
CONVERGENCE RATE IMPROVEMENT OF RICHARDSON AND
NEWTON-SCHULZ ITERATIONS

A PREPRINT

Alexander Stotsky
Department of Computer Science and Engineering

Chalmers University of Technology
Gothenburg SE - 412 96, Sweden

alexander.stotsky@chalmers.se
alexander.stotsky@telia.com

August 21, 2020

ABSTRACT

Fast convergent, accurate, computationally efficient, parallelizable, and robust matrix inversion and
parameter estimation algorithms are required in many time-critical and accuracy-critical applications
such as system identification, signal and image processing, network and big data analysis, machine
learning and in many others.
This paper introduces new composite power series expansion with optionally chosen rates (which
can be calculated simultaneously on parallel units with different computational capacities) for
further convergence rate improvement of high order Newton-Schulz iteration. New expansion was
integrated into the Richardson iteration and resulted in significant convergence rate improvement.
The improvement is quantified via explicit transient models for estimation errors and by simulations.
In addition, the recursive and computationally efficient version of the combination of Richardson
iteration and Newton-Schulz iteration with composite expansion is developed for simultaneous
calculations.
Moreover, unified factorization is developed in this paper in the form of tool-kit for power series
expansion, which results in a new family of computationally efficient Newton-Schulz algorithms.

Keywords Least Squares Estimation · Efficient Parallel Iterative Solvers · Tool-Kit for Matrix Power Series
Factorization · Computationally Efficient High Order Newton-Schulz and Richardson Algorithms · Simultaneous
Calculations · Convergence Acceleration of Richardson Iteration

1 Introduction

Least squares method is widely used in control, system identification, signal processing, [1] - [4], statistics, [5] as well
as in many computational applications such as emerging big data applications, [6], machine learning, [7] and in many
other areas. For accurate solution many least squares problems (for example the problems related to data, signal and
image processing, system identification, network analysis and many others) can be associated with calculation of the
parameter vector θ∗, which satisfies the algebraic equation

Aθ∗ = b (1)

where b is the vector, and the matrix A is SPD (Symmetric and Positive Definite) matrix. For example, the matrix A is
SPD for the systems with harmonic regressor, [2], [8] and multiplication of any invertible matrix A by its transpose
transforms the system to the SPD case with the Gram matrix, [9]. The numerical stability problems associated with
ill-conditioning of the Gram matrix can be solved using different types of preconditioning techniques, see for example,
[10], [11] and references therein (see also Section 7 for simulations of the ill-conditioned matrices).
Iterative methods for solving (1) are often preferable (especially for large-scale systems) due to simplicity, better
accuracy and robustness, less processor time and memory space compared to direct methods. The most general and
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well-known method for iterative calculation of the matrix inverse is high order Newton-Schulz algorithm described in
[12] - [21] and in many other publications. The second order version of Newton-Schulz iteration, see for example [22] -
[24] is the most known.
High order Newton-Schulz algorithms are well-discussed in the literature. However, the questions associated with
the relation between high order Newton-Schulz algorithms and power series expansions were not properly studied.
The paper [25], which was the first paper with the description of the relation between second order Newton-Schulz
algorithm and power series expansion does not provide complete description of this relation.
Reduction of the computational complexity of high order Newton-Schulz algorithm is one the most important
challenges in this area. The computational complexity can be reduced via factorizations of the power series, see for
example [17], [21], [26] - [35] and references therein. Practical applications of these factorizations (excepting Horner’s
rule) are hampered by the lack of general unified description.
Computational resources with high degree of parallelism (instead of single computing units) will be available in the
future for implementation of numerical methods. The computational performance of iterative solvers can also be
increased via parallel computing (especially for large scale systems), achieved for example, via multiprocessor and
virtual systems, [36] - [38]. In order to improve the performance a serial algorithm is usually converted to parallel
algorithm, see for example [39]. This paper proposes a new approach for convergence rate improvement where novel
iterative algorithms are designed with high degree of parallelism (or enhanced parallelism). In other words, the iterative
algorithm is designed as a number of independent computational parts (the number of parts is associated with the degree
of parallelism) which can be executed simultaneously. The challenges associated with computational efficiency are
addressed already on the design level in this case, providing new opportunities for high performance parallel processing.
This paper introduces new composite power series expansion with optionally chosen rates and high degree of
parallelism for further convergence rate improvement in the unified framework described in [40]. New expansion
applied to Richardson iteration resulted in significant improvement of the convergence rate. Simulation results are
presented for quantification of the improvements of new algorithms compared to recent algorithms described in [40].
Moreover, explicit transient models are derived for all new algorithms described in this paper. In addition, the recursive
and computationally efficient version of the combination of Richardson iteration and Newton-Schulz iteration with
composite expansion is developed for simultaneous calculations.
Finally, factorization tool-kit is developed in this paper for general power series expansion, which allows nested
applications and results in a family of new computationally efficient algorithms.
This paper is organized as follows. The paper starts with the representation of Newton-Schulz iteration as power series
expansion in Section 3. A unified power series factorization for reduction of computational complexity is introduced
in Section 4 and represented in the form of tool-kit in Section 9. New high order Newton-Schulz algorithms with
composite polynomial are presented in Section 5. Richardson iteration with high order convergence accelerator is
described in Section 6 and compared to existing algorithms by simulation in Section 7. The paper ends with brief
conclusions in Section 8.

This paper was presented on the 21-st IFAC World Congress in Berlin, Germany, July 12-17, 2020, [41].

2 Splitting & Preconditioning

Numerical solution of the system of linear equations (1) using power series expansions requires splitting and precondi-
tioning. Any positive definite and symmetric matrix A, whose inverse should be calculated can be split as follows, see
for example [42] and references therein :

A = S −D (2)
I − S−1A = S−1D (3)
ρ(I − S−1A) = ρ(S−1D) < 1 (4)

where the spectral radius ρ(·) defined in (4) is less than one for symmetric and positive definite matrices A and S (where
S−1 is the preconditioner), provided that 2S −A is a positive definite matrix, [43].
For example, the matrix S can be chosen as a diagonal matrix, which contains the diagonal elements of SDD (Strictly
Diagonally Dominant) and positive definite matrix A, see [44] for the general case and [45] for systems with harmonic
regressor.
For positive definite (not SDD) matrix A the simplest preconditioner can be chosen as S−1 = I/α with α =
‖A‖∞/2 + ε, where ‖ · ‖∞ is the maximum row sum matrix norm, and ε > 0 is a small positive number, [11], [46].
Other types of preconditioning can be found in [42], [43], [47], [48], see also references therein.
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3 Newton-Schulz Iteration as Fast Power Series Expansion

The results presented in this Section introduce computationally efficient factorization of initial power series and show
several steps (step by step) of fast matrix power series expansion which coincide with Newton-Schulz iteration. The
relation between Newton-Schulz approach and power series expansion opens new opportunities for reduction of the
computational complexity of Newton-Schulz algorithms.
The following initial power series factorization :

G0 =

w−1∑
j=0

(S−1D)(p+1)j {
p∑

d=0

(S−1D)d}S−1 (5)

=

h−1∑
j=0

(S−1D)jS−1 = (I − (S−1D)h)A−1 (6)

F0 = I −G0A = (S−1D)h (7)

where (7) defines initial inversion error, and p = 0, 1, 2, ..., w = 1, 2, 3, ..., and h = w(p + 1) = 1, 2, 3..., gives the
starting point for the following steps of Newton-Schulz iteration:

Step 1.

G1 = {
n−1∑
j=0

F j
0 } G0 = {

n−1∑
j=0

(S−1D)hj} G0

[I + (S−1D)h + (S−1D)2h + ...+ (S−1D)(n−1)h]

[I + (S−1D) + (S−1D)2 + ...+ (S−1D)h−1]S−1

= [I + (S−1D) + ...+ (S−1D)(hn−1)]S−1 (8)

F1 = I −G1A = (S−1D)hn (9)

where G1 in (9) is calculated via (8).

Step 2.

G2 = {
n−1∑
j=0

F j
1 } G1 = {

n−1∑
j=0

(S−1D)hnj} G1

F2 = I −G2A = (S−1D)hn
2

(10)

Further evaluation in Step k gives classical high order Newton-Schulz algorithm (11) and error model (12) :

Gk = {
n−1∑
j=0

F j
k−1} Gk−1 (11)

Fk = I −GkA = Fnk

0 = (S−1D)hn
k

(12)

where Gk is estimate of A−1, n = 2, 3, ... and k = 1, 2, 3, ...
Notice that the factorization similar to (5) can be applied to the power series (11) for improvement of computational
efficiency. To this end the unified factorization method is developed in the next Section.

4 Reduction of Computational Complexity via Unified Factorization: Nested Algorithms

Consider the following matrix power series:

Z = {
h−1∑
j=0

Y j} X (13)

Y = I −XA (14)

where X,Y, Z are matrices of corresponding dimensions, I is the identity matrix, h = 2, 3, 4, ... . Realization of the
algorithm (13) requires h mmm (matrix-by-matrix multiplications) per iteration loop according to Horner’s scheme, see
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for example [21], [40].
Notice that Horner’s rule is not optimal for evaluating matrix polynomials, [17] and for reduction of the computational
complexity the power series (13) can be factorized as follows:

Y = I −XA (15)

U = {
p∑

d=0

Y d} X (16)

Y p+1 = I − UA (17)

Z = {
w−1∑
j=0

Y (p+1)j} U (18)

h = w (p+ 1), p = 0, 1, 2, ..., w = 1, 2, 3, ... (19)
Np = p+ w + 1 (20)

where Np is the number of multiplications for realization of the algorithm (15) - (18) of the order h defined in (19).
Indeed, realization of (15) - (17) requires p+2 multiplications, and realization of the series (18) which can be calculated
as follows:

Zi = Y p+1Zi−1 + U, for i = 1 : (w − 1), Z0 = U (21)
requires w − 1 multiplications.
Notice that Np = p+ 1 and Np = w in (20) for the case where w = 1 and p = 0 respectively.
Notice that the idea of factorization (15) - (18) is associated with the Newton-Schulz iteration (11), where the sum
w−1∑
j=0

Y (p+1)j in (18) corresponds to
n−1∑
j=0

F j
k−1 and U in (16) is associated with Gk−1.

Representation (13) and (14) includes Newton-Schulz algorithm (11), (12) with X = Gk−1, Y = Fk−1, and Z = Gk.
In addition, equation (18) represents (5) with Y = (S−1D) and X = S−1 and can be used for computationally efficient
calculations of the initial power series. Algorithm (15)-(18) describes unified and systematic way for power series
factorization, order reduction and improvement of the computational efficiency. Application of the algorithm (15) - (18)
to factorization of Newton-Schulz iteration of orders 2− 19 is demonstrated in the form of tool-kit in Appendix, see
Section 9.
The number of mmm for conventional recursive realization of high order Newton-Schulz algorithm is equal to the
algorithm order. Factorization (15)-(18) reduces the number of mmm to (20) for the order (19). The reduction of
computational complexity is quantified in Figure 1, where the order (which is equal to the number of mmm for
conventional realization) is plotted with colored surface and the number of mmm for (15)-(18) is plotted with a white
surface. The complexity can be essentially reduced for higher orders. The efficiency index introduced in [49] has the
following form for the factorization (15)-(18):

EI = [w (p+ 1)]1/(p+w+1) (22)

Notice that sequential application of the factorization (15)-(18) implies further reduction of the computational complexity
for higher orders. The sum (18) can also be calculated more efficiently for specific orders compared to (21). Nested
application of (15)-(18) is illustrated by the following example.
Example: Nested algorithm as unification of the hyperpower iteration method (described in [35]) of order 45 that
requires 10 mmm only.
Newton-Schulz iteration of the order 45 can be factorized in a step-wise way as follows:

Z = (I + Y 9 + ...+ Y 36) [I + Y + ...+ Y 8] X (23)

= (I + Y 9 + ...+ (Y 9)4) [I + Y 3 + Y 6] [I + Y + Y 2] X (24)

= {I + (I + (Y 9)2) (Y 9 + (Y 9)2)} [I + Y 3 + Y 6]

[3I + (XA) (−3I +XA)] X (25)

Y 3 = I − [

2∑
d=0

Y d] X A, Y 9 = I − [

8∑
d=0

Y d] X A

Algorithm (23) represents the algorithm (15) - (20) of the order h = 45 defined in (19) with p = 8 and w = 5 and
requires p+ w + 1 = 14 mmm. Further application of the algorithm (15) - (20) to the eighth order polynomial1 in (23)

1Other type of factorization of the eighth order polynomial is presented
in Appendix, Table 2 for h = 9

4



Convergence Rate Improvement of Richardson and Newton-Schulz Iterations A PREPRINT

1
2

3
4

5
6

0

2

4

6

8

0

10

20

30

40

50

ORDER, p

ORDER, w

M
M

M
 &

 O
R

D
E

R

w (p+1)

p+w+1

Figure 1: The order h = w (p + 1) (which is equal to the number of mmm for conventional realization), where
p = 1, 2, ..., 7, w = 1, 2, ..., 6 of the factorization (15)-(18) is plotted with colored surface and the number of mmm
Np = p+ w + 1 is plotted with a white surface.

and factorization of the fourth order polynomial (w.r.t. Y 9) results in algorithms (24), (25), which requires ten mmm
only with EI = 1.4633.
Notice that nested method for derivation of the computationally efficient algorithms based on (15) - (20) is more simple
compared to the method described in [35]. Moreover, the method is universal (compared to heuristic methods) and
applicable to any order, see Section 9.
The efficiency index EI does not account for robustness with respect to error accumulation. Minimization of the number
of mmm makes iteration more robust.
Notice also that the efficiency index of classical Newton-Schulz iteration of the second order, which is the most robust,
is EI = 1.4142, see for example [29], [30] for comparisons of the efficiency indexes.

5 Novel Newton-Schulz Algorithm with Composite Polynomial and Enhanced Parallelism
for Simultaneous Calculations

The unified framework for convergence rate improvement of high order Newton-Schulz matrix inversion algorithms
was proposed in [40] . The following new composite power series expansion for Newton-Schulz iteration with different
expansion rates for further convergence rate improvement extends this framework as follows :

Gk = Tc︸︷︷︸
Composite
Polynomial

+ Γc︸︷︷︸
Composite
Residual

{
n−1∑
j=0

F j
k−1} Gk−1︸ ︷︷ ︸

Newton-Schulz
Iteration

(26)

Tc =

w∑
i=1

{
i−1∏
p=0

Γp}Ti = T1 + Γ1T2 + ...+

w−1∏
p=1

ΓpTw (27)

Γc =

w∏
p=1

Γp (28)

where Tc is the composite power series expansion and the composite residual is defined as the product of the residual
terms Γc = Γ1Γ2Γ3...Γw with the spectral radius ρ(Γi) < 1, and Γ0 = I . Power series expansions Ti satisfy the
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following relations:

TiA = I − Γi , i = 1, ..., w (29)
TcA = I − Γc (30)

Multiplication of both sides of equation (26) by A together with the relation (30) results in the following error model:

Fk = ΓcF
n
k−1 (31)

where the following spectral radius is less than one, ρ(Γc) ≤ ρ(Γ1)...ρ(Γw) < 1 according to Gelfand’s formula
provided that the matrices Γi commute.
The error model (31) with composite power series expansion is the same as the error model (22) in [40] for a single
power series. The advantages of composite expansion are discussed below.
The power series expansions Ti (which can be calculated simultaneously on parallel computational units) can be taken
as

Ti = {
xi−1∑
j=0

(S−1D)j}S−1 = (I − Γi)A
−1 (32)

Γi = (S−1D)xi (33)

The rate of expansion xi can be chosen using computational capacity of each parallel computational unit (fast power
series expansion should be implemented on more powerful computational unit). For example xi can be taken as a
polynomial which is a function of step number k or as rapidly expanding power series associated with high order
Newton-Schulz iteration with xi = mk, m = 2, 3, ..., see for example [40] for this and other choices.
Notice that the algorithm (26) - (28) has especially simple form for n = w = m = 1, Gk = (S−1D)Gk−1 + S−1

which was derived in [50] directly from splitting.

5.1 Double Newton-Schulz Algorithm with High Order Residual as Convergence Accelerator

The advantages of the framework described above are especially pronounced for case when choosing a number of the
same rapid expansions Ti (high order Newton-Schulz iterations for example) with the expansion rate associated with
the order n in (26). Fast and computationally efficient algorithms can be designed in this case.
Consider algorithm (26) with T1 = T2 = ... = Tk, where Tk and Γk are defined in (32),(33) with w = n and xi = hnk,
h, n = 1, 2, ... :

Γk = I − Lk−1A (34)

Lk = {
n−1∑
j=0

Γj
k} Lk−1 (35)

Γn
k = I − LkA (36)

Gk = Lk︸︷︷︸
Newton-Schulz
Iteration

+ Γn
k︸︷︷︸

High Order
Convergence
Accelerator

{
n−1∑
j=0

F j
k−1} Gk−1︸ ︷︷ ︸

Newton-Schulz
Iteration

(37)

Fk = I −GkA = Γn
k F

n
k−1 (38)

Fk = (S−1D)h (k nk+1 + nk) (39)

where L0 = {
n−1∑
j=0

Γj
0} T0, Γ0 = I − T0A, and T0 = G0 (G0 is calculated via (5)) are precalculated. The algorithm

(34) - (39) has two Newton-Schulz loops (which can be calculated simultaneously) of the same order n associated with

inversion errors (34) and (38). The sums
n−1∑
j=0

Γj
k and

n−1∑
j=0

F j
k−1 can be calculated recursively using Horner’s scheme,

[40] or factorizations, see Section 9.
Notice that the algorithm derived in [50] and the algorithm (15) in [40] are special cases of the algorithm (34) - (37) for
n = h = 1 and n = 1 and h ≥ 1 respectively.
Remark 1. Comparison of the error model (39) with the error model (12) of classical high order Newton-Schulz
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algorithm shows that the algorithm (34) - (38) has significantly higher convergence rate due to the term k nk+1.
Remark 2. The algorithm similar to (34) - (39) was proposed in [51]. The algorithm written in the following form:

Zk =

p−1∑
j=0

(I − Zk−1A)j Zk−1 (40)

Gk = Gk−1 + (I −Gk−1A) Zk (41)

has also two Newton-Schulz loops, where both Zk and Gk are the estimates of the matrix inverse and p = 2, 3, ... is the
order.
Algorithm (40), (41) has the following error model

Lk = Lp
k−1, Lk = I − ZkA (42)

Fk = Fk−1L
p
k−1, Fk = I −GkA (43)

where Lk and Fk are estimation errors.
The algorithm (34) - (39) has faster convergence due to the high order error Fn

k−1 in the error model (38) compared to
algorithm (40), (41) which has the error model (43) with the first order error Fk−1.

6 Richardson Iteration with High Order Convergence Accelerator

6.1 Algorithm Description

Combination of Richardson iteration, see [52] and matrix inversion algorithms was proposed first in [53] for improve-
ment of the convergence rate of estimated parameters. A number of combinations of Richardson iteration with matrix
inversion techniques has been developed in recent years, see for example [11] and [54] - [56] and references therein.
Unified framework for many combinations was proposed recently in [40]. New matrix inversion algorithms described
in the previous Section can be integrated into the Richardson iteration within this unified framework.
The parameter vector in (1) can be estimated via recursive algorithm as follows:

θk = θk−1 − [ Lk + Γn
k {

q−1∑
j=0

F j
k} Gk]︸ ︷︷ ︸

Fast Matrix Inversion
Algorithm

{Aθk−1 − b}︸ ︷︷ ︸
Parameter
Estimation Error

(44)

where θk is the estimate of θ∗ and Γk, Lk, Fk and Gk are calculated in (34) - (38) and q = 1, 2, ... is the order of
Neumann series.
The following model is valid for estimation error θ̃k = θk − θ∗ :

θ̃k = Γn
k F

q
k θ̃k−1 (45)

θ̃k = (S−1D)h {(k n
k+1 + nk) q + nk+1} θ̃k−1 (46)

The error model has especially simple form for the case where q = n:

θ̃k = Γn
k F

n
k θ̃k−1 (47)

θ̃k = (S−1D)h (k nk+2 + 2 nk+1) θ̃k−1 (48)

θ̃k = (S−1D)γk θ̃0 (49)

γk = h n2
(k nk+2 − (k − 1) nk+1 − 2 nk − n+ 2)

(n− 1)2
(50)

where n > 1, θ̃0 = θ0 − θ∗ and θ0 = L0b.
The error model (49) shows significant improvement of the convergence rate of estimated parameters in the algorithm
(44). This improvement is associated with introduction of the fast matrix inversion algorithms in the Richardson loop,
and it is quantified in the next Section.
Notice that the algorithm (44) can also be seen as an extension of the unified framework of Richardson iteration,
[40] where the multiplicative high order accelerator Γn

k and additional Newton-Schulz loop Lk were introduced for
convergence rate improvement.
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Remark 3. Stability analysis of combinations of Richardson iteration and matrix inversion methods described in [53]
and [54], [56] is based on the residual error model rk = b−Aθk, whereas the analysis in [11], [40] and [55] (including
the analysis above) is presented in terms of the parameter mismatch θ̃k, where A−1rk = θ∗ − θk = −θ̃k. Notice that
the parameter mismatch is widely used in the area of system identification for stability analysis, [1] - [4] and allows
simplified representation of the error models in unified Richardson and Newton-Schulz framework. Such error models
simplify essentially the stability analysis, which allows integration of more sophisticated algorithms (which in turn
could essentially improve convergence rate) into the framework.

6.2 Reduction of Computational Complexity via Recursive and Simultaneous Calculations

For development of the computationally efficient version the algorithm (44) is presented in the following form:

θk = θk−1 − ωk (Aθk−1 − b) (51)

ωk = Lk + Γn
k {

n−1∑
j=0

F j
k} Gk (52)

Recursive algorithm for calculation of ωk described below is divided in two independent computational parts for
simultaneous calculations.

Calculations of both parts start with calculation of the
n−1∑
j=0

Γj
k, where Γk = Γn

k−1.

1) The first part is associated with the calculation of Gk in (37) via ωk−1 as follows:

Gk = [

n−1∑
j=0

Γj
k] [ωk−1 −

n−1∑
j=0

F j
k−1 Gk−1] +

n−1∑
j=0

F j
k−1 Gk−1 (53)

which requires one matrix multiplication only and further calculation of
n−1∑
j=0

F j
k Gk with Gk defined in (53) which

in turn can be further divided in independent parts (and calculated for example according to Horner’s scheme or
factorizations, see Section 9 ).

2) The second part is associated with calculations of Lk and Γn
k in (35) and (36) respectively using

n−1∑
j=0

Γj
k.

The results of both parts are merged in (52) to be included in the Richardson iteration (51).
Notice that the matrix-by-vector product Aθk−1 in (51) can be easily calculated in parallel via methods described for
example in [36].

7 Comparisons & Quantification of the Performance

Numerical calculation of the parameter vector θ∗ for the system (1) where the ill-conditioned SPD information matrix
A associated with the system with harmonic regressor with three frequencies, [11], [45], [55] is chosen for comparisons.
The performance evaluation is presented in the following three parts.
1) The convergence rate of new matrix inversion algorithm (34) - (39) is compared to the convergence rate of recent
algorithm with improved convergence rate described in [40], see Figure 2. The Figure shows that convergence rate
improvements are more pronounced for higher orders and larger step numbers.
2) Comparison of the convergence rate of the parameter estimation algorithm (44) and the Richardson iteration with
improved convergence rate described in [40], is presented in Figure 3. The algorithm (44) with high order convergence
accelerator improves essentially the convergence rate compared to existing algorithms even for lower orders and small
step numbers. Indeed, comparison of the Figure 2 and Figure 3 shows that new algorithms are the most beneficial in the
Richardson framework.
3) Finally, the performance evaluation of the algorithm (44) with respect to classical Newton-Schulz algorithm is
presented in Figure 4. The Figure shows that the convergence rate of the Richardson iteration with convergence
accelerator of the order three is comparable to the rate of classical Newton-Schulz algorithm (applied to the parameter
estimation problem) of the order eight. Parameter estimation accuracy of the Richardson iteration (44) is about five
times higher compared to the accuracy of classical Newton-Schulz algorithm in finite digit calculations.
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Figure 2: The Figure shows the spectral radius ρ(k n
k+1 + nk) for double Newton-Schulz matrix inversion algorithm defined

in (39) (described in Section 5.1), plotted as colored surface. The spectral radius for Newton-Schulz iteration with improved

convergence rate described in [40], ρ(k + 1) nk

is plotted as white surface. Both surfaces are plotted for the spectral radius of
ill-conditioned case as functions of the order n and step number k.

Figure 3: The Figure shows the spectral radius ρ
h n2 (k nk+2 − (k − 1) nk+1 − 2 nk − n+ 2)

(n− 1)2 for Richardson iteration (for
parameter estimation) defined in (49) (plotted as colored surface). The spectral radius for Richardson iteration with improved

convergence rate described in [40], ρ
2h{n

k+3 − n4

(n− 1)3
− (k − 1){ n3

(n− 1)2
+

k

2(n− 1)
}+ k(n+ 2)}

is plotted as white surface.
Both surfaces are plotted for the spectral radius of ill-conditioned case as functions of the order n and step number k for h = 1.
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Figure 4: The Figure shows the error of the estimated parameters of Richardson iteration with convergence accelerator of the third
order (plotted with a red line) and the parameter error of classical eight-order Newton-Schulz algorithm, plotted with a black line.
Both algorithms converge in five steps.

8 Conclusion

This paper shows that the most general and well-known Newton-Schulz iteration is fast power series expansion and
presents unified framework and tool-kit for power series factorization and reduction of the computational complexity.
The framework allows reduction of complexity of many algorithms and factorization of the algorithm of the order 45
that requires 10 mmm only is presented as example.
Main result of the paper is new composite power series expansion for Newton-Schulz iteration with high degree
of parallelism for the convergence rate improvement and computational efficiency. Comparative analysis of the
convergence rates of new algorithms and exiting ones is performed via explicit transient models. New algorithms have
faster convergence than known Newton-Schulz iterations. Moreover, new expansion resulted in significant improvement
of the convergence rate of Richardson iteration for which recursive and computationally efficient version was developed.
The results were also confirmed by simulations.
The paper opens new opportunities for convergence rate improvement of Newton-Schulz and Richardson iterations via
computationally efficient composite expansions to be implemented on parallel machines with different computational
performance.
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9 Appendix. Factorization Tool-Kit: A Unified Approach

Some of known factorizations of the Newton-Schulz iteration are presented in the following unified framework (see the
Tables 1 - 3 below):

Z = {
h−1∑
j=0

Y j} X (54)

Y = I −XA (55)

Z = {
w−1∑
j=0

Y (p+1)j} {
p∑

d=0

Y d} X (56)

h = w (p+ 1), p = 0, 1, 2, ..., w = 1, 2, 3, ... (57)

Z1 = (I + Y {
w−1∑
j=0

Y (p+1)j} {
p∑

d=0

Y d}) X (58)

h1 = h+ 1 (59)

where equations (54) and (55) represent the Newton-Schulz iteration and equations (56), (58) represent the factorizations
Z and Z1 of orders h is h1 respectively.
The factorization (56) is valid for the orders, which are presented as the composite numbers2, h =
2, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18 (excepting h = 2). For the orders which represent the prime numbers3, h1 =
3, 5, 7, 11, 13, 17, 19 the factorization (58) is valid. Notice that factorization for the order h = 10 is presented in both
forms following [30], see Table 2.
Notice that the factorization defined in (56) is not unique. For example the Newton-Schulz iteration of order h = 18
can be factorized in the following four ways: a) p = 5, w = 3, b) p = 2, w = 6, c) p = 8, w = 2, d) p = 1, w = 9
which have different number of mmm in implementation.
Notice also that the factorization (58) is simple application of the idea known as Schröder–Traub sequence, [16], [57] to
the polynomial factorized in (56). The factorization (58) increases the order of (56) by one, see (57) and (59).
Moreover, nested application of the factorizations (56) and (58) implies additional order reduction and improvement of
the computational efficiency (mainly for high orders), see for example nested factorization for h = 15 with 7 mmm in
Table 3.
Finally, the Tables 1 - 3 which end with the algorithm of the nineteenth order can be easily extended for higher orders
(for any order) using nested applications of the factorizations (56), (58) and the tables of prime factors, [58], providing
computationally efficient and implementable solutions for higher orders.
However, the factorizations which require computational efforts and additional memory may result in error accu-
mulation in finite-digit calculations. The factorizations in high order Newton-Schulz iterations can be seen as the
additional sub-steps (nested calculations for order reduction). The idea of order reduction is also associated with the
Newton-Schulz iteration, see Section 4. Therefore Newton-Schulz algorithms of low orders (h = 2, 3) being iterated
for a number of steps can be applied instead of factorized Newton-Schulz iterations of higher orders for the sake of
robustness and efficiency.
Notice that two and three steps of the second order Newton-Schulz iteration are equivalent to one step of the fourth and
eighth order iterations with 4 and 6 mmm respectively, see Table 1, h = 4 and Table 2, h = 8. Robustness, efficiency
and accuracy arguments motivate application of the second order [22]- [24] and the third order [12] Newton-Schulz
iterations instead of higher orders in some cases. However, application of the eleventh order algorithm, see Table 2 and
[34] requires also 6 mmm and provides faster convergence than three steps of the second order Newton-Schulz iteration.
Therefore the proper choice of the order and factorization that is made for each particular application should represent
the trade-off between the robustness and convergence rate.

2A composite number is a positive integer that has at least one divisor other than one and itself or can be formed by multiplying
two smaller positive integers

3A prime number is a positive integer that has exactly two distinct whole number factors (or divisors), namely one and the number
itself
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Order Factorization Unified Ref.

h Factorization

h = 2 (I + Y ) X

w−1∑
j=0

Y (p+1)j

p∑
d=0

Y d X [22]- [24]

p = 1, w = 1

h = 3 (I + Y (I + Y )) X (I + Y

w−1∑
j=0

Y (p+1)j

p∑
d=0

Y d) X [16], [19],[21]

p = 1, w = 1

h = 4 (I + Y 2)(I + Y ) X

w−1∑
j=0

Y (p+1)j

p∑
d=0

Y d X [32]

p = 1, w = 2

h = 5 (I + Y (I + Y 2)(I + Y )) X (I + Y

w−1∑
j=0

Y (p+1)j

p∑
d=0

Y d) X [30]

p = 1, w = 2
= (I + Y + Y 2 + Y 2(Y + Y 2)) X

h = 6 (I + Y 3)(I + Y + Y 2) X

w−1∑
j=0

Y (p+1)j

p∑
d=0

Y d X

p = 2, w = 2

h = 7 (I + (Y + Y 4)(I + Y + Y 2)) X (I + Y

w−1∑
j=0

Y (p+1)j

p∑
d=0

Y d) X [28]

p = 2, w = 2

Table 1: Factorization of the algorithms of orders h = 2, ..., 7
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Order Factorization Unified Ref.

h Factorization

h = 8 (I + Y 4)(I + Y 2)(I + Y )X

w−1∑
j=0

Y (p+1)j

p∑
d=0

Y dX

p = 3, w = 2

h = 9 (I + Y 3 + Y 6)(I + Y + Y 2) X

w−1∑
j=0

Y (p+1)j

p∑
d=0

Y dX

= (I + (I + Y 4)(I + Y 2)(Y + Y 2)) X p = 2, w = 3

h = 10 (I + Y (I + Y 3 + Y 6) (I + Y

w−1∑
j=0

Y (p+1)j

p∑
d=0

Y d)X [30], [33]

(I + Y + Y 2)) X =
p = 2, w = 3

(I + Y 5)(I + (Y + Y 2)(I + Y 2)) X =

w−1∑
j=0

Y (p+1)j

p∑
d=0

Y dX

p = 4, w = 2

h = 11 (I + Y (I + Y 5)(I + (Y + Y 2) (I + Y

w−1∑
j=0

Y (p+1)j

p∑
d=0

Y d)X [30]

(I + Y 2)) X
p = 4, w = 2

(I + Y (I + (Y 2 + Y 4)(I + Y 4)) (I + Y

w−1∑
j=0

Y (p+1)j

p∑
d=0

Y d)X [34]

(I + Y )) X p = 1, w = 5

h = 12 (I + Y 4 + Y 8)

w−1∑
j=0

Y (p+1)j

p∑
d=0

Y d X [30]

(I + Y + Y 2 + Y 3) X
p = 3, w = 3

h = 13 (I + Y (I + Y 4 + Y 8) (I + Y

w−1∑
j=0

Y (p+1)j

p∑
d=0

Y d) X [30]

(I + Y + Y 2 + Y 3)) X
p = 3, w = 3

Table 2: Factorization of the algorithms of orders h = 8, ..., 13
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Order Factorization Unified Ref.

h Factorization

h = 14 (I + Y 7)

w−1∑
j=0

Y (p+1)j

p∑
d=0

Y d X [30]

(I + Y + Y 2 + Y 3 + Y 4 + Y 5 + Y 6) X p = 6, w = 2

h = 15 (I + Y 3 + Y 6 + Y 9 + Y 12)

w−1∑
j=0

Y (p+1)j

p∑
d=0

Y d X [30]

(I + Y + Y 2) X
p = 2, w = 5

= (I + (I + (Y 3)2) ((Y 3)2 + Y 3))

(I + Y + Y 2) X

h = 16 (I + Y 4 + Y 8 + Y 12)

w−1∑
j=0

Y (p+1)j

p∑
d=0

Y d X [30]

(I + Y + Y 2 + Y 3) X
p = 3, w = 4

h = 17 (I + (Y + Y 2 + Y 3 + Y 4) (I + Y

w−1∑
j=0

Y (p+1)j

p∑
d=0

Y d) X [30]

(I + Y 4 + Y 8 + Y 12)) X
p = 3, w = 4

h = 18 (I + Y 6 + Y 12)

w−1∑
j=0

Y (p+1)j

p∑
d=0

Y d X [30]

(I + Y + Y 2 + Y 3 + Y 4 + Y 5) X
p = 5, w = 3

h = 19 (I + (Y + Y 2)(I + Y 2 + Y 4) (I + Y

w−1∑
j=0

Y (p+1)j

p∑
d=0

Y d) X [30]

(I + Y 6 + Y 12)) X
p = 5, w = 3

Table 3: Factorization of the algorithms of orders h = 14, ..., 19
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