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A B S T R A C T

This paper introduces a framework for modelling the cyclist’s comfort zone. Unlike the driver’s comfort zone,
little is known about the cyclist’s. The framework draws on existing literature in cognitive science about driver
behaviour to explain experimental results from cycling field trials, and the modelling of these results. We
modelled braking and steering manoeuvres from field data of cyclists’ obstacle avoidance within their comfort
zone. Results show that when cyclists avoided obstacles by braking, they kept a constant deceleration; as speed
increased, they started to brake earlier, farther from the obstacle, maintaining an almost constant time to col-
lision. When cyclists avoided obstacles by steering, they maintained a constant distance from the object, in-
dependent of speed. Overall, the higher the speed, the more the steering manoeuvres were temporally delayed
compared to braking manoeuvres. We discuss these results and other similarities between cyclist and driver
behaviour during obstacle avoidance. Implications for the design of acceptable active safety and infrastructure
design are also addressed.

1. Introduction

In several countries worldwide, cycling is increasingly popular,
raising new safety concerns (Dozza et al., 2018). The—still-con-
troversial—safety-in-numbers mechanism (Bhatia and Wier, 2011;
Elvik, 2009; Johnson et al., 2010) predicts that the number of crashes
will not increase proportionally with the number of cyclists. However,
more cyclists may result in more crowded infrastructure, increasing the
number and severity of conflicts between motorised vehicles and cy-
clists (Dozza and Bianchi-Piccinini, 2014).

Cycling safety is an old issue (Brezina and Krämer, 1970; Hudson,
1978), which can be addressed by improving the infrastructure and,
more recently, with active safety systems (i.e. intelligent systems which
are typically installed on motorised vehicles). These systems leverage
technology to recognise dangerous situations and take action before
they devolve into crashes, per SAE J3063, SAE International, 2015).
Both active safety and infrastructure design may address cyclist beha-
viour by predicting the space and time that a cyclist may need to avoid
an obstacle (Gustafsson et al., 2013; Schepers et al., 2017). For instance,
when a driver and a cyclist negotiate an intersection, active safety
systems must predict whether the cyclist intends to brake or not to
choose the safest intervention strategy. An active safety system may
assume the space and time necessary for comfort braking as a basis to
infer whether the cyclist plans to pass before the driver or to yield at the
intersection. Similarly to active safety design, infrastructure design may

consider the cyclists’ needs for comfortable manoeuvring to prevent
safety-critical situations that may result into a crash. For instance, the
width of a bicycle path should comply with cyclists’ needs for com-
fortable steering to make overtaking safe (Schwab and Meijaard, 2017).
Thus, it becomes essential to understand how cyclists brake and steer
during comfortable manoeuvring (as a part of the usual cycling experi-
ence), and not just in safety-critical situations where immediate and
extreme actions may be required.

In the early 20th century, Gibson and Crooks were among the first
cognitive scientists interested in how humans manoeuvre to prevent
collisions (Gibson and Crooks, 1938). Gibson and Crooks introduced the
concept of field of safe travel to the minimum stopping zone (the estimated
braking distance necessary to come to a halt). Gibson and Crooks en-
visioned the field of safe travel as a space, shaped by the presence of the
obstacles that the driver must avoid to complete her journey safely and
on the vehicle’s limitations for steering and braking. For instance, the
concept of minimum stopping zone was introduced for drivers to
highlight the space margin needed to reduce a car’s speed to zero. Si-
milarly to drivers, cyclists have their field of safe travel and minimum
stopping zone, and this paper is a first attempt to measure and oper-
ationalise these concepts for cycling safety. Since 1938, many authors
built on the concept of field of safe travel: relating it to risk, introducing
new ideas such as safety margins and comfort zone, and contributing new
cognitive (theoretical) models to explain how internal and external
motivations may shape the field of safe travel (Damasio and Damasio,
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1995; Fuller, 1984; Näätänen and Summala, 1974; Summala, 2007;
Vaa, 2014). Because both drivers and cyclists are humans operating a
vehicle, many of the concepts and models developed for driver beha-
viour may be adapted to cyclist behaviour and help explain the moti-
vation and the results of this paper. Particularly noteworthy is the
concept of comfort zone (Vaa, 2014), which has been primarily in-
vestigated for drivers (Bärgman, 2016), less investigated for pedestrians
(Lübbe, 2015) and still poorly studied for cyclists (Boda, 2019).

Understanding the specific capabilities of bicycles becomes crucial
to investigate cycling manoeuvres and frame cyclist’s comfort zone
within the operational design domain of a bicycle. In fact, bicycle dy-
namics set objective constraints for how cyclists may experience and
adapt their comfort zones, and may explain some difference between
drivers’ and cyclists’ comfort zones. Whereas drivers only have to
manoeuvre the vehicle, cyclists must also balance the vehicle. With
only two contact points on the ground, the bicycle is a laterally unstable
vehicle, and some lateral space is necessary to maintain balance. Cars
usually need less lateral space at lower speeds; however, the opposite is
true for bicycles, because of a steer-into-the-fall balance mechanism
(Kooiman et al., 2011, Schwab and Meijaard, 2017). Additionally, the
countersteering mechanism (i.e. the rider has to steer briefly to the left
to make the bicycle fall into a right turn, and vice versa) results in
bicycles needing more lateral space to turn at lower speeds (Schwab
and Meijaard, 2013) when compared to cars. Therefore, bicycle stabi-
lity and manoeuvrability constrain both the minimum stopping distance
and the overall field of safe travel.

The objective of this paper is to define, measure, and model the
cyclist’s comfort zone for avoidance manoeuvres involving braking or
steering. In other words, the research question we address is: “how can
we quantify and model cyclist comfortable manoeuvring to support
active safety and infrastructure design?”. The models presented in this
paper can inform infrastructure design and improve active safety sys-
tems by integrating models of cyclist behaviour into the algorithms for
threat assessment and decision making (Brannstrom et al., 2010;
Brännström et al., 2014). In fact, these algorithms continuously predict
road-users’ behaviour to estimate the probability of a conflict (threat
assessment) and determine which intervention, if any, is needed (de-
cision making). However, a foundation for threat assessment and de-
cision making is the availability of a cyclist steering and braking model.

This paper also serves as a bridge between driver behaviour and
cyclist behaviour research, making use of the former to define, measure,
and explain comfort zones for the latter. In addition, this paper helps
operationalising the concept of the cyclist comfort zone for its appli-
cation to the design of solutions which increase cycling safety.

2. Method

2.1. Participants

Eighteen participants were recruited from the Gothenburg area and
asked to ride a bicycle while performing braking or steering avoidance
manoeuvres at different speeds. Inclusion criteria required participants
to be within the ages of 20 to 35 years (to limit the effect of age on our
results), cycle at least once a week (weather permitting, according to
self-reported information from the participants), have experience with a
coaster brake (i.e. a rear-wheel hub brake operated by pedalling
backwards, common in some European countries such as Sweden and
the Netherlands), and have a height of at least 165 cm (to ride the in-
strumented bicycle comfortably). The experiment required the partici-
pants to either brake or steer in different conditions to comfortably
avoid a stationary dummy cyclist. The data from two of the participants
were excluded from analysis (because of recording issues or because the
participants did not follow the experimental protocol). The ages of the
remaining participants, 12 males and four females, ranged from 20 to
35 years (mean= 25.9, std= 2.2). Participants reported they cycled on
average 5.5 h per week (std= 3.3). As their motivation for cycling, four

participants cited sport, three recreation, four touring, and 16 com-
muting.

2.2. Data collection

Two separate data logging platforms colleted data: an instrumented
bicycle and a stationary LIDAR.

2.2.1. Instrumented bicycle
The instrumented bicycle was a classic urban 3-speed bicycle with a

step-through frame, a rear coaster brake, and a drum brake on the front
wheel; see Fig. 1. The bicycle logging platform ran a C program on a
Raspberry Pi 3 Model B. Data were collected from an inertial mea-
surement unit (IMU; PhidgetSpatial Precision 3/3/3 1044), a potenti-
ometer to measure steer angle, a DC motor to measure velocity, and a
push button for synchronisation with the other logging platform (in
post-processing). The IMU measured acceleration within a range of±
2 g, angular rate within a range of± 400 deg/s for two of the ortho-
gonal axes and±300 deg/s for the third axis, and magnetic field within
a range of 0–5.5 G. The IMU was rigidly attached to the rear rack of the
bicycle, oriented with the positive x-axis in the direction of the bicycle
motion and the positive y-axis parallel to gravity and pointing down. In
order to measure the handlebar steer angle, a potentiometer was con-
nected with a belt system to the bicycle stem and configured such
that± 60 deg spanned 0–5 V. A direct-current motor, mounted inside a
bottle dynamo, engaged the rear tire and worked as a speed sensor. The
sensors were sampled at 125 Hz, and analogue values were digitised by
a 10-bit ADC (MCP3008). The logging platform was mounted to a ty-
pical city bike (Fig. 1). The bicycle was also equipped with a speed-
ometer which the participants used to gauge their speed. The speed-
ometer, which was used to calibrate the speed output by the speed
sensor, was not recorded.

2.2.2. Stationary LIDAR
The LIDAR logging platform was implemented as a ROS package

written in Python and run on a second Raspberry Pi 3 Model B. Data
were collected from a scanning LIDAR (Hokuyo UXM-30LXH-EWA) and
a push-button permitted synchronisation with the other logging plat-
form. The LIDAR had a guaranteed detection range of 30m, a scanning
angle of 190 deg, and an angle step of 0.125 deg. Data were sampled at
20 Hz. The two logging platforms were synchronised by cross-corre-
lating the timestamps of each platform after upsampling the LIDAR
signals to 125 Hz.

Fig. 1. Instrumented bicycle: a classic urban 3-speed bicycle with a step-
through frame, a rear coaster brake, and a drum brake on the front wheel; the
instrumentation, powered by a power bank, comprises an angle sensor, an in-
ertial measurement unit, a speed sensor, and a logger.
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2.3. Experimental protocol

During the experiment, the participants were asked to ride the in-
strumented bicycle on a straight path toward the dummy cyclist, which
was placed 60m ahead (Fig. 2). The LIDAR was placed close to the
dummy to record the manoeuvres of the participants as they ap-
proached and avoided the dummy, either by steering or braking. The
LIDAR was mounted on a tripod 0.3 m above the ground (the same
height as the hub of the instrumented bicycle wheels).

Before starting the experiment, participants were given time to get
familiar with the dynamics and control of the instrumented bicycle.
They practised braking, steering, and maintaining specific speeds (by
monitoring the speedometer mounted on the handlebar) until they felt
comfortable performing the experiment. For each trial, the participant
was instructed what speed to maintain (one of three different speed
representative of three different stability levels: laterally unstable,
12 km/h; self-stable, 17 km/h; and mildly unstable, 22 km/h; Meijaard
et al. (2007) and what manoeuvre to perform (braking or steering).
Participants were asked to brake or steer comfortably as they would do
in traffic. The only requirement was for the participant to come to a
complete stop before the dummy for braking manoeuvres, and to
overtake the dummy for steering manoeuvres. Each participant per-
formed 18 trials (three braking and three steering manoeuvres for each
of the three speeds). The trials took place in blocks of three: the par-
ticipant cycled at each of the three speeds in one block, in an order
given by the instructor. The order of speeds was predetermined from a
list of all possible combinations to appear random to the participant.
The avoidance method was alternated in each trial block. These mea-
sures were taken to minimise, and control for, motor learning during
the experiment.

2.4. Data processing

The measurement data were processed to obtain metrics to create
braking and steering models describing each cyclist’s comfort zone.
Specifically, we calculated distance-to-collision (DTC) and time-to-col-
lision (TTC) at the onset of all manoeuvres. We also computed decel-
eration during braking manoeuvres. For the steering manoeuvres, we
calculated the lateral clearance to the dummy and the duration and
longitudinal space required by the manoeuvre.

2.4.1. Speed reconstruction and trajectory estimation
Because speed was not available from the speed sensor for most

trials (due to a technical failure), cyclist velocity was estimated from
the LIDAR data. This estimation used a Rauch-Tung-Striebel smoother,
which included an extended Kalman filter with a constant turn rate and
a constant-acceleration motion model. This model also estimated the
position of the cyclist’s centroid, which we later used to determine
braking distance and lateral clearance. The speed signal from the speed

sensor was available for eight trials, so we used these trials to tune the
Kalman smoother and verify its accuracy. One of these eight trials,
showing measured and estimated velocities, is shown in Fig. 3.

2.4.2. Manoeuvre identification
The braking manoeuvre was identified as the largest contiguous

region of acceleration data above 0.3 m/s2. Small subregions (less than
0.6 s) below the threshold were ignored when calculating a contiguous
region.

The overtaking manoeuvre was determined from the cyclist’s tra-
jectory. The start of the overtaking event was determined by the first
local maximum in the trajectory (lateral displacement) in front of the
obstacle. The end of the overtaking event was defined as the point at
which the cyclist returned to the lateral displacement of the start point
(Fig. 4).

2.4.3. Distance-to-collision, time-to-collision, and lateral clearance
The DTC, calculated from the LIDAR point cloud, was defined as the

distance from the frontmost point of the front wheel of the rider to the
rearmost point of the rear wheel of the obstacle at the start of the
avoidance manoeuvre. The TTC was defined as the ratio of DTC to
speed at the start of the avoidance manoeuvre. Lateral clearance was
also calculated from the point cloud as the minimum point-to-point
distance from the cyclist to the obstacle clusters during the overtaking
manoeuvre. We also calculated the duration of all avoidance man-
oeuvres and the braking distance (for braking manoeuvres).

2.4.4. Statistical analysis and modelling
Braking was modelled as a constant deceleration by applying a

Fig. 2. Experiment setup with the instrumented bicycle, static obstacle, and
LIDAR.

Fig. 3. Comparison of the velocity measured from the speed sensor with the
velocity obtained from the Kalman smoother in one representative trial. The
measured acceleration, used to determine the start and stop of the braking
event, is also shown.

Fig. 4. The trajectory from Kalman smoother and Gaussian model fit in one
representative steering trial. The identification of the steering event from the
path curvature is also shown.
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linear regression model to the speed. The model’s goodness of fit was
evaluated by calculating the normalised root-mean-square deviation.
For steering manoeuvres, we modelled the trajectory of the cyclist’s
centroid as a Gaussian curve and parameterised it according to the
longitudinal distance of the overtaking manoeuvre x (distance tail to
tail) and the lateral distance y from the obstacle (amplitude of the
Gaussian curve) with the form

= +y a e b,
x µ( )
2

2

2 (1)

where a is the Gaussian amplitude, b is the Gaussian y-intercept, μ is the
Gaussian mean, and σ is the Gaussian standard deviation. A Gaussian
curve was chosen since the tails capture the complete manoeuvre better
than a partial wave, and it requires fewer parameters than a piecewise
cubic spline. Correlation analyses assessed the extent to which DTC,
TTC, manoeuvre durations, braking distance, and lateral clearance were
affected by speed. T-tests verified whether DTC and TTC differed be-
tween steering and braking manoeuvres.

3. Results

Overall, 286 trials from 16 riders were used to analyse and model
comfortable braking and steering. Overall results are presented in
Table 1. Steering manoeuvres were initiated at slightly shorter DTC and
TTC than braking manoeuvres. Paired t-tests verified that these results
were statistically significant (p < 0.05). As speed increased, the dif-
ferences between braking and steering in terms of DTC and TTC became
more evident (Fig. 5). The duration of braking manoeuvres increased as
speed increased (r= 0.27), while the duration of steering manoeuvres
decreased as speed increased (r=−0.53; Fig. 5). Consequently, as
speed increased, steering manoeuvres became faster than braking
manoeuvres.

3.1. Braking

The higher the speed, the larger the DTC (the range of the Pearson
coefficient across participants was r= 0.61 to 0.97, median r= 0.93).
Half of the subjects maintained similar deceleration profiles (obtained
from the linear model) across the different speed conditions (r< 0.6),
and only three participants braked significantly harder as speed in-
creased (r> 0.8). This suggests that most cyclists compensated for the
higher speeds by braking earlier so that the braking distance increased
with speed (Table 2) rather than by braking harder. This result is
supported by the low correlation between speed and TTC (the range of
the Pearson coefficient across participants was r=−0.68 to 0.93,
median r= 0.47). Because of the few participants who did brake harder
as speed increased, the average deceleration across participants in-
creased slightly with speed (Table 2). The overall Pearson coefficient
between speed and deceleration was r= 0.74. (The goodness of fit for
the deceleration from the linear model was verified by calculating the
normalised root-mean-square deviation, which had an average of
0.073m/s and a standard deviation of 0.035m/s.) Fig. 6 shows the
individual speed profiles and coefficients from the linear models (de-
celerations) for each participant in order of braking intensity. In other
words, the top-left panel of Fig. 6 shows the participant who braked the
hardest (and started braking latest) whereas the bottom-right panel
shows the participant who braked the mildest (and started braking

earliest). The variability across participants is relatively large as the
hardest brake was four times larger than the mildest. It is evident from
our model that braking manoeuvres were more similar within the same
cyclist than among different cyclists (Fig. 6). Furthermore, the higher
the deceleration, the more consistent were the cyclists across braking
manoeuvre (this is particularly evident for the four subjects in the first
row of panels in Fig. 6).

3.2. Steering

As speed increased, steering manoeuvres occurred at slightly larger
DTCs (the range of the Pearson coefficient across participants was
r=−0.22 to 0.76, median r= 0.33) and significantly shorter TTCs
(the range of the Pearson coefficient across participants was r=−0.73
to −0.09, median r=−0.53). Interestingly, for braking, the starting
velocity was more correlated to DTC than to TTC, whereas for steering,
we found the opposite result. Minimum clearance was not consistently
correlated with speed across subjects (r=−0.62 to 0.81,
median= 0.23; Table 3) and with the longitudinal distance covered
during the overtaking manoeuvre (−0.55 to 0.94, median=0.52).
Fig. 7 shows the individual steering manoeuvres, their models, and the
parameters of the models. The maximum lateral passing distance was
similar across all participants and was reached −1.5 to 1.5 m from the
dummy cyclist (μ parameter in the model; Fig. 7). The σ parameter of
the model was between 2.8 m and 5.6m, indicating that, at such dis-
tance from the dummy, all cyclist had already entered the steer-away
phase of the overtaking (Dozza et al., 2016). The amplitude of the
Gaussian model (parameter a) ranged 0.9–1.5m, indicating that the
lateral clearance from the model was 0.6-0.9m (after subtracting half of
the dummy cyclist width). Finally, the position of the cyclist within the
lane as she approaches the dummy is evident from the b parameter, that
shows differences as large as 0.7 m across participants. (Because the
obstacle was 60 cm wide, all cyclists were on a collision course from the
start of the steering manoeuvre; in fact, b was within −0.3m and
0.4 m).

4. Discussion

In this paper, cyclist braking was described with a constant decel-
eration model and cyclist steering with a Gaussian curve model. A total
of 142 braking trials and 144 steering trials contributed to the models
(because of an instructor error two braking trials were lost). The two
models capture the main features of comfortable braking and steering
in planned obstacle avoidance. These models fill a gap in the literature
by quantifying, for the first time, cyclist comfort zones in common
scenarios: when 1) braking to reach a full stop within a specific dis-
tance, such as when approaching an intersection with a red light or 2)
steering to avoid an obstacle, such as overtaking another cyclist.

For braking, deceleration seemed to be the predominant con-
sideration. We found that cyclists generally execute comfortable
braking by keeping their deceleration constant. Individual deceleration
preference varied from 0.6 to 2.4m/s2, and the variability across in-
dividuals was much larger than the variability within individuals across
speeds. Interestingly, the larger the deceleration, the lower the varia-
bility. This finding is consistent with previous literature on driver
comfort zones, showing that deceleration is an important, and in-
dividual, aspect of drivers’ comfort levels (Bärgman et al., 2015). This
result also suggests that an active safety system may assume that a
cyclist approaching an intersection will continue braking with the same
deceleration once she has started braking, and with a greater likelihood
for larger deceleration. This result also suggests that threat assessment
algorithms should not expect for a cyclist to decelerate more than
2.4 m/s2, because such a large deceleration may not be comfortable
even for the most aggressive cyclists. Future studies may highlight
which subjective characteristics (e.g., demographics and personality
traits) and which environmental factors (e.g., ice on the road, poor

Table 1
Overall time-to-collision, distance-to-collision, and duration for braking and
steering manoeuvres (mean ± standard deviation).

Manoeuvre Time-to-Collision [s] Distance-to-Collision [m] Duration [s]

Braking 2.16 ± 0.82 9.65 ± 4.66 3.57 ± 1.45
Steering 2.12 ± 0.85 9.51 ± 3.64 4.63 ± 1.20
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visibility) may impact comfortable deceleration and possibly help ac-
tive safety systems assume an even lower threshold (than 2.4m/s2) for
cyclist braking. In fact, previous literature points out that females (who
were a minority in our study) are often more cautious than males
(Griffin, 2015); in addition, elderly cyclists typically exhibit slower
kinematics compared to young cyclists (Vlakveld et al., 2015). Finally,
of course, poor visibility and low friction would elicit a more cautious
behaviour which, in the case of braking, would most likely result in an
earlier start of a smoother braking manoeuvre.

Steering appeared to be a more complex manoeuvre than braking
since it could not be described with a single parameter, although
variability (in our model parameters) was larger for braking than for
steering across the participants. The Gaussian curve model we propose
captures the main characteristics of a steering manoeuvre with the
following four features: 1) lateral displacement (amplitude of the

Gaussian), 2) starting point in relation to the obstacle (μ-2σ), 3) ex-
tension (standard deviation), and 4) cyclist offset (to what extent the
cyclist came back to the same lateral position on the road after the
manoeuvre). The amplitude and standard deviation of our Gaussian
model can inform the design of infrastructure by describing how much
manoeuvring space cyclists need for comfortably overtaking other cy-
clists. Specifically, our model suggests that overtaking a stady cyclist
may require apporximately 1 m and 10 m in the longitudinal and lateral
direction, respectively. Additionally, the model’s mean and standard
deviation are important parameters for active safety, since they de-
scribe the point when a cyclist initiates a steering manoeuvre to com-
fortably avoid an obstacle.

As speed increases, steering may occur later than braking (shorter
time to collision and closer to the obstacle), without compromising
comfort—suggesting that, as for cars (Brännström et al., 2014), steering

Fig. 5. Time-to-collision, distance-to-collision, and duration for braking and steering manoeuvres.

Table 2
Distance, duration, and calculated deceleration for the braking manoeuvres at
the three speeds, together with the averaged values and starndard deviations.

Speed [km/h] Distance [m] Duration [s] Deceleration [m/s2]

12 3.13 ± 1.38 5.31 ± 2.54 1.31 ± 0.59
17 3.64 ± 1.52 8.32 ± 3.73 1.56 ± 0.64
22 3.92 ± 1.36 11.37 ± 4.57 1.73 ± 0.60
Overall averaged 3.57 ± 1.45 8.35 ± 4.44 1.53 ± 0.63

Fig. 6. Speed profiles during braking and linear braking models (dashed line) for the 16 individual participants. The slope of the model, which represents the braking
acceleration in m/s2, is presented in the lower left of each subfigure.

Table 3
Distance, duration, and clearance for the overall steering manoeuvres at the
three speeds, together with the averaged values and standard deviations.

Speed [km/h] Distance [m] Duration [s] Clearance [m]

12 18.14 ± 3.96 5.48 ± 1.19 0.86 ± 0.19
17 20.68 ± 4.62 4.58 ± 1.03 0.88 ± 0.17
22 21.74 ± 4.05 3.81 ± 0.68 0.90 ± 0.17
Overall averaged 20.17 ± 4.46 4.63 ± 1.20 0.88 ± 0.17
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may be a more effective avoidance manoeuvre when a threat is im-
minent (and enough lateral clearance is available). In other words,
unlike braking manoeuvres, steering manoeuvres do not require more
longitudinal distance as driving speed increases, although the latter
need to consider lateral clearance, which the former does not. As a
consequence, steering may become the more comfortable manoeuvre as
speed increases and/or distance to the obstacle decreases. Therefore, in
unplanned avoidance manoeuvres (i.e. situations where a cyclist is un-
expectedly required to avoid a conflict, as opposed to the protocol in
studies where cyclists knew ahead of time when and where they would
have needed to avoid an obstacle (Huertas-Leyva et al., 2019)), steering
away may be the most comfortable (and possibly safe) manoeuvre if the
infrastructure allows for it and stability is not at stake.

Altogether, the parameters from both models presented in this paper
may enable active safety systems to predict cyclists’ intention to steer or
brake—if a cyclist approaches another from behind, she may steer
away; or if she approaches an intersection, she may brake (Boda et al.,
2018). Current active safety systems support drivers overtaking cyclists,
as well as drivers avoiding crashing with cyclists at intersections (Euro
NCAP, 2017); however, these systems do not integrate models for cy-
clist braking and steering such as the ones presented in this paper.
Rating programs such as Euro NCAP could also use the results from this
paper, and the braking model specifically, in the design of realistic test
conditions, such as those developed by (Den Camp et al., 2017) in
which automated emergency systems may intervene if cyclists do not
stop at intersections. In addition, the models presented in this paper can
support virtual assessment using counterfactual simulations (Bärgman
et al., 2017).

Individual variability in steering manoeuvres was, as in braking
manoeuvres, larger across participants than across speed conditions for
individual participants. The cyclist variability was lower in the steering
manoeuvre than in the braking manoeuvre, possibly because of bicycle
dynamics (Schwab and Meijaard, 2013). Of course, variability will
further increase as new demographic and environmental factors will
come into play, and future research should determine which factors are
most important to consider.

This study is a first step in modelling cyclist-avoidance manoeuvres
to inform active safety and infrastructure design; as such, it provides
some ballpark figures that can support 1) calculations for threat as-
sessment algorithms and 2) test design for active safety. Active safety
systems, such as automated braking, promise to avoid collisions with
cyclists, are currently part of Euro NCAP and may become mandatory in
the near future (Van Ratingen et al., 2016). The results of this paper
suggest for Euro NCAP to use constant deceleration for the cyclist’s
dummy, when testing automated braking in intersection scenarios with
a cyclist (Euro NCAP, 2017). In addition, our models may help auto-
mated vehicles interact with cyclists at intersections by predicting cy-
clists’ intent to yield as they approach an intersection (Sandt and
Owens, 2017; Vissers et al., 2017). Finally, the steering models from
this paper may inform infrastructure design by explaining how much
space (laterally and longitudinally) a cyclist needs for overtaking. Be-
cause of the introduction of small electric vehicles for personal mobility
(such as pedelecs, electric scooters, etc.), overtaking manoeuvres are a
growing concern for cycling safety (Dozza and Bianchi-Piccinini, 2014),
and may require some infrastructure to be redesigned.

This paper introduced cyclist comfort zone by borrowing from

Fig. 7. Bird’s-eye view of the steering manoeuvres for the 16 participants. The dummy cyclist (represented with a small cross) is located at the origin of the axes, and
the vertical line indicates its width. An icon of the participant is only represented in the top-left panel. The coloured lines show the trajectory of each cyclist as she
approached the dummy cyclist and circumvented it. The Gaussian model for each participant is also presented (dashed line) with the model parameters; all
parameters in the Gaussian model are in meters.
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driver behaviour literature. Although a bicycle constrains locomotion
differently than a motorised vehicle, concepts such as the field of safe
travel and minimum stopping distance (Gibson and Crooks, 1938) are
as easy to apply to cyclists as to drivers. The field of safe travel assumes
that drivers create a model which indicates where they can move safely
without interfering with other road users or the infrastructure. This
model may include their expectations about what their vehicle kine-
matics can achieve (Clark, 2012; Engström et al., 2018;
Papakostopoulos et al., 2017). As with a driver’s field of safe travel, that
of a cyclist depends on the infrastructure and the presence of other road
users; however, cyclists are also challenged by balancing the bicycle
(Meijaard et al., 2007), a task that further constrains their field of safe
travel due to the additional requirements of lateral space for balance. A
cyclist’s comfort zone is also affected by the balancing task, and con-
sequently, by bicycle type and the extent to which the cyclist is ac-
quainted with the balancing task. Finally, cyclists need to propel the
bicycle (typically by pedalling). To prioritise or facilitate the balancing
and manoeuvring tasks, pedalling may be interrupted; at times, how-
ever, it becomes urgent (to support the balancing task) and cannot be
interrupted. In these critical situations, pedalling is an additional con-
straint on the comfort zone. Steering a bicycle differs from braking in
that it requires less physical energy (no need to re-accelerate), does not
require as much space, and is seldom regulated by the infrastructure.
Therefore, a minimum steering zone (i.e. the minimum lateral distance
required to complete a manoeuvre) may be more relevant to a cyclist
than to a driver for defining her comfort zone or field of safe travel
(Gibson and Crooks, 1938).

In this study, we modelled the comfort zone based on the behaviour
that sixteen cyclists exhibited while performing braking and steering
tasks, according to the instruction from a test leader in an isolated
urban area. We assumed cyclists behaved naturally because we asked
them to do so. Nevertheless, the lack of a real traffic environment and
the experimental protocol may have influenced the cyclist behaviour,
for instance, discouraging self-sufficing behaviours (Summala, 2007).
Further, to preserve the participants’ safety, we controlled the en-
vironment (e.g. no other road-user was present, data were not collected
in adverse weather conditions, etc.) which may have, to some extent,
compromised the ecological validity of the data. In addition, because of
the experimental protocol, all avoidance manoeuvres were planned (i.e.
they were expected to happen at a specific time and place). While such
situations are common in traffic, for instance as a cyclist approaches an
intersection with a red light, planned manoeuvres have been shown to
exhibit milder kinematics than unplanned manoeuvres (Huertas-Leyva
et al., 2019). Although this study used common bicycles, the extent to
which our results would transfer to other types of bicycles should be
addressed in future studies. Bicycles may have very different geometry
and braking systems that may constrain and influence cyclist’s beha-
viour (Huertas-Leyva et al., 2018). Particularly interesting may be e-
bicycles (pedelecs) that have shown to elicit different riding behaviour
than traditional bicycles (Cherry Weinert and Xinmiao, 2009; Dozza
et al., 2015; Schleinitz et al., 2017; Vlakveld et al., 2015; Wu et al.,
2012). Also, in this study, we used a dummy cyclist as an obstacle;
while this solution was easy to implement and safe, it may not be re-
presentative of other obstacles, such as water puddles and potholes in
the ground, that are usually circumvented by cyclists. Finally, because
of our small sample, we are not able to determine the extent to which
demographic factors, such as gender and age, may affect our results. In
conclusion, the models presented in this paper may not be re-
presentative of the actual comfort zone of cyclists in traffic for all si-
tuations, a limitation shared by all studies, to one degree or another,
that model human behaviour from controlled studies. Modelling com-
fort zone using naturalistic data (Dozza and Werneke, 2014), may be a
sounder approach because of the high ecological validity of such data;
however, today these datasets are too small to derive usable models. In
fact, previous studies have shown how the large variability from the
environment in small naturalistic cycling studies may transfer to the

models, making their predictions imprecise and therefore of little help
(Dozza and Fernandez, 2014).

Future studies may overcome some of the current limitations by 1)
testing different types of bicycles and brakes, 2) including a wider range
of cyclists (e.g. different demographics), 3) including different and
moving obstacles, 4) verifying the extent to which the models change as
the avoidance manoeuvres become more urgent, unexpected, and cri-
tical, 5) evaluating the extent to which braking and steering are affected
by environmental factors such as road friction and visibility, and 6) use
naturalistic data (once they will be available in large quantity). Finally,
this paper exemplifies how to use cyclist behaviour models for active
safety and infrastructure design; however, these models may also be
used in driving (or riding) simulators and multi-agent traffic simula-
tions to make sure cyclists behave in these virtual worlds as they would
in reality.

5. Conclusions

This paper presented a framework that leveraged the literature on
driver behaviour to operationalise cyclist comfort zone in objective
terms, by measuring and modelling cyclist manoeuvres. We introduced
two models that quantitatively describe cyclist behaviour in comfor-
table obstacle avoidance: one for braking and one on steering. We also
exemplified how these models can support active safety and infra-
structure design as well as assessment protocols for new products.
Because new e-vehicles for personal mobility are increasingly common
and automated vehicles promise to soon enter the traffic system, this
framework may be useful to assess the safety of the new modal split and
of the new interactions among road users.

While most of the literature on driver behaviour and comfort zones
may apply to cyclists as well, the extra balancing and pedalling tasks
while cycling may require that some results from driving safety re-
search be extended with additional research specifically addressing
cyclists. This is an important difference that deserves further research to
understand how cyclists adapt their field of safe travel depending on
their need to trade between keeping the bicycle stable and fulfilling
their mobility goals. Future studies should also investigate the extent to
which braking and steering models change as cyclists are exposed to
increasingly critical and unexpected situations so that not only the
comfort zone but also the safety margins for cycling can be objectively
quantified.
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