
Extending AUTOSAR's Counter-based Solution for Freshness of
Authenticated Messages in Vehicles

Downloaded from: https://research.chalmers.se, 2021-08-31 16:48 UTC

Citation for the original published paper (version of record):
Rosenstatter, T., Sandberg, C., Olovsson, T. (2019)
Extending AUTOSAR's Counter-based Solution for Freshness of Authenticated Messages in Vehicles
Proceedings of Pacific Rim International Symposium on Dependable Computing (PRDC): 1-109
http://dx.doi.org/10.1109/PRDC47002.2019.00012

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Chalmers Research

https://core.ac.uk/display/347171866?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Extending AUTOSAR’s Counter-based Solution for
Freshness of Authenticated Messages in Vehicles

Thomas Rosenstatter
Chalmers University of Technology

Gothenburg, Sweden
Email: thomas.rosenstatter@chalmers.se

Christian Sandberg
Volvo Trucks

Gothenburg, Sweden

Tomas Olovsson
Chalmers University of Technology

Gothenburg, Sweden
Email: tomas.olovsson@chalmers.se

Abstract—Nowadays vehicles have an internal network con-
sisting of more than 100 microcontrollers, so-called Electronic
Control Units (ECUs), which control core functionalities, active
safety, diagnostics, comfort and infotainment. The Controller
Area Network (CAN) bus is one of the most widespread bus
technologies in use, and thus is a primary target for attackers.
AUTOSAR, an open system platform for vehicles, introduced in
version 4.3 SecOC Profile 3, a counter-based solution to provide
freshness in authenticated messages to protect the system
against replay attacks. In this paper, we analyse and assess
this method regarding safety constraints and usability, and dis-
cuss design considerations when implementing such a system.
Furthermore, we propose a novel security profile addressing
the identified deficiencies which allows faster resynchronisation
when only truncated counter values are transmitted. Finally,
we evaluate our solution in an experimental setup in regard to
communication overhead and time to synchronise the freshness
counter.

Index Terms—cyber-physical systems, security, message au-
thentication, freshness, automotive.

1. Introduction

The internal network of modern vehicles consists of
more than 100 Electronic Control Units (ECUs) that com-
municate via different network technologies, such as Con-
troller Area Network (CAN) and Ethernet. CAN is a rela-
tively old technology developed by Robert Bosch GmbH
in 1983 and later standardised in ISO 11898 [4]. Back
then, securing the CAN bus was not an issue, as listening
and transmitting on the bus required special equipment and
physical access to the vehicle. This assumption changed
when vehicles became connected to the outside world, e. g.,
the internet, mobile phones, and other vehicles.

Miller and Valasek demonstrated a remote exploitation
back in 2015 [6], where they were able to remotely control
a vehicle over the Internet. Given this, and other successful
attacks in more recent years underlines the need for security
in the automotive domain, especially, a secure transmission
of data.

AUTOSAR, a system architecture developed by a con-
sortium of vehicle OEMs and suppliers, defines in Specifi-

cation of Secure Onboard Communication v4.4.0 [1] three
so-called SecOC Profiles, which provide message authen-
tication to ensure that messages were sent by said origin
and have not been altered during transmission. Messages are
authenticated by calculating the corresponding Message Au-
thentication Code (MAC) and sending it along with the clear
text. SecOC Profile 2 verifies the authenticity of messages
without an additional counter or timestamp, whereas SecOC
Profile 1 and 3 use a counter-based Freshness Value (FV)
in order to prevent replay attacks. The difference between
the latter two is that SecOC Profile 3 includes a mechanism
to synchronise the FV across senders and receivers. Such a
mechanism to synchronise the FV is required when only a
truncated FV is sent along with the data, for instance, due
to the limited payload size and network technology used in
automotive networks.

In this paper, we analyse and assess AUTOSAR’s SecOC
Profile 3 in detail, discuss design aspects and limitations of
counter-based freshness solutions, and lastly propose a new
profile that is independent of the underlying network archi-
tecture and addresses the identified issues. Additionally, we
evaluate our method in terms of communication overhead
and time to synchronise the FV.

2. AUTOSAR SecOC Profile 3 (JASPAR)

The AUTOSAR Secure Onboard Communication Spec-
ification [1] introduces SecOC Profile 3, also named JAS-
PAR, a method that guarantees freshness and provides mes-
sage authentication. Profile 3 applies CMAC/AES-128 [5]
for message authentication and is used in combination with
a master/slave synchronisation of a freshness counter as
explained in [1, Annex A]. Profile 3 also introduces an entity
called Freshness Value Manager (FVM), which is respon-
sible for maintaining the current FV and synchronising the
value between senders and receivers. The FVM can either
run centrally on a dedicated ECU or decentralised in each
sending ECU. A method for a fast synchronisation of the
FV between the different entities is necessary, as the senders
and receivers normally only store a portion of the FV in
Non-Volatile Memory (NVM). In addition, a watchdog timer
reset or other unexpected situations may occur where an
ECU restarts and consequently fails to successfully verify



incoming Interaction Layer Protocol Data Units (I-PDUs)
due to the fact that the FV has already changed.

In the following sections we describe the FV, the struc-
ture of the I-PDUs and continue with giving details under
what circumstances Profile 3 is able to correctly verify
the authenticity of I-PDUs with truncated FVs even when
I-PDUs are lost.

2.1. Freshness Value and I-PDU Format

Profile 3 describes two configurations for sending data:

(1) sending the authenticated data, named Authentic
I-PDU, and the authentication information, namely
the Cryptographic I-PDU, separately; or

(2) sending the application data and the authentication
information in one I-PDU, a Secured I-PDU, which
is only possible if the data to be authenticated is
short.

A truncated FV and MAC, which is further called
authenticator, may be sent for each I-PDU since sending
these values in full length significantly increases the
network load. CAN, for instance, is already highly utilised
and requires a truncation as the maximum payload size is
64 bits.

Freshness Value. The FV has a maximum size of 64 bits
and consists of three sub-counters (their maximum size is
given in braces): trip counter (24 bits), reset counter (24 bits)
and message counter (48 bits), as shown in Figure 1a.
Note that the length of the sub-counters must be adjusted
individually and may not exceed the maximum size of the
FV (64 bits). The trip counter is increased in units of
trips, the reset counter is incremented periodically defined
by a static parameter ResetCycle and the message counter
is increased per message/I-PDU being sent. The reset flag
shown in Figure 1a contains the n least significant bits of
the reset counter.

Authentic I-PDU. This I-PDU shown in Figure 1b con-
tains the data that is authenticated by the sender. Depending
on the configuration it is sent apart from the authenticator
and FV, or as part of the Secured I-PDU.

Secured I-PDU. Is generated when the Authentic I-
PDU, the authenticator and the FV are combined in one
I-PDU. It contains an optional header, the data to be trans-
mitted, the truncated FV and the authenticator, as shown in
Figure 1b. AUTOSAR recommends to transmit the lower 4
bits of the FV and the upper 28 bits of the MAC. Note that
the authenticator contains the MAC of the plain text (the
message) and the full length FV even in cases when only a
truncated FV is transmitted.

Cryptographic I-PDU. Figure 1c gives details about
this I-PDU which is sent along with the Authentic I-PDU
and thus allows, in case of CAN, more bits of the FV and
MAC to be transmitted.

Synchronisation Message. Also named TripReset-
SyncMsg, is sent periodically by the FVM when either the
trip counter increases or a new ResetCycle starts, for instance

Freshness Value [max 64 bits] 
Trip

Counter 
[max 24 bits]

Reset
Counter 

[max 24 bits]

Message Counter  
[max 48 bits]  Reset

Flag  Upper  Lower

LSBMSB

Truncated Freshness
Value

(a) Structure of the locally stored Freshness Value.
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(b) Structure of the Secured I-PDU, i. e., containing both, data
and authentication information.

Header
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(c) Structure of the Cryptographic I-PDU, i. e., containing only
the authentication information.

Trip Counter  Reset Counter  Truncated MAC

LSBMSB

(d) Structure of the Synchronisation Message.

Figure 1. Structure of the FV and I-PDUs [1, p.138,145].

every second. The synchronisation message, see Figure 1d,
contains the trip and reset counter in their full length as well
as the corresponding authenticator. The message counter is
set to zero when a synchronisation message is received. A
synchronisation message is also sent at startup or after a
reset of the FVM. In such a case the trip counter stored in
NVM gets incremented and the reset counter is reset to 0.

2.2. Reconstruction of the Freshness Value

When transmitting only a truncated FV along with each
PDU, situations can occur in which the receiver will not
be able to correctly verify the authenticity of the received
I-PDUs due to a mismatch of the current FV, for example
after an ECU reset by a watchdog timer or woken up after
a long sleep. Profile 3 describes in [1, Figure 6-7] how to
reconstruct the counter values when only truncated FVs are
transmitted and the internally stored counters do not result in
a successful verification of the Authentic I-PDU. (1) The re-
ceiver then tries to verify the I-PDU with its internally stored
FV+1. (2) If this verification fails, it updates the FV with the
truncated value from the received I-PDU, e. g., lower 2 bits
of the reset and message counters. (3) The internally stored
value consisting of the trip counter, reset counter and upper
part of the message counter is incremented by 1 and the



verification is retried. An internal counter, called attempts,
is incremented with every repetition of (3) until the allowed
maximum (parameter R can be configured) is reached and
the I-PDU will be dropped.

The rest of this section describes two situations where
it is not possible to reconstruct the correct counter value
resulting in the ECU being unable to verify the authenticity
of the I-PDU. As the truncated FV contains a few bits
of the reset and message counters, the receiver is able to
correctly verify the authenticity of I-PDUs even if it has
missed some I-PDUs. We assume in the rest of this analysis
that the ResetCycle is harmonised with the message counter,
meaning that a synchronisation message is always sent when
the message counter overflows. The abbreviations used in
the following analysis are as follows:

R The maximum number of verification retries.
m The length of the message counter.
ml The length of the lower part of the message

counter.
rf The length of the reset flag.
Clast The message counter value of the last success-

fully verified message.
T The period in which messages are sent.

2.2.1. Reconstruction of message counter fails. The first
situation in which the receiver is not able to correctly verify
the authenticity of an I-PDU is when it misses too many
I-PDUs to be able to correctly reconstruct the actual message
counter assuming that the reset counter did not change.
In this situation, it is possible to reconstruct the message
counter as long as no more than 2ml + R · 2ml PDUs are
missed. Overall, the SecOC module is able to recover the
correct FV as long as it receives an I-PDU with a message
counter C in the range:

Clast < C ≤ min{Clast + 2ml +R · 2ml , 2m − 1} (1)

The total waiting time for a synchronisation message
since the last successfully verified I-PDU is

(2m − 1− Clast) · T (2)

EXAMPLE. We analyse a system with an 8 bit message
counter m = 8bits; ml = 2bits; Clast = 0; R = 2.
AUTOSAR recommends a truncated FV of length 4, which
corresponds to ml = 2bits and rf = 2bits in our example.
We chose to illustrate the worst case scenario, when the last
correctly verified counter value is 0, for illustration purposes,
however, the identified interval applies for all counter values.
In this scenario the receiver can reconstruct the correct FV
as long as it receives one of the next consecutive 12 I-PDUs
(22 + 2 · 22, see Eqn. 1). If it misses more than 12 PDUs,
respectively the ECU sleeps longer than 240 ms with a
message frequency of 50Hz, the module is unable to recover
and has to wait in total 28−1−0 = 255 PDUs (see Eqn. 2)
since the last successfully verified PDU to receive the next
synchronisation message. Figure 2 illustrates this example
when the SecOC module receives only the truncated FV

and MAC with each PDU. The current counter values in
each step are aligned with their corresponding counter and
presented in binary format.

In case that the SecOC module receives a truncated FV
(see Figure 1b) of 0b0000 and the last received message
counter was 0, it is still able to correctly verify the
authenticity of the I-PDU when the real message counter
value is 0b00001100. Note that the module will drop
the I-PDU as soon as the MAC verification fails and the
number of maximum attempts R is reached. This example
shows that it is not possible (with ml = 2bits) to correctly
verify I-PDUs with a message counter > 0b00001101 as
more than two attempts to reconstruct the correct message
counter (R > 2) would be needed.

0000 11
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Figure 2. Example illustrating when an ECU is not able to correctly verify
an I-PDU.

2.2.2. Reconstruction of the reset counter fails. The
second situation occurs when the SecOC module has been
inactive for a longer period and consequently missed at least
one synchronisation message. In this situation, the module
is able to recover the correct FV as long as the message
counter is in the range described in Section 2.2.1 and as long
as the truncated reset counter, the reset flag, can be used to
correctly restore the FV. For example, a 2-bit reset flag can
be used to correct 22− 1 reset counter increments. Overall,
the interval in which it is possible to correctly reconstruct
the FV with changing reset counter is illustrated in Figure 3.

3. Design Considerations and Limitations

In addition to the time span ECUs may be out of
sync, non-functioning and waiting for a synchronisation
message, we have identified other potential challenges
when introducing SecOC Profile 3.
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Figure 3. Example showing the cases when the ECU is able to correctly
verify the I-PDU when the reset counter increases.

Freshness Value Manager (FVM). The FVM may be
implemented decentralised, meaning that each sending ECU
has its own instance of the FVM, or centralised, where there
is one FVM for all senders and receivers.

The trip and reset counters are shared between all
senders and receivers when applying the centralised ap-
proach, however, the trip counter is the only counter that has
to be stored in NVM of the FVM. Storing and accessing only
a small portion of the FV in NVM is faster and increases
also the lifetime, which is expected to be at least 10 years, as
less space in memory pages has to be written. The reset and
message counters are stored in volatile memory where the
message counter is the only counter maintained individually
per I-PDU/message type by the sender and receivers.

CAN uses so-called CAN-IDs to distinguish between
different message types. For this reason, the synchronisation
message of each FVM requires its own distinct CAN-ID.
Thus, a centralised approach also reduces the number of re-
quired CAN-IDs due to having one synchronisation message
for all senders and receivers. The decentralised approach on
the other hand requires each sender to maintain the current
trip counter in their NVM as this counter is independent of
the counters used by other senders.

Having a centralised FVM might bring in challenges
regarding the propagation of synchronisation messages, as
gateways cause additional delays. This, however, depends on
the chosen placement of the FVMs, e. g., having one FVM
per network segment or one for the entire internal network
of the vehicle.

A centralised FVM also introduces the FVM as a single
point of failure and thus increases the complexity drastically
when combined with safety critical functions. As an exam-
ple, a safety critical system, which is classified as ASIL D, in
combination with Profile 3 would require a redundant FVM
with dissimilar software and hardware redundancy according
to ISO 26262 [3], the functional safety standard for road
vehicles. From this perspective, a decentralised FVM is
desirable for safety critical functions.

Single-I-PDU configuration. Sending data and its au-
thenticator in a single I-PDU is faster compared to sending
them separately for the reason that the data has to be
kept in Random Access Memory (RAM) until the second
PDU containing the corresponding authenticator is received.
Heavy duty vehicles have to comply to SAE J1939 [9],
which may require to send the authenticator as a separate
frame for the reason that this standard defines the content
of certain CAN frames to provide interoperability between a
variety of equipment for heavy duty vehicles. Thus, sending
data and authenticator separately allows increased security
for core functions developed by the vehicle OEM while
third-party modules are still able to receive the predefined
messages defined in [9]. Sending two frames also allows the
transmission of longer truncated values when considering
the maximum payload size of 64 bits in CAN.

Complex Structure of the FV. Profile 3 introduces a
FV consisting of three counters (see Figure 1a). The trip
counter is incremented in units of trips, which requires a
global understanding of the unit as it strongly depends on
the function of the ECU. AUTOSAR specifies that the trip
counter shall be incremented when the ECU running the
FVM starts, on wakeup, on reset and when the power status
changes from off to on. ECUs in a heavy duty vehicle
might be active for several days, e. g., interior light control,
whereas others will boot when the ignition is switched on.
Thus, it may happen that ECUs miss the increment of the
trip counter and need to wait for the next synchronisation
message. Moreover, the use of the reset counter is solely to
indicate that a new ResetCycle has started. For this reason,
we do not see an advantage of having the reset counter
separated from the message counter.

Reset Counter Overflow. There are no means to in-
crease the trip counter when the reset counter overflows.
Instead, a synchronisation message with the maximum value
of the reset counter will be sent, meaning that the freshness
property of transmitted messages no longer applies.

Determining the Reset Cycle. The parameter Reset-
Cycle is used to define the frequency of synchronisation
messages. The ResetCycle should be harmonised with the
maximum value of the message counter in order to achieve
the highest utilisation of the counter space as synchronisa-
tion messages reset the message counter.

A centralised FVM introduces additional challenges, as
the ResetCycle is defined globally for all I-PDUs in the
vehicle. In this case the counter space as well as the peri-
odicity of the synchronisation message cannot be efficiently
adjusted for individual I-PDU types.

Periodicity of Synchronisation Messages. Since syn-
chronisation messages are broadcast periodically as defined
by the parameter ResetCycle, receiving ECUs will be in
a non-functional state until a synchronisation message is
received when they are out of sync. There is no way for a
receiver to notify the FVM that it needs synchronisation of
the FV.

Having means to request synchronisation messages is
necessary in order to provide a fast resynchronisation, such
as when starting a vehicle by turning on the ignition or when



an ECU encounters a watchdog timer reset. Most vehicles,
including heavy duty vehicles, have different modes of oper-
ation, such as run, accessory, parked, living and crank. RUN
indicates that the vehicle is driving and fully operational,
LIVING that ECUs related to the driving functionality are
shut off and only comfort ECUs, such as interior lighting
and infotainment, are active. Given these dynamics of the
vehicle modes, it is necessary to have a fast recovery when
an ECU loses track of the current FV.

From a safety perspective it is desirable to have a
deterministic, maximum specified interval for synchronisa-
tion messages. In addition, having fast resynchronisation of
non-safety critical functions may be important for comfort
functions to provide a “premium” feeling when driving a
vehicle.

4. Proposed SecOC Profile 4

We address the identified issues in our proposed profile
which offers:

• a faster synchronisation of the FV.
• alignment with ISO 26262.
• less bandwidth usage due to the reduced number of

control messages needed to synchronise the FV.
• a simplified structure of the FV.

We propose two modes of operation: Mode 1 similar
to Profile 3, however, a new structure for the FV is used;
Mode 2 a more efficient and faster approach that allows
receiving ECUs to request synchronisation messages on
demand instead of having to wait for the next periodic
synchronisation message. Figure 4 provides an overview of
the different configurations, modes and message types used.
Configuration 1 and 2 describe in which format the data
and authenticator are exchanged, either in one I-PDU or
separately. We propose using the same structure as defined
in AUTOSAR for the following I-PDUs: Authentic, Secured
and Cryptographic I-PDU. When truncating the FV we use
the same approach as Profile 3 described in [1, Figure 6-7].

Configuration 2
data & 

authentication 
information sent 

separately

Proposed SecOC 
Profile 4

Configuration 1
data & 

authentication 
information in 

one PDU

Configuration

Mode 2
on-demand 

requests

Mode 1
periodic 

synchronisation
messages

Synchronisation
Mode

- Secured I-PDU
[AUTOSAR]

- Authentic I-PDU 
[AUTOSAR]

- Cryptographic I-
PDU [AUTOSAR]

- SyncMessage
[modified from 
AUTOSAR]

- SyncRequest
[new]

- SyncMessage
[modified from 
AUTOSAR]

Figure 4. Overview of configuration and mode options including the
involved messages.

We describe the structure of the FV and the new and
modified messages in Section 4.1. Sections 4.2 and 4.3
describe the different modes of synchronisation followed by
a description of default parameters and recommended values
in Section 4.4.

4.1. Freshness Value and I-PDU Format

The structure of the FV and I-PDUs in our proposed
method is described in this section and shown in Figure 5.

Freshness Value. Figure 5a depicts the FV, which is
reduced to having only two sub-counters, i. e., a sequence
counter and a message counter, which is, similar to Profile 3,
split into an upper and lower part. The sequence counter
is maintained by the FVM and thus needs to be stored in
NVM. The scope of the sequence counter can be defined to
be either one per FVM or one counter per message type.
Moreover, the sequence counter may be increased due to a
SyncMessage being sent for the reason that the FVM has
been restarted, encountered an error, received an internal
trigger to increase the sequence counter, or has received a
SyncRequest.

Authentic and Secured I-PDU. The structure is similar
to Profile 3 (see Figure 1b). Configuration 1 sends the Au-
thentic I-PDU separately or combined with the authenticator
when Configuration 2 is enabled.

Cryptographic I-PDU. Is sent when Configuration 2 is
enabled. Figure 5c explains how to combine the sequence
and message counter when truncated FVs are transmitted.

SyncMessage. The synchronisation message contains
the sequence counter and its corresponding MAC. As this
message is used to synchronise the FV between senders and
receivers, there is, similar to SecOC Profile 3, no possibility
to provide freshness for this message. The nodes, however,
must verify that the received sequence counter is larger than
sequence counters previously used to prevent replays of old
messages from an adversary.

SyncRequest. Receivers may send on-demand requests
for synchronisation in case they have no knowledge about
the current sequence counter or cannot successfully verify
the received I-PDUs. The Error-Code depicted in Figure 5d
can be used to signal the FVM why the ECU demands a new
SyncMessage, for instance due to consecutive verification
fails or a reboot.

4.2. Sending Periodic SyncMessages (Mode 1)

This configuration is similar to Profile 3, the parameter
ResetCycle defines the frequency in which SyncMessages
are broadcast and shall be chosen by considering the max-
imum time an ECU is allowed to be out of sync without
degrading its functionality. We recommend using this con-
figuration only when necessary due to its impact on the
bandwidth of the underlying network.
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Figure 5. Structure of the proposed FV and I-PDUs.

4.3. On-Demand Request for Synchronisation
(Mode 2)

This mode enables the FVM to send SyncMessages
when SyncRequests are received. In situations, such as when
multiple receivers wake up, i. e., changing to an active state
or when an ECU being stuck in a bootloop, may occur and
result in several SyncMessages being sent within a short
time frame. Given these circumstances, the FVM is required
to handle multiple SyncRequests within a short period of
time. A dynamic parameter, such as SyncMessageSuspend,
can be used to define the time during which SyncRequests
are ignored after a SyncMessage has already been sent.
Therefore situations when a SyncMessage has already been
sent by the FVM but not yet received by the ECU, which
sends another SyncRequest when it realises that it is out of
sync, are covered as well.

SyncRequests are, similar to SyncMessages, vulnerable
to replay attacks as these two messages are used to regain
synchronisation of the FV. Restricting the number of Sync-
Requests in combination with a monotonically increasing
FV, however, provide also security against attackers who
inject previously recorded SyncRequests in order to over-
flow the sequence counter and thus force the FVM to reuse
counter values. Considering the scenario of a 28 bit sequence
counter and a limit of 2 SyncRequests per second would take
an attacker 4.2 years until the FV is repeated.

A CAN specific implementation of the SyncRequest may
make use of so-called Remote Frames (RFs) [4]. RFs can be
used to request data by sending a frame with the same CAN-
ID as the requested data, where only the Remote Transmis-
sion Request (RTR) bit changes. This specific solution for
CAN has the advantage that no additional CAN identifier for
the SyncRequest is needed and thus does not additionally
exhaust the pool of available CAN-IDs. The CAN-ID is
also used to prioritise the frames – the lowest CAN-ID
has the highest priority (see arbitration in [4]). Coupling
the priority with the CAN-ID demands further consideration
when choosing an ID, as SyncRequests are event-triggered
and not periodic.

4.4. Recommendations and Default Values

We recommend combining both modes, i. e., sending
periodic SyncMessages and allowing ECUs to request them
(Mode 1+2), for messages that need be authenticated. By
enabling receivers to request SyncMessages, a larger Re-
setCycle and thus longer message counter, which in turn
reduces the load on the network, can be used. The ResetCy-
cle not only depends on the chosen mode, it also strongly
depends on the requirements and for how long an ECU is
allowed to be unable to correctly verify the authenticity of
I-PDUs due to being out of sync.

The size of the FV and the authenticator depend on
several factors, such as computational and storage limi-
tations of senders and receivers, the bus technology, and
current network load. Unless compliance to standards, i. e.,
SAE J1939 for heavy duty vehicles, is required, it has to
be decided whether the data of an existing CAN frame can
be split in two frames to create space for the authenticator
and the truncated FV (configuration 1 in Figure 4) or if
a second frame containing only the authenticator and the
truncated FV (configuration 2) should be used.

Table 1 lists our recommended parameter values, de-
scribed in Figures 4 and 5, for mode 1 and 2. These values
are based on the AUTOSAR SecOC Profile 3 recommen-
dations and should be considered as a base for further
adaptation depending on the requirements. The number
of additional attempts for reconstructing the FV depends
strongly on the message frequency of the authenticated data
as well as the computational power of the ECU.



TABLE 1. RECOMMENDED PARAMETERS

Parameter Mode 1 Mode 1+2

ResetCycle 5 Hz 1 Hz

Freshness Value

Attempts 2

FvLength 64 bits

FvUpper FvLength – FvMsgCntLower

FvSeqCntLength 28 bits

FvMsgCntLength FvLength – FvSeqCntLength

Configuration 1 Configuration 2

AuthInfoTxLength 28 bits 44 bits

FvTxSeqCntLength 2 bits 4 bits

FvTxMsgCntLength 2 bits 16 bits

5. Experiments and Evaluation

The experimental setup to validate the functionality of
our proposed solution is shown in Figure 6 and consists
of three nodes, one sender and two receivers, which were
implemented on Freescale MPC 5646C microcontrollers
with a compliant AUTOSAR software using the AUTOSAR
4.3 crypto stack. The FVM is executed on the sending ECU,
as we believe that a decentralised approach is more realistic
to be deployed in a production environment. Furthermore,
we chose to send the authentic data separated from the
authentication information (i. e., use configuration 2) as this
setting provides both backward compatibility and compati-
bility with standards specifying the frame content.

Sender
Receiver 1

Receiver 2
CAN or Ethernet

FVM

Figure 6. Experimental setup where sender and receivers either communi-
cate via CAN or Ethernet.

TABLE 2. PARAMETERS USED FOR COMPARING MODE 1 AND
MODE 1+2

Parameter Mode 1 Mode 1+2

ResetCycle 5 Hz 1 Hz

Attempts 0 0

FvMsgCntLength 2 bits 2 bits

max. message counter value 10 100

We have analysed the time a resynchronisation takes
when only mode 1 or both modes were activated using
the parameters shown in Table 2. These parameters where
chosen to highlight the differences between the two modes,

other parameters such as the length of the authenticator,
are not relevant for the following analysis. Figure 7 shows
the calculated times from a scenario where the receiver
gets interrupted for 90 ms, e. g., due to a watchdog timer
reset or an erroneous event. It shows the time τ , which
is the time measured between receiving the first I-PDU
after the interruption and the successful resynchronisation
of the ECU. Figure 7a illustrates the behaviour of periodic
SyncMessages; τ decreases with the increasing counter
value Clast, as the next periodic synchronisation message
approaches. The large τ from Clast ≥ 5 is due to the
interruption of 90ms, which causes the receiver to miss the
periodic SyncMessage. The blue line shows that enabling
requests for synchronisation messages, has a constant time
τ since the generation and transmission of the SyncRequest
and SyncMessage have a fixed delay. In a real setting, there
will be a variation of τ depending on the bus load and
priority of the messages. However, it is reasonable to assume
that even without using very high priorities, these messages
should always be possible to be transmitted within 20 ms.
In addition, as shown in Figure 7b, enabling SyncRequests
provides not only a faster resynchronisation of the FV, it
also makes it possible to reduce the number of periodic
SyncMessages.

5.1. CAN Test Bed

In this setting, we first analyse the processing times
and delays of the sending ECU respectively the FVM. The
sender is configured to send a SyncMessage every 200 ms
and to accept SyncRequests. These settings were chosen
to highlight that the proposed method is also faster when
combined with shorter periods for sending SyncMessages.
Figure 8 illustrates the frequencies of different messages
transmitted on the CAN bus generating in total a bus load
of 14%, where messages in cyan colour are generated back-
ground traffic. The messages with IDs 8300311 and 8300313
are the Authentic and Cryptographic I-PDU destined for Re-
ceiver 1 with a message frequency of 100 Hz. SyncMessage
and SyncRequest were chosen to have a lower priority (in
CAN the lowest ID has the highest priority) than the actual
secured message to show that our approach also works well
even when messages with higher priorities are transmitted
on the network. We force the receiving ECU to get out of
sync by triggering the sending ECU/FVM to immediately
increase the sequence counter by 100.

In our measurements it takes the sender 17.8 ms from
receiving the SyncRequest at second 5.00 to sending a
SyncMessage, which corresponds to the spike shown in
the chart presenting the time between SyncMessages in
Figure 8.

Overall, it takes the FVM, respectively the sending ECU,
in average 18.1 ms to transmit the SyncRequest, process
the request and transmit the corresponding SyncMessage.
Receiver 1 needed in average 25 ms from recognising that
it is out of sync until having a synchronised FV again. Com-
paring this fast resynchronisation to sending only periodic
SyncMessages as shown in Figure 7a highlights that not just
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Figure 7. Analysis on the waiting time when an ECU is interrupted for 90 ms.

the waiting time can be greatly reduced, but also the period
in which SyncMessages are sent can be extended to reduce
the bus load of the network. To achieve the same average
for resynchronisation as we have achieved by enabling
SyncRequests would require sending SyncMessages with a
frequency of at least 20 Hz.

Other factors such as the bus load and number of receiv-
ing ECUs have an impact on the time a resynchronisation
takes when on-demand SyncRequests are enabled. In most
cases it can be assumed that SyncRequests and SyncMes-
sages can be sent within the next 20 ms on CAN even
with high bus loads when assigning the priorities properly.
Measures to prevent flooding of SyncMessages by many
ECUs sending SyncRequests close after each other may
impact the response time of the FVM as well. Such measures
can be implemented on the FVM and may be to limit the
number of SyncRequests within one SyncMessage period
(ResetCycle) or to only send one SyncMessage within a
certain time frame.

A case that might require a special handling of
SyncRequests is the KeyOn event and other events where
many ECUs are expected to startup simultaneously. In
such scenarios a fast ECU might request and receive a
SyncMessage while others are still booting. One approach
is to allow more SyncRequests within one ResetCycle
during startup to allow a fast synchronisation. Another
approach to cope with many ECUs being out of sync is to
temporarily set a faster period for sending SyncMessages

and increase the ResetCycle later on. For instance, for the
KeyOn scenario one may set the ResetCycle to 50 ms for
two seconds and afterwards increase it to the regular period
of 1 second.

5.2. Ethernet Test Bed

The test bed with the nodes communicating over Ether-
net with each other was used to validate that our implemen-
tation, specifically the use of our structure of the FV, works
on Ethernet as well. We chose to send the complete FV
along with every message for the reason that the requirement
of having a highly limited bandwidth, as in CAN, does not
apply. Thus, there is no need for sending synchronisation
messages or requests. We successfully validated the func-
tionality of our proposed approach using the structure of
the UDP payload shown in Figure 9.

6. Related Work

Zou et al. [11] identify the challenges of time and
counter-based solutions for CAN. One of the identified
challenges for counter-based solutions is the need for ECUs
to be able to request synchronisation messages, however, the
authors do not provide more details.

Gürgens and Zelle [2] present a CAN specific hardware-
based solution to provide counter-based freshness. This
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Figure 8. Results when the receiving ECU gets out of sync and sends a SyncRequest.
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Figure 9. Structure of the UDP payload sent over Ethernet (Secured I-PDU).

method uses one counter per CAN bus where the counter
gets incremented by 1 when a message is sent. The au-
thors also mention that their proposed solution cannot
be implemented in currently available ECUs as the CAN
transceivers require additional functionality. Limiting the
scope of the counter/FV per CAN network segment addi-
tionally increases also the delay through gateways due to
the verification and subsequent generation of a new MAC
using the counter of the network the message is forwarded
to.

VulCAN [10] proposes a trusted computing design for
message authentication including software component attes-
tation, but leaves the resynchronisation of the FV to the
underlying protocol being used.

Existing CAN authentication solutions based on indus-
trial criteria have been evaluated by Nowdehi et al. [7].
According to Nowdehi et al., VatiCAN [8] fulfils the re-
quirements of cost effectiveness, backward compatibility,
and repair and maintenance. VatiCAN provides freshness
using a nonce, but it requires to be synchronised periodically
(i. e., the authors suggest every 50 ms).

7. Conclusion

Freshness is an important security property that ensures
that authenticated messages have not been replayed by a

malicious entity. Counter-based solutions are especially in-
teresting in the automotive domain, as sensors and other
Electronic Control Units (ECUs) rarely have a globally
synchronised clock. AUTOSAR proposed two counter-based
solutions, one using a single counter and another one pro-
viding additionally a master/slave synchronisation of the
Freshness Value (FV).

In this paper, we focus on the second solution presented
by AUTOSAR, namely SecOC Profile 3 or JASPAR. We
first provide a detailed analysis on Profile 3 which shows
in which situations the recovery mechanism of the FV
succeeds when only a truncated FV is transmitted. Second,
we study the limitations, safety impact and other design
considerations when implementing a counter-based solution
to provide freshness for signals in the in-vehicle network.
Third, we propose an extension of Profile 3 that allows a
faster synchronisation of the FV in case senders or receivers
have lost track of the current FV due to, for instance, an
unexpected reset, internal state change or waking up from
sleep. We further evaluate our proposed solution on two test
beds each communicating via CAN bus and Ethernet. The
experiment shows that our proposed solution is significantly
faster in synchronising ECUs. Moreover, the number of
necessary control messages used to synchronise is reduced
notably and will have a positive effect on the bus load.
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