
How to Specify It!: A Guide to Writing Properties of Pure Functions

Downloaded from: https://research.chalmers.se, 2022-07-02 09:31 UTC

Citation for the original published paper (version of record):
Hughes, J. (2020). How to Specify It!: A Guide to Writing Properties of Pure Functions. Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 12053: 58-83. http://dx.doi.org/10.1007/978-3-030-47147-7_4

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

How to Specify it!

A Guide to Writing Properties of Pure Functions.

John Hughes

Chalmers University of Technology and Quviq AB, Göteborg, Sweden.

Abstract. Property-based testing tools test software against a specifi-
cation, rather than a set of examples. This tutorial paper presents five
generic approaches to writing such specifications (for purely functional
code). We discuss the costs, benefits, and bug-finding power of each ap-
proach, with reference to a simple example with eight buggy variants.
The lessons learned should help the reader to develop effective property-
based tests in the future.

1 Introduction

Property-based testing (PBT) is an approach to testing software by defining
general properties that ought to hold of the code, and using (usually randomly)
generated test cases to test that they do, while reporting minimized failing tests
if they don’t. Pioneered by QuickCheck1 in Haskell [9], the method is now sup-
ported by a variety of tools in many programming languages, and is increas-
ingly popular in practice. Searching for “property-based testing” on Youtube
finds many videos on the topic—most of the top 100 recorded at developer con-
ferences and meetings, where (mostly) other people than this author present
ideas, tools and methods for PBT, or applications that make use of it. Clearly,
property-based testing is an idea whose time has come. But equally clearly, it is
also poorly understood, requiring explanation over and over again!

We have found that many developers trying property-based testing for the
first time find it difficult to identify properties to write—and find the simple
examples in tutorials difficult to generalize. This is known as the oracle problem
[3], and it is common to all approaches that use test case generation.

In this paper, therefore, we take a simple—but non-trivial—example of a
purely functional data structure, and present five different approaches to writing
properties (invariants, postconditions, metamorphic properties and the preserva-
tion of equivalence, inductive properties, and model-based properties). We show
the necessity of testing the random generators and shrinkers that property-based
testing depends on. We discuss the pitfalls to keep in mind for each kind of prop-
erty, and we compare and constrast their effectiveness, with the help of eight
buggy implementations. We hope that the concrete advice presented here will

1 http://hackage.haskell.org/package/QuickCheck

enable readers to side-step the “where do I start?” question, navigate the zoo of
different kinds of property, and quickly derive the benefits that property-based
testing has to offer.

2 A Primer in Property-Based Testing

Property-based testing is an approach to random testing pioneered by QuickCheck2

in Haskell [9], in which universally quantified properties are evaluated as tests
in randomly generated cases, and failing tests are simplified by a search for sim-
ilar, smaller cases. There is no precise definition of the term, however: indeed,
MacIver writes3

‘Historically the definition of property-based testing has been “The thing
that QuickCheck does”.’

The basic idea has been reimplemented many times—Wikipedia in 2019 lists
more than 50 implementations, in 36 different programming languages4, of all
programming paradigms. Among contemporary PBT tools are, for example,
ScalaCheck [20] for the JVM, FsCheck5 for .NET, Quviq QuickCheck [2, 16]
and Proper [21, 18] for the BEAM, Hypothesis6 for Python, PrologCheck [1] for
Prolog, and SmallCheck [24], SmartCheck [22] and LeanCheck [4] for Haskell,
among many others. These implementations vary in quality and features, but
the ideas in this paper—while presented using Haskell QuickCheck—should be
relevant to a user of any of them.

Suppose, then, that we need to test the reverse function on lists. Any devel-
oper will be able to write a unit test such as the following:

test Reverse = reverse [1, 2, 3] === [3, 2, 1]

Here the (===) operator is an equality comparison for use in tests, which displays
a message including the compared values if the comparison is False.

This test is written in the same form as most test cases worldwide: we apply
the function under test (reverse) to known arguments ([1, 2, 3]), and then com-
pare the result to a known expected value ([3, 2, 1]). Developers are practiced
in coming up with these examples, and predicting expected results. But what
happens when we try to write a property instead?

prop Reverse :: [Int]→ Property
prop Reverse xs = reverse xs === ???

The property is parameterised on xs, which will be randomly generated by
QuickCheck; we state a monomorphic type signature explicitly, even though
the reverse function is polymorphic, to tell QuickCheck what type of test data

2 http://hackage.haskell.org/package/QuickCheck
3 https://hypothesis.works/articles/what-is-property-based-testing/
4 https://en.wikipedia.org/wiki/QuickCheck
5 https://fscheck.github.io/FsCheck/
6 https://pypi.org/project/hypothesis/

to generate. The result type is Property , not Bool , because this is what (===)
returns—Propertys are not pure booleans, because they can generate diagnostic
output, among other things.

The property can clearly test reverse in a much wider range of cases than the
unit test—any randomly generated list, rather than just the list [1, 2, 3]—which
is a great advantage. But the question is: what is the expected result? That is,
what should we replace ??? by in the definition above? Since the argument to
reverse is not known in advance, we cannot precompute the expected result. We
could write test code to predict it, as in

prop Reverse :: [Int]→ Property
prop Reverse xs = reverse xs === predictRev xs

but predictRev is not easier to write than reverse—it is exactly the same function!
This is the most obvious approach to writing properties—to replicate the

implementation in the test code—and it is deeply unsatisfying. It is both an ex-
pensive approach, because the replica of the implementation may be as complex
as the implementation under test, and of low value, because there is a grave risk
that misconceptions in the implementation will be replicated in the test code.
“Expensive” and “low value” is an unfortunate combination of characteristics
for a software testing method!

“Avoid replicating your code in your tests.”

We can finesse this problem by rewriting the property so that it does not
refer to an expected result, instead checking some property of the result. For
example, reverse is its own inverse:

prop Reverse :: [Int]→ Property
prop Reverse xs = reverse (reverse xs) === xs

Now we can pass the property to QuickCheck, to run a series of random tests
(by default 100):

*Examples> quickCheck prop_Reverse

+++ OK, passed 100 tests.

We have met our goal of testing reverse on 100 random lists, but this property
is not very strong—if we had accidentally defined

reverse xs = xs

then it would still pass (whereas the unit test above would report a bug).
We can define another property that this buggy implementation of reverse

passes, but the correct definition fails:

prop Wrong :: [Int]→ Property
prop Wrong xs = reverse xs === xs

Since reverse is actually correctly implemented, this allows us to show what
happens when a property fails:

*Examples> quickCheck prop_Wrong

*** Failed! Falsified (after 5 tests and 3 shrinks):

[0,1]

[1,0] /= [0,1]

Here the first line after the failure message shows the value of xs for which
the test failed ([0, 1]), while the second line is the message generated by (===),
telling us that the result of reverse (that is, [1, 0]) was not the expected value
([0, 1]).

Interestingly, the counterexample QuickCheck reports for this property is
almost always [0, 1], and occasionally [1, 0]. These are not the random coun-
terexamples that QuickCheck finds first; they are the result of shrinking the
random counterexamples via a systematic greedy search for a simpler failing
test. Shrinking lists tries to remove elements, and numbers shrink towards zero;
the reason we see these two counterexamples is that xs must contain at least two
different elements to falsify the property, and 0 and 1 are the smallest pair of
different integers. Shrinking is one of the most useful features of property-based
testing, resulting in counterexamples which are usually easy to debug, because
every part of the counterexample is relevant to the failure.

Now we have seen the benefits of property-based testing—random generation
of very many test cases, and shrinking of counterexamples to minimal failing
tests—and the major pitfall: the temptation to replicate the implementation in
the tests, incurring high costs for little benefit. In the remainder of this paper,
we present systematic ways to define properties without falling into this trap. We
will (largely) ignore the question of how to generate effective test cases—that
are good at reaching buggy behaviour in the implementation under test—even
though this is an active research topic in its own right (see, for example, the
field of concolic testing [12, 25]). While generating good test cases is important,
in the absence of good properties, they are of little value.

3 Our Running Example: Binary Search Trees

The code we shall develop properties for is an implementation of finite maps
(from keys to values) as binary search trees. The definition of the tree type is
shown in Figure 1; a tree is either a Leaf , or a Branch containing a left subtree,
a key, a value, and a right subtree. The operations we will test are those that
create trees (nil , insert , delete and union), and that find the value associated
with a key in the tree. We will also use auxiliary operations: toList , which returns
a sorted list of the key-value pairs in the tree, and keys which is defined in terms
of it. The implementation itself is standard, and is not included here.

Before writing properties of binary search trees, we must define a generator
and a shrinker for this type. We use the definitions in Figure 2, which generate
trees by creating a random list of keys and values and inserting them into the
empty tree, and shrink trees using a generic method provided by QuickCheck.
The type restriction in the definition of arbitrary is needed to fix kvs to be a

data BST k v = Leaf | Branch (BST k v) k v (BST k v)
deriving (Eq ,Show ,Generic)

-- the operations under test
find :: Ord k ⇒ k → BST k v → Maybe v
nil :: BST k v
insert :: Ord k ⇒ k → v → BST k v → BST k v
delete :: Ord k ⇒ k → BST k v → BST k v
union :: Ord k ⇒ BST k v → BST k v → BST k v

-- auxiliary operations
toList :: BST k v → [(k , v)]
keys :: BST k v → [k]

Fig. 1. The API under test: binary search trees.

instance (Ord k ,Arbitrary k ,Arbitrary v)⇒ Arbitrary (BST k v) where
arbitrary = do

kvs ← arbitrary
return $ foldr (uncurry insert) nil (kvs :: [(k , v)])

shrink = genericShrink

Fig. 2. Generating and shrinking binary search trees.

list, because foldr is overloaded to work over any Foldable collection. We shall
revisit both these definitions later, but they will do for now.

We need to fix an instance type for testing; for the time being, we choose to
let both keys and values be integers, and define

type Key = Int
type Val = Int
type Tree = BST Int Int

Int is usually an acceptably good choice as an instance for testing polymorphic
properties, although we will return to this choice later. In the rest of this article
we omit type signatures on properties for brevity, although in reality they must
be given, to tell QuickCheck to use the types above.

4 Approaches to Writing Properties

4.1 Validity Testing

“Every operation should return valid results.”

Many data-structures need to satisfy invariant properties, above and beyond
being well-typed, and binary search trees are no exception: the keys in the tree

prop NilValid = valid (nil :: Tree)
prop InsertValid k v t = valid (insert k v t)
prop DeleteValid k t = valid (delete k t)
prop UnionValid t t ′ = valid (union t t ′)

Fig. 3. Validity properties.

should be ordered. In this section, we shall see how to write properties that check
that this invariant is preserved by each operation.

We can capture the invariant by the following function:

valid Leaf = True
valid (Branch l k v r) =

valid l ∧ valid r ∧
all (<k) (keys l) ∧ all (>k) (keys r)

That is, all the keys in a left subtree must be less than the key in the node, and
all the keys in the right subtree must be greater.

This definition is obviously correct, but it is an inefficient implementation of
the validity checking function; it is quadratic in the size of the tree in the worst
case. A more efficient implementation would exploit the validity of the left and
right subtrees, and compare only the last key in the left subtree, and the first
key in the right subtree, against the key in a Branch node. But the equivalence
of these two definitions depends on reasoning, and we prefer to avoid reasoning
that is not checked by tests—if it turns out to be wrong, or is invalidated by
later changes to the code, then tests using the more efficient definition might fail
to detect some bugs. Testing that two definitions are equivalent would require
testing a property such as

prop ValidEquivalent t = valid t === fastValid t

and to do so, we would need a generator that can produce both valid and invalid
trees, so this is not a straightforward extension. We prefer, therefore, to use the
obvious-but-inefficient definition, at least initially. The trees we are generating
are relatively small, so quadratic complexity is not a problem.

“Test your tests.”

Now it is straightforward to define properties that check that every operation
that constructs a tree, constructs a valid one (see Figure 3). However, these
properties, by themselves, do not provide good testing for validity. To see why,
let us plant a bug in insert , so that it creates duplicate entries when inserting
a key that is already present (bug (2) in section 5). prop InsertValid fails as it
should, but so do prop DeleteValid and prop UnionValid :

=== prop_InsertValid from BSTSpec.hs:19 ===

*** Failed! Falsified (after 6 tests and 8 shrinks):

0

0

Branch Leaf 0 0 Leaf

=== prop_DeleteValid from BSTSpec.hs:22 ===

*** Failed! Falsified (after 8 tests and 7 shrinks):

0

Branch Leaf 1 0 (Branch Leaf 0 0 Leaf)

=== prop_UnionValid from BSTSpec.hs:25 ===

*** Failed! Falsified (after 7 tests and 9 shrinks):

Branch Leaf 0 0 (Branch Leaf 0 0 Leaf)

Leaf

Thus, at first sight, there is nothing to indicate that the bug is in insert ; all
of insert , delete and union can return invalid trees! However, delete and union
are given invalid trees as inputs in the tests above, and we cannot expect them
to return valid trees in this case, so these reported failures are “false positives.”

The problem here is that the generator for trees is producing invalid ones
(because it is defined in terms of insert). We could add a precondition to each
property, requiring the tree to be valid, as in:

prop DeleteValid k t = valid t =⇒ valid (delete k t)

which would discard invalid test cases (not satisfying the precondition) without
running them, and thus make the properties pass. This is potentially inefficient
(we might spend much of our testing time discarding test cases), but it is also
really just applying a sticking plaster: what we want is that all generated trees
should be valid! We can test this by defining an additional property:

prop ArbitraryValid t = valid t

which at first sight seems to be testing that all trees are valid, but in fact tests
that all trees generated by the Arbitrary instance are valid. If this property fails,
then it is the generator that needs to be fixed—there is no point in looking at
failures of other properties, as they are likely caused by the failing generator.

Usually the generator for a type is intended to fulfill its invariant, but—as
in this case—is defined independently. A property such as prop ArbitraryValid
is essential to check that these definitions are mutually consistent.

It is also possible for the shrink function to violate a datatype invariant. For
this reason, we should also write a property requiring all the smaller test cases
returned by shrink to be valid:

prop ShrinkValid t = all valid (shrink t)

Unfortunately, with the definitions given so far, this property fails:

=== prop_ShrinkValid from BSTSpec.hs:28 ===

*** Failed! Falsified (after 6 tests and 8 shrinks):

Branch (Branch Leaf 0 0 Leaf) 0 1 Leaf

Inspection reveals that this argument to shrink is already invalid—and so it
is no surprise that shrink might include invalid trees in its result. The problem
here is that, even though QuickCheck initially found a valid tree with an invalid
shrink, it shrunk the test case before reporting it using the invalid shrink function,
resulting in an invalid tree with invalid shrinks. What we want to see, when
debugging, is a valid tree with an invalid shrink; to ensure that this is what
QuickCheck reports, we must add a valid t =⇒ precondition to this property.
This precondition should always hold for a randomly generated test (provided
arbitrary is correct), but prevents such a test case being shrunk to an invalid
case when the property fails; thus, we avoid the potential inefficiency discussed
on page 7, whereby preconditions cause many randomly generated tests to be
discarded.

We can also reexpress the check in a slightly different, but equivalent form,
so that when a failing test is reported we see both the valid original tree, and
the invalid tree that it is shrunk to:

prop ShrinkValid t = valid t =⇒ filter (not ◦ valid) (shrink t) === []

With these changes the failing test is easy to interpret:

=== prop_ShrinkValid from BSTSpec.hs:28 ===

*** Failed! Falsified (after 7 tests and 8 shrinks):

Branch (Branch Leaf 0 0 Leaf) 1 0 Leaf

[Branch (Branch Leaf 0 0 Leaf) 0 0 Leaf] /= []

We see that shrinking the key 1 to 0 invalidated the invariant.
We must thus redefine shrinking for the BST type to enforce the invariant.

There are various ways of doing so, but perhaps the simplest is to continue to
use genericShrink , but discard smaller trees where the invariant is broken:

shrink = filter valid ◦ genericShrink

This section illustrates well the importance of testing our tests; it is vital to test
generators and shrinkers independently of the operations under test, because a
bug in either can result in many very-hard-to-debug failures in other properties.

Summary: Validity testing consists of defining a function to check the
invariants of your datatypes, writing properties to test that your genera-
tors and shrinkers only produce valid results, and writing a property for
each function under test that performs a single random call, and checks
that the return value is valid.

Validity properties are important to test, whenever a datatype has an in-
variant, but they are far from sufficient by themselves. Consider this: if every
function returning a BST were defined to return nil in every case, then all the
properties written so far would pass. insert could be defined to delete the key
instead, or union could be defined to implement set difference—as long as the
invariant is preserved, the properties will still pass. Thus, we must move on to
properties that better capture the intended behaviour of each operation.

4.2 Postconditions

“Postconditions relate return values to arguments of a single call.”

A postcondition is a property that should be True after a call, or (equivalently,
for a pure function) True of its result. Thus, we can define properties by asking
ourselves “What should be True after calling f ?”. For example, after calling
insert , then we should be able to find the key just inserted, and any previously
inserted keys with unchanged values.

prop InsertPost k v t k ′ =
find k ′ (insert k v t) === if k ≡ k ′ then Just v else find k ′ t

One may wonder whether it is best to parameterize this property on two different
keys, or just on one: after all, for the type chosen, independently generated keys
k and k ′ are equal in only around 3.3% of cases, so most test effort is devoted
to checking the else-branch in the property, namely that other keys than the
one inserted are preserved. However, using the same key for k and k ′ would
weaken the property drastically—for example, an implementation of insert that
discarded the original tree entirely would still pass. Moreover, nothing hinders
us from defining and testing a specialized property:

prop InsertPostSameKey k v t = prop InsertPost k v t k

Testing this property devotes all test effort to the case of finding a newly in-
serted key, but does not require us to replicate the code in the more general
postcondition.

We can write similar postconditions for delete and union; writing the prop-
erty for union forces us to specify that union is left-biased (since union of finite
maps cannot be commutative).

prop UnionPost t t ′ k = find k (union t t ′) === (find k t <|> find k t ′)

(where (<|>) is the operation that chooses one of two Maybe values, choosing
the first argument if it is of the form Just x , and the second argument otherwise).

Postconditions are not always as easy to write. For example, consider a post-
condition for find . The return value is either Nothing , in case the key is not
found in the tree, or Just v , in the case where it is present with value v . So it
seems that, to write a postcondition for find , we need to be able to determine
whether a given key is present in a tree, and if so, with what associated value.
But this is exactly what find does! So it seems we are in the awkward situation
discussed in the introduction: in order to test find , we need to reimplement it.

We can finesse this problem using a very powerful and general idea, that of
constructing a test case whose outcome is easy to predict. In this case, we know
that a tree must contain a key k , if we have just inserted it. Likewise, we know
that a tree cannot contain a key k , if we have just deleted it. Thus we can write
two postconditions for find , covering the two cases:

prop FindPostPresent k v t = find k (insert k v t) === Just v
prop FindPostAbsent k t = find k (delete k t) === Nothing

But there is a risk, when we write properties in this form, that we are only
testing very special cases. Can we be certain that every tree, containing key k
with value v , can be expressed in the form insert k v t? Can we be certain that
every tree not containing k can be expressed in the form delete k t? If not, then
the postconditions we wrote for find may be less effective tests than we think.

Fortunately, for this data structure, every tree can be expressed in one of
these two forms, because inserting a key that is already present, or deleting one
that is not, is a no-op. We express this as another property to test:

prop InsertDeleteComplete k t = case find k t of
Nothing → t === delete k t
Just v → t === insert k v t

Summary: A postcondition tests a single function, calling it with ran-
dom arguments, and checking an expected relationship between its argu-
ments and its result.

4.3 Metamorphic Properties

“Related calls return related results.”

Metamorphic testing is a successful approach to the oracle problem in many
contexts [7]. The basic idea is this: even if the expected result of a function call
such as insert k v t may be difficult to predict, we may still be able to express
an expected relationship between this result, and the result of a related call. In
this case, if we insert an additional key into t before calling insert k v , then we
expect the additional key to appear in the result also. We formalize this as the
following metamorphic property:

prop InsertInsert (k , v) (k ′, v ′) t =
insert k v (insert k ′ v ′ t) === insert k ′ v ′ (insert k v t)

A metamorphic property, like this one, (almost) always relates two calls to
the function under test. Here the function under test is insert , and the two
calls are insert k v t and insert k v (insert k ′ v ′ t). The latter is constructed by
modifying the argument, in this case also using insert , and the property expresses
an expected relationship between the values of the two calls. Metamorphic testing
is a fruitful source of property ideas, since if we are given O(n) operations to
test, each of which can also be used as a modifier, then there are potentially
O(n2) properties that we can define.

However, the property above is not true: testing it yields

=== prop_InsertInsert from BSTSpec.hs:78 ===

*** Failed! Falsified (after 2 tests and 5 shrinks):

(0,0)

(0,1)

Leaf

Branch Leaf 0 0 Leaf /= Branch Leaf 0 1 Leaf

This is not surprising. The property states that the order of insertions does
not matter, while the failing test case inserts the same key twice with different
values—of course the order of insertion matters in this case, because “the last
insertion wins”. A first stab at a metamorphic property may often require cor-
rection; QuickCheck is good at showing us what it is that needs fixing. We just
need to consider two equal keys as a special case:

prop InsertInsert (k , v) (k ′, v ′) t =
insert k v (insert k ′ v ′ t)
===
if k ≡ k ′ then insert k v t else insert k ′ v ′ (insert k v t)

Unfortunately, this property still fails:

=== prop_InsertInsert from BSTSpec.hs:78 ===

*** Failed! Falsified (after 2 tests):

(1,0)

(0,0)

Leaf

Branch Leaf 0 0 (Branch Leaf 1 0 Leaf) /=

Branch (Branch Leaf 0 0 Leaf) 1 0 Leaf

Inspecting the two resulting trees, we can see that changing the order of in-
sertion results in trees with different shapes, but containing the same keys and
values. Arguably this does not matter: we should not care what shape of tree
each operation returns, provided it contains the right information7. To make our
property pass, we must make this idea explicit. We therefore define an equiva-
lence relation on trees that is true if they have the same contents,

t1 l t2 = toList t1 === toList t2

and re-express the property in terms of this equivalence:

prop InsertInsert (k , v) (k ′, v ′) t =
insert k v (insert k ′ v ′ t)
l
if k ≡ k ′ then insert k v t else insert k ′ v ′ (insert k v t)

Now, at last, the property passes. (We discuss why we need both this equivalence,
and structural equality on trees, in section 7).

There is a different way to address the first problem—that the order of in-
sertions does matter, when inserting the same key twice. That is to require the
keys to be different, via a precondition:

prop InsertInsertWeak (k , v) (k ′, v ′) t =
k 6≡ k ′ =⇒ insert k v (insert k ′ v ′ t) l insert k ′ v ′ (insert k v t)

7 Recall that we have not imposed any balance condition on our trees. If we were to
repeat this entire exercise for balanced trees, then we would need a stronger invariant
to capture the balance condition, but we would still face the same problem in this
property, since balance conditions don’t require a unique tree shape. Both trees in
this example are balanced—they are just different balanced representations of the
same information.

This lets us keep the property in a simpler form, but is weaker, since it no longer
captures that “the last insert wins”. We will return to this point later.

We can go on to define further metamorphic properties for insert , with dif-
ferent modifiers—delete and union:

prop InsertDelete (k , v) k ′ t =
insert k v (delete k ′ t)
l
if k ≡ k ′ then insert k v t else delete k ′ (insert k v t)

prop InsertUnion (k , v) t t ′ =
insert k v (union t t ′) l union (insert k v t) t ′

and, in a similar way, metamorphic properties for the other functions in the API
under test. We derived sixteen different properties in this way, which are listed in
Appendix A. The trickiest case is union which, as a binary operation, can have
either argument modified—or both. We also found that some properties could
be motivated in more than one way. For example, prop InsertUnion (above)
can be motivated as a metamorphic test for insert , in which the argument is
modified by union, or as a metamorphic test for union, in which the argument is
modified by insert . Likewise, the metamorphic tests we wrote for find replicated
the postconditions we wrote above for insert , delete and union. We do not see
this as a problem: that there is more than one way to motivate a property does
not make it any less useful, or any harder to come up with!

Summary: A metamorphic property tests a single function by making
(usually) two related calls, and checking the expected relationship between
the two results.

Preservation of Equivalence Now that we have an equivalence relation on
trees, we may wonder whether the operations under test preserve it. For example,
we might try to test whether insert preserves equivalence as follows:

prop InsertPreservesEquiv k v t t ′ =
t l t ′ =⇒ insert k v t l insert k v t ′

This kind of property is important, since many of our metamorphic properties
only allow us to conclude that two expressions are equivalent; to use these con-
clusions in further reasoning, we need to know that equivalence is preserved by
each operation.

Unfortunately, testing the property above does not work; it is very, very
unlikely that two randomly generated trees t and t ′ will be equivalent, and
thus almost all generated tests are discarded. To test this kind of property, we
need to generate equivalent pairs of trees together. We can do so be defining
a type of equivalent pairs, with a custom generator and shrinker—see Figure
4. This generator constructs two equivalent trees by inserting the same list of
keys and values in two different orders; the shrinker is omitted for brevity. The
properties using this type appear in Figure 5, along with properties to test the
new generator and shrinker.

data Equivs k v = BST k v :l: BST k v deriving Show

instance (Arbitrary k ,Arbitrary v ,Ord k)⇒ Arbitrary (Equivs k v) where
arbitrary = do

kvs ← L.nubBy ((≡) ‘on‘ fst)< $ > arbitrary
kvs ′ ← shuffle kvs
return (tree kvs :l: tree kvs ′)
where tree = foldr (uncurry insert) nil

shrink (t1 :l: t2) = ...

Fig. 4. Generating equivalent trees.

prop InsertPreservesEquiv k v (t :l: t ′) = insert k v t l insert k v t ′

prop DeletePreservesEquiv k (t :l: t ′) = delete k t l delete k t ′

prop UnionPreservesEquiv (t1 :l: t1 ′) (t2 :l: t2 ′) = union t1 t2 l union t1 ′ t2 ′

prop FindPreservesEquiv k (t :l: t ′) = find k t === find k t ′

prop Equivs (t :l: t ′) = t l t ′

prop ShrinkEquivs (t :l: t ′) =
t l t ′ =⇒ all (λ(t :l: t ′)→ t l t ′) (shrink (t :l: t ′))
where t l t ′ = toList t ≡ toList t ′

Fig. 5. Preservation of equivalence.

4.4 Inductive Testing

“Inductive proofs inspire inductive tests.”

Metamorphic properties do not, in general, completely specify the behaviour
of the code under test. However, in some cases, a subset of metamorphic prop-
erties does form a complete specification. Consider, for example, the following
two properties of union:

prop UnionNil1 t = union nil t === t
prop UnionInsert t t ′ (k , v) =

union (insert k v t) t ′ l insert k v (union t t ′)

We can argue that these two properties characterize the behaviour of union
precisely (up to equivalence of trees), by induction on the size of union’s first
argument. This idea is due to Claessen [8].

However, there is a hidden assumption in the argument above—namely, that
any non-empty tree t can be expressed in the form insert k v t ′, for some smaller
tree t ′, or equivalently, that any tree can be constructed using insertions only.
There is no reason to believe this a priori—it might be that some tree shapes can
only be constructed by delete or union. So, to confirm that these two properties
uniquely characterize union, we must test this assumption.

One way to do so is to define a function that maps a tree to a list of insertions
that recreate it. It is sufficient to insert the key in each node before the keys in
its subtrees:

insertions Leaf = []
insertions (Branch l k v r) = (k , v) : insertions l ++ insertions r

Now we can write a property to check that every tree can be reconstructed from
its list of insertions:

prop InsertComplete t = t === foldl (flip $ uncurry insert) nil (insertions t)

However, this is not sufficient! Recall that the generator we are using, defined in
section 3, generates a tree by performing a list of insertions! It is clear that any
such tree can be built using only insert , and so the property above can never
fail, but what we need to know is that the same is true of trees returned by
delete and union! We must thus define additional properties to test this:

prop InsertCompleteForDelete k t = prop InsertComplete (delete k t)
prop InsertCompleteForUnion t t ′ = prop InsertComplete (union t t ′)

Together, these properties also justify our choice of generator—they show that
we really can generate any tree constructible using the tree API. If we could not
demonstrate that trees returned by delete and union can also be constructed
using insert , then we could define a more complex generator for trees that uses
all the API operations, rather than just insert—a workable approach, but con-
siderably trickier, and harder to tune for a good distribution of test data.

Finally, we note that in these completeness properties, it is vital to check
structural equality between trees, and not just equivalence. The whole point is
to show that delete and union cannot construct otherwise unreacheable shapes
of trees, which might provoke bugs in the implementation.

Summary: Inductive properties relate a call of the function-under-test
to calls with smaller arguments. A set of inductive properties covering
all possible cases together test the base case(s) and induction step(s) of
an inductive proof-of-correctness. If all the properties hold, then we know
the function is correct–inductive properties together make up a complete
test.

4.5 Model-based Properties

“Abstract away from details to simplify properties.”

In 1972, Hoare published an approach to proving the correctness of data rep-
resentations [14], by relating them to abstract data using an abstraction function.
Hoare defines a concrete and abstract implementation for each operation, and
then proves that diagrams such as this one commute:

t

t′

insert k v

kvs
abstraction

kvs ′
abstraction

abstract insert k v

prop NilModel = toList (nil :: Tree) === []

prop InsertModel k v t =
toList (insert k v t) === L.insert (k , v) (deleteKey k $ toList t)

prop DeleteModel k t = toList (delete k t) === deleteKey k (toList t)

prop UnionModel t t ′ =
toList (union t t ′) === L.sort (L.unionBy ((≡) ‘on‘ fst) (toList t) (toList t ′))

prop FindModel k t = find k t === L.lookup k (toList t)

deleteKey k = filter ((6≡ k) ◦ fst)

Fig. 6. Model-based properties.

In this case we abstract trees t (the concrete implementation) as ordered lists
of key–value pairs kvs (the abstract data), using an abstraction function which
is just toList . The diagram says that both paths from top left to bottom right
should yield the same result: applying the concrete version of insertion to a
tree, and then abstracting the result to a list of key–value pairs, yields the
same list as the abstract version of insertion, applied to the abstracted input.
If a similar diagram commutes for every operation in an API, then it follows
that any sequence of concrete operations behaves in the same way as the same
sequence of abstract ones.

We can use the same idea for testing. Since Data.List already provides an
insertion function for ordered lists, it is tempting to define

prop InsertModel k v t = toList (insert k v t) === L.insert (k , v) (toList t)

(in which Data.List is imported under the name L). However, this property fails:

*** Failed! Falsified (after 5 tests and 6 shrinks):

0

0

Branch Leaf 0 0 Leaf

[(0,0)] /= [(0,0),(0,0)]

The problem is that the insertion function in Data.List may create duplicate
elements, but insert for trees does not. So it is not quite the correct abstract
implementation; we can correct this by deleting the key if it is initially present—
see the correct properties in Figure 6.

We refer to these properties as “model-based” properties, and we refer to
the abstract datatype, in this case an ordered list of keys and values, as the
“model”. The model can be thought of as a kind of reference implementation of
the operations under test, though with a much simpler representation. Model-
based properties are very powerful: they make up a complete specification of
the behaviour of the operations under test, with only a single property per
operation. On the other hand, they do require us to construct a model, which
in more complex situations may be quite expensive, or may resemble the actual
implementation more than is healthy.

Summary: A model-based property tests a single function by making a
single call, and comparing its result to the result of a related “abstract
operation” applied to related abstract arguments. An abstraction func-
tions maps the real, concrete arguments and results to abstract values,
which we also call the “model”.

4.6 A Note on Generation

Throughout this paper, we have used integers as test data, for both keys and
values. This is generally an acceptable choice, although not necessarily ideal. It
is useful to measure the distribution of test data, to judge whether or not tests
are likely to find bugs efficiently. In this case, many properties refer to one or
more keys, and a tree, generated independently. We may therefore wonder, how
often does such a key actually occur in an independently generated tree?

To find out, we can define a property just for measurement. QuickCheck al-
lows properties to label test cases with one or more strings; the labelling strings
are collected as tests are run, and their distribution displayed in a table after-
wards. In this case, we measure how often k appears in t , and also where among
the keys of t it appears:

prop Measure k t =
label (if k ∈ keys t then "present" else "absent") $
label (if t ≡ nil then "empty" else

if keys t ≡ [k] then "just k" else
if (all (> k) (keys t)) then "at start" else
if (all (6 k) (keys t)) then "at end" else
"middle") $

True

Two tables are generated by testing this property, one for each of the calls of
the label function. After a million tests, we saw the following distributions:

79.1973% absent

20.8027% present

75.0878% middle

9.6716% at end

9.6534% at start

5.1782% empty

0.4090% just k

From the second table, we can see that k appears at the beginning or end of
the keys in t about 10% of the time for each case, while it appears somewhere in
the middle of the sequences of keys 75% of the time. This looks quite reasonable.
On the other hand, in almost 80% of tests, k is not found in the tree at all!

For some of the properties we defined, this will result in quite inefficient
testing. For example, consider the postcondition for insert :

prop InsertPost k v t k ′ =
find k ′ (insert k v t) === if k ≡ k ′ then Just v else find k ′ t

In almost 80% of tests k ′ will not be present in t , and since k ′ is rarely equal
to k , then in most of these cases both sides of the equation will be Nothing . In
effect, we spend most of our effort testing that inserting key k does not insert an
unrelated key k ′ into the tree! While this would be a serious bug if it occurred,
it seems disproportionate to devote so much test effort to this kind of case.

More reasonable would be to divide our test effort roughly equally between
cases in which the given key does occur in the random tree, and cases in which
it does not. We can achieve this by changing the generation of keys. If we choose
keys from a smaller set, then we will generate equal keys more often. For example,
we might define a newtype of keys containing a smaller non-negative integer:

newtype Key = Key Int deriving (Eq ,Ord ,Show)

instance Arbitrary Key where
arbitrary = do

NonNegative n ← scale (‘div ‘2) arbitrary
return $ Key n

shrink (Key k) = Key < $ > shrink k

Here scale adjusts QuickCheck’s internal size parameter in the generation of n,
resulting in random values whose average is half that of QuickCheck’s normal
random non-negative integers. Testing prop Measure using this type for keys
results in the following, much better, distribution:

55.3881% present

44.6119% absent

70.6567% middle

11.6540% at end

10.8601% at start

5.1937% empty

1.6355% just k

This example illustrates that “collisions” (that is, cases in which we randomly
choose the same value in two places) can be important test cases. Indeed, consider
the following (obviously false) property:

prop Unique x y = x 6≡ y

If we were to choose x and y uniformly from the entire range of 64-bit inte-
gers, then QuickCheck would never be able to falsify it, in practice. If we use
QuickCheck’s built-in Int generator, then the property fails in around 3.3% of
cases. Using the Key generator we have just defined, the property fails in 9.3%
of cases. The choice of generator should be made on the basis of how important
collisions are as test cases.

5 Bug Hunting

To evaluate the properties we have written, we created eight buggy implemen-
tations of binary search trees, with bugs ranging from subtle to blatant. These
implementations are listed in Figure 7.

Bug # Description

1 insert discards the existing tree, returning a single-node tree just
containing the newly inserted value.

2 insert fails to recognize and update an existing key, inserting a
duplicate entry instead.

3 insert fails to update an existing key, leaving the tree unchanged
instead.

4 delete fails to rebuild the tree above the key being deleted, return-
ing only the remainder of the tree from that point on (an easy
mistake for those used to imperative programming to make).

5 Key comparisons reversed in delete; only works correctly at the
root of the tree.

6 union wrongly assumes that all the keys in the first argument
precede those in the second.

7 union wrongly assumes that if the key at the root of t is smaller
than the key at the root of t ′, then all the keys in t will be smaller
than the key at the root of t ′.

8 union works correctly, except that when both trees contain the
same key, the left argument does not always take priority.

Fig. 7. The eight buggy implementations.

The results of testing each property for each buggy version are shown in
Figure 8. We make the following observations.

5.1 Bug finding effectiveness

Validity properties miss many bugs (five of eight), as do “preservation of equiva-
lence” and “completeness of insertion” properties. In contrast, every bug is found
by at least one postcondition, metamorphic property, and model-based property.

Invalid test data provokes false positives. Bug #2, which causes invalid trees
to be generated as test cases, causes many properties that do not use insert to
fail. This is why prop ArbitraryValid is so important—when it fails, we need not
waste time debugging false positives in properties unrelated to the bug. Because
of these false positives, we ignore bug #2 in the rest of this discussion.

Model-based properties are effective at finding bugs; each property tests just
one operation, and finds every bug in that operation. In fact, the model-based
properties together form a complete specification of the code, and so should be
expected to find every bug.

Postconditions are quite effective; each postcondition for a buggy operation finds
all the bugs we planted in it, but some postconditions are less effective than we
might expect. For example, prop FindPostPresent uses both find and insert , so
we might expect it to reveal the three bugs in insert , but it reveals only two of
them.

insert bugs delete
bugs

union bugs

Property #1 #2 #3 #4 #5 #6 #7 #8

Validity properties

prop ArbitraryValid 7

prop NilValid
prop InsertValid 7

prop DeleteValid 7

prop UnionValid 7 7 7

prop ShrinkValid

Postconditions

prop InsertPost 7 7 7

prop DeletePost 7 7 7

prop FindPostPresent 7 7

prop FindPostAbsent 7 7

prop InsertDeleteComplete 7 7

prop UnionPost 7 7 7

Metamorphic properties

prop InsertInsertWeak 7

prop InsertInsert 7 7 7

prop InsertDeleteWeak 7

prop InsertDelete 7 7 7

prop InsertUnion 7 7 7 7 7 7

prop DeleteNil
prop DeleteInsertWeak 7

prop DeleteInsert 7 7 7 7

prop DeleteDelete 7 7

prop DeleteUnion 7 7 7 7 7 7

prop UnionNil1

insert bugs delete
bugs

union bugs

Property #1 #2 #3 #4 #5 #6 #7 #8

Metamorphic properties contd.

prop UnionNil2
prop UnionDeleteInsert 7 7 7 7 7 7 7 7

prop UnionUnionIdem 7

prop UnionUnionAssoc 7 7 7

prop FindNil
prop FindInsert 7 7 7

prop FindDelete 7 7 7

prop FindUnion 7 7 7

Preservation of equivalence

prop InsertPreservesEquivWeak
prop InsertPreservesEquiv
prop DeletePreservesEquiv 7 7 7

prop UnionPreservesEquiv 7 7 7

prop FindPreservesEquiv 7

Completeness of insertion

prop InsertComplete
prop InsertCompleteForDelete
prop InsertCompleteForUnion 7 7 7

Model-based properties

prop NilModel
prop InsertModel 7 7 7

prop DeleteModel 7 7 7

prop UnionModel 7 7 7 7

prop FindModel

Total failures 12 17 8 12 9 10 10 8

Fig. 8. Failing properties for each bug.

Metamorphic properties are less effective individually, but powerful in combi-
nation. Weak properties miss bugs (compare each line ending in Weak with
the line below), because their preconditions to exclude tricky test cases result
in tricky bugs escaping detection. But even stronger-looking properties that we
might expect to find bugs miss them—prop InsertDelete misses bug #1 in insert ,
prop DeleteInsert misses bug #3 in insert , and so on. Degenerate metamorphic
properties involving nil are particularly ineffective. Metamorphic properties are
essentially an axiomatization of the API under test, and there is no guarantee
that this axiomitization is complete, so some bugs might be missed altogether.

5.2 Bug finding performance

Property type Min Max Mean

Postcondition 7.1 245 77
Metamorphic 2.4 714 56
Model-based 3.1 9.8 5.8

Fig. 9. Average mean number of tests required to make a property of each type fail.

Hitherto we have discussed which properties can find bugs, given enough
testing time. But it also matters how quickly a property can find a bug. For
seven of our eight bugs (omitting bug #2, which causes invalid test cases to be

generated), and for each postcondition, metamorphic property, and model-based
property that detects the bug, we found a counterexample to the property using
QuickCheck 1,000 times with different random seeds, and recorded the mean
number of tests needed to make that property fail for that bug. Note that finding
a counterexample 1,000 times requires running far more than 1,000 random tests:
we ran over 700,000 tests of the hardest-to-falsify property in total, in order to
find a counterexample 1,000 times. We then averaged the mean-time-to-failure
across all bugs, and all properties of the same type. The results are summarized
in Figure 9.

In this example model-based properties find bugs far faster than postcon-
ditions or metamorphic properties, while metamorphic properties find bugs a
little faster than postconditions on average, but their mean time to failure varies
more.

Digging a little deeper, for the same bug in union, prop UnionPost fails after
50 tests on average, while prop UnionModel fails after only 8.4 tests, even though
they are logically equivalent. The reason is that after computing a union that is
affected by the bug, the model-based property checks that the model of the result
is correct—which requires every key and value to be correct. The post-condition,
on the other hand, checks that a random key has the correct value in the result.
Thus prop UnionPost may exercise the bug many times without detecting it.
Each model-based test may take a little longer to run, because it validates the
result of union more thoroughly, but this is not significant compared to the
enormous difference in the number of tests required to find the bug—the entire
test case must be generated, and the union computed, in either case, so the
difference in validation time is not really important.

5.3 Lessons

These results suggest that, if time is limited, then writing model-based properties
may offer the best return on investment, in combination with validity properties
to ensure we don’t encounter confusing failures caused by invalid data. In situ-
ations where the model is complex (and thus expensive) to define, or where the
model resembles the implementation so closely that the same bugs are likely in
each, then metamorphic properties offer an effective alternative, at the cost of
writing many more properties.

6 Related work

Pre- and post-conditions were introduced by Hoare [15] for the purpose of prov-
ing programs correct, inspired by Floyd [11]. The notion of a data representation
invariant, which we use here for “validity testing”, comes from Hoare’s 1972 pa-
per on proving data representations correct [14]. Pre- and post-conditions and
invariants also form an integral part of Meyer’s “Design by Contract” approach
to designing software [19], in which an invariant is specified for each class, and

pre- and post-conditions for each class method, and these can optionally be
checked at run-time—for example during testing.

Metamorphic testing was introduced by Chen, Cheung and Yiu as a way of
deriving tests that do not require an oracle [6]. They consider, for example, an
algorithm to find shortest-paths in a graph. While it is difficult to check whether
a path found by the algorithm is actually shortest, it is easy to compare the
path found from a node with the paths found from its neighbours, and check
that it is no longer than the shortest path via a neighbour. As in this case, the
key idea is to compare results from multiple invocations of the code-under-test,
and check that an appropriate “metamorphic relation” holds between them. We
have used equalities and equivalences as metamorphic relations in this paper,
but the idea is much more general—for example, one might test that insert does
not reduce the size of a tree, which would catch bugs that accidentally discard
part of the structure. Metamorphic testing is useful in many contexts, and is
now the subject of an annual workshop series8.

Metamorphic properties which are equations or equivalences are a form of
algebraic specification [13]. Guttag and Horning divide the operations into those
that return the type of interest (nil , insert , delete, and union, in our case),
and observations that return a different type (find). They give conditions for
“sufficient completeness”, meaning that the specification precisely determines
the value of any observation.

We already saw that the idea behind model-based properties comes from
Hoare’s seminal paper [14]. Using an abstract model as a specification is also
at the heart of the Z specification language [26], and the field of model-based
testing [5], an active research area with two workshop series devoted to it910.

The title of the paper is of course inspired by Polya’s classic book [23].

7 Discussion

We have discussed a number of different kinds of properties that a developer can
try to formulate to test an implementation: invariant properties, postconditions,
metamorphic properties, inductive properties, and model-based properties. Each
kind of property is based on a widely applicable idea, usable in many different
settings. When writing metamorphic properties, we discovered the need to define
equivalence of data structures, and thus also to define properties that test for
preservation of equivalence. We discussed the importance of completeness—our
test data generator should be able to generate any test case—and saw how to test
this. We saw the importance of testing both our generators and our shrinkers, to
ensure that other properties are tested with valid data. We saw how to measure
the distribution of test data, to ensure that test effort is well spent.

Model-based testing seemed the most effective approach overall, revealing all
our bugs with a small number of properties, and generally finding bugs fast. But

8 http://metwiki.net/MET19/
9 http://mbt-workshop.org/

10 https://conf.researchr.org/series/a-most

metamorphic testing was a fertile source of ideas, and was almost as effective at
revealing bugs, so is a useful alternative, especially in situations where a model
is expensive to construct.

We saw that some properties must use equivalence to compare values, while
other properties must use structural equality. Thus, we need two notions of
“equality” for the data structures under test. In fact, it is the equivalence which
ought to be exported as the equality instance for binary search trees, because
structural equality distinguishes representations that ought to be considered
equal outside the abstraction barrier of the abstract data type. Yet we need to
use structural equality in some properties, and of course, we want to use the
derived Eq instance for the representation datatype for this. So we appear to
need two Eq instances for the same type! The solution to this conundrum is
to define two types: a data type of representations with a derived structural
equality, which is not exported to clients, and a newtype isomorphic to this
datatype, which is exported, with an Eq instance which defines equality to be
equivalence. This approach does mean that some properties must be inside the
abstraction barrier of the data type, and thus must be placed in the same module
as the implementation, which may not be desirable as it mixes test code and
implementation code. An alternative is to define an Internals module which
exports the representation type, and can be imported by test code, but is not
used by client modules.

The choice of properties (and generators) may also depend on whether the
tester takes a “white box” or “black box” view of the code. From the perspective
of an implementor, it makes sense to use properties such as validity properties,
that depend on the representation of the data. From the perspective of a user,
properties should use only the API exported by the implementor—as do meta-
morphic and model-based properties. In this paper we generated random trees
using the exported API, but of course we could also have generated the represen-
tation directly. This is certainly possible, but more complicated and error-prone,
and often no more effective.

The ideas in this paper are applicable to testing any pure code, but code
with side-effects demands a somewhat different approach. In this case, every
operation has an implicit “state” argument, and an invisible state result, making
properties harder to formulate. Test cases are sequences of operations, to set up
the state for each operation under test, and to observe changes made to the
state afterwards. Nevertheless, the same ideas can be adapted to this setting; in
particular, there are a number of state-machine modelling libraries for property-
based testing tools that support a “model-based” approach in a stateful setting.
State machine modelling is heavily used at Quviq AB11 for testing customer
software, and an account of some of these examples can be found in [17].

We hope the reader will find the ideas in this paper helpful in developing
effective property-based tests in the future.

11 A company founded in 2006 by the author and Thomas Arts, to commercialize
property based testing. See http://quviq.com.

Acknowledgements

I’m grateful to the anonymous referees for many useful suggested improvements,
and to Vetenskapsr̊adet for funding this work under the SyTeC grant.

References

1. Cláudio Amaral, Mário Florido, and Vı́tor Santos Costa. Prologcheck – property-
based testing in prolog. In Michael Codish and Eijiro Sumii, editors, Functional and
Logic Programming, pages 1–17, Cham, 2014. Springer International Publishing.

2. Thomas Arts, John Hughes, Joakim Johansson, and Ulf T. Wiger. Testing telecoms
software with quviq quickcheck. In Marc Feeley and Philip W. Trinder, editors,
Proceedings of the 2006 ACM SIGPLAN Workshop on Erlang, Portland, Oregon,
USA, September 16, 2006, pages 2–10. ACM, 2006.

3. E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo. The oracle problem
in software testing: A survey. IEEE Trans. on Soft. Eng., 41(5):507–525, May 2015.

4. Rudy Matela Braquehais. Tools for discovery, refinement and generalization of
functional properties by enumerative testing. PhD thesis, University of York, UK,
2017.

5. Manfred Broy, Bengt Jonsson, J-P Katoen, Martin Leucker, and Alexander
Pretschner. Model-based testing of reactive systems. In Volume 3472 of Springer
LNCS. Springer, 2005.

6. Tsong Y Chen, Shing C Cheung, and Shiu Ming Yiu. Metamorphic testing: a
new approach for generating next test cases. Technical report, Technical Report
HKUST-CS98-01, Department of Computer Science, Hong Kong, 1998.

7. Tsong Yueh Chen, Fei-Ching Kuo, Huai Liu, Pak-Lok Poon, Dave Towey, T. H.
Tse, and Zhi Quan Zhou. Metamorphic testing: A review of challenges and oppor-
tunities. ACM Comput. Surv., 51(1):4:1–4:27, January 2018.

8. Koen Claessen. Inductive testing. Private communication; see slides at
https://docs.google.com/presentation/d/1pejW9foV4ZAw5e03kYR3urNQsIPobo

mY_5HshxZQpLc/edit?usp=drivesdk

9. Koen Claessen and John Hughes. Quickcheck: A lightweight tool for random test-
ing of haskell programs. In Proc. 5th ACM SIGPLAN Int. Conf. on Functional
Programming, ICFP ’00, 2000.

10. Lindley et al., editor. A List of Successes That Can Change the World - Essays
Dedicated to Philip Wadler on the Occasion of His 60th Birthday, volume 9600 of
Lecture Notes in Computer Science. Springer, 2016.

11. Robert W Floyd. Assigning meanings to programs. In Program Verification, pages
65–81. Springer, 1993.

12. Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: directed automated
random testing. In ACM Sigplan Notices, volume 40, pages 213–223. ACM, 2005.

13. John V. Guttag and James J. Horning. The algebraic specification of abstract data
types. Acta informatica, 10(1):27–52, 1978.

14. C. A. Hoare. Proof of correctness of data representations. Acta Inf., 1(4):271–281,
December 1972.

15. Charles Antony Richard Hoare. An axiomatic basis for computer programming.
Communications of the ACM, 12(10):576–580, 1969.

16. John Hughes. Experiences with quickcheck: Testing the hard stuff and staying
sane. In et al. [10], pages 169–186.

17. John Hughes. Experiences with quickcheck: Testing the hard stuff and staying
sane. In et al. [10], pages 169–186.

18. Andreas Löscher and Konstantinos Sagonas. Targeted property-based testing. In
Proceedings of the 26th ACM SIGSOFT International Symposium on Software
Testing and Analysis, pages 46–56. ACM, 2017.

19. Bertrand Meyer. Applying’design by contract’. Computer, 25(10):40–51, 1992.
20. Rickard Nilsson. Scalacheck: the definitive guide. 2014.
21. Manolis Papadakis and Konstantinos Sagonas. A proper integration of types and

function specifications with property-based testing. In Proceedings of the 10th
ACM SIGPLAN workshop on Erlang, pages 39–50. ACM, 2011.

22. Lee Pike. Smartcheck: automatic and efficient counterexample reduction and gen-
eralization. In Wouter Swierstra, editor, Proceedings of the 2014 ACM SIGPLAN
symposium on Haskell, Gothenburg, Sweden, September 4-5, 2014, pages 53–64.
ACM, 2014.

23. G Polya. How to solve it! A system of thinking which can help you solve any
problem. Princeton University Press, 1945.

24. Colin Runciman, Matthew Naylor, and Fredrik Lindblad. Smallcheck and lazy
smallcheck: automatic exhaustive testing for small values. In Andy Gill, editor,
Proceedings of the 1st ACM SIGPLAN Symposium on Haskell, Haskell 2008, Vic-
toria, BC, Canada, 25 September 2008, pages 37–48. ACM, 2008.

25. Koushik Sen, Darko Marinov, and Gul Agha. Cute: a concolic unit testing engine
for c. In ACM SIGSOFT Software Engineering Notes, volume 30, pages 263–272.
ACM, 2005.

26. J Michael Spivey. Understanding Z: a specification language and its formal seman-
tics, volume 3. Cambridge University Press, 1988.

A Metamorphic properties

prop InsertInsertWeak (k , v) (k ′, v ′) t = k 6≡ k ′ =⇒
insert k v (insert k ′ v ′ t) l insert k ′ v ′ (insert k v t)

prop InsertInsert (k , v) (k ′, v ′) t =
insert k v (insert k ′ v ′ t)
l if k ≡ k ′ then insert k v t else insert k ′ v ′ (insert k v t)

prop InsertDeleteWeak (k , v) k ′ t = k 6≡ k ′ =⇒
insert k v (delete k ′ t) l delete k ′ (insert k v t)

prop InsertDelete (k , v) k ′ t =
insert k v (delete k ′ t)
l if k ≡ k ′ then insert k v t else delete k ′ (insert k v t)

prop InsertUnion (k , v) t t ′ = insert k v (union t t ′) l union (insert k v t) t ′

prop DeleteInsertWeak k (k ′, v ′) t = k 6≡ k ′ =⇒
delete k (insert k ′ v ′ t) l insert k ′ v ′ (delete k t)

prop DeleteNil k = delete k nil === (nil :: Tree)

prop DeleteInsert k (k ′, v ′) t =
delete k (insert k ′ v ′ t)
l if k ≡ k ′ then delete k t else insert k ′ v ′ (delete k t)

prop DeleteDelete k k ′ t = delete k (delete k ′ t) l delete k ′ (delete k t)

prop DeleteUnion k t t ′ =
delete k (union t t ′) l union (delete k t) (delete k t ′)

prop UnionNil1 t = union nil t === t

prop UnionNil2 t = union t nil === t

prop UnionDeleteInsert t t ′ (k , v) =
union (delete k t) (insert k v t ′) l insert k v (union t t ′)

prop UnionUnionIdem t = union t t l t

prop UnionUnionAssoc t1 t2 t3 =
union (union t1 t2) t3 === union t1 (union t2 t3)

prop FindNil k = find k (nil :: Tree) === Nothing

prop FindInsert k (k ′, v ′) t =
find k (insert k ′ v ′ t) === if k ≡ k ′ then Just v ′ else find k t

prop FindDelete k k ′ t =
find k (delete k ′ t) === if k ≡ k ′ then Nothing else find k t

prop FindUnion k t t ′ = find k (union t t ′) === (find k t <|> find k t ′)

