
Thesis for The Degree of Licentiate of Engineering

Choreographies and Cost

Semantics for Reliable

Communicating Systems

Alejandro Gómez-Londoño

Division of Formal Methods
Department of Computer Science & Engineering

Chalmers University of Technology
Gothenburg, Sweden, 2020

Choreographies and Cost Semantics for Reliable Communicating Systems
Alejandro Gómez-Londoño

Copyright ©2020 Alejandro Gómez-Londoño
except where otherwise stated.
All rights reserved.

Department of Computer Science & Engineering
Division of Formal Methods
Chalmers University of Technology
Gothenburg, Sweden

This thesis has been prepared using LATEX.

Printed by Chalmers Reproservice,
Gothenburg, Sweden 2020.

ii

Abstract

Communicating systems have become ubiquitous in today’s society. Unfor-
tunately, the complexity of their interactions makes them particularly prone
to failures such as deadlocked states caused by misbehaving components,
or memory exhaustion due to a surge in message tra�c (malicious or not).
These vulnerabilities constitute a real risk to users, with consequences rang-
ing from minor inconveniences to the possibility of loss of life and capital.
This thesis presents two results that aim to increase the reliability of com-
municating systems. First, we implement a choreography language which
can by construction only describe systems that are deadlock-free. Second,
we develop a cost semantics to prove programs free of out-of-memory er-
rors. Both of these results are formalized in the HOL4 theorem prover and
integrated with the CakeML veri�ed stack.

iii

Acknowledgments

I want to thank the many people that helped make this thesis possible. First,
my supervisor Magnus for allowing me to be a part of the CakeML project,
an endeavor that while challenging has been remarkably enriching thanks
to his guidance and support. To Johannes, for patiently helping me navigate
the often treacherous craft of theorem proving and inspiring me to prove
forward even if it is all trivial at the QED. To my friends and colleagues,
for turning hard days into cheerful ones, and always letting me know when
there is cake upstairs. To my family, for encouraging me to be better with
their nurturing love. And �nally, to my dear partner Elisabet, thank you for
being the person I could always count on, with whom I can always laugh,
cry, or just be myself. ¡Te amo!

v

Contents

Introduction 1
Choreographies . 2
Cost Semantics . 6
Future Work . 11

Bibliography 13

1 An end-to-end veri�ed compiler for a choreography language 15
1.1 Introduction . 17
1.2 A choreography language . 19

1.2.1 Syntax and semantics 19
1.3 Intermediate languages . 23

1.3.1 Endpoint: syntax and semantics 23
1.3.2 Payload: syntax and semantics 25

1.4 Endpoint projection . 26
1.4.1 Phase I: endpoint projection 26
1.4.2 Phase II: remove choice 28
1.4.3 Phase III: Endpoint to Payload 28
1.4.4 Compiler correctness 28

1.5 Compilation into CakeML . 30
1.5.1 Static compiler . 31
1.5.2 Dynamic compiler by example 33

1.6 Related work . 33
1.7 Conclusion . 34
Bibliography . 39

2 Do You Have Space for Dessert? 45
2.1 Introduction . 47
2.2 Overview . 50

2.2.1 Why can generated code exit early? 50
2.2.2 Where are the early exits generated? 50

vii

Contents

2.2.3 At what level of abstraction should the cost semantics
be expressed? . 51

2.2.4 De�nition of is_safe_for_space 51
2.2.5 A note on semantics . 52
2.2.6 Structure of the proofs 53

2.3 DataLang and its semantics . 54
2.3.1 DataLang as an intermediate language 54
2.3.2 DataLang as a cost semantics 57

2.4 Proving soundness of heap cost 61
2.4.1 Proving evaluate-level simulation 61
2.4.2 Notation and invariants 62
2.4.3 Correctness of heap allocation and size_of 64
2.4.4 Lessons learned . 67

2.5 Proving soundness of stack cost 67
2.5.1 Lessons learned . 70

2.6 Top-level compiler theorem with cost 71
2.7 Proving that programs are safe for space 72

2.7.1 Is yes safe for space? . 72
2.7.2 Is yes safe for space, formally? 73
2.7.3 A linear congruential generator 75
2.7.4 List reverse . 77

2.8 Related work . 78
2.9 Conclusion . 80
Bibliography . 83

viii

Introduction

Computers programs are commonly used to implement communicating sys-
tems. From air tra�c controls, to messaging and video conferencing apps,
examples of such systems are abundant in today’s society, and our reliance
on their functionality for both critical and everyday tasks is increasing.

It is well known that computer programs can go wrong, and this is especially
true when interaction between programs is involved, as is the case with com-
municating systems. The complexity that arises from coordinating multiple
components can introduce errors that are unpredictable and hard to spot.
Furthermore, the utility of these systems is based upon the reliability of their
communication and disruptions can lead to the loss of capital, or in extreme
cases, lives.

One way a communicating system can go wrong is when it reaches a state
where multiple components wait on each other inde�nitely without making
any progress; this is referred to as a deadlocked state. Some of the problems
that might lead to such a state are:

(P1) A communication protocol instructs some components to receive a mes-
sage, but does not require another component to send one. Hence,
stopping that part of the system from making any progress.

(P2) A program suddenly runs out of memory and stops sending messages
leaving the rest of the systems waiting.

This thesis consists of two papers that tackle problems P1 and P2. The �rst
paper presents work on a choreography language to de�ne communicating
systems that, by construction, can not deadlock due to communication mis-
matches and therefore addresses P1. The second paper develops a cost se-
mantics for CakeML [15] programs, enabling space-bound reasoning that
can prevent occurrences of P2.

The following subsections introduce both papers in more detail, providing
an overview of their results and how they deal with P1 and P2. This chapter
ends with a description of plans for future work, including work that aims
to bring the results of these two papers together.

1

Introduction

Choreographies

We consider communicating systems where components interact with each
other only through a well-de�ned interface of communication primitives. This
approach allows for well-de�ned boundaries between components, hetero-
geneous system implementations (e.g., across di�erent devices, using mul-
tiple programming languages, or based on various frameworks), and forms
the basis of many fundamental models of concurrency [1, 10, 11, 12, 13]. As
a speci�c example of such a system, consider the process for making a pur-
chasing decision between two buyers and a seller modeled as follows:

Example 1.

1. BUYER1 asks SELLER for the price of an item
2. SELLER gives the prices back to BUYER1
3. BUYER1 shares the price with BUYER2
4. BUYER2 tells BUYER1 if they decide to buy
5. IF they decided to buy
5.1 BUYER1 gives its payment details to SELLER
5.2 SELLER responds with the receipt to BUYER1
6. OTHERWISE nothing happens

In Example 1, a single buyer interacts with the seller; however, both buyers
are involved in the decision to buy or not. An informal system de�nition
like the one presented in Example 1 can be more concretely described us-
ing the following pseudo-language, where A.x -> B.y means component A
sends value x to B, which binds it to its variable y.

Example 2.

BUYER1.item → SELLER.item
SELLER.price → BUYER1.price
BUYER1.price → BUYER2.price
BUYER2.decision → BUYER1.decision
If BUYER1.decision ≡ "buy"
Then BUYER1.payment → SELLER.payment

SELLER.receipt → BUYER1.receipt

This high-level view of a system’s interactions is referred to as a protocol.
Protocols describe how components "talk" to one another, and are meant as
high-level blueprints for concrete system implementations. However, the de-
tails of internal computations are left unspeci�ed—e.g., how SELLER fetches
prices or how BUYER2 decides when to buy.

2

Choreographies and Cost Semantics for Reliable Communicating Systems

To illustrate how one can go from the idea of a protocol to an implemen-
tation, consider the following pseudo-code implementation of BUYER1 and
BUYER2 from our previous example:

Example 3.

send(SELLER,item)
price = receive(SELLER)
send(BUYER2,price)
decision = receive(BUYER2)
If decision ≡ "buy"
Then send(SELLER,payment)

confirmation = receive(SELLER)

BUYER1

price = receive(BUYER1)
If price < 100
Then
send(BUYER1,"buy")

Else
send(BUYER1,"pass")

BUYER2

The structure of the code for each component follows from the protocol ac-
tions in which it is involved, either as a sender or as a receiver. This leaves
only the internal computations unaccounted for. In Example 3, the expres-
sion price < 100 was chosen as the criteria for whether to buy or not, but a
di�erent predicate could have been used while still adhering to the protocol.

It is however not a trivial task to correctly implement or even de�ne a pro-
tocol; this is perhaps best illustrated by attempting to implement SELLER as
follows:

Example 4.

item = receive(BUYER1)
price = lookupPrice(item)
send(BUYER1,price)
// ??

SELLER

payment = receive(BUYER1)
send(BUYER1,"ok")

Option 1

// Do nothing

Option 2

From the protocol de�ned in Example 1, the actions of SELLER are unambigu-
ous up until step 4. However, once BUYER1 and BUYER2 make their decisions
it is unclear what SELLER should do. In the �rst option (from Example 4) pay-
ment information is expected to arrive from BUYER1, but there is no guaran-

3

Introduction

tee of the purchasing decision being a�rmative, in which case SELLER might
never get a response and wait forever. Similarly, in the second option, if
BUYER1 relays the payment information, it will never receive a con�rmation
from SELLER. This mismatch is due to an inconsistency in our original pro-
tocol de�nition, since SELLER does not have enough information at hand to
follow the actions of the other components. These kinds of errors can be
avoided by using a protocol language with well-de�ned semantics (see, e.g.,
Briais and Nestmann [6]) that only accepts "good" protocols, as opposed to
the informal de�nitions used in Examples 1 and 2.

Unfortunately, the implementation of a consistent protocol can still go wrong
if translation or computation errors are present [9]. Suppose, for example, the
implementation of SELLER mistakenly performed all communications with
BUYER2 instead of BUYER1 (a single character typo); in this scenario, all com-
ponents will grind to a halt, and no further actions will take place in the
system. Errors like these can be addressed by automating the majority of the
protocol translation, leaving only the internal computations to be �lled-in.
Nevertheless, steps in-between communications can also fail in ways that af-
fect the system as a whole. If a function (say lookupPrice in Example 4) does
not terminate or returns an incorrect value (e.g., -1, 0, NaN), this might lead to
failures down the line which in turn leads to actions not being executed and
the system reaching a failure state—possibly deadlock. It is a non-trivial task
to prevent these types of failures, and it goes well beyond what informal pro-
tocols typically consider. Still, it is paramount for a reliable communicating
system to mitigate such errors as much as possible.

Choreographies, as introduced by Carbone et al. [7, 8], are languages for
de�ning communicating systems that address some of the issues mentioned
before. First, a choreography de�nes a global protocol for all the compo-
nents of the system alongside with their internal computations; this allows
for entirely automated translations—by a process called projection—that by
construction avoids mismatches between the speci�cation and its implemen-
tation. Second, inconsistent protocols are ruled out by the semantics and
a "projectability" criterion. These two mechanisms ensure all valid chore-
ographies generate protocol-compliant code that does not get stuck and can
always progress according to the protocol—this last property is known as
deadlock-freedom.

An improved version of our running example can be de�ned using a chore-
ography as follows:

4

Choreographies and Cost Semantics for Reliable Communicating Systems

Example 5.

Let item@BUYER1 = "Cake" in
BUYER1.item → SELLER.item
Let price@SELLER = lookupPrice(item) in
SELLER.price → BUYER1.price
BUYER1.price → BUYER2.price
Let decision@BUYER2 =

If price < 100
Then "buy"
Else "pass"

in
BUYER2.decision → BUYER1.decision
If BUYER1.decision ≡ "buy"
Then BUYER1 → SELLER[T]

Let payment@BUYER1 = "<cc info>" in
BUYER1.payment → SELLER.payment
Let receive@SELLER = "Purchase No: <XYZ>" in
SELLER.receipt → BUYER1.receipt

Else BUYER1 → SELLER[F]

Here Let v@p = expr in binds the result of the internal computation expr to
variable v, in the context of component p. Moreover, the selection primitive
p →q[b] communicates to component q that the branch b has been selected
by p—a more formal de�nition can be found later in 1.2. By using choreogra-
phies to de�ne our original example, we can provide a single global descrip-
tion that is concrete enough to generate implementations for all components
directly. Furthermore, the ambiguity in the original version of the protocol
(Example 2) is removed by communicating BUYER1’s branch choice to SELLER

using a selection primitive, which ensures projectability.

The �rst paper in this thesis presents the implementation of a choreography
language and, to the best of our knowledge, the �rst mechanised end-to-end
proof of correctness of a projection function. The main contributions of this
paper are:

• A formalization of a choreography language semantics with machine-
checked proofs of con�uence and deadlock-freedom.

• A projection function that leverages the characteristics of multiple in-
termediate languages to facilitate the machine-checked proof of se-
mantics correspondence between choreographies and our target lan-
guage, CakeML.

5

Introduction

• A novel end-to-end result stating each component in the choreogra-
phy will follow the global protocol as long as all other components are
present and correctly perform their function. Additionally, this result
extends to machine code thanks to the CakeML veri�ed stack.

Statement of Contribution. For this paper, I contributed to the de�nition
of the top-level choreography language and semantics, and was involved in
the development of proofs for various properties (e.g., congruence correspon-
dence, source level deadlock-freedom). Additionally, I was the main contrib-
utor to the implementation and veri�cation of the projection function. This
paper was in collaboration with Johannes Åman Pohjola, James Shaker, and
Michael Norrish.

Cost Semantics

A program’s space consumption is as relevant to its utility as the functional
correctness of its implementation. Despite appearances to the contrary in
high-level language semantics, programs only have a �nite amount of mem-
ory available to them; the use of this resource has a direct impact on whether
the programs will be able to execute their function correctly.

Consider the implementation of yes, a program whose expected behaviour is
to prints the string "yes" forever. If, at any point during execution, memory
is exhausted, then the program will exit and, as a result, will not print "yes"
inde�nitely, which is contrary to what the programmer intended. This is the
reason why any correct implementation of yes must ensure that su�cient
memory is available so it can indeed run inde�nitely.

Example 6.

1 let
2 fun yes t = (print "yes\n"; yes t)
3 in
4 yes ()
5 end;

The code in Example 6 presents a valid implementation of yes in an SML-like
language. However, a non-terminating recursive function like the one shown
above could be a source of concern regarding its space use. Performing a
function call often requires the program to store, to the call-stack, the current
environment and return location in order to resume appropriately after the

6

Choreographies and Cost Semantics for Reliable Communicating Systems

Figure 1

fun yes t = (yes t; print "yes\n")

fn1

...
fnk

Memory

call-stack
yes ()

STACK

yes ()

yes (); print "yes\n"

STACK

yes ()

yes ()

yes (); yes(); ...; print "yes\n"

STACK

yes ()

yes ()

...

OUT-OF-MEMORY

called function returns. Therefore, if a program recursively calls a function
without giving a result, as seems to be the case in Example 6, the call-stack’s
growth would eventually exhaust the memory. Thankfully, when a recursive
call occurs at the end of a function, nothing needs to be stored to the call-
stack, since there is nothing left to be done for the current function. Hence,
the original caller function can be directly resumed—a technique called tail-
recursion. The yes implementation shown above exhibits a tail-recursive
structure; thus, memory is not exhausted despite the unbounded number of
recursive calls. As a comparison, replacing line 2 (in Example 6) with fun yes

t = (yes t; print "yes\n") fails to print “yes” and runs out of memory
due to lack of tail-recursion (see Figure 1).

Answering the question whether a given program might runs out of memory
during execution requires some compilation and runtime considerations. At
�rst glance, the structure of a program provides good evidence of its mem-
ory consumption, but, other factors can sway the actual result. Consider the
following two implementations of a program that computes the sum of func-
tion foo applied to numbers 0 to 10000000 (107) —where foo is any function
from int to int.

7

Introduction

Example 7.

// Using a list
let
fun bar1 0 = []
| bar1 n = foo n :: bar1 (n - 1)

in foldl (op +) 0 (bar1 10000000)
end

// Using an accumulator
let
fun bar2 0 x = x
| bar2 n x = bar2 (n-1) (x + foo n)

in bar2 10000000 0
end

In the �rst implementation (bar1), the result is generated by traversing a list
of 10000000 applications of foo and adding each element. In contrast, the
second example (bar2) accumulates intermediate results on each foo appli-
cation. Initially, it would appear that bar1’s use of a large list would result
in a higher memory footprint than that of bar2, which only uses an accu-
mulator argument; the intuition being that representing 10000000 elements
ought to take more space than just one. However, looks can be deceiving, and
while this observation holds for SML-like languages where arguments are
fully evaluated—hence, represented in memory—before function calls, it does
not hold for languages with on-demand argument consumption like Haskell.
Furthermore, compiler optimizations could take bar1’s code and transform
it into a structure similar to that of bar2, modifying its space consumption
completely. Other aspects, like language design or underlying architecture,
could further complicate reasoning about memory costs. Hence, intuition
will only take us so far, and a formal approach might be more appropriate.

The space cost of a program is the highest memory consumption required dur-
ing its execution. Therefore, if it exceeds the available space, the program will
run out of memory. The formal measurement of a program’s space consump-
tion can be done through a cost function, which determines the amount of
memory being used by the program at a given point. Hence, if one can show
that this function never goes above some bound m, it follows that running
the program with space greater or equal to m should not result in an out-of-
memory error. A semantics with a concrete memory model can be used to
perform such reasoning by implementing the corresponding cost function—
in what is known as a cost semantics [2]—which in turn can be used to prove
a concrete bound exists.

8

Choreographies and Cost Semantics for Reliable Communicating Systems

Figure 2

DATA

obj1

obj2

obj3

val1

val2

val3

M1

DATA

obj1

obj3

val1

val2

M2

Garbage collection

SIZE1

SIZE2

SIZE1 > SIZE2

Used
Unsed

simple_size_of

A cost function essentially measures the size of the data used by the program;
thus, a simple implementation (simple_size_of) could just add the sizes of all
objects currently in memory. However, in the presence of a garbage collector
(GC), not all objects in memory are relevant for the measurement of space
cost. Speci�cally, unused or unreachable objects can not exhaust a program’s
memory, as they are preemptively removed by a GC pass before an out-of-
memory error can occur; thus, they are indistinguishable to free space from
a space cost perspective. Therefore, when a GC is available, simple_size_-
of’s measurement is not well suited for space-bound reasoning, as it includes
objects that could have been safely ignored.

reachable_size_of (Figure 3) improves on simple_size_of by only consid-
ering reachable objects; that is, objects that are being used by the program,
and thus can be reached from global constants, local values of functions in
the call-stack, or (recursively) other reachable objects. This approach often
provides a better approximation than that of simple_size_of. Nonetheless,
due to data aliasing—multiple pointers referring to the same data—objects
stored in memory might be counted multiple times; thus, the traversal of
reachable data needs to account for this to be e�ective.

Previous works on space cost semantics have targeted either languages with-
out a GC [4], or only part of a larger compiler [5]. The second paper in
this thesis presents a cost semantics that can be used to prove that a given
CakeML program does not run out of memory, which, to the best of our
knowledge, is the �rst time this result has been obtained for a garbage col-

9

Introduction

Figure 3

reachable_size_of

DATA

STACK

obj1

obj2

obj3

val1

val2

val3

M

duplication

lected language. The approach presented addresses common pitfalls in the
following ways:

• The cost semantics is de�ned at an intermediate language of the CakeML
compiler, which provides two main advantages. First, since most opti-
mizations have already happened by that stage, the cost function does
not need to account for optimizations. Second, the memory model is
closer to the machine representation; thus allowing the cost semantics
to be more concrete.

• The cost function provides a tight approximation of memory consump-
tion by only considering reachable objects.

• Data aliasing is mitigated by marking every created value with a times-
tamp; this way, "seen" timestamps can be recorded as the reachable
data is traversed and previously seen values can be ignored.

Statement of Contribution. For this paper, I worked on the addition of
timestamps to the CakeML intermediate language DataLang, as well as, the
de�nition and proof of soundness of a cost semantics for DataLang programs.
Furthermore, I worked on the implementation and veri�cation of two com-
plete examples, the yes program, and a linear congruential generator. The

10

Choreographies and Cost Semantics for Reliable Communicating Systems

other authors on this paper are Johannes Åman Pohjola, Hira Taqdees Syeda,
Magnus Myreen, and Yong Kiam Tan.

Future Work

The results of our �rst paper can be extended by increasing the expressive-
ness and usability of our choreography language by including convenience
primitives and a more streamlined syntax. Likewise, the work described in
our second paper can be extended by the development of proof automation
to further facilitates space-bound reasoning for CakeML programs.

Finally, the two papers presented in this thesis aim to improve the level of
reliability that can be achieved in a communicating system, and as such,
despite their di�erent approaches, they can be combined to provide even
stronger assurances. Concretely, the deadlock-freedom guarantees provided
by choreographies assume that each component is present and functions cor-
rectly. Space-bound reasoning can be used in conjunction with other features
of the CakeML veri�ed stack [3, 14]—the target language of our projection
function—to guarantee that the projected components do not stop respond-
ing due to an out-of-memory error and thus can perform their task correctly.

11

Bibliography

[1] G. A. Agha. ACTORS - a model of concurrent computation in distributed systems.
MIT Press series in arti�cial intelligence. MIT Press, 1990. ISBN 978-0-
262-01092-4.

[2] R. M. Amadio, N. Ayache, F. Bobot, J. P. Boender, B. Campbell, I. Garnier,
A. Madet, J. McKinna, D. P. Mulligan, M. Piccolo, R. Pollack, Y. Régis-
Gianas, C. Sacerdoti Coen, I. Stark, and P. Tranquilli. Certi�ed complex-
ity (cerco). In U. Dal Lago and R. Peña, editors, Foundational and Practi-

cal Aspects of Resource Analysis, pages 1–18, Cham, 2014. Springer Interna-
tional Publishing.

[3] J. Åman Pohjola, H. Rostedt, and M. O. Myreen. Characteristic formulae
for liveness properties of non-terminating cakeml programs. In Interactive

Theorem Proving (ITP). LIPICS, 2019.

[4] F. Besson, S. Blazy, and P. Wilke. A concrete memory model for com-
pcert. In Interactive Theorem Proving, pages 67–83, Cham, 2015. Springer
International Publishing.

[5] F. Besson, S. Blazy, and P. Wilke. Compcerts: A memory-aware veri�ed
c compiler using a pointer as integer semantics. Journal of Automated

Reasoning, 63(2):369–392, Aug 2019.

[6] S. Briais and U. Nestmann. A formal semantics for protocol narrations.
Theor. Comput. Sci., 389(3):484–511, 2007. doi: 10.1016/j.tcs.2007.09.005. URL
https://doi.org/10.1016/j.tcs.2007.09.005.

[7] M. Carbone and F. Montesi. Deadlock-freedom-by-design: multiparty
asynchronous global programming. In The 40th Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL ’13, Rome,

Italy - January 23 - 25, 2013, pages 263–274, 2013. doi: 10.1145/2429069.
2429101. URL https://doi.org/10.1145/2429069.2429101.

13

https://doi.org/10.1016/j.tcs.2007.09.005
https://doi.org/10.1145/2429069.2429101

Bibliography

[8] M. Carbone, K. Honda, and N. Yoshida. Structured communication-
centred programming for web services. In Programming Languages and

Systems, 16th European Symposium on Programming, ESOP 2007, Held as Part

of the Joint European Conferences on Theory and Practics of Software, ETAPS

2007, Braga, Portugal, March 24 - April 1, 2007, Proceedings, pages 2–17, 2007.
doi: 10.1007/978-3-540-71316-6_2. URL https://doi.org/10.1007/978-

3-540-71316-6_2.

[9] Z. Durumeric, F. Li, J. Kasten, J. Amann, J. Beekman, M. Payer, N. Weaver,
D. Adrian, V. Paxson, M. Bailey, et al. The matter of heartbleed. In
Proceedings of the 2014 conference on internet measurement conference, pages
475–488. ACM, 2014.

[10] C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21
(8):666–677, 1978. doi: 10.1145/359576.359585. URL https://doi.org/10.

1145/359576.359585.

[11] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes
in Computer Science. Springer, 1980. ISBN 3-540-10235-3. doi: 10.1007/3-
540-10235-3. URL https://doi.org/10.1007/3-540-10235-3.

[12] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes,
I. Inf. Comput., 100(1):1–40, 1992. doi: 10.1016/0890-5401(92)90008-4. URL
https://doi.org/10.1016/0890-5401(92)90008-4.

[13] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, II.
Inf. Comput., 100(1):41–77, 1992. doi: 10.1016/0890-5401(92)90009-5. URL
https://doi.org/10.1016/0890-5401(92)90009-5.

[14] A. Sandberg Ericsson, M. O. Myreen, and J. Åman Pohjola. A veri�ed
generational garbage collector for CakeML. J. Autom. Reasoning, 63(2):
463–488, 2019. doi: 10.1007/s10817-018-9487-z.

[15] Y. K. Tan, M. O. Myreen, R. Kumar, A. Fox, S. Owens, and M. Norrish.
The veri�ed CakeML compiler backend. Journal of Functional Programming,
29, 2019.

14

https://doi.org/10.1007/978-3-540-71316-6_2
https://doi.org/10.1007/978-3-540-71316-6_2
https://doi.org/10.1145/359576.359585
https://doi.org/10.1145/359576.359585
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1016/0890-5401(92)90009-5

1
An end-to-end verified compiler

for a choreography language

Johannes Åman Pohjola

Alejandro Gómez-Londoño

James Shaker

Michael Norrish

A
bstract. Choreographies are a way of describing communicating

systems as global programs, that o�er several strong properties
such as deadlock freedom, by construction. A choreographic program
can be compiled into multiple endpoints, that when combined, exhibit
the same behaviour as the original program. In this paper, we present a
veri�ed compiler for a choreography language. Its machine-checked,
end-to-end proof of correctness ensures all generated endpoints ad-
here to the system description, preserving the top-level communication
guarantees along the way. This work uses the veri�ed CakeML com-
piler and HOL4 proof assistant, allowing for concrete executable im-
plementations and statements of correctness at the machine code level
for multiple architectures.

1.1 Introduction

A choreography is a global description of a communicating system, written
in a style reminiscent of the Alice→ Bob notation for protocol descriptions.
Compared to the more traditional approach of writing separate programs for
every Alice and Bob that participates, the choreographic approach has the
advantage that it is impossible to write a program with a communication mis-
match. In particular, deadlock freedom holds by construction. A procedure
called endpoint projection compiles the choreography into separate programs
for each endpoint, such that their parallel composition implements the global
behaviour.

In this paper, we present a compiler for a choreography language with a
machine-checked, end-to-end proof of correctness. That is, we create an en-
vironment based on the HOL4 interactive theorem prover [22] where pro-
grammers can write choreographies. The programmer can, at the proverbial
push of a button, generate executable code for each endpoint, along with a
proof that the endpoints are correctly compiled down to the machine-code
level.

Pen-and-paper correctness proofs of endpoint projection in various settings
abound [5, 8, 16, 21], but ours is, to the best of our knowledge, the �rst
machine-checked proof. We believe ours is also the �rst where theory and
practice coincides: the compiler we prove theorems about and the compiler
that runs is the same object—there is no gap to mind.

Our compiler is structured into four phases. The �rst step is endpoint projec-
tion, where the global choreography is projected into a parallel composition
of sequential programs implementing each endpoint, expressed in a process
algebra we call Endpoint. Second, the Endpoint primitives for internal and
external choice are encoded using send and receive. Third, Endpoint is com-
piled to a second process algebra, Payload. While messages in Endpoint can
be arbitrarily large, messages in Payload have a �xed size. This step intro-
duces a protocol that divides long messages into chunks, thus accounting

17

1. An end-to-end veri�ed compiler for a choreography language

for the fact that real communication protocols have bounds on message size,
without burdening the application programmer with the details. The fourth
and �nal compilation phase compiles Payload’s endpoints to CakeML [14], a
sequential, functional programming language with a veri�ed compiler that
guarantees semantics preservation down to the level of machine code.

Composing the compiler correctness results for each phase, we show that
the deadlock freedom of the choreography language carries over to the com-
piler output: the generated CakeML code never diverges or aborts with a
runtime error. By the CakeML compiler correctness theorem, neither does
the machine code (unless it runs out of memory).

The CakeML code is parameterised on primitives for sending and receiv-
ing messages, and we assume that these actions have the same semantics as
the corresponding Payload primitives. This means we are communication-
backend agnostic: the same code is used irrespectively of whether the com-
munication happens via (say) TCP/IP, MPI, or the operating system’s API
for inter-process communication (IPC). Like other choreography languages,
our deadlock freedom guarantee depends on the rather strong assumptions
implicit in the operational semantics: the backend stays live, and messages
will never be lost in transit. In practice, our theorems are only as good as the
backend’s ability to abide by this.

Therefore, we implement a backend where communication is through IPC
between user processes running on seL4 [13], a formally veri�ed operating
systems microkernel. Hence there is strong evidence, in the form of machine-
checked proofs of functional correctness of the kernel [13] and the delivery
guarantees of the component platform [7], that this backend is up to the task,
even though we do not connect our proofs with theirs.

On a high level, our motivation for this work is to build a bridge between con-
currency theory and systems veri�cation. The former abounds with beautiful
high-level speci�cation formalisms and reasoning techniques for communi-
cating systems; the latter with detailed proofs about low-level computing in-
frastructure such as compilers, language runtimes and operating systems. By
joining these worlds, we can have high-level descriptions of communicating
systems with guarantees that reach down to the low-level implementation.

All de�nitions and proofs in this paper are mechanised in HOL4 [22] and
available online.1

1https://github.com/CakeML/choreo/

18

https://github.com/CakeML/choreo/

1.2. A choreography language

1.2 A choreography language

In this section we introduce a simple choreography language that can be used
to concretely describe a communicating system in terms of the messages its
nodes (known as endpoints) exchange. To create an intuition of how chore-
ographies operate, we consider a common situation in component-based sys-
tems: a producer wishes to send a sequence d̃ of messages to a consumer, but
the consumer is only willing to receive messages of a certain form. There-
fore, a �lter that discards unwanted messages is inserted between them.

Example 8 (Message �lter).

1. for d ∈ d̃ do
2. let v@producer = d in
3. producer.v −> filter.temp;
4. let test@filter = test(temp) in
5. if test@filter then
6. filter −> consumer[>];
7. filter.temp −> consumer.v
8. else filter −> consumer[⊥]

For each message d ∈ d̃, the consumer binds d to its local variable v (line 2).
The consumer then communicates the contents of v to the filter which stores
it locally in temp (line 3). The filter computes test(temp) (line 4). If test(temp) is
true (line 5), the filter informs the consumer that a message is coming (line 6),
and �nally forwards the contents of temp to the consumer (line 7). Otherwise,
the filter informs the consumer that a message was dropped (line 8).

This example highlights two important features of choreographies. First,
they capture both the concrete behaviour of its participants and a global view
of the communication occurring between them. That is, interactions between
endpoints are presented together with their internal computations—e.g., test.
This is what allows individual endpoints to be translated into sequential pro-
grams. Second, communication mismatches are impossible by construction,
since the interaction primitives captures both sending and receiving: if no
message is forthcoming, the consumer will never be stuck waiting for one.

1.2.1 Syntax and semantics

Our language is very similar to Core Choreographies [5], but features arbi-
trary local computation and asynchronous communication. The main datatype

19

1. An end-to-end veri�ed compiler for a choreography language

under consideration is strings, or to be precise, �nite sequences of bytes.
Strings are used as endpoint names (pi), variable names (vi), and as the con-
crete data that gets bound to variables and transmitted between endpoints
(d). The use of such a concrete representation keeps the language simple
and allows for both low-level optimisations (see subsection 1.3.2) and the en-
coding of complex data through marshalling. Let ε denote the empty string,
and + denote concatenation of strings. dn,m denotes the substring of d that is
obtained by taking m of its characters, starting from the n:th character, and
dn... denotes the su�x of d obtained by dropping the �rst n characters. The
booleans (ranged over by b) are written > and ⊥. When we use booleans
where strings are expected, we tacitly identify > with [0x01], and ⊥ with
[0x00]. We use a to range over the union of strings and booleans, and f to
range over functions of type string∗→ string.

De�nition 1 (Choreography syntax).
Choreographies, ranged over by C, are inductively de�ned by the grammar:

C ::= p1.v1 −> p2.v2;C (com) p1 −> p2[b];C (sel)

if v@p then C1 else C2 (if) let v@p = f (ṽ) in C (let)

0 (nil)

The pre�x (com) sends the data bound to variable v1 at endpoint p1 to end-
point p2 which stores it in variable v2, (sel) communicates the selection of a
branch from p1 to p2, (if) branches over the value in variable v at process
p, and (nil) denotes the empty choreography. Finally, (let) takes all values
bound to the variables ṽ at endpoint p and applies them as arguments to
the function. The result is then stored in v. Note that we do not commit to
any particular syntax for functions; rather, we take f to be a function in the
meta-language in which the choreography language is de�ned. In our case,
the meta-language is higher-order logic (HOL). Hence our syntax is only con-
cerned with interaction and branching of endpoints, o�oading computation
to HOL. This �exibility is convenient for specifying open systems, or sys-
tems with legacy components: the internal behaviour of an endpoint that we
have no control over can be modelled by functions that are non-computable,
underspeci�ed, or even completely uninterpreted, and the compiler can ig-
nore such endpoints for code generation. For endpoints that we do intend
to project, we require that the f ’s used in their let-bindings are “su�ciently
code-like”—otherwise, code generation will fail. For example, functions with
Hilbert choice, sets or quanti�ers are not supported.

20

1.2. A choreography language

We do not (yet) have a looping construct—the for loop in Example 8 is syn-
tactic sugar for the loop body iterated |d̃| times.

Unlike most presentations of choreography languages, we use a labelled struc-
tured operational semantics instead of a reduction semantics with auxiliary
equivalence relations to reorder actions; this greatly simpli�es mechanised
inductive proofs.

De�nition 2 (Labels).
Labels, ranged over by α,β, are de�ned as follows:

α,β ::= p1.v1 −> p2.v2 (lcom) p1 −> p2[b] (lsel)

let v@p = ṽ (llet) τp (ltau)

The operational semantics is inductively de�ned by the rules in Tables 1.1–
1.3. Transitions are labelled—using De�nition 2— to indicate both the action
being performed (upper α), and the trace (lower l) of deferred asynchronous
actions α needs to perform. We will explain the latter mechanism later in this
section. We refer to both labels and pre�xes as actions, since they directly
correspond to all operations that can be performed in the language. A store

(s) is a partial function string × string ↪→ string representing a global view
of the endpoints’ variable binding environment: s(p,v), if de�ned, denotes
the value bound to v in p’s binding environment. We opted for an explicit
binding environment instead of substitution-based semantics to facilitate the
proof e�ort and remain close to the the target language (see section 1.5).

De�nition 3 (Label equivalence). Label equivalence, written ', is the small-

est equivalence on sequences of labels that is pre�x-closed, su�x-closed, and

satis�es the following rule (permitting exchange of labels mentioning disjoint

processes):

fp(α)∩ fp(β) = ∅
[α,β] ' [β,α]

The �rst set of rules, given in Table 1.1, deal with the behaviour of the syn-
tactic constructions introduced in De�nition 1, where all rules follow the
intuition previously presented.

Our language uses non-blocking, asynchronous communication. Hence, a
sender process participating asynchronously in an interaction should be able

21

1. An end-to-end veri�ed compiler for a choreography language

Com
s(p1,v1) = d p1 , p2

sB p1.v1 −> p2.v2;C
p1.v1−>p2.v2−−−−−−−−−−→

ε
s[(p2,v2) := d]BC

Sel
p1 , p2

sB p1 −> p2[b];C
p1−>p2[b]
−−−−−−−−→

ε
sBC

Let
s(p, ṽ) = d̃

sB let v@p = ṽ in bp2;C
let v@p=ṽ
−−−−−−−−−→

ε
s[(̃p,v) := d̃]BC

If
(s(p,v) =>∧ i = 1)∨ (s(p,v) ,>∧ i = 2)

sB if v@p then C1 else C2
τp
−−→
ε
sBCi

Table 1.1: Choreography semantics, I: behavioural rules

to perform further actions before the message has arrived at the receiver.
Table 1.2 captures this behaviour by allowing any action α to occur before
other interactions, provided only the sender process is present in α. A trace
of every interaction being thus deferred is kept to ensure the consistency
between asynchrony and concurrency rules, speci�cally (If-S). Here fp(α)
denotes the endpoint names occurring in α, and wv(α) denotes the set of
variables written to by α.

Finally, concurrency is handled by swapping rules (see Table 1.3) allowing the
actions of disjoint sets of processes to be performed in any order regardless
of their location in the choreography’s structure. Rules (Com-S), (Sel-S), and
(Let-S) apply the inner action α over their corresponding outer actions as
long as the processes involved in each are disjoint. Moreover, (If-S) allows
action α, which does not refer to process p, to occur on both branches of an if
statement, with the added restriction that the traces l and l′ of asynchronous
deferrals be equivalent under De�nition 3. This constraint guarantees that
regardless of the choice of branch, the asynchronous actions that need to
be deferred in order to perform α are the same for each of the processes
involved, implying that α is independent of the branching in p.

We prove that the resulting semantics is locally con�uent, and at least as ex-
pressive as a similar semantics with structural congruence instead of swap-

22

1.3. Intermediate languages

Com-A

sBC
α−→
l
s′ BC′

p1 ∈ fp(α) p2 < fp(α) wv(α) , (v1,p1)

sB p1.v1 −> p2.v2;C
α−−−−−−−−−−−−−→

(p1.v1−>p2.v2)::l
s′ B p1.v1 −> p2.v2;C′

Sel-A
sBC

α−→
l
s′ BC′ p1 ∈ fp(α) p2 < fp(α)

sB p1 −> p2[b];C
α−−−−−−−−−−−→

(p1−>p2[b])::l
s′ B p1 −> p2[b];C′

Table 1.2: Choreography semantics, II: asynchrony rules

ping rules. Additionally, to facilitate some results, a functional big-step ver-
sion [19] of the semantics was developed and proven equivalent.

1.3 Intermediate languages

This section introduces the intermediate languages Endpoint and Payload
used by our compiler. They are process algebras designed to make for conve-
nient targets for endpoint projection, and also convenient source languages
for CakeML code extraction. Therefore, they inherit many design decisions
from our choreography language: we eschew named channels in favour of
explicit point-to-point communication, and the only kind of data passed is
strings. Because the intent is to generate veri�ed code per-endpoint in a se-
quential language, we adopt a two-layer syntax: the endpoint layer is purely
sequential and represents the code that gets executed in a single endpoint,
and the network layer is a parallel composition of endpoints, each with its
own name, queue and binding environment.

1.3.1 Endpoint: syntax and semantics

A queue, ranged over by q, is a function string → string∗. The intuition is
that q(p) denotes the sequence of messages, from �rst to last, received from
p but not yet processed. We let q+ (p,a) denote q with a appended to the end
of q(p), and q − p denote q with the �rst element of q(p) removed; if q(p) is
empty, q − p is unde�ned.

23

1. An end-to-end veri�ed compiler for a choreography language

If-S
sBC1

α−→
l
s′ BC′1 sBC2

α−→
l′
s′ BC′2 l ' l′ p < fp(α)

sB if v@p then C1 else C2
τp
−−→
l
s′ B if v@p then C′1 else C′2

Com-S
sBC

α−→
l
s′ BC′ p1,p2 < fp(α)

sB p1.v1 −> p2.v2;C
α−→
l
s′ B p1.v1 −> p2.v2;C′

Sel-S
sBC

α−→
l
s′ BC′ p1,p2 < fp(α)

sB p1 −> p2[b];C
α−→
l
s′ B p1 −> p2[b];C′

Let-S
sBC

α−→
l
s′ BC′ p < fp(α)

sB let v@p = f (ṽ) in C
α−→
l
s′ B let v@p = f (ṽ) in C′

Table 1.3: Choreography semantics, III: swapping rules

An environment e is a partial function from variable names to values.

De�nition 4 (Endpoint syntax).

P ,Q := pv.P (output)

p(v).P (input)

p⊕ b.P (internal choice)

p&{> : P ,⊥ :Q} (external choice)

if v then P else Q (if)

let v = f (ṽ) in P (let)

0 (nil)

N := N1 |N2 (parallel)

(p,e,q)B P (endpoint)

0 (nil)

24

1.3. Intermediate languages

De�nition 5 (Endpoint labels). The labels of Endpoint are of kind

p1→ p2 : d (send from p1 to p2) p2← p1 : d (receive) τ (internal)

De�nition 6 (Endpoint semantics). The semantics of Endpoint is inductively

de�ned by the rules in Table 1.4.

The If and Let rules are the obvious counterparts to the corresponding rules
of the choreography language, and the Com and Par rules are standard. pv.P
represents an endpoint ready to send the contents of variable v to p, using
the Send rule; the Enqeue rule allows a message thus sent to arrive in p’s
queue. p(v).P denotes a process ready to dequeue a message from its queue
originating from p, and bind the contents of the message to the variable v
(Deqeue); if there is no message from p, the endpoint waits until one arrives
before acting. Similarly, p⊕ b.P represents an endpoint ready to tell process
p that it has made a choice, and chosen the b-branch. The corresponding
IntChoice rule interacts with Enqeue to add the choice to b’s message queue.
p&{> : P ,⊥ :Q} represents a process waiting for p to communicate its choice
of branch. If it �nds a > from p in the queue, it proceeds as P (ExtChoice-L);
if it �nds something else from p, it proceeds as Q.

1.3.2 Payload: syntax and semantics

Payload is parameterised by a payload size σ > 0. Unlike in previous languages
where messages can have arbitrary size, here every message in transit must
have size exactly σ + 1 bytes. Messages that are too long are divided into
smaller chunks before being transmitted, and messages that are too short are
padded; the extra byte in the message size is for encoding the bookkeeping
necessary to realise this. In particular, we must keep track of whether a given
chunk is the �nal part of a message, or whether it will be continued in future
messages. This is handled by functions pad,unpad,final, intermediate that
satisfy the following laws:

|pad(d)| = σ + 1 unpad(pad(d)) = d0,σ |d| ≤ σ ⇔ final(pad(d))

|d| ≥ σ ⇔ intermediate(pad(d))

Our compiler �xes particular implementations that satisfy the above laws;
however, the details are unimportant, and we believe the compiler could be
made parametric on these functions without too much di�culty, thus al-
lowing di�erent communication backends to use di�erent message encoding

25

1. An end-to-end veri�ed compiler for a choreography language

schemes.

De�nition 7 (Payload syntax). The syntax of Payload is obtained by remov-

ing internal and external choice from Endpoint, and replacing output and input

with:

pvn.P (output) p(v)〈d〉.P (input)

The intent is that the pre�xes record how far along in a transmission we are.
Hence the pre�x of pvn.P will send the value of v to p, starting from the n-
th byte, divided into as many chunks as necessary. Similarly p(v)〈d〉.P will
receive chunks from p, recording every intermediate chunk in the temporary
storage location d. When a final chunk arrives, the concatenation of all such
chunks is bound to the variable d.

De�nition 8 (Payload semantics). The semantics of Payload is obtained by

replacing the Send, Dequeue, IntChoice, and ExtChoice rules of Table 1.4

with the rules in Table 1.5.

1.4 Endpoint projection

In this section, we describe the structure of our compiler and its correctness
proofs.

1.4.1 Phase I: endpoint projection

The main complication when de�ning endpoint projection is how to handle
if statements, which are not always projectable. For an example, consider
the choreography

if v@Alice then Bob.v −> Alice.v else Alice.v −> Bob.v

where Alice makes an internal choice, and depending on the result, either
Alice sends a message to Bob, or vice versa. How does Bob know whether to
send or receive?

It is necessary to construct a projectability criterion that rules out such de-
generate cases from consideration. Our criterion is, intuitively: whenever
Alice chooses an if branch, every other endpoint whose projection depends

26

1.4. Endpoint projection

on the choice must immediately be told which branch was chosen. Hence,
the example above can be made projectable by adding selections as follows:

if v@Alice
then Alice −> Bob[>];

Bob.v −> Alice.v
else Alice −> Bob[⊥];

Alice.v −> Bob.v

To formalise this criterion, we use the auxiliary function sp to split o� ini-
tial selections pertaining to a pair of endpoints and check which branch was
chosen.

De�nition 9 (Split selections). The partial function sp is inductively de�ned

as follows (in all other cases, sp is unde�ned)

spp1,p2
(p3 −> p4[b];C) =

(b,C) if p1 = p3 and p2 = p4

spp1,p2
(C) if p1 = p3 and p2 , p4

undefined otherwise

Rather than de�ne projection and projectability separately, we de�ne a single
function pr that given an endpoint name and a choreography returns both a
boolean (its projectability), and an endpoint (its projection). We overload the
Endpoint operators by letting

pv.(b,C) = (b,pv.C) p&{> : (b1, P),⊥ : (b2,Q)} = (b1 ∧ b2,p&{> : P ,⊥ :Q})

and similarly for the other operators.

De�nition 10 (Projection and projectability). A choreographyC is projectable
if

∀p ∈ procs(C). π1(prp(C)) =>

The projection of the endpoints p̃ from a choreographyC with state s is de�ned
as

~sBC�
p̃
E = Πpi∈p̃. (pi , s↓pi ,ε)Bπ2(prpi (C))

where Π denotes iterated parallel composition, s↓p denotes λv.s(p,v), and pr
is de�ned inductively by the equations in Table 1.6. We write ~sBC�E to ab-

breviate ~sBC�
procs(C)
E .

27

1. An end-to-end veri�ed compiler for a choreography language

1.4.2 Phase II: remove choice

In this compilation phase, we implement Endpoint’s internal choice primi-
tives using send and receive actions. This serves two purposes: �rst, it sim-
pli�es the correctness proofs for later compilation phases. Second, it simpli-
�es the implementation of a communication backend, which only needs to
implement two primitives (send and receive) for message-passing.

De�nition 11. The compilation function ~·�C is homomorphic on all operators

except internal and external choice, where it is de�ned as follows:

~p⊕ b.P �C = let v = (λx.b)ε in pv.~P �C where v < fv(P) ~p&{> :

P ,⊥ :Q}�C = p(v).(if v then ~P �C else ~Q�C) where v < fv(P ,Q)

1.4.3 Phase III: Endpoint to Payload

De�nition 12. The compilation function ~·�P is homomorphic on all operators

except: internal and external choice, where it is unde�ned; and input and output,

where it is

~p(v).P �P = p(v0)〈ε〉.~P �P ~pv.P �P = pv0.~P �P

1.4.4 Compiler correctness

Let ~·�p̃ denote the composition ~·�p̃E ◦ ~·�C ◦ ~·�P and let ~C� = ~C�procs(C).
We prove that this composite compiler satis�es weak operational correspon-
dence up-to strong bisimilarity:

Theorem 1.
If c is a projectable choreography and fv(c) ⊆ dom(s), then

1. (Operational completeness) If sBC ==⇒ s′BC′ then there exists s′′ ,C′′ ,N

such that s′ BC′ ==⇒ s′′ BC′′ and ~sBC� ==⇒ N and N .∼ ~s′′ B
C′′�procs(C)

2. (Operational soundness) If ~sB C� ==⇒ N then there exists s′ ,C′ ,N ′

such thatN ==⇒ N ′ and sBC ==⇒ s′BC′ andN ′ .∼ ~s′BC′�procs(C)

28

1.4. Endpoint projection

Here ==⇒ over networks denotes τ−−−→
?
, and ==⇒ over choreographies denotes

(
⋃
a,l

a−→
l

)? . The catch-up transition for operational completeness is because
projectability is not, in general, preserved by reduction. However, for any
non-projectable choreography C′ reachable from a projectable choreogra-
phy C, C′ can always reduce to a projectable choreography. The only use of
bisimilarity is to clean up the temporary variables introduced in Phase II.

The proof follows the structure of the compiler: we prove operational corre-
spondence separately for each compilation phase. This leads to some dupli-
cation of e�ort, with routine proofs of similar lemmas duplicated for di�erent
intermediate languages and compiler phases. Nonetheless, it helps tremen-
dously in making the compiler tractable for mechanised proof by allowing
us to focus on one problem at a time.

The challenging direction is operational soundness: completeness is usually
by induction on the length of the reduction sequence, but soundness gener-
ally requires an invariant to characterise the set of intermediate states the
target language term might reach.

Our proof for Phase II uses an invariant, in the form of a binary relation R
that characterises which source terms correspond to which target terms. It
satis�es N R ~N�C, but also relates source terms to intermediate states in
which some action has been partially evaluated. The key technical lemma
states that if N RN ′ and N ′ τ−−−→ N ′′ , then there exists N ′′′ such that N ==⇒
N ′′′ and N ′′′ R N ′′ . Moreover, since this N ′′ may also be an intermediate
state, we must prove that it can always reduce to a state that is within the
range of ~·�C, which is by induction on a metric over R-related pairs.

This rather heavyweight approach is tractable for Phase II, requiring some
1500 lines of proof script. We tried the same approach for Phase III; this
led to a world of pain, and we never �nished the proof. Unlike Phase II,
where each source-language transition results in just one intermediate state
that can be described locally for a single endpoint, the invariant for Phase
III is not as compositional: if I have intermediate messages from you in my
queue, but no �nal message, you must be in the process of sending something
whose beginning corresponds to what I have, and this partial transmission
may be interleaved in arbitrary ways with other partial transmissions. This
complicated relation resulted in a combinatorial explosion of the number of
proof cases.

To make this proof tractable, we use a technique based on inert reduction,
�rst conceived by van Glabbeek to study encodings from the synchronous

29

1. An end-to-end veri�ed compiler for a choreography language

to the asynchronous π-calculus [27]. Intuitively, an inert reduction is one
that performs a bookkeeping step without committing to a branch. We say
that N ==⇒ N ′ is inert if for every N ′′ , N ′ such that N ==⇒ N ′′ , there is
an N ′′′ such that N ==⇒ N ′′′ . van Glabbeek’s insight is that for translations
that only need inert catch-up transitions, operational soundness can indeed
be proven by induction on the length of the reduction sequence, and with no
need to invent an invariant: since inertness is a form of con�uence, it su�ces
to consider just one interleaving of the intermediate steps, namely the one
that mimics one source-language step at a time in the most direct manner
possible. This makes the proofs of Phases I and III tractable: since all our
intermediate languages are con�uent, it follows trivially that every catch-up
transition is inert. The resulting proof is about as long as for Phase II, with
roughly half the e�ort going into proving con�uence.

Con�uence also plays a major role in the operational completeness proofs for
Phase I. The asynchrony and swapping rules of Table 1.2–1.3, which are oth-
erwise a pain point, play no role in these proofs. This is justi�ed because any
reduction involving them has a common successor with a reduction that only
uses the rules from Table 1.1. This results in a simpler proof than e.g. Mon-
tesi [16, Appendix C]; his choreography language is also con�uent, yet his
proof makes no use of this fact and includes cases for the swapping and asyn-
chrony rules.

1.5 Compilation into CakeML

CakeML [14] is an impure, sequential, functional programming language
similar to Standard ML. Its most notable feature is a compiler correctness
proof in HOL4 that extends down to the machine code level for mainstream
architectures such as x86-64 and ARM [23]. Interaction with the outside
world is supported by a foreign function interface (FFI), which allow calls
to arbitrary external code. We will assume two foreign functions, send and
receive, that support communication with the other endpoints. Compilation
to CakeML consists of two parts: the static part, which is veri�ed once and
for all, and the dynamic part, which is proof-producing and generates code
for the functions used in source-language let-bindings.

30

1.5. Compilation into CakeML

1.5.1 Static compiler

The static compilation is performed by the function ~·�ML which maps Pay-
load endpoints to CakeML expressions. Its full de�nition is too big to �t
here, but to show the �avour, ~p(v)〈d〉.P �ML produces the code
let val v = let val buff = Word8Array.array (σ + 1) 0

fun receiveloop () =
(#(receive) p buff;
let val m = unpad buff in
if final buff then [m] else m::receiveloop()

end)
in

List.concat (List.append d (receiveloop ()))
end

in
~P �ML

end

First, a bu�er of size σ + 1 for receiving messages is allocated. Then, the
function receiveloop repeatedly calls the foreign function #(receive), until
a �nal chunk from p is received. All intermediate chunks of the message
are unpadded, and �nally concatenated and bound to the variable v before
proceeding.

CakeML uses functional big-step semantics [19]; that is, its evaluation se-
mantics is a function eval which maps (state,bindingenvironment,expression)
triples to (state,result) pairs. Possible results include successful termination
returning a value, raising an exception, aborting, or timing out (which en-
codes divergence). The semantics is parametric on the behaviour of foreign
functions: states include a freely chosen model of the outside world, and
a freely chosen oracle function that describes how this model reacts to FFI
calls. We are interested in how our generated CakeML code interacts with
the other endpoints in the choreography, so we model the outside world as
a triple (p,q,N), where p is the name of the endpoint under consideration,
q is its queue, and N is a Payload network that p can interact with, and we
use the operational semantics of De�nition 8 to de�ne our oracle function.
There is an unfortunate mismatch here: the FFI model is expected to be a
function, but the semantics of De�nition 8 is a one-to-many relation: when
we receive a message from N , there is not in general a unique N ′ that the
network will reach after sending, since actions internal to N may or may not
�re before N sends the message. However, note that if all endpoints in N
have unique names, Payload reductions and send actions are locally con�u-
ent. So whether such internal actions �red or not, the resulting states are

31

1. An end-to-end veri�ed compiler for a choreography language

observationally equivalent from the point of view of p. This justi�es using
Hilbert choice to obtain such a state.

Let N p→p̃:d̃
=====⇒ N ′ denote N ==⇒ p→p0:d0−−−−−−−−→==⇒ . . .

p→pn:dn−−−−−−−−→==⇒ N ′ . We de�ne
the oracle function so that when #(send) p d executes in a state (p1,q,N),
then if there is no endpoint named p in N , we abort with a run-time error;
otherwise we succeed, producing the new state

ε(p1,q+ �(p,d) + (̃p′ ,d′),N ′).N
p̃→p1:d̃

======⇒ p←p1:d−−−−−−−→ p̃′→p1:d̃′
=======⇒N ′

The semantics of #(receive) is similar, with the addition that the FFI call di-
verges if there is no reduction sequence that will ever cause a message to be
enqueued. A key sanity check and technical lemma to show that this Hilbert
choice is innocuous is the following:

Lemma 1 (FFI irrelevance).
Two CakeML evaluations starting from equal environments, equal expressions

and bisimilar initial states yield equal results and bisimilar �nal states.

Let Np denote the unique endpoint named p in N , if one exists, and let N −p
denote the network N with all endpoints named p removed. Operational
completeness can be formulated as follows.

Theorem 2 (Operational completeness).
If all endpoints in N have unique names, and N ==⇒ N ′ , and Np = (e,q,P),
and env is a good environment forNp, then there exists a good environment env′

forN ′P = (e′ ,q′ , P ′) such that eval((p,q,N−P), env,~P �ML) and eval((p,q′ ,N ′−
P ′), env′ ,~P ′�ML) yield equal results and bisimilar states.

Here, a good initial environment for (e,P) is one in which: all bindings of e
are present; a few generic library functions such as List.drop are de�ned
and have the expected behaviour; and for every function f used in a let ex-
pression in P , a CakeML function that is a totally correct implementation of
f is present.

By combining Theorem 2 with Theorem 1, we can carry the signature dead-
lock freedom property of choreographies down to the level of CakeML code.

32

1.6. Related work

Corollary 1 (Deadlock freedom). CakeML evaluation of an endpoint projected

from a projectable choreography, when executed in a good environment, will

always eventually terminate successfully.

1.5.2 Dynamic compiler by example

The dynamic compiler creates the initial environment assumed in Theorem 2,
and proves that it is good. The environment is built on top of the CakeML
basis library by invoking CakeML’s proof-producing code synthesis tool [17]
on each function used in the endpoints’ let expressions.

The choreography language and the compiler are all deeply embedded in
HOL4. Hence, users program choreographies by writing instances of the
HOL4 datatype that encodes the choreography syntax. We have de�ned the
system from Example 8 as a function filter which is parameterised on a
test function and a list of messages. In our case, the test is a simple function
which checks if the message starts with "a" or not. To run the compiler, the
invocation is
project_to_camkes builddir filename “filter test [Kmsg1;Kmsg2;Kmsg3]”;

By this invocation, we automatically perform the following tasks. We prove
that the current environment is good. We evaluate the compiler in the logic
to produce CakeML code for each of the three endpoints. We compose in-
stances of Theorems 1 and 2 specialised to each endpoint with all assump-
tions discharged. Finally, we generate all the glue code and build instructions
necessary to create a complete system image that runs our choreography on
top of the veri�ed microkernel seL4 [13]. The system consists of three com-
ponents in parallel, each running our generated CakeML code. The CakeML
code is linked with a thin layer of C glue code that implements send and
receive using the dataport and IPC mechanisms of the CAmkES [15] com-
ponent platform with a message queue implementation on top.

In summary, the user writes a choreography, calls project_to_camkes, and
obtains a correctly compiled choreography running on a veri�ed component
platform on a veri�ed microkernel.

1.6 Related work

Session types [10] have been extensively used to structure communication
in concurrent languages, most notably, the π-calculus [11] along with many

33

1. An end-to-end veri�ed compiler for a choreography language

others [6, 12, 18, 28]. In recent years, an increasing number of results in the
topic have included mechanised proofs, perhaps a preventive measure given
past occurrences of mistakes in pen-and-paper proofs [20, 29]. In Castro et
al. [4] a revised version of the session-typed π-calculus [29] is formalised
using the Coq proof assistant [25]. Furthermore, Thiemann [26] proves type
soundness and session �delity for an asynchronous functional session type
language based on Guy et al. [8], with a machine-checked proof in Agda [1].
Tassarotti et al. [24] develop a higher-order concurrent logic, and present,
as an example, the veri�cation of a re�nement procedure for a concurrent
session-typed language.

Choreographic programming languages are closely related in scope and in-
tent to session types, but di�er in that instead of enforcing compliance with
an abstract view of the system interaction, the program itself is a concrete
global representation.

The work of Hallal et al. [9] synthesises each component of a communicat-
ing system from a global choreography into a distributed component based
framework. This result di�ers from ours in that it aims to only capture the
communicating logic of a system in both source and target languages, while
our approach considers both communication and computation.

Carbone and Montesi [7, 16] presents a choreography language with multi-
party asynchronous session types (demonstrating the combination of the two
approaches to great e�ect) along with a projection function into a variant
of the calculus for multi-party sessions [12] with a proof—albeit pen-and-
paper—of projection correctness. We draw many parallels to this work, as
our language is a simpli�ed version of theirs and can potentially be extended
to accommodate many of its features with the added bene�t of a machine-
checked end-to-end proof of correctness.

1.7 Conclusion

We have presented, to the best of our knowledge, the �rst end-to-end veri-
�ed compiler for a choreography language supported by mechanised proofs.
This suggests a number of interesting directions for future work. The chore-
ography language could be made more full-�edged; in particular, a recursion
construct is necessary to make the language practically useful. Program-
ming could be made more convenient by supporting datatypes other than
strings, by adding a framework for veri�ed marshalling and de-marshalling
on top. Our model of the communication backend assumes unboundedly

34

1.7. Conclusion

long message queues, which is arguably unrealistic: it would be interesting
to investigate if deadlock freedom carries over to a model where queue space
is bounded. The CakeML compiler correctness theorem has an “unless the
compiler output runs out of memory” side-condition, so liveness properties
such as deadlock freedom carry over to the machine code only with this side
condition. We are currently developing a cost semantics for CakeML that
would let us discharge it.

35

1. An end-to-end veri�ed compiler for a choreography language

Send
e(v) = d p1 , p2

(p1, e,q)B p2 v.P
p1→p2:d−−−−−−−→ (p1, e,q)B P

Enqeue
p1 , p2

(p1, e,q)B P p2←p1:a−−−−−−−→ (p1, e,q+ (p2, a))B P

Par-L
N1

α−−→ N ′1

N1 |N2
α−−→ N ′1 |N2

Com-L
p1 , p2 N1

p1→p2:a−−−−−−−→ N ′1 N2
p2←p1:a−−−−−−−→ N ′2

N1 |N2
τ−−→ N ′1 |N

′
2

IntChoice
p1 , p2

(p1, e,q)B p2 ⊕ b.P
p1→p2:b−−−−−−−→ (p1, e,q)B P

Deqeue
q(p2) = d :: ã p1 , p2

(p1, e,q)B p2(v).P τ−−→ (p1, e[v := d],q − p2)B P

ExtChoice-L
q(p2) => :: ã p1 , p2

(p1, e,q)B p2 &{> : P ,⊥ :Q} τ−−→ (p1, e,q − p2)B P

If-L
e(v) =>

(p1, e,q)B if v then P else Q τ−−→ (p1, e,q)B P

Let
e(ṽ) = d̃

(p1, e,q)B let v = f (ṽ) in P τ−−→ (p1, e[v := f (d̃)],q)B P

Table 1.4: Endpoint semantics. The obvious symmetric versions of Par-L,
Com-L, If-L and ExtChoice-L are elided.

36

1.7. Conclusion

Send-F
e(v) = d |d| −n ≤ σ p1 , p2

(p1, e,q)B p2 vn.P
p1→p2:pad(dn...)−−−−−−−−−−−−−−→ (p1, e,q)B P

Send-D
e(v) = d |d| −n ≥ σ p1 , p2

(p1, e,q)B p2 vn.P
p1→p2:pad(dn...)−−−−−−−−−−−−−−→ (p1, e,q)B p2 vn+σ .P

Deqeue-F
q(p2) = d2 :: ã final(d2) p1 , p2

(p1, e,q)B p2(v)〈d1〉.P
τ−−→ (p1, e[v := d1 + unpad(d2)],q − p2)B P

Deqeue-I
q(p2) = d2 :: ã intermediate(d2) p1 , p2

(p1, e,q)B p2(v)〈d1〉.P
τ−−→ (p1, e,q − p2)B p2(v)〈d1 + unpad(d2)〉.P

Table 1.5: Payload semantics.

prp(0) = (>,0)

prp(p1.v1 −> p2.v2;C) =

(⊥,0) if p1 = p2 = p

p1 v1.prp(C) if p = p1 and p , p2

p2(v2).prp(C) if p , p1 and p = p2

prp(C) otherwise

prp(let v@p1 = f (ṽ) in C) =

let v = f (ṽ) in .prp(C) if p = p1

prp(C) otherwise

prp(if v@p1 then C1 else C2) =

=

if v then prp(C1) else prp(C2) if p = p1

p&{> : prp(C′1),⊥ : prp(C′2)} if p , p1 and spp1,p2
(C1) = (>,C′1)

and spp1,p2
(C2) = (⊥,C′2)

prp(C1) if p , p1 and prp(C1) = prp(C2)

(⊥,0) otherwise

Table 1.6: Projection and projectability, with the selection case (which is
treated similarly to communication) elided.

37

Bibliography

[1] A. Abel, S. Adelsberger, and A. Setzer. Interactive programming in
Agda—objects and graphical user interfaces. J. Funct. Program., 27:e8,
2017. doi: 10.1017/S0956796816000319. URL https://doi.org/10.1017/

S0956796816000319.

[7] M. Carbone and F. Montesi. Deadlock-freedom-by-design: multiparty
asynchronous global programming. In R. Giacobazzi and R. Cousot, ed-
itors, The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-

gramming Languages, POPL ’13, Rome, Italy - January 23 - 25, 2013, pages 263–
274. ACM, 2013. ISBN 978-1-4503-1832-7. doi: 10.1145/2429069.2429101.
URL https://doi.org/10.1145/2429069.2429101.

[8] M. Carbone, K. Honda, and N. Yoshida. Structured communication-
centred programming for web services. In R. De Nicola, editor, Pro-
gramming Languages and Systems, 16th European Symposium on Programming,

ESOP 2007, Held as Part of the Joint European Conferences on Theory and Practics

of Software, ETAPS 2007, Braga, Portugal, March 24 - April 1, 2007, Proceedings,
volume 4421 of Lecture Notes in Computer Science, pages 2–17. Springer,
2007. ISBN 978-3-540-71314-2. doi: 10.1007/978-3-540-71316-6_2. URL
https://doi.org/10.1007/978-3-540-71316-6_2.

[4] D. Castro, F. Ferreira, and N. Yoshida. EMTST: engineering the meta-
theory of session types. In A. Biere and D. Parker, editors, Tools and Algo-
rithms for the Construction and Analysis of Systems - 26th International Confer-

ence, TACAS 2020, Held as Part of the European Joint Conferences on Theory and

Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings,

Part II, volume 12079 of Lecture Notes in Computer Science, pages 278–285.
Springer, 2020. ISBN 978-3-030-45236-0. doi: 10.1007/978-3-030-45237-
7_17. URL https://doi.org/10.1007/978-3-030-45237-7_17.

[5] L. Cruz-Filipe and F. Montesi. A core model for choreographic program-

39

https://doi.org/10.1017/S0956796816000319
https://doi.org/10.1017/S0956796816000319
https://doi.org/10.1145/2429069.2429101
https://doi.org/10.1007/978-3-540-71316-6_2
https://doi.org/10.1007/978-3-030-45237-7_17

Bibliography

ming. Theor. Comput. Sci., 802:38–66, 2020. doi: 10.1016/j.tcs.2019.07.005.
URL https://doi.org/10.1016/j.tcs.2019.07.005.

[6] M. Dezani-Ciancaglini, D. Mostrous, N. Yoshida, and S. Drossopoulou.
Session types for object-oriented languages. In D. Thomas, editor,
ECOOP 2006 - Object-Oriented Programming, 20th European Conference, Nantes,

France, July 3-7, 2006, Proceedings, volume 4067 of Lecture Notes in Computer

Science, pages 328–352. Springer, 2006. doi: 10.1007/11785477_20. URL
https://doi.org/10.1007/11785477_20.

[7] M. Fernandez, J. Andronick, G. Klein, and I. Kuz. Automated veri�cation
of RPC stub code. In N. Bjørner and F. S. de Boer, editors, FM 2015:

Formal Methods - 20th International Symposium, Oslo, Norway, June 24-26, 2015,

Proceedings, volume 9109 of Lecture Notes in Computer Science, pages 273–
290. Springer, 2015. ISBN 978-3-319-19248-2. doi: 10.1007/978-3-319-
19249-9_18. URL https://doi.org/10.1007/978-3-319-19249-9_18.

[8] S. J. Gay and V. T. Vasconcelos. Linear type theory for asyn-
chronous session types. J. Funct. Program., 20(1):19–50, 2010.
doi: 10.1017/S0956796809990268. URL https://doi.org/10.1017/

S0956796809990268.

[9] R. Hallal, M. Jaber, and R. Abdallah. From global choreography to e�-
cient distributed implementation. In 2018 International Conference on High

Performance Computing & Simulation, HPCS 2018, Orleans, France, July 16-20,

2018, pages 756–763. IEEE, 2018. ISBN 978-1-5386-7878-7. doi: 10.1109/
HPCS.2018.00122. URL https://doi.org/10.1109/HPCS.2018.00122.

[10] K. Honda. Types for dyadic interaction. In E. Best, editor, CONCUR
’93, 4th International Conference on Concurrency Theory, Hildesheim, Germany,

August 23-26, 1993, Proceedings, volume 715 of Lecture Notes in Computer Sci-

ence, pages 509–523. Springer, 1993. doi: 10.1007/3-540-57208-2_35. URL
https://doi.org/10.1007/3-540-57208-2_35.

[11] K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and
type discipline for structured communication-based programming. In
C. Hankin, editor, Programming Languages and Systems - ESOP’98, 7th Euro-

pean Symposium on Programming, Held as Part of the European Joint Confer-

ences on the Theory and Practice of Software, ETAPS’98, Lisbon, Portugal, March

28 - April 4, 1998, Proceedings, volume 1381 of Lecture Notes in Computer

Science, pages 122–138. Springer, 1998. doi: 10.1007/BFb0053567. URL
https://doi.org/10.1007/BFb0053567.

[12] K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous ses-

40

https://doi.org/10.1016/j.tcs.2019.07.005
https://doi.org/10.1007/11785477_20
https://doi.org/10.1007/978-3-319-19249-9_18
https://doi.org/10.1017/S0956796809990268
https://doi.org/10.1017/S0956796809990268
https://doi.org/10.1109/HPCS.2018.00122
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/BFb0053567

Bibliography

sion types. J. ACM, 63(1):9:1–9:67, 2016. doi: 10.1145/2827695. URL
https://doi.org/10.1145/2827695.

[13] G. Klein, J. Andronick, K. Elphinstone, G. Heiser, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch,
and S. Winwood. sel4: formal veri�cation of an operating-system ker-
nel. Commun. ACM, 53(6):107–115, 2010. doi: 10.1145/1743546.1743574.
URL https://doi.org/10.1145/1743546.1743574.

[14] R. Kumar, M. O. Myreen, M. Norrish, and S. Owens. CakeML: a veri�ed
implementation of ML. In S. Jagannathan and P. Sewell, editors, The
41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL ’14, San Diego, CA, USA, January 20-21, 2014, pages 179–
192. ACM, 2014. ISBN 978-1-4503-2544-8. doi: 10.1145/2535838.2535841.
URL https://doi.org/10.1145/2535838.2535841.

[15] I. Kuz, Y. Liu, I. Gorton, and G. Heiser. CAmkES: a component model
for secure microkernel-based embedded systems. J. Syst. Softw., 80(5):
687–699, 2007. doi: 10.1016/j.jss.2006.08.039. URL https://doi.org/10.

1016/j.jss.2006.08.039.

[16] F. Montesi. Choreographic Programming. Ph.D. thesis, IT Univer-
sity of Copenhagen, 2013. http://www.fabriziomontesi.com/files/

choreographic_programming.pdf.

[17] M. O. Myreen and S. Owens. Proof-producing synthesis of ML from
higher-order logic. In P. Thiemann and R. B. Findler, editors, ACM SIG-

PLAN International Conference on Functional Programming, ICFP’12, Copen-

hagen, Denmark, September 9-15, 2012, pages 115–126. ACM, 2012. ISBN
978-1-4503-1054-3. doi: 10.1145/2364527.2364545. URL http://doi.acm.

org/10.1145/2364527.2364545.

[18] M. Neubauer and P. Thiemann. An implementation of session types. In
B. Jayaraman, editor, Practical Aspects of Declarative Languages, 6th Interna-

tional Symposium, PADL 2004, Dallas, TX, USA, June 18-19, 2004, Proceedings,
volume 3057 of Lecture Notes in Computer Science, pages 56–70. Springer,
2004. doi: 10.1007/978-3-540-24836-1_5. URL https://doi.org/10.1007/

978-3-540-24836-1_5.

[19] S. Owens, M. O. Myreen, R. Kumar, and Y. K. Tan. Functional big-
step semantics. In P. Thiemann, editor, Programming Languages and

Systems - 25th European Symposium on Programming, ESOP 2016, Held as

Part of the European Joint Conferences on Theory and Practice of Software,

ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings, vol-

41

https://doi.org/10.1145/2827695
https://doi.org/10.1145/1743546.1743574
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1016/j.jss.2006.08.039
https://doi.org/10.1016/j.jss.2006.08.039
http://www.fabriziomontesi.com/files/choreographic_programming.pdf
http://www.fabriziomontesi.com/files/choreographic_programming.pdf
http://doi.acm.org/10.1145/2364527.2364545
http://doi.acm.org/10.1145/2364527.2364545
https://doi.org/10.1007/978-3-540-24836-1_5
https://doi.org/10.1007/978-3-540-24836-1_5

Bibliography

ume 9632 of Lecture Notes in Computer Science, pages 589–615. Springer,
2016. ISBN 978-3-662-49497-4. doi: 10.1007/978-3-662-49498-1_23. URL
https://doi.org/10.1007/978-3-662-49498-1_23.

[20] R. Pollack. Closure under alpha-conversion. In H. Barendregt and
T. Nipkow, editors, Types for Proofs and Programs, International Workshop

TYPES’93, Nijmegen, The Netherlands, May 24-28, 1993, Selected Papers, vol-
ume 806 of Lecture Notes in Computer Science, pages 313–332. Springer,
1993. doi: 10.1007/3-540-58085-9_82. URL https://doi.org/10.1007/3-

540-58085-9_82.

[21] M. D. Preda, M. Gabbrielli, S. Giallorenzo, I. Lanese, and J. Mauro. Dy-
namic choreographies: Theory and implementation. Logical Methods

in Computer Science, 13(2), 2017. doi: 10.23638/LMCS-13(2:1)2017. URL
https://doi.org/10.23638/LMCS-13(2:1)2017.

[22] K. Slind and M. Norrish. A brief overview of HOL4. In O. A. Mohamed,
C. A. Muñoz, and S. Tahar, editors, Theorem Proving in Higher Order Logics,

21st International Conference, TPHOLs 2008, Montreal, Canada, August 18-21,

2008. Proceedings, volume 5170 of Lecture Notes in Computer Science, pages
28–32. Springer, 2008. ISBN 978-3-540-71065-3. doi: 10.1007/978-3-540-
71067-7_6. URL https://doi.org/10.1007/978-3-540-71067-7_6.

[23] Y. K. Tan, M. O. Myreen, R. Kumar, A. C. J. Fox, S. Owens, and M. Nor-
rish. The veri�ed CakeML compiler backend. J. Funct. Program., 29:e2,
2019. doi: 10.1017/S0956796818000229. URL https://doi.org/10.1017/

S0956796818000229.

[24] J. Tassarotti, R. Jung, and R. Harper. A higher-orders logic for concur-
rent termination-preserving re�nement. In H. Yang, editor, Programming

Languages and Systems - 26th European Symposium on Programming, ESOP

2017, Held as Part of the European Joint Conferences on Theory and Practice

of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, vol-
ume 10201 of Lecture Notes in Computer Science, pages 909–936. Springer,
2017. ISBN 978-3-662-54433-4. doi: 10.1007/978-3-662-54434-1_34. URL
https://doi.org/10.1007/978-3-662-54434-1_34.

[25] T. C. D. Team. The Coq proof assistant, version 8.11.0, Jan. 2020. URL
https://doi.org/10.5281/zenodo.3744225.

[26] P. Thiemann. Intrinsically-typed mechanized semantics for session
types. In E. Komendantskaya, editor, Proceedings of the 21st International
Symposium on Principles and Practice of Programming Languages, PPDP 2019,

Porto, Portugal, October 7-9, 2019, pages 19:1–19:15. ACM, 2019. ISBN 978-

42

https://doi.org/10.1007/978-3-662-49498-1_23
https://doi.org/10.1007/3-540-58085-9_82
https://doi.org/10.1007/3-540-58085-9_82
https://doi.org/10.23638/LMCS-13(2:1)2017
https://doi.org/10.1007/978-3-540-71067-7_6
https://doi.org/10.1017/S0956796818000229
https://doi.org/10.1017/S0956796818000229
https://doi.org/10.1007/978-3-662-54434-1_34
https://doi.org/10.5281/zenodo.3744225

Bibliography

1-4503-7249-7. doi: 10.1145/3354166.3354184. URL https://doi.org/10.

1145/3354166.3354184.

[27] R. J. van Glabbeek. On the validity of encodings of the synchronous in
the asynchronous π-calculus. Inf. Process. Lett., 137:17–25, 2018. doi:
10.1016/j.ipl.2018.04.015. URL https://doi.org/10.1016/j.ipl.2018.

04.015.

[28] V. T. Vasconcelos, S. J. Gay, and A. Ravara. Type checking a multi-
threaded functional language with session types. Theor. Comput. Sci., 368
(1-2):64–87, 2006. doi: 10.1016/j.tcs.2006.06.028. URL https://doi.org/

10.1016/j.tcs.2006.06.028.

[29] N. Yoshida and V. T. Vasconcelos. Language primitives and type disci-
pline for structured communication-based programming revisited: Two
systems for higher-order session communication. Electron. Notes Theor.

Comput. Sci., 171(4):73–93, 2007. doi: 10.1016/j.entcs.2007.02.056. URL
https://doi.org/10.1016/j.entcs.2007.02.056.

43

https://doi.org/10.1145/3354166.3354184
https://doi.org/10.1145/3354166.3354184
https://doi.org/10.1016/j.ipl.2018.04.015
https://doi.org/10.1016/j.ipl.2018.04.015
https://doi.org/10.1016/j.tcs.2006.06.028
https://doi.org/10.1016/j.tcs.2006.06.028
https://doi.org/10.1016/j.entcs.2007.02.056

2
Do You Have Space for Dessert?

Alejandro Gómez-Londoño

Johannes Åman Pohjola

Hira Taqdees Syeda

Magnus Myreen

Yong Kiam Tan

Conditionally accepted to OOPSLA 2020

A
bstract. Garbage collectors relieve the programmer from manual

memory management, but lead to compiler-generated machine
code that can behave di�erently (e.g. out-of-memory errors) from the
source code. To ensure that the generated code behaves exactly like the
source code, programmers need a way to answer questions of the form:
what is a su�cient amount of memory for my program to never reach
an out-of-memory error?
This paper develops a cost semantics that can answer such questions
for CakeML programs. The work described in this paper is the �rst
to be able to answer such questions with proofs in the context of a lan-
guage that depends on garbage collection. We demonstrate that positive
answers can be used to transfer liveness results proved for the source
code to liveness guarantees about the generated machine code. With-
out guarantees about space usage, only safety results can be transferred
from source to machine code.
Our cost semantics is phrased in terms of an abstract intermediate lan-
guage of the CakeML compiler, but results proved at that level map
directly to the space cost of the compiler-generated machine code. All
of the work described in this paper has been developed in the HOL4
theorem prover.

2.1 Introduction

High-level programming languages with runtimes that include a garbage
collector (GC) provide a layer of abstraction that makes memory seem un-
bounded. While this liberates the programmer from tedious and error-prone
manual memory management, it leads to compiler-generated machine code
that exhibits a form of partiality: the machine code will behave as the source
semantics dictates, unless or until memory is exhausted.

Well written source-level programs stay clear of this partiality by making
sure that the live data used by the program stays within some reasonable
bound. For such programs, the GC can always reclaim enough memory to
provide space for new allocations, even if there are an unbounded number
of allocations during the program run.

For certain applications, programmers are keen to make sure that they stay
clear of the partiality. In such circumstances, one has to �nd a way to an-
swer the question: what is a su�cient amount of memory for my program
to never reach an out-of-memory error? The answer clearly depends on the
exact compilation strategy. In this paper, we provide a proof-based approach

for answering such questions in the context of the CakeML compiler.

The CakeML compiler [15] is a formally veri�ed compiler for a high-level
source language that has no bounds on memory and no bounds on inte-
gers. However, the CakeML compiler targets real machine languages (x86-
64, ARMv8, RISC-V, etc) where memory and integers have hard bounds. The
CakeML compiler inserts a veri�ed GC and bignum library into the code
that it produces in order to make it seem as if memory and integers are un-
bounded. But the GC and bignum library can not always stop the machine
code from hitting a hard resource bound, and the machine code might, as a
result, have to resort to an out-of-memory error.

The partiality mentioned above is clearly visible in the top-level compiler
correctness theorem for the CakeML compiler. This correctness theorem re-
lates the set of behaviours allowed by the source semantics source_sem and

47

2. Do You Have Space for Dessert?

the machine semantics machine_sem along the following lines:

machine_sem ffi (compile c prog) ⊆
extend_with_resource_limit (source_sem ffi prog)

Here extend_with_resource_limit is a function that augments a set of behaviours
with the option to exit early with an out-of-memory error.

The partiality that is expressed using extend_with_resource_limit means that
liveness properties proved at the source level do not transfer to liveness prop-
erties at the machine code level. For example, suppose one proves a live-
ness property that a source program will forever print "y" using a program
logic [3]. It does not follow from the compiler correctness theorem that the
generated machine code will forever do the same: the partiality means that
only safety properties carry over. The safety property in our example is that,
if the machine code produces output, then the output consists of only “y”s.

In this paper, we de�ne a predicate is_safe_for_space that is su�cient to rule
out this partiality and extend the CakeML compiler proofs to give stronger
guarantees for when is_safe_for_space holds. The is_safe_for_space predicate
de�nes a space cost semantics for CakeML programs, and the new compiler
correctness theorem states that the cost semantics rules out all potential for
early termination. The new top-level theorem has the following shape.

is_safe_for_space ffi c prog . . . ⇒
machine_sem ffi (compile c prog) = source_sem ffi prog

Note that the new relationship between source and target semantics here is
equality, not re�nement: the (deterministic) source semantics de�nes exactly
one permitted behaviour, and the machine semantics implements precisely
that behaviour. This equality means that liveness properties proved for the
source level carry over directly to liveness properties of the machine code.

Contributions. This paper’s contributions are:

• We de�ne a formal space cost semantics for the CakeML programming
language. The de�nition is stated in terms of one of the intermediate
languages used by the CakeML compiler. This intermediate language is
at a high enough level to avoid reasoning about data pointers and heap
objects, and yet at a low enough level to allow precise reasoning about
heap and stack space usage. In addition, the semantics is designed to
handle the most common forms of pointer aliasing found in functional

48

2.1. Introduction

programming languages. The cost semantics only considers the live
part of the state and, as a result, can be used to derive space bounds for
programs that call memory allocation an unbounded number of times.

• We prove that the cost semantics is sound for an end-to-end veri�ed
compiler that relies on (veri�ed) garbage collection for correct opera-
tion. This is the �rst such result. The proof covers not only the com-
piled program, but also the implementation of the GC and the bignum
library. When the cost semantics is used to rule out early exits, we
get a strong compiler correctness theorem in terms of equality of ob-
servable behaviour, since all out-of-memory errors and other resource
bound errors are avoided.

• We show that the cost semantics is concrete enough to prove speci�c
space bounds for a few sample programs and, once bounds have been
proved, liveness properties proved at the level of source code transfer
directly to liveness properties about the compiler-generated machine
code. This paper is the �rst to demonstrate that this is possible in
the context of a veri�ed compiler for a language whose compilation
relies on automatic memory management. We consider both �nite and
in�nite time liveness properties.

All of the work presented in this paper has been developed in the HOL4
theorem prover [25] and is available as supplementary material with this
paper submission.

Limitations. We delimit the scope of our investigation as follows. Our
primary goal in this paper is to make space cost reasoning possible; making
it convenient for CakeML users is future work. We do not consider (exter-
nal) dynamic allocation: the CakeML binary asks the OS for all the memory
it will ever need up-front, and manages its own stack and heap within this
statically allocated region. Hence our memory model does not need to con-
sider questions like “will the OS give us enough space when we call malloc?”.
For CakeML programs that use the foreign function interface (FFI), we do
not model the space cost of code outside the FFI boundary; this does not im-
pact soundness, because the foreign function cannot give memory it allocates
back to CakeML.

49

2. Do You Have Space for Dessert?

2.2 Overview

This section describes our overall design and explains how the problem is
divided up into separate parts. Subsequent sections describe the separate
parts in more detail.

2.2.1 Why can generated code exit early?

The cost semantics needs to predict when early exits might happen, so let us
start by looking at the circumstances under which the code emitted by the
CakeML compiler resorts to an early exit. The circumstances are:

(H) the creation of a new heap element (e.g. a datatype constructor, array,
or bignum integer) does not �t into the heap, even after a full GC run;

(S) a function or primitive operation attempts to allocate stack past the
end of the memory region reserved for representing the stack;

(L) the program tries to create an object whose length exceeds what can
be represented in the bits reserved for the length �eld in heap objects;

(F) the program tries to run an incompatible primitive, e.g. a �oating-point
instruction on a target architecture that does not support it.

Case H is an out-of-heap error. Case S is an out-of-stack error. Cases L and
F are possibly more exotic. One could argue that the compiler should catch
many instances of case L and F at compile time. However, for case L, this
is not always possible because the length of new arrays and vectors can be
computed dynamically. Regarding case F, we want to be able to compile a
standard library (which includes �oating-point primitives) to all targets; thus
the compiler will generate some code for all primitives.

2.2.2 Where are the early exits generated?

The CakeML compiler uses 9 intermediate languages and makes in total more
than 40 compilation passes over its input, but only two compilation passes
insert code that can cause early exits. The relevant intermediate languages
are the following:

• DataLang is an imperative language where values are abstract and in-
tegers arbitrarily large; there is no notion of garbage collector in this
language (see Section 2.3).

50

2.2. Overview

• WordLang has a similar structure to DataLang but values are machine
words and memory is an array of machine words; the garbage collector
is an opaque primitive.

• StackLang has a concrete stack: the stack is a �xed-size array of ma-
chine words. The GC stops being a primitive; the compiler inserts code
implementing it.

Early exits for cases H, L and F are inserted by the compilation pass that
converts DataLang into WordLang, and early exits for case S are inserted by
the WordLang to StackLang pass.

2.2.3 At what level of abstraction should the cost semantics be

expressed?

At �rst glance, it seems most natural to express the cost semantics at the level
of the source semantics. However, since we are interested in sound, concrete
and tight bounds rather than asymptotic bounds, a source-level based ap-
proach would have several drawbacks.

The CakeML compiler makes many function-call related optimisations [22]
that signi�cantly improve speed and space usage. Because these optimisa-
tions mostly happen before the compiler phases that can introduce early
exits, a source-level cost semantics must either (1) use very loose approxi-
mations of space usage, or (2) specify exactly which optimisations will be
applicable on the given program, essentially re-implementing the compiler
inside the cost semantics.

We consider both alternatives unacceptable. Our approach is based on the
insight that instead of re-implementing the compiler inside the cost seman-
tics, we can obtain the same precision by folding the compiler optimisations
into the program under consideration before space cost analysis.

Hence our cost semantics is expressed at the level of the DataLang interme-
diate language. This allows us to be very precise with respect to resource
usage without encumbering the cost semantics with compiler implementa-
tion details.

2.2.4 Definition of is_safe_for_space

As motivated above, we de�ne our cost semantics based on the DataLang
level of abstraction. The following is our de�nition of is_safe_for_space, which

51

2. Do You Have Space for Dessert?

is our criterion for determining whether a source-level program is safe for space.

is_safe_for_space ffi c prog stack_heap_limit def=
let data_prog = fst (to_data c prog) ; word_prog = to_word c prog in

c.data_conf.gc_kind , None∧
data_lang_safe_for_space ffi data_prog

(compute_limits c c.data_conf.has_fp_ops
c.data_conf.has_fp_tern
stack_heap_limit)

(compute_stack_frame_sizes c word_prog)
Start_location

In this de�nition, to_data compiles the source program prog to DataLang;
then data_lang_safe_for_space is used to decide whether the resulting Data-
Lang program is safe for space (see Section 2.3).

The data_lang_safe_for_space predicate takes several arguments. It takes the
initial state of the foreign function interfaceffi, the DataLang program data_prog,
the con�guration of limits, a mapping describing how large each stack frame
is, and �nally the start location in the program.

The de�nition above mentions to_word which compiles the source program
prog to WordLang. The input source program is compiled to WordLang in
order to compute the size of stack frames for each function that appears in
the DataLang program. The cost semantics for DataLang tracks stack usage
based on the provided stack frame size mapping (see Section 2.5).

The last conjunct of the de�nition requires the compiler con�guration c to
have gc_kind not equal to None (i.e. some garbage collector needs to be used).
The other alternatives are Simple for a non-generational copying GC [19], and
Generational for a generational collector [14]. Our cost semantics requires a
GC to be installed, therefore None is a disallowed con�guration. We have
proved our cost semantics sound w.r.t. the implementation of both the Simple
and the Generational GC.

2.2.5 A note on semantics

The semantics of CakeML, and all of its intermediate languages, is de�ned in
the functional big-step semantics style [21]. The core of such a semantics is
a clocked big-step evaluation function evaluate which maps (state, program)
pairs to (state, result) pairs. The state includes a clock which decrements at
every instruction that might potentially induce divergence (such as function

52

2.2. Overview

calls); if the clock runs out, evaluate aborts with a special timeout result. The
state also includes a trace of all I/O events that have happened so far.

The top-level observable semantics function (called semantics) is de�ned based
on the evaluate function described above. The semantics function returns a set
of behaviours. A behaviour is one of the following:

Terminate reason events — indicates that, for some clock value, evaluate ter-
minates in a well-de�ned way (for a speci�c reason) after producing
the I/O events events.

Diverge events — indicates that, for every clock value, evaluate times out,
and events is the supremum of the I/O traces produces by evaluate for
di�erent initial clock values.

Fail — indicates that the semantics can get stuck.

The function extend_with_resource_limit extends a set of behaviours to allow
early termination with an out-of-memory error, i.e. Terminate where the rea-
son is Resource_limit_hit. Here 4 checks whether the �rst list is a pre�x of
the second, l is a �nite list of characters, and ll is a �nite or in�nite list of
characters.

extend_with_resource_limit behaviours def=
behaviours ∪
{ Terminate Resource_limit_hit io_list
| ∃ t l. Terminate t l ∈ behaviours ∧ io_list 4 l } ∪
{ Terminate Resource_limit_hit io_list
| ∃ ll. Diverge ll ∈ behaviours ∧ io_list 4 ll }

2.2.6 Structure of the proofs

The aim of our proofs is to show that the observational semantics is preserved
completely, i.e. the semantics functions are related with equality = rather than
. . . ⊆ extend_with_resource_limit . . . as described in the introduction.

Nearly all compiler phases preserve observational semantics with equality,
so no changes are required to those. Recall from Section 2.2.1 that the two
phases that use the weaker relationship are: the DataLang-to-WordLang
phase, which quits on out-of-heap errors and cases L and F from Section 2.2.1;
and the WordLang-to-StackLang phase, which quits on out-of-stack errors.

For both of these phases, we de�ne a predicate that implies that the obser-
vational semantics is related by = directly. For the DataLang-to-WordLang

53

2. Do You Have Space for Dessert?

phase, this is data_lang_safe_for_space. For the WordLang-to-StackLang phase,
we de�ne a similar predicate, called word_lang_safe_for_space.

In order to avoid burdening the user with proofs in two cost semantics, we
instrument DataLang with enough stack size tracking to prove that data_-
lang_safe_for_space implies word_lang_safe_for_space. As a result, users only
need to prove data_lang_safe_for_space.

2.3 DataLang and its semantics

As of this paper, DataLang has two roles: (1) it acts as an intermediate lan-
guage of the CakeML compiler, and (2) it de�nes the heap and stack cost
semantics for the compiler.

2.3.1 DataLang as an intermediate language

DataLang is an imperative language with abstract values, stateful storage of
local variables, and a call stack. The semantics of DataLang models primitive
values with the following datatype:

v = Number int
|Word64 word64
| CodePtr num
| RefPtr num
| Block timestamp tag (v list)

Here Number represents an arbitrarily large integer. Word64 is a 64-bit ma-
chine word. CodePtr is a code pointer, and RefPtr is a pointer to mutable state
(such as ML arrays).

Block is more interesting: it is used to encode datatype constructors, tuples
and vectors. For instance, the CakeML list [1,2] can be represented using
DataLang Blocks as:

Block 8 cons_tag [Number 1;
Block 7 cons_tag [Number 2;

Block 0 nil_tag []]]

Here the tag values, cons_tag and nil_tag, indicate which source-level con-
structor each Block represents. The tag information is for pattern matching.

54

2.3. DataLang and its semantics

α state = 〈|
locals : v num_map;
refs : ref num_map;
stack : stack list;
handler : num;
global : num option;
space : num;
code : (num × prog) num_map;
�i : α �i_state;
clock : num;
. . .
|〉

ref = ValueArray (v list) | Bytes bool (word8 list)

Figure 2.1: The de�nition of the DataLang state.

The timestamps of the blocks are 8, 7 and 0, respectively; we will explain the
purpose of timestamps in Section 2.3.2.

The runtime state of DataLang’s semantics is represented by a record type
state shown in Figure 2.1. The �elds locals and refs represent the �nite maps
of local variables (v num_map) and references (v ref num_map) respectively.
The stack is a list of frames, each frame containing only the relevant vari-
ables that should be restored after a call is completed. On exception, the
length of the stack is set to be equal to handler, dropping the most recent
frames and setting the value of handler according to the new current frame.
The global �eld contains an optional reference to an array of global variables.
The space �eld is a guaranteed amount of space available in the heap, and can
be increased by doing allocation. This is for bookkeeping only; the DataLang
semantics maintains the �ction that more space can always be allocated. Fi-
nally, the remaining �elds (some of them elided in Figure 2.1) pertain to the
code store, the state of the foreign function interface, and the semantic clock,
respectively.

DataLang’s abstract syntax (see Figure 2.2) provides most of the expected fea-
tures for an imperative language. A notable omission is looping constructs.
These are omitted because functional programs use (tail) recursion, which is
available as part of Call.

In the abstract syntax presented in the Figure 2.2, var (a type alias for the

55

2. Do You Have Space for Dessert?

prog = Skip
| Seq prog prog
| If var prog prog
|Move var var
| Assign var op (var list) (var_set option)
|MakeSpace var var_set
| Raise var
| Return var
| Tick
| Call ((var× var_set) option) call_dest (var list)

((var× prog) option)

Figure 2.2: DataLang’s abstract syntax.

type of natural numbers) represents variable names; var_set is a set of lo-
cal variables that are to be included in the stack frame when performing a
Call, and should be considered live by the garbage collector when allocating
(MakeSpace). The evaluation of a DataLang program returns an optional re-
sult along with a new state. We give a few samples of DataLang’s evaluation
semantics below.

The simplest program is Skip. It does nothing. The result is None because
there was no return or exception raised.

evaluate (Skip,s) def= (None,s)

Sequencing (Seq) continues execution as long as no return or exception is
raised:

evaluate (Seq c1 c2,s) def=
let (res,s1) = evaluate (c1,s) in
if res = None then evaluate (c2,s1) else (res,s1)

All of the primitive operations are performed by Assign, which deletes un-
used variable bindings, then reads the values of its arguments, and �nally

56

2.3. DataLang and its semantics

performs the primitive operations using the helper function do_app.

evaluate (Assign dest op args names_opt,s) def=
case cut_state_opt names_opt s of
Some s ⇒
case get_vars args s.locals of
Some xs ⇒
case do_app op xs s of
Rval (v,s) ⇒ (None,set_var dest v s)
| Rerr e ⇒ (Some (Rerr e),s)
| . . . ⇒ (Some (Rerr (Rabort Rtype_error)),s)

For a more detailed description of the DataLang semantics, including MakeSpace
and Call, we refer to Tan et al. [15].

2.3.2 DataLang as a cost semantics

DataLang provides a convenient level of abstraction for reasoning about
space consumption since functions are �rst-order and data has predictable
size. However, DataLang’s semantics has no notion of the heap, does not
specify which data elements are heap allocated, and does not represent stack
frames in a way that makes their size clear. Therefore, we need to add some
mechanisms to make DataLang suitable for accurate space measurements.
We add elements to the semantics state of DataLang to model the following:

1. A measurement of heap cost: the total space consumed by all values
that would be heap-allocated by the implementation. This measure
should only count live data, and so needs to be unchanged by garbage
collection.

2. A measurement for stack frame sizes, and subsequently the call stack,
that is consistent with their eventual implementation in StackLang.
We defer further explanation of stack costs to Section 2.5.

3. A signalling mechanism to track if at any point during execution ei-
ther the stack or the heap surpassed some given limits. The signal is
implemented as a new �eld called safe_for_space in the state record of
DataLang.

57

2. Do You Have Space for Dessert?

These elements are represented as follows:

α state = 〈| limits = 〈|
. . . heap_limit : num;
safe_for_space : bool length_limit : num;
stack_frame_sizes : num num_map; stack_limit : num;
limits : limits; arch_64_bit : bool
|〉 |〉

The safe_for_space �eld is true as long as program evaluation stays within the
limits. We say that a program prog is safe for space with respect to some limits,
if every execution, regardless of the value of the initial clock ck, manages to
keep safe_for_space set to true:

data_lang_safe_for_space ffi prog limits ss main def=
∀ck res s.

evaluate (Call None (Some main) [] None,initial_state ffi prog limits ss ck) = (res,s)
⇒ s.safe_for_space

At every memory allocation, the semantics computes the size of the live data
in the heap, adds this number to the requested space k, and checks whether
we might be exceeding the heap limit:

size_of_heap s + k ≤ s.limits.heap_limit

The semantics also checks that the stack size is below the stack limit at every
function call. If either of these tests fail at any point, safe_for_space is set to
false. Further down, after discussing aliasing, we will show the de�nition of
size_of_heap.

Aliasing information. Before presenting our strategy for computing the
live heap data, we explain how the semantics maintains aliasing informa-
tion. Functional programs give rise to a lot of pointer aliasing. Consider, for
example, the following snippet of ML code:
let val a = [1,2] in (a,0::a) end

This code evaluates to a tuple of two lists of integers, [1,2] and [0,1,2]. To
accurately compute the size of this tuple value, the semantics needs to carry
information from which we can infer that the memory representation of the
two lists share a tail.

58

2.3. DataLang and its semantics

We add timestamps to the Block values of the DataLang semantics that let us
detect when Block values are pointer-equal. Each new heap element gets a
unique timestamp for all of its Blocks. Hence, by keeping timestamps invari-
ant through a Block’s lifetime, we can infer that any two Blocks that share a
timestamp must refer to the same location on the heap.

The example of a tuple holding two integer lists above can be represented by
the following value in DataLang by our semantics.

block_example
def=

let a =
Block 8 cons_tag
[Number 1; Block 7 cons_tag [Number 2; Block_nil]] in

Block 10 tuple_tag [a; Block 9 cons_tag [Number 0; a]]

If we expand the above let-expression, it is clear that Blocks with timestamps
8 and 7 repeat.

We compute the size of all live data on the heap using a function called size_of
that is aware of the meaning of timestamps. Before we de�ne it, let us con-
sider its application to the above example. We have that size_of returns 12
when applied to block_example. The size_of function counts each two-element
Block as size 3 and each zero-element Block as size 0. The example above has
4 unique two-element Blocks, thus 4 × 3 = 12. The unit is machine words of
heap space.

` fst (size_of [block_example] empty empty) = 12

It is worth mentioning that a naive size measure that ignores aliasing infor-
mation would have produced an over-approximation of 6 × 3 = 18, because
there are 6 non-empty Blocks in the block_example.

59

2. Do You Have Space for Dessert?

Computing the size of the heap. The following are some of the equa-
tions of the de�nition of size_of. Other equations are provided further down.

size_of [] refs seen def= (0,refs,seen)

size_of [Number i] refs seen def=
(if is_smallnum i then 0 else bignum_size i,refs,seen)

size_of [Block ts tag vs] refs seen def=
if vs = [] ∨ ts ∈ seen then (0,refs,seen)
else
let (n,refs′ ,seen′) = size_of vs refs ({ts} ∪ seen) in
(n + |vs| + 1,refs′ ,seen′)

size_of (x::xs) refs seen def=
let (n1,refs1,seen1) = size_of xs refs seen ;

(n2,refs2,seen2) = size_of [x] refs1 seen1 in
(n1 + n2,refs2,seen2)

Small numbers are stored within their containing block or stack frame, and
hence they have heap size 0; bignums use heap space proportional to the
number of digits in their binary representation.

Empty Blocks are stack-allocated and have heap size 0. The size_of function
ignores Blocks with timestamps that are present in seen. In all other cases,
Blocks add the length of their payload plus one to the �rst return value of
size_of. The size_of function uses seen to avoid counting the same Block twice.

The size_of function avoids counting references twice by deleting them from
the reference store that it carries in the refs variable:

size_of [RefPtr r] refs seen def=
case lookup r refs of
None ⇒ (0,refs,seen)
| Some (ValueArray vs) ⇒

(let (n,refs′ ,seen′) = size_of vs (delete r refs) seen
in (n + |vs| + 1,refs′ ,seen′))
| Some (ByteArray v2 bs) ⇒

(|bs| div 4 + 2,delete r refs,seen)

We de�ne size_of_heap as size_of applied to all of the values stored in the
DataLang state’s stack and global variables.

size_of_heap s def=
let (n,_,_) = size_of (stack_to_vs s) s.refs empty in n

60

2.4. Proving soundness of heap cost

The size_of_heap function is used in the semantics whenever an operation
that would allocate heap space is executed: if ever size_of_heap plus the amount
of heap space requested exceeds the limits, we set is_safe_for_space to false.

2.4 Proving soundness of heap cost

Before this work, the DataLang-to-WordLang phase of the compiler had a
correctness theorem phrased in terms of ⊆ and extend_with_resource_limit in
order to allow early exits:

. . . ⇒
semanticsword ffi (compile c prog) ⊆ extend_with_resource_limit (semanticsdata ffi prog)

As part of this work, we have proved a new alternative correctness theorem
which states that, if data_lang_safe_for_space is true, then all behaviours are
preserved by equality =.

. . . ∧ data_lang_safe_for_space ffi prog . . . ⇒
semanticsword ffi (compile c prog) = semanticsdata ffi prog

One can read this as saying that cost semantics for DataLang is sound. The
following subsections discuss our proof of this soundness result.

2.4.1 Proving evaluate-level simulation

Each proof about the relationship between observational semantics (i.e. semantics)
is based on a theorem relating the evaluate functions of the languages in-
volved. In order to prove the new semantics theorem that was sketched above,
we need to update the main evaluate simulation theorem to state that Data-
Lang’s evaluate correctly predicts any early exits that the generated Word-
Lang program might have resorted to.

The theorem describing the evaluate simulation has the following shape, which
is similar to most CakeML compiler phases [15]. One can informally read it
as follows: if the input program prog evaluates to some result (res,s1) without
hitting a dynamic type error (Rabort Rtype_error), then the compiled program,
comp c prog, will evaluate to a �nal state that is similar enough according to

61

2. Do You Have Space for Dessert?

a state relation state_rel. Here variable c is a compiler con�guration.

` evaluatedata (prog,s) = (res,s1) ∧
state_rel c s t ∧
res , Some (Rerr (Rabort Rtype_error))⇒
∃ t1 res1.

evaluateword (comp c prog,t) = (res1,t1) ∧
(res1 = Some NotEnoughSpace⇒

t1.�i.io_events 4 s1.�i.io_events ∧
(c.gc_kind , None⇒¬s1.safe_for_space)) ∧

(res1 , Some NotEnoughSpace⇒
state_rel c s1 t1 ∧ . . .)

Compared with other CakeML compiler phases, the unusual part here is the
special case for the NotEnoughSpace result. For this result, the original theo-
rem only concluded that the WordLang state’s I/O events are a pre�x (4) of
the I/O events produced by the DataLang program prog.

For the cost semantics proofs, we added the part in a box . This box adds
that, whenever WordLang resorts to a NotEnoughSpace error result, the Data-
Lang evaluation predicts that this might happen, if a supported GC con�gu-
ration is used. Thus for the user to prove that the WordLang program never
exits early, it su�ces to prove that DataLang says it won’t happen.

The proof of the evaluate simulation theorem sketched above is complicated
and long. The original proof builds on some 35,000 lines of invariant de�ni-
tions and proofs. All of these were updated to cope with the change high-
lighted above. Handling early exits due to reasons L and F (from Section 2.2.1)
was straightforward. The cases that arise when heap space runs out (case H)
are much more interesting and will be discussed in the following subsections.

2.4.2 Notation and invariants

In the next subsection, we describe how we have proved that DataLang’s
size_of_heap function predicts all heap allocation failures that can happen in
the WordLang program. In this subsection, we explain the relevant heap
abstractions we use to prove our heap cost analysis sound in Section 2.4.3.

The state relation used in the DataLang-to-WordLang proofs is de�ned in
terms of several layers of abstraction. Fortunately for this work, the most
abstract intermediate layer is su�cient for our proofs. In that layer, the heap

62

2.4. Proving soundness of heap cost

is modelled as a list of heap_elements.

(α, β) heap_element =
Unused num
| ForwardPointer num α num
| DataElement (α heap_address list) num β

α heap_address = Pointer num α | Data α

During normal program execution, the heap consists of only DataElements
and Unused. ForwardPointers only exist while the GC runs. The natural num-
ber (type num in HOL) in Pointer values is the address. We dereference point-
ers using heap_lookup based on a natural number address a:

heap_lookup a [] def= None

heap_lookup a (x::xs) def=
if a = 0 then Some x
else if a < el_length x then None
else heap_lookup (a − el_length x) xs

el_length (Unused l) def= l + 1

el_length (ForwardPointer n d l) def= l + 1

el_length (DataElement xs l data) def= l + 1

In the DataLang-to-WordLang proofs, the relationship between DataLang’s
values and their abstract heap representation is speci�ed by the predicate
v_inv. We show the Number and Block cases of v_inv below. A number is
represented as a value that will �t in a register if the number is small enough,
and otherwise by a pointer to a heap element containing the large number.
We omit the de�nition of Bignum, which is a form of DataElement.

v_inv c (Number i) (x,f ,t,heap) def=
if is_smallint i then x = Data (Word (Smallnum i))
else
∃ptr.

x = Pointer ptr (Word 0w) ∧
heap_lookup ptr heap = Some (Bignum i)

In our work, we changed the de�nition of v_inv for the Block case: we added a
parameter t which dictates how timestamps stored in Blocks map to addresses
in the heap. The fact that the timestamp dictates the representation address

63

2. Do You Have Space for Dessert?

means that Blocks are pointer equal if their timestamp coincide. The new
part is highlighted with a box .

v_inv c (Block ts n vs) (x,f ,t,heap) def=
if vs = [] then x = Data (Word (BlockNil n)) ∧ . . .
else
∃ptr xs.

lookup t ts = Some ptr ∧
list_rel (λv x. v_inv c v (x,f ,t,heap)) vs xs ∧
x = Pointer ptr (Word (ptr_bits c n |xs|)) ∧
heap_lookup ptr heap =
Some (DataElement xs |xs| (BlockTag n,[]))

Finally, the next subsection uses the following combination of heap_lookup
and el_length.

get_len heap p def= case heap_lookup p heap of None ⇒ 0 | Some x ⇒ el_length x

2.4.3 Correctness of heap allocation and size_of

The DataLang semantics decides that a heap allocation is not safe for space if
the following test returns true. Here k is the number of words of space that
have been requested.

s.limits.heap_limit < size_of_heap s + k

This section describes our soundness proof for this test, i.e. why this test at
the DataLang level must return true whenever an allocation failure might
happen at the WordLang level.

At the WordLang level, a heap allocation failure happens only when not
enough space is available after a full (compacting) GC run. Since the GC
has run, we can assume that all of the DataElements in the heap are reachable
from the root variables. And since the WordLang space test has failed, we
can assume that the total amount of Unused space in the heap—call it sp—is
not su�cient to satisfy the allocation request, i.e. sp < k. Thus it su�ces to
show:

s.limits.heap_limit ≤ size_of_heap s + sp

which is equivalent to:

s.limits.heap_limit − sp ≤ size_of_heap s

64

2.4. Proving soundness of heap cost

traverse heap p1 [] p1

traverse heap p1 vs1 p2 traverse heap p2 vs2 p3 set vars = set (vs1 ++ vs2)

traverse heap p1 vars p3

traverse heap p1 [Data d] p1

mem n p1

traverse heap p1 [Pointer n t] p1

heap_lookup n heap = Some (DataElement xs l d) traverse heap (n::p1) xs p2

traverse heap p1 [Pointer n t] p2

Figure 2.3: De�nition of traverse.

The left-hand side above is the same as the sum of the lengths of all heap
elements in the DataElement-�lled part of the heap. We will call this part of
the heap: heap. Thus it su�ces to prove:

sum (map el_length heap) ≤ size_of_heap s

We have now arrived at the tricky part of this proof: the statement above re-
quires us to prove that every data element in heap must be counted (at least
once) by size_of_heap, which is de�ned in terms of the size_of function. This
is tricky because the size_of function has a slight disconnect from semantic
state: it skips blocks with timestamps that it has accumulated in its seen ar-
gument and deletes reference values from its refs argument during recursion,
which means that it cannot evaluate all reference pointers that it encounters
even when they exist in the actual heap.

In order to make this proof manageable, we introduce a new inductively de-
�ned relation, called traverse, which captures abstractly the traversal patterns
that size_of implements using its arguments seen and refs. The de�nition of
traverse is shown in Figure 2.3. The traverse relation takes four arguments:
heap, p1, vars, p2. Here heap is the heap being traversed; p1 and p2 are lists of
addresses which can be viewed as states: p1 is the input state, and p2 is the
output state; �nally vars is a working list of heap addresses under consider-
ation. The �rst rule states that the output state must be equal to the input
state if vars is empty. The second rule shows how the working list can be

65

2. Do You Have Space for Dessert?

split and the state threaded through. The third rule states that traverse can
skip data elements on the working list. The fourth rule is more interesting:
it states that traverse can skip a pointer if that pointer is already in the in-
put state. The last rule allows traverse to lookup a heap element and place
its payload on the working list. For the the last rule, it is worth noting that
the traversal of the payload happens from state n::p1, i.e. a state where the
currently visited address n has already been added to state p1; this allows
traverse to break cycles in the graph of pointers in the heap.

With this de�nition of traverse, we can prove the following lemma that puts
a lower bound on size_of. The following lemma assumes that we have Data-
Lang values that are v_inv-related to some roots and heap, and that refs are in a
similar manner (ref_inv) represented in heap. If those assumptions hold, then
traverse heap [] roots p2 is true for some �nal state p2. Furthermore, the sum
of get_len applied to all addresses in p2 is ≤ the �rst component of the result
of size_of.

` size_of values refs empty = (n,r,s) ∧
v_inv_list c roots (values,f ,t,heap) ∧
(∀n. n ∈ reachable_refs values refs⇒ ref_inv c n refs (f ,t,heap,be))⇒
∃p2. traverse heap [] roots p2 ∧ sum (map (get_len heap) p2) ≤ n

The proof of this lemma requires stating �ddly assumptions about the accu-
mulated arguments of size_of, but is otherwise a reasonably straightforward
proof by induction over the recursive structure of the size_of function.

Let us continue the soundness proof for the check of running out of space.
In that context, we use the lower bound lemma from above to establish that
there exists a p2 such that:

sum (map (get_len heap) p2) ≤ size_of_heap s ∧
traverse heap [] roots p2

With this knowledge, it su�ces to prove:

sum (map el_length heap) ≤ sum (map (get_len heap) p2)

The rest of the proof establishes that every element of heap has its address in-
cluded in p2 and is thus counted (at least once) in sum (map (get_len heap) p2).
The fact that every heap address is included in p2 follows from the fact that
a full GC has been run immediately prior to this, and from the following
lemma which states that traverse �nds all reachable addresses:

` traverse heap [] roots p2⇒ reachable_addresses roots heap ⊆ set p2

66

2.5. Proving soundness of stack cost

This concludes our sketch of the proof that the DataLang check for heap
exhaustion is sound with respect to WordLang’s check. The target language,
WordLang, operates over a lower level of abstraction, but fortunately all of
the tricky proofs were con�ned to the algorithm-level described above rather
than lower layers of data re�nements that between DataLang and WordLang.

2.4.4 Lessons learned

Doing heap cost analysis at a level of abstraction where there is no heap
has the advantage that reasoning can be carried out at a level closer to the
source program. But when de�ning the size_of function, we were faced with
an interesting trade-o� between accuracy and ease of reasoning. Our imple-
mentation exploits timestamps to avoid counting the same block twice in the
presence of aliasing. This signi�cantly improves the tightness of our bounds,
at the cost of encumbering the de�nition with accumulator arguments to
keep track of which tags have been seen. This leads to a de�nition that fails
to satisfy some natural algebraic laws; for example, size_of does not in gen-
eral distribute over list append. It does for heaps that are well-formed in the
sense that distinct data elements have distinct tags, but carrying around such
well-formedness properties through proofs is cumbersome.

In situations where space is plentiful, precision might be less important than
the question of whether there is a bound at all. There it might be more useful
to have an imprecise size function that’s tailored for ease of reasoning. To
this end we have de�ned approx_of, an alternative to size_of that doesn’t track
timestamps and hence has nicer algebraic properties. We prove that approx_-
of is a sound over-approximation of size_of.

Another option is to make size_of even tighter by adding timestamps to data
elements other than blocks. For example, our version will count pointer-
equal bignums twice if they are aliased.

2.5 Proving soundness of stack cost

The DataLang and WordLang intermediate languages do not commit to a
concrete implementation of the stack, and do not allow the programmer to
manipulate the stack directly. The semantics of both languages model the
stack as a list of stack frames, which consist of binding environments for local
variables plus optional exception handlers. This list is allowed to grow un-

67

2. Do You Have Space for Dessert?

boundedly large; hence the semantics of both languages act as if stack space
is unbounded.

In this section, we show how to make the DataLang and WordLang semantics
stack space aware. As in Section 2.3, we add �elds to their state records
that track stack usage. These �elds are a form of ghost state: they have no
e�ect on the program’s semantics beyond the �elds themselves. But they are
sound predictions of the program’s maximum stack usage, and the compiler
correctness theorem for the WordLang to StackLang phase—where the stack
is implemented in a bounded memory region—shows that early exits due to
out-of-stack errors never happen unless thus predicted.

As a �rst step, we annotate WordLang stack frames with an optional size
(num option), measured in machine words:

stack_frame =
StackFrame (num option) local_env (handler option)

The intuition is that None here denotes positive in�nity, or in other words, a
stack frame whose size we have no upper bound for. Its inclusion allows us
to preserve soundness in the presence of language features that are not safe
for space.1

Note that we cannot simply compute a bound for the stack frame from the
size of the local environment. This is because the environment does not nec-
essarily contain all stack-allocated variables, only those that are treated as
roots by the GC; moreover, this is before register allocation, so we do not yet
know which local variables will be stack-allocated and which will be stored
in registers. Moreover, a stack frame is allocated at the beginning of a func-
tion, but during the execution of the function there can be unused areas of
the stack frame that are not apparent from inspecting the abstract represen-
tation of the local environment.

The size of the entire stack can then be computed as follows:

stack_size (StackFrame n l None::stack) def=
option_binop (+) n (stack_size stack)

stack_size (StackFrame n l (Some handler)::stack) def=
option_binop (+) (option_map ((+) 3) n) (stack_size stack)

stack_size [] def= Some 1

1The only language feature of WordLang whose stack usage we don’t provide bounds
for is the Install instruction for dynamic code evaluation. At present, this instruction is not
targeted by the CakeML compiler.

68

2.5. Proving soundness of stack cost

The fact that this is not just a straightforward list sum exposes two compiler-
speci�c implementation details that we include for the sake of more precise
bounds: the empty stack is one word long, and installing an exception han-
dler requires three words of stack space.

We annotate the WordLang state with an extra �eld stack_max, which records
the largest stack_size seen so far during the WordLang execution. This �eld
is updated to the maximum of the old value and the current stack_size when-
ever a WordLang instruction that potentially allocates stack is executed; the
relevant instructions for our purposes is function calls and semantic primi-
tives that have an implementation (further down the compilation chain) that
internally allocates stack as part of the implementation of the primitive in
question.

To populate the stack frames with sizes, we assume that the state also con-
tains a mapping, called stack_frame_sizes, which maps function names to
stack frame sizes. It is possible to do symbolic computations about stack
usage without committing to any particular mapping. To obtain sound and
concrete bounds, the tooling we use in Section 2.7 obtains the actual stack
frame sizes by evaluating the compiler in logic down to StackLang. This
avoids cluttering the cost semantics with details of how lower parts of the
compiler are implemented, in this case, speci�cally: register allocation which
determines the size of stack frames.

These annotations allow us to soundly predict out-of-stack errors, as shown
by the compiler correctness theorem for the WordLang-to-StackLang phase:

` evaluate (prog,s) = (res,s1) ∧ res , Some Error ∧ state_rel k f f ′ s t lens ∧ . . .
⇒
∃ck t1 res1.

evaluate (fst (comp prog bs (k,f ,f ′)),t with clock := t.clock + ck) = (res1,t1) ∧
if option_map compile_result res , res1 then
res1 = Some (Halt (Word 2w)) ∧
t1.�i.io_events 4 s1.�i.io_events ∧
s1.stack_max > s1.stack_limit

else
. . .

The boxed conjunct is the novelty and the key: it states that if StackLang
evaluation yields an unexpected result (i.e. res and res′ disagree), then this
must have been due to an early exit that was predicted by WordLang evalu-
ation exceeding the stack budget at some point.

69

2. Do You Have Space for Dessert?

In order to allow reasoning about costs in just the one semantics, we lift
this stack cost semantics from WordLang to DataLang. The treatment of
function calls does not change signi�cantly between the two languages, so
that aspect of the semantics is mostly the same. The main di�erence is that
many native operators of DataLang, such as equality and bignum arithmetic,
are implemented by canned code in WordLang. When this code features calls
to subroutines, the DataLang semantics must make sure to update stack_-
max accordingly. Most of these subroutines are either tail-recursive or not
recursive, in which case the stack consumption can be characterised as the
largest of the involved WordLang stubs’ stack frames.

The operator with the most interesting stack usage is probably the equality
operator, which can compare arbitrarily nested trees of Blocks; its WordLang
implementation must recursively step through these pointer structures and
compare the payloads for equality. We prove that its stack usage is bounded
from above by a metric on the constructor depth of the DataLang values that
the pointer structures re�ne.

The DataLang-to-WordLang compiler also pastes in canned code that im-
plements the bignum library and this code required some special attention
regarding stack usage. The bignum library is reachable from any DataLang
integer arithmetic operation that fails to �t within small enough numbers.
The WordLang code implementing the bignum library is automatically gen-
erated from a higher-level speci�cation [20] and consists of several nested
WordLang functions. To ease the e�ort, we developed a little veri�ed tool
that can automatically infer maximum stack depths of WordLang functions
where all cycles in the call graph consist of tail-calls. The bignum library �ts
within this subset of WordLang.

2.5.1 Lessons learned

Proving soundness of the stack cost semantics involved a tedious and cum-
bersome invariant preservation proof, but the e�ort invested helped us gain
insight. Even though the stack cost semantics is relatively straightforward
compared to heap cost, doing a formal soundness proof was invaluable for
getting the cost semantics right down to every detail. There were a number
of more or less subtle mistakes we made in early drafts of the semantics, that
would have been di�cult to catch and diagnose without formal proof:

• The WordLang semantics does not explicitly distinguish between whether
the current local variables have already been pushed to the stack or

70

2.6. Top-level compiler theorem with cost

not; this requires some care to avoid counting the current stack frame
twice in the tally.

• In the StackLang implementation of function calls, stack allocation is
done in two increments: enough space for the function arguments is
allocated by the caller, then the callee allocates space for the remaining
local variables. Our cost semantics abstracts away from this timing de-
tail, which makes it important that we update stack_max before rather
than after function calls; otherwise, our bounds will be unsound in
case the Call instruction aborts.

• We initially modelled tail calls as not changing stack size, but this is
unsound if the tail call is to another function with a larger stack size.

• Exception handler allocation needs to be counted separately from the
rest of the stack frame size, as shown above, because the same function
may be called both with and without exception handlers.

2.6 Top-level compiler theorem with cost

We have proved a new end-to-end correctness statement for the entire CakeML
compiler. In the theorem below, compile performs the entire compilation
chain from concrete syntax down to machine code. The new theorem lever-
ages is_safe_for_space to show that, for any successful compilation, execution
from any machine state ms that has the compiler-generated code and data in-
stalled will produce exactly the same behaviours as the source semantics.

` compile cc prelude input = (Success (code,data,c),c′)⇒
∃behaviours source_decs.

semantics_init ffi prelude input = Execute behaviours ∧
parse (lexer_fun input) = Some source_decs ∧
∀ms.

is_safe_for_space ffi cc (prelude ++ source_decs) (read_limits cc ms) ∧
installed code data . . . mc ms⇒
machine_sem ffi ms = behaviours

Here we assume is_safe_for_space (i.e. require the user to prove it), but we
conclude an equality machine_sem ffi ms = behaviours instead of the weaker
previous formulation that used ⊆ and extend_with_resource_limit as explained
in the introduction.

71

2. Do You Have Space for Dessert?

Here read_limits is a function that computes the relevant limits for the cost
semantics based on information from the compiler con�guration cc and the
initial machine state ms.

2.7 Proving that programs are safe for space

The aim of this paper is to provide a cost semantics that can be used to carry
liveness properties proved at the source level down to the machine code level.
In this section, we demonstrate that we can do exactly that with our new cost
semantics.

2.7.1 Is yes safe for space?

As a �rst example, we use a CakeML implementation of the yes command,
shown in Figure 2.4. This program prints its argument to stdout inde�nitely.

fun put_line l = let
val s = l ^ "\n"
val a = Word8Array.array 0 (Word8.fromInt 0)
val _ = #(put_char) s a (* ffi call *)

in () end;

fun printLoop l = (put_line l; printLoop l)

val _ = printLoop "y"

Figure 2.4: Implementation of yes.

Before we delve into a formal proof, let’s convince ourselves that yes is in-
deed safe for space.

At �rst glance, we see a number of expressions within put_line that cause
memory allocation. For example, string concatenation requires allocating
space for the resulting string. Thus any call to printLoop, which recursively
calls put_line inde�nitely, will perform an unbounded number of allocations.
This is �ne since none of the variables in the body of put_line remain in scope,
and hence will eventually be garbage collected. This in turn means that the
heap footprint of printLoop, as measured by size_of_heap, does not increase
between loop iterations.

72

2.7. Proving that programs are safe for space

As for the stack, it is enough to notice that (1) put_line is a non-recursive
terminating function that consumes a bounded amount of stack space, and
(2) printLoop is tail-recursive, and thus its recursive calls to itself do not grow
the stack.

Informally, we conclude that yes must be safe for space, even though it’s not
clear yet with respect to what heap and stack bounds.

2.7.2 Is yes safe for space, formally?

We will now formalise our intuition from the previous section by showing
that evaluation of the yes program satis�es is_safe_for_space as de�ned in
Section 2.2.4. In other words, we show that during evaluation of its Data-
Lang intermediate representation, heap and stack usage never goes above
a provided limit. In order to avoid encumbering the proofs with a deeply
embedded semantics, we have developed a sound and complete shallowly
embedded representation of DataLang programs as a state monad for doing
space cost reasoning.

Most of the initial DataLang code generated by the compiler can easily be
evaluated in-logic from the concrete initial state; it is only when we reach
the body of printLoop that things get interesting. The body of the printLoop
looks as follows in the proof.

Seq (Call_put_line (Some (1, {0})) [0] None)
(Call_printLoop None [0] None)

This corresponds very closely to the source program. The local variable 0
stores the value of "y". Abbreviations to make function calls readable are au-
tomatically installed; for example, Call_printLoop abbreviatesλret. Call ret (Some 285),
where 285 is the code location where the DataLang code generated from
printLoop happens to be installed.

From this point onwards the execution will repeat itself inde�nitely, and thus
data_is_safe_for_space can be proven by complete induction over the semantic
clock, and provide us with the following bounds:

` the (size_of_stack s.stack) + 17 ≤ s.limits.stack_limit ∧
size_of_heap s + 11 ≤ s.limits.heap_limit ∧ . . . ⇒
(snd (evaluate(Seq (Call . . .) (Call . . .)))).safe_for_space

This shows that as long as there are 11 words (88 bytes) of heap and 17 words
(136 bytes) of stack left when calling printLoop, we will not run out of mem-

73

2. Do You Have Space for Dessert?

ory. (We are compiling to a 64-bit architecture, thus machine words are 8
bytes long.)

The formal proof closely resembles our earlier informal argument, but the
details of the formal proof are omitted here. The formal proofs is included as
part of the supplementary material.

The resulting is_safe_for_space theorem for the entire yes program is:

` is_safe_for_space ffi yes_x64_conf yes_prog (56,89)

Here, the 56 and 89 are the concrete stack and heap bounds measured in ma-
chine words. These bounds are obtained during the course of the proof. They
are larger than the bounds for the call to printLoop because the surrounding
program (e.g. standard library) allocates on the execution up to the point of
the call to printLoop.

Having established that our program satis�es is_safe_for_space, a similar top-
level correctness theorem, to the one shown in Section 2.6, can be instanti-
ated to read:

` 56 ≤ stack_limit ∧ 89 ≤ heap_limit ∧
read_limits yes_x64_conf ms = (stack_limit,heap_limit) ∧
installed yes_code . . . ms ∧ . . . ⇒
machine_sem . . . ms = semantics_prog . . . yes_prog

The equality in the theorem above allows us to carry over any liveness prop-
erty from the source semantics into the machine code semantics.

For our example, we can prove that the yes source-level program will pro-
duce an in�nite stream of "y" characters on stdout.

semantics_prog . . . yes_prog =
{Diverge (lrepeat [put_str_event "y"])}

Such a theorem is easy to establish thanks to a program logic for non-terminating
CakeML programs [3], where proving this liveness property for the main
loop is a 15-line proof. Unfolding the abstractions of the program logic to
obtain a corresponding theorem about the CakeML semantics requires some
additional boilerplate.

Finally, we combine these two theorems from above to obtain the same live-

74

2.7. Proving that programs are safe for space

ness property at the level of the compiler-generated machine code:

` 56 ≤ stack_limit ∧ 89 ≤ heap_limit ∧
read_limits yes_x64_conf ms = (stack_limit,heap_limit) ∧
installed yes_code . . . ms ∧ . . . ⇒
machine_sem . . . ms =
{Diverge (lrepeat [put_str_event "y"])}

One can read this as saying: in a machine state ms where there are 56 words
of stack and 89 words of heap available, and where the compiler output yes_-
code is installed and ready to run, execution from ms can exhibit one and
only one behaviour: it will produce an in�nite stream of "y" on stdout. In
this case, the theorem is about x86-64 machine code. Since our cost semantics
is not tied to a particular architecture, the same result could be reproduced
for e.g. ARMv8 or RISC-V with no change to the space cost reasoning.

2.7.3 A linear congruential generator

A linear congruential generator (LCG) is a kind of pseudorandom number gen-
erator. The basic idea is that if xi is the current element of the pseudorandom
number sequence, the next element is generated by the following equation,
for �xed values of a,c,m:

xi+1 = (axi + c)modm

For this example, we implement a program that produces an in�nite stream of
LCG-generated numbers on stdout. The source code is shown in Figure 2.5.

This example shares some structural similarities with yes, but di�ers in sev-
eral ways that have bearing on space-cost reasoning. First, it exercises more
language features and reasoning techniques, including truely nested recur-
sive function calls. In particular, n2l_acc tail-recursively constructs a list in
accumulator passing style. Recall from Section 2.3 that lists are represented
by DataLang’s Blocks. Moreover, the length of the resulting list will depend
on the size of the input, so its cost must be expressed as a function of its input.
Finally, put_chars also tail-recursively deconstructs the same list. This exer-
cises the way size_of infers aliasing information from timestamps: put_char
requires constant space, but if our analysis failed to account for the structure
sharing between the lists cs and xs and didn’t distinguish live memory from
garbage, we would be forced to conclude that put_char uses O(|cs|2) heap
space

75

2. Do You Have Space for Dessert?

fun n2l_acc n acc =
if n < 10 then hex n :: acc
else n2l_acc (n div 10) (hex (n mod 10) :: acc)

fun num_to_string n = n2l_acc n [#"\n"]

fun put_chars cs =
case cs of [] => ()
| x::xs => (put_char x ; put_chars xs)

fun print_num n = put_chars (num_to_string n)

fun lcg a c m x = (a * x + c) mod m

fun lcgLoop a c m x =
let
val x1 = lcg a c m x
val u = print_num x1

in
lcgLoop a c m x1

end

val _ = lcgLoop 8121 28411 134456 42

Figure 2.5: Implementation of lcg. The de�nition of put_char is elided.

Another di�erence between this example and the previous yes example is
that this example uses arithmetic. Arithmetic over small numbers has no
stack or heap cost. However, once the numbers are large enough, arithmetic
starts to incur the stack and heap costs of invoking the bignum library. The
stack cost for bignum operations is not dependent on the size of the given
integers, but the heap cost is of course dependent on how large the numbers
are. Note that, for programs that only use small numbers, one has to prove
that the numbers stay small enough to avoid the cost of bignum operations.

We have proved the code shown in Figure 2.5 to be safe for space (with stack
bound 182 and heap bound 199). We proved this by showing that the code
stays within the range of small enough integers to avoid triggering CakeML’s
bignum library. Our proof is largely agnostic to the precise values of the
parameters so, in fact, lcgLoop can be called with di�erent values of a, c, m, x
with almost no change to the proofs (as long as the bounds described above
are met).

76

2.7. Proving that programs are safe for space

2.7.4 List reverse

In this example, we illustrate the precision advantages we gain by expressing
the cost semantics in an intermediate language. Consider the following naive
implementation of list reverse, which uses list append (written here in SML
syntax: @).

fun reverse [] = []
| reverse(f::l) = reverse l @ [f]

Figure 2.6: Naive implementation of reverse.

An informal source-level cost analysis would force us to conclude that since
this function is not tail-recursive, it requires O(n) stack space, where n is the
length of the input list, to accommodate the stack frames of the n recursive
calls reverse makes.

However, the CakeML compiler performs tail-call introduction before it reaches
DataLang [1], and this optimisation triggers on the body of reverse. In other
words, the compiler produces essentially the same code for reverse as it does
for reverse’ below:

fun reverse’_aux [] acc = acc
| reverse’_aux (f::r) acc = reverse’_aux r (f::acc)

fun reverse’ l = reverse’_aux l []

Figure 2.7: Tail-recursive implementation of reverse.

Therefore, we can use our cost semantics to prove that our initial naive ver-
sion of reverse uses only a constant amount of stack space:

` evaluate (s, reverse_body) = (res,s′) ∧ . . . ⇒
∃k. s′ .stack_max = option_map (+ k) s.stack_max

We note that a source-level cost semantics would have to know exactly when
the tail-call introduction optimisation kicks in to be able to prove such a
property for reverse.

The stack costs are concrete enough that we could prove a theorem similar
to the one above with a precise numeric value in place of k, and we could
additionally consider heap cost to prove that reverse is safe for space. How-
ever, that is not the point here: our cost semantics is modular enough that

77

2. Do You Have Space for Dessert?

when we are only interested in stack usage, we can reason about it separately
by considering only stack_max and ignoring safe_for_space. This results in a
simpler proof than the previous examples because we do not need to reason
about heap usage at all.

2.8 Related work

There has been much interest in de�ning cost semantics for both imperative
and functional programming languages to reason about the resource usage
of programs. The main types of resources are execution time and memory space

(heap and stack), and the cost semantics aim to estimate worst-case bounds
for these resources either at the source level or during transformation phases
through compilers.

Source-level Cost Analysis. Source-level techniques enable static cost
analysis. For instance, Hofmann and Jost [16] provide static prediction of
heap space usage for functional programs, and Jost et al. [17] develop a type
system with heap annotations for determining the execution costs of lazily
evaluated functional languages. RelCost [10], CostIt [11], and RaML [15] are
resource-aware type systems for source-level programs based on re�nement
types, and Guéneau et al. [13] provide worst-case asymptotic time complex-
ity of higher-order imperative programs. Wang et al. [28] present an ML-
like functional language with time-complexity annotations in indexed types.
Handley et al. [14] implement a system based on re�nement types to enable
reasoning about resource usage of pure Haskell programs in Liquid Haskell.
Aspinall et al. [4] develop a program logic for proving statements about re-
source consumption for the Java Virtual Machine Language (JVML), Atkey
[5] formalises a separation logic for heap-resource analysis within the Coq
proof assistant, and Vasconcelos [27] uses sized types to obtain upper bounds
on dynamic space usage of functional programs. While these source-level
analysis techniques provide formal estimates of cost analysis, they ignore the
e�ect of compilation and program transformation on resource consumption,
leaving an inherent trust gap between the analysis and the actual machine
code that runs.

Preservation of Resource Bounds through Compilation. Resource
bounds estimated at the source level can be made accurate and certi�ed
by proving their preservation throughout the compilation chain. Crary and

78

2.8. Related work

Weirich [12] estimate upper bounds on resources through a decidable type
system and a bounds-certifying compiler from the impure functional lan-
guage PopCron to typed assembly. Resources are modelled as semantic clocks,
and a resource-safe program is one for which the clock never expires. While
this approach is best suited to modelling time (where resource usage is mono-
tonic), it does in principle generalise to stack and heap usage because there
is a mechanism to recover spent resources, provided allocation and dealloca-
tion is explicit in the program text. Since this assumption fails to hold in the
presence of garbage collection, their approach is not well suited to languages
with automatic memory management.

Paraskevopoulou and Appel [23] develop a cost model for the CPS lambda-
calculus, in which they derive time and space bounds for a closure conversion
compilation phase in the Coq proof assistant. In our work we do not need
to explicitly model the space cost of closure conversion; instead, we derive
space bounds on code that has already been closure-converted. Their work
is also notable for taking garbage collection into account: their measure of
space usage assumes that an ideal, complete garbage collector is invoked of-
ten enough so that actual heap usage can only exceed the size of the reachable
heap by a bounded amount. They can also give bounds for diverging pro-
grams. The heap is explicitly present in the memory models of their source
and target languages. In contrast, we are able to lift our cost analysis to a
level of abstraction where there is no notion of heap, by annotating values in
the variable store with timestamps. Unlike Paraskevopoulou and Appel, we
cash out our cost model using the completeness proofs for the real garbage
collector implementation. Their runtime is stack-less, which allows them to
sidestep the problem of �nding roots in the stack. CakeML maintains its own
stack, and so implements and veri�es such root-�nding. Finally, our work is
fully integrated into an end-to-end veri�ed compiler, allowing space bounds
to be leveraged to transfer liveness properties all the way from source to
machine code; theirs is not (yet).

Our technique for estimating stack space consumption through an end-to-
end compiler closely relates to that of CerCo project [2]. The CerCo project
has built a veri�ed C compiler producing object binaries for the 8051 micro-
controller in the Matita theorem prover. The compiler precisely estimates
the non-asymptotic computational cost involving execution time and stack
space usage of input programs at the source level. It also generates source-
level annotations that correctly model low level costs. These invariants are
then certi�ed through automated theorem provers. Case studies include cer-
tifying the exact reaction time of Lustre data�ow programs compiled to C.

79

2. Do You Have Space for Dessert?

While the CerCo project inspires our work for estimating stack space, it does
not consider heap usage, let alone garbage collection. Their compiler cor-
rectness proof only considers preservation of cost bounds and not functional
correctness, whereas the CakeML compiler with our extensions considers
both.

The CompCert compiler [18] has also been employed to formally estimate
resource bounds for imperative C programs. Carbonneaux et al. [9] develop
a logic for reasoning at the source level about stack space consumption of
the corresponding CompCert compiler output. They introduce resource con-
sumption events to CompCert that are preserved by compilation and use the
compiler itself to determine the actual size of stack frames. Besson et. al intro-
duce �nite memory and integer pointers to the memory model of CompCert,
extend CompCert’s front-end for this concrete memory model, and continue
to verify its back-end layers to develop CompCertS in Coq [4, 5, 6]. Com-
pCertS estimates the memory usage of individual functions directly at the
C level, proves that compiled programs use no more memory than source
programs, and ensures that the absence of memory over�ow is preserved
by compilation. It also provides stronger guarantees about arbitrary pointer
arithmetic and avoids the miscompilation of programs performing bit-level
pointer manipulation. Wang et al. [29] enrich the memory model of Com-
pCert with an abstract and bounded stack to develop Stack-Aware Com-
pCertX: a complete extension of CompCert with compositional compilation.
The main distinction between our work and these is the level of abstraction
at which the cost semantics is expressed. In this respect, C is very similar to
our WordLang: both languages give the programmer an explicit view of the
heap and responsibility for managing heap memory, while abstracting the
stack. We express our cost semantics in a language that abstracts away from
the heap and features no explicit memory management.

2.9 Conclusion

We have presented a space cost semantics for CakeML programs that makes
it possible to prove the absence of out-of-memory errors in the generated
machine code. The semantics does so by estimating the resource usage of
programs an intermediate representation that avoids reasoning about point-
ers and heap objects, yet takes aliasing of data elements into account for an
accurate estimate. The cost analysis is proven sound down to the machine
code, and we have demonstrated that it can be used to carry source-level live-
ness properties down to machine code: the space analysis rules out all par-

80

2.9. Conclusion

tiality induced by potential out-of-memory errors, and can be applied even
to programs that make unboundedly many heap allocations.

In this paper, our primary goal was to make sound space cost reasoning about
CakeML programs possible. What remains to show is how such reasoning
can be made scalable; while our examples do exhibit interesting and relevant
features like non-termination and unbounded allocation, they are admittedly
small. There are several interesting ideas to explore in this direction. One is
to use coarser overapproximations of the heap size metric to make analysis
more compositional. Another is to develop a framework of sound abstrac-
tions of the monadic DataLang semantics.

81

Bibliography

[1] O. Abrahamsson and M. O. Myreen. Automatically introducing tail re-
cursion in cakeml. In M. Wang and S. Owens, editors, Trends in Functional
Programming - 18th International Symposium, TFP 2017, Canterbury, UK, June

19-21, 2017, Revised Selected Papers, volume 10788 of Lecture Notes in Com-

puter Science, pages 118–134. Springer, 2017. ISBN 978-3-319-89718-9.
doi: 10.1007/978-3-319-89719-6_7. URL https://doi.org/10.1007/978-

3-319-89719-6_7.

[2] R. M. Amadio, N. Ayache, F. Bobot, J. P. Boender, B. Campbell, I. Garnier,
A. Madet, J. McKinna, D. P. Mulligan, M. Piccolo, R. Pollack, Y. Régis-
Gianas, C. Sacerdoti Coen, I. Stark, and P. Tranquilli. Certi�ed com-
plexity (cerco). In U. Dal Lago and R. Peña, editors, Foundational and
Practical Aspects of Resource Analysis, pages 1–18, Cham, 2014. Springer
International Publishing.

[3] J. Åman Pohjola, H. Rostedt, and M. O. Myreen. Characteristic formulae
for liveness properties of non-terminating cakeml programs. In Interac-

tive Theorem Proving (ITP). LIPICS, 2019.

[4] D. Aspinall, L. Beringer, M. Hofmann, H.-W. Loidl, and A. Momigliano.
A program logic for resources. Theoretical Computer Science, 389(3):411 –
445, 2007.

[5] R. Atkey. Amortised resource analysis with separation logic. In A. D.
Gordon, editor, Programming Languages and Systems, pages 85–103, Berlin,
Heidelberg, 2010. Springer Berlin Heidelberg.

[6] F. Besson, S. Blazy, and P. Wilke. A precise and abstract memory model
for c using symbolic values. In J. Garrigue, editor, Programming Lan-

guages and Systems, pages 449–468, Cham, 2014. Springer International
Publishing.

83

https://doi.org/10.1007/978-3-319-89719-6_7
https://doi.org/10.1007/978-3-319-89719-6_7

Bibliography

[4] F. Besson, S. Blazy, and P. Wilke. A concrete memory model for com-
pcert. In Interactive Theorem Proving, pages 67–83, Cham, 2015. Springer
International Publishing.

[5] F. Besson, S. Blazy, and P. Wilke. Compcerts: A memory-aware veri�ed
c compiler using a pointer as integer semantics. Journal of Automated

Reasoning, 63(2):369–392, Aug 2019.

[9] Q. Carbonneaux, J. Ho�mann, T. Ramananandro, and Z. Shao. End-to-
end veri�cation of stack-space bounds for c programs. SIGPLAN Not., 49
(6):270–281, June 2014.

[10] E. Çiçek, G. Barthe, M. Gaboardi, D. Garg, and J. Ho�mann. Relational
cost analysis. SIGPLAN Not., 52(1):316–329, Jan. 2017.

[11] E. Çiçek, D. Garg, and U. Acar. Re�nement types for incremental com-
putational complexity. In J. Vitek, editor, Programming Languages and

Systems, pages 406–431, Berlin, Heidelberg, 2015. Springer Berlin Hei-
delberg.

[12] K. Crary and S. Weirich. Resource bound certi�cation. In Proceedings

of the 27th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL ’00, pages 184–198. ACM, 2000.

[13] A. Guéneau, A. Charguéraud, and F. Pottier. A Fistful of Dollars: For-
malizing Asymptotic Complexity Claims via Deductive Program Veri-
�cation. In ESOP 2018 - 27th European Symposium on Programming, volume
10801 of LNCS - Lecture Notes in Computer Science. Springer, Apr. 2018.

[14] M. A. T. Handley, N. Vazou, and G. Hutton. Liquidate your assets: Rea-
soning about resource usage in liquid haskell. In Principles of Program-

ming Languages (POPL), 2020. to appear.

[15] J. Ho�mann, K. Aehlig, and M. Hofmann. Resource aware ml. In Pro-

ceedings of the 24th International Conference on Computer Aided Veri�cation,
CAV’12, pages 781–786, Berlin, Heidelberg, 2012. Springer-Verlag.

[16] M. Hofmann and S. Jost. Static prediction of heap space usage for
�rst-order functional programs. In Proceedings of the 30th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL ’03, pages
185–197, New York, NY, USA, 2003. ACM.

[17] S. Jost, P. Vasconcelos, M. Florido, and K. Hammond. Type-based cost
analysis for lazy functional languages. Journal of Automated Reasoning, 59
(1):87–120, Jun 2017.

84

Bibliography

[18] X. Leroy. Formal veri�cation of a realistic compiler. Communications of

the ACM, 52(7), 2009. doi: 10.1145/1538788.1538814.

[19] M. O. Myreen. Reusable veri�cation of a copying collector. In G. T.
Leavens, P. W. O’Hearn, and S. K. Rajamani, editors, Veri�ed Software:

Theories, Tools, Experiments (VSTTE), volume 6217 of Lecture Notes in Com-

puter Science. Springer, 2010. ISBN 978-3-642-15056-2. doi: 10.1007/978-
3-642-15057-9.

[20] M. O. Myreen and G. Curello. Proof pearl: A veri�ed bignum implemen-
tation in x86-64 machine code. In G. Gonthier and M. Norrish, editors,
Certi�ed Programs and Proofs (CPP), pages 66–81. Springer, 2013.

[21] S. Owens, M. O. Myreen, R. Kumar, and Y. K. Tan. Functional big-step
semantics. In P. Thiemann, editor, European Symposium on Programming

(ESOP), volume 9632 of Lecture Notes in Computer Science, pages 589–615.
Springer, Apr. 2016.

[22] S. Owens, M. Norrish, R. Kumar, M. O. Myreen, and Y. K. Tan. Verifying
e�cient function calls in CakeML. Proc. ACM Program. Lang., 1(ICFP),
Sept. 2017.

[23] Z. Paraskevopoulou and A. W. Appel. Closure conversion is safe for
space. Proc. ACM Program. Lang., 3(ICFP):83:1–83:29, July 2019. ISSN
2475-1421.

[14] A. Sandberg Ericsson, M. O. Myreen, and J. Åman Pohjola. A veri�ed
generational garbage collector for cakeml. J. Autom. Reasoning, 63(2):
463–488, 2019. doi: 10.1007/s10817-018-9487-z.

[25] K. Slind and M. Norrish. A brief overview of HOL4. In Theorem Proving

in Higher Order Logics (TPHOLs), 2008.

[15] Y. K. Tan, M. O. Myreen, R. Kumar, A. Fox, S. Owens, and M. Norrish.
The veri�ed cakeml compiler backend. Journal of Functional Programming,
29, 2019.

[27] P. B. Vasconcelos. Space Cost Analysis Using Sized Types. PhD thesis, Ph.D.
Dissertation. University of St. Andrews, 2008.

[28] P. Wang, D. Wang, and A. Chlipala. Timl: A functional language for
practical complexity analysis with invariants. Proc. ACM Program. Lang.,
1(OOPSLA):79:1–79:26, Oct. 2017.

[29] Y. Wang, P. Wilke, and Z. Shao. An abstract stack based approach to

85

Bibliography

veri�ed compositional compilation to machine code. Proc. ACM Program.

Lang., 3(POPL):62:1–62:30, Jan. 2019.

86

	Introduction
	Choreographies
	Cost Semantics
	Future Work

	Bibliography
	An end-to-end verified compiler for a choreography language
	Introduction
	A choreography language
	Syntax and semantics

	Intermediate languages
	Endpoint: syntax and semantics
	Payload: syntax and semantics

	Endpoint projection
	Phase I: endpoint projection
	Phase II: remove choice
	Phase III: Endpoint to Payload
	Compiler correctness

	Compilation into CakeML
	Static compiler
	Dynamic compiler by example

	Related work
	Conclusion
	Bibliography

	Do You Have Space for Dessert?
	Introduction
	Overview
	Why can generated code exit early?
	Where are the early exits generated?
	At what level of abstraction should the cost semantics be expressed?
	Definition of is_safe_for_space
	A note on semantics
	Structure of the proofs

	DataLang and its semantics
	DataLang as an intermediate language
	DataLang as a cost semantics

	Proving soundness of heap cost
	Proving evaluate-level simulation
	Notation and invariants
	Correctness of heap allocation and size_of
	Lessons learned

	Proving soundness of stack cost
	Lessons learned

	Top-level compiler theorem with cost
	Proving that programs are safe for space
	Is yes safe for space?
	Is yes safe for space, formally?
	A linear congruential generator
	List reverse

	Related work
	Conclusion
	Bibliography

