
Variable-Rate FEC Decoder VLSI Architecture for 400G
Rate-Adaptive Optical Communication

Downloaded from: https://research.chalmers.se, 2022-01-01 18:27 UTC

Citation for the original published paper (version of record):
Jain, V., Fougstedt, C., Larsson-Edefors, P. (2019)
Variable-Rate FEC Decoder VLSI Architecture for 400G Rate-Adaptive Optical Communication
Proc. of IEEE Int. Conf. on Electronics, Circuits and Systems: 45-48
http://dx.doi.org/10.1109/ICECS46596.2019.8964930

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)



Variable-Rate FEC Decoder VLSI Architecture for
400G Rate-Adaptive Optical Communication

Vikram Jain, Christoffer Fougstedt, and Per Larsson-Edefors
Department of Computer Science and Engineering, Chalmers University of Technology, Gothenburg, Sweden

vikram.jain@kuleuven.be, chrfou@chalmers.se, perla@chalmers.se

Abstract—Optical communication systems rely on forward
error correction (FEC) to decrease the error rate of the received
data. Since the properties of the optical channel will vary over
time, a variable FEC coding gain would be useful. For example,
if the channel conditions are benign, lower code overhead can be
used, effectively increasing the code rate. We introduce a variable-
rate FEC decoder architecture that can operate in several
different modes, where each mode is linked to code rate and
decoding iterations. We demonstrate a decoder implementation
that provides a net coding gain range of 9.96–10.38 dB at a
post-FEC bit-error rate of 10−15. For this range, a decoder
implemented in a 28-nm process technology offers throughputs
in excess of 400 Gbps, decoding latencies below 53 ns and a power
dissipation of less than 0.95 W (or 1.3 pJ/information bit).

I. INTRODUCTION

Legacy wireline and wireless communication systems have
traditionally been designed to transmit data at a fixed infor-
mation bit rate, which entailed the use of fixed forward error
correction (FEC) code, modulation scheme, and transmission
power. In recent years, however, the majority of wireless com-
munication systems being developed are capable of adapting
transmission parameters based on channel conditions. While
optical links have followed the old approach to use fixed data
rates on account of a static transmission medium, there has
recently been a gradual shift to a more dynamic approach
which can handle varying bandwidth demands in optical
communication [1]. At the backbone of this approach are
flexible transceivers that have the ability to adapt to the current
channel characteristics in order to maximize the spectral
efficiency. Constellation shaping, time-domain hybrid modu-
lation formats, and variable-rate FEC codes are examples of
approaches used to enable transceiver flexibility [2]. However,
there have been concerns that variable-rate FEC codes would
need one decoder unit for each supported code [3], [4] causing
transceiver cost to increase significantly with flexibility.

One key feature of digital circuits is that we can “program”
their functionality simply by changing the state of some logic
signals. In this work, we present a VLSI architecture of a
high-throughput FEC decoder which standalone can flexibly
support several different code rates, allowing us to avoid the
area-wasting replication of several fixed-rate decoders. The
mode of the decoder can be changed instantaneously, with
buffering/unbuffering of data blocks being the only source of
latency. By increasing the code overhead, the coding gain,
which is the improvement in signal-to-noise ratio (SNR) over
an uncoded transmission for a certain bit-error rate (BER), can
be improved, at the cost of a reduced information throughput.

The VLSI decoder implementation that we will demonstrate
comprises twelve modes, which are obtained by varying the

overhead from 21.9 to 40 %. Our architecture is based on
hard-decision product codes, which are amenable to high-
throughput implementations [5]. While the overheads and de-
coder iterations were selected taking throughput for 400 Gbps
and above optical systems into consideration, our VLSI archi-
tecture can be extended to other decoder configurations. To the
best of our knowledge, this is the first VLSI implementation of
variable-rate FEC decoders for very high throughput operation.

II. BACKGROUND

By combining smaller component codes to form codes that
can provide higher error-correction capability, product codes
are constructed by encoding information bits row wise, using
a row component code, followed by column wise encoding,
using column component codes, as shown in Fig. 1a. The
twofold encoding over both data and parity gives a result-
ing minimum distance of d1 · d2. Product decoding can be
implemented using a memory which is iteratively decoded by
component decoders. Incoming data bits are loaded into the
memory after which decoding and error correction of row and
column data take place in an iterative fashion.

Bose-Chaudhuri-Hocquenghem (BCH) codes are a class of
random error-correcting cyclic codes expressed by the set of
parameters BCH(n, k, t), where n is the block length, k is the
number of information bits, and t is the number of errors that
can be corrected. Primitive narrow-sense binary BCH codes
are defined using a primitive element α of a Galois field,
GF (2m), where m is a positive integer. Here, parameters are
related as n = 2m−1 and n−k = m · t, allowing us to define
the code rate R = k

n and the code overhead OH = n
k − 1.

To vary the code overhead or code rate, we use code
shortening, which is the process of substituting zeros for some
information bit positions at the encoder; bits which are never
transmitted. By shortening our original code, which we call the
mother code, we increase the overhead and, thus, the coding
gain. (Puncturing can be used to increase the code rate [6], but
this is not explored in this work.) The shortened codes used
here are denoted ns = n− s and ks = k − s, where s is the
number of bits shortened.

A product code can be designed by concatenating two
component codes, BCH(n1, k1, t1) and BCH(n2, k2, t2). The
product code formed is a n1 × n2 matrix, with information
bits forming a k1 × k2 matrix inside it, as shown in Fig. 1a.
The code rate of the resulting product code is the product of
the code rate of individual component codes, R = R1 ·R2 =
k1

n1
· k2

n2
, the overhead is OH = n1·n2

k1·k2
− 1, and the error-

correction capability is t1 · t2. When using shortened BCH
codes to construct the product code, the memory becomes a



(n1 − s) × (n2 − s) matrix as the enclosed information is
reduced to a (k1 − s)× (k2 − s) matrix (Fig. 1b).

n1-k1k1

k2

n2-k2

INFORMATION 
BITS

PARITY BITS

(a) Baseline memory [7]

n1-k1k1-s

k2-s

n2-k2

INFORMATION 
BITS

PARITY BITS

(b) Shortened-code memory

Fig. 1. Product code memory.

III. VARIABLE-RATE PRODUCT DECODER ARCHITECTURE

A simplified schematic of our variable-rate product de-
coder architecture is shown in Fig. 2. SYND represents the
syndrome calculation unit, KES represents the key-equation
solving unit, while CHIEN handles Chien search. The control
logic (CONTROL) handles the different modes of decoder
operation: We control the code rate and the coding gain by
varying only two parameters, viz. the code overhead and
the number of iterations. (Varying component code block
length is not as good a design option as this would lead to
large unused memory portions for modes with small block
lengths and a need for varying the degree of the finite-field
arithmetic when solving key equations.) The VLSI architecture
of the baseline (fixed-rate) product decoder is inspired by
our recently published product and staircase decoders [5].
Since our component decoders are fully parallel and have no
feedback loops, the introduction of variable-rate features have
a limited impact on system throughput.

SYND

SYNDSYND

KES

CHIEN

CONTROL

n-k1k1

k2

n-k2

SYND

Fig. 2. Our variable-rate product decoder architecture.

A. Product Code Memory
The product code memory stores the received data bits into

a matrix and as the code is shortened, correspondingly the
memory matrix also reduces as shown in Fig. 1. The bits that
are shortened are required to be flushed and gated to avoid
interference with downstream decoder computations; this also
helps in providing a power-efficient design as no logic signals
toggle at these bit positions.

A bit mask of size n is used for gating the memory, with
the bits of the mask set to 1 or 0 based on the mode selected,
as shown in Fig. 3. The incoming data bits are then ANDed
with the bit mask and stored into the product memory as
rows and columns. This ensures that the shortened bits are set

to 0, preventing power-dissipating toggling of logic signals.
Also, the presence of gating of an incoming signal to be
stored into the product memory flushes the shortened part of
memory when switching between different modes, especially
when moving from longer component codes to shorter.

0

1

MASK(n-1)

MASK(n-2)

MASK(0)

SELECT

SELECT

SELECT

IN(n-1)

IN(n-2)

IN(0)

IN(n-1) IN(n-2) IN(0)

0

1

0

1

Fig. 3. Product code memory with reconfigurability.

B. Syndrome Calculation
Syndromes are calculated using S = u · HT , where S is

the syndrome, u is the received codeword and H is the parity
check matrix. The equation can be simplified to form an XOR
tree such that each syndrome is a set of XOR operations of
the codeword bits at positions where the parity check matrix
is 1. When shortening is applied, a number of lower XOR
operations (equal to the number of shortened bits) may be
removed from hardware. Here, however, the full XOR tree
is retained and when shortening is applied, the codeword is
shifted to the most significant bits (MSBs). This is achieved
by using a set of multiplexers in the SYND unit (Fig. 2). The
incoming codeword bits are selected such that the MSB of the
shortened code (n−1−s) is always at the MSB of the mother
code, while the least significant bits (LSBs) (equal to s) are
set to 0 to prohibit signal toggling. The value of s represents
the number of shortened bits and s = 0, s1, s2 and s3 for each
of the four modes. The resulting set of bits is passed to the
XOR tree to generate a set of 2mt syndromes.

C. Chien Search
The error-locator polynomial generated in the KES unit

(Fig. 2) using the direct-solution Peterson approach [8] is
forwarded to the CHIEN unit where the polynomial is eval-
uated at all αx. This is done by using finite-field multipliers
(FFMs) to multiply the coefficients with αx, after which the
resulting values are XORed together to form the value of the
polynomial. A value of zero for the polynomial represents an
error at that position.

The CHIEN unit is designed to be fully parallel to achieve
high throughput. Due to its parallel nature, n FFMs are
used for every component decoder. To support all modes of
operation, all n FFMs are available in the hardware making
it necessary to utilize gating to prevent unnecessary computa-
tion and power dissipation. (While other less area-consuming
schemes to identify roots of error-locator polynomials have



been proposed [9], [10], they result in long timing paths which
need to be pipelined, degrading throughput and increasing
latency.) At the shortened bit (s) positions starting from the
LSB, for which computations are not required, the KES
coefficients from KES unit are ANDed with enable signals, as
shown in Fig. 4. The enable signals are set to 0 or 1 depending
on the selected mode of operation. In this way, the inputs to
the FFMs are set to 0 and any unnecessary computation is
prevented. Finally, the resulting error signal is shifted back to
the LSB using the set of multiplexers shown.

CHIEN SEARCH

SELECT

SELECT

SELECT

SELECT(1)

SELECT(0)

SELECT(1)

KES COEFFICIENTS

KES COEFFICIENTS

KES COEFFICIENTS

SELECT(0)

SELECT(1)

KES COEFFICIENT 1
KES COEFFICIENT 2
KES COEFFICIENT 3
KES COEFFICIENT 4

ERROR(n-1)

ERROR(s3+1)

ERROR(0)
ERROR(s1)

ERROR(s3)
ERROR(s2)

ERROR(s2+1)
ERROR(s1+1)

ERROR(1)

ERROR_OUT(n-1)

ERROR_OUT(1)

ERROR_OUT(0)

0

GATED_1

GATED_2

GATED_3

Fig. 4. Reconfigurable Chien search.

IV. 400-GBPS DECODER MODES

To fulfil the combined requirement of high coding gain
and operation at 400 Gbps and above, a product code with
BCH(255,231,3) component codes is selected as mother code.
We use t = 3 as this has been shown to provide coding gain
above 10 dB [7] at reasonable area and power costs. As co-
herent optical systems have evolved, the code overhead (OH)
has gradually increased, from 7% in early systems, to 15-25%
in 100-Gbps systems, and to even higher OHs in published
variable-rate schemes [11]. However, considering the very high
decoder throughput target and the energy waste of performing
digital signal processing on parity information [12], we opt
for a limited base OH of 21.9 % (n = 255, k = 231), 25 %
OH (n = 227, k = 203), 33.1 % OH (n = 180, k = 156), and
40 % OH (n = 155, k = 131).

The number of decoder modes can be extended further by
varying the number of iterations. The design tradeoff is such
that the more iterations, the higher the coding gain and the
lower the throughput. For example, more iterations can be
combined with a lower-rate code to yield higher coding gain.
However, since it has previously been reported that more than
five iterations may yield diminishing coding gain returns [7]
so we do not consider more iterations than five.

V. VLSI EVALUATION FRAMEWORK

In the context of an application-specific integrated circuit
(ASIC), the decoder was implemented using VHDL and sim-
ulated for functional verification using Cadence Incisive. One
VHDL testbench was used to generate uniformly-distributed
data which were encoded using a product encoder. Here,
two random number generators (RNGs) based on the uniform
procedure in VHDL were used; one for generating uniformly-
distributed data, and one to generate bit flips with a probability

corresponding to the input SNR. The RNGs have a repetition
period of approximately 2.3 · 1018 for each set of seed values.
For BER analysis, we used a VHDL testbench that transmits
the all-zero codeword and adds errors with a probability
given by the input SNR. The data are then decoded and
errors are detected. For each SNR, the testbench runs until
50 erroneous blocks have been found. A common target post-
FEC BER is 10−15 and, thus, we use this threshold to define
the net coding gain (NCG). The error floor, the region of
degrading performance where the BER plot does not follow
the waterfall model, was estimated using the method proposed
by Justesen [13].

The design was synthesized in Cadence Genus to a low-
leakage cell library of a 28-nm 0.9-V fully-depleted silicon-
on-insulator process technology, assuming slow conditions.
Based on an architectural analysis, the target clock rate was
set to 610 MHz; stricter timing constraints increase area and
power dissipation significantly. Higher clock rate can be easily
achieved by switching to a high-performance cell library,
however, at the cost of increasing leakage. Using the functional
testbench in Cadence Incisive and the synthesized netlist,
signal toggling activity information was generated and then
back-annotated to the generated netlist in Cadence Genus
for the power analysis, under typical conditions. In addition,
clock-tree power was estimated using Cadence Genus. The
power and energy metrics were evaluated at the same post-
FEC BER used in the NCG analysis. Since low-leakage cells
are used, leakage is negligible [5].

VI. RESULTS

Fig. 5 shows the output BER as a function of Eb/N0 for the
variable-rate decoder modes that represent the NCG extremes,
i.e., 21.9 % and 40 % OH. The estimated coding gain ranges
are 0.31, 0.33, and 0.38 dB for three, four, and five iterations
(#IT), respectively.

2 2.5 3 3.5 4 4.5 5 5.5 6
Eb/N0 (dB)

10-15

10-10

10-5

BE
R

Sim. n=255, #IT=3
Ext. n=255, #IT=3
Sim. n=255, #IT=4
Ext. n=255, #IT=4
Sim. n=255, #IT=5
Ext. n=255, #IT=5
Error floor, n=255
Sim. n=155, #IT=3
Ext. n=155, #IT=3
Sim. n=155, #IT=4
Ext. n=155, #IT=4
Sim. n=155, #IT=5
Ext. n=155, #IT=5
Error floor, n=155

Fig. 5. Output BER as function of Eb/N0. Simulated data (Sim.) are used
for extrapolation (Ext.) in MATLAB with the berfit function. Eb/N0 for an
uncoded system stands at 14.99 dB for an output BER of 10−15.

A wider range of 0.5 dB can be achieved if the decoder is
operated with three iterations for the base OH (21.9 %) and
with five iterations for 40 % OH. However, five iterations with



40 % OH cannot attain the targeted throughput of 400 Gbps;
instead assuming the mode of four iteration with 40 % OH,
the coding range becomes 0.42 dB.

The coding gain range depends on the block length of the
component codes. In our architecture, the minimum coding
gain is limited by the overhead of the component code, i.e.,
BCH(255,231), which is 21.9 %. Conversely, the upper limit
of coding gain, i.e., the highest OH, is limited by the constraint
of achieving throughputs in excess of 400 Gbps. The coding
range could be extended further by utilizing a higher OH,
but this has as consequence a reduced throughput. Another
alternative to increasing the coding gain range is to utilize
longer component codes, e.g., BCH(511,484), whose product
code has a base OH of 11.5 %. This, however, would lead
to a more complex decoder with higher energy dissipation.
Increasing the error-correction capability t would increase the
coding gains of individual modes with a skew in the range, at
a significant area and power dissipation cost.

Table I presents our post-synthesis netlist results, with
latencies below 53 ns and throughputs as high as 1.6 Tbps.
Moreover, owing to the use of clock gating, the VLSI imple-
mentations are highly energy efficient with a maximum energy
per information bit being as low as 1.29 pJ/bit. Variation in
iteration count (#IT) provides a very resource-efficient alter-
native to regulating coding gains at fixed code rates, however,
it cannot provide as large range in coding gain obtainable by
varying code overhead. As shown, a combination of OH and
iteration variation can provide a wider range of operation.

TABLE I
VLSI EVALUATION RESULTS OF VARIABLE-RATE DECODERS

#IT Overhead (OH)
21.9 % 25 % 33.1 % 40 %

Cell area (mm2) 8.78
Code rate, R 0.82 0.80 0.75 0.71

Throughput (Gbps)
3 1628 1257 742 523
4 1252 967 571 402
5 1017 785 464 327

Block decoding latency (ns)
3 32.78
4 42.61
5 52.45

NCG @ BER 10−15 (dB)
3 9.96 10.05 10.16 10.27
4 10.06 10.14 10.24 10.38
5 10.08 10.23 10.35 10.46

Power @ BER 10−15 (mW)
3 941 822 599 524
4 830 768 525 461
5 770 710 479 422

Energy @ BER 10−15 (pJ/info-bit)
3 0.58 0.65 0.81 1.00
4 0.66 0.79 0.92 1.14
5 0.76 0.90 1.03 1.29

Extra logic circuits are required for a decoder unit to handle
several different codes. The variable-rate decoder area is 31 %
larger than the baseline (fixed-rate) 21.9 %-OH version [5],
which occupies 6.69 mm2. Comparing decoders for e.g. #IT=4,
the variable-rate decoder is, however, found to not dissipate
significantly more than baseline decoder’s 788 mW.

We also implemented reference decoders based on con-
ventional iterative Berlekamp-Massey (BM) algorithms. The
variable-rate decoder area is only 16 % larger than a

21.9 %-OH decoder based on the simplified inverse-free BM
scheme [14]–[16], suggesting that the choice of decoder algo-
rithm has a larger impact on the VLSI implementation than
the decision to opt for fixed or variable-rate decoders.

VII. CONCLUSION

We have introduced a VLSI architecture for high-throughput
variable-rate FEC decoders based on product codes. Using a
28-nm process technology, we presented a decoder implemen-
tation that achieves an estimated net coding gain range from
9.96 to 10.38 dB, with a minimum throughput of 400 Gbps and
a maximum decoding latency of 53 ns, showing the viability
of flexible, yet energy-efficient decoders for high-throughput
systems. We found that the circuit overhead, in terms of area
and power dissipation, required to handle different modes is
limited; replicating several fixed-rate decoders would have a
much more adverse effect on FEC circuits.

ACKNOWLEDGMENT

This work was financially supported by the Knut and Alice
Wallenberg Foundation and Vinnova.

REFERENCES

[1] O. Gerstel, M. Jinno, A. Lord, and S. J. B. Yoo, “Elastic optical
networking: a new dawn for the optical layer?” IEEE Commun. Mag.,
vol. 50, no. 2, pp. s12–s20, Feb. 2012.

[2] G. Bosco, “Advanced modulation techniques for flexible optical
transceivers: The rate/reach tradeoff,” IEEE J. Lightw. Technol., vol. 37,
no. 1, pp. 36–49, Jan. 2019.

[3] X. Zhou, L. E. Nelson, and P. Magill, “Rate-adaptable optics for
next generation long-haul transport networks,” IEEE Comm. Magazine,
vol. 51, no. 3, pp. 41–49, Mar. 2013.

[4] D. A. A. Mello, A. N. Barreto, T. C. de Lima et al., “Optical networking
with variable-code-rate transceivers,” IEEE J. Lightw. Technol., vol. 32,
no. 2, pp. 257–266, Jan. 2014.

[5] C. Fougstedt and P. Larsson-Edefors, “Energy-efficient high-throughput
VLSI architectures for product-like codes,” IEEE J. Lightw. Technol.,
vol. 37, no. 2, pp. 477–485, Jan. 2019.

[6] G. Gho, L. Klak, and J. M. Kahn, “Rate-adaptive coding for optical
fiber transmission systems,” IEEE J. Lightw. Technol., vol. 29, no. 2,
pp. 222–233, Jan. 2011.

[7] B. Li, K. J. Larsen, D. Zibar, and I. T. Monroy, “Over 10 dB net coding
gain based on 20% overhead hard decision forward error correction
in 100G optical communication systems,” in Eur. Conf. Opt. Commun.
(ECOC), Sept. 2011, p. Tu.6.A.3.

[8] S. An, H. Tang, and J. Park, “A inversion-less Peterson algorithm based
shared KES architecture for concatenated BCH decoder,” in Int. SoC
Design Conf. (ISOCC), Nov. 2015, pp. 281–282.

[9] X. Zhang and M. O’Sullivan, “Ultra-compressed three-error-correcting
BCH decoder,” in IEEE Int. Conf. Circuits Syst. (ISCAS), May 2018.

[10] D. Kim, I. Yoo, and I. Park, “Fast low-complexity triple-error-correcting
BCH decoding architecture,” IEEE Trans. Circuits Syst. II, Exp. Briefs,
vol. 65, no. 6, pp. 764–768, June 2018.

[11] A. L. N. Souza, E. J. M. Ruiz, J. D. Reis et al., “Parameter selection in
optical networks with variable-code-rate superchannels,” IEEE J. Opt.
Commun. Netw., vol. 8, no. 7, pp. A152–A161, July 2016.

[12] P. Larsson-Edefors, C. Fougstedt, and K. Cushon, “Implementation
challenges for energy-efficient error correction in optical communication
systems,” in Advanced Photonics 2018, July 2018, p. SpTh4F.2.

[13] J. Justesen, “Performance of product codes and related structures with
iterated decoding,” IEEE Trans. Commun., vol. 59, no. 2, pp. 407–415,
Feb. 2011.

[14] E. Hurtic and H. Lillmaa, “Hard-decision staircase decoder in 28-nm
fully-depleted silicon-on-insulator,” Master’s thesis, Chalmers University
of Technology, 2016.

[15] W. Liu, J. Rho, and W. Sung, “Low-power high-throughput BCH error
correction VLSI design for multi-level cell NAND flash memories,” in
IEEE Workshop on Signal Processing Systems, Oct. 2006, pp. 303–308.

[16] M. Yin, M. Xie, and B. Yi, “Optimized algorithms for binary BCH
codes,” in IEEE Int. Symp. on Circuits and Systems, May 2013, pp.
1552–1555.


