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Reinforcement Learning for Channel Coding:
Learned Bit-Flipping Decoding

Fabrizio Carpi1, Christian Häger2, Marco Martalò3, Riccardo Raheli3, and Henry D. Pfister4

Abstract— In this paper, we use reinforcement learning to
find effective decoding strategies for binary linear codes. We
start by reviewing several iterative decoding algorithms that
involve a decision-making process at each step, including bit-
flipping (BF) decoding, residual belief propagation, and anchor
decoding. We then illustrate how such algorithms can be
mapped to Markov decision processes allowing for data-driven
learning of optimal decision strategies, rather than basing
decisions on heuristics or intuition. As a case study, we consider
BF decoding for both the binary symmetric and additive
white Gaussian noise channel. Our results show that learned
BF decoders can offer a range of performance–complexity
trade-offs for the considered Reed–Muller and BCH codes,
and achieve near-optimal performance in some cases. We also
demonstrate learning convergence speed-ups when biasing the
learning process towards correct decoding decisions, as opposed
to relying only on random explorations and past knowledge.

I. INTRODUCTION

The decoding of error-correcting codes can be cast as a
classification problem and solved using supervised machine
learning. The general idea is to regard the decoder as a
parameterized function (e.g., a neural network) and learn
good parameter configurations with data-driven optimization
[2]–[7]. Without further restrictions on the code, this only
works well for short codes and typically becomes ineffective
for unstructured codes with more than a few hundred code-
words. For linear codes, the problem simplifies considerably
because one has to learn only a single decision region instead
of one region per codeword. One can take advantage of
linearity by using message-passing [4] or syndromes [5],
[6]. Still, the problem remains challenging because good
codes typically have complicated decision regions due to
the large number of neighboring codewords. Near-optimal
performance of learned decoders in practical regimes has
been demonstrated, e.g., for convolutional codes [7], which
possess even more structure.
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In this paper, we study the decoding of binary linear
block codes from a machine-learning perspective. Rather
than learning a direct mapping from observations to es-
timated codewords (or bits) in a supervised fashion, the
decoding is done in steps based on individual bit-flipping
(BF) decisions. This allows us to map the problem to a
Markov decision process (MDP) and apply reinforcement
learning (RL) to find good decision strategies. Following
[5], [6], our approach is syndrome-based and the state space
of the MDP is formed by all possible binary syndromes,
where bit-wise reliability information can be included for
general memoryless channels. This effectively decouples the
decoding problem from the transmitted codeword.

BF decoding has been studied extensively in the literature
and is covered in many textbooks on modern coding theory,
see, e.g., [8]–[13], [14, Ch. 10.7]. Despite its ubiquitous use,
and to the best of our knowledge, the learning approach to
BF decoding presented in this paper is novel. In fact, with
the exception of the recent work in [15], we were unable
to find references that discuss RL for channel coding. Thus,
we briefly review some other iterative decoding algorithms,
based on sequential decision-making steps, for which RL is
applicable. For a comprehensive survey of RL in the general
context of communications, see [16].

II. CHANNEL CODING BACKGROUND

Let C be an (N,K) binary linear code defined by an M×
N parity-check (PC) matrix H, where N is the code length,
K is the code dimension, and M ≥ N − K. The code is
used to encode messages into codewords c = (c1, ..., cN )

ᵀ,
which are then transmitted over the additive white Gaussian
noise (AWGN) channel according to yn = (−1)cn + wn,
where yn is the n-th component in the received vector y =
(y1, ..., yN )

ᵀ, wn ∼ N (0, (2REb/N0)
−1), R , K/N is

the code rate, and we refer to Eb/N0 as the signal-to-noise
ratio (SNR). The vector of hard-decisions is denoted by z =
(z1, ..., zN )

ᵀ, i.e., zn is obtained by mapping the sign of yn
according to +1 → 0, −1 → 1. If the decoding is based
only on the hard-decisions z, this scenario is equivalent to
transmission over the binary symmetric channel (BSC).

A. Decision Making in Iterative Decoding Algorithms

In the following, we briefly review several iterative de-
coding algorithms that involve a decision-making process at
each step.

1) Bit-Flipping Decoding: The general idea behind BF
decoding is to construct a suitable metric that allows the
decoder to rank the bits based on their reliability given the



code constraints [14, Ch. 10.7]. In its simplest form, BF uses
the hard-decision output z and iteratively looks for the bit
that, after flipping it, would maximally reduce the number
of currently violated PC equations. Pseudocode for standard
BF decoding is provided in Alg. 1, where en ∈ FN2 is a
standard basis vector whose n-th component is 1 and all other
components are 0, F2 , {0, 1} and [N ] , {1, 2, . . . , N}.
BF can be extended to general memoryless channels by
including weights and thresholds to decide which bits to
flip at each step. This is referred to as weighted BF (WBF)
decoding, see, e.g., [8]–[13], [14, Ch. 10.8] and references
therein.

2) Residual Belief Propagation: Belief propagation (BP)
is an iterative algorithm where messages are passed along
the edges of the Tanner graph representation of the code.
In general, it is known that sequential message-passing
schedules can lead to faster convergence than standard
flooding schedules where multiple messages are updated in
parallel. Residual BP (RBP) [17] is a particular instance
of a sequential updating approach without a predetermined
schedule. Instead, the message order is decided dynamically,
where the decisions are based on the residual—defined as
the norm of the difference between the current message
and the message in the previous iteration. The residual is
a measure of importance or “expected progress” associated
with sending the message. In the context of decoding, various
extensions of this idea have been investigated under the name
of informed dynamic scheduling [18].

3) Anchor Decoding: Consider the iterative decoding of
product codes1 over the BSC, where the component codes are
iteratively decoded in some fixed order. For this algorithm,
undetected errors in the component codes, so-called miscor-
rections, significantly affect the performance by introducing
additional errors into the iterative decoding process. To
address this problem, anchor decoding (AD) was recently
proposed in [19]. The AD algorithm exploits conflicts due
to miscorrections where two component codes disagree on
the value of a bit. After each component decoding, a de-
cision is made based on the number of conflicts whether
the decoding outcome is indeed reliable. This can lead to
backtracking previous component decoding outcomes and to
the designation of reliable component codes as anchors.

B. Decision Making Through Data-Driven Learning

While the above decoding algorithms appear in seemingly
different contexts, the sequential decision-making strategies
in the underlying iterative processes are quite similar. Deci-
sions are typically made in a greedy fashion based on some
heuristic metric that assesses the quality of each possible
action. As concrete examples for this metric, we have

• the decrease in the number of violated PC equations in
BF decoding, measuring the reliability of bits;

• the residual in RBP, measuring expected progress and
the importance of sending messages;

1Given a linear code C of length n, the product code of C is the set of
all n× n arrays such that each row and column is a codeword in C.

Algorithm 1: Bit-Flipping Decoding
Input: hard decisions z, parity-check matrix H
Output: estimated codeword ĉ

1 ĉ← z
2 while Hĉ 6= 0 and max. iterations not exceeded do
3 V ←

∑M
m=1 sm, where s = Hĉ // no. unsat checks

4 for n = 1, 2, . . . , N do
5 Qn ← V −

∑M
m=1 sm, where s = H(ĉ+ en)

6 update ĉ← ĉ+ en, where n = argmaxn∈[N ]Qn

• the number of conflicts in AD, measuring the likelihood
of being miscorrected.

In the next section, we review MDPs which provide a
mathematical framework for modeling decision-making in
deterministic or random environments. MDPs can be used to
obtain optimal decision-making strategies, effectively replac-
ing heuristics with data-driven learning of optimal metrics.

III. MARKOV DECISION PROCESSES

A time-invariant MDP is a Markov random process S0, S1,
. . . whose state transition probability P (s′|s, a) , P(St+1 =
s′|St = s,At = a) is affected by the action At taken by an
agent based only on knowledge of past events. Here, s, s′ ∈
S and a ∈ A, where S and A are finite sets containing all
possible states and actions. The agent also receives a reward
Rt = R(St, At, St+1) which depends only on the states St,
St+1 and the action At. The agent’s decision-making process
is formally described by a policy π : S → A, mapping
observed states to actions. The goal is to find an optimal
policy π∗ that returns the best action for each possible state in
terms of the total expected discounted reward E [

∑∞
t=0 γ

tRt],
where 0 < γ < 1 is the discount factor for future rewards.

If the transition and reward probabilities are known, dy-
namic programming can be used to compute optimal policies.
If this is not the case, optimal policies can still be discovered
through repeated interactions with the environment, assum-
ing that the states and rewards are observable. This is known
as RL. In the following, we describe two RL algorithms
which will be used in the next sections.

A. Q-learning

The most straightforward instance of RL is called Q-
learning [20], where the optimal policy is defined in terms
of the Q-function Q : S ×A → R according to

π∗(s) = argmax
a∈A

Q(s, a). (1)

The Q-function measures the quality of actions and is for-
mally defined as the expected discounted future reward when
being in state s, taking action a, and then acting optimally.
The key advantage of the Q-function is that it can be
iteratively estimated from observations of any “sufficiently-
random” agent. Pseudocode for Q-learning is given in Alg. 2,
where a popular choice for generating the actions in line 5
is

a =

{
unif. random over A w.p. ε
argmaxaQ(s, a) w.p. 1− ε.

(2)



Algorithm 2: Q-learning
Input: learning rate α, discount factor γ
Output: estimated Q-function

1 initialize Q(s, a)← 0 for all s ∈ S, a ∈ A
2 for i = 1, 2, . . . do
3 initialize starting state s // restart the MDP

4 while s is not terminal do
5 choose action a // ε-greedy (2) or (ε, εg)-goal (14)
6 execute a, observe reward r and next state s′

7 Q(s, a)← (1−α)Q(s, a)+α(r+γmaxa′∈AQ(s′, a′))
8 s← s′

This is referred to as ε-greedy exploration. For any 0 <
ε < 1, this strategy is sufficient to allow Q-learning to
eventually explore the entire state/action space. In the next
section, we also describe an alternative exploration strategy
for our application that can converge faster than ε-greedy
exploration.

To motivate the update equation in line 7 of Alg. 2, we
note that the Q-function can be recursively expressed as

Q(s, a) =
∑
s′

P (s′|s, a)
(
R(s, a, s′) + γmax

a′∈A
Q(s′, a′)

)
.

(3)

This expression forms the theoretical basis for Q-learning
which converges to the true Q-function under certain condi-
tions2. For a more details, we refer the reader to [20], [21].

B. Fitted Q-learning with Function Approximators

For standard Q-learning, one must store a table of |S|×|A|
real values. This will be infeasible if either set is prohibitively
large. The idea of fitted Q-learning is to learn a low-
complexity approximation of Q(s, a) [21]. Let Qθ(s, a) be
an approximation of the Q-function, parameterized by θ.
Fitted Q-learning alternates between simulating the MDP and
updating the current parameters to obtain a better estimate of
the Q-function. In particular, assume that we have simulated
and stored B transition tuples (s, a, r, s′) in a set D. Then,
updating the parameters θ is based on reducing the empirical
loss

LD(θ) =
∑

(s,a,r,s′)∈D

(
r + γmax

a′∈A
Qθ(s

′, a′)−Qθ(s, a)
)2

.

(4)

Pseudocode for fitted Q-learning is provided in Alg. 3, where
gradient descent is used to update the parameters θ based on
the loss (4). It is now common to choose Qθ(s, a) to be a
(deep) neural network (NN), in which case θ are the network
weights and fitted Q-learning is called deep Q-learning.

IV. CASE STUDY: BIT-FLIPPING DECODING

In this section, we describe how BF decoding can be
mapped to an MDP. In general, this mapping involves mul-
tiple design choices that affect the results. We therefore also

2For example, if R(s, a, s′) depends non-trivially on s′, then α must
decay to zero at sufficiently slow rate.

Algorithm 3: Fitted Q-learning
Input: learning rate α, batch size B
Output: parameterized estimate of the Q-function

1 initialize parameters θ and D ← ∅
2 for i = 1, 2, . . . do
3 initialize starting state s // restart the MDP

4 while s is not terminal do
5 choose action a // ε-greedy (2) or (ε, εg)-goal (14)
6 execute a, observe reward r and next state s′

7 store transition (s, a, r, s′) in D
8 s← s′

9 if |D| = B then
10 θ ← θ − α∇θLD(θ) // see (4) for def. of LD
11 empty D

comment on alternative choices and highlight some potential
pitfalls that we encountered during this process.

A. Theoretical Background

We start by reviewing the standard maximum-likelihood
(ML) decoding problem for a binary linear code C ⊆ FN2
over general discrete memoryless channels. The resulting
optimization problem forms the basis for the reward function
that is used in the MDP. To that end, consider a collection
of N discrete memoryless channels described by conditional
probability density functions {PYn|Cn(yn|cn)}n∈[N ], where
cn ∈ F2 is the n-th code bit and yn is the n-th channel
observation. The ML decoding problem can be written as

argmax
c∈C

N∏
n=1

PYn|Cn(yn|cn) = argmax
c∈C

N∑
n=1

(−1)cnλn, (5)

where

λn , ln
PYn|Cn(yn|0)
PYn|Cn(yn|1)

(6)

is the channel log-likelihood ratio (LLR). Equivalently, one
can rewrite the maximization over all possible codewords in
terms of error patterns as

argmax
e : z+e∈C

N∑
n=1

(−1)zn(−1)enλn (7)

= argmax
e : z+e∈C

N∑
n=1

(−1)en |λn| (8)

= argmax
e :He=s

N∑
n=1

(−1)en |λn| (9)

= argmax
e :He=s

N∑
n=1

−en|λn| (10)

where s = Hz is the observed syndrome.
Now, consider a multi-stage process where bit at is flipped

during the t-th stage until the syndrome of the bit-flip pattern
matches s. In this case, the optimization becomes

argmax
τ,a1,...,aτ :

∑τ
t=1 hat=s

τ∑
t=1

−|λat |, (11)



where hn is the n-th column of the parity-check matrix H.
By interpreting −|λat | as a reward, one can see that the ob-
jective function in (11) has the same form as the cumulative
reward (without discount) in an MDP. The following points
are worth mentioning:

• For the BSC, all LLRs have the same magnitude and
(11) returns the shortest flip pattern that matches the
observed syndrome.

• For general channels, (11) returns the shortest weighted
flip pattern that matches the syndrome, where the
weighting is done according to the channel LLRs. In
other words, the incurred penality for flipping bit at is
directly proportional to the reliability of the correspond-
ing received bit.

• If a bit is flipped multiple times, then there must be a
shorter bit-flip sequence with lower cost and the same
syndrome. Therefore, it is sufficient to only consider
flip patterns that contain distinct bits.

B. Modeling the Markov Decision Process

1) Choosing Action and State Spaces: We assume that the
action At encodes which bit is flipped in the received word
at time t. Since there are N possible choices, we simply use
A = {1, 2, . . . , N} , [N ]. The state space S is formed by all
possible binary syndromes of length M . The initial state S0

is the syndrome Hz and the next state is formed by adding
the At-th column of H to the current state. The transition
probabilities P (s′|s, a) therefore take values in {0, 1}, i.e.,
the MDP is deterministic. The all-zero syndrome corresponds
to a terminal state. We also enforce a limit of at most T bit-
flips per codeword. After this, we exit the current iteration
and a new codeword will be decoded.3

Remark 1. For the BSC, we also tried (unsuccessfully) to
learn BF decoding with fitted Q-learning directly from the
channel observations using the state space FN2 .

Remark 2. For the AWGN channel, the state space can be
extended by including the reliability vector r = |y|, similar
to the setup in [6]. In this case, each state would correspond
to a tuple (s, r), where s ∈ FM2 and r remains constant
during decoding. In this paper, we follow a different strategy
for BF decoding over the AWGN channel which relies on
permuting the bit positions based on their reliability and
subsequently discarding the channel LLRs prior to decoding.
This approach is described in Sec. V and does not require
any modifications to the state space.

2) Choosing the Reward Strategy: A natural reward func-
tion for decoding is to return 1 if the codeword is decoded
correctly and 0 otherwise. This would imply that an optimal
policy minimizes the codeword error rate. However, the
reward is only allowed to depend on the current/next state
and the action, whereas the transmitted codeword and its
estimate are defined outside the context of the MDP. Based
on (11) and the discussion in the previous subsection, we

3Strictly speaking, the resulting process is not an MDP unless the time t
is included in the state space.

instead use the reward function

R(s, a, s′) =

{
−c|λa|+ 1 if s′ = 0

−c|λa| otherwise ,
(12)

where c > 0 is a scaling factor. The additional reward for
matching the syndrome is required to prevent the decoder
from just flipping the bits where |λa| is minimal. For
example, it could happen that a single error in position a with
large |λa| matches the syndrome, but instead one chooses to
flip T bits with small absolute LLRs. The scaling factor c is
chosen such that the syndrome-matching reward +1 always
dominates the expected cummulative term −

∑T
t=1 c|λat |. As

an example, for the BSC, c is chosen such that the reward
function becomes

R(s, a, s′) =

{
− 1
T + 1 if s′ = 0

− 1
T otherwise.

(13)

This reward function allows us to interpret optimal BF
decoding as a “maze-playing game” in the syndrome domain
where the goal is to find the shortest path to the all-zero
syndrome. Applying a small negative penalty for each step
is a standard technique to encourage short paths. Another
alternative in this case is to choose a small discount factor
γ < 1.

3) Choosing the Exploration Strategy: Compared to (2),
we propose another exploration strategy as follows. Let e
be the current error pattern, i.e., the channel error pattern
plus any bit-flips that have been applied so far. Then,
with probability εg, we choose the action randomly from
supp(e) , {i ∈ [N ] | ei = 1}, i.e., we flip one of the
incorrect bits. When combined with ε-greedy exploration,
we refer to this as (ε, εg)-goal exploration, where ε, εg > 0
and 0 < ε+ εg < 1:

a =


unif. random over A w.p. ε
unif. random over supp(e) w.p. εg
argmaxaQ(s, a) w.p. 1− ε− εg.

(14)

Remark 3. It may seem that biasing actions towards flipping
erroneous bits leads to a form of supervised learning where
the learned decisions merely imitate ground-truth decisions.
To see that this is not exactly true, consider transmission
over the BSC where the error pattern has weight dmin − 1
(where dmin is the minimum distance of the code) and
the observation is at distance 1 from a codeword c̃. Then,
the optimal decision is to flip the bit that leads to c̃,
whereas flipping an erroneous bit is suboptimal in terms of
expected future reward, even though it moves us closer to
the transmitted codeword c 6= c̃.

4) Choosing the Function Approximator: We use fully-
connected NNs with one hidden layer to represent Qθ(s, a)
in fitted Q-learning. In particular, the NN fθ maps syndromes
to length-N vectors fθ(s) ∈ RN and the Q-function is
given by Qθ(s, a) = [fθ(s)]a, where [·]n returns the n-th
component of a vector and s is the syndrome for state s. The
NN parameters are summarized in Tab. I. In future work, we



TABLE I: Neural network parameters

layer input hidden output

number of neurons M 500 / 1500 N
activation function - ReLU linear

plan to explore other network architectures, e.g., multi-layer
NNs or graph NNs based on the code’s Tanner graph.

V. LEARNED BIT-FLIPPING WITH CODE
AUTOMORPHISMS

Let SN be the symmetric group on N elements so that
π ∈ SN is a bijective mapping (or permutation) from [N ]
to itself.4 The permutation automorphism group of a code
C is defined as PAut(C) , {π ∈ SN |xπ ∈ C,∀x ∈ C},
where xπ denotes a permuted vector, i.e., xπi = xπ(i). The
permutation automorphism group can be exploited in various
ways to improve the performance of practical decoding
algorithms, see, e.g., [22], [23]. In the context of learned
decoders, the authors in [6] propose to permute the bit
positions prior to decoding (and unpermute after) such that
the channel reliabilities are approximately sorted. If the
applied permutations are from PAut(C), the decoder simply
decodes a permuted codeword, rather than the transmitted
one. The advantage is that certain bit positions are now more
reliable than others due to the (approximate) sorting. This
can be advantageous in terms of optimizing parameterized
decoders because of the additional structure that the decoder
can rely on [6].

A. A Permutation Strategy for Reed–Muller Codes

In [6], the permutation preprocessing approach is applied
for Bose–Chaudhuri–Hocquenghem (BCH) codes and per-
mutations are selected from PAut(C) such that the total reli-
abilities of the first K permuted bit positions are maximized,
see [6, App. II] for details. In the following, we propose a
variation of this idea for RM codes. In particular, our goal is
to find a permutation that sends as many as possible of the
least reliable bits to positions {0, 1, 2, 4, . . . , 2m−1} , B.
Recall that the automorphism group of RM(r,m) is the
general affine group of order m over the binary field, denoted
by AGL(m, 2) [24, Th. 24]. The group AGL(m, 2) is the set
of all operators of the form

T (v) = Av + b, (15)

where A ∈ Fm×m2 is an invertible binary matrix and b,v ∈
Fm2 . By interpreting the vector v as the binary representation
of a bit position index, (15) defines a permutation on the
index set {0, 1, . . . , N − 1} and thus on [N ].

A set of vectors {v0,v1, . . . ,vm} is called affinely in-
dependent if and only if the set {v1 − v0, . . . ,vm − v0}
is linearly independent. The binary representations of the
indices in B correspond to the all-zero vector and all unit
vectors of length m. One can verify that they are affinely
independent. The proposed strategy relies on the fact that,

4For a group (G, ◦), we also informally refer to the set G as the group. In
our context, the group operation ◦ represents function composition defined
by (π ◦ σ)(i) = π(σ(i)).

0 5 10 15 20 25 30
0

0.2

0.4

bit position n

p
n

individual crossover probabilities
average

Fig. 1: BSC crossover probabilities after the proposed permutation strategy
for RM(32, 16) at Eb/N0 = 4 dB.

for any given set of m+1 affinely independent bit positions
(in the sense that their binary representation vectors are
affinely independent), there always exists a permutation in
AGL(m, 2) such that the bit positions are mapped to B in
any desired order. In particular, we perform the following
steps to select the permutation prior to decoding:

1) Let π be the permutation that sorts the reliability vector
r = |y|, i.e., rπ satisfies rπi < rπj ⇐⇒ i < j.

2) Find the first m + 1 affinely independent indices for
π (e.g., using Gaussian elimination) and denote their
binary representations by v0,v1, . . . ,vm.

3) The permutation is then defined by (15), where b = v0

and the columns of A are v1 − v0, . . . ,vm − v0.

B. (Approximate) Sort and Discard

For the learned BF decoders over the AWGN channel, our
approach is to first apply the permutation strategy described
in the previous section and subsequently discard the channel
LLRs. From the perspective of the decoder, this scenario
can be modeled as N parallel BSCs, where the crossover
probabilities for the bit positions in B satisfy p0 > p1 >
p2 > p4 > · · · > p2m−1 . This is related to approaches
where channel reliabilities are used to mark highly reliable
and/or unreliable bit positions, while the actual decoding is
performed without knowledge of the reliability values using
hard-decision decoding, see, e.g., [25].

The absolute values of the channel LLRs for the parallel
BSCs used in the reward function (12) are given by

|λn| = log
1− pn
pn

, (16)

where pn is the crossover probability of the n-th BSC.
The individual crossover probabilities can be determined via
Monte Carlo estimation before the RL starts. For example,
Fig. 1 show the expected crossover probabilities after ap-
plying the proposed permutation strategy for RM(32, 16)
assuming transmission at Eb/N0 = 4 dB.

Remark 4. One can estimate the capacity of strategies that
permute the received bits using the reliabilities and then dis-
card them. Fig. 2 shows the estimated information rates for
the proposed strategy obtained via Monte Carlo averaging.
Our results show that a significant fraction of the achiev-
able information rate is preserved, especially for high-rate
codes. For permutations restricted to AGL(m, 2), this is less
effective as the blocklength increases because the fraction of
sorted channels satisfies (m+ 1)/N = (log2(N) + 1)/N .
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VI. RESULTS

In this section, numerical results are presented for learned
BF (LBF) decoders5 for the following RM and BCH codes:
• RM(32, 16) with the standard 16× 32 PC matrix Hstd

and overcomplete 620×32 PC matrix Hoc whose rows
are all minimum-weight dual codewords, see [8], [26]

• RM(64, 42) with the standard 22× 64 PC matrix Hstd

and overcomplete 2604× 64 PC matrix Hoc

• BCH(63, 45) with the standard 18 × 63 circulant PC
matrix Hstd and overcomplete 189×63 PC matrix Hoc

• RM(128, 99) with the standard 29×128 PC matrix Hstd

and overcomplete 10668× 128 PC matrix Hoc

For some of the considered codes, standard table Q-learning
is feasible. For example, RM(32, 16) has |S| = 216 = 65536
and |A| = 32 so the Q-table has |S||A| ≈ 2 · 106 entries.

A. Training Hyperparameters

In the following, we set the maximum number of decoding
iterations to T = 10 and the discount factor to γ = 0.99.
For standard table Q-learning, the (ε, εg)-goal exploration
strategy is adopted with fixed ε = 0.6, εg = 0.3, and
learning rate α = 0.1. For fitted Q-learning based on NNs,
we use ε-greedy exploration where ε is linearly decreased
from 0.9 to 0 over the course of 0.9K learning episodes
(i.e., number of decoded codewords), where the total number
of episodes K depends on the scenario. For the gradient
optimization, the Adam optimizer is used with a batch size
of B = 100 and learning rate α = 3 · 10−5. The training
SNR for both standard Q-learning and fitted Q-learning is
fixed at Eb/N0 = 5 dB for RM(128, 99) and Eb/N0 = 4 dB
for all other codes. In general, better performance may be
obtained by re-optimizing parameters for each SNR or by
adopting parameter adapter networks that dynamically adapt
the network parameters to the SNR [28].

B. Learning Convergence in Q-Learning

We start by comparing the learning convergence of the
proposed exploration strategy (14) to the ε-greedy explo-

5H-matrices and source code for the simulations are available online
at https://github.com/fabriziocarpi/RLdecoding. We first
used our own Tensorflow RL implementation and later switched to RLlib
[27] in order to use multi-core parallelism for training rollouts.
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Fig. 3: Q-learning convergence for RM(32, 16) on the BSC (crossover
prob. 0.0565 corresponding to Eb/N0 = 4 dB) assuming T = 10,
α = 0.1, γ = 1.0, and ε = 0.9 for ε-greedy and ε = 0.6, εg = 0.3
for (ε, εg)-goal.

ration for standard Q-learning assuming RM(32, 16) over
the BSC. In Fig. 3, the obtained performance in terms of
codeword error rate (CER) is shown as a function of the Q-
learning iteration. The shown learning curves are generated
as follows. During Q-learning, we always decode first the
new channel observations (line 3 of Alg. 2) with the current
Q-function without exploration and save the binary outcome
(success/failure). Then, we plot a moving average (window
size 5000) of the outcomes to approximate the CER. It can be
seen that the proposed strategy converges significantly faster
than ε-greedy exploration. We also show a learning curve
for training when a reward of 1 is given only for finding the
transmitted codeword; in this case, however, the process is
not an MDP (see Sec. IV) and the performance can become
worse during training.

C. Binary Symmetric Channel

Fig. 4 shows the CER performance for all considered
scenarios as a function of Eb/N0. We start by focusing
on the “hard-decision” decoding cases, which are equivalent
to assuming transmission over the BSC. Supplementary bit
error rate (BER) results for the same scenarios are shown in
Fig. 5.

1) Baseline Algorithms: As a baseline for the LBF de-
coders over the BSC, we use BF decoding according to
Alg. 1 (see also [8, Alg. II] and [14, Alg. 10.2]) applied to
both the standard and overcomplete PC matrices Hstd and
Hoc, respectively. We also implemented optimal syndrome
decoding for RM(32, 16) and BCH(63, 45). In general, BF
decoding shows relatively poor performance when applied
to Hstd, whereas the performance increases drastically for
Hoc (see also [8], [26]). In fact, for RM(32, 16), standard
BF for Hoc gives virtually the same performance as optimal
decoding and the latter performance curves are omitted from
the figure. This performance increase comes at a significant
increase in complexity, e.g., for RM(32, 16), the overcom-
plete PC matrix has 620 rows compared to the standard PC
matrix with only 16 rows. For the BCH code, there still exists
a visible performance gap between optimal decoding and BF
decoding based on Hoc.

https://github.com/fabriziocarpi/RLdecoding
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Fig. 4: Simulation results for learned BF decoding. In (a), results for standard BF (Alg. 1) applied to Hoc overlap with hard-decision ML and are omitted.
(BF: bit-flipping, WBF: weighted BF, LBF: learned BF (table Q-learning), LBF-NN: LBF with neural networks (fitted/deep Q-learning), s+d: sort and
discard the channel reliabilities, HD ML: hard-decision maximum-likelihood, OSD: ordered statistics decoding)

2) Q-learning: From Figs. 4(a) and (b), it can be seen that
the LBF decoders based on table Q-learning for RM(32, 16)
and BCH(63, 45) converge essentially to the optimal perfor-
mance. For RM(64, 42) in Fig. 4(c), the performance of LBF
decoding is virtually the same as for standard BF decoding
using Hoc, which leads us to believe that both schemes are
optimal in this case. These results show that the proposed RL
approach is able to learn close-to-optimal flipping patterns
given the received syndromes. Note that for RM(128, 99), Q-
learning would require a table with |S||A| ≈ 7 · 1010 entries
which is not feasible to implement on our system.

3) Fitted Q-learning: The main disadvantage of the stan-
dard Q-learning approach is the large storage requirements
of the Q-table. Indeed, the requirements are comparable to
optimal syndrome decoding and this approach is therefore
only feasible for short or very-high-rate codes. Therefore,
we also investigate to what extend the Q-tables can be
approximated with NNs and fitted Q-learning. The number of
neurons in the hidden layer of the NNs is chosen to be 1500
for RM(128, 99) and 500 for all other cases. The achieved
performance is shown in Fig. 4, labeled as “LBF-NN”. For
the RM codes, it was found that good performance can be
obtained using fitted Q-learning using the standard PC matrix
Hstd. The performance loss compared to table Q-learning is
almost negligible for RM(32, 16) and increases slightly for
the longer RM codes. For the BCH code, we found that fitted
Q-learning works better using Hoc compared to Hstd. For
this case, the gap compared to optimal decoding is less than
0.1 dB at a CER of 10−3.

D. AWGN Channel

Next, we consider the AWGN channel assuming that the
reliability information is exploited for decoding.

1) Baseline Algorithms: Ordered statistics decoding
(OSD) is used as a benchmark, whose performance is close to
ML [29]. In this paper, we use order-` processing where ` =
3 in all cases. Furthermore, we employ WBF decoding ac-
cording to [14, Alg. 10.3] using Hoc. Similar to BF decoding

over the BSC, the performance of WBF is significantly better
for overcomplete PC matrices compared to the standard ones
(results for WBF on Hstd are omitted). From Fig. 4, WBF
decoding is within 0.6–1.1 dB of OSD for the considered
codes. We remark that there also exist a number of improved
WBF algorithms which may reduce this gap at the expense
of additional decoding complexity and the necessity to tune
various weight and threshold parameters, see [8]–[13]. For
RM codes of moderate length, ML performance can also be
approached using other techniques [30].

2) Q-Learning: As explained in Sec. V, our approach
to LBF decoding over the AWGN channel in this paper
consists of permuting the bit positions based on r and subse-
quently discarding the reliability values. For the RM codes,
the particular permutation strategy is described in Sec. V.
The performance results for standard Q-learning shown in
Figs. 4(a) and (c) (denoted as “s+d LBF”) demonstrate that
this strategy performs quite close to WBF decoding and
closes a significant fraction of the gap to OSD, even though
reliability information is only used to select the permutation
and not for the actual decoding. For the BCH code, we
use the same permutation strategy as described in [6]. In
this case, however, the performance improvements due to
applying the permutations are relatively limited.

3) Fitted Q-Learning: For the NN-based approximations
of the Q-tables for the sort-and-discard approach, we use the
NN sizes from the previous section for the BSC. In this case,
fitted Q-learning obtains performance close to the standard
Q-learning approach for RM codes. Similar to the BSC, the
performance gap is almost negligible for RM(32, 16) and
increases for the longer RM codes. For RM(128, 99), sort-
and-discard LBF decoding with NNs closes roughly half the
gap between soft-decision ML (approximated via OSD) and
hard-decision ML (approximated via BF on Hoc).

VII. CONCLUSION

In this paper, we have proposed a novel RL framework for
BF decoding of binary linear codes. It was shown how BF
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Fig. 5: Bit error rate (BER) results for the same scenarios as considered in Fig. 4.

decoding can be mapped to a Markov decision process by
properly choosing the state and action spaces, whereas the
reward function can be based on a reformulation of the ML
decoding problem. In principle, this allows for data-driven
learning of optimal BF decision strategies. Both standard
(table-based) and fitted Q-learning with NN function approx-
imators were then used to learn good decision strategies from
data. Our results show that the learned BF decoders can offer
a range of performance–complexity trade-offs.
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