adsorption of
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Figure 6. Weak chemisorption of graphene on Ni (top panel) as
described using proper spin extensions of the vdW-DF method
(bottom panel). Blue and gray spheres identify Ni and C atoms,
respectively. The vertical dashed line in the bottom panel shows the
experimental results for the adsorption minimum distance
2.11 ± 0.07 Å [234]. The panel contrasts the results for the
adsorption energy variation as obtained in the spin extension of the
original vdW-DF1 (black circles), of vdW-DF2 (purple diamonds),
and of vdW-DF-cx (green squares). For completeness the panels
also shows the results for PBE and VV10 [66, 67]. The panels are
reproduced, with permission, from the supplementary materials of
reference [11]. Copyright (2015) by the American Physical Society.

graphene on Ni(111). Here we focus on a comparison with an
experimental observation of the optimal adsorption distance
[234] (indicated by the vertical dashed line).

Contrasting the graphene binding-energy curves we find
that vdW-DF-cx differs from vdW-DF1 [4], from vdW-DF2
[8], from rVV10 [66, 67], and from PBE [28] in predicting
both a physisorption minima and a weak-chemisorption min-
ima at a shorter graphene-surface separation. The RPA results
yield no clear preference for a chemisorption configuration
at a 2.2 Å binding separation [235, 236]. Meanwhile, vdW-
DF-cx correctly predicts the stability of the weak chemisorp-
tion minima, occuring at a graphene-surface separation 2.1 Å
that aligns with the measured Ni(111) value 2.11 ± 0.07 Å,
[234].

In molecular problems [35], and especially for atomiza-
tion energies [13, 15, 237–242], a correct handling of spin
effects is important. The same was also found to be true for
transition-metal cohesive energies in cases where the atom is
in a high-spin state [95]. It is necessary to eventually seek a
non-collinear spin implementation of vdW-DF-cx [44] (and of

other vdW-DF versions and variants) to address some trian-
gular (or other frustrated) molecular problems [243] as well
as for some so-called vdW crystals [44]. However, such a
formulation is not yet publicly available.

For a general treatment of magnetic effects and molecular
spin it is also possible that the vdW-DF ability to reflect spin
effects may be improved by permitting more flexible formula-
tions, that merge the vdW-DF-cx logic with the spin handling
that is used in PBE [244, 245]. However, we are presently
sticking with the above-summarized Occam design strategy
for vdW-DF-cx [11]. This is because simplicity in the design
focus (using just Ein

xc as the nucleation point in spin vdW-
DF-cx) makes it easier to check the impact of fundamental
design choices, for example, regarding the plasmon dispersion
[9, 45].

4.6. Electrodynamics interpretation of consistent vdW-DF
designs

Below, we discuss the formal nature of general consistent
vdW-DF designs. That is, we consider the class of vdW-DF
versions that comply with the screening laws of the ACF and
of the vdW-DF framework, and that aim to implement the full
logic of the vdW-DF method for XC functional designs.

In the consistent-exchange vdW-DF designs, the leading
term must effectively be set by Ein

xc. It is thus restricted to
GGA exchange and LDA correlation. The nonlocal-correlation
energy of the vdW-DF method can formally be written

Enl
c = Enl

c,α + Enl
c, vdW. (108)

The splitting is here made depending on whether the nonlocal-
correlation effects originate from χ̃ACF or from the m � 2
components of the Dyson expansion, equation (99). Taken
together, the terms of equation (108) must serve as the
consistent-vdW-DF replacement for the GGA formulation of
gradient-corrected correlation. Appendices C and D discuss
the details in a general such GGA extension, here we sum-
marize the analysis in an electrodynamics context.

Electrodynamics-response terms with m = 1 define one
important subset of contributions

Exc,α ≡
∫ ∞

0

du
2π

Tr{4πα(iu)}

= Ein
xc + Enl

c,α. (109)

These are naturally ordered by the number n of Sxc factors:

Enl
c,α =

∞∑
n=2

En
c,α, (110)

En
c,α = (n!)−1

∫ ∞

0

du
2π

Tr{∇(Sxc)
n · ∇G}

= (n!)−1
∫ ∞

0

du
2π

Tr{(Sxc)n}. (111)

Here (as in appendix C) we retain the notation introduced in
equation (102), using n to track the number of Sxc factors.
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The m = n = 1 component is just the internal functional, as
implied in equation (109).

The exponential-re-summation term of EDF
xc , that is,

equation (110), is set up to track general screening, includ-
ing vertex corrections, when used together with the leading
Ein

xc term. This follows by the discussion in section 3.2 and
appendix B. However, in the context of describing vdW inter-
actions, ‘screening’ is often taken to imply a moderation of the
dispersion forces [81, 202]. To avoid confusion, we therefore
choose to denote equation (110) instead as a ‘cumulant’ term,
in our discussions below.

We note that the cumulant term captures vertex corrections
even if the expansion in equation (111) is truncated at sec-
ond order, at n = 2. The n = 1 term, i.e., the internal func-
tional Ein

xc, is designed to carry the vertex corrections that are
in LDA correlation directly [4, 7]. When truncating the expan-
sion of Enl

c,α at n = 2, as done in popular versions defined by
equation (94), we cannot fully leverage the exponential re-
summation that underpins the vdW-DF method. However, we
retain a re-summation character since we always keep at least
two expansion terms in Enl

c,α.
The remaining nonlocal-correlation part

Enl
c, vdW = −

∞∑
m=2

∫ ∞

0

du
2πm

Tr{(∇α · ∇V)m}, (112)

Enl
c, vdW ≡

∞∑
n=2

∑
m�n

∑
i

EDF,(i)
xc,m,n, (113)

primarily reflects pure or asymptotic vdW effects. The asso-
ciation is directly motivated for the second-order expansion
form

Enl, m=n=2
c, vdW = −

∫
du
4π

Tr{∇ · α1(iu) · ∇V∇ · α1(iu) · ∇V}
(114)

This is always describing an attraction, appendix D, and it
reflects the form for the vdW interaction that holds for two
disjunct fragments, section 4 and reference [10].

More generally, the full specification equation (112) con-
tains factors that can always be rewritten

1
m

(∇α · ∇V)m =
1

m(m − 1)

m−1∑
ν=1

(∇α · ∇V)m−ν (∇α · ∇V)ν .

(115)
For partly separated fragments, the interaction is still domi-
nated by terms where the implied repeated spatial integrations
will only involve two Coulomb factors V(r − r′) connecting
these fragments. Apart from the weighting in equation (115),
we have again terms that reflect the asymptotic vdW form,
section 2.

We need the full vdW-DF machinery, given by the inter-
play of the vdW term equation (112) and of the cumulant
term equation (111), in general. The full account sorts out the
weighting between nonlocal-correlation effects in the more
interesting general cases, when density fragments can no
longer be considered disjunct.

Interpretation of terms in the HEG limit merits a separate
discussion. We note that, as we approach the HEG, we will

no longer have system fragments and the original premise of
interpreting equation (112) as pure vdW interactions eventu-
ally breaks down; similarly, we should explain the nature of
equation (110) in the HEG limit [4].

In the HEG, there cannot be any actual vdW forces nor
can there be any beyond-LDA vertex corrections. A vdW-
DF-cx calculation is fully consistent with those observations:
we explicitly comply with the criteria Enl

c ≡ 0 and Ein
xc →

ELDA
xc in the HEG limit [4, 12]. The question is only one of

interpretation.
We find it motivated to always view equation (112) as

reflecting pure vdW interactions, i.e., forces arising from the
Ashcroft-ZPE coupling mechanism [1, 10, 64, 65, 158]. This
picture, figure 2, is valid in the HEG limit (even if it has
no consequences on material binding then). Yes, these ZPE
electron-correlation effects are already baked in into the LDA
description of the HEG [25]. However, it is still instructive to
view the relevance of the pure vdW interactions in isolation,
as an evaluation of equation (112) allows us to do.

We view equation (110) as representing cumulant (i.e., ver-
tex and other GGA-type screening) effects in general, again
even in the HEG limit. Since equation (112) represents the
Ashcroft-ZPE mechanism, there is also a need (even in the
HEG) to explicitly treat a compensating effect, namely as
provided by the cumulant term. This term must therefore
be extracted from the LDA correlation that we have origi-
nally inserted in Ein

xc. Equation (110) specifies that subtrac-
tion exactly, ensuring that the vdW-DF method has seamless
integration with LDA in the HEG limit [4].

Electrodynamics interpretation of terms in the standard,
truncated-expansion vdW-DF versions. The leading (m =
n = 2) components of equation (108) define the physics con-
tent of the (spin) vdW-DF-cx version [9, 11]. It is worth
exploring in detail.

Appendix D shows that those terms can be formulated in
terms of a universal kernel evaluation

Enl,n=2
c,α =

1
2

∫
d3r

∫
d3r′ n(r)φα(d, d′) n(r′), (116)

Enl, n=2
c, vdW =

1
2

∫
d3r

∫
d3r′ n(r)φvdW(d, d′) n(r′),

(117)

where d and d ′ denote suitable ways to scale the distance
between r and r′.

Figure 7 summarizes our numerical evaluation of the
(universal-)kernel components, φα and φvdW. The variation is
given in terms of scaled differences, as detailed in appendix D
and elsewhere [4, 5, 60]. The sum

φ(d, d′) = φα(d, d′) + φvdW(d, d′), (118)

defines the full Enl
c kernel, and both of these kernels reflect

the general two-density-point structure of equation (55). How-
ever, the universal-kernel forms, Φα

0 (d, d′) and ΦvdW
0 (d, d′), are

found to always remain positive and negative, respectively.
In the vdW-DF-cx version, we have an expansion given by

equations (41) and (109). The beyond-Ein
xc are terms given by
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Figure 7. Universal nonlocal-correlation kernels for the full Enl
c behavior (black curves) and for the vdW and cumulant components (red and

blue curves respectively). The kernels reflect nonlocal-energy contributions from an electrodynamics coupling among GGA-type XC holes,
centered at two different positions r and r′, reference [10]. The kernel behavior can, however, be fully represented by an effective distance D
and a parameter δ which reflects how different these internal GGA-type XC holes are at positions r and r′. It is exclusively the set of δ = 0
curves that are relevant for the homogeneous electron gas (HEG) limit; seamless integration with LDA follows in the HEG because the
solid-black curve integrates to zero [4, 5].

equations (108), (116) and (117) and we make the following
observations:

The first nonlocal-correlation part, equation (116), is, in
itself, of direct interest for understanding the physics con-
tent of our electrodynamics modeling. This follows because
it can be combined with Ein

xc to yield a mapping of the model
susceptibility α(ω). The associated local energy contribution

enl
c,α(r) = n(r)

∫
r′
φα(d(r, r′), d′(r, r′)) n(r′), (119)

provides a mapping of where we can expect cumulant effects
(including nonlocal vertex corrections), in equation (109), to
play a larger role in material binding. Being based on an expo-
nential re-summation, it has a formal structure that allows a
low-level approximation to be accurate on the quasi-particle
dynamics, at least for core levels and near the Fermi sur-
face [86, 163, 164]. We are motivated to extract this map-
ping also broadly, since we are documenting a strong general

performance for vdW-DF-cx, references [9–11, 15, 45, 95] and
section 6.

The second nonlocal part of equation (108) represents pure
vdW interactions [1, 10, 64, 65, 158], as they emerge in the
presence of screening by the surrounding electron gas [10, 12,
64]. The associated local energy contribution

enl
c,vdW(r) = n(r)

∫
r′
φvdW(d(r, r′), d′(r, r′)) n(r′), (120)

provides a mapping of where pure vdW binding contributes
significantly to materials binding.

Seamless integration requires treating the cumulant and the
pure-vdW terms together. There are in general compensations
between the enl

c,α and enl
c,vdW contributions, while enl

c,vdW dom-
inates at larger separations. However, both parts are needed
to secure seamless integration of vdW-DF-cx with LDA,
i.e., compliance with equation (55) in the near-HEG limit.
Inserting a constant density, n0, yields Enl

c,α < 0. One needs the
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Figure 8. Nonlocal correlation contributions to binding in bilayer
graphene. The left panel shows the spatial variation in the total
nonlocal correlations computed in vdW-DF-cx. The middle and
right panels depict the cumulant (or vertex-correction) and the pure
vdW interaction components, respectively.

combined nonlocal-correlation effects, reflected in
equations (95) and (118), to ensure seamless integration,
as discussed elsewhere [4, 12].

The universal-kernel descriptions simplify an analysis
of the nature of binding. Figure 8 illustrates how having
efficient determinations of nonlocal-correlation contributions
equations (119) and (120) can provide a spatial mapping of
the nature of binding, here explored for the case of a graphene
bilayer. The left panel shows a mapping of the full Enl

c binding
contribution; such mapping was introduced and discussed in
references [55, 57, 58] and can be supplemented by a coupling-
constant scaling analysis that isolates the kinetic-correlation
energy binding component [14].

The middle and right panels of figure 8 shows a here-
explored separation of Enl

c binding contributions into cumulant
effects (nonlocal-vertex corrections) and pure vdW attraction,
respectively. We see that the vdW attraction is larger and even
more widely distributed in the trough region between the layers
than what is apparent from the Enl

c description [9, 10, 14, 59].
However, this pure vdW binding is also offset by a repulsion
in Enl

c,α, in the central region.
Figure 9 summarizes a vdW-DF-cx calculation and our

pure-vdW/cumulant-resolved analysis of the binding between
two carbyne wires. That is, we consider the attraction between
two parallel one-dimensional wires of pure carbon as a func-
tion of their separation d, as illustrated in the top left panel.

This is a system where vdW-DF-cx has problems at describ-
ing the mutual binding energy (that is, the energy differ-
ence between the combined system and those of the compo-
nents) per unit length at large wire distances. Depending of
the intra-wire carbon–carbon separation lC–C, this problem
allows a simple tuning between an insulating nature (with
dimerization) and a conducting nature (with no dimeriza-
tion) within a tight-binding DFT model, by simply varying
the intra-wire carbon–carbon separation [246]. This leads in
turn to an elegant analysis of the impact of 1D conduction
on the long-range component of the vdW attraction [105,
202, 246–254]. Reference [246] provides the analysis within
a TS-based many-body-dispersion (MBD) method [80, 81],
denoted TS-MBD. It tracks the power-law behavior of the
mutual vdW interaction for variations of the wire separa-
tions d. The TS-MBD method is found to correctly produce
a d−5 asymptotic scaling for insulating wires and an expected
significant difference in the exponent for metallic wires
[202, 247, 250].

Figure 9. Scaling in the vdW-DF-cx results for binding between a
pair of carbyne wires. The left panel shows the geometry, identifying
also a focus on tracking the mutual attraction per unit length as a
function of the changes in wire distance d = d0 +Δ, where
d0 = 3.81 Å is the vdW-DF-cx results for the equilibrium wire
separation. The middle right panel shows the computed variation in
the total wire binding energy (per carbon atom in a wire), in the full
nonlocal-correlation binding contribution (black curve) and in the
binding contributions from pure vdW interactions (red curve) and
cumulant corrections (blue curve). The top right and bottom panels
show the corresponding scaling of an interpretation of the
nonlocal-correlation binding in terms of an atom-based-vdW-pair
interaction (with effective atom-centered-vdW C6 coefficients) and
in terms of a wire-based-vdW interaction form (with effective
wire-vdW B5 coefficients), respectively. The vertical line in the
bottom panel positions the optimal separation d0 relative to the
B5(d) enhancements.

For vdW-DF method implementations that rely on the
universal-kernel formulation (as vdW-DF1 and vdW-DF-cx
do,) the interaction enhancement can stretch out to about a
nanometer due to multipole or image effects. This is docu-
mented, for example, in a previous study of parallel semi-
conducting nanotubes [53]. The enhancement in vdW-DF-cx
attraction cannot stretch as far as in TS-MBD because the ker-
nel contribution from an electron–XC-hole pair, at r1 and r2,
eventually approaches a form decaying like |r1 − r2|−6, ref-
erences [4, 105]. The consequence is that vdW-DF-cx and
vdW-DF always have an asymptotic vdW interaction energy
that decays like d−5 for parallel wires. The vdW-DF-cx pre-
dicts an absence of dimerization and a conducting nature of
the wire, but it fails to predict the associated enhancement and
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non-integer power-law interaction behavior that should there-
fore result at large separations [246, 250].

However, the nature of vdW attraction at and near bind-
ing must necessarily be markedly different from the asymp-
totic form [105]. The vdW interaction among nanostructures
is indeed also documented [53] to be different than what is in
the asymptotics [10, 69, 105, 246, 253, 254]. We and others
have therefore argued that even non-MBD XC functionals can
still be useful and accurate for characterizations on the mutual
attraction at binding separations [10, 69, 105].

The middle-right panel of figure 9 reports our vdW-DF-cx
calculation of the mutual binding (per carbon atom in a wire)
described by differences in the total energy (in green, with
Ecx label) and in the nonlocal-correlation energy (in black,
with Enl

c label). We have furthermore resolved the latter in
pure-vdW (red) and cumulant (blue) contributions. The results
are obtained for the fully relaxed intra-wire carbon–carbon
separation lC–C = 1.28 Å. The interaction results are shown
as a function of Δd = d − d0, where d0 = 3.81 Å denotes
the equilibrium vdW-DF-cx value for the wire separation.
Computational details are given in section 5.

The bottom panel of figure 9 also shows that pure-vdW term
dominates the total nonlocal-correlation term as the distance
increases, but the repulsive Enl

c,α-based contributions signifi-
cantly compensate this attraction at and near binding separa-
tions. There is also a saturation directly in Enl

c, vdW (not shown
in this panel). The sum of these nonlocal-correlation contri-
butions scales away in the high-density region, to provide
a seamless integration with LDA [4, 5, 7, 10]. The sum of
these contributions eventually vanishes when the distance d
decreases.

Differences between the pure vdW attraction (Enl
c, vdW) and

the binding arising from the sum of nonlocal correlations (in
Enl

c ) are certainly the correct behavior in weak-chemisorption
binding [59] where competition among forces are responsible
for producing density changes [12, 45, 255, 256]. It is also,
at least qualitatively, the correct behavior for pure physisorp-
tion [175, 176, 181, 182] since both nonlocal-correlation
components are needed to reflect the vdW-multipole [10]
as well as other screening effects [10, 105]. The screen-
ing produces, for example, large image-plane corrections
in vdW binding at surfaces [157, 179, 182, 184, 185] and
among extended molecules [53]. The image-plane effects
enhance the interaction description at close-to-intermediate
separations from the asymptotic d−5 interaction behavior
[53].

We shall return to a more detailed discussion of this inter-
action. Here we note that in vdW-DF-cx the description at
and near materials binding separations is guided by the Lind-
hard/Dyson screening logic and have a formal reason for being
robust toward system-specific changes in the electron-density
variation [45, 56, 59].

4.7. Open questions for consistent vdW-DF

The presentation of the vdW-DF method and of consistent-
exchange vdW-DF versions (like vdW-DF-cx and svdW-DF-
cx) leave us at this stage with a set of open questions:

GGA-level vertex corrections? Consistent vdW-DF relies
on an exponential re-summation to capture effects similar to
nonlocal vertex corrections. However, it is not clear if the re-
summation in α(ω) is enough, if it can, in practice, benefit
from the vertex advantages that exist for cumulant expansion
for the quasi-particle dynamics [86, 163, 164]. The constraint-
based semilocal functionals, like PBE and PBEsol, set a high
standard. Transition metals and their surfaces are often consid-
ered a challenge for XC functionals [25, 56, 89, 95, 133, 181,
222, 223, 225, 226, 257]. A particular questions is then: does
the indirect design logic of consistent vdW-DF retain enough
semilocal correlation to work even here?

Non-additivity in vdW interactions? In the general-
geometry vdW-DF formulation [4, 12], we truncate the expan-
sion of nonlocal-correlation effects in the plasmon-propagator
Sxc to second order. This is not enough to capture so-called
many-body dispersive interactions in the asymptotic limit [10,
64, 81, 105, 202, 252]. However, two questions remain: (1)
does the reliance of the vdW-DF method on a GGA-type
screening [10] provide non-additivity at binding separations?
(2) Since not all fragments of a molecular crystal reside at the
optimal mutual separation, do we get the right description of
molecular crystals at binding?

All-round performance? We want nonlocal-correlation XC
functionals that work for concurrent descriptions of both
dense and sparse matter components. In consistent vdW-DF,
we leverage both Dyson/Lindhard screening logic and cur-
rent conservation. An important question is therefore: does
the general-purpose capability [45] survive in the resulting
vdW-DF-cx version?

Role nonlocal vertex effects? The GGAs and meta-GGAs
are expected to reflect a mixture of nonlocal vertex effects and
short-to-immediate-range vdW interactions [69], but offer no
detailed characterization of the balance. This review explains
that vdW-DF-cx calculations can be used to track such screen-
ing effects in isolation. It is therefore natural to inquire, where
do we find important cumulant (vertex-correction) effects in
general materials binding?

5. Computational details

Some of the open questions for consistent vdW-DF can be set-
tled by analyzing published results, for example, vdW-DF-cx
studies for molecules as well as for bulk and layered matter.
For computational details of those studies we refer directly to
the cited papers.

Other questions for consistent vdW-DF can be addressed
by validation studies that we also provide in this paper. The
results of some of these test have already been partly presented
in figures 1, 5, 6, 8, and 9. However, the discussion will gen-
erally be expanded in the following validation section and we
have collected the computational details in this section.

For a discussion of molecular and bulk binding processes
(like binding and reactions) we generally investigate a com-
pound system ‘AB’ as well as its relevant constitutes, for
example, ‘A’ and ‘B’. We compute in vdW-DF-cx, or in a
general functional ‘DF’, both the total energy (in this general
discussion denoted EDF) and XC functional terms, like Enl

c .
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These are sometimes computed with full atomic relaxations
and sometimes at so-called reference geometries, when given
in benchmark suites like the GMTKN55 [35]. The energy val-
ues of interest are the energy differences for the investigated
process ‘p’, like

Ep ≡ ΔEDF = EA
DF + EB

DF − EAB
DF , (121)

Enl
p, c ≡ ΔEnl

c = Enl,A
c + Enl,B

c − Enl,AB
c . (122)

The process energies may at times reflect a binding or a bulk
cohesion, and they are then denoted Eb or Ecoh to have bet-
ter consistency with papers and surveys that are cited. Similar
structures of energy differences, equations (121) and (122),
hold when the properties ‘p’ of interest are isomerization
energies and molecular unfolding energies, reaction barriers,
or charge transfers (including ionization or electron-affinity
processes).

We systematically use the plane-wave QUANTUM
ESPRESSO DFT code package [36, 219]. Like our c-based
library LIBVDWXC [18], this code suite has highly efficient,
native implementations of both the fast-Fourier-transform
(universal-kernel) evaluation [17] of the Enl

c . It has the vdW-
DF family of functions, including the consistent-exchange
vdW-DF-cx version [9], and it has the proper vdW-DF spin
extension [11]. It also permits stress relaxations of nonlocal-
correlation functionals. Core electrons are represented via
pseudopotentials since we use QUANTUM ESPRESSO [36,
219].

5.1. Molecular-system benchmarking

To obtain statistics on functional performance, we complete
a full functional survey of molecular properties as tested in
the extensive GMTKN55 suite of benchmarks sets [35]. The
GMTKN55 not only has a wide range of benchmark sets for
intra- and inter-molecular noncovalent-interaction energies,
as already discussed in figure 1. However, the GMTKN55
suite also has groups of benchmark sets probing the per-
formance for small- and large-molecular properties, and a
group of benchmarks probing barriers for molecular reactions
[35]. Taken together, the results on performance give a fair
impression of the robustness and transferability of semi- and
truly nonlocal density functionals, when used in the molecular
realm.

We perform and report this comprehensive survey for both
the consistent-exchange vdW-DF-cx version [9] and for the
original vdW-DF1 [4, 5, 7].

For the molecular benchmarking we use Troullier–Martins
norm-conserving pseudo potentials of the ABINIT package
[38], with a 80 Ry wavefunction cutoff. We and collaborators
have previously used this pseudopotential and cut off choice
for benchmarking performance on molecular interactions, in
connection with launching hybrid vdW-DF(-cx) versions [13,
15] and while testing the dependence on unit-cell sizes for
plane-wave studies of molecular systems [37].

We use the gamma point k-point for our periodic unit-
cell representation of the molecular problems. Within each of
the 55 different molecular benchmark sets, we identified the

largest systems and then added 10 Å of vacuum to have a
standard unit-cell size for all comparisons (among the individ-
ual processes and among functionals). This approach yields
a setup that for the S22 benchmark set corresponds to the
convergence recommendations made in reference [37]. Sev-
eral benchmark sets involve comparing system of different
charge states. For these we used the Makov–Payne correc-
tion [39] to compensate for spurious electrostatic interactions
that arise because we use a periodic unit-cell representation for
molecules.

The relevant comparison of (spin) vdW-DF-cx accuracy
should be made on the so-called second (GGA-based) rung of
dispersion-corrected DFTs [33]. This is because vdW-DF-cx,
while a consistent implementation of the vdW-DF method, is
still limited to a semi-local choice of the exchange formula-
tion [59]. According to the full GMTKN55 comparison [35]
of dispersion-corrected DFTs [33], one of two best perform-
ing second-rung DFT-D3 formulations is revPBE-D3 [33, 34].
This functional is also available to us (with the very same
pesudopotentials) in QUANTUM ESPRESSO [36, 219]. It is
an interesting comparison for revPBE-D3 has the very same
exchange choice as do both vdW-DF1 [4, 7] and vdW-DF0
[3]. We therefore include a full QUANTUM ESPRESSO [36,
219] survey of the revPBE-D3 as well as of PBE [28].

We note that a comparison of vdW-DF1, revPBE-D3 and
vdW-DF-cx allows us to highlight the role of balancing
exchange and correlation contributions, as already discussed
in the introduction in connection with figure 1.

We have not made our own comparison of vdW-DF-cx
molecular performance versus the best-performing version on
the third (meta-GGA) rung of the DFT-D3s, namely SCAN-
D3 [33, 35, 258]. Expanding the survey is beyond the present
scope and it would distract from our present focus. Here the
purpose is to explore if use of Lindhard/Dyson screening logic
to balance exchange and correlation significantly enhances the
robustness and transferability of XC functional designs in the
vdW-DF method. A comparison with SCAN-D3 [33, 35, 258]
and SCAN + rVV10 [69] is relevant for a possible, future
meta-vdW-DF, a version that may perhaps use a meta-GGA
exchange as the internal functional.

We do, however, find that the vdW-DF-cx performance (as
we assert in QUANTUM ESPRESSO) generally approaches
literature reports for SCAN + rVV10 [69] performance, for
here-investigated systems. This holds for SCAN-D3 stud-
ies for molecules, computed in TURBOMOLE [259, 260]
and reported in the GMTKN55 functional survey [35]. It
also holds for SCAN + rVV10 studies of surface properties
[223] computed in VASP [217, 218]. We mention also these
SCAN-D3/+rVV10 results in a vdW-DF-cx comparison when
relevant.

At the same time, we note that care must be taken in com-
paring our plane-wave/pseudopotentialbenchmarks with those
of quantum-chemistry DFT codes (that are typically used for
the surveys in referecne [35]). There are advantages and dis-
advantages of both approaches [37]. However, it is clear that
converging negatively charged systems in a plane-wave code is
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generally difficult, at least with the presently used pseudopo-
tential choice. Furthermore, our QUANTUM ESPRESSO test-
ing is complicated by the fact that we do not have access to a
non-collinear spin formulation [44] for vdW-DF-cx.

To provide a check on our molecular GMTKN55 survey
we therefore first discuss differences and similarities between
our revPBE-D3 benchmarking in QUANTUM ESPRESSO
and that reported in reference [35]. We find that sometimes
our plane-wave revPBE-D3 results are closer to reference val-
ues (available in reference [35]) and sometimes the quantum-
chemistry results [35] are closer. However, in almost all cases
the agreement is good in terms of percentages and in terms of
absolute MAD values.

For all of the benchmark sets involving noncovalent inter-
actions, the agreement between the here-reported revPBE-D3
benchmarking and that of reference [35] is typically within one
tenth of a kcal mol−1 and within two tenths of a kcal mol−1

for benchmarks containing charged systems, marked with an
asterisk in figure 1. The alignment is also strong with regards to
RMSD values and in terms of percentage errors. This robust-
ness is important for our analysis: outliers indicate that some-
thing is not covered by the logic and our aim is to draw
general conclusions about the logic in consistent vdW-DF
versions [9].

The results for the WATER27 benchmark set of the
GMTKN55 [35] are, however, an exception with over one
kcal mol−1 difference on a total 3.5 kcal mol−1 MAD value
reported in reference [35]. We expect that we can improve our
QUANTUM ESPRESSO benchmarking for water with a bet-
ter pseudopotential choice, and that may hold for plane-wave
benchmarking in both revPBE-D3 and vdW-DF-cx. The net
result on the performance statistics of any one such benchmark
is very low.

The GMTKN55 suite also has other benchmarks. There
are group 1, 2, and 3 of benchmarks for small-molecule
properties, for large-molecule properties, and for transition
barriers, respectively [35]. Here the differences between our
plane-wave benchmarking and the quantum-chemistry
approach of reference [35] are larger for revPBE-D3, but not
out of proportion to the overall deviations from the reference
energies that exist here. The differences in MAD values for
the revPBE-D3 benchmarking are generally well within 1
kcal mol−1. The differences are, however, about 2 kcal mol−1

for the MB16 mindless-benchmarking set and for the DC13
benchmark set of difficult-for-DFT tests [35].

Interestingly, we find that we are 2 kcal mol−1 closer to ref-
erence values for the W4-11 set of atomizations energies than
what is reported for revPBE-D3 in reference [35]. However, for
vdW-DF-cx we find a MAD value of almost 11 kcal mol−1, one
of the few benchmarks where vdW-DF-cx fares substantially
worse than revPBE-D3. Other benchmarks were vdW-DF-cx
generally fares worse than revPBE-D3 are in the GMTKN55
group 3. This will be analyzed in a separate paper.

We observe that bad plane-wave performance (of vdW-
DF-cx/revPBE-D3) does result in some charged-system
benchmarking problems. It also results when QUANTUM
ESPRESSO finds a spin configuration that is frustrated, for
example, in triangular molecules like ClO2 and even in the

linear CCH system. Some molecules are known to require a
non-collinear treatment of spin [44, 243], but we lack access
for vdW-DF and vdW-DF-cx. In our molecular benchmarking
we do make sure that we provide the right value of the total
molecular spin Mtot, as given in the reference data [35]. That
is, denoting the spin-up(-down)density components as n↑(↓)(r),
we enforce

Mtot =

∫
d r[n↑(r) − n↓(r)], (123)

while also converging the orbital occupation. However, in
some molecular problems we find non-integer values of the
so-called absolute magnetic moment

Mabs =

∫
d r|n↑(r) − n↓(r)|. (124)

A non-integer value of Mabs arises, in our quantum-espresso
characterization of vdW-DF-cx performance, for ClO2 and
CCH (part of the W4-11 atomization benchmark set), for C4H4

and aC7H8 case (in the RC21 benchmark set), for C3H2N,
C3H5, C2H2N, C3H3, and C7H7 (in the RSE43 benchmark
set), as well as in aC3H7 transition state. A non-integer Mabs

value also arises in the charged CO+, CS+, NH−, O−, and O−
2

states, affecting our plane-wave assessment of performance for
the electron-affinity (G21EA) and electron-ionization (G21IP)
benchmark sets, themselves part of group 1 of the GMTKN55
benchmark suit [35].

Nevertheless, we report our QUANTUM ESPRESSO
survey of vdW-DF-cx performance not only for all the
noncovalent-interaction benchmarks, figure 1, but across all
of the GMTKN55 groups, below. We do that noting that
the present GMTKN55-type [35, 267] survey reflects what is
presently available to a user that aims to pursue (plane-wave)
vdW-DF-cx calculations.

Also, since we aim to check the overall robustness, accuracy
and the general-purpose capability, we are in any case inter-
ested in statistically averaged values. We worry about outliers
that we do not understand but we can accept specific issues.
This is so because the percentage differences between MAD
values in the plane-wave [36, 219] versus quantum-chemistry
[35] benchmarking remain small in essentially all cases, the
W4-11 atomization energies, MB13 and DC13 being excep-
tions. It is nice to see that there is perhaps a correlation between
performance hits and known limitations in the calculation plat-
form that is available to us. However, we live with the fact that
we could have put a different, and perhaps even a better, foot
forward had vdW-DF-cx already been implemented in codes
that focus on descriptions of molecules.

5.2. Nature of interactions in low-dimensional systems

All of the following studies are provided using the GBRV
ultrasoft pseudopotentials [268] with a 50 Ry wavefunction
cutoff.

For our study of the binding in the graphene bilayer,
figure 8, we first relaxed the atomic coordinates using a slab
setup and a 20 × 20 × 1k-point sampling. The slab height is 50
Å to ensure amble vacuum and to eliminate coupling between
periodic images. From the fully relaxed electron density
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variation we subsequently extract the nonlocal-correlation
contributions, relying on our PPACF code [14, 15]. This code
is designed to split the total system energy EvdW−DF−cx into
the range of XC-energy (and other) components, using also
a coupling-constant scaling of vdW-DF-cx [14]. In anticipa-
tion of this benchmarking and analysis effort, we designed
PPACF with an ability to also read in new universal-kernel
components, for which appendix D provides details of the
evaluation.

Our PPACF code is released into the QUANTUM
ESPRESSO post-processing tool set [36, 219].

The study of the nature of binding among carbyne wires,
figure 9, is performed with vdW-DF-cx for a set of unit cells
of dimensions lC–C× 50 Å × 50 Å using an 80 × 1 × 1k-
point sampling. The value of lC–C is varied for convergence
and we find no dimerization for vdW-DF-cx at any pressure.
Consistent-exchange vdW-DF-cx describes the carbyne wires
as metallic.

For a study of the nature and non-additivity of interactions
in the fullerene dimer & trimer, we use Gamma-point calcu-
lations. For a similar characterization of the nanotube-trimer
bundle we use a k-point mesh grids of size 16 × 1 × 1. Again
we use PPACF to extract the spatial variation in the nonlocal-
correlation energies for each specific system. We then compute
the relevant binding-energy differences with the QUANTUM
ESPRESSO post-processing tool set [36, 219] following the
procedure introduced in reference [14].

5.3. Benchmarking bulk and surface properties

Our surface-energy results are extracted by computing and
comparing the energies of slabs with thickness varying from
4 to 12 layers, extracting an average as in reference [223]. The
work functions were computed from slabs of 8 layers by track-
ing the electrostatic potential outside the surfaces. All slab sys-
tems were first allowed full relaxations as described by the XC
functional in question.

For tests of bulk-system properties we sample the Brillouin
zone using gamma-centered k-mesh grids of size 16 × 16 ×
16, whereas for surface-slab systems we use 16 × 16 × 1. We
use the set of GBRV ultrasoft pseudopotentials [268] with a 50
Ry wavefunction cutoff.

For the metal and MgO slab geometries we add 15 Å of
vacuum to compensate for possible Coulombic interaction
between the actual surface and its periodic image. We also
use a dipole corrections [269] to compensate for polar effects.
The 15 Å vacuum region allows us to track the electrostatic
potential and thus extract work-function values [181, 222, 223,
225].

We compute and extract the surface-energy and work func-
tion values for vdW-DF-cx, PBE, and PBEsol in QUANTUM
ESPRESSO. Some SIESTA- [270] and VASP-based [217,
218] vdW-DF-cx results for metal-surface work functions and
surface energies have already appeared [224–226]. However,
here we provide a broader vdW-DF-cx (and PBE/PBEsol)
survey. This gives us data to report a performance charac-
terization based on the metal-surface benchmarking that is
implicitly suggested in reference [223]. We find essentially

identical results using the plane-wave code QUANTUM
ESPRESSO [36, 219] for the PBE and PBEsol studies that we
repeated here (checking for, but finding no code dependences).
We include also these calculations to highlight that we provide
a consistent comparison in our assessment of the vdW-DF-cx
performance.

5.4. Understanding binding

To understand how vdW-DF-cx works for dense (and sparse)
matter, we compare vdW-DF-cx and PBE descriptions of XC-
energy contributions to binding in bulk. We also provide this
comparison for two fullerene molecules, while we refer to ref-
erence [14] for a corresponding comparison and analysis for
smaller molecules.

We base this comparison and analysis on calculations of
the energy-per-particle variation [14, 55, 57, 58]. The stan-
dard energy-per-particle representations of semilocal XC func-
tionals is given by equation (61), while the generalization
equation (62) applies to all investigated functionals, including
our truly nonlocal vdW-DF-cx.

The general energy-per-particle energy variation ε0
xc[n](r)

can be further split into exchange and correlation components.
The spatial variation in the LDA/PBE correlation energy densi-
ties is simply eLDA/PBE

c (r) = n(r)εc[n](r). For vdW-DF-cx it is
natural to look at the nonlocal-correlation energy density [14,
55, 57, 58]:

enl
c (r) =

1
2

∫
dr′ n(r)φ(r, r′) n(r′)

= enl
c,α(r) + enl

c, vdW(r). (125)

This vdW-DF-cx [9] characterization should be compared with
the nonlocal, that is gradient-corrected, PBE correlation

ePBE,nl
c (r) ≡ ePBE

c (r) − eLDA
c (r). (126)

It is also natural to track the spatial variation in the total non-
local parts of the vdW-DF-cx and PBE XC energies, exploring
differences in the nonlocal XC functional components

ecx, nl
xc (r) ≡ ecx

xc(r) − eLDA
xc (r), (127)

ePBE,nl
xc (r) ≡ ePBE

xc (r) − eLDA
xc (r). (128)

The relevant quantity for our discussion is the spatial vari-
ation in the binding contributions, for example,

Δenl
c (r) = enl,A

c (r) + enl,B
c (r) − enl,AB

c (r). (129)

The integrals of these spatially resolved contributions yield
binding-energy contributions like equation (122).

As we use the vdW-DF-cx version, we can also track the
binding contributions arising from the (nonlocal-correlation
part of) vertex corrections,

Δenl
c,α(r) = enl,A

c,α (r) + enl,B
c,α (r) − enl,AB

c,α (r). (130)

A similar definition also allows us to track binding contri-
butions arising from pure vdW interactions, i.e., given by
enl

c, vdW(r).
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This set of analysis tools is available through our PPACF
code [14, 15] and through the post-processing components of
QUANTUM ESPRESSO [36, 219]. We used these to map and
contrast the nature binding of PBE and vdW-DF-cx for bulk Si
and in metals as well as for a fullerene dimer.

For an analysis of the nature of binding in bulk,
we first re-compute the electron density variation using
Troullier–Martins norm-conserving pseudo potentials of the
ABINIT package [38] with a 80 Ry wavefunction cutoff; for
W bulk we also increase the k-point mesh to 24 × 24 × 24.
Furthermore, W is a heavy element with large gradients in the
electron distribution around the individual atoms and we com-
pute the electron-density variation of the atoms using an 800
Ry density cutoff. We apply a cubic-spline fit to the spatial
variations of the XC energy components that we extract for
each of the atoms. The high-accuracy characterizations of both
bulk and atoms are finally used to determine binding contribu-
tions, using equations (129) and (130) or using corresponding
expressions for LDA and PBE characterizations. This set of
steps reduces the numerical noise in the resulting mapping
of vdW and other screening effects in bulk-crystal cohesion,
below.

6. Validation checks on vdW-DF-cx

The vdW-DF-cx compliance with the underlying screening
logic of the ACF and with current and charge conservation is
promising. We can expect that the consistent vdW-DF versions
will be robust and likely transferable. However, usefulness as
a general-purpose functional will only follow if vdW-DF-cx
(and by extension consistent vdW-DF versions) continue to
perform well in tests. Below we summarize some of those
tests and we extend the testing to a broad set of molecular
benchmarkings [35] and to metal surfaces [223].

As the vdW-DF-cx passes validation checks, we also pro-
pose to use the vdW-DF-cx Lindhard-screening logic to map
interaction details, as illustrated below.

6.1. All-round performance of consistent vdW-DF

There are by now many studies for bulk, layered systems, and
organics that document that vdW-DF-cx is robust and transfer-
able, for example, references [68, 95, 98, 99, 103, 107, 113].
Below we provide a brief overview of the vdW-DF-cx perfor-
mance. We limit ourselves to a summary because we also want
to provide specific validation checks on vdW-DF-cx ability
to capture semilocal-correlation that plays an important role
in the description of metal surfaces [29, 223]. Moreover, we
want to illustrate the unique advantage that vdW-DF-cx cal-
culations have in terms of mapping cumulant (screening and
vertex-correction) effects in material binding.

We begin with a discussion of the asymptotic vdW inter-
actions among atoms and molecules. The original vdW-DF1
[4] (and thus vdW-DF-cx [9]) nonlocal-correlation term leads
to a good description of asymptotic C6 vdW interaction coef-
ficients for many atoms [9, 271]. The same is true for some
molecular problems [210, 211], but not for hollow structures
[105, 252], where screening causes dramatic changes in the
lowest-energy collective mode [252]. A similar effect exists

for metallic systems (including graphene sheets and conduct-
ing nanotubes) where the extended collective response causes
fundamental changes in the nature of the interaction, again at
asymptotic separations [202, 246, 251]. However, the asymp-
totic description is not the focus of the present implementa-
tions of the vdW-DF method [10].

Next we return to the broad survey of the vdW-DF-cx per-
formance for molecular interactions, using the GMTKN55
suite of 55 benchmark sets on molecular properties [35]. The
reference data for structure (including the molecular spin state)
and energies (as well as per-functional/per-benchmark perfor-
mance results for DFT-D3 versions) are available [267] and
allow for an effective way of testing (spin) vdW-DF-cx rel-
ative to dispersion-corrected DFT. For individual benchmark
sets, like G21IP, G2RC, S22, Al2X6, DARC, and Al2X6 of the
GMTKN55 collection, we have previously compared the vdW-
DF-cx performance relative to that of hybrids, references [13,
15]. In those studies we checked if the good vdW-DF-cx per-
formance arose from a lucky cancellation by also tracking the
effects of relaxations (computed in vdW-DF-cx). Here instead,
we safeguard the testing by going for the full benchmark suite
[35].

To accomplish this we have written python scripts to down-
load the data and submit QUANTUM ESPRESSO calculations
for the molecular problems, automatically implementing the
computational strategy described in section 5. There are in
total 6 GMTKN55 benchmark groups. Group 1 probes small-
molecule properties (half of which involve charged systems),
group 2 probes large-molecule properties, group 3 concerns
barriers for molecular reactions, while group 4 and group 5 test
intra- and inter-molecular noncovalent interactions, respec-
tively. Group 6 is just the union of group 4 and 5. For each
of the GMTKN55 benchmark groups, the scripts also com-
pute the performance in the individual sets and extract val-
ues for the MAD, RMSD, and the mean absolute percent-
age deviation (MAPD) relative to the CCSD(T) reference data
on process energies [35, 267]. We extract a weighted MAD
average [35]

WTMAD ≡ 1
55

55∑
i=1

wi × MADi. (131)

The summation runs over the 55 different benchmark sets that
make up the GMTKN55, with MADi denoting the individual-
benchmark MAD value. The weighting factor wi are set to
align benchmark with similar values of the reference energy
values for the process [35]. The weighting is such that having
1 kcal mol−1 deviation on the weaker noncovalent interactions
can cause as much as 100 times the WTMAD change that
arises in benchmarks with large characteristic process ener-
gies. We furthermore extract and report a similar WTMAD
value for each of the GMTKN55 benchmark groups [35].

In figure 1 we have already reported details of this bench-
marking for all of the group-6 benchmarks on noncovalent
interactions in molecular systems. There we show the per-
benchmark set MAD and RMSD values and contrast the vdW-
DF-cx, vdW-DF, and revPBE-D3 performance. The vdW-DF-
cx outperforms the original vdW-DF version and performs
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Figure 10. Full survey of vdW-DF-cx performance across the
GMTKN55 suite [35] of benchmarks sets, as asserted in the
plane-wave code QUANTUM ESPRESSO [36, 219] and using a
weighted total mean absolute deviation measure ‘WTMAD’ defined
in reference [35] and in the text. For comparison, the figure also
includes corresponding results for PBE and revPBE-D3 (also in
QUANTUM ESPRESSO calculations) and those obtained with
TURBOMOLE [259, 260] for SCAN-D3 in reference [35].
Benchmark groups 4, 5 correspond to a set of benchmarks on inter-
and intra-molecular noncovalent interactions. Group 6 is the union
of group 4 and 5, that is, the set of general noncovalent interaction
benchmarks that was detailed in figure 1. Group 1, 2, and 3 are
collections of benchmark sets reflecting small-molecule properties,
large-molecule properties, and transition barriers, respectively [35].

slightly better than revPBE-D3 on average. As discussed in
the introduction, this fact is an argument for balancing the
exchange and correlation terms using the vdW-DF screening
logic. It is a motivation for using (spin) vdW-DF-cx.

Figure 10 reports our full GMTKN55 survey, contrast-
ing WTMAD values obtained from a full QUANTUM
ESPRESSO characterization in PBE, revPBE-D3, and vdW-
DF-cx. We find that vdW-DF-cx performs significantly better
than PBE, and at least matches revPBE-D3 performance on
all but the group 3 class of barrier problems, when compared
on our plane-wave/pseudopotential platform. The comparison
with revPBE-D3 is relevant because it is one of the two best-
performing DFT-D3s that have a GGA-level exchange. We
also note that on average vdW-DF-cx performs almost as good
as SCAN-D3 [33, 258] even if vdW-DF-cx lacks a meta-GGA
formulation of exchange.

As discussed in section 5, care should be taken in mak-
ing the vdW-DF-cx comparison with these literature values for
SCAN-D3, obtained in the orbital-based code, TURBOMOLE
[259, 260]. We are then comparing with results obtained in a
different, non-plane-wave DFT framework. Some care must
also be made when making comparison between our vdW-
DF-cx and revPBE-D3 characterizations for group 3, for group
2, and, perhaps especially, for group 1. This is because there
are some small residual differences between what we obtain
as the revPBE-D3 performance characteristics and what was
reported in reference [35]. The reason could in part be our rep-
resentation of the molecular spin, as discussed in section 5.

On the other hand, figure 10 does provide a present-day plane-
wave (QUANTUM ESPRESSO) user with an impression of
what performance level is already available. We find that
vdW-DF-cx is a realistic option even for a pure molecular
problem.

We also find (not shown) a small but finite performance
advantage of vdW-DF2-b86r [43] over vdW-DF-cx [9] for
the broad molecular benchmarking that the GMTKN55 suite
offers [35, 267]. The vdW-DF2-b86r (or rev-vdW-DF2) is
a variant that Hamada launched to make vdW-DF2 applica-
ble also for solids and general materials. It also has a GGA-
level exchange and it is also highly successful. Completing a
vdW-DF2-b86r survey analogous to figure 10, we provide the
following vdW-DF-cx/vdW-DF2-b86r contrast of WTMAD
performances (listed in kcal mol−1): 5.15/5.18 (group 1),
4.93/4.81 (group 2), 7.25/6.68 (group 3), 3.14/3.22 (group 4),
3.86/3.61 (group 5), 3.47/3.39 (group 6), and 4.74/4.62 (total
GMTKN55).

We interpret this vdW-DF2-b86r advantage as a sign that
the class of consistent vdW-DF versions has room to grow
also beyond vdW-DF-cx. This is true even before going to a
possible, future meta-vdW-DF formulation or a hybrid vdW-
DF [13, 15]. We recall that for many problems the materi-
als properties are often set by the low-to-medium values of
the scaled density gradient s. In such cases, the vdW-DF-cx
exchange description effectively resembles that of the Lan-
greth–Vosko analysis [91], which is not ideal for molecules
[92]. The vdW-DF-cx remains a relevant choice because it
stands out in being consistent, in having a regular screening
logic for balancing exchange and correlation. However, we can
hope to eventually obtain a consistent vdW-DF design that has
both a good exchange (as vdW-DF2-b86r has) and a good XC
balance.

Table 1 summarizes performance comparisons in a broader
context for the description of noncovalent interactions both
within and between molecules. The table reflects systematic
studies reported in references [9, 13, 15, 98, 124, 266]. It
includes a more detailed listing of the GMTKN55 compari-
son concerning both the S22 and the IDISP [35], and adds an
overview of a benchmarking for the L7, A24, and so-called
blind test cases [262–264]. Overall, the vdW-DF-cx is found
to compete well with the class of dispersion-corrected DFT
descriptions [33, 76, 78, 80, 81].

For the G1-set of molecular atomization energies [237, 238]
the vdW-DF-cx version does perform worse than PBE (giv-
ing a MAD value of 9.7 kcal mol−1 as opposed to the PBE
7.5 kcal mol−1, for fully relaxed structures) [13]. We ascribe
this issue, in part, to the fact that the vdW-DF-cx elimination
of the vdW-DF cross-over term δE0

x is not perfect for atomic
density profiles [9, 10]. We also note that the performance
picture for the G1 set is reversed once we move to corre-
sponding hybrid formulations, PBE0 and vdW-DF-cx0/-cx0p
[13, 15].

Table 1 furthermore provides both direct and indirect evi-
dence that vdW-DF-cx is accurate in its characterization of
both the inter- and intra-molecular structure. Direct evidence
is available from the excellent agreement between vdW-DF-
cx results for lattice parameters (and to a lesser extent, for
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Table 1. Comparison of PBE [28], PBE0 [261], PBE-XDM [77, 78], PBE-D3 [33], PBE-TS [80], PBE-TS-SCS [81], and
vdW-DF-cx [9] (here abbreviated CX) performance for dispersion-dominated inter- and intra-molecular interactions. The
table summarizes performance that is characterized both in terms of MAD and (when available) the mean absolute
percentage deviation (MAPD) values. The comparisons of functional performance are obtained, mostly in plane-wave
DFT, both at reference geometries (as denoted with a ‘-refG’ hyphen) and, when available, with relaxations native to the
functional (as denoted with a ‘-minG’ hyphen). We include MAD and MAPD listings for the so-called new-S22 and
intramolecular dispersion (IDISP) subsets of GMTKN55 [35], as well as for the L7 [262], A24 [263], and the so-called
‘blind set’ [264]. We have also included a comparison defined by theory accuracy in matching low-temperature
measurements for structure and cohesion in oligoacene crystals [98]. Cohesion-energy measurements for the oligoacenes
are limited to the benzene, naphthalene, and anthracene crystals; we report MAD values that are averaged over these.
Structure characterizations, extracted in the low-temperature limit, are available for oligoacenes up to hexacenes [98];
here we report MAD and MAPD values that are obtained by averaging deviations between computed results and
measurements of the a, b, and c lattice constants [98]. In the benchmarking summary for the IDISP set at relaxed
coordinates, we have omitted the C22H46 case, as a more plausible atomic configuration were obtained with full
vdW-DF-cx relaxations. This alkane-unfolding problem deserves a separate discussion, see text.

Test Set Measure PBE PBE0 PBE-XDM PBE-D3 PBE-TS PBE-TS-SCS CX

S22-refG Eb MAD (kcal mol−1) 2.55a/2.72c 2.37a/2.54c 0.59b 0.48a/0.54b 0.34b — 0.47b

MAPD (%) 57c 55c 9.8b 11.6b 10.0b/9.2d 5.4d 9.0b

S22-minG Eb MAD (kcal mol−1) — — 0.54b 0.57b 0.49b — 0.68b

MAPD (%) — — 8.4b 11.1b 12.8b — 9.4b

S22-minG d MAD (Å) — — 0.075b 0.073b 0.040b — 0.068b

IDISP-refG Eb MAD (kcal mol−1) 10.78a 9.51a/9.8b — 2.76a — — 2.4b

MAPD (%) — 242b — — — — 32b

IDISP-minG Eb MAD (kcal mol−1) — — — — — — 2.7b

MAPD (%) — — — — — — 30b

L7-refG Eb MAD (kcal mol−1) 18.6e — — — 2.92e,f 3.79e,f 1.58e,f

MAPD (%) 120e — — — 17e 21e 14e

A24-refG Eb MAD (kcal mol−1) 0.40e — — — 0.35e 0.29e 0.14e

MAPD (%) 42e — — — 28e 22e 11e

‘Blind set’ Eb MAD (kcal mol−1) 3.00e — — — 0.65e 0.79e 0.54e

MAPD (%) 52e — — — 11e 13e 10e

Acenes-minG Eb MAD (kcal mol−1) 15.2g — — — 5.1g,h — 2.3g

Acenes-minG 〈a, b, c〉 MAD (Å) 0.76g — — — 0.09g,h — 0.06g

MAPD (%) 9g — — — 1g,h — 1g

aReference [35].
bReference [15].
cExtracted from the computational data that we also used for reference [15].
dReference [81].
eReference [124].
fWith DLPNO-CCSD(T) reference data [265], these calculations [124] yield a 1.39/2.25/1.51 MAD for TS/TS-SCS/CX.
g.Reference [98].
h.Reference [266].

the fully relaxed binding energies) for the set of oligoacene
molecular crystals [98]. The accuracy also extends to the char-
acterization of the electron-density variation, as evident by the
vdW-DF-cx ability to predict the soft intermolecular libration
and rocking modes in the naphthalene [99], figure 5, and in the
polyethylene [107] crystals.

Indirect evidence for vdW-DF-cx accuracy is also evident in
table 1 by looking at the effects of structural relaxations on the
vdW-DF-cx performance on molecular binding/reaction ener-
gies. These results, at minimized geometries, are listed by the
‘minG’ entries (where available). For the tests on noncovalent
and covalent binding properties (in the AL2X6, DARC, G2RC,
G21IP subsets of GMTKN55 [35],) we find no significant
changes in performance from that asserted at reference geome-
tries (listed under ‘refG’). There are small effects (improve-
ments) on the binding-energy (and binding-separation) accu-
racy for the soft S22 [15].

One of these benchmarks, namely the IDISP subset of the
GMTKN55 [35], deserves a special discussion concerning the

vdW-DF-cx structural characterization. Interestingly, there are
no discernible relaxations for all but the C22H46 case of alkane
unfolding in the IDISP set [15]. The consistent-exchangevdW-
DF-cx version performs well also for describing the C22H46

unfolding energy at the reference geometry [15, 35]. How-
ever, at the reference geometry, the CCSD(T) result suggests
an exothermal unfolding process, in contrast to the results of a
fully relaxed vdW-DF-cx study [15]. Since an energy release
for unfolding is in contrast with expectations from past inves-
tigations of alkane interactions [278], we have excluded the
C22H46 case in our summary of relaxed-coordinate perfor-
mances for the IDISP set in table 1.

The soundness and robustness of vdW-DF-cx for molecu-
lar relaxations can be further tested by analyzing the C22H46

unfolding case in detail, by instead comparing CCSD(T) and
vdW-DF-cx energy results for fully relaxed vdW-DF-cx struc-
tures. As will be detailed elsewhere, this is done using the
GMTKN55 procedure, described in reference [35], for the
CCSD(T) calculations. The new CCSD(T) results reflect the
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expected endothermal behavior of C22H46 unfolding. In fact,
at the vdW-DF-cx structure, the CCSD(T) result, 1.08 kcal
mol−1, for the unfolding energy cost aligns perfectly with
the self-consistent, fully relaxed, vdW-DF-cx description, 1.06
kcal mol−1.

A recent study provides a comparison of performance for
extended system for many of nonlocal-correlation function-
als [230], based on all-electron evaluations [231]. That study
includes the full vdW-DF family of versions and variants as
well as SCAN + rVV10 [69] and rVV10 [66, 67]. They find
that vdW-DF-cx [9] and vdW-DF-C09 [41] comes out best sta-
tistically in the vdW-DF family for strongly bound bulk prob-
lems (close in performance to SCAN-rVV10), vdW-DF2-b86r
[43] and vdW-DF-optb86r [42] are just ahead of vdW-DF-cx
for layered solids, while vdW-DF2-b86r [42] is ahead of vdW-
DF-cx for investigations of the set of molecular solids. The last
point is consistent with the observation above that vdW-DF2-
b86r has a small but finite performance advantage over vdW-
DF-cx for molecules, and that it may be possible to further
develop the class of consistent vdW-DF versions.

6.2. Vertex corrections and surface properties

The real challenge for a nonlocal-correlation functional of the
vdW-DF method, however, lies in the description of materials
that have dense electron distributions. This follows because in
these problems it is essential to describe subtle materials inter-
actions as they occur in competition with one another [45].
For such systems we must balance both (a) gradient-corrected
exchange effects against truly nonlocal correlation effects and
(b) local as well as nonlocal vertex corrections in the response
description.

Fortunately, the constraint-based PBE [28] and PBEsol
[29] designs are believed (and proven) to be highly robust
for materials with a dense electron distribution [30, 31].
As such, they open the door for another, computationally-
efficient validation check on the robustness of vdW-DF-cx
(and by extension, of the consistent vdW-DF formulations).
These test is only available for dense-matter systems, like
transition-metal systems [95]. However, for such traditional
systems, it is clear that vdW-DF-cx must keep up with the
PBE/PBEsol performance to be trusted as a systematic exten-
sion. Most noticeable, we must check if vdW-DF-cx is as good
for dense matter as PBE/PBEsol in avoiding the outliers in
performance.

We mention that the meta-GGA SCAN functional [258]
is also constraint-based and typically performs even better
than PBE and PBEsol for dense matter, while the SCAN
+ rVV10 [69] fares well in comparison of broad extended-
system performance [230]. A comparison of vdW-DF-cx with
the SCAN/SCAN + rVV10 is certainly interesting. It is indi-
rectly available in the following reporting but it is not high-
lighted in the discussion. This is because such a comparison is
not a true assessment of soundness of present implementations
of the consistent vdW-DF design logic: we repeat that with
(spin) vdW-DF-cx we are starting with a GGA-level exchange
description and have just enforced consequences of conser-
vation laws and Lindhard screening in an electrodynamics

formulation of the ACF. We seek comparisons with constraint-
based GGA descriptions that have a GGA-level of exchange to
test this idea of building from just one type of plasmons [9].
In summary, we do not here discuss a comparison of vdW-
DF-cx and SCAN/SCAN + rVV10, but we are motivated to
benchmark the vdW-DF-cx performance against experimental
data while checking whether it is as good as PBE/PBEsol at
avoiding truly bad characterizations.

In reference [95] one of us helped begin such validation
work. The results are partly summarized in the lower panel of
figure 5. This survey of thermo-physical properties has already
been briefly discussed in sections 4.1 and 4.4 in the context
of the accuracy of phonons, figure 5, and of the proper spin
vdW-DF-cx extension. The thermo-physical properties study
contrasts PBE, PBEsol, and vdW-DF-cx performance for the
set of nonmagnetic transition metals. As mentioned above, the
comparison stands out by treating vibrational ZPE and ther-
mal effects through phonon calculations that are native to each
of the semilocal and nonlocal functionals. The vdW-DF-cx is
found to be highly accurate in comparison with experimental
data. Moreover, it is found to have at least the same level of
limited variation in the individual-system accuracy as do PBE
and PBEsol [95].

We have already discussed spin vdW-DF-cx results for
weak-chemisortion of graphene on Ni(111), figure 6. There,
vdW-DF-cx provides results for the optimal adsorption dis-
tance that are closer to experimental observations [234] than
what is obtained in RPA [235, 236]. Reference [224] pro-
vides an additional comparison of vdW-DF-cx and of rVV10-
corrected semilocal functionals, including PBEsol + rVV10
[72], with the corresponding RPA results for graphene adsorp-
tion on the (111) surfaces of Cu, Pt, Pd, and Ag [235, 236]. The
vdW-DF-cx descriptions of the adsorption height are generally
found in agreement with the RPA results for these surfaces
[224]. The vdW-DF-cx results for the adsorption energy per
carbon atom also follows the RPA trend, but the values for
vdW-DF-cx (and for the set of investigated rVV10-corrected
functionals) are found systematically smaller than the RPA
results. Interesting, we have documented elsewhere that vdW-
DF-cx, if anything, tends to overestimate the binding energy
between two graphene sheets, as well as among other carbon
nanostructures [12, 105].

The case of weak chemisorption on Ag(111) merits a sep-
arate discussion, since the RPA results [235, 236, 279] for the
adsorption height do not line up with recent measurements
[280]. Reference [224] reports an adsorption height for vdW-
DF-cx of 3.26 Å; adapting our reference [11] study, we find
here a vdW-DF-cx value of 3.24 Å for graphene on Ag(111).
These vdW-DF-cx results are in fair agreement with the RPA
value [235, 236], 3.31 Å, but not with the value 2.5 Å reported
in reference [280].

Table 2 reports a comparison between the PBE, PBEsol,
and vdW-DF-cx results for structure, cohesion, and elastic
response in bulk in a set of ionic crystals, insulators, and
alkali metals. The table also lists experimental results, back-
corrected for ZPE and temperature effects [29, 272], to help
us assert the accuracy and robustness of the functionals. This
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Table 2. Comparison of PBE [28], PBE0 [261], PBEsol [29], and
vdW-DF-cx [9] performance (lattice constants, bulk moduli, and
atomization energies) for ionic crystals and a few alkali metals. The
reference values, denoted ‘Exp.’, are zero-point corrected
experimental values, references [29, 272]. References [15, 45, 95,
105] detail the vdW-DF-cx ability to characterize bulk-structure
properties for other systems (graphene bilayers, C60 crystals, Si and
W bulk, and other metals) that are also further analyzed in this
review.

Bulk Property PBE PBE0 vdW-DF-cx Exp.

LiF a0 (Å) 4.005 3.952 3.976 3.972
Ea (eV/atom) 4.289 4.224 4.417 4.46

B0 (GPa) 66.79 75.02 69.09 76.3
NaCl a0 (Å) 5.658 5.619 5.605 5.569

Ea (eV/atom) 3.146 3.106 3.270 3.34
B0 (GPa) 22.92 24.60 23.94 27.6

MgO a0 (Å) 4.227 4.186 4.202 4.189
Ea (eV/atom) 4.928 4.913 5.177 5.203

B0 (GPa) 147.8 164.6 155.5 169.8
Li a0 (Å) 3.405 3.429 3.407 3.453

Ea (eV/atom) 1.555 1.492 1.610 1.658
B0 (GPa) 13.6 13.7 13.3 13.9

Na a0 (Å) 4.196 4.237 4.183 4.214
Ea (eV/atom) 1.040 0.983 1.078 1.119

B0 (GPa) 7.6 7.3 8.3 7.9

testing is included because we will provide a more detailed dis-
cussion of binding in some of these systems, later. The table
supplements the performance comparison for semiconductors
that is included in reference [15] and extends the transition-
metal benchmarking [95].

Overall, the vdW-DF-cx seems to be extending the PBE
[28] and PBEsol [29] strengths. It is useful for materials with a
dense electron distribution [45, 95]. It brings this advantage to
the much larger class of sparse problems [32], that is, systems
that have important low-density regions.

The vdW-DF starting point, namely Ein
xc, retains all LDA-

correlations but there are also relevant vertex corrections when
the electron gas is weakly perturbed. An Occam’s Razor argu-
ment led us to exclude these in Ein

xc and let them emerge in
the exponential re-summation that underpins the screening
description. The approach is motivated, appendix B, but the
question remains: does the cluster expansion retain enough
nonlocal vertex corrections that vdW-DF-cx can work for
traditional, dense matter (and not only for thermo-physical
properties [95])?

We see the description of metal surface energies [273–275]
and work functions, as summarized in reference [223], as an
important test case. Also, a comparison of vdW-DF-cx and
PBEsol performance is here a highly relevant assessment of
the screening and vertex logic in the vdW-DF method. This
follows because the gradient-corrected correlation in PBEsol
itself is defined by a constraint-based fit to surface energies
computed for a trusted model of metals [29].

Figure 11 compares our PBE, PBEsol, and vdW-DF-cx
calculations of the surface energies for the (111), (100), and
(110) surfaces of a range of metals. For comparison, we also
include the computed variation of SCAN [258] and ‘SCAN

+ rVV10’ [69] (that is SCAN [258] combined with rVV10
[66, 67]) results, as obtained in reference [223] (with another
plane-wave code but similar setup). For Ru surface energies,
we focus on the fcc structure, denoted Ru∗, as it constitutes the
high-temperature face and therefore is relevant for the compar-
ison with measurements [223]. All of the here-characterized
functionals have the same general variation, although a con-
sistent inclusion of vdW binding is expected to improve the
description of the surface energies (and of surface-specific
work functions) [223].

Table 3 reports a comparison of the performance relative
to experimental observations, for the aforementioned metal
set and for MgO. The experimental results are obtained by
measuring the contact angle of molten droplets and have, as
indicated, about a 10 percent uncertainty [273–275]. Except
for MgO (where we focus on the nonpolar 110 surface), the
computed surface energy is set by averaging over the facets
identified in figure 11, as in reference [223]. The perfor-
mance of vdW-DF-cx is on par with that of SCAN + rVV10,
both landing well within the error bars on the experimental
results.

Table 4 reports our PBE, PBEsol, and vdW-DF-cx calcula-
tions of facet-specific metal surface work functions. The table
also includes comparison with both experimental results and
SCAN + rVV10 results, as summarized and obtained in ref-
erence [223]. Here we include results both for the facets of
the high-temperature Ru∗ phase and for the low-temperature
hcp Ru phase. Overall, the inclusion of vdW interactions (in
SCAN + rVV10 and in vdW-DF-cx) leads to improvements
in the work-function description relative to PBEsol, and cer-
tainly relative to PBE. We note that the error bars are small
for the surface-specific work functions of such metals and
that this is a strong test of the functional performance and
robustness.

Figure 12 reports a summary of the performance compari-
son that we have here provided for PBE, PBEsol and vdW-DF-
cx. The top (bottom) panels concern surface energies (work
function values), with the left column reporting signed errors;
the middle and right column report corresponding MAPD and
RMSD values, respectively. We note that this comparison of
vdW-DF-cx, PBE, and PBEsol robustness is made from within
the same DFT code and setup.

The central message of figure 12 and of reference [95] is
that vdW-DF-cx delivers a robust and accurate account of tra-
ditional materials. The vdW-DF-cx performance matches or
exceeds that of the best constraint-based GGAs, i.e., PBE and
PBEsol. This is true for thermo-physical properties of non-
magnetic transition metals [95] and for both surface energies
and surface-specific work functions. The vdW-DF-cx errors
are generally smaller and the standard deviation is compara-
ble to those of PBEsol (and clearly better than those of PBE),
figure 12. The vdW-DF-cx performance is better than that of
PBEsol (and better than that of SCAN + rVV10) in the case
of surface work functions where there is a smaller uncertainty
on the experimental reference data, table 4.

For a discussion of method promise, it is noteworthy
that in vdW-DF-cx, we build all nonlocal vertex corrections
(and vdW interactions) from an exponential re-summation on
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Figure 11. Surface energies (σ̄) of (111), (100), and (110) metal surfaces, as obtained in different functionals. We also compare our
calculations for PBE [28], PBEsol [29], and vdW-DF-cx [9] with the SCAN [258] and SCAN + rVV10 [69] (that is, rVV10-corrected
[66–68] SCAN) results reported in reference [223]. As in that SCAN + rVV10 study, the high-temperature fcc (and not hcp) structure,
labeled Ru∗, is used for a computational study of Ru surface energies.

Table 3. Surface energies (in Jm−2) of the selected metals and MgO.
For metals, the calculated surface energies are averaged over (111),
(100), and (110) surfaces. Four- to twelve-layer slabs were used in
the linear fit for the surface energy, as in reference [223]. The
headings ‘SCVV’ and ‘CX’ are abbreviations for SCAN + rVV10
and vdW-DF-cx, respectively. We focus on the high-temperature fcc
phase of Ru (as marked by an asterix), but also list results for the
low-temperature hcp phase. We also report MAD and MAPD values
obtained for the set of metal surfaces, for comparison with refernce
[223]. For MgO, we concentrate on the nonpolar (110) surface.

PBE PBEsol SCVVa CX Exp.

Al 0.88 1.05 1.16 1.13 1.14 ± 0.2b

Cu 1.52 1.87 1.89 2.03 1.79 ± 0.19b

Ru∗(fcc) 2.74 3.02 2.99 3.32 3.04 ± 0.33b

Ru(hcp) 2.98c 3.44c — 3.61c —
Rh 2.42 2.84 2.81 3.08 2.66 ± 0.29b

Pd 1.54 1.90 2.04 2.08 2.00 ± 0.22b

Ag 0.82 1.11 1.22 1.26 1.25 ± 0.13b

Pt 1.79 2.17 2.15 2.38 2.49 ± 0.26b

Au 0.86 1.17 1.29 1.36 1.51 ± 0.16b

MAD 0.41 0.16 0.12 0.16
MAPD (%) 23 9 6 7
MgO 0.89d 1.01d — 1.18d 1.04e

aReference [223].
bFrom liquid metal surface tensions, references [273, 274].
cSurface energies are here averaged over the (0001), (112̄1), (101̄0), and
(112̄0) surfaces of hcp Ru.
dNonpolar MgO(110) surface only.
eReference [275].

conservation laws. In contrast, the nonlocal-correlation part of
PBEsol is extracted by a constraint-based fit to trusted surface
energies [29]. Nevertheless, vdW-DF-cx still performs as good
as PBEsol and it avoids outliers in both surface tests, figure 12,
as well as for the thermo-physical properties of the nonmag-
netic transition metals [95]. This vdW-DF-cx robustness is
promising: it suggests a high degree of transferability for indi-
rect (vdW-DF) functional designs that leverage the rules of
screening in the electron gas.

6.3. Non-additivity in vdW interactions

A recent carbyne-wire study, reference [246], finds that the
TS-MBD method [80, 81] produces an additional enhance-
ment of the interactions at shorter distances (out to about 1–2
nm,) even for cases where the d−5 power law applies for the
asymptotic vdW attraction. It is interesting to compare the
TS-MBD enhancement near binding to that which we find
among molecules, parallel wires, layered structures and at sur-
faces due to multipole and image-plane effects, as illustrated
in figure 8 and as discussed in references [6, 10, 14, 53, 56,
181, 210, 211, 281].

The second-order expansion result equation (114) (used in
the popular vdW-DF versions) is only the start of the formal
vdW-DF method description for two disjunct fragments [10].
This cannot provide a non-additive description (nor in general,
a complete description) of vdW interactions in the asymptotic
limit [53, 105, 246, 247, 249, 250, 252–254].

At the same time, we trust even the expanded vdW-DF-cx
version near binding separations. This is because of the foun-
dation in an underlying Lindhard screening logic and because
we are expanding in the plasmon propagator Sxc, which (by
definition) already reflects screening. This is true even if we
typically approximate that by asserting the plasmon dispersion
to a GGA-level internal functional [4, 8, 10]. Also, the vdW-
DF method is electron-density based, not atom centered [53,
210, 211] and it has a natural inclusion of multipole enhance-
ments at and around binding separations [3, 53, 181, 182, 210,
257]. The multipole enhancement effects are, for example, evi-
dent in figure 8: the vdW-attraction is dominated by regions
that are between the graphene layers and not on the carbon
atoms. This is exactly as expected when considering the impor-
tance of retaining image-plane effects on the vdW attraction [6,
10, 157, 179, 184–187].

Taken together, the observations of limitations and advan-
tages of vdW-DF-cx merit a further discussion. We focus
on the near-binding enhancements that are present both
in TS-MBD [81, 246] and in vdW-DF-cx calculations,
figure 9.
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Table 4. Work functions φ (eV) for the selected metals. These
values were extracted by tracking the electrostatic field outside fully
relaxed slabs having 8 atomic layers. The headings ‘SCVV’ and
‘CX’ are abreviations for SCAN + rVV10 and vdW-DF-cx,
respectively.

Surface PBE PBEsol SCVVa CX Exp.b

Al(111) 4.10 4.18 4.23 4.26 4.32 ± 0.06
Al(100) 4.19 4.25 4.42 4.29 4.32 ± 0.06
Al(110) 4.15 4.18 4.00 4.24 4.23 ± 0.13
Cu(111) 4.79 5.01 5.09 5.07 4.90 ± 0.02
Cu(100) 4.51 4.63 4.54 4.69 4.73 ± 0.1
Cu(110) 4.48 4.60 4.53 4.66 4.56 ± 0.1
Ru(11−21) 4.48 4.61 4.65 4.66 4.71c

Ru(10−10) 4.54 4.64 4.97 4.71 4.60 ± 0.28
Ru(11−20) 4.36 4.46 4.72 4.54 —
Ru(0001) 4.95 5.10 — 5.17 —
Ru∗(111) 5.08 5.22 — 5.29 —
Ru∗(100) 4.89 5.03 — 5.09 5.40 ± 0.11
Ru∗(110) 4.46 4.56 — 4.64 —
Rh(111) 5.16 5.30 5.20 5.36 5.46 ± 0.09
Rh(100) 5.08 5.22 5.37 5.29 5.30 ± 0.15
Rh(110) 4.57 4.67 4.83 4.75 4.86 ± 0.21
Pd(111) 5.26 5.38 5.47 5.45 5.67 ± 0.12
Pd(100) 5.09 5.23 5.26 5.29 5.48 ± 0.23
Pd(110) 4.72 4.84 5.09 4.91 5.07 ± 0.2
Ag(111) 4.39 4.53 4.63 4.57 4.53 ± 0.07
Ag(100) 4.22 4.38 4.37 4.43 4.36 ± 0.05
Ag(110) 4.22 4.36 4.26 4.40 4.10 ± 0.15
Pt(111) 5.68 5.80 5.97 5.87 5.91 ± 0.08
Pt(100) 5.68 5.81 6.01 5.87 5.75 ± 0.13
Pt(110) 5.31 5.42 5.36 5.51 5.53 ± 0.13
Au(111) 5.05 5.20 5.41 5.24 5.33 ± 0.06
Au(100) 5.09 5.18 5.28 5.26 5.22 ± 0.31
Au(110) 5.03 5.11 5.30 5.20 5.16 ± 0.22

aReference [223].
bReference [276].
cReference [277] for polycrystalline Ru is used as reference.

First, we illustrate the implicit vdW-DF screening effect
that is discussed immediately after equation (95) and in ref-
erences [10, 56, 59, 105]. In figure 9, we report the vdW-
DF-cx results for both the total nonlocal-correlation binding
energy (given by Enl

c ) and for the pure-vdW binding com-
ponent (given by Enl

c, vdW) for the carbyne-wire interaction
problem. This extraction permits us to analyze the interaction
problem as if we had treated it in some would-be effective
atom-centered pair-interaction form. That is, we adapt an anal-
ysis (in terms of standard vdW-corrected DFT [33, 80]) that
was previously made for the TS-MBD method in references
[246, 254].

Specifically, we note that all (carbon) atoms are equivalent
by symmetry of the carbyne problem and define separation-
dependent vdW-interaction coefficients Ceff

6 and Cdamped
6 from

our full vdW-DF-cx characterization of the mutual binding:

ΔEnl
c (d) = −Cscr

6 (d)
∑

i, j

1
|Ri − R j|6

, (132)

ΔEnl
c, vdW(d) = −Ceff

6 (d)
∑

i, j

1
|Ri − R j|6

(133)

ΔEnl
c, vdW(d)
lC−C

= −Beff
5 (d)
d5

. (134)

Here, Ri denotes a carbon-atom position and the summations
over ‘i’ and ‘j’ are restricted to one or the other wire. In
equation (134), we consider the interaction per unit-cell length
lC–C of the wires [53, 246, 250].

The top right panel of figure 9 shows the wire-separation
dependence of both Cscr

6 (d) (black) and Ceff
6 (d) (red) versus

Δd = d − d0. The insert gives the dependence for negative
Δd values. The Cscr

6 (Δd) representation of the full Enl
c bind-

ing contribution can be compared to what emerges after the
application of a damping function when using a atom-centered
pair-wise summation description [33, 73, 74, 76–80] to a
dispersion-corrected GGA; the line-up is not ideal, however,
as there are also other screening effects in Enl

c,α.
The Ceff

6 (d) representation of the pure vdW interaction,
red curve in the upper right panel of figure 9, is interest-
ing in light of recent discussions of MBD scaling effects
in noncovalent-interaction problems [254]. This Ceff

6 (d) rep-
resentation has itself part of the multipole effects that are
expected [53, 157, 184, 185, 257] and for which there are a
scaling argument in a related C60 interaction problem [105].
Some dispersion-corrected DFTs seek to include such effects
in higher-order atom-centered vdW coefficients [33, 78], but
in the vdW-DF method we get them from looking directly at
the electron-density variation itself [10, 14].

The bottom panel of figure 9 shows the separation depen-
dence of the mutual attraction, as reflected directly by the
effective wire-vdW-interaction coefficients B5, defined in
equation (134).

There is a clear suppression of B5 (corresponding to the sat-
uration of the vdW attraction) when distances become smaller
than the equilibrium separation value, d0 = 3.81 Å, indicated
by the vertical line in the bottom panel. This suppression is
expected from the fact that the vdW-DF method ensures a
seamless integration with LDA [4, 7, 10]. There are no diver-
gent vdW contributions originating from density points at
small distances.

There is also a clear enhancement in the effective B5 value
(relative to the asymptotic value) near binding. As shown in
the bottom panel of figure 9, it does not stretch as far out as
found in the TS-MBD study [246] for a metallic wire, but
it is there. In other words, calculations in vdW-DF and in
vdW-DF-cx reflect more than a simple pair-wise summation
of atom-centered contributions and they reflect more than a
traditional B5 vdW-coefficient for wire interactions. This find-
ing is consistent with what one of us observed and documented
for parallel, semi-conducting nanotubes in 2008, in reference
[53].

The here-documented enhancement of binding from pure-
vdW contributions in vdW-DF-cx is part of what can be
captured in MBD formulations [2, 3, 75, 81]. These avoid
the second-order truncation in the response description [4, 7,
17, 60]. We do not here correctly reflect the dependence on
the wire dimerization and hence, nature of conduction [246,
247, 249, 250]. However, our vdW-DF-cx results, figure 9,
show a qualitative agreement with MBD-type calculations
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Figure 12. Deviations of computed results from measurement values for mean surface energy (σ̄) (top panels) and mean work functions (φ̄)
(bottom panels) of the (111), (100), and (110) metal surfaces. The leftmost panels show the deviation from measured values (averaged over
surface facets) while the middle and right panels show mean absolute percentage deviation (MAPD) and RMSD values for each of the
here-characterized functionals. The error bars on the measured metal surface energies are listed in table 3. The average experimental
uncertainty for surface energies is 0.22 J m−2 or 12% for surface energies and 0.09 eV or 2.0% for work functions [223].

presented in references [10, 105, 246, 251, 254], concerning
the near-binding interaction enhancements. These enhance-
ments are caused by screening and image-plane effects [53,
105] which vdW-DF-cx certainly mimics at a GGA level
through the internal functional [10]. Our vdW-DF-cx calcu-
lations reflect additional screening and image-plane effects
through the cummulant-type nonlocal-correlation component.

This brings us back to the questions on the non-additivity
in the vdW-DF-cx descriptions of the vdW interactions. We
inquire if the vdW-DF-cx description

• Has sufficient screening mechanisms that it yields a non-
additive description at binding separations?

• Can accurately handle binding in molecular crystals,
where fragments will be sitting not only at the nearest-
neighbor distances but also further apart?

Both questions are relevant since the design of the vdW-
DF-cx is implicit: we focus on near-binding separations, assert
the plasmon dispersion from an internal GGA-level functional,
and can at most reflect a GGA-level of screening, when used
in the typical truncated form [4, 7, 17]. The limitations and the
ameliorating factors near the optimal binding separations were
discussed in reference [10]. Both questions are here discussed
instead on the basis of computational results.

Figure 13 helps us address the first question. It shows that
the attraction among three fullerenes (top panels) and among

three carbon nanotubes is indeed non-additive at binding sep-
arations, that is, for fully relaxed geometries. The Enl

c bind-
ing for three objects exceeds that which results (middle panel)
when considering a set of pair interactions. This demonstration
of non-additivity for carbon structures supplements the affir-
mative answer we have previously obtained for a noble-gas
atom [14].

We note that while there is symmetry in the binding of
three fullerenes, the symmetry is broken for a triple-cluster
of carbon nanotubes. The difference reflects a variation in the
alignment of structural motifs in the carbon nanotube contact
regions, as further discussed in reference [53] (which investi-
gated a similar nanotube system, but with the original vdW-DF
version).

Also, it is interesting that the non-additivity effects are, in
fact, small for such large objects at binding separations. Here it
is a 2% effect, whereas the non-additivity is a 10% effect in the
case of a noble-gas trimer [14]. The smaller non-additivity is a
consequence of a simple geometry effect: there is not enough
room for the third structure to affect the binding of the other
two when at or near binding separation.

Observe, however, that finding a small non-additivity effect
for nanotubes at binding separations does not imply that
screening effects are irrelevant in the present vdW-DF-cx char-
acterization, figure 13. In fact, with the original vdW-DF ver-
sion (which has the same Enl

c formulation as vdW-DF-cx), one
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Figure 13. Non-additivity of the nonlocal-correlation-energy
binding contributions in the fullerene trimer (top panels) and a
nanotube bundle (bottom panels). The left panels show the
nonlocal-correlation contribution Δenl, trimer

c to the binding energy in
the trimers, directly. The middle panels show the results of simply
making a superposition of three nonlocal-correlation binding
contributions, Δenl,dimer′

c , each defined by a dimer. The right panels
show the spatial variation in the difference between the actual trimer
description and that of the dimer-based superposition, that is,
Δ(Δenl

c ) = Δenl, trimer
c −

∑
Δenl,dimer′

c .

of us has documented that the nanotube attraction is strongly
affected by multipole (or image-plane effects,) as discussed in
reference [53]. The multipole effects are also directly evident
in figure 9.

The observation that screening significantly affects the vdW
attraction within nanotube bundles [53] and among carbyne
wire, figure 9, is corroborated by the recent study of cohe-
sion in fullerene crystals [105]. There we helped document
and explain that multipole enhancements of the asymptotic
intermolecular attraction are inescapable and essential, lead-
ing to modifications that have qualitative consequences [105].
For example, while the vdW-DF method underestimates the
molecular C6 interaction coefficient describing the asymp-
totic case, it still accurately reproduces known motifs in the
structure of C60 crystals [105].

For the second question, whether vdW-DF-cx is able to
accurately describe molecular crystals, we make a number of
observations. First is the fact that vdW-DF-cx produces the
exact same asymptotic atom-C6 coefficients as does the orig-
inal vdW-DF version [4]. These atomic C6 coefficients are
not bad (unlike those of vdW-DF2) for small to medium size
molecules [271]. Second, in a very recent paper, other mem-
bers of the vdW-DF team have launched and investigated a
vdW-DF version in which the atomic C6 coefficients are fur-
ther improved from the vdW-DF/vdW-DF-cx level [16]. It is
observed that limited quality of the atomic C6 coefficients
is not an intrinsic feature of the vdW-DF method, and that
the description of molecules does improve when optimizing
the link between the plasmon description and the internal-
functional energy-per-particle variation for better atomic C6

coefficients. However, it is also observed that a different focus
may be the key to improving the overall performance within
the vdW-DF design strategy [16].

The vdW-DF-cx characterization can, under special con-
ditions, fail to correctly describe the molecular asymptotic-
vdW C6 coefficients, for example, for C60 molecules [105,
252, 282] and for carbyne wires [246, 250]. However, there
is also a set of arguments that the asymptotic performance is
not a good discriminator for what happens at binding separa-
tions [10, 258]. The C60 case study makes these observations
more clear: since there necessarily must exist large multipole
enhancement effects it is not a priory certain that a poor asymp-
totic description must make vdW-DF-cx fail for the C60 crys-
tal [105]. In fact, we observe that vdW-DF-cx performance
is good for both the C60 and the polyethylene crystals [103,
105, 107]. The vdW-DF-cx performance is excellent for the
oligoacene molecular crystals where there exists a full experi-
mental mapping across temperatures and measurements at low
temperatures [98, 99].

We have already observed in section 4.1, that perhaps the
strongest test of functional robustness is whether it makes
accurate predictions for structure and vibrations (and surface
work functions) that probe the quality of the density variation.
We find that vdW-DF-cx correctly describes the known motifs
of the C60 molecular crystals [105]. For the polyethylene crys-
tals the experimental results vary to some extent. Nevertheless,
the vdW-DF-cx characterizations of structure and defects are
accurate [103, 107].

For the oligoacenes there exists accurate low-temperature
characterizations both of the low-temperature structure [98]
and of the highly soft intermolecular rocking and libration
modes [99], figure 5. With full stress and atomic-position
relaxations, the vdW-DF-cx is able to predict lattice constants
and angles in close agreement with measured structure data,
and therefore useful for subsequent MBPT calculation of the
optical response [98]. Moreover, as shown in figure 5, there is
also (for the vdW-DF-cx predictions of the naphthalene struc-
ture) an almost complete agreement between neutron data and
vdW-DF-cx phonons.

Finally, for the problem of molecular-crystal binding ener-
gies there are limitations of vdW-DF-cx being a truncated
implementation of the vdW-DF method. The vdW-DF-cx pre-
dictions for the C60 molecular-crystal cohesive energies dif-
fer about 4 meV per carbon atoms [105]. The vdW-DF-cx
predictions for oligoacene cohesive energies [98] differ 13%
MAPD from low-temperature measurements, table 1. We are
not aware of any MBD-based results for the oligoacenes but
we mention, for comparison, that PBE-TS [80] was found to
differ 28% MAPD. It is possible that the vdW-DF-cx descrip-
tion for molecular-crystals cohesive energies is indeed affected
by the very weak (but also numerous) off-equilibrium binding
contributions in molecular crystals. To capture those we must
indeed go beyond the second-order truncation that secures its
universal-kernel formulation [4, 7, 17].

An MBD extension of vdW-DF-cx, perhaps adapting the
ideas of the first (non-truncated) nonlocal-correlation func-
tional for materials calculations [3], vdW-DF0, is desirable.
It is a possible future direction for the vdW-DF development
work.
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Figure 14. Exchange and correlation contributions to the binding in C60 dimers. Counting from the left, the first panel shows a mapping of
binding contributions from the LDA XC energy. The last two panels contrast the corrections arising in the vdW-DF-cx and PBE XC
functionals. Finally, the second and third panel contrast the variation in binding-energy contribution emerging from the vdW-DF(-cx)
nonlocal-correlation term and from the gradient-corrected correlation part of PBE, respectively.

Going foreward, however, there is a lesson to be drawn
from the present exploration of consistent vdW-DF implemen-
tations. The existing MBD formulations rely on the Dyson
equation to balance the lowest-order and higher-order vdW
terms [3, 75, 81], but the lower-order contributions to XC
designs are picked from other considerations. Meanwhile,
the vdW-DF-cx stands out as the first consistent imple-
mentation of the vdW-DF method. It has clear accuracy
advantages over vdW-DF1 [4] and we see these advantages as
coming from using the Lindhard or Dyson logic to balance the
exchange and correlation choices, as explained already in the
introduction. To fully leverage the screening logic and the
current-conservationcriterion on all orders of relevant XC con-
tributions seems important. There is thus a rationale for focus-
ing on consistent implementations of the vdW-DF method,
whatever other specific XC design choices we may make in
the future.

6.4. Nature of materials binding

We propose to use a spatial mapping of binding contributions
[10, 14, 55–58] to explore physics implications and to detail
differences between the direct and indirect XC functional
design approaches.

It is natural to begin with an exploration of binding in sparse
matter where some important interactions will be dominated
by the vdW attraction. It is clear that the indirect-design vdW-
DF-cx (compared with the GGAs) will here provide the more
meaningful materials account. However, it is still interesting
to track the differences to better understand the origin of the
PBE shortcomings for this large class of materials.

Figure 14 presents such a comparison for the binding in
a C60 dimer. The leftmost or first panel shows the binding
contribution that arises in LDA. A set of previous studies
documents that this LDA binding in such weakly-interacting,

sparse-matter systems is spurious and arises from an incor-
rect description of exchange [56, 59, 255, 283–285]. In fact,
the PBE XC-functional correction, shown in the right-most
fifth panel, compensates for and effectively offsets the spurious
LDA binding.

The problem for the set of direct-design, gradient-corrected
functionals is that they can only mimic sparse-matter bind-
ing at longer atom separation [10, 59, 91]. Moreover, by the
nature of the approximation, they must do so in regions with
a pronounced density overlap [3], that is, in the mid-region
area between the fullerenes. PBE delivers a small enhancement
of binding from PBE gradient-corrected correlation (central
panel) in this mid-region. However, there is still a need to off
set the spurious exchange binding, and that too must occur in
the very same region. PBE likely strikes an optimal balance for
the more strongly bonded systems, but the balance is delicate
[59].

The vdW attraction is more widely distributed in space, ref-
erences [3, 10, 14, 59] and figure 8, and the relative weights
of exchange and correlation effects change as we vary the
binding distances [12, 56, 59, 182, 210, 211]. A direct func-
tional design (like PBE) is simply overloaded when put to the
task of describing the general type of sparse-matter systems
[6, 32].

On the other hand, the second panel shows that the vdW-
DF-cx delivers something new, overcoming the limitations
of such semilocal functionals. Having an indirect functional
design logic, the vdW-DF-cx employs a truly nonlocal corre-
lation XC functional component Enl

c and can thus reflect the
nature of weak binding contributions. The vdW-DF function-
als have a proper mechanism to represent image-plane effects
[6, 12, 53, 181, 182, 184–186] and provide transferability over
a range of binding separations. As such, they correctly describe
the nonlocal-correlation binding enhancement as emerging
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Figure 15. Exchange and correlation contributions to the binding in bulk Si (top row), Na (middle row), and W (bottom row). The first
column show mappings of the binding contribution from the LDA XC energy. The last two columns contrast the corrections arising in the
vdW-DF-cx and PBE XC functionals. Finally, the second and third columns contrast the variation in binding-energy contribution emerging
from the vdW-DF(-cx) nonlocal-correlation term and from the gradient-corrected correlation part of PBE, respectively.

in the density tails rather than just in the overlap region
[3, 10, 14].

Contrasting the fourth and fifth panel we see that there are
fundamental differences in the resulting binding description
between the indirect-design vdW-DF-cx and the direct-design
PBE functionals. Simply put, the vdW-DF logic allows us
to put the nonlocal-correlation binding effect (second panel)
in different spatial locations than the beyond-LDA-exchange
correction that both functionals provide.

It is interesting that the Enl
c binding in the fullerene dimer

is itself defined by the competition between pure vdW attrac-
tion effects and truly nonlocal vertex effects. The fullerene
dimer and graphene bilayer systems are sufficiently similar
that we can simply port the observations from figure 8 and
thus conclude our analysis of binding in this sparse-matter
problem. The nonlocal vertex corrections occur in the den-
sity overlap regions. The vdW attraction is widely distributed
but the end result is that the total nonlocal-correlation bind-
ing is dominated by the near-fullerene regions. In short, the
nonlocal vertex effects help concentrate the net attraction to
regions that can be thought of as molecular image planes
[10, 53, 56, 59].

Additional understanding of the nature of material inter-
actions and of vdW-DF-cx/PBE differences can be gained
by mapping the spatial variation in binding contributions
in (more) strongly bound bulk materials. Figures 15 and
16 contrast such mappings for Si, Na, and W. Since the
vdW-DF-cx performance matches or exceeds the PBE per-
formance here, it is relevant to ask if vdW-DF-cx has a sim-
ilar or different balance between exchange and correlation
than does PBE in those cases. It is also interesting to check
how the balance between cumulant/vertex effects and pure-
vdW-binding effects vary across regions with different density
profiles.

As in the fullerene-dimer case, the set of panels in the first
column of figure 15 shows the LDA binding contributions,
while the fourth and fifth column detail the binding corrections
as they emerge in vdW-DF-cx and PBE, respectively. Note that
the figures present calculations of the spatial variation in bind-
ing contributions for a diagonal cut through the unit cells. The
Si system has one extra atom in its bulk unit cell, located in
this cut.

It is clear that the LDA description in these cases pro-
vides the dominant features although there is some adjust-
ments. Unlike in weakly bonded matter [283–285], this is
the expected behavior. The indirect vdW-DF-cx and the direct
PBE functionals both deliver accurate accounts of the basic
properties, table 2 and references [15, 45, 95]. It is interest-
ing that they still differ in important details of the binding
description.

Specifically, there is more spatial variation (or structure)
in the vdW-DF-cx than in the PBE binding descriptions. The
qualitative differences are most clear in the Na case, which has
the lowest cohesive energy. Quantitatively the relative differ-
ences seem largest in the Si and W cases. Overall, the PBE cor-
rections to LDA are essentially uniformly distributed and the
vdW-DF-cx corrections have a similar moderating effect in the
low-density regions. However, the vdW-DF-cx descriptions
also include both repulsion and an interaction-enhancement
region near the atoms.

Contrasting the nonlocal-correlation binding contributions
of vdW-DF-cx and PBE (shown in the second and third col-
umn, respectively) details the origin of such differences. For
example, the PBE nonlocal correlation does provide a bind-
ing contribution in the inter-atomic regions, where it is actu-
ally stronger than what arises in vdW-DF-cx. However, while
the nonlocal correlation binding enhances near the atoms for
vdW-DF-cx, it weakens in PBE. Meanwhile, the nonlocal-
correlation binding in the middle of the cut (furthest away
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Figure 16. Correlation contributions to the binding in solid Si, Na and W. The first and second columns contrast the contribution arising
from the gradient-corrected correlation part of PBE and from the total nonlocal correlation in vdW-DF-cx. The third and fourth columns
depict binding energy contributions from pure vdW interactions and from cumulant effects. The last column shows the binding contribution
originating from the vdW-DF-cx description of the model susceptibility α(ω).

from the atoms) tends to be offset by the repulsion, set by
gradient corrections. In the case of the vdW-DF-cx descrip-
tion, however, there is enough spatial variation in the nonlocal-
correlation binding, second column, that the structure also
survives in the nonlocal binding contribution, fourth column.

Figure 15 shows that the above-discussed usefulness of
vdW-DF-cx (for traditional matter) does not arise simply
because it mimics the PBE description in the balancing of
exchange and correlation effects everywhere. Given the strong
vdW-DF-cx performance, it is plausible that the vdW-DF-cx-
based mapping of the nature and spatial variation of binding is
trustworthy.

Diving in deeper, we analyze the nonlocal binding contribu-
tions also in terms of cumulant and pure vdW binding effects,
figure 16. Again, we consider the binding contributions of Si,
Na, and W and, for the reader’s convenience, we repeat the
PBE and vdW-DF-cx characterizations of nonlocal-correlation
binding effects in the first and second columns.

We find that for these dense-matter systems there is a pro-
nounced cancellation between vdW attraction and nonlocal-
vertex corrections. We tend to ignore the relevance of disper-
sive interactions in traditional bulk. However, the Rapcewicz
and Ashcroft observation [65] that vdW forces exist also in
the itinerant electron gas, is clearly important [10, 12]. On
the other hand, such pure vdW forces are also dramatically
compensated by a repulsion defined by nonlocal vertex cor-
rections (shown in the fourth panel). As in the case of the
fullerene dimer, these vertex effects grow in the regions where
there is, relatively speaking, a large density increase by the
density overlap. For dense metals, the compensation ensures
that the net Enl

c binding effect remains bounded at the PBE
level, possibly with the exception of the description of noble
metals [94, 95].

The last column of figure 16 shows our computed results
for the spatial variations (for Si, Na, and W) of this

local-field susceptibility term, Δec,α(r). Interestingly, the
cumulant correction, or nonlocal vertex-correction, part
(fourth column) does, to a large extend, offset the spatial varia-
tion in the LDA correlation binding contribution. For example,
in Si we have pronounced signatures of LDA correlations
but these are compensated by the vdW-DF-cx description of
nonlocal-vertex corrections. The net effect is that there is only
a moderate variation for Δec,α(r) in these dense-matter cases.

7. Summary and conclusions

To set the stage, we mention again that the consistent vdW-
DF versions, like (spin) vdW-DF-cx, presently have no input
beyond QMC data entering in the LDA definition [23, 24]
and a formal MBPT result on gradient-corrected exchange
[4, 7, 12, 174]. As discussed in this paper, vdW-DF-cx must
build all accounts of beyond-LDA correlation from an expo-
nential re-summation. That is, it must rely on a connection
with a cumulant-type expansion to get at more general ver-
tex corrections (and other screening effects) that are already
in a GGA. It is encouraging for the indirect-functional design
strategy that vdW-DF-cx still manages to perform as good as
PBE, even on the (dense-matter) home turf of this versatile
gradient-corrected XC functional.

There are several key observations in this review paper
concerning the screening nature of consistent vdW-DF
functionals.

First, we argue that by asserting the shape of the model
propagator, Sxc ≡ ln(ε) from the energy-per-particle variation
of Ein

xc the vdW-DF formulation, equation (3), we incorporate
some of the vertex corrections and screening that are rele-
vant to a GGA-type description. This observation supplements
the previously published interpretation [10] that the vdW-
DF-cx XC energy functional EDF

xc (also) represents a succinct
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formulation of pure vdW forces, in a ZPE-coupling picture of
dispersion interactions [1, 6, 12, 64, 65, 158].

Second, we document the vdW-DF-cx usefulness for
descriptions of bulk and molecular cases with covalent and
noncovalent binding. We find that the indirect-XC-functional
design of vdW-DF-cx provides a performance that is as good
as or better than the trusted, constraint-based semilocal GGAs,
even for surface properties.

Third, we demonstrate that there are similarities but also
important differences between PBE [28] and vdW-DF-cx [9]
characterizations of binding in a bulk semiconductor and met-
als. It is encouraging that the vdW-DF-cx goes beyond simply
mimicking PBE for dense matter (as well as for molecular mat-
ter) but builds an equally accurate description from binding
contributions with different spatial variations.

We think that the vdW-DF-cx characterization of materi-
als binding can be trusted, and we therefore proceed to deliver
tools for a deeper analysis. Specifically, we have developed
code for universal-kernel evaluations that can separately map
binding contributions arising from (a) cumulant effects and
(b) pure-vdW interactions, given by the electron–XC-hole
mechanism that is illustrated in figure 2.

We have shown that screening underpins not only the
response description behind pure, long-range vdW forces but
also the here-identified inclusion of a cumulant-type expan-
sion. We have furthermore discussed how these terms provide
consistent-exchange vdW-DF-cx with an account of beyond-
LDA vertex corrections. As such, it provides vdW-DF-cx with
a seamless integration [2, 12, 166] to a GGA-type description.
This is true not only in the HEG limit (as discussed in refere-
ces [4, 7]) but also in the case of the weakly perturbed electron
gas, i.e., conditions that are important for the description of
bonding inside molecules and in bulk.

As for the vdW-DF-cx robustness, we expect that having
better compliance with the Dyson equation provides vdW-DF-
cx [9, 10, 45] with an advantage over the original vdW-DF ver-
sion [3, 4]. This advantage is relevant when we seek to describe
traditional materials [95] and surface problems [134, 257],
i.e., cases where the nonlocal correlations can be expected to
play a greater relative role than in intra-molecular binding.
We note that both versions have identical nonlocal correla-
tion energy Enl

c (for any given density). However, vdW-DF-cx
stands out in also effectively achieving compliance with the
Dyson equation. This implies in turn that vdW-DF-cx is closer
in nature both to the formal ACF recast, equation (18) and to
the cumulant-expansion logic [86].

In practical terms, this means for vdW-DF-cx (for vdW-
DF1) that Enl

c reflects an exponential re-summation and XC-
hole coupling that are more relevant (less relevant). In the
consistent vdW-DF versions, like vdW-DF-cx, the total cor-
relation provides a better balance to the exchange compo-
nent that is contained in the semilocal functional component
E0

xc ≈ Ein
xc.

Finally, we mention an implication regarding handling of
semilocal correlation effects in indirect functional designs
(like vdW-DF-cx). In picking the plasmon propagator model
Sxc, there is a formal choice concerning retaining or discarding
gradient-corrected correlations. In the vdW-DF-cx design we

avoid this explicit inclusion to avoid a double counting because
we are also trying to tap into the vertex-correction handling
of the cumulant-expansion logic. It is encouraging that this
simple approach works, for it simplifies construction of new
versions in the class of consistent vdW-DFs.

Overall, this paper documents the central role that screen-
ing plays in specifying the various terms that enter in con-
sistent formulations of the vdW-DF design. It seems that
the Occam’s-razor approach of the vdW-DF method and of
vdW-DF-cx is a good starting point.

Finally, it is worth discussing our calculation of the binding
contribution that arises from the term, equation (109), reflect-
ing the local-field susceptibility behavior. This term is defined
by the LDA-correlation input but corrected for additional
screening that we represent in an exponential re-summation.
A corresponding local energy density, termed ec,α(r) is given
by the sum of equation (119) and the corresponding energy
density term for LDA correlation.
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Appendix A. Screening nature of electron
dynamics

Consider the Dyson equation for the electron Green function

g(1, 1′) − g0(1, 1′) =
∫

d2
∫

d3 g0(1, 2)σ(2, 3)g(3, 1′),

(A1)

2 John Wilkins passed away December 6, 2019. John helped make the electron-
gas tradition thrive in DFT. He impacted the lifes of the vdW-DF seniors.
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and the effective Dyson equation that exists for the screened
Coulomb interaction

W(1, 1′) − V(1 − 1′) =
∫

d2
∫

d3 V(1 − 2)P(2, 3)W(3, 1′).

(A2)
We use Hedin notation [188] where interaction points 1, 2, 3,
and 4 are normally thought of as time and space (plus spin)
coordinates, but we can work with any complete representation
of space.

Figure 4 explains an equivalence between the exact descrip-
tions of the screened interaction and that of the quasi-particle
electron dynamics, i.e., the Green function. The descriptions
are related because they both fully retain the electron–electron
interacting vertex (triangle) and are, as such, both defined by
the Feynman diagram for the linked-cluster-expansion evalu-
ation of the exact total energy (shown in panel a).

As used in the Hedin equations [188], we can express both
the exact electron self energy σ and the local-field response
function χ̃ in terms of one diagram structure but using an
electron-Coulomb vertex function Γ(1′2′; 3′). Here, 1′ and
2′ denote the coordinates of connected electron Green func-
tions while 3′ denotes the coordinate of a connected screened-
interaction line W. This leads to formal results [188]:

σ(1, 2) = i
∫

3,4
g(1, 4)Γ(42; 3) W(3, 1), (A3)

P(2, 1) = −i
∫

3,4
g(1, 3)Γ(34; 2) g(4, 1). (A4)

A diagram expansion of the second term in the square bracket
of equation (A1) can thus be expressed∫

2
σ(1, 2)g(2, 1) = i

∫
2,3,4

g(1, 4)Γ(42; 3) g(2, 1) W(3, 1).

(A5)
Meanwhile, for the description of the screened interaction,

we have∫
2
W(1, 2)P(2, 1) = −i

∫
2,3,4

g(1, 3)Γ(34; 2) g(4, 1) W(2, 1),

(A6)
where we have used W(2, 1) = W(1, 2).

Taking equations (A5) and (A6) together, and applying a
cyclic permutation of internal integration variables 2, 3, and 4,
we conclude∫

2
W(1, 2)P(2, 1) = −

∫
2
σ(1, 2) g(2, 1). (A7)

The result, equation (A7), can also be formulated∫
dω
2π

〈r1|σ(ω)g(ω)|r1〉 =−
∑
μ

∫
dω
2π

〈r1|W(ω)Pμ,ν(ω)|r1〉,

(A8)
where the quasi-particle dynamics is described for spin ν.
This follows by Fourier transformation because we work
with a time-translationally invariant problem. The result
equation (A8) is used, for example, in discussion of the nature
of the electron–phonon interaction problem in reference [167].
It is also consistent with the two ways reference [169] provides

for the evaluation of the ground-state expectation value of the
electron–electron interaction energy.

Moreover, since equation (A8) holds for any complete
(coordinate) representation, we have the formal operator rela-
tion ∫

dω
2π

σ(ω)g(ω) = −
∫

dω
2π

W(ω)P(ω)

→−
∫

dω
2π

Vχ(ω)/2, (A9)

where P(ω) ≡
∑

μPμ,ν(ω). The last line holds when P(ω) =
χ̃(ω)/2, which we shall assume to simplify the discussion.

Finally, equation (72) relates the frequency variations of
the exponential-re-summation factors of the Green function
and of the dielectric-function descriptions. The exact result
equation (A9) suggests the connection equation (72) as the
simplest assumption on the per-frequency variations in these
re-summation factors.

Appendix B. Plasmon-propagator approximation
for the indirect vdW-DF XC functional design

In vdW-DF we work with a double-pole model for the plasmon
propagator, termed Sxc(ω). We assume a local dispersion of the
plasmon dispersion ωq(r) in a weak-perturbed electron gas, as
detailed below. We note that Sxc(ω) must reflect a semilocal
XC hole and we rely on the ideas of the formal MBPT gradient
expansion [87]. In effect, in the vdW-DF method, we employ
a folding of plasmon-pole contributions from two momenta
[4, 47]:

Sxc(ω) = S̄RLL
q,q′ (ω) ≡ 1

2

[
Sq,q′(ω) + Sq,q′(−ω)

]
, (B1)

Sq,q′(ω) =
∫

r
ei(q−q′)·r ω2

p(r)

[ω + ωq(r)][−ω + ωq′(r)]
. (B2)

This plasmon propagator is dominated by the diagonal compo-
nents [83, 85, 86] used in the early specification of LDA [21,
22], but the off-diagonal terms reflect the effects of density gra-
dients on the screening, i.e., the dielectric function, and hence
on the resulting XC hole, equation (20).

In the popular general-geometry versions and variants [4, 8,
9, 40–42], this Rydberg, Lundqvist, Langreth (RLL) plasmon-
propagator approximation is used directly with one of two
specifications ofωq(r), references [4, 8]. Earlier nonlocal func-
tional generations [2, 3, 6] (for example the layered-geometry
version) used a slightly modified response form that is more
true to the Lundqvist single-pole plasmon-propagator form
[21, 22].

The RLL form, equations (B1) and (B2), explicitly com-
plies with time-reversal symmetry [4]. By properly specifying
the dispersion form ωq(r) this form complies with all known
constraints on the plasmon-response behavior [4, 56, 82]. The
idea is to set the assumed dispersion

ωq = q2/[2h(q/q0(r))], (B3)

h(y) = 1 − exp[−γy2], (B4)

43



J. Phys.: Condens. Matter 32 (2020) 393001 Topical Review

in terms of an inverse length scale q0(r) that reflects the energy-
per-particle density of the internal functional [4, 7]:

εin
xc(r) = π

∫
d3q

(2π)3

[
1

ωq(r)
− 1

ωself(q)

]
= − 3

4π
q0. (B5)

Here ωself (q) = q2/2 is just the free-electron energy. It
defines a contribution which corresponds to the Eself

term in equation (1). The choice of γ is truly arbitrary,
set to γ = (4π/9), but any other choice would simply
adjust the appearence—not the physics content—of the
internal-functional description. In making the connection
from plasmon-dispersion to the energy-per-particle variation,
equation (B5), the vdW-DF method adapts the logic that Lan-
greth and Perdew used to improve computations of surface
energies beyond an underlying LDA account [25, 46, 89].

Finally, it is interesting to contrast this RLL model for a
GGA-based double-pole plasmon propagator with the general-
ized plasmon pole (GPP) model [88] that is used, for example,
in discussing GW calculations. To that end it is relevant to first
consider how the RLL form should be described in a periodic
system, using a gradient expansion in the arguments. Thus we
express q in terms of a major reciprocal-lattice vector G com-
ponent and the residual wavevector component k (reflecting
the component inside the first Brillouin zone), in a uniquely
defined separation q = G + k. We note that q − q′ = G − G′

and recast the RLL double-pole plasmon propagator

S̄RLL
G,G′(k;ω) =

∫
r
ei(G−G′)·r ω2

p(r)(ωG+k(r)ωG′+k(r) − ω2)

[ω2
G+k(r) − ω2][ω2

G′+k(r) − ω2]
.

(B6)

This RLL form, equation (B6),should be compared to the GPP
formulation:

SGPP
G,G′(k) =

Ω2
G,G′ (k)

ω2
G,G′(k) − ω2

(B7)

Ω2
G,G′(k) = ω2

pl(G − G′)
(G + k) · (G′ + k)

|G′ + k|2 , (B8)

where ω2
pl(q) is the Fourier transform of ω2

pl(r) ∝ n(r). This
GPP form is set by asserting the ratio of bare and screened
plasmon frequencies

SGPP
G,G′(k,ω = 0)ω2

G,G′ (k) = Ω2
G,G′ (k). (B9)

For semi-conductors and insulators, this is often done in an ini-
tial RPA calculation for SGPP

G,G′(k,ω = 0). The GPP is believed
to be broadly applicable for a characterization of response.
The RLL plasmon propagator is similar to this GPP form
with one important difference: the absence of an explicit
longitudinal projection (G + k) · (G′ + k) in the RLL form,
equation (B6).

The vdW-DF difference from the GPP is deliberate. The
longitudinal projection is an absolute must for any proper
description for the electron gas response. In the GPP it is hard-
wired from the start by the need to comply with the f-sum

rule. In the vdW-DF, we delay the enforcement of the longi-
tudinal projection in Sxc ≡ S̄RLL, and put it instead in the κlong

criterion. The projection is no less important for the vdW-DF-
cx version. However, by lifting it to an explicit constraint on
the electrodynamics description, equation (34), we position the
vdW-DF framework and the vdW-DF-cx version for an auto-
matic inclusion of vdW forces. This is done in the presence
of screening by the electron gas, that is, in the setting first
analyzed by the Ashcroft group [1, 10, 12, 64, 65].

Appendix C. Nature of a full vdW-DF method
implementation

The analysis of the optical-response description,
equations (102) and (105), suggests a path to go beyond
the second-order expansion that is reflected in the popular
general-geometry vdW-DF version [4]. While the exist-
ing functionals are given by equations (2) and (3), a full
implementation of the vdW-DF method is formally given

EDF
xc =

∞∑
n=1

∞∑
m�n

∑
i

EDF,(i)
xc,m,n, (C1)

EDF,(i)
xc,m,n = −

∫ ∞

0

du
2π

1
m

Tr{∇ · α(i)
m,n(iu) · ∇V}. (C2)

We may, for example, add some or all triples (identified
as reflecting n = 3 factors of Sxc), since each of the terms
equation (C2) is, in itself, charge conserving.

In seeking such generalizations, however, we recommend
always keeping all terms ‘(i)’ containing n powers of Sxc

(up to a given maximum exponent value n � l) if truncat-
ing an expansion like equation (C2). This is done in vdW-
DF1, vdW-DF2, and (s)vdW-DF-cx [4, 8, 9, 11]. We see
the plasmon propagator Sxc as the natural physics property
to use as a building block in a vdW-DF-based XC density
functional [2–4, 10, 64, 65, 85, 86, 163, 164]. It is designed
to reflect the simpler physics of the weakly perturbed elec-
tron gas. That is, the choice of Sxc as our expansion variable
facilitates seamless integration with a near-HEG description
[4, 47].

In any case, it is straightforward to sort XC functional
contributions subject to the Dyson logic (even when compo-
nents are expanded in Sxc factors). Each and every susceptibil-
ity term α(i)

m,n in equation (102) corresponds to a given order
(m) in equation (30)—but that is also the order it takes in
the expansion of the logarithm in the full vdW-DF method
specification.

Appendix D. Nonlocal-correlation contributions

Finally, we explore the nature of the partial nonlocal-
correlation energy contributions, equations (110) and (113),
when restricted to exactly a second-order expansion in
Sxc. Together they define the standard Enl

c approximation,
equation (2). Using a Fourier-transformed representation [4] of
the plasmon-propagator model Sxc(ω, q, q′) these components
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can be expressed

Enl
c,α ≈ 1

2

∫
dq

(2π)3

∫
dq′

(2π)3
(D1)

×
∫ ∞

0

du
2π

Sxc(iu, q, q′) Sxc(iu, q′, q),

(D2)

Enl
c, vdW ≈ −1

2

∫
dq

(2π)3

∫
dq′

(2π)3
(q̂ · q̂′)2

×
∫ ∞

0

du
2π

Sxc(iu, q, q′) Sxc(iu, q′, q), (D3)

where q̂ = q/|q|. The factor (q̂ · q̂′)2 reflects the longitudinal
projection in the vdW term.

Each of the terms in the second order expansion for Enl
c can

be expressed in terms of corresponding partial kernels,

Enl
c,α[n] =

1
2

∫
dr dr′n(r)φα(r, r′) n(r′), (D4)

Enl
c, vdW[n] =

1
2

∫
dr dr′n(r)φvdW(r, r′)n(r′), (D5)

as in the original vdW-DF determination [4, 47, 56, 171]. As
discussed in the main text and elsewhere [4, 5, 10], the evalua-
tion of Enl

c , and of the here-sought components, is naturally cast
by tracking the variation in a set of inverse length scales q0(r)
and q0(r′). Meanwhile, the partial and full kernels are universal
and can be tabulated in advance in terms of an effective separa-
tion D = [(q0 + q0

′)/2]|r − r′| and in terms of an asymmetry
parameter δ = (q0 − q0

′)/(q0 + q0
′), reference [4].

To specify the form of the universal (partial) kernels, we
adapt the derivation presented in references [56, 60]. We
first extract a density component from the classical-plasmon
numerator ω2

pl(r) = 4πn(r)/m from the plasmon-propagator
model [4, 56]

Sxc(ω, q, q′) =
∫

r
e−i(q−q′)·rn(r)

× 2π
m

[
f (ω, q, q′, r) + f (ω, q′, q, r)

]
,

(D6)

f (ω, q, q′, r) =
1

[ω + ωq][−ω + ωq′]
, (D7)

where ωq denotes the assumed plasmon dispersion [4, 47,
171]. This allows us to split the special kernels into a spatial
and a frequency-dependent part [4, 56, 171]

φα(r, r′) =
∫ ∞

0

dq
(2π)3

q2
∫ ∞

0

dq′

(2π)3
(q′)2

× (4π)2Wα(a = q|r − r′|, b = q|r − r′|)

× Ifreq(q, q′, r, r′), (D8)

in the same way as can be done for the total Enl
c energy [47,

56, 171], equation (2). The frequency-integration term is by
construction unchanged from the original kernel evaluation:

Ifreq(q, q′; r, r′) =
(2π)2

m2
T[ωq(r),ωq′(r),ωq(r′),ωq′(r

′)] (D9)

with T[w, x, y, z] > 0 as defined in reference [4], equation (15).
The kernels from the two partial contributions differ in how

we handle the spatial integrations in equation (D8). For the
(Sxc)2 contribution, we simply obtain [56]

(4π)2Wα(a = q|r − r′|, b = q|r − r′|)

≡
∫

dΩ1

∫
dΩ2e−iq(r−r′) eiq′(r−r′).

=
sin(a) sin(b)

ab
. (D10)

For the pure vdW-attraction term we need

(4π)2WvdW(a = q|r − r′|, b = q|r − r′|)

≡−
∫

dΩ1

∫
dΩ2(q̂ · q̂′)2e−iq(r−r′) eiq′(r−r′). (D11)

This evaluation is also indirectly detailed in reference [56]. The
resulting specification is

(4π)2WvdW(a = q|r − r′|, b = q|r − r′|)

= − 1
(ab)3

(
2a cos(a)

[
3b cos(b) + (b2 − 3) sin(b)

]
+ 2 sin(a) cos(b)(a2 − 3)b

+ sin(a) sin(b)
[
a2(b2 − 2) − 2(b2 − 3)

])
. (D12)

This determination follows simply from performing the
wavevector integrations in polar coordinates [47, 56, 60, 171].

Figure 7 presents our numerical evaluation of both the
full vdW-DF kernel φ and of the kernel components, φα and
φvdW. The results are given in terms of universal kernel forms,
Φα(D, δ), ΦvdW(D, δ) and Φ(D, δ) = Φα +ΦvdW, that permit
evaluations under various density conditions [4, 7, 17]. For
example, φvdW(r, r′) = ΦvdW(D, δ) where the functional forms
of D(r, r′) and δ(r, r′) are given above.

The set of blue and red curves compares the variation of Φα

and of ΦvdW as a function of D for a selection of indicated δ
values, respectively. Finally, the set of the black curves tracks
the corresponding variation in the full vdW-DF kernel, Φ. It
will, in the typical case, be relevant to use such kernels also
when q0(r) differs from q0(r′), and δ will seldom be zero.

The kernel ΦvdW is always negative, and Enl
c, vdW[n] reflects

a pure-vdW attraction. This is expected as it is formed from
the term that has an explicit longitudinal projection (that can-
not be removed by a partial integration as in equation (92)).
The full vdW-DF behavior is offset by the other kernel Φα

which is always positive. The Enl
c,α[n] term does not comply

with the logic of equation (55) and does not secure a seamless
integration, by itself.

One of the advantages of the vdW-DF method, and of vdW-
DF-cx in particular, is that seamless integration is provided
when combining the terms, as Enl

c does. The solid black curve
in figure 7 shows the total kernel at δ = 0, i.e., the condi-
tion that q0(r) = q0(r′), which is relevant for discussing the
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homogeneous-gas limit. For this curve, the short-range repul-
sion and longer-ranged attraction components fully compen-
sate each other, the curve for Enl

c (given by equation (2))
integrates to zero in HEG, as it was designed to do [4, 5, 171].
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