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in First-Order Theorem Proving

Bernhard Gleiss1, Laura Kovács1,2 , and Jakob Rath1(B)

1 TU Wien, Vienna, Austria
jakob.rath@tuwien.ac.at

2 Chalmers University of Technology, Gothenburg, Sweden

Abstract. Motivated by applications of first-order theorem proving to
software analysis, we introduce a new inference rule, called subsumption
demodulation, to improve support for reasoning with conditional equal-
ities in superposition-based theorem proving. We show that subsump-
tion demodulation is a simplification rule that does not require radi-
cal changes to the underlying superposition calculus. We implemented
subsumption demodulation in the theorem prover Vampire, by extend-
ing Vampire with a new clause index and adapting its multi-literal
matching component. Our experiments, using the TPTP and SMT-LIB
repositories, show that subsumption demodulation in Vampire can solve
many new problems that could so far not be solved by state-of-the-art
reasoners.

1 Introduction

For the efficiency of organizing proof search during saturation-based first-order
theorem proving, simplification rules are of critical importance. Simplification
rules are inference rules that do not add new formulas to the search space, but
simplify formulas by deleting (redundant) clauses from the search space. As such,
simplification rules reduce the size of the search space and are crucial in making
automated reasoning efficient.

When reasoning about properties of first-order logic with equality, one of
the most common simplification rules is demodulation [10] for rewriting (and
hence simplifying) formulas using unit equalities l � r, where l, r are terms and
� denotes equality. As a special case of superposition, demodulation is imple-
mented in first-order provers such as E [14], Spass [21] and Vampire [10]. Recent
applications of superposition-based reasoning, for example to program analysis
and verification [5], demand however new and efficient extensions of demodula-
tion to reason about and simplify upon conditional equalities C → l � r, where
C is a first-order formula. Such conditional equalities may, for example, encode
software properties expressed in a guarded command language, with C denoting
a guard (such as a loop condition) and l � r encoding equational properties over
program variables. We illustrate the need of considering generalized versions of
demodulation in the following example.
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Example 1. Consider the following formulas expressed in the first-order theory
of integer linear arithmetic:

f(i)� g(i)
0 ≤ i < n → P (f(i)) (1)

Here, i is an implicitly universally quantified logical variable of integer sort, and
n is an integer-valued constant. First-order reasoners will first clausify formu-
las (1), deriving:

f(i)� g(i)
0 � i ∨ i ≮ n ∨ P (f(i)) (2)

By applying demodulation over (2), the formula 0 � i ∨ i ≮ n ∨ P (f(i)) is
rewritten1 using the unit equality f(i)� g(i), yielding the clause 0 � i ∨ i ≮
n ∨ P (g(i)). That is, 0 ≤ i < n → P (g(i)) is derived from (1) by one application
of demodulation.

Let us now consider a slightly modified version of (1), as below:

0 ≤ i < n → f(i)� g(i)
0 ≤ i < n → P (f(i)) (3)

whose clausal representation is given by:

0 � i ∨ i ≮ n ∨ f(i)� g(i)
0 � i ∨ i ≮ n ∨ P (f(i)) (4)

It is again obvious that from (3) one can derive the formula 0 ≤ i < n →
P (g(i)), or equivalently the clause:

0 � i ∨ i ≮ n ∨ P (g(i)) (5)

Yet, one cannot anymore apply demodulation-based simplification over (4) to
derive such a clause, as (4) contains no unit equality. ��

In this paper we propose a generalized version of demodulation, called sub-
sumption demodulation, allowing to rewrite terms and simplify formulas using
rewriting based on conditional equalities, such as in (3). To do so, we extend
demodulation with subsumption, that is with deciding whether (an instance of
a) clause C is a submultiset of a clause D. In particular, the non-equality literals
of the conditional equality (i.e., the condition) need to subsume the unchanged
literals of the simplified clause. This way, subsumption demodulation can be
applied to non-unit clauses and is not restricted to have at least one premise
clause that is a unit equality. We show that subsumption demodulation is a sim-
plification rule of the superposition framework (Sect. 4), allowing for example to
derive the clause (5) from (4) in one inference step. By properly adjusting clause
indexing and multi-literal matching in first-order theorem provers, we provide an
efficient implementation of subsumption demodulation in Vampire (Sect. 5) and
1 Assuming that g is simpler/smaller than f .
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evaluate our work against state-of-the-art reasoners, including E [14], Spass [21],
CVC4 [3] and Z3 [7] (Sect. 6).

Related Work. While several approaches generalize demodulation in superposi-
tion-based theorem proving, we argue that subsumption demodulation improves
existing methods either in terms of applicability and/or efficiency. The AVATAR
architecture of first-order provers [19] splits general clauses into components with
disjoint sets of variables, potentially enabling demodulation inferences whenever
some of these components become unit equalities. Example 1 demonstrates that
subsumption demodulation applies in situations where AVATAR does not: in
each clause of (4), all literals share the variable i and hence none of the clauses
from (4) can be split using AVATAR. That is, AVATAR would not generate
unit equalities from (4), and therefore cannot apply demodulation over (4) to
derive (5).

The local rewriting approach of [20] requires rewriting equality literals to
be maximal2 in clauses. However, following [10], for efficiency reasons we con-
sider equality literals to be “smaller” than non-equality literals. In particular,
the equality literals of clauses (4) are “smaller” than the non-equality literals,
preventing thus the application of local rewriting in Example 1.

To the extent of our knowledge, the ordering restrictions on non-unit rewrit-
ing [20] do not ensure redundancy, and thus the rule is not a simplification
inference rule. Subsumption demodulation includes all necessary conditions and
we prove it to be a simplification rule. Furthermore, we show how the order-
ing restrictions can be simplified which enables an efficient implementation, and
then explain how such an implementation can be realized.

We further note that the contextual rewriting rule of [1] is more general
than our rule of subsumption demodulation, and has been first implemented
in the Saturate system [12]. Yet, efficiently automating contextual rewriting
is extremely challenging, while subsumption demodulation requires no radical
changes in the existing machinery of superposition provers (see Sect. 5).

To the best of our knowledge, except Spass [21] and Saturate, no other
state-of-the-art superposition provers implement variants of conditional rewrit-
ing. Subterm contextual rewriting [22] is a refined notion of contextual rewriting
and is implemented in Spass. A major difference of subterm contextual rewriting
when compared to subsumption demodulation is that in subsumption demodu-
lation the discovery of the substitution is driven by the side conditions whereas
in subterm contextual rewriting the side conditions are evaluated by checking
the validity of certain implications by means of a reduction calculus. This reduc-
tion calculus recursively applies another restriction of contextual rewriting called
recursive contextual ground rewriting, among other standard reduction rules.
While subterm contextual rewriting is more general, we believe that the ben-
efit of subsumption demodulation comes with its relatively easy and efficient
integration within existing superposition reasoners, as evidenced also in Sect. 6.

2 w.r.t. clause ordering.
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Local contextual rewriting [9] is another refinement of contextual rewriting
implemented in Spass. In our experiments it performed similarly to subterm
contextual rewriting.

Finally, we note that SMT-based reasoners also implement various methods
to efficiently handle conditional equalities [6,13]. Yet, the setting is very dif-
ferent as they rely on the DPLL(T) framework [8] rather than implementing
superposition.

Contributions. Summarizing, this paper brings the following contributions.

– To improve reasoning in the presence of conditional equalities, we introduce
the new inference rule subsumption demodulation, which generalizes demod-
ulation to non-unit equalities by combining demodulation and subsumption
(Sect. 4).

– Subsumption demodulation does not require radical changes to the under-
lying superposition calculus. We implemented subsumption demodulation in
the first-order theorem prover Vampire, by extending Vampire with a new
clause index and adapting its multi-literal matching component (Sect. 5).

– We compared our work against state-of-the-art reasoners, using the TPTP
and SMT-LIB benchmark repositories. Our experiments show that subsump-
tion demodulation in Vampire can solve 11 first-order problems that could
so far not be solved by any other state-of-the-art provers, including Vampire,
E, Spass, CVC4 and Z3 (Sect. 6).

2 Preliminaries

For simplicity, in what follows we consider standard first-order logic with equal-
ity, where equality is denoted by � . We support all standard boolean connec-
tives and quantifiers in the language. Throughout the paper, we denote terms by
l, r, s, t, variables by x, y, constants by c, d, function symbols by f, g and predi-
cate symbols by P,Q,R, all possibly with indices. Further, we denote literals by
L and clauses by C,D, again possibly with indices. We write s �� t to denote the
formula ¬s� t. A literal s� t is called an equality literal. We consider clauses as
multisets of literals and denote by ⊆M the subset relation among multisets. A
clause that only consists of one equality literal is called a unit equality.

An expression E is a term, literal, or clause. We write E[s] to mean an
expression E with a particular occurrence of a term s. A substitution, denoted
by σ, is any finite mapping of the form {x1 
→ t1, . . . , xn 
→ tn}, where n > 0.
Applying a substitution σ to an expression E yields another expression, denoted
by Eσ, by simultaneously replacing each xi by ti in E. We say that Eσ is an
instance of E. A unifier of two expressions E1 and E2 is a substitution σ such
that E1σ = E2σ. If two expressions have a unifier, they also have a most general
unifier (mgu). A match of expression E1 to expression E2 is a substitution σ
such that E1σ = E2. Note that any match is a unifier (assuming the sets of
variables in E1 and E2 are disjoint), but not vice-versa, as illustrated below.
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Example 2. Let E1 and E2 be the clauses Q(x, y)∨R(x, y) and Q(c, d)∨R(c, z),
respectively. The only possible match of Q(x, y) to Q(c, d) is σ1 = {x 
→ c, y 
→
d}. On the other hand, the only possible match of R(x, y) to R(c, z) is σ2 =
{x 
→ c, y 
→ z}. As σ1 and σ2 are not the same, there is no match of E1 to
E2. Note however that E1 and E2 can be unified; for example, using σ3 = {x 
→
c, y 
→ d, z 
→ d}.

Superposition Inference System. We assume basic knowledge in first-order
theorem proving and superposition reasoning [2,11]. We adopt the notations and
the inference system of superposition from [10]. We recall that first-order provers
perform inferences on clauses using inference rules, where an inference is usually
written as:

C1 . . . Cn

C

with n ≥ 0. The clauses C1, . . . , Cn are called the premises and C is the conclu-
sion of the inference above. An inference is sound if its conclusion is a logical
consequence of its premises. An inference rule is a set of (concrete) inferences
and an inference system is a set of inference rules. An inference system is sound
if all its inference rules are sound.

Modern first-order theorem provers implement the superposition inference
system for first-order logic with equality. This inference system is parametrized
by a simplification ordering over terms and a literal selection function over
clauses. In what follows, we denote by � a simplification ordering over terms,
that is � is a well-founded partial ordering satisfying the following three condi-
tions:

– stability under substitutions: if s � t, then sθ � tθ;
– monotonicity : if s � t, then l[s] � l[t];
– subterm property : s � t whenever t is a proper subterm of s.

The simplification ordering � on terms can be extended to a simplification order-
ing on literals and clauses, using a multiset extension of orderings. For simplicity,
the extension of � to literals and clauses will also be denoted by �. Whenever
E1 � E2, we say that E1 is bigger than E2 and E2 is smaller than E1 w.r.t. �.
We say that an equality literal s� t is oriented, if s � t or t � s. The literal
extension of � asserts that negative literals are always bigger than their pos-
itive counterparts. Moreover, if L1 � L2, where L1 and L2 are positive, then
¬L1 � L1 � ¬L2 � L2. Finally, equality literals are set to be smaller than any
literal using a predicate different than � .

A selection function selects at least one literal in every non-empty clause. In
what follows, selected literals in clauses will be underlined: when writing L ∨ C,
we mean that (at least) L is selected in L ∨ C. In what follows, we assume that
selection functions are well-behaved w.r.t. �: either a negative literal is selected
or all maximal literals w.r.t. � are selected.

In the sequel, we fix a simplification ordering � and a well-behaved selec-
tion function and consider the superposition inference system, denoted by Sup,
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parametrized by these two ingredients. The inference system Sup for first-order
logic with equality consists of the inference rules of Fig. 1, and it is both sound
and refutationally complete. That is, if a set S of clauses is unsatisfiable, then
the empty clause (that is, the always false formula) is derivable from S in Sup.

Resolution and Factoring

L ∨ C1 ¬L′ ∨ C2

(C1 ∨ C2)σ
L ∨ L′ ∨ C

(L ∨ C)σ

where L is not an equality literal and σ = mgu(L, L′)

Superposition

s � t ∨ C1 L[s′] ∨ C2

(C1 ∨ L[t] ∨ C2)θ

s � t ∨ C1 l[s′]� l′ ∨ C2

(C1 ∨ l[t]� l′ ∨ C2)θ

s � t ∨ C1 l[s′] �� l′ ∨ C2

(C1 ∨ l[t] �� l′ ∨ C2)θ

where s′ not a variable, L is not an equality, θ = mgu(s, s′), tθ �� sθ and l′θ �� l[s′]θ

Equality Resolution and Equality Factoring

s �� s′ ∨ C

Cθ

s � t ∨ s′ � t′ ∨ C

(s � t ∨ t �� t′ ∨ C)θ

where θ = mgu(s, s′), tθ �� sθ and t′θ �� tθ

Fig. 1. The superposition calculus Sup.

3 Superposition-Based Proof Search

We now overview the main ingredients in organizing proof search within first-
order provers, using the superposition calculus. For details, we refer to [2,10,11].

Superposition-based provers use saturation algorithms: applying all possible
inferences of Sup in a certain order to the clauses in the search space until (i) no
more inferences can be applied or (ii) the empty clause has been derived. A simple
implementation of a saturation algorithm would however be very inefficient as
applications of all possible inferences will quickly blow up the search space.

Saturation algorithms can however be made efficient by exploiting a power-
ful concept of redundancy : deleting so-called redundant clauses from the search
space by preserving completeness of Sup. A clause C in a set S of clauses (i.e., in
the search space) is redundant in S, if there exist clauses C1, . . . , Cn in S, such
that C � Ci and C1, . . . , Cn � C. That is, a clause C is redundant in S if it is a
logical consequence of clauses that are smaller than C w.r.t. �. It is known that
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redundant clauses can be removed from the search space without affecting com-
pleteness of superposition-based proof search. For this reason, saturation-based
theorem provers, such as E, Spass and Vampire, not only generate new clauses
but also delete redundant clauses during proof search by using both generating
and simplifying inferences.

Simplification Rules. A simplifying inference is an inference in which one
premise Ci becomes redundant after the addition of the conclusion C to the
search space, and hence Ci can be deleted. In what follows, we will denote deleted
clauses by drawing a line through them and refer to simplifying inferences as
simplification rules. The premise Ci that becomes redundant is called the main
premise, whereas other premises are called side premises of the simplification
rule. Intuitively, a simplification rule simplifies its main premise to its conclusion
by using additional knowledge from its side premises. Inferences that are not
simplifying are called generating, as they generate and add a new clause C to
the search space.

In saturation-based proof search, we distinguish between forward and back-
ward simplifications. During forward simplification, a newly derived clause is
simplified using previously derived clauses as side clauses. Conversely, during
backward simplification a newly derived clause is used as a side clause to sim-
plify previously derived clauses.

Demodulation. One example of a simplification rule is demodulation, or also
called rewriting by unit equalities. Demodulation is the following inference rule:

l � r ����L[t] ∨ C

L[rσ] ∨ C

where lσ = t, lσ � rσ and L[t] ∨ C � (l � r)σ, for some substitution σ.
It is easy to see that demodulation is a simplification rule. Moreover, demod-

ulation is a special case of a superposition inference where one premise of the
inference is deleted. However, unlike a superposition inference, demodulation is
not restricted to selected literals.

Example 3. Consider the clauses C1 = f(f(x))� f(x) and C2 = P (f(f(c))) ∨
Q(d). Let σ be the substitution σ = {x 
→ c}. By the subterm property of
�, we have f(f(c)) � f(c). Further, as equality literals are smaller than non-
equality literals, we have P (f(f(c))) ∨ Q(d) � f(f(c))� f(c). We thus apply
demodulation and C2 is simplified into the clause C3 = P (f(c)) ∨ Q(d):

f(f(x))� f(x) ���������
P (f(f(c))) ∨ Q(d)

P (f(c)) ∨ Q(d) ��

Deletion Rules. Even when simplification rules are in use, deleting more/other
redundant clauses is still useful to keep the search space small. For this reason,
in addition to simplifying and generating rules, theorem provers also use deletion
rules: a deletion rule checks whether clauses in the search space are redundant
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due to the presence of other clauses in the search space, and removes redundant
clauses from the search space.

Given clauses C and D, we say C subsumes D if there is some substitution
σ such that Cσ is a submultiset of D, that is Cσ ⊆M D. Subsumption is the
deletion rule that removes subsumed clauses from the search space.

Example 4. Let C = P (x) ∨ Q(f(x)) and D = P (f(c)) ∨ P (g(c)) ∨ Q(f(c)) ∨
Q(f(g(c))) ∨ R(y) be clauses in the search space. Using σ = {x 
→ g(c)}, it
is easy to see that C subsumes D, and hence D is deleted from the search
space. ��

4 Subsumption Demodulation

In this section we introduce a new simplification rule, called subsumption demod-
ulation, by extending demodulation to a simplification rule over conditional
equalities. We do so by combining demodulation with subsumption checks to
find simplifying applications of rewriting by non-unit (and hence conditional)
equalities.

4.1 Subsumption Demodulation for Conditional Rewriting

Our rule of subsumption demodulation is defined below.

Definition 1 (Subsumption Demodulation). Subsumption demodulation
is the inference rule:

l � r ∨ C L[t] ∨ D

L[rσ] ∨ D (6)

where:

1. lσ = t,
2. Cσ ⊆M D,
3. lσ � rσ, and
4. L[t] ∨ D � (l � r)σ ∨ Cσ.

We call the equality l � r in the left premise of (6) the rewriting equality of
subsumption demodulation.

Intuitively, the side conditions 1 and 2 of Definition 1 ensure the soundness
of the rule: it is easy to see that if l � r ∨C and L[t]∨D are true, then L[rσ]∨D
also holds. We thus conclude:

Theorem 1 (Soundness). Subsumption demodulation is sound.

On the other hand, side conditions 3 and 4 of Definition 1 are vital to
ensure that subsumption demodulation is a simplification rule (details follow
in Sect. 4.2).
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Detecting possible applications of subsumption demodulation involves (i)
selecting one equality of the side clause as rewriting equality and (ii) match-
ing each of the remaining literals, denoted C in (6), to some literal in the main
clause. Step (i) is similar to finding unit equalities in demodulation, whereas step
(ii) reduces to showing that C subsumes parts of the main premise. Informally
speaking, subsumption demodulation combines demodulation and subsumption,
as discussed in Sect. 5. Note that in step (ii), matching allows any instantiation of
C to Cσ via substitution σ; yet, we we do not unify the side and main premises
of subsumption demodulation, as illustrated later in Example 7. Furthermore,
we need to find a term t in the unmatched part D \ Cσ of the main premise,
such that t can be rewritten according to the rewriting equality into rσ.

As the ordering � is partial, the conditions of Definition 1 must be checked a
posteriori, that is after subsumption demodulation has been applied with a fixed
substitution. Note however that if l � r in the rewriting equality, then lσ � rσ
for any substitution, so checking the ordering a priori helps, as illustrated in the
following example.

Example 5. Let us consider the following two clauses:

C1 = f(g(x))� g(x) ∨ Q(x) ∨ R(y)
C2 = P (f(g(c))) ∨ Q(c) ∨ Q(d) ∨ R(f(g(d)))

By the subterm property of �, we conclude that f(g(x)) � g(x). Hence, the
rewriting equality, as well as any instance of it, is oriented.

Let σ be the substitution σ = {x 
→ c, y 
→ f(g(d))}. Due to the previ-
ous paragraph, we know f(g(c)) � g(c) As equality literals are smaller than
non-equality ones, we also conclude P (f(g(c))) � f(g(c))� g(c). Thus, we have
P (f(g(c))) ∨ Q(c) ∨ Q(d) ∨ R(f(g(d))) � f(g(c))� g(c) ∨ Q(c) ∨ R(f(g(d)))
and we can apply subsumption demodulation to C1 and C2, deriving clause
C3 = P (g(c)) ∨ Q(c) ∨ Q(d) ∨ R(f(g(d))).

We note that demodulation cannot derive C3 from C1 and C2, as there is no
unit equality. ��

Example 5 highlights limitations of demodulation when compared to sub-
sumption demodulation. We next illustrate different possible applications of sub-
sumption demodulation using a fixed side premise and different main premises.

Example 6. Consider the clause C1 = f(g(x))� g(y) ∨ Q(x) ∨ R(y). Only the
first literal f(g(x))� g(y) is a positive equality and as such eligible as rewriting
equality. Note that f(g(x)) and g(y) are incomparable w.r.t. � due to occur-
rences of different variables, and hence whether f(g(x))σ � g(y)σ depends on
the chosen substitution σ.

(1) Consider the clause C2 = P (f(g(c))) ∨ Q(c) ∨ R(c) as the main premise.
With the substitution σ1 = {x 
→ c, y 
→ c}, we have f(g(x))σ1 � g(x)σ1

as f(g(c)) � g(c) due to the subterm property of �, enabling a possible
application of subsumption demodulation over C1 and C2.
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(2) Consider now C3 = P (g(f(g(c))))∨Q(c)∨R(f(g(c))) as the main premise and
the substitution σ2 = {x 
→ c, y 
→ f(g(c))}. We have g(y)σ2 � f(g(x))σ2,
as g(f(g(c)) � f(g(c)). The instance of the rewriting equality is oriented dif-
ferently in this case than in the previous one, enabling a possible application
of subsumption demodulation over C1 and C3.

(3) On the other hand, using the clause C4 = P (f(g(c))) ∨ Q(c) ∨ R(z) as the
main premise, the only substitution we can use is σ3 = {x 
→ c, y 
→ z}. The
corresponding instance of the rewriting equality is then f(g(c))� g(z), which
cannot be oriented in general. Hence, subsumption demodulation cannot be
applied in this case, even though we can find the matching term f(g(c))
in C4. ��

As mentioned before, the substitution σ appearing in subsumption demodu-
lation can only be used to instantiate the side premise, but not for unifying side
and main premises, as we would not obtain a simplification rule.

Example 7. Consider the clauses:

C1 = f(c)� c ∨ Q(d)
C2 = P (f(c)) ∨ Q(x)

As we cannot match Q(d) to Q(x) (although we could match Q(x) to Q(d)),
subsumption demodulation is not applicable with premises C1 and C2. ��

4.2 Simplification Using Subsumption Demodulation

Note that in the special case where C is the empty clause in (6), subsumption
demodulation reduces to demodulation and hence it is a simplification rule. We
next show that this is the case in general:

Theorem 2 (Simplification Rule). Subsumption demodulation is a simpli-
fication rule and we have:

l � r ∨ C ����L[t] ∨ D

L[rσ] ∨ D

where:

1. lσ = t,
2. Cσ ⊆M D,
3. lσ � rσ, and
4. L[t] ∨ D � (l � r)σ ∨ Cσ.

Proof. Because of the second condition of the definition of subsumption demod-
ulation, L[t] ∨ D is clearly a logical consequence of L[rσ] ∨ D and l � r ∨ C.
Moreover, from the fourth condition, we trivially have L[t] ∨ D � (l � r)σ ∨ Cσ.
It thus remains to show that L[rσ] ∨ D is smaller than L[t] ∨ D w.r.t. �. As
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t = lσ � rσ, the monotonicity property of � asserts that L[t] � L[rσ], and
hence L[t]∨D � L[rσ]∨D. This concludes that L[t]∨D is redundant w.r.t. the
conclusion and left-most premise of subsumption demodulation. ��
Example 8. By revisiting Example 5, Theorem 2 asserts that clause C2 is sim-
plified into C3, and subsumption demodulation deletes C2 from the search
space. ��

4.3 Refining Redundancy

The fourth condition defining subsumption demodulation in Definition 1 is
required to ensure that the main premise of subsumption demodulation becomes
redundant. However, comparing clauses w.r.t. the ordering � is computationally
expensive; yet, not necessary for subsumption demodulation. Following the nota-
tion of Definition 1, let D′ such that D = Cσ∨D′. By properties of multiset order-
ings, the condition L[t]∨D � (l � r)σ∨Cσ is equivalent to L[t]∨D′ � (l � r)σ, as
the literals in Cσ occur on both sides of �. This means, to ensure the redundancy
of the main premise of subsumption demodulation, we only need to ensure that
there is a literal from L[t] ∨ D such that this literal is bigger that the rewriting
equality.

Theorem 3 (Refining Redundancy). The following conditions are equiva-
lent:

(R1) L[t] ∨ D � (l � r)σ ∨ Cσ
(R2) L[t] ∨ D′ � (l � r)σ

As mentioned in Sect. 4.1, application of subsumption demodulation involves
checking that an ordering condition between premises holds (side condition 4 in
Definition 1). Theorem 3 asserts that we only need to find a literal in L[t] ∨ D′

that is bigger than the rewriting equality in order to ensure that the ordering
condition is fulfilled. In the next section we show that by re-using and prop-
erly changing the underlying machinery of first-order provers for demodulation
and subsumption, subsumption demodulation can efficiently be implemented in
superposition-based proof search.

5 Subsumption Demodulation in Vampire

We implemented subsumption demodulation in the first-order theorem prover
Vampire. Our implementation consists of about 5000 lines of C++ code and is
available at:

https://github.com/vprover/vampire/tree/subsumption-demodulation

https://github.com/vprover/vampire/tree/subsumption-demodulation
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As for any simplification rule, we implemented the forward and backward ver-
sions of subsumption demodulation separately. Our new Vampire options con-
trolling subsumption demodulation are fsd and bsd, both with possible val-
ues on and off, to respectively enable forward and backward subsumption
demodulation.

As discussed in Sect. 4, subsumption demodulation uses reasoning based on
a combination of demodulation and subsumption. Algorithm1 details our imple-
mentation for forward subsumption demodulation. In a nutshell, given a clause
D as main premise, (forward) subsumption demodulation in Vampire consists
of the following main steps:

1. Retrieve candidate clauses C as side premises of subsumption demodulation
(line 1 of Algorithm 1). To this end, we design a new clause index with imper-
fect filtering, by modifying the subsumption index in Vampire, as discussed
later in this section.

2. Prune candidate clauses by checking the conditions of subsumption demod-
ulation (lines 3–7 of Algorithm 1), in particular selecting a rewriting equality
and matching the remaining literals of the side premise to literals of the main
premise. After this, prune further by performing a posteriori checks for ori-
enting the rewriting equality E, and checking the redundancy of the given
main premise D. To do so, we revised multi-literal matching and redundancy
checking in Vampire (see later).

3. Build simplified clause by simplifying and deleting the (main) premise D
of subsumption demodulation using (forward) simplification (line 8 of Algo-
rithm 1).

Our implementation of backward subsumption demodulation requires only
a few changes to Algorithm 1: (i) we use the input clause as side premise C
of backward subsumption demodulation and (ii) we retrieve candidate clauses
D as potential main premises of subsumption demodulation. Additionally, (iii)
instead of returning a single simplified clause D′, we record a replacement clause
for each candidate clause D where a simplification was possible.

Clause Indexing for Subsumption Demodulation. We build upon the
indexing approach [15] used for subsumption in Vampire: the subsumption index
in Vampire stores and retrieves candidate clauses for subsumption. Each clause
is indexed by exactly one of its literals. In principle, any literal of the clause can
be chosen. In order to reduce the number of retrieved candidates, the best literal
is chosen in the sense that the chosen literal maximizes a certain heuristic (e.g.,
maximal weight). Since the subsumption index is not a perfect index (i.e., it
may retrieve non-subsumed clauses), additional checks on the retrieved clauses
are performed.

Using the subsumption index of Vampire as the clause index for forward sub-
sumption demodulation would however omit retrieving clauses (side premises) in
which the rewriting equality is chosen as key for the index, omitting this way a
possible application of subsumption demodulation. Hence, we need a new clause
index in which the best literal can be adjusted to be the rewriting equality. To
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Algorithm 1. Forward Subsumption Demodulation – FSD
Input : Clause D, to be used as main premise
Output: Simplified clause D′ if (forward) subsumption demodulation is possible
// Retrieve candidate side premises

1 candidates := FSDIndex .Retrieve(D)
2 for each C ∈ candidates do
3 while m = FindNextMLMatch(C, D) do
4 σ′ := m.GetSubstitution()
5 E := m.GetRewritingEquality()

// E is of the form l � r, for some terms l, r
6 if exists term t in D \ Cσ′ and substitution σ ⊇ σ′ s.t. t = lσ then
7 if CheckOrderingConditions(D, E, t, σ) then
8 D′ := BuildSimplifiedClause(D, E, t, σ)
9 return D′

10 end

11 end

12 end

13 end

address this issue, we added a new clause index, called the forward subsumption
demodulation index (FSD index), to Vampire, as follows: we index potential
side premises either by their best literal (according to the heuristic), the second
best literal, or both. If the best literal in a clause C is a positive equality (i.e.,
a candidate rewriting equality) but the second best is not, C is indexed by the
second best literal, and vice versa. If both the best and second best literal are
positive equalities, C is indexed by both of them. Furthermore, because the FSD
index is exclusively used by forward subsumption demodulation, this index only
needs to keep track of clauses that contain at least one positive equality.

In the backward case, we can in fact reuse Vampire’s index for backward
subsumption. Instead we need to query the index by the best literal, the second
best literal, or both (as described in the previous paragraph).

Multi-literal Matching. Similarly to the subsumption index, our new sub-
sumption demodulation index is not a perfect index, that is it performs imperfect
filtering for retrieving clauses. Therefore, additional post-checks are required on
the retrieved clauses. In our work, we devised a multi-literal matching approach
to:

– choose the rewriting equality among the literals of the side premise C, and
– check whether the remaining literals of C can be uniformly instantiated to

the literals of the main premise D of subsumption demodulation.

There are multiple ways to organize this process. A simple approach is to
(i) first pick any equality of a side premise C as the rewriting equality of sub-
sumption demodulation, and then (ii) invoke the existing multi-literal matching
machinery of Vampire to match the remaining literals of C with a subset of
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literals of D. For the latter step (ii), the task is to find a substitution σ such that
Cσ becomes a submultiset of the given clause D. If the choice of the rewriting
equality in step (i) turns out to be wrong, we backtrack. In our work, we revised
the existing multi-literal matching machinery of Vampire to a new multi-literal
matching approach for subsumption demodulation, by using the steps (i)-(ii)
and interleaving equality selection with matching.

We note that the substitution σ in step (ii) above is built in two stages: first
we get a partial substitution σ′ from multi-literal matching and then (possibly)
extend σ′ to σ by matching term instances of the rewriting equality with terms
of D \ Cσ.

Example 9. Let D be the clause P (f(c, d))∨Q(c). Assume that our (FSD) clause
index retrieves the clause C = f(x, y)� y ∨Q(x) from the search space (line 1 of
Algorithm 1). We then invoke our multi-literal matcher (line 3 of Algorithm 1),
which matches the literal Q(x) of C to the literal Q(c) of D and selects the
equality literal f(x, y)� y of C as the rewriting equality for subsumption demod-
ulation over C and D. The matcher returns the choice of rewriting equality
and the partial substitution σ′ = {x 
→ c}. We arrive at the final substitu-
tion σ = {x 
→ c, y 
→ d} only when we match the instance f(x, y)σ′, that is
f(c, y), of the left-hand side of the rewriting equality to the literal f(c, d) of D.
Using σ, subsumption demodulation over C and D will derive P (d)∨Q(c), after
ensuring that D becomes redundant (line 8 of Algorithm 1). ��

We further note that multi-literal matching is an NP-complete problem. Our
multi-literal matching problems may have more than one solution, with possi-
bly only some (or none) of them leading to successful applications of subsump-
tion demodulation. In our implementation, we examine all solutions retrieved
by multi-literal matching. We also experimented with limiting the number of
matches examined after multi-literal matching but did not observe relevant
improvements. Yet, our implementation in Vampire also supports an additional
option allowing the user to specify an upper bound on how many solutions of
multi-literal matching should be examined.

Redundancy Checking. To ensure redundancy of the main premise D after the
subsumption demodulation inference, we need to check two properties. First, the
instance Eσ of the rewriting equality E must be oriented. This is a simple order-
ing check. Second, the main premise D must be larger than the side premise C.
Thanks to Theorem 3, this latter condition is reduced to finding a literal among
the unmatched part of the main premise D that is bigger than the instance Eσ
of the rewriting equality E.

Example 10. In case of Example 9, the rewriting equality E is oriented and hence
Eσ is also oriented. Next, the literal P (f(c, d)) is bigger than Eσ, and hence D
is redundant w.r.t. C and D′. ��
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6 Experiments

We evaluated our implementation of subsumption demodulation in Vampire
on the problems of the TPTP [17] (version 7.3.0) and SMT-LIB [4] (release
2019-05-06) repositories. All our experiments were carried out on the StarExec
cluster [16].
Benchmark Setup. From the 22,686 problems in the TPTP benchmark set,
Vampire can parse 18,232 problems.3 Out of these problems, we only used those
problems that involve equalities as subsumption demodulation is only applicable
in the presence of (at least one) equality. As such, we used 13,924 TPTP problems
in our experiments.

On the other hand, when using the SMT-LIB repository, we chose the bench-
marks from categories LIA, UF, UFDT, UFDTLIA, and UFLIA, as these bench-
marks involve reasoning with both theories and quantifiers and the background
theories are the theories that Vampire supports. These are 22,951 SMT-LIB
problems in total, of which 22,833 problems remain after removing those where
equality does not occur.

Comparative Experiments with Vampire. As a first experimental study,
we compared the performance of subsumption demodulation in Vampire for
different values of fsd and bsd, that is by using forward (FSD) and/or back-
ward (BSD) subsumption demodulation. To this end, we evaluated subsumption
demodulation using the CASC and SMTCOMP schedules of Vampire’s portfo-
lio mode. In order to test subsumption demodulation with the portfolio mode,
we added the options fsd and/or bsd to all strategies of Vampire. While the
resulting strategy schedules could potentially be further improved, it allowed us
to test FSD/BSD with a variety of strategies.

Table 1. Comparing Vampire with and without subsumption demodulation on TPTP,
using Vampire in portfolio mode.

Configuration Total Solved New (SAT + UNSAT)

Vampire 13,924 9,923 –

Vampire, with FSD 13,924 9,757 20 (3 + 17)

Vampire, with BSD 13,924 9,797 14 (2 + 12)

Vampire, with FSD and BSD 13,924 9,734 30 (6 + 24)

Our results are summarized in Tables 1 and 2. The first column of these tables
lists the Vampire version and configuration, where Vampire refers to Vampire
in its portfolio mode (version 4.4). Lines 2–4 of these tables use our new Vam-
pire, that is our implementation of subsumption demodulation in Vampire. The

3 The other problems contain features, such as higher-order logic, that have not been
implemented in Vampire yet.
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Table 2. Comparing Vampire with and without subsumption demodulation on SMT-
LIB, using Vampire in portfolio mode.

Configuration Total Solved New (SAT + UNSAT)

Vampire 22,833 13,705 –

Vampire, with FSD 22,833 13,620 55 (1 + 54)

Vampire, with BSD 22,833 13,632 48 (0 + 48)

Vampire, with FSD and BSD 22,833 13,607 76 (0 + 76)

column “Solved” reports, respectively, the total number of TPTP and SMT-LIB
problems solved by the considered Vampire configurations. Column “New” lists,
respectively, the number of TPTP and SMT-LIB problems solved by the version
with subsumption demodulation but not by the portfolio version of Vampire.
This column also indicates in parentheses how many of the solved problems were
satisfiable/unsatisfiable.

While in total the portfolio mode of Vampire can solve more problems, we
note that this comes at no surprise as the portfolio mode of Vampire is highly
tuned using the existing Vampire options. In our experiments, we were inter-
ested to see whether subsumption demodulation in Vampire can solve problems
that cannot be solved by the portfolio mode of Vampire. Such a result would
justify the existence of the new rule because the set of problems that Vampire
can solve in principle is increased. In future work, the portfolio mode should be
tuned by also taking into account subsumption demodulation, which then ideally
leads to an overall increase in performance. The columns “New” of Tables 1 and
2 give indeed practical evidence of the impact of subsumption demodulation:
there are 30 new TPTP problems and 76 SMT-LIB problems4 that the portfo-
lio version of Vampire cannot solve, but forward and backward subsumption
demodulation in Vampire can.

New Problems Solved Only by Subsumption Demodulation. Building
upon our results from Tables 1 and 2, we analysed how many new problems
subsumption demodulation in Vampire can solve when compared to other state-
of-the-art reasoners. To this end, we evaluated our work against the superposition
provers E (version 2.4) and Spass (version 3.9), as well as the SMT solvers
CVC4 (version 1.7) and Z3 (version 4.8.7). We note however, that when using
our 30 new problems from Table 1, we could not compare our results against Z3
as Z3 does not natively parse TPTP. On the other hand, when using our 76
new problems from Table 2, we only compared against CVC4 and Z3, as E and
Spass do not support the SMT-LIB syntax.

Table 3 summarizes our findings. First, 11 of our 30 “new” TPTP problems
can only be solved using forward and backward subsumption demodulation in
Vampire; none of the other systems were able solve these problems.

4
The list of these new problems is available at https://gist.github.com/JakobR/605a7b7db010
1259052e137ade54b32c.

https://gist.github.com/JakobR/605a7b7db0101259052e137ade54b32c
https://gist.github.com/JakobR/605a7b7db0101259052e137ade54b32c
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Table 3. Comparing Vampire with subsumption demodulation against other solvers,
using the “new” TPTP and SMT-LIB problems of Tables 1 and 2 and running Vampire
in portfolio mode.

Solver/configuration TPTP problems SMT-LIB problems

Baseline: Vampire, with FSD and BSD 30 76

E with --auto-schedule 14 –

Spass (default) 4 –

Spass (local contextual rewriting) 6 –

Spass (subterm contextual rewriting) 5 –

CVC4 (default) 7 66

Z3 (default) – 49

Only solved by Vampire, with FSD and BSD 11 0

Second, while all our 76 “new” SMT-LIB problems can also be solved by
CVC4 and Z3 together, we note that out of these 76 problems there are 10
problems that CVC4 cannot solve, and similarly 27 problems that Z3 cannot
solve.

Comparative Experiments without AVATAR. Finally, we investigated the
effect of subsumption demodulation in Vampire without AVATAR [19]. We used
the default mode of Vampire (that is, without using a portfolio approach) and
turned off the AVATAR setting. While this configuration solves less problems
than the portfolio mode of Vampire, so far Vampire is the only superposition-
based theorem prover implementing AVATAR. Hence, evaluating subsumption
demodulation in Vampire without AVATAR is more relevant to other reasoners.
Further, as AVATAR may often split non-unit clauses into unit clauses, it may
potentially simulate applications of subsumption demodulation using demodula-
tion. Table 4 shows that this is indeed the case: with both fsd and bsd enabled,
subsumption demodulation in Vampire can prove 190 TPTP problems and 173
SMT-LIB examples that the default Vampire without AVATAR cannot solve.
Again, the column “New” denotes the number of problems solved by the respec-
tive configuration but not by the default mode of Vampire without AVATAR.

Table 4. Comparing Vampire in default mode and without AVATAR, with and with-
out subsumption demodulation.

TPTP problems SMT-LIB problems

Configuration Total Solved New

(SAT+UNSAT)

Total Solved New

(SAT+UNSAT)

Vampire 13,924 6,601 – 22,833 9,608 –

Vampire (FSD) 13,924 6,539 152 (13+139) 22,833 9,597 134 (1+133)

Vampire (BSD) 13,924 6,471 112 (12+100) 22,833 9,541 87 (0+87)

Vampire (FSD+BSD) 13,924 6,510 190 (15+175) 22,833 9,581 173 (1+172)
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7 Conclusion

We introduced the simplifying inference rule subsumption demodulation to
improve support for reasoning with conditional equalities in superposition-
based first-order theorem proving. Subsumption demodulation revises existing
machineries of superposition provers and can therefore be efficiently integrated
in superposition reasoning. Still, the rule remains expensive and does not pay
off for all problems, leading to a decrease in total number of solved problems by
our implementation in Vampire. However, this is justified because subsumption
demodulation also solves many new examples that existing provers, including
first-order and SMT solvers, cannot handle. Future work includes the design of
more sophisticated approaches for selecting rewriting equalities and improving
the imperfect filtering of clauses indexes.
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