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Ionizing radiation (IR) is a common mode of cancer therapy, where DNA damage is the major reason of cell death.
Here, we use an assay based on fluorescence imaging of single damaged DNA molecules isolated from radiated lym-
phocytes, to quantify IR induced DNA damage. The assay uses a cocktail of DNA-repair enzymes that recognizes and
excises DNA lesions and then a polymerase and a ligase incorporate fluorescent nucleotides at the damage sites,

resulting in a fluorescent “spot” at each site. The individual fluorescent spots can then be counted along single
stretched DNA molecules and the global level of DNA damage can be quantified. Our results demonstrate that inclusion
of the human apurinic/apyrimidinic endonuclease 1 (APE1) in the enzyme cocktail increases the sensitivity of the
assay for detection of IR induced damage significantly. This optimized assay also allowed detection of a cooperative
increase in DNA damage when IR was combined with mild hyperthermia, which is sometimes used as an adjuvant
in IR therapy. Finally, we discuss how the method may be used to identify patients that are sensitive to IR and other

types of DNA damaging agents.

Introduction

Most cancer patients are treated with radiotherapy at some stage [1,2].
Radiotherapy kills cancer cells by inducing DNA damage [3], but the nor-
mal tissue toxicity in response to radiotherapy is highly variable among pa-
tients [4]. The doses used today sometimes result in long-term side effects
such as fibrosis and severe gastrointestinal problems, likely because the sen-
sitive minority is overdosed [5]. The mechanisms behind the well-known
variations in long-term side effects in patients that received the same dose
is not well understood and assays to identify sensitive patients are highly
sought for.

Radiotherapy uses ionizing radiation (IR) generated by different
sources, such as X- rays, y- radiation, electron, proton and neutron beams
[6]. IR induces many types of DNA damage, including single strand breaks
(SSBs), pyrimidine lesions and purine lesions [7,8]. The passage of IR
through the cell nucleus often results in the formation of a variety of lesions
within one or two helical turns of the DNA resulting in DSBs, SSBs with op-
posing base damage or other combinations [9]. These complex DNA lesions
are referred to as clustered DNA damage [8,9]. Clustered damage sites are

highly repair resistant because no undamaged strand is present to guide the
DNA-repair machinery resulting in effective cell killing [10]. While the
mechanism of IR induced damage in cell lines has been well studied [11],
the ability to investigate the variation in DNA-repair in normal tissue
from different individuals may shed light on the mechanism responsible
for this variation. This may allow the development of strategies to individ-
ualize IR treatment dosing.

Hyperthermia is making its way into the clinic as an adjuvant to con-
ventional cancer therapy [12] and is sometimes used as a sensitizer to
improve the efficacy of IR [13-16]. In these cases, the tissue is exposed
to temperatures of up to 45 °C [17], which inhibits repair of IR induced
DNA breaks [18-20]. Several mechanisms for hyperthermia induced
cell death have been proposed including oxidative stress, induction of
endonucleases, degradation of topoisomerase I and topoisomerase II
[21-23], and inhibition of DNA glycosylases and excision repair path-
way enzymes [22,24]. Furthermore, some studies have reported that hy-
perthermia causes induction of DNA breaks on its own, possibly due to
increased levels of 8-oxo guanine, apurinic sites, and deaminated cyto-
sines [25,26].

Abbreviations: SSB, single-strand break; DSB, double-strand break; IR, ionizing radiation; APE1, apurinic/apyrimidinic endonuclease 1; BER, base excision repair; PBMCs, peripheral blood

mononuclear cells.
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Methods used to asses DNA damage include comet assay [27], DNA
breakage detection-FISH [28], radioimmunoassay [29], enzyme-linked im-
munosorbent assay [30], terminal deoxynucleotidyl transferase dUTP nick-
end labeling assay [31], ligation mediated PCR [32], and electrochemical
detection [30]. Although, most methods focus on DSB quantification
[33], some techniques are available also for quantifying SSBs. However,
these methods in general only allow characterization of one type of damage
at a time, while in many cases it is more relevant to investigate the total
amount of DNA damage.

Recently, an assay for quantifying single stranded DNA damage, based
on single DNA molecule imaging, has been demonstrated [34,35]. Zirkin
et al. used a commercial mix of DNA repair enzymes consisting of FpG,
Endo IV, T4 PDG, Bst DNA Polymerase, Endo VIII, UDG, T4 PDG and Taq
DNA Ligase, to incorporate fluorescent nucleotides, in an in vitro repair re-
action, at the single-strand lesions [36]. The labeled DNA molecules were
then stretched on activated coverslips and visualized using a fluorescence
microscope so that the repaired sites appeared as fluorescent spots along
the countour of the DNA molecules [34]. Using this assay, the repair dy-
namics in response to UV irradiation and reactive oxygen species was dem-
onstrated and the effect of a defective DNA repair machinery on UV-
induced lesions could be investigated [34-36].

One of the pathways to repair DNA damage induced by IR is base exci-
sion repair (BER) [37]. Repair of some IR induced DNA damage types is ini-
tiated by various glycosylases, followed by the action of apurinic/
apyrimidinic (APE) endonucleases [38]. The human APE1 enzyme is ho-
mologous to exonuclease III (Exo III) in E.coli and is a key player of the
BER pathway involved in the repair of reactive oxygen species induced
DNA damage [39]. Exo III is needed for in vitro repair of 3’-
phosphoglycolate lesions generated by y-radiation [40]. The 3’-
phosphoglycolatase activity of Exo III is four-fold higher than for endonu-
clease IV for the same AP endonuclease activity in vitro in the presence of
Mg?™ [41]. In vitro rejoining of nicked mismatched DNA is dependent on
APE1 [42]. APE1 antisense cells [43] and APE1 null blastocysts [44,45]
have increased susceptibility towards IR, indicating the importance of
APE] in repair of IR induced DNA lesions.

Here, the method developed by Zirkin et al. was adapted for detecting
single-strand lesions induced by IR and hyperthermia [36]. The study was
performed on peripheral blood mononuclear cells (PBMCs) from healthy
individuals. We used a cocktail of enzymes with different repair profiles
as summarized in Table 1. APE1 was shown to significantly increase the
amount of detected DNA damage induced by IR, in particular at higher IR
doses. The assay also detected DNA damage in PBMCs treated with

Table 1
Details of DNA lesions detected by constituent of enzymatic cocktail used and the
termini of the strand breaks formed after the action of the respective enzymes.

Termini of the strand
breaks induced by the
enzyme action

Repair
enzyme

DNA substrates for enzyme action

FpG 8-0x0-7,8- dihydroguanine 5’-phosphate
2,6-diamino-4-hydroxy-5-formamidopyrimidine 3’-phosphate
Endo Il 5-hydroxy-5-methylhydantoin 3’-a, B-unsaturated

thymine glycol aldehyde
5-hydroxy-6-hydrothymine 5’-phosphate
uracil glycol
5-hydroxy-6-hydrouracil

Endo IV AP ssite dR5P
3’-phosphate OH
3’-phosphoglycolate

Endo urea 5’-phosphate

VIII thymine glycol
5-hydroxy-5-methylhydantoin
uracil glycol
6-hydroxy-5, 6-dihydrothymine

APE1 AP site dR5P
3’-phosphate OH
3’-phosphoglycolate

3’-phosphate

Translational Oncology 13 (2020) 100822

hyperthermia alone and showed hindered repair of IR induced DNA dam-
age in PBMCs treated with hyperthermia.

Materials and methods
Collection of blood samples

Blood samples from apparently healthy individuals with normal differ-
ential blood count were collected from the Hematology unit at the Clinical
Chemistry Department at Sahlgrenska University Hospital. PBMCs were
isolated from blood samples through density centrifugation using
Lymphoprep (Axis-Shield PoC AS, Oslo, Norway) according to the manufac-
turers' instructions. The study has been approved by the Regional Ethical
Review Board (Dnr: 246-07 and Dnr: 308-08).

Ionizing radiation treatment

PBMCs were resuspended in RPMI-1640 (Sigma-Aldrich) at 20 x 10°
cells/ml before treatment and 200 pl was used per ionizing radiation treat-
ment. The cells were irradiated on ice in a 35 mm X 10 mm petridish with-
out the lid, in an RS 2000 X-ray Irradiator (Rad Source Technologies) at the
doses indicated in each figure. For repair kinetic studies, the samples were
incubated in a water bath at 37 °C for the time intervals indicated in each
figure after ionizing radiation treatment of 2 Gy.

Immediately after ionizing radiation treatment, 100 pl of ice-cold cell
lysis buffer (0.5% Triton X-100, 0.004 M Tris-HCl, pH 7.4, 2 M NaCl) was
added to stop any enzymatic processes. For hyperthermia treatments, the
cells were incubated on the thermal block at temperatures ranging from
37 °C to 42 °C for the indicated periods of time. After hyperthermia treat-
ment, the cells were either lysed or incubated at 37 °C for 30 min before
lysis. For the combination of hyperthermia and IR, the samples were pre-
treated at 42 °C for 30 min and then exposed to a 2 Gy dose of IR on ice.
After hyperthermia-IR treatment the cells were either lysed or incubated
at 37 °C for a further 5 or 30 min as indicated in the figure.

Extraction of DNA

DNA was extracted using the GenElute-Mammalian Genomic DNA
Miniprep Kit (Sigma-Aldrich), according to the company protocol with
some modifications. The samples were not vortexed and wide bore tips
were used to pipette the samples in order to maintain the integrity of geno-
mic DNA. The proteinase K treatment was done at 55 °C for 20 min. 10 mM
Tris-Cl, pH 8.5 was used for elution.

Fluorescent labelling of DNA damage sites

Samples containing 500 ng of DNA were incubated with APE1 (5 U),
FpG (1.6 U), Endo III (2 U), Endo IV (2 U) and Endo VIII (2 U) in the reac-
tion buffer (0.05 M Tris HCI (pH 7.8), 0.1 mM dithiothreitol, 0.01 M
MgSOy,, 50 pg/ml bovine serum albumin) for 2 h at 37 °C in a final volume
of 100 pl. The enzymes were inactivated at 65 °C for 5 min, followed by 4 h
incubation at 16 °C with dNTPs (1 uM of dATP, dGTP, dCTP, 0.1 pM dTTP
(Sigma-Aldrich) and 0.1 pM Aminoallyl-dUTP-ATTO-647 N (Jena Biosci-
ence), in nick translation buffer (0.05 M Tris HCI (pH 7.5), 0.1 mM dithio-
threitol, 0.01 M MgSQOy,, 50 pg/ml bovine serum albumin), supplemented
with DNA polymerase 1 (5 U), 1 mM ATP, and T4 DNA ligase (10 U). For
control experiments, the repair enzyme cocktail was not added to the reac-
tion buffer. The enzymes were purchased from New England Biolabs (USA).
The reaction was terminated with 2.5 pl of 0.25 M EDTA. The samples were
stored at 4 °C prior to analysis.

Silanization of coverslips
The functionalization of glass coverslips was adapted from Wei et al.

[46]. Briefly, standard 22 X 22 mm, No. 1 coverslips were submerged in
a mixture of 1% (3-aminopropyl) triethoxysilane (APTES, Sigma), 1%
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allyltrimethoxysilane (ATMS, Sigma), in acetone, and coated for 1 h. After
the completion of silanization, the coated coverslips were rinsed with three
cycles each of acetone and milli-Q water and then dried by air purging. The
air-dried coverslips were stored at room temperature in a parafilm tight
petridish and used within 3 days.

DNA staining and imaging

2 pl of the fluorescently labeled DNA was stained with 320 nM YOYO-1
(Invitrogen) and 2 pl of -mercaptoethanol (BME, Sigma-Aldrich) in a total
volume of 100 pl of 0.5 X TBE. Then, 3.8 pl of each sample was extended
ona22 x 22 mm coverslip by placing the solution at the interface of an ac-
tivated coverslip and a clean microscopy slide (VWR Frosted). The ex-
tended DNA molecules were imaged with a fluorescence microscope
(Zeiss Observer.Z1) using an Andor iXON Ultra EMCCD camera. The im-
ages were captured using 475/40 and 640/30 band-pass excitation filters
and 530/50 and 690/50 bandpass emission filters, for YOYO-1 and
Aminoallyl-dUTP-ATTO-647 N, respectively. EM gain setting of 100 and ex-
posure times of 10 ms and 500 ms were used for YOYO-1 and Aminoallyl-
dUTP-ATTO-647 N, respectively.

Data analysis

The microscopy images were analyzed using a custom-made software
[47-49]. The total DNA length of each molecule was estimated and the
number of colocalized Aminoallyl-dUTP-ATTO-647 N spots on each mole-
cule was counted. The total number of ATTO-647N spots in an image set
was divided by the total DNA length in pixels to get the ratio of damage
sites/length and finally converted into sites/M base pair (MBp) (1 pixel
= 0.129 pm). The value for converting sites/length to sites/MBp of DNA
was calculated by analyzing lambda DNA (48,502 base pairs) in similar
buffer conditions (1 pm = ~3000 bp). In total, 16-18 MBp of DNA was
used for analysis for each sample.

The formula for calculating residual DNA damage:

Residual DNA damage%
= (Sites/MBp (90 min post — irradiation) — Sites/MBp (Untreated))
/(Sites/MBp (0 min post — irradiation) — Sites/MBp (Untreated)) x 100

Statistics

The data was collected from three healthy volunteers on three different
days and the corresponding standard deviation is reported. Two tailed- t-
tests were performed using excel, p-values were determined and p < 0.05
was considered to be statistically significant. ** represents p < 0.01 and
* represents p < 0.05 as measured by two tailed t-tests assuming equal
variance.

Results

The assay for detecting single-strand lesions formed by IR and hyper-
thermia is schematically outlined in Fig. 1A. PBMCs were prepared and
treated with IR and/or hyperthermia. The repair of the extracted, damaged
DNA was initiated with a cocktail of repair enzymes, leading to fluores-
cently labeled DNA where each damage site is labeled with a fluorescent
spot. A schematic of the steps involved in the labelling is shown in
Fig. 1B. To visualize the spots, the DNA was stretched on functionalized
glass slides and the DNA backbone was stained with the fluorescent dye
YOYO-1. Representative images acquired from the microscope as well as
data quantification is depicted in Fig. 1C. The spots are counted and re-
ported as the number of damage sites/MBp of stretched DNA.

Effect of APE1 on detection of IR induced DNA damage

Using our single-molecule DNA-damage assay we first quantified the
damage for PBMCs treated with 2 Gy of IR using only DNA polymerase 1

Translational Oncology 13 (2020) 100822

and T4 DNA ligase and a ~32% increase in DNA damage was detected com-
pared to control samples (Fig. 2A). This indicates that only a limited frac-
tion of the damage sites are simple DNA nicks, which can be repaired by
DNA polymerase 1 alone. We next used a cocktail of DNA repair enzymes
(see methods), with or without APE1. Using both cocktails, we detected
~17-64 sites/MBp in the IR treated samples in comparison to the untreated
sample where ~8-11 sites/MBp were detected (Fig. 2B), indicating the
presence of a significant fraction of DNA lesions that cannot be nick-
translated with only DNA polymerase 1 but can be repaired by the enzy-
matic cocktails. The inclusion of APE1 increased the number of detected
single-strand lesions slightly at 2 Gy and significantly at 25 Gy (~3.8
times higher than without APE1). Thus the APE1 enzyme significantly im-
proves the detection of IR-induced DNA damage, in particular at higher
doses. Fig. S1 shows a closer analysis of lower doses of radiation that are
clinically relevant and we see a steady increase with increasing IR dose.

Repair kinetics of IR-induced damage

The assay has previously been used to measure DNA repair kinetics for
UV and H,0, induced damage [36]. To measure repair kinetics of IR in-
duced DNA-damage we incubated PBMCs from healthy donors (n = 3)
for different times at 37 °C after a 2 Gy IR dose (Fig. 3). The repair is similar
for all three samples, but the remaining amount of damage after 90 min dif-
fers significantly. Both these characteristics can be retrieved independently
using this assay.

Effect of hyperthermia on the formation of single-strand damage caused by IR

Hyperthermia is an emerging treatment used in combination with IR
and/or chemotherapy to sensitize cells to the treatment [13,50]. We first
established the amount of damage for PBMCs only exposed to hyperthermia
(incubation at 42 °C for 30 min). Immediately after hyperthermia treat-
ment, a 29% increase in the amount of damage was detected compared to
control samples kept at 37 °C (Fig. S2, Supporting Information). However,
if the cells were further incubated at 37 °C after the hyperthermia treat-
ment, the amount of damage increased ~2 fold after 5 min and ~4 fold
after 30 min, respectively, compared to corresponding untreated samples
(preincubation temperature 37 °C) (Fig. 4). In PBMCs treated with hyper-
thermia followed by IR, an additive increase in the level of DNA damage
was detected. Interestingly, hyperthermia treatment prior to IR treatment
changes the repair trajectory of IR induced DNA damage. In case of only
IR treatment, the repair of single-strand lesions was initiated as is evident
from the ~1.3 fold decrease in lesions detected after 30 min of incubation
in RPMI medium. In contrast, hyperthermia treatment before administra-
tion of IR the amount of single-stranded DNA damage increased ~2 fold
after 30 min.

Discussion

In this study we report the adaptation of a previously reported assay
[36] for directly quantifying IR-induced DNA damage in PBMCs isolated
from patient blood samples. We show that inclusion of APE1 in the enzyme
cocktail used significantly increased the amount of DNA lesions detected
after IR treatment. The use of the APE1 enzyme was particularly useful in
the detection of DNA damage at higher doses of IR. APE1 is the major
end processing enzyme involved in BER, having abasic site-specific 5’endo-
nucleolytic activity, 3’phosphodiesterase, 3'phosphoglycolate, 3"phospha-
tase and 3’-5’exonuclease capabilities [51,52]. Although, through our
assay we demonstrated the importance of APE1 in lesion detection, our
data also demonstrate that other endonucleases and glycosylases used in
the assay are important constituents of the enzyme cocktail. Future studies
with single enzymes and different enzyme combinations are required to
add additional information on the role of each enzyme in the repair of IR
and hyperthermia induced damage. In the enzymatic cocktail we used
both Endo IV and APE1 which act on similar types of DNA lesions but
under our experimental conditions, APE1 provided additional processing
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V. Singh et al.

25
—n— Volunteer 1
—e— Volunteer 2
20 —a—Volunteer 3
8154 -\
g \.
5
i) =
w10 ]
(]
I\
5 4
A
0 7y

y T \ TP YRR, WS P, SUVSIRN TN 7725 PRV, e S sy e g
0 10 20 30 40 50 60 70 80 90
Time (min) (Post Irradiation)

Fig. 3. DNA damage repair in PBMCs irradiated with 2 Gy of IR and incubated at 37

°C in RPMI medium for 0 min to 90 min in three healthy volunteers. The damage
level before treatment has been subtracted from all data points.

*k

604 |l Unirradiated |

20y %

[o.)
o
1

B
o
1

w
o
1

Sites/MBp

N
o
1

104

0
Time(Post-irradiation) 5 mih 30 min ' 5 min
0,

30 min
@37°C
Temp(Pre-irradiation) 37°C 37°C 42°C 42°C
30 min

Fig. 4. DNA damage in PBMCs incubated at 37 °C or 42 °C before IR treatment at
2 Gy (gray) followed by post-incubation at 37 °C, controls in black. The
unirradiated samples were maintained at 37 °C. Each value represents mean *
SD. ** represents p < 0.01 as measured by two tailed t-tests with equal variance
from three separate experiments.

of the IR damaged samples when used with other enzyme cocktail members
at higher IR dose.

Patients with deficiencies in DNA repair genes are known to be sensitive
to DNA damaging agents, including IR [53]. Furthermore, XRCC1, XRCC3,
and ATM gene-variants have been correlated with hypersensitivity towards
radiotherapy [54-56]. Using this modified assay, it was possible to quantify
IR induced damage in different individuals and establish the repair kinetics,
using measurements of the change in the amount of damage over time. The
repair profile of the IR-treated DNA in this study is similar to that previously
reported using comet assay [57], confirming that the modified assay is a
possible alternative to the comet assay for the measurement of IR induced
damage and repair in patients. In the above mentioned study, in case of
IR treated healthy volunteers, residual DNA damages was varying in differ-
ent individual from none to 30% [57], which is in agreement with the var-
iation in residual DNA damage observed in our study.

We also combined IR and hyperthermia, a joint therapy that is making
its way into the clinical setting [58]. Several different mechanisms have
been suggested for radiosensitization of tumors by hyperthermia. Physio-
logically, pre-heating the tumour, prior to radiotherapy effects the blood
flow and the microenvironment of the tumour [59]. On a molecular level,

Translational Oncology 13 (2020) 100822

hyperthermia has been shown to inhibit DNA repair via both homologous
recombination [60] and non-homologous end joining [61]. Additionally,
some studies suggest that hyperthermia can induce DNA damage on its
own [20,62]. Most studies of the molecular mechanism of
radiosensitization by hyperthermia have used tumour cell lines but
PBMCs more closely model normal tissue damage induced by hyperther-
mia. PBMCs are non-dividing cells which may respond differently to DNA
damage relative to the rapidly dividing tumour cells. Interestingly, we ob-
served an increase in DNA damage with hyperthermia alone, which contin-
ued to rise after the sample was placed at 37 °C for up to 30 min. This
finding is in agreement with a previous report on white blood cells showing
that hyperthermia led to a rapid increase in the number of strand breaks
during subsequent incubation of 37 °C [19]. When combining IR and hyper-
thermia, the DNA damage was additive, and no repair was detected 30 min
post-irradiation which may be due to hyperthermia-dependent inhibition
of DNA repair post-IR as reported by others [12].

Using this assay to measure DNA damage has several advantages rela-
tive to previously reported methods. Firstly, the assay can be modified to
measure different types of DNA damage and the enzymes can be chosen
so that specific types of damage can be quantified, as has been shown in a
recent paper by Torchinsky et al. [48]. The comet assay can also, to some
extent, be modified to label specific DNA damage types [63]. Furthermore,
the assay allows direct investigation of heterogeneities in the amount of
DNA damage along the genome. By combining the damage assay with op-
tical DNA mapping it is possible to identify where along the genome each
damage site is located [64]. This could be combined with commercial sys-
tems for optical DNA mapping to investigate genome-wide levels of DNA
damage, similar to what was recently demonstrated for the epigenetic
markers 5-methylcytosine [65] and 5-hydroxymethylcytosine [66].

If the assay is shown to also be able to detect defective DNA repair in pa-
tients, it has the potential to be used clinically for personalized radiation-
and chemotherapy. To reach this goal, the assay needs to be validated
using individuals with known DNA damage sensitivities, as well as resistant
and sensitive cell lines. Further, the repair profiles of cancer patients'
PBMCs using the assay needs to be correlated to therapy response. In this
study, blood is used as a source of lymphocytes, which is relatively easily
obtained and allows investigation of differences in the normal tissue re-
sponse among individuals. This also enables studying patients undergoing
chemotherapy to evaluate whether their cell response correlates with the
effectiveness of the therapy. However, it should be taken into consideration
that the DNA damage response in normal cells does not reflect that of tu-
mour tissue, or other tissues from the individual.

To conclude, the present work demonstrates the development of an en-
zymatic assay that determines the total number of single-strand lesions gen-
erated on DNA, tailored to sense IR and hyperthermia induced lesions. The
enzyme APE1 was included in the enzyme cocktail to increase the number
of detected lesions, in particular at high IR doses, where clustered DNA
damage is common. The marked increase seen in the number of single-
strand lesions due to hyperthermia and IR can be explained by both inhibi-
tion of DNA repair and formation of more single-strand lesions. The results
from this study correlate with prior studies in the field of hyperthermia and
IR-based therapy, indicating that the assay is robust. We propose that the
assay could be used to identify patients with deficiencies in repair of IR-
induced damage, which would be a way of personalizing IR treatment for
patients, that in turn would minimize side effects for sensitive patients.
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