
Vol.:(0123456789)

Distributed and Parallel Databases
https://doi.org/10.1007/s10619-020-07284-0

1 3

Secrecy and performance models for query processing
on outsourced graph data

Gabriela Suntaxi1 · Aboubakr Achraf El Ghazi1 · Klemens Böhm1

© The Author(s) 2020

Abstract
Database outsourcing is a challenge concerning data secrecy. Even if an adversary,
including the service provider, accesses the data, she should not be able to learn
any information from the accessed data. In this paper, we address this problem for
graph-structured data. First, we define a secrecy notion for graph-structured data
based on the concepts of indistinguishability and searchable encryption. To address
this problem, we propose an approach based on bucketization. Next to bucketization,
it makes use of obfuscated indexes and encryption. We show that finding an opti-
mal bucketization tailored to graph-structured data is NP-hard; therefore, we come
up with a heuristic. We prove that the proposed bucketization approach fulfills our
secrecy notion. In addition, we present a performance model for scale-free networks
which consists of (1) a number-of-buckets model that estimates the number of buck-
ets obtained after applying our bucketization approach and (2) a query-cost model.
Finally, we demonstrate with a set of experiments the accuracy of our number-of-
buckets model and the efficiency of our approach with respect to query processing.

Keywords Secrecy · Data outsourcing · Graph data · Performance model

1 Introduction

Outsourcing databases to a third-party service provider (SP) has become ubiq-
uitous. While economic and organizational advantages are obvious, database out-
sourcing remains challenging concerning data secrecy. Databases contain sensitive

 * Gabriela Suntaxi
 gabriela.suntaxi@kit.edu

 Aboubakr Achraf El Ghazi
 elghazi@kit.edu

 Klemens Böhm
 klemens.boehm@kit.edu

1 Karlsruhe Institute of Technology, Am Fasanengarten 5, 76131 Karlsruhe, Germany

http://orcid.org/0000-0002-0298-5144
http://crossmark.crossref.org/dialog/?doi=10.1007/s10619-020-07284-0&domain=pdf

 Distributed and Parallel Databases

1 3

information that needs to be protected against adversaries, including the SP. If an
unauthorized user accesses the data, she should not be able to learn anything.

Another important trend is that a broad range of real-world datasets exhibits a
graph structure. Furthermore, many real graphs, such as the email network or the
Web follow a scale-free power-law distribution [2]. At the same time, these graphs
often contain sensitive information. Graphs with this characteristic are the data we
focus on in this current paper.

In addition to the information attached to nodes, information is also attached to
edges. In general, a node can be identified by its label as well as by its degree (num-
ber of edges). An adversary can learn information about an individual in a graph
if the adversary identifies the node that represents the individual and its connec-
tions. Therefore, approaches for secure storage of graph-structured data should
protect against leaking this kind of information. Only encrypting node labels is not
enough. Next, there have to be provable secrecy guarantees. At the same time, the
approaches should not do away with the advantages of database outsourcing. In par-
ticular, query processing should take place on the server as much as possible. While
we are not aware of any previous work on secure storage featuring a cost model for
query processing, this actually is important to (1) have a good understanding of the
expected performance of query processing, (2) facilitate comparisons between alter-
natives, assuming that the alternatives also have a cost model, and (3) predict the
impact of parameter changes. Any query optimizer, which is an integral component
of a modern database-management system, depends on cost models to come up with
good query-executions plans [13, 29, 31].

So there are two requirements on a secure storage scheme for graph-structured
data. R1: An adversary, including the SP, must not be able to learn any useful infor-
mation from the outsourced graph database, except for some predefined informa-
tion. This must be provable (i.e., secrecy). R2: The approach should support a broad
range of queries. It should do so efficiently, with controlled effort, and most of the
work should be done at the server side. To quantify this, a performance model is
needed.

The first requirement calls for a rigid definition of secrecy. This includes specify-
ing the type of adversaries one is dealing with and the information that one accepts
to leak. Here, we consider adversaries who have access to the secretized graph and
can observe query executions over time, i.e., the encrypted queries issued and their
encrypted results. Our secrecy notion explicitly states all possible leakages which could
result from our specified adversary. We prove that, given a secretized graph, an adver-
sary cannot learn any useful information about the original graph beyond the leakage
stated. Since existing secrecy notions consider different secrecy guarantees and deal
with different types of adversaries, we propose a new one, i.e., formalize the notion
just sketched. Related secrecy notions also deal with different types of adversaries.
Notions such as the ones presented by Fan et al. [10] and Zhang et al. [43] offer guaran-
tees against chosen- plaintext attacks and known plaintext attacks, respectively. In our
scenario, these guarantees are not enough. This is because the edges of the graph can
also reveal information. Wang and Lakshmanan [39] define a secrecy notion for XML
documents. It is based on the definition of perfect secrecy. Their secrecy notion consid-
ers adversaries who have access to (1) the secretized XML documents and (2) some

1 3

Distributed and Parallel Databases

metadata needed to perform queries. We additionally assume that the adversary can
observe query executions over time.

Secure database storage has been widely studied. However, existing techniques
such as Hore et al. [18], Aggarwal et al. [1] either cannot be applied to graph-struc-
tured data [18], or they do not cover both requirements R1 and R2 [1]. Approaches
for graph-structured data such as Syalim et al. [37] do not keep the information of the
entire graph. Next, they cannot answer certain queries, such as neighbor and adjacency
queries. These two types of queries are essential needs when working with graphs
[28]. Other approaches like [1, 16, 18] could exhibit unwanted behavior when being
adapted to graph-structured data, e.g., leak information, see Sect. 2. Next, none of these
approaches features a model of the costs of query processing that considers relevant
characteristics of the graph.

We propose a bucketization approach for secure storage of graph-structured data
that meets our requirements. Our approach uses: (1) Encryption of the labels of the
nodes and edges to protect them against deterministic chosen-plaintext attacks, i.e., an
adversary cannot learn any useful information from the encrypted nodes and edges. (2)
Bucketization of the edges to protect against frequency attacks, i.e., an adversary could
learn secret information based on the frequency of the ciphertexts. In our scenario, the
frequency represents the degree of a node.

It has turned out that subtle design decisions have a significant impact. For exam-
ple, it makes a big difference regarding secrecy, whether we partition nodes into buck-
ets instead of edges. This is because partitioning nodes could leak information on the
graph structure, as we will explain. While our approach works for all types of graph
queries in principle, we focus on neighbor and adjacency queries. These queries are
essential information needs regarding graphs [28]. We then describe the specifics for
these queries, such as division of work between client and server.

Summing up, our contributions are: First, we propose a secrecy notion for graph-
structured data based on the concepts of indistinguishability [21] and searchable
encryption [9]. Second, after showing that existing design alternatives do not cope with
all requirements, given that notion, we propose a solution featuring bucketization for
graph-structured data. We show that finding an optimal bucketization is NP-hard. Con-
sequently, we propose a heuristic, which we also evaluate through experiments later,
with positive results. Third, we prove that our bucketization scheme fulfills our secrecy
notion. Fourth, we come up with a performance model for query processing on scale-
free graphs. Our performance model consists of (1) a number-of-buckets model which
estimates the number of buckets obtained when applying our bucketization approach,
and (2) a query-cost model. Finally, we conduct systematic experiments both on syn-
thetic and on real datasets. They validate the accuracy of our estimation model and
demonstrate the efficiency of the proposed bucketization technique.

2 Related work

In this section, we first review existing secrecy notions. Then we analyze work on
bucketization for relational databases and on secure storage of graph-structured data.
We omit related work that we have already discussed in the introduction.

 Distributed and Parallel Databases

1 3

2.1 Secrecy notions

Searchable encryption was first introduced in Goh et al. [14] and then extended in
Curtmola et al. [9], Van Liesdonk et al. [38] and Kamara et al. [20]. Searchable
encryption is a technique that allows performing keyword searches in encrypted
documents. An index is generated based on the plaintext data to increase the per-
formance of the search process. The index consists of two data structures: (1) an
array that stores, for each keyword w, the encrypted set of identifiers of all docu-
ments containing w and (2) a look-up table which contains, for each w, informa-
tion that allows to locate and decrypt the elements from the array. A trapdoor,
which is a deterministic algorithm run by the client, allows testing for the occur-
rence of a keyword in a document. Their secrecy notions consider two adversarial
models, namely (1) nonadaptive chosen keyword attacks (IND-CKA1) and (2)
adaptive chosen keyword attacks (IND-CKA2). These notions define secrecy for
indexes to ensure that an adversary will not be able to learn the content of an
encrypted document from its index. Formally, the secrecy notions IND-CKA1/2
comprise secrecy for trapdoors and guarantee that the trapdoors do not leak
information about the keywords apart from the outcome and access pattern of
a query. Similarly to the secrecy notion proposed in this paper, IND-CKA1/2
use the concept of indistinguishability. This is a concept based on an experiment
game between a challenger and an adversary [21]. However, our secrecy notion
is applied to graphs, i.e., the challenger takes as input two graphs given by the
adversary. In Sect. 4, we present details of our secrecy notion.

2.2 Bucketization on relational databases

Data secrecy in relational databases has been investigated extensively [15, 16,
18]. Several approaches are based on bucketization. In this context, bucketiza-
tion (1) encrypts each tuple in an original relation as one string, (2) assigns an
index to each encrypted tuple. Indexes are generated in such a way that more than
one encrypted tuple could have the same index value. Encrypted tuples with the
same index value are called partitions. Each index value is related to a partition
of the domain of an original attribute. The server stores the secretized relation
and the index information. In what follows, we sketch two adaptations of these
approaches to graphs and show that these alternatives are not appropriate to solve
our problem.

With both adaptations, we represent the edges in a two-attribute relation,
TEdges , where each attribute stores one node of the edge. Borrowing from buck-
etization schemes for relational databases, two alternatives come to mind, one-
dimensional bucketization and multidimensional bucketization.

1 3

Distributed and Parallel Databases

2.3 One dimensional bucketization

Here, the domains of the two-attributes in TEdges are considered as one domain and
then divided into partitions. This solution cannot be considered secure because it
could exhibit some of the original graph structure.

Example 1 Consider a graph with edges E = {(A,B), (A,D), (B,C), (B,D), (C,A) ,
(D,E)} . If bucketization assigns Nodes A, B and C to different buckets, the connec-
tions between the buckets will share the same structure as the original graph. Table 1
shows the secretized relation. This solution represents a partition of nodes into buck-
ets. The partitions are [b1, {A}], [b2, {B}], [b3, {C}], [b4, {D,E}] . The relationships
between the index values (b1, b2), (b2, b3) and (b3, b1) share the same structure as
the original edges E.

2.4 Multidimensional bucketization

With this option, the domain of each attribute is partitioned individually. Given an
optimal multidimensional bucketization, this bucketization can be secure. However,
finding an optimal multidimensional bucketization with respect to query perfor-
mance is NP-hard LeFevre et al. [24]. Nevertheless, this NP-hard problem can be
solved with heuristics such as in LeFevre et al. [24] and Wang and Du [40]. But
these solutions do not consider certain graphs characteristics such as grouping edges
of a node in the same partition to answer important graph queries such as neighbor
queries efficiently. So these approaches do not solve our problem.

2.5 Secure storage for graph‑structured data

Syalim et al. [37] have proposed an approach which guarantees secrecy for the
labels of nodes of a graph. Their secrecy model is designed to protect provenance
metadata. Provenance metadata is information that allows tracing who has con-
tributed to the creation of a document. The authors represent the provenance
metadata of documents as a directed acyclic graph. The labels of nodes store
the provenance data of a specific document version, and the edges represent the

Table 1 Secretized relation of
Example 2.1

e-tuple Node 1 Node 2

enc(A, B) b1 b2
enc(A, D) b1 b4
enc(B, C) b2 b3
enc(B, D) b2 b4
enc(C, A) b3 b1
enc(D, E) b4 b4

 Distributed and Parallel Databases

1 3

relationships between a version of a document and its successors. They use a mul-
tiple layer encryption scheme that guarantees that only authorized users who have
the corresponding decryption keys can access the provenance metadata they are
authorized to. Since the labels of the nodes are encrypted, an adversary who does
not possess the encryption keys cannot learn the original plaintexts. However, in
general, an adversary can identify a node by its degree and learn the relation-
ships between nodes without knowing the content of the labels, i.e., edge leakage.
Our approach guarantees that neither nodes nor edges leak information. Regard-
ing query processing, the authors consider two types of queries, i.e., access to
the label of a node and access to the label of the parent nodes of a node. These
two types of queries may be enough for provenance metadata. In general, how-
ever, different graph-specific types of queries should be supported. An approach
for finding the shortest path between two nodes in a directed graph is presented
in He et al. [17]. Random perturbation of the edges is required in order to offer
edge privacy. The perturbation modifies the structure of the graph to some extent.
Therefore, query results only are approximate. As XML documents are a specific
kind of graph, we briefly turn to this research direction as well. Wang and Laksh-
manan [39] proposed an encryption scheme for XML documents which considers
different levels of granularity for encryption, i.e., the XML document is divided
into blocks of different sizes, and then each block is encrypted as a whole. A
block can contain subtrees of the XML document at any depth, e.g., parent and
child elements, or just the content of chosen elements. Cao et al. [7] proposed
a solution for evaluation of tree pattern queries in encrypted XML documents.
The authors take as starting point that XML documents have a domain hierarchy,
i.e., parent and child hierarchy. Each element of the XML document is given a
position based on the domain hierarchy. The authors use the position of the ele-
ments to create a vector for each XML document. The vectors are encrypted to
ensure secrecy. Similarly, a tree pattern query is transformed into a vector. Then
the evaluation of a tree pattern query requires measuring the distance between
the encrypted vector that represents the XML document and the encrypted vector
that represents the query. These two approaches [7, 39] require the existence of a
domain hierarchy such as parent-child, to create blocks or vectors, respectively. In
graph-structured data, such a hierarchy typically does not exist.

To summarize, none of the related approaches we are aware of does address
Requirements R1 and R2.

3 Preliminaries and notation

We now present some notation that we will use in the paper.

Definition 1 A graph G is a tuple (V, E), where V is a set of nodes and E ⊆ V × V
is a relation between nodes. |V| and |E| are the number of nodes and edges, respec-
tively, and G is the set of all graphs.

1 3

Distributed and Parallel Databases

Without loss of generality, we assume that the relationships between the nodes
are directed. An undirected edge can be represented by two directed edges.

Definition 2 Given a graph G, the size of G, dubbed size(G), is a tuple (|V|, |E|) that
contains the number of nodes and the number of edges of G.

Definition 3 Given a graph G and a node u ∈ V , the degree of u, deg(u), is the num-
ber of outgoing edges of u.

Definition 4 Given a graph G = (V ,E) , the multiset of degrees Deg(G) is the multi-
set that contains the degree of each node u ∈ V .

Definition 5 A neighbor query QNeighbor(G, u) of a graph G = (V ,E)
and a node u ∈ V returns the set of all nodes adjacent to u in G:
QNeigbhor(G, u) = {v ∈ V ∣ (u, v) ∈ E}.

Definition 6 An adjacency query QAdjacency(G, u, v) of a graph G = (V ,E)
and a pair of nodes u, v, checks whether node u is adjacent to node v:
QAdjacency(G, u, v) = true iff (u, v) ∈ E.

Definition 7 Given a graph G, a query history qHG is a list of n queries
qHG = [q1,… , qn] over G , where q1 is the earliest query in the list, and q1,… , qn
either are neighbor or adjacency queries.

Definition 8 Given a value v and a multiset of values V, the frequency of v is the
number of occurrences of v in V.

Definition 9 A deterministic encryption scheme Ed = (kgen, enc
K
d
, decK

d
) applied to

a plaintext m consists of three parts: (1) a key generation algorithm kgen that returns
a cryptographic key K; (2) a deterministic encryption algorithm encK

d
 that takes

the cryptographic key K and the plaintext m to compute a ciphertext c, and (3) a
deterministic decryption algorithm decK

d
 that takes the cryptographic key K and the

ciphertext c to revert the deterministic encryption, such that decK
d
(encK

d
(m)) = m .

Deterministic encryption involves no randomness and always produces the same
ciphertext for a given plaintext m and key K.

Definition 10 A probabilistic encryption scheme Ep = (kgen, enc
K
p
, decK

d
) applied

to a plaintext m consists of three parts: (1) a key generation algorithm kgen that
returns a cryptographic key K, (2) a probabilistic encryption algorithm encK

p
 that

takes the cryptographic key K and the plaintext m to compute a ciphertext c and (3)
a deterministic decryption algorithm decK

d
 that takes the cryptographic key K and

the ciphertext c to revert the probabilistic encryption, such that decK
d
(encK

p
(m)) = m .

Probabilistic encryption involves randomness, as follows: When encrypting the
same plaintext m with key K several times it produces different ciphertexts.

 Distributed and Parallel Databases

1 3

Definition 11 Given an encryption scheme E , the security parameter of E is a num-
ber that grows monotonically with the number of operations performed during the
encryption-decryption process and with the size of the cryptographic key used.

The next notion is a standard one from cryptography [21].

Definition 12 A function f of type ℕ → ℝ
+
0
 is negligible iff ∀c ∈ ℕ ∶ ∃n0 ∈ ℕ such

that for n ≥ n0, f (n) < n−c.

Definition 13 A chosen-plaintext attack is an attack in which the adversary can
chooses several plaintexts to be encrypted and obtain their corresponding cipher-
texts. Then the adversary sends to the challenger two plaintexts m0 and m1 and
receives the ciphertext of one of them. The goal of the adversary is to distinguish if
she has received the ciphertext of m0 or m1.

Definition 14 A deterministic chosen-plaintext attack is a relaxed notion of Defi-
nition 13, in which the adversary never sees the same plaintexts encrypted with
the same key more than once. The adversary can choose several plaintexts to be
encrypted and obtain their corresponding ciphertexts. The adversary sends two dif-
ferent plaintexts m0 and m1 to the challenger, with the restriction that the plaintexts
are distinct from the messages sent previously. The adversary receives the ciphertext
of one of them. The goal of the adversary is to distinguish if she has received the
ciphertext of m0 or m1.

A deterministic encryption scheme is not secure against chosen-plaintext
attacks. To offer secrecy guarantees against this type of attacks, the encryption
scheme must be probabilistic [21]. However, if a deterministic encryption scheme
does not encrypt the same plaintext more than once, i.e., the plaintext messages to
be encrypted are unique, then a deterministic encryption scheme is secure against
deterministic chosen-plaintext attacks [3, 5]. A probabilistic encryption scheme
offers secrecy guarantees against both type of attacks, Definitions 13 and 14.

4 The secrecy notion

In this section, we describe the secrecy notion we target at. The target is to build a
secrecy notion with the following characteristic: If an algorithm used to secretize
a given graph fulfills this notion, it is guaranteed that it only leaks the information
stated in Definition 24. Allowing some leakage is standard with state-of-the-art
secrecy notions, especially in the area of searchable encryption [6, 8, 9, 27, 30,
41].

Definition 15 A data structure ds is any type of structure that can be implemented
in a database.

1 3

Distributed and Parallel Databases

This definition—naturally—is somewhat vague. For instance, something can be
two separate data structures, or it could be counted as one. This is not important
for our purposes, we just need the definition to bring some rigidity to the defini-
tions that follow. There will be concrete instantiations, later on, doing away with this
vagueness.

Definition 16 Given a graph G, a graph-secretization algorithm � is an algorithm
that takes as input G and transforms it to a list of d data structures [ds1,… , dsd] so
that some information from G is kept secret. We call the result of applying � to G,
the transformed graph transformedG.

Which information � keeps secret, and how it does so, depends on the secrecy
definition that the algorithm complies with.

Definition 17 An adversary A is a malicious user who has access to the trans-
formed graph transformedG and can observe the query executions over it.

We now define the information leakage that we are willing to accept. We con-
sider four leakages. The first two, called access and search patterns, are related to the
execution of queries, Definitions 23 and 21 respectively, and the second two, called
the size of G and multiset of degrees, are related to the graph itself, Definitions 2
and 4 respectively.

For a given graph G, and a query history qHG with n queries, the access pattern is
a list of n elements that contains information about G. In concrete, if the i-th query
is a neighbor query, the i-th element in the list is a lower, x, and upper bound, y, on
the degree of the queried node. If the i-th query is an adjacency query, then the i-th
element in the list is a Boolean, stating whether the queried edge exists in G or not.

Definition 18 Given a graph G and a neighbor query QNeighbor(G, u) , a neigh-
bor access pattern �(QNeighbor(G, u)) of QNeighbor(G, u) is a tuple (x, y) such that
x ≤ deg(u) ≤ y.

Definition 19 Given a graph G and an adjacency query QAdjacency(G, u, v) , an adja-
cency access pattern �(QAdjacency(G, u, v)) of QAdjacency(G, u, v) is a Boolean which is
true iff (u, v) ∈ E.

Definition 20 Given a graph G and a query history qHG , an access pattern �(qHG)
induced by qHG is a list [�(q1),… , �(qn)] such that for all i ∈ {1,… , n}:

– if qi is a neighbor query, then �(qi) = �(QNeighbor(G, u))

– if qi is an adjacency query, then �(qi) = �(QAdjacency(G, u, v)).

Definition 21 Given a graph G and a query history qHG , the search pattern �(qHG)
induced by qHG is a n × n binary symmetric matrix with the following entries: for
1 ≤ i, j ≤ n , �[i][j] = 1 if query qi = qj , and 0 otherwise.

 Distributed and Parallel Databases

1 3

Since we want to avoid that an attacker A learns the exact degree of a queried
node, we limit the neighbor access pattern that we are willing to leak. To do so,
we introduce the notions of degree uncertainty and z-access pattern.

Definition 22 Given a (1) a graph G, (2) its transformed graph transformedG , and (3)
an access pattern �(qHG) , the degree uncertainty z of transformedG is an integer so
that for all neighbor access patterns in �(qHG) it holds that |x − y| ≥ z.

Example 2 Think of (1) a graph G, (2) its corresponding transformedG , and (3) the
degree uncertainty z = 5 . In this case, one can be sure that independent from the
queries executed over transformedG , the absolute difference between the lower and
upper bounds of the neighbor access pattern of any node in G that one can learn is
always greater than or equal to 5.

Definition 23 Given a degree uncertainty z ∈ ℤ , a z-access pattern �z(qHG) is an
access pattern in which all neighbor access patterns fulfill z.

Definition 24 Given a transformed graph transformedG and a degree uncertainty
z ∈ ℤ with z ≥ 1 , the accepted information leakage, with the Ind-Graph secrecy
notion to be defined, is: (L1) the z-access pattern �z(qHG) , (L2) the search pattern
�(qHG) , (L3) the size of the original graph size(G), and (L4) the multiset of degrees
Deg(G).

Although leakage L1 could lead to attacks such us the ones featured in Kel-
laris et al. [22], Naveed et al. [32], L1 and L2 are in line with the work described
in Curtmola et al. [9], Bösch et al. [6]. L3 is similar to the leakage accepted by
Wang et al. [41], Meng et al. [30]. Leakage L4 is used only to evaluate the trade-
off between secrecy and performance, and for specific graph-secretization algo-
rithms that only leak some of the multiset of degrees. L4 can be relaxed further,
as we will prove in Sect. 5.6. Proposing a graph-secretization algorithm that guar-
antees secrecy against the information leakage L1–L4 is out of the scope of this
paper and is future work.

To evaluate the secrecy guarantees offered by a graph-secretization algorithm,
one needs a secrecy notion, i.e., given an adversary with certain knowledge, when
does a secrecy breach indeed occur.

We propose a secrecy notion for graph-structured data called Graph Indistin-
guishability, Ind-Graph. Our secrecy notion is based on the concepts of indis-
tinguishability presented by Katz and Lindell [21] and the notion of searchable
encryption presented by Curtmola et al. [9]. Katz and Lindell [21] have proven
that the concept of indistinguishability is equivalent to conventional seman-
tic secrecy, i.e., an adversary is not able to learn any partial information on the
plaintext of a given ciphertext. The reason why we use indistinguishability as
our secrecy notion is the one featured in Katz and Lindell [21]: Having an algo-
rithm, it is easier to show that it fulfills indistinguishability than the concept of
semantic secrecy. However, the secrecy guarantees are the same. The concept

1 3

Distributed and Parallel Databases

of indistinguishability is defined based on an indistinguishability experiment
between an adversary and a challenger. Before describing such an experiment, we
define first the trapdoor term for a given query.

Definition 25 Given a query q over graph G and a key K, a trapdoor t is the output
of a deterministic algorithm T(K, q) that allows to execute q over transformedG.

Observing the execution of a list of queries is equivalent to having their trap-
doors. In Sect. 5.6, we specify the trapdoors for our graph-secretization algorithm.

The idea behind the indistinguishability experiment is that an adversary A is
allowed to feed two inputs in the experiment. The challenger randomly chooses
one of the inputs and uses an algorithm to secretize the selected input. A receives
the output of the experiment, but she does not know which one has been the
selected input. The output of the experiment should represent all the information
that A can observe, and its inputs should represent all the information needed
to produce the output mentioned. The selection of the inputs can, however, be
restricted based on the accepted information leakage, Definition 24. At the end
of the experiment, A has to “guess” the input chosen by the challenger. The final
output of the experiment is defined to be 1 if A “guesses” correctly and 0 other-
wise. If the final output is 1, we say that A has succeeded.

We use the left arrow “ ← ” to indicate that the value on the right hand side is
assigned to the term on the left hand side.

Definition 26 Let A be an adversary, � a graph-secretization algorithm and K a
cryptographic key. The indistinguishability experiment Ind-Graph is defined as
follows:

with the restrictions that �z(qHG0
) = �z(qHG1

), �(qHG0
) = �(qHG1

) ,
size(G0) = size(G1) and Deg(G0) = Deg(G1).

 Distributed and Parallel Databases

1 3

Definition 27 A graph-secretization algorithm � is called Ind-Graph secure if the
function Adv�

A
(K) ∶=

|||Pr[Ind-GraphA,�(K) = 1] −
1

2

||| is negligible for any adversary
A whose computational effort is bounded to polynomial time.

5 Our secrecy approach

We now describe our graph-secretization algorithm, called bucketization algorithm.
We first give an overview and describe the underlying system architecture. Then we
describe the challenges, formalize the problem, and present our approach.

5.1 Overview and system architecture

We consider a database-as-a-service setting where a third-party service provider
stores data owned by the clients. Clients apply techniques to secretize the data before
passing it to the service provider, in order to have data secrecy.

Definition 28 Given a graph G, a bucket b is a finite set of edges of G. Each bucket
has a bucketID denoted by bucketID(b). All buckets have the same capacity denoted
by maxEdges, i.e., a bucket can store at most maxEdges edges. The frequency of
bucket b, freq(b), is the number of edges that bucket b stores. The set of buckets of G
that stores all edges of G is denoted by SG

B
.

Definition 29 Given a graph G and a corresponding set of buckets SG
B

 , the index
information is a map m ∶ V → SG

B
 that, for each u ∈ V contains the set of bucketIDs

of buckets that store at least one outgoing edge of u.

Definition 30 A bucketization structure B of a given graph G is a representation of
G consisting of two parts, (1) a set of buckets SG

B
 and (2) the index information. We

call the set of all possible bucketization structures Buck.

From now on, we use the terms bucketization structure B transformed graph
transformedG when we refer to the output of our bucketization scheme and the out-
put of any graph-secretization algorithm, respectively.

Figure 1 illustrates a bucketization structure. We use parentheses to denote tuples
and curly brackets to denote sets.

Definition 31 A bucketization function buck ∶ G → Buck is a function that gener-
ates a bucketization structure B for a graph G ∈ G.

Definition 32 Given a bucketization structure B, an encryption function
enc ∶ Buck → Buck performs an encryption of B as follows: (1) In the index infor-
mation, each label of a node is encrypted deterministically, and the bucketIDs
are encrypted probabilistically. (2) In the set of buckets, each edge is encrypted
deterministically.

1 3

Distributed and Parallel Databases

We use encryption techniques, deterministic and probabilistic, to protect against
deterministic chosen-plaintext attacks. In addition to that, we use bucketization tech-
niques to protect against frequency attacks. Regarding bucketization, we aim for an
optimal bucketization concerning query performance. The specifics of our approach
will be explained in Sect. 5.4.

To achieve data secrecy, before outsourcing a graph G, the client applies a buck-
etization function on G, and after encryption, the bucketization structure is out-
sourced to the SP. Figure 2 illustrates the system architecture of the database out-
sourcing model. It consists of a trusted client and an untrusted server. Since the
server that stores the data is untrusted, the client should have some computational

Fig. 1 Bucketization and encryption on Graph G

Fig. 2 System architecture and query processing

 Distributed and Parallel Databases

1 3

capabilities to process queries and results between the users and the server. We
assume that the client has two components for query processing, namely the query
translator and the query post-processor. Query processing is as follows: (1) A user
sends a query to the client. (2) The query translator translates the query into a list of
queries, called server-query list, which contains one or several server-side queries
and one filtering client-side query. The server-side queries in the server-query list,
apart from the first one, are in general not concrete queries, i.e., they require addi-
tional information to be executed. (3) The query translator sends the server-query list
to the query post-processor. (4) The query post-processor sends the next server-side
query in the server-query list to the server. (5) The server executes the server-side
query, and (6) sends the encrypted results to the client. (7) The query post-processor
decrypts the results. If there still are server-side queries in the server-query list, the
query post-processor uses the decrypted results to instantiate the next server-side
query. Steps 4, 5, 6 and 7 start again until there are no more server-side queries
in the server-query list. Finally, the query post-processor gets the final encrypted
results, decrypts them, executes the filtering client-side query and (8) sends the
result to the user.

5.2 Bucketization: challenges

The encryption function encrypts the label of the nodes with deterministic encryp-
tion. Deterministic encryption is secure under deterministic chosen-plaintext attacks
[3, 5]. However, frequency attacks are still feasible. In order to secure against fre-
quency attacks, we use a bucketization technique tailored to graph-structured data.
Finding a bucketization that guarantees both secrecy as well as good query perfor-
mance is challenging. This is because it is not obvious how to assign edges to buck-
ets, see Examples 3 and 4. The bucketization structure may expose the frequency of
buckets.

Example 3 Think of an email network with nodes V = {Alice, Bob, Carol, Dan ,
Eva} and edges E = {(Alice,Bob), (Alice,Dan), (Alice,Carol), (Alice,Eva),(Bob ,
Dan), (Carol,Eva), (Carol , Alice), (Dan,Carol), (Eva,Bob)} . Assume that we apply
a bucketization algorithm that assigns edges randomly and stores two edges per
bucket. In the worst case, the four edges of Alice are assigned to four different buck-
ets. This means that it is necessary to access four buckets to retrieve the edges of
Alice. Then the overall query processing effort, i.e., client and server workload, is
rather large, because the server has to access more buckets, and the client has to
filter more data.

Example 4 Consider Example 3. If each bucket stores all the edges belonging to only
one node and no other edges, the frequency of each bucket reveals the node degree.
An adversary who knows the degree of each node in the network, i.e., the number
of emails that each user has sent, can conclude that the bucket with four edges cor-
responds to Alice and the one with two edges to Carol.

1 3

Distributed and Parallel Databases

Definition 33 Given a graph G = (V ,E) , a set of buckets SB
G

 , a node u ∈ V and
a bucket b ∈ SB

G
 , a link between bucket b and the degree of node u exists if

∀b� ∈ SB
G
⧵ {b},∀v ∈ V ⧵ {u} ∶ freq(b) ≠ freq(b�) ∧ deg(u) ≠ deg(v) ∧ freq(b) = deg(u).

Assigning edges to buckets randomly is likely to bog down query performance,
cf. Example 3. Then the edges of a node should be stored in as few buckets as pos-
sible. At the same time, storing all edges of a node in one bucket creates a link
between the degree of nodes and their corresponding buckets, which might affect
secrecy. Then to avoid information leakage, buckets should be indistinguishable. We
aim for an equal frequency of buckets, i.e., all buckets should reach the maximal
capacity maxEdges. Since an assignment may not always yield full buckets so far, it
is promising to merge them a posteriori and/or add dummy edges; our approach will
feature both. Of course, the total number of dummy edges should be as small as pos-
sible. Preliminary experiments of ours have shown that dummy edges do increase
the overall query-processing time significantly both at the client and the server.

5.3 The optimal bucketization problem

The optimal bucketization problem is as follows:
Given a graph G = (V ,E) as input, we search for a bucketization B that meets

Constraints c1 − c4 :

(c1) Each edge (u, v) ∈ E is assigned to one bucket.
(c2) Each bucket stores at most maxEdges edges, where maxEdges is a given

parameter.
(c3) Edges adjacent to the same node are placed in as few buckets as pos-

sible. Formally, let the function ind ∶ V × Buck → ℕ be as follows:
ind(u, S) ∶= |{b ∈ B ∣ ∃x ∈ V ∶ (u, x) ∈ b}| . Given a node u and a bucketiza-
tion B, the function ind returns the number of buckets that store the edges of
node u. Then ∀B� ∈ Buck,∀u ∈ V ∶ ind(u,B) ≤ ind(u,B�).

(c4) The total number of buckets should be as small as possible (while prioritizing
Constraint c3).

We prioritize Constraint c3 over c4 so that query performance is not affected, see
Example 3.

Definition 34 An optimal bucketization is a bucketization that meets Constraints c1
to c4.

Our optimal bucketization problem is NP-hard. To prove this, we reduce the
Bin-packing problem (BP problem) [19] to our problem. The BP problem has been
proven to be NP-complete in Johnson [19] and strongly NP-complete in Garey and
Johnson [11]. The hardness result, together with the proofs, are in Appendix.

 Distributed and Parallel Databases

1 3

5.4 The bucketization algorithm

Because finding an optimal bucketization is NP-hard, we propose a heuristic that aims
to meet the constraints established in Sect. 5.3. Our algorithm has an initialization
phase and a merging phase. Due to the complexity of optimal bucketization problem,
we use heuristics in the merging phase.

5.4.1 The initialization phase

Definition 35 Given a graph G, the initial bucketization B0 is the result of the ini-
tialization phase of the bucketization algorithm applied to G.

Algorithm 1 is the initialization phase of our bucketization approach for a graph G.
Since the length of the ciphertext could reveal the length of the plaintext, we pad the
label of the nodes to avoid this leakage (Line 1). Formal secrecy proofs are presented in
Sect. 5.6.

Example 5 illustrates how the assignment of edges works, and Example 6 explains
the need for randomness with this assignment.

Example 5 We set maxEdges = 10 . Given a node v that has 27 edges, three buckets
will be created. 10 random edges are chosen from the 27 edges and are assigned to
the first bucket, another 10 random edges are chosen from the remaining ones for the
second bucket, and the 7 remaining edges go to the third bucket.

Example 6 For the sake of an easy example, consider a setting where emails can
be revoked without difficulty. For this example, we consider the buckets in Fig. 3.
Assume that the bucketization algorithm does not assign edges randomly; instead, it
assigns edges alphabetically. If an adversary knows that user A has sent four emails
to persons B, C, D, and E, although the edges are encrypted, the adversary will learn
that bucket b2 stores the last edge, i.e., the email sent to user E. Gaining this knowl-
edge is a leakage. This leakage can lead to an attack with an extended adversary

Fig. 3 Illustration of Example 6

1 3

Distributed and Parallel Databases

model where the adversary has access to the log history. In the case where Bucket
b2 disappears, the adversary knows that one email was revoked, and she will learn
that the revoked email was the last one, i.e., the email sent to E. A random assign-
ment of edges reduces the chance of the adversary learning extra information.

After the initialization phase of the bucketization process, all edges have been
placed into their corresponding buckets. At this point, some buckets may not have
reached the maximal capacity, maxEdges. Even if we encrypt the buckets at this
stage, the initial bucketization is not secure. If the degree of a node is less than or
equal to maxEdges, its edges have been placed in one bucket exclusively. Then for
nodes with degree less than or equal to maxEdges, there is a link between their
degree and the frequency of their corresponding buckets. So the adversary will be
able to identify the buckets of these nodes, see Example 4.

One could consider inserting dummy edges at this stage to avoid leaking infor-
mation. Although adding dummy edges solves secrecy problems, the query per-
formance of this solution is affected. The overall query processing time without
the merging phase increases because the number of buckets at the initialization
phase is greater than the number of buckets after the merging phase, and this
slows down the server.

5.4.2 The merging phase

Definition 36 Bucket merging is an operation that puts the content of two buckets
in a new one and then deletes the two emptied ones.

In this phase, the algorithm merges buckets to fulfill Constraint c4. Algorithm 2
identifies pairs of buckets that can be merged to obtain buckets with the same
frequency. Different heuristics are conceivable at this stage. We choose a First
Fit Decreasing approach (FFD) [12]. We will justify this decision after having
explained the algorithm. When the algorithm starts, it creates three sets: (1) B′ ,
which stores buckets with frequency less than maxEdges, (2) Bf , which stores
full buckets, and (3) Bm , an auxiliary set that stores the buckets resulting from a
merge. For each Bucket bi ∈ B� , the algorithm searches for the first Bucket bj in
Bm that can be merged with bi . A merge is possible if |bi| + |bj| ≤ maxEdges . If it
finds a possible merge, the function merge(bi, bj) does the following: (1) create a
new Bucket b to store the edges of bi and bj , (2) remove buckets bi and bj from B′
and Bm , and (3) update the index information. If b reaches its maximal capacity,
b is placed in Bf . Otherwise, it is placed in Bm so that it can be considered again
for a merge. If there is no Bucket bj available for a merge, bi is placed in Bm . After
the merging process, dummy edges are added to the buckets that have not reached
maxEdges. We pad the set of bucketIDs such that all sets have the same length.
The edges inside each bucket are encrypted with encK

d
 individually. In the index

information the labels of the nodes are encrypted with encK
d

 , and the set of buck-
etIDs is encrypted with encK

p
.

 Distributed and Parallel Databases

1 3

Definition 37 Given a graph G, a final bucketization Bf is a bucketization resulting
from the initialization and bucket merging phases applied to G.

Notice that two nodes could have the same set of bucketIDs. Encrypting the set
of bucketIDs with deterministic encryption could lead to frequency attacks. The use
of probabilistic encryption prevents these attacks. In Sect. 5.6, we present formal
secrecy proofs.

Notice that two nodes could have the same set of bucketIDs. Encrypting the set
of bucketIDs with deterministic encryption could lead to frequency attacks. The
use of probabilistic encryption prevents these attacks. Formal secrecy proofs are in
Sect. 5.6.

Lemma 1 The worst case solution with our bucketization algorithm with the FFD
approach is off by a factor of 11

9
 from the optimal one.

Proof Garey and Johnson [12] have proven that the worst case solution for the bin
packing problem with the FFD approach is off by a factor of 11

9
 from the optimal one.

Our algorithm uses the FFD approach in the merging phase. ◻

Other heuristics for the merging phase, such as Best Fit and Next Fit, have a
worse approximation ratio, 17

10
 and 2, respectively, Garey and Johnson [12].

5.5 Query transformation

Unlike other approaches such as He et al. [17], our bucketization approach does not
lose any information regarding the original graph. Consequently, there is no limitation

1 3

Distributed and Parallel Databases

regarding the kind of query one can process in principle. However, query processing
can have the effect that most or all of the computation is done at the client side. Our
focus has been on reducing the client workload for neighbor and adjacency queries.
For neighbor queries, the client workload, with our approach, consists of (1) a query
transformation process and (2) a decryption and filtering process; the rest of the query
execution is done at the server side. For adjacency queries, the client workload, with
our approach, consists only of a query transformation process; the rest of the query
execution is done at the server side. In the following, we describe the processing of
neighbor and adjacency queries.

Client-side queries are transformed into server-side queries. We use the conventions
server.m and client.m to indicate that method m runs at the server side and client side,
respectively. Algorithm 3 shows the transformation process for neighbor queries. The
client encrypts node u and generates the server-side query. This query retrieves the set
of bucketIDs of the encrypted node encK

d
(u) from the index information and returns it

to the client. The client decrypts it and generates a new server-side query. This new
query retrieves the edges stored in buckets whose bucketID corresponds to one of the
decrypted bucketIDs. Then the client decrypts the edges and filters false positives. So
there is no uncertainty in the query answers, i.e., query answers are accurate. Algo-
rithm 4 shows the procedure for adjacency queries, QAdjacency(G, u, v) . The client starts
by encrypting the two nodes in the query with encryption enckey

d
(u, v) and generating

the server-side query. The server-side query searches in the set of buckets for these
encrypted edges. If there exists such an edge, the nodes are adjacent.

 Distributed and Parallel Databases

1 3

5.6 Our bucketization approach is Ind‑Graph

In this section, we will prove that our bucketization approach fulfills the secrecy
notion Ind-Graph defined in Sect. 4.

In our algorithm, the parameter maxEdges can be set freely. In Definition 23,
we have defined the z-access pattern based on a degree uncertainty z. Then, for a
given z, to guarantee that our bucketization algorithm fulfills our secrecy notion,
the parameter maxEdges must be set accordingly, i.e., maxEdges > z . We set
maxEdges = z + 1.

Figure 4 shows the setup of the indistinguishability experiment from
Definition 26.

Figure 5 illustrates an abstract output of the bucketization algorithm, where
|C(node)| is the length of the ciphertext representing an encrypted node, |N(enc)| is
the number of encrypted nodes, |C(bucketIDs)| is the length of the ciphertext repre-
senting the set of bucketIDs, |C(edge)| is the length of the ciphertext representing

Fig. 4 Indistinguishability experiment Ind-Graph

Fig. 5 Abstract output of the
bucketization algorithm

1 3

Distributed and Parallel Databases

an encrypted edge, bucketID are random identifiers of the buckets, and |SG
B
| is the

number of buckets. We use these notations in our secrecy proofs.
Lemmas 2, 3 and 4 tell us that our bucketization algorithm guarantees that,

given two graphs G0 , G1 and two query histories qHG0
 , qHG1

 which comply with
the restrictions of the experiment, A cannot say which has been the input selected
by the indistinguishability experiment, given the bucketization structure of Gb and
the trapdoors. We have organized the proofs of Lemmas 2, 3 and 4 as follows: We
demonstrate that for both inputs given by A , the properties of the index informa-
tion, the set of buckets and the trapdoors either are the same, or their differences
do not allow A to decide which one has been the input selected.

To facilitate the proof, we first prove that our bucketization algorithm is Ind-
Graph with respect to the set of buckets output, Lemma 2, with respect to the
index information output, Lemma 3, and with respect to the trapdoors, Lemma 4.

Lemma 2 Let the following be given:

1. An adversary A that chooses two graphs G0 , G1 and two query histories qHG0
 ,

qHG1
 in line with Definition 26.

2. The set of buckets the bucketization algorithm has generated by selecting ran-
domly G0 , qHG0

 or G1 , qHG1
.

Then A cannot decide whether the tuple (G0, qHG0
) or the tuple (G1, qHG1

) has
been the input of the bucketization algorithm for maxEdges values equal to or
greater than the degree uncertainty z of the z-access pattern.

Proof The properties of the set of buckets that do not change for both inputs given
by A are the size of the buckets and the number of buckets |SG

B
| . The properties that

can be different are the bucketIDs and the encrypted edges. First, all buckets have
the same size equal to maxEdges. Because the bucketization algorithm uses the
same value for the parameter maxEdges, the size of all buckets for either G0 or G1
is the same. Second, |SG

B
| depends on the number of edges of the nodes. After the

initialization phase, our bucketization algorithm uses the FFD approach to merge
the buckets. Since Deg(G0) = Deg(G1) , |SGB | is the same for both graphs. Third, the
bucketIDs are generated randomly. Then the bucketization algorithm will generate
random bucketIDs for both graphs. So A cannot identify whether the bucketIDs cor-
respond to Graph G0 or G1 . Fourth, the edges in a graph are unique, and they are
encrypted deterministically. So the edges are secure against deterministic chosen-
plaintext attacks, i.e., an adversary cannot learn any useful information about the
original edges, including their frequencies. Therefore, A cannot recognize whether
the encrypted edges in the set of buckets correspond to G0 or G1 . Consequently, an
adversary A cannot distinguish whether the tuple (G0, qHG0

) or the tuple (G1, qHG1
)

has been the input of the bucketization algorithm. ◻

Lemma 3 Let the following be given:

 Distributed and Parallel Databases

1 3

1. An adversary A that chooses two graphs G0 , G1 and two query histories qHG0
 ,

qHG1
 in line with Definition 26.

2. The index information the bucketization algorithm has generated by selecting
randomly G0 , qHG0

 or G1 , qHG1
.

Then A cannot distinguish whether the tuple (G0, qHG0
) or the tuple (G1, qHG1

)
has been the input of the bucketization algorithm for maxEdges values equal to or
greater than the degree uncertainty z of the z-access pattern.

Proof The properties of the index information that do not change for both inputs
given by A are the number of encrypted nodes |N(enc)| , the length of the ciphertext
representing an encrypted edge |C(node)| and the length of the ciphertext represent-
ing the set of bucketIDs |C(bucketIDs)| . The properties that can be different are the
encrypted nodes and the encrypted sets of bucketsIDs. First, |N(enc)| is the same for
both graphs because |V0| = |V1| . Second, the labels of the nodes are padded before
encryption. Then |C(node)| is the same for all the nodes in both graphs. Third, the sets
of bucketIDs are padded and then encrypted. Then |C(bucketIDs)| is the same for all sets
of bucketIDs in both graphs. Fourth, the nodes are unique, and they are encrypted
deterministically, so they are secure against deterministic chosen-plaintext attacks.
Therefore A cannot distinguish whether the encrypted nodes correspond to G0 or G1 .
Fifth, because the sets of bucketIDs are encrypted probabilistically, they are secure
against chosen-plaintext attacks, i.e., an adversary cannot learn any useful informa-
tion on the set of bucketIDs, including their frequencies. So A cannot recognize
whether the encrypted sets of bucketIDs correspond to G0 or G1 . Consequently, an
adversary A cannot distinguish whether the tuple (G0, qHG0

) or the tuple (G1, qHG1
)

has been the input of the bucketization algorithm. ◻

Lemma 4 Let the following be given:

1. An adversary A that chooses two graphs G0 , G1 and two query histories qHG0
 ,

qHG1
 in line with Definition 26.

2. The list of trapdoors the bucketization algorithm has generated by selecting ran-
domly G0 , qHG0

 or G1 , qHG1
.

Then A cannot distinguish whether the tuple (G0, qHG0
) or the tuple (G1, qHG1

)
has been the input of the bucketization algorithm for maxEdges values equal to or
greater than the degree uncertainty z of the z-access pattern.

Proof In our setting, a query in a query history qHG can either be a neighbor or an
adjacency query. Given a query history qHG with n queries, the list of trapdoors T
of qHG consists of n items, one for each query. The content of the trapdoors depends
on the type of query. If the i-th query qi ∈ qHG is a neighbor query, the i-th trapdoor
ti consists of (1) an encrypted node that corresponds to the query qi and (2) a set
of bucketIDs that correspond to the buckets that store the encrypted edges of that
node. If the i-th query qi ∈ qHG is an adjacency query, the i-th trapdoor ti consists

1 3

Distributed and Parallel Databases

of an encrypted edge that corresponds to the query qi . Let T0 and T1 be the lists of
trapdoors of qHG0

 and qHG1
 , respectively. First, because �z(qHG0

) = �z(qHG1
) and

�(qHG0
) = �(qHG1

) for all i ∈ {1,… , n} , the following holds: (1) if the i-th query qi
is a neighbor query, the i-th trapdoor ti in T0 has one encrypted node with the same
length |C(node)| and the same number of bucketIDs as the i-th trapdoor ti in T1 , (2) if
the i-th query qi is an adjacency query, the i-th trapdoor ti in T0 has one encrypted
edge, and the i-th trapdoor ti in T1 has one encrypted edge as well. Then T0 and T1
have the same structure in both cases. Second, T0 and T1 could have different content,
i.e., the encrypted nodes and the bucketsIDs for neighbor queries and the encrypted
edges for adjacency queries in T0 can be different from the ones in T1 . However,
as demonstrated in the proofs of Lemmas 2 and 3, the nodes and edges are secure
against deterministic chosen-plaintext attacks, and the bucketsID are generated ran-
domly. Then, based on the content of the trapdoors, A cannot distinguish whether
the list of trapdoors corresponds to qHG0

 or qHG1
 . Consequently, an adversary A can-

not distinguish whether the tuple (G0, qHG0
) or the tuple (G1, qHG1

) has been the
input of the bucketization algorithm. ◻

We have proven in Lemmas 2, 3 and 4 that the index information, the set of buck-
ets and the list of trapdoors, generated by our algorithm, do not leak any informa-
tion that can help an adversary to distinguish the input selected by the indistinguish-
ability experiment—when looked at in isolation. It remains to demonstrate that the
entire output does not leak such information. If there are not any links between the
data structures of the output, it obviously is enough to demonstrate that each data
structure when looked at in isolation does not leak information. However, if there
are links between them, it is necessary to show that A cannot use this information to
discern the input selected by the indistinguishability experiment.

Example 7 shows that the output data structures together could leak informa-
tion even though each data structure separately does not.

Example 7 Think of (1) two graphs G0 = (V0,E0) and G1 = (V1,E1) , where
V0 = V1 = {A,B,C} , E0 = {(A,B), (A,C)} , E1 = {(B,A), (B,C)} and (2) two query
histories qHG0

= [QAdjacency (G0,A,C)] and qHG1
= [QAdjacency

(
G1,A, C)] . Each data

structure in the bucketization structure B0 of graph G0 has the same structure as its cor-
responding data structure in the bucketization structure B1 of graph G1 . Next, the lists
of trapdoors of B0 and B1 , T0 and T1 , have the same structure. Additionally, because of
the encryption used and the uniqueness of the encrypted values, the content of each
data structure cannot be used to distinguish the input given to the algorithm. So they
are indistinguishable from each other. However, there are patterns that can only be rec-
ognized in the entire structure of the output which one can use to distinguish the input
given to the algorithm. In this case, the trapdoor in T0 occurs in the set of buckets, con-
trary to the trapdoor in T1 . Using this information, A can recognize the input, given the
output of the algorithm, by checking if the ciphertext of the trapdoor occurs in the set
of buckets. If this occurs, the input is G0 ; otherwise, the input is G1.

Lemma 5 Let the following be given:

 Distributed and Parallel Databases

1 3

1. An adversary A who chooses two graphs G0 , G1 and two query histories qHG0
 ,

qHG1
 in line with Definition 26.

2. The index information, the set of buckets and the list of trapdoors the bucketization
algorithm has generated by selecting G0 , qHG0

 or G1 , qHG1
 randomly.

Then A cannot distinguish based on links between the output structures whether
the tuple (G0, qHG0

) or the tuple (G1, qHG1
) has been the input of the bucketization

algorithm for maxEdges values equal to or greater than the degree uncertainty z
of the z-access pattern.

Proof The possible links between the output structures are (1) a link between the
trapdoor of a neighbor query and the index information and (2) a link between
the trapdoor of an adjacency query and the set of buckets. However, because
�z(qHG0

) = �z(qHG1
) and �(qHG0

) = �(qHG1
) , these links are the same in both

inputs. Consequently, an adversary A cannot distinguish based on links between the
output structures whether the tuple (G0, qHG0

) or the tuple (G1, qHG1
) has been the

input of the bucketization algorithm. ◻

Theorem 1 Our bucketization algorithm fulfills the secrecy notion Ind-Graph, Defi-
nition 27, for maxEdges values equal to or greater than the degree uncertainty z of
the z-access pattern.

Proof With Lemmas 2, 3, 4 and 5, we have shown that the index information, the set
of buckets, the list of trapdoors or a combination of them do not violate Defini-
tion 27. It remains to prove that the access pattern of our bucketization algorithm
does not leak more than the degree uncertainty z. With our bucketization approach,
the neighbor access pattern for any neighbor query is the tuple
((#Buckets − 1) ⋅ maxEdges + 1, #Buckets ⋅ maxEdges) , where #Buckets is the num-
ber of buckets retrieve during the execution of a given neighbor query, i.e.,
#Buckets = ⌈ deg(u)

maxEdges
⌉ . Then the degree uncertainty is | − maxEdges + 1| . Since we

set maxEdges = z + 1 , the access pattern of our bucketization algorithm does not
leak more than the degree uncertainty of the z-access pattern. Thus our algorithm is
Ind-Graph secure. ◻

In the following, we show that our algorithm fulfills our secrecy notion even
with a more relaxed Leakage L4. We proceed to define the notion needed, Defini-
tion 38, to relax L4.

Definition 38 Given a transformed graph transformedG , the size of the transformed
graph is a list sizeTG = [|ds1|,… , |dsd|] which contains the size of all data struc-
tures in transformedG.

In our scenario, the size of the transformed graph sizeTG corresponds to the
size of the bucketization structure sizeB. Our bucketization structure has two data
structures, the index information and the set of buckets. The sizes of the index

1 3

Distributed and Parallel Databases

information and of the set of buckets are the number of nodes and the number of
buckets, respectively. Then sizeB = [|V|, |SG

B
|].

Example 8 shows two graphs G0,G1 that do not fulfill the restriction
Deg(G0) = Deg(G1) . But they still fulfill sizeB0 = sizeB1 , where B0 and B1 are the
bucketization structures of graphs G0 and G1 , respectively.

Example 8 Let us consider two graphs G0 and G1 , each graph has 4 nodes and 8 edges,
and their multisets of degrees are Deg(G0) = {2, 2, 2, 2} and Deg(G1) = {3, 2, 2, 1} ,
respectively. Assume that maxEdge = 4 . Even though Deg(G0) ≠ Deg(G1) , the
bucketization algorithm will output 2 buckets for both graphs. Then the size of the
bucketization structure for both graphs is the same, i.e., sizeB0 = sizeB0 = [4, 2].

Theorem 2 Our bucketization algorithm fulfills the secrecy notion Ind-Graph, Defi-
nition 27, even by replacing leakage L4 with the more relaxed leakage of the size
of the transformed graph sizeTG , Definition 38, for maxEdges values equal to or
greater than the degree uncertainty z of the z-access pattern.

Proof With 2, 3, 4 and 5, we have proven that our bucketization algorithm fulfills
the secrecy notion Ind-Graph. We have used the restriction imposed by Leakage
L4, i.e., Deg(G0) = Deg(G1) , only in the proof of Lemma 2, to demonstrate that the
number of buckets |SG

B
| is the same for both graphs given as input by the adversary.

This is also guaranteed with the restriction sizeTG0
= sizeTG1

 , which in our buck-
etization means that sizeB0 = sizeB1 . Then our bucketization algorithm fulfills the
secrecy notion Ind-Graph even when replacing Leakage L4 with the more relaxed
leakage regarding the size of the transformed graph sizeTG . ◻

6 Performance model

A performance model is important because it allows predicting the behavior of an
algorithm and facilitates meaningful comparisons or evaluations of algorithms.
Query optimizers, which are essential features of any modern database system,
require such performance models to estimate the costs of various execution plans
accurately and to find the most efficient one [13, 29, 31]. If such performance mod-
els are not available, query optimizers will resort to coarse estimates, which may be
grossly off, with disastrous consequences when it comes to system performance. The
difference between the cost of the best execution plan and a random choice could be
in orders of magnitude [35]. In our approach, the number of buckets obtained after
applying our bucketization algorithm to a graph G is a crucial parameter for query
performance, as explained in Sect. 5.2. Estimating the number of buckets is cum-
bersome, and we estimate a range. But even to estimate this range, it is necessary
to have a model that describes relevant properties of the given graph. In the next
section, due to the importance of scale-free networks, we review some of their prop-
erties and use them to derive the so-called number-of-buckets model and the query-
cost model.

 Distributed and Parallel Databases

1 3

6.1 Scale‑free networks

Real-world networks have two important features: growth and preferential attach-
ment. Regarding the first feature, real-world networks often are the result of a con-
tinuous growth process. Regarding the second one, nodes with a higher degree will
have a higher probability to be connected to a new node. This property has the effect
that most nodes in the network will have only a few edges, and a few nodes gradu-
ally turn into hubs, i.e., their degree greatly exceeds the average. These two features
are responsible for the power-law distribution of scale-free networks. Many real-
world networks, such as genetic networks or the actor network, follow a power-law
distribution [2].

Barabási and Albert [2] introduced a model capturing the properties of scale-free
networks, the Barabasi–Albert Model (BA). The properties that we use in our per-
formance model are:

– Degree Exponent, � , which is the exponent of the power-law distribution of
scale-free networks. It plays an important role in predicting many properties of
these networks, e.g., the highest node degree. The degree exponent of many real
networks is between 2 and 3 [2]

– Growth parameter, m. At each time step a new node is added to the network with
m edges that connect it to m existing nodes.

– Probability of a node with degree k, �k . Given the growth parameter m, the prob-
ability that a randomly chosen node has degree of k is given by: �k =

2m(m+1)

k(k+1)(k+2)
.

– Number of Edges, |E|. In the BA, |E| = m ⋅ |V|.
– Largest node degree, kmax . The expected value of the largest node degree in the

BA is kmax ∼ |V|
1

�−1.
– Lowest node degree, kmin . It is the minimum degree in the network. For kmin there

is no characterization, each graph can have different values of kmin.

6.2 The number‑of‑buckets model NBM

Recall that after the initialization phase of the algorithm, some buckets are full, and
some are not. Lemma 6 captures the number of buckets that have reached their max-
imal capacity after the initialization phase of the algorithm.

Lemma 6 The number of full buckets after the initialization phase of the algorithm

is Bucketini
Full

=
kmax∑

k=kmin

�
�V� ⋅ �k ⋅

�
k

maxEdges

��
.

Proof Given a node u ∈ V in a graph G with degree ku , the number of full buckets
generated for u after the initialization phase is EBu

Full
=

⌊
ku

maxEdges

⌋
 . EBu

Full
 is calcu-

lated regardless of the other nodes in G. Next, it is required to calculate EBu
Full

 for all
nodes u ∈ V . According to the BA properties, the probability that a randomly cho-
sen node has a degree of k is given by �k . Then the total number of nodes with

1 3

Distributed and Parallel Databases

degree k is |V| ⋅ �k . For all the nodes with degree k, the total number of buckets is
|V| ⋅ �k ⋅

⌊
ku

maxEdges

⌋
 . Finally, to estimate the total number of buckets after the initiali-

zation phase, we have to consider all node degrees, which are between kmin and kmax .
 ◻

If we know the number of full buckets, we know the number of edges that have been
already stored in these full buckets. Then we can calculate the number of edges stored
in non-full buckets, see Lemma 7.

Lemma 7 The number of edges that have been assigned to buckets that are not full is
EdgesNFB = |E| − Bucketini

Full
⋅ maxEdges.

Proof The number of edges already stored in full buckets after the initialization
phase is Bucketini

Full
⋅ maxEdges . We subtract this number from the total number of

edges |E| to obtain EdgesNFB . ◻

Using these two lemmas, we introduce the range of the number-of-buckets Model,
see Theorem 3.

Theorem 3 Given a graph G = (V ,E) that follows the BA Model, the expected num-
ber of buckets EB is in the range:

Proof The lowest value of the range is the number of buckets obtained with the opti-
mal bucketization. With this optimal bucketization, the non-full buckets are merged
so that their edges, EdgesNFB , fill exactly

⌈
EdgesNFB

maxEdges

⌉
 buckets. For the upper bound of

the model, the worst performance ratio of the FFD approach used in our algorithm is
11

9
 of the optimal solution. Consequently, the upper bound is the sum of the number

of full buckets after the initialization phase, Bucketini
Full

 , and the number of buckets
after the merging in the worst case, i.e., 11

9
⋅

⌈
EdgesNFB

maxEdges

⌉
 . ◻

Corollary 1 provides a range of the expected number of dummy edges.

Corollary 1 Given a graph G = (V ,E) that follows the BA Model, the expected num-
ber of dummy edges, DE , is in the range

(1)
Bucketini

Full
+

⌈
EdgesNFB

maxEdges

⌉
≤ EB

≤ Bucketini
Full

+
11

9
⋅

⌈
EdgesNFB

maxEdges

⌉

 Distributed and Parallel Databases

1 3

Proof The lower bound of the expected number of buckets from Theorem 3 mul-
tiplied with maxEdges yields the total number of edges stored in the buckets.
Subtracting from this number the real number of edges yields the lower bound of
expected dummy edges. The analogous argument applies to the upper bound. ◻

The NBM helps us to predict query performance. Depending on the type of que-
ries, the query workload is distributed between the client, and the server, e.g., with
neighbor queries, the client has to filter possible false positives. Lemma 6 gives the
number of buckets that do not generate false positives because they are full and store
edges belonging to the same node. We obtain the percentage of buckets that produce
false positives by comparing Bucketini

Full
 to the expected number of buckets from The-

orem 3. Buckets that contain false positives result in more work at the client. A low
percentage of full buckets increases the average query processing effort at the client.
Note that the number of full buckets does not only depend on the characteristics
of the given graph, e.g., distribution of the number of edges per node, but also on
parameter maxEdges. With respect to adjacency queries, the client does not perform
any work. The query performance at the server is affected by dummy edges. Prelimi-
nary experiments of ours show that more dummy edges increase the query execution
time at the server proportionally. Furthermore, the server has to perform a lookup in
the set of buckets to answer queries. Then a large number of buckets also affects the
query performance at the server.

All the properties about our algorithm that affect query performance, like the
ones discussed in the previous paragraph, are summarized in our query-cost model,
Sect. 6.3.

6.3 Query‑cost model

Given a query Q, let SRQ-G and CRQ-G be the runtime complexity of Q with the
original graph G, without index, at the server and the client respectively and SRQ-B
and CRQ-B the runtime complexity of Q with the bucketization structure B, without
index, at the server and the client respectively.

Definition 39 The query performance ratio of a given query Q, an original graph
G and its corresponding bucketization structure B at the server side is SPQ =

SRQ-B

SRQ-G

 ,

and the query performance ratio at the client side is CPQ =
CRQ-B

CRQ-G

.

We start by analyzing the processing of neighbor queries, followed by adjacency
queries. We focus on the case without any index structure either on the original
graph G or on the bucketization structure B. Then a single lookup of an edge in

(2)

(
Bucketini

Full
+

⌈
EdgesNFB

maxEdges

⌉)
⋅ maxEdges − |E| ≤ DE ≤

(
Bucketini

Full
+

11

9
⋅

⌈
EdgesNFB

maxEdges

⌉)
⋅ maxEdges − |E|

1 3

Distributed and Parallel Databases

the original graph G has a complexity of O(|E|) . In the bucketization structure, a
single lookup of a node in the index information has complexity of O(|V|) , and a
single lookup of a bucket in the set of buckets has a complexity of O(EB) , where EB
is the number of buckets. The encryption and decryption complexity depends on the
security parameter of the underlying encryption scheme [34]. For instance, in the
case of AES, the encryption and decryption complexity is O(m) for variable sized
blocks, where m is the number of blocks used which itself depends on the length
of the secret key [4, 33]. In our approach, we use two types of encryption schemes,
deterministic and probabilistic. Each encryption scheme has a secret key with con-
stant size. Then we consider two different security parameters, one for each type of
encryption, ds for deterministic encryption and ps for probabilistic encryption. The
complexity of deterministic encryption and decryption is O(ds) , and the complexity
of the probabilistic one is O(ps).

Lemma 8 Let a Graph G = (V ,E) , its bucketization structure B and a neighbor
query QNeigbhor (G, u) be given. The server-side and the client-side performance

ratio are SPQNeighbor(G,u)
=

O

(⌈
deg(u)

maxEdges

⌉
⋅EB

)

O(|E|)
 and CPQNeigbhor(G,u)

= O

(⌈
deg(u)

maxEdges

⌉
⋅ maxEdges

)
 ,

respectively.

Proof In the original graph, we need to access the edges E, which are stored at the
server and retrieve all edges that belong to Node u. Then the effort of executing a
neighbor query on the server side is SRQNeighbor(G,u)

= O(|E|) . At the client, no work is
necessary. With our bucketization in turn, the following steps are required:

1. Encrypt Node u for querying. The effort is O(ds).
2. Retrieve the set of bucketIDs of Node u from the index information. This step has

a complexity of O(|V|).
3. Decrypt the set of bucketIDs. The effort is O(ps).
4. For each bucketID, one lookup in the set of buckets SB is required. The number

of buckets of u is |EBu| =
⌈

deg(u)

maxEdges

⌉
 . The complexity of this step is

O

(⌈
deg(u)

maxEdges

⌉
⋅

(
EB

))
.

5. Decrypt and filter the
⌈

deg(u)

maxEdges

⌉
⋅ maxEdges edges. The decryption and filtering

is in O
(⌈

deg(u)

maxEdges

⌉
⋅ maxEdges

)
.

The server performs Steps 2 and 4, the client Steps 1, 3 and 5. The step with the
highest complexity at the client is Step 5, and at the server it is Step 4. Consequently,
the effort for executing a neighbor query at the server and at the client is:

SRQNeighbor(G,u)−B
= O

(⌈
deg(u)

maxEdges

⌉
⋅

(
EB

))

CRQNeighbor(G,u)−B
= O

(⌈
deg(u)

maxEdges

⌉
⋅ maxEdges

)

 Distributed and Parallel Databases

1 3

Finally,

 ◻

Lemma 9 Let a Graph G = (V ,E) , its bucketization structure B and an adjacency
query QAdjacency(G, u, v) be given. The server-side and client-side performance ratio
are SPQAdjacency(G,u,v)

=
O(|E|+|DE|)

O(|E|) and CPQAdjacency(G,u,v)
= O(ds) , where |DE| is the num-

ber of dummy edges.

Proof In the original graph, in order to check whether Edge (u, v) exists in E, it is
necessary to execute one lookup on the edges E. Then the effort of executing an
adjacency query at the server is SRQAdjacency(G,u,v)

= O(|E|) . At the client, no work is
necessary. On the transformed graph, the following steps are required:

1. Encrypt Edge (u, v) for querying. The effort is O(ds).
2. Execute one lookup in the encrypted edges, which are stored in the set of buckets.

The complexity of this step is O(|E| + |DE|).

Step 1 takes place at the client, it is an encryption operation in O(ds) . So the ratio at
the client is CPQAdjacency(G,u,v)

= O(ds) . At the server, the effort is

SRQAdjacency(G,u,v)−B
= O

(
|E| + |DE|

)
 . Then SPQAdjacency(G,u,v)

=
O(|E|+|DE|)

O(|E|) . ◻

From the Query-Cost Model, we can learn that for adjacency and neighbor que-
ries the parameter maxEdges plays an important role regarding the query-execution
effort at client and server. If maxEdges increases, the number of dummy edges
increases, and the server must take more effort to answer queries. At the client, to
answer neighbor queries if maxEdges increases, the workload at the client increases
as well. This is because the client has to filter more false positives. Therefore, we
suggest for scale-free networks that the parameter maxEdges should take smaller
values, exactly m. In the next section, we demonstrate by means of experiments how
this parameter affects the performance of our bucketization algorithm.

7 Experiments

In this section, we present experiments to evaluate (1) the accuracy of our NBM and
(2) the performance of our bucketization approach. Notice that the query-cost model
is derived from the NBM. Consequently, the accuracy of this model mainly depends
on the accuracy of the NBM.

SPQNeighbor(G,u)
=

O

(⌈
deg(u)

maxEdges

⌉
⋅

(
EB

))

O(|E|)

CPQNeighbor(G,u)
= O

(⌈
deg(u)

maxEdges

⌉
⋅ maxEdges

)

1 3

Distributed and Parallel Databases

7.1 Experiment setup

7.1.1 Input datasets

In our experiments, we use synthetic and real datasets.
Synthetic datasets We have used Networkx [36] to generate 8 different undi-

rected graphs that follow the BA Model. Table 2 shows the characteristics of the
generated graphs, where |V| is the number of nodes, m the growth parameter and
E the number of edges. Related experimental studies on secrecy preserving on
graph-structured data have considered synthetic graphs with nodes between 3000
and 25,000 [42, 44]. We vary the number of nodes from 5000 to 150,000. For
graphs with 5000 and 10,000 nodes, we set the growth parameter m equal to 6
and 8. For graphs with 40,000 and 1,50,000 nodes, we set the growth parameter
m equal to 8 and 10. The number of edges of each graph depends on the number
of nodes and the growth parameter m.

Real datasets Our bucketization approach can work with any graph. As real
datasets, we have chosen two scale-free networks, the Actor network [23] and
the Web network [26], and one non-scale-free network, the Citation network
[25]. Barabási and Albert [2] have proven that the Actor and the Web network
are scale-free. The Actor network contains 1,048,575 edges and 1,137,725 nodes,
89,150 nodes represent actors, and 1,048,575 nodes represent movies. An edge
connects a movie with an actor who has played in it. The Actor network exhibits
the preferential attachment feature. Namely, if an actor has played in more mov-
ies, a casting director is more familiar with his or her skills. Then an actor with
a higher degree has higher chances to be considered for a new role. The growth
parameter m of the Actor network is 4. The Web network contains 2,381,903
nodes and 2,312,497 edges, and its growth parameter m is 5. The nodes in the
Web network are web pages, and the edges represent hyperlinks between them.
The Citation network contains 27,770 nodes and 3,52,807 edges. The nodes in
the Citation network are articles, an edge is created between articles a and b if
article a cites b.

Table 2 Characteristics of the
synthetic data

Synthetic data |V| m E

G1 5000 6 29,964
G2 5000 8 39,936
G3 10,000 6 59,964
G4 10,000 8 79,936
G5 40,000 8 3,19,936
G6 40,000 10 3,99,900
G7 1,50,000 8 1,199,936
G8 1,50,000 10 1,499,900

 Distributed and Parallel Databases

1 3

7.1.2 Queries

Based on initial experiments and the Query-Cost Model from Sect. 6.3, we
observe that node degree plays an important role in the query performance evalu-
ation. Therefore, the objects that will be part of an experiment sample, i.e., the
queries, should be carefully selected to have a representative sample of queries.
In all experiments that follow, the experiment sample will consist of actual nodes
from the graph that is being queried. In the following, we present the experiment
results for these type of queries. In the context of neighbor queries, there are two
kinds of nodes, hubs, and non-hubs, with very different query performance. So,
to have equally represented hubs and non-hubs in our query sample, we divide
neighbor queries into two groups: RandomQNeighbor(G, u) and HubQNeighbor(G, u) .
For the group of queries RandomQNeighbor(G, u) , we select the input node u ran-
domly from the set of nodes V without considering the hubs in the graph. For
HubQNeighbor(G, u) , we identify the hubs in the graph and use them as input. For
adjacency queries, QAdjacency(G, u, v) , the nodes u, v are selected randomly from
the set of nodes V. The execution time of adjacency queries depends on the total
number of edges, including dummy edges (Sect. 6.3). So a distinct consideration
of hubs is not necessary in this case.

7.1.3 Evaluation measures

We use seven metrics which let us evaluate the accuracy of the number-of-buck-
ets model (NBM) and the performance of the bucketization approach.

The NBM metrics are:

– ETotalEB : This metric quantifies the number of buckets obtained when applying
our bucketization algorithm to graph G.

– Edummy : This is the percentage of dummy edges when applying our bucketiza-
tion algorithm to Graph G.

– EBucketsini
Full

 : This is the percentage of buckets that are full after the initialization
of the bucketization algorithm on graph G.

The bucketization performance metrics are:

– PSQprocessing : This metric quantifies the server-query-processing time when
using our bucketization, i.e., the time required by the server in order to answer
a query sent by the client.

– PCQprocessing : This metric quantifies the client query processing time when
using our bucketization, i.e., the time required by the client to decrypt the
results returned from the server and filter false positives.

– PTQprocessing : This metric quantifies the total query processing time using our
bucketization structure, i.e., it adds up the processing time at the client and at
the server.

1 3

Distributed and Parallel Databases

– PRQprocessing : This is the ratio of the total query processing time using our buck-
etization structure to that using the original graph G.

7.2 Results

We now present the results of the experiments. First, we discuss the evaluation of
the NBM is discussed, then the performance. Our experiments evaluate the trade-
off between secrecy and performance. We study the effect of each parameter from
Sect. 7.1.3 one by one. The NBM Model has been developed based on the charac-
teristics of scale-free networks. Therefore for the NBM evaluation, we use only the
scale-free datasets, namely all synthetic datasets, G1,… ,G8 , and the two scale-free
real datasets, the Actor and Web networks. For the performance evaluation, we use
all the real datasets. In the experiments, we have varied the parameter maxEdges.

7.2.1 NBM evaluation

ETotalEB : Fig. 6 shows the numbers of buckets obtained with the synthetic and real
datasets. For both types of datasets, we have used different values for the parameter
maxEdge. The markers on each bar of both figures are the lower and upper bounds
calculated with our NBM. For all experiments, the number of buckets obtained
is always inside the range calculated with Theorem 3. Figure 6 also shows that,
if maxEdges ≤ m , the number of buckets obtained is between the lower bound and
the middle of the range given by the NBM. If maxEdges > m , the number of buck-
ets gets closer to the upper bound of the NBM. We explain this effect as follows: In
scale-free networks, most of the nodes in the graph have degree equal to m. If the
parameter maxEdge is set to m, most buckets will have reached their maximal capac-
ity after the initialization phase, and fewer buckets will be considered for merging.
Then the total number of buckets gets closer to the optimal solution of our algo-
rithm, which is the lower bound of our estimation. If the parameter maxEdges is set
to values greater than m, after the initialization phase most of the buckets will not

Fig. 6 ETotalEB obtained for the synthetic and real datasets

 Distributed and Parallel Databases

1 3

have reached their maximal capacity, and they will be considered for the merging. In
the merging phase, because of the heuristic used, it is not always possible to reach
an optimal solution. Therefore, the number of buckets obtained gets closer to the
upper bound of the NBM.

Edummy : We calculate the percentage of dummy edges in comparison with the
size of the original graph for the synthetic data and the real datasets. Table 3 shows
the average percentage of dummy edges for the synthetic data, i.e., eight datasets.
Table 4 shows the exact percentage of dummy edges for the real datasets. Both tables
show that the number of dummy edges needed increases, as parameter maxEdges
takes values greater than m. More dummy edges mean a larger database. This is
likely to affect the efficiency of the querying process on the server as well, and this
will be examined in Sect. 7.2.2.

EBucketsini
Full

 : Table 5 shows the average percentage of full buckets after the initiali-
zation phase for the synthetic data. For the real datasets the exact percentage is
given, see Table 6. The number of full buckets decreases, as the parameter maxEdges
takes values greater than m. If a bucket stores edges that belong to different nodes
and/or dummy edges, the client will have to do more work. Full buckets after the
initialization phase contain edges that belong to a single node. More full buckets
right after initialization let our algorithm to come closer to the optimal solution. An
optimal solution implies fewer buckets for the merging process, fewer dummy edges,
and fewer false positives when querying.

Table 3 Percentage of Edummy
for the synthetic datasets

maxEdges % of Edummy

1 < maxEdges < m 1.217
maxEdges = m 0.889
maxEdges > m 26.513

Table 4 Percentage of Edummy
for the real datasets

Dataset maxEdges % of Edummy

Actor network 2 0.428
4 0.748

16 7.629
Web network 3 0.223

5 1.112
10 6.349

Table 5 Percentage of
EBucketsFull−ini

 for the synthetic
datasets

maxEdges % of EBucketsFull−ini

1 < maxEdges < m 88.79
maxEdges = m 86.81
maxEdges > m 46.65

1 3

Distributed and Parallel Databases

7.2.2 Performance evaluation

As in the previous section, we have conducted our experiments with synthetic and
real datasets. The results of the experiments with both datasets, i.e., synthetic and
real, are very much the same. In what follows, due to its applicability to real-world
scenarios, we present the results on the real data.

PSQprocessing : Fig. 7a shows the average query-processing time of the server
for the three groups of queries for real datasets. For RandomQNeighbor(G, u) and
HubQNeighbor(G, u) , the query-processing time of the server increases as maxEdges
decreases. This is because, if maxEdge decreases, the number of buckets increases,
and when executing a neighbor query, the server has to retrieve more buckets. In
contrast, the query-processing time of the server for QAdjacency(G, u, v) increases as
maxEdges takes higher values. The increase, in this case, is due to the higher num-
ber of dummy edges inserted. Our experiments in the previous section show that the
number of dummy edges needed grows, as maxEdges increases.

PCQprocessing : For this part of the evaluation we only consider two type of que-
ries, i.e., RandomQNeighbor(G, u) and HubQNeighbor(G, u) . We omit adjacency queries
because they do not require any post-processing on the client. See Fig. 7b. In the
scale-free networks, i.e., the Actor and Web networks, the query processing time

Table 6 Percentage of EBucketsini
Full

for the real datasets

Dataset maxEdges % of EBucketsini
Full

Actor Network 2 59.15
4 55.78

16 14.49
Web Network 3 81.38

5 80.18
10 47.96

Fig. 7 PSQprocessing and PCQprocessing in the Actor, Web and Citation Networks

 Distributed and Parallel Databases

1 3

at the client increases as maxEdges takes larger values. In the Citation network,
with maxEdges = 12 , i.e., the average degree of the network, the client query pro-
cessing time decreases in comparison with the time obtained with other values that
maxEdges takes.

PTQprocessing : Fig. 8 shows the total average query processing time for the
three groups of queries defined in Sect. 7.1.2 in the real datasets. For the queries
RandomQNeighbor(G, u) and HubQNeighbor(G, u) , the total execution time increases
as maxEdges decreases. This increment is related to the increase of the query-pro-
cessing time of the server, which we have explained with the metric PSQprocessing .
For adjacency queries, the query processing time of the server and the total query-
processing time are the same. This is because adjacency queries do not require any
post-processing on the client, i.e., all the work is done at the server.

We can see from the analysis of PSQprocessing , PCQprocessing and PTQprocessing that
the best value to set maxEdges in scale-free networks is the growth parameter m.
In scale-free networks, most nodes have a degree equal to m, so most buckets will
be full after initialization. For non-scale-free networks, we observe that the best
value to set maxEdges is the average degree of the network. For the last experimen-
tal results, PRQprocessing , we set maxEdges to the best option, i.e., maxEdges = m for
the scale-free networks and maxEdges = 12 , average degree, for the non-scale-free
network.

PRQprocessing : Fig. 9 shows a comparison of the total query processing time for
RandomQNeighbor(G, u) , HubQNeighbor (G, u), and QAdjacency(G, u, v) , using our bucketi-
zation structures and the original graphs of the three real datasets. For each diagram
in Fig. 9, each pair of points on the x-axis, i.e., 1 and 2, 3 and 4, 5 and 6, corresponds

Fig. 8 PTQprocessing in the actor, web and citation networks

Fig. 9 Total query processing time-real datasets

1 3

Distributed and Parallel Databases

to one type of query. The first pair corresponds to RandomQNeighbor(G, u) , the sec-
ond one to HubQNeighbor(G, u) and the third one to QAdjacency(G, u, v) . In each pair,
the first point represents the total query processing time using our bucketization
and the second one is the total time using the original graph. We deem the total
execution time on the original graph the optimum. So we evaluate our approach
depending on how much the query-processing time increases in comparison with
the original graph. Regarding the Actor network, RandomQNeighbor(G, u) with our
bucketization approach is on average 3.44 times slower than with the original graph,
HubQNeighbor(G, u) is 5.12 times slower and QAdjacency(G, u, v) is 2.88 times slower.
In the Web graph, RandomQNeighbor(G, u) with our bucketization approach is 2.90
times slower than with the original graph on average, HubQNeighbor(G, u) is 10.15
times slower, and QAdjacency(G, u, v) is 4.76 times slower. In the Citation network,
with our bucketization approach RandomQNeighbor(G, u) is on average 4.51 times
slower than with the original graph, HubQNeighbor(G, u) is 4.78 times slower, and
QAdjacency(G, u, v) is 4.93 times slower. To summarize, in the scale-free networks,
i.e., the Actor and Web network, except for HubQNeighbor(G, u) , with our approach
the query execution time is 3.5 times slower than with the original graph. In the non-
scale-free network, i.e., the Citation network, with our approach the query execution
time is approximately 5 times slower than with the original graph. In our opinion,
these are reasonable prices for secrecy guarantees. So our bucketization approach is
effective and feasible for secrecy for graph-structured data.

8 Conclusions

A core challenge when outsourcing a database is to ensure the secrecy of the data. In
this paper, we have studied this problem for graph-structured data. We have proposed
a secrecy model for this kind of data based on the concept of indistinguishability.
Existing proposals, such as Fan et al. [10], Zhang et al. [43], Wang and Lakshmanan
[39], deal with different types of adversaries and different secrecy guarantees. Our
secrecy notion guarantees that, given a secretized graph, an adversary cannot learn
any information about the original graph beyond the information leakage specified.
While a bucketization of the edges gives way to the secrecy envisioned here, as we
have shown, finding an optimal bucketization is NP-hard. We have proposed a heu-
ristic that guarantees that the worst bucketization solution will be off by a factor of
11

9
 of the optimal one. Next, to facilitate query planning, we predict the behavior of

our algorithm with respect to its parameters and properties of the input graph. In
other words, we propose a performance model that allows estimating (1) the number
of buckets and (2) the query-processing complexity. Our experiments with both real
and synthetic datasets confirm the accuracy of our model and the effectiveness of
our approach.

In the future, it will be interesting to study more complex graph queries, which
cannot be easily represented using relational databases. Another future research
direction is to study and propose secrecy approaches for graph-structured data under
stronger secrecy guarantees, including access pattern leakage.

 Distributed and Parallel Databases

1 3

Acknowledgements Open Access funding provided by Projekt DEAL. The first author thanks “Escuela
Politécnica Nacional, Ecuador—Departamento de Informática y Ciencias de la Computación” for its sup-
port. This work was partially funded by the German Research Foundation (DFG) as part of the research
Datenschutzkonforme Verwaltung relationaler Datenbestände (DFG; ref. nb BO 2129/13-1).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

Appendix: Hardness result

We start by introducing the BP problem.

Definition 40 Let a set of n bins C = {c1, c2,… , cn} and the same number of n items
I = {a1, a2,… , an} be given. All bins have equal capacity wc , and the weight of each
item ai ∈ I,wai

 , is smaller than or equal to the capacity wc . The Bin-packing prob-
lem is finding a mapping BP ∶ I → C of each item in I to one bin in C such that the
following Constraints bp1, bp2 and bp3 are met.

(bp1) An item is assigned to only one bin.
(bp2) The sum of the weights of all items assigned to a bin does not exceed the bin

capacity wc . Formally, ∀cj ∈ C ∶ Wcj
≤ wc where Wcj

=
∑

ai∈{a∈I∣BP(a)=cj}
wai

.
(bp3) The number m of bins used is as small as possible, i.e., minimize

 m =
���
⋃

ai∈I
{BP(ai)}

���.

For the hardness proof, we use a restricted version of the BP-Problem, Defini-
tion 40, where we restrict the weight of the items to be polynomial in n. Since the
BP problem is strongly NP-complete, bounding any of its numerical parameters
by a polynomial in the length of the input, the resulting problem remains NP-
complete [11].

We introduce Lemmas 10 and 11, which are used in the hardness proof. These
two lemmas help us (1) to show that an instance of the BP problem, called ini-
tial BP, can be reduced in polynomial time to an instance of the bucketization
problem, called transformed BP, and (2) to prove that a given solution of the
transformed BP can be transformed to a solution of the initial BP in polynomial
time. In what follows, we identify the steps required to construct the transformed
BP.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

1 3

Distributed and Parallel Databases

Transformed BP construction Given a BP problem with a set of items I, the
transformed BP is constructed as follows:

– For each item ai ∈ I , create the set of nodes Vi = {ai, ai1, ai2,… , aiwai

} and the
set of edges Ei = {(ai, ai1), (ai, ai2),… , (ai, aiwai

)}.
– The graph that represents the transformed BP is G = (∪n

i=1
Vi,∪

n
i=1

Ei).

Lemma 10 Given an initial BP, the transformed BP can be constructed in polyno-
mial time.

Proof For each item ai ∈ I , in order to build transformed BP, we need (wai
+ 1)

nodes and wai
 edges. Altogether this requires

∑n

i=1
(wai

+ 1) steps. Since in the
restricted version of the BP problem, the weight of the items are polynomial in n,
the construction is still polynomial in n. Then an initial BP can be transformed to a
transformed BP in polynomial time. ◻

Example 9 illustrates the construction of the transformed BP.

Example 9 Consider the initial BP with set of items I = {a1, a2, a3, a4} with weights
wa1

= 3,wa2
= 1,wa3

= 2 , wa4
= 4 and the set C of bins with capacity wc = 5 . Fig-

ure 10 shows the corresponding transformed BP.

Once we have built transformed BP, we can run an algorithm that solves the
bucketization problem on it, by setting maxEdges to wc . The solution of the trans-
formed BP is a bucketization B that fulfills Constraints c1-c4. The following set of
buckets SG

B
 , which is part of the bucketization structure B, is a possible solution of

the transformed BP of Example 9:

SG
B
=

{
b1 ∶ (a1, a11), (a1, a12), (a1, a13), (a3, a31), (a3, a32)

b2 ∶ (a2, a21), (a4, a41), (a4, a42), (a4, a43), (a4, a44)

}

Fig. 10 Transformed BP of Example 9

 Distributed and Parallel Databases

1 3

where b1 and b2 are the bucketIDs. Since we set maxEdges = wc , it holds for all
buckets b ∈ SG

B
 that freq(b) ≤ wc.

The next lemma, Lemma 11, states that a solution of the initialBP can be con-
structed in polynomial time from a solution of the transformed BP. Before moving
to Lemma 11, we first explain the solution construction process.

Initial BP solution construction A solution of the initial BP can be constructed
from a solution of the transformed BP as follows:

– Select the bins cj,… , cm needed to store the items in I, where m = |SG
B
|.

– Map each item ai ∈ I to one bin cj , where j ∈ {1,… ,m} , as follows:
∀bj ∈ SG

B
∶ Icj = {ai ∣ ∃y ∈ {1,… ,wai

}, (ai, aiy) ∈ bj} . Then ∀ai ∈ Icj ∶ ai → cj.

The following shows the solution constructed for the initial BP from the transformed
BP of Example 9:

Lemma 11 A solution of the transformed BP can be transformed to a solution of the
corresponding initial BP in polynomial time.

Proof Consider a bucketization of transformed BP that fulfills Constraints c1−c4 .
We transform it to a BP solution with the solution construction process. Now we
proceed to demonstrate that the transformed solution fulfills the constraints of the
BP problem, bp1 to bp3, with respect to the initial BP problem. We start by ana-
lyzing the constraints of the BP problem and of the bucketization problem. First,
Constraint bp1 is fulfilled because of Constraints c1 and c3 of the bucketization
problem. Constraint c1 ensures that each edge is assigned to only one bucket. Then
∀i ≠ j ∶ ci ∩ cj = ∅ . Together with the fact that for all items ai ∈ I,wai

≤ maxEdges ,
Constraint c3 ensures that the edges belonging to the same node are placed in the
same bucket.

Second, Constraint bp2 is fulfilled because of Constraint c2 of the bucketization
problem. For all bins cj ∈ C,Wcj

= freq(bj) and maxEdges = wc , then freq(bj) ≤ wc ,
which fulfills Constraint bp1. Third, bp3 is fulfilled because of Constraint c4 . The
number of buckets is the number of bins used in the initial BP solution. Then mini-
mizing the buckets is the same as minimizing the number of bins used.

m =
|||S

G
B

||| = 2

Ic1 = {a1, a3},Ic2 = {a2, a4}

a1 → c1

a3 → c1

a2 → c2

a4 → c2

1 3

Distributed and Parallel Databases

Finally, a bucketization solution of a transformed BP can be transformed to
a solution of the initial BP in polynomial time. The reconstruction requires one
lookup in all the elements of each bucket bi ∈ SG

B
 . Then the complexity of the recon-

struction is O(m) , where m is the total number of elements, i.e., edges, stored in SG
B

 .
Since SG

B
 stores the set of items I, m =

∑n

i=1
wai

.
 ◻

Theorem 4 Finding an optimal bucketization that meets Constraints c1−c4 is
NP-hard.

Proof With Lemmas 10 and 11 we have shown that an instance of the BP prob-
lem can be reduced to an instance of the bucketization problem in polynomial time.
Since the BP problem is NP-hard [19], the optimal bucketization problem is NP-
hard as well.

 ◻

References

 1. Aggarwal, G., Bawa, M., Ganesan, P., Garcia-Molina, H., Kenthapadi, K., Motwani, R., Srivas-
tava, U., Thomas, D., Xu, Y.: Two can keep a secret: a distributed architecture for secure data-
base services. CIDR (2005)

 2. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–
512 (1999)

 3. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable encryption. In:
Annual International Cryptology Conference, pp. 535–552. Springer, New York (2007)

 4. Bhandari, A., Gupta, A., Das, D.: A framework for data security and storage in cloud computing.
In: 2016 International Conference on Computational Techniques in Information and Communi-
cation Technologies (ICCTICT). IEEE, pp. 1–7 (2016)

 5. Boneh, D., Shoup, V.: A graduate course in applied cryptography. (2008) https ://crypt o.stanf ord.
edu/~dabo/crypt obook /

 6. Bösch, C., Brinkman, R., Hartel, P.H., Jonker, W.: Conjunctive wildcard search over encrypted
data. Secur. Data Manag. 6933, 114–127 (2011)

 7. Cao, J., Rao, F.Y., Kuzu, M., Bertino, E., Kantarcioglu, M.: Efficient tree pattern queries on
encrypted xml documents. In: Proceedings of the Joint EDBT/ICDT 2013 Workshops. ACM, pp.
111–120 (2013)

 8. Cao, N., Yang, Z., Wang, C., Ren, K., Lou, W.: Privacy-preserving query over encrypted graph-
structured data in cloud computing. In: 2011 31st International Conference on Distributed Com-
puting Systems (ICDCS). IEEE, pp. 393–402 (2011)

 9. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryption: improved
definitions and efficient constructions. J. Comput. Secur. 19(5), 895–934 (2011)

 10. Fan, Z., Choi, B., Chen, Q., Xu, J., Hu, H., Bhowmick, S.S.: Structure-preserving subgraph
query services. IEEE Trans. Knowl. Data Eng. 27(8), 2275–2290 (2015)

 11. Garey, M.R., Johnson, D.S.: “Strong” np-completeness results: motivation, examples, and impli-
cations. J. ACM 25(3), 499–508 (1978)

 12. Garey, M.R., Johnson, D.S.: A Guide to the Theory of np-Completeness, p. 70. WH Freemann,
New York (1979)

 13. Getoor, L., Taskar, B., Koller, D.: Selectivity estimation using probabilistic models. In: ACM
SIGMOD Record. ACM, vol. 30, pp. 461–472 (2001)

 14. Goh, E.J., et al.: Secure indexes. IACR Cryptol. ePrint Arch. 2003, 216 (2003)

https://crypto.stanford.edu/%7edabo/cryptobook/
https://crypto.stanford.edu/%7edabo/cryptobook/

 Distributed and Parallel Databases

1 3

 15. Hacigümüş, H., Iyer, B., Li, C., Mehrotra, S.: Executing sql over encrypted data in the database-
service-provider model. In: Proceedings of the 2002 ACM SIGMOD International Conference
on Management of Data. ACM, pp. 216–227 (2002)

 16. Hacıgümüş, H., Iyer, B., Mehrotra, S.: Query optimization in encrypted database systems. In:
International Conference on Database Systems for Advanced Applications pp. 43–55. Springer,
New York (2005)

 17. He, X., Vaidya, J., Shafiq, B., Adam, N., Lin, X.: Reachability analysis in privacy-preserving
perturbed graphs. In: 2010 IEEE/WIC/ACM International Conference on Web Intelligence and
Intelligent Agent Technology (WI-IAT). IEEE, vol. 1, pp. 691–694 (2010)

 18. Hore, B., Mehrotra, S., Tsudik, G.: A privacy-preserving index for range queries. In: Proceed-
ings of the Thirtieth International Conference on Very Large Data Bases, VLDB Endowment,
vol. 30, pp. 720–731 (2004)

 19. Johnson, D.S.: Near-optimal bin packing algorithms. PhD thesis, Massachusetts Institute of
Technology (1973)

 20. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryption. In: Pro-
ceedings of the 2012 ACM Conference on Computer and Communications Security. ACM, pp.
965–976 (2012)

 21. Katz, J., Lindell, Y.: Introduction to modern cryptography (2007)
 22. Kellaris, G., Kollios, G., Nissim, K., O’Neill, A.: Generic attacks on secure outsourced data-

bases. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communica-
tions Security. ACM, pp. 1329–1340 (2016)

 23. Kunegis, J.: Konect: the koblenz network collection. In: Proceedings of the 22nd International
Conference on World Wide Web. ACM, pp. 1343–1350 (2013)

 24. LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Mondrian multidimensional k-anonymity. In: 22nd
International Conference on Data Engineering (ICDE’06). IEEE, pp. 25–25 (2006)

 25. Leskovec, J., Krevl, A.: Snap datasets: stanford large network dataset collection. http://snaps
tanfo rdedu /data/cit-HepTh html (2014)

 26. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in large networks:
natural cluster sizes and the absence of large well-defined clusters. Internet Math. 6(1), 29–123
(2009)

 27. Li, J., Wang, Q., Wang, C., Cao, N., Ren, K., Lou, W.: Fuzzy keyword search over encrypted
data in cloud computing. In: 2010 Proceedings IEEE INFOCOM. IEEE, pp. 1–5 (2010)

 28. Maserrat, H., Pei, J.: Neighbor query friendly compression of social networks. In: Proceedings
of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
ACM, pp. 533–542 (2010)

 29. Matias, Y., Vitter, J.S., Wang, M.: Wavelet-based histograms for selectivity estimation. In: ACM
SIGMoD Record. ACM, vol. 27, pp. 448–459 (1998)

 30. Meng, X., Kamara, S., Nissim, K., Kollios, G.: Grecs: graph encryption for approximate shortest
distance queries. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Com-
munications Security. ACM, pp. 504–517 (2015)

 31. Muthukrishnan, S., Poosala, V., Suel, T.: On rectangular partitionings in two dimensions: algo-
rithms, complexity and applications. In: International Conference on Database Theory, pp. 236–
256. Springer, New York (1999)

 32. Naveed, M., Kamara, S., Wright, C.V.: Inference attacks on property-preserving encrypted data-
bases. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security. ACM, pp. 644–655 (2015)

 33. Orhanou, G., El Hajji, S., Bentaleb, Y.: Eps aes-based confidentiality and integrity algorithms: com-
plexity study. In: 2011 International Conference on Multimedia Computing and Systems (ICMCS).
IEEE, pp. 1–4 (2011)

 34. Prakash, A.J., Uthariaraj, V.R.: Multicrypt: A provably secure encryption scheme for multicast com-
munication. In: First International Conference on Networks and Communications, (NETCOM’09).
IEEE, pp. 246–253 (2009)

 35. Reddy, N., Haritsa, J.R.: Analyzing plan diagrams of database query optimizers. In: Proceedings of
the 31st International Conference on Very Large Data Bases, VLDB Endowment, pp. 1228–1239
(2005)

 36. Schult, D.A., Swart, P.: Exploring network structure, dynamics, and function using networkx. In:
Proceedings of the 7th Python in Science Conferences (SciPy 2008), vol. 2008, pp. 11–16 (2008)

http://snapstanfordedu/data/cit-HepThhtml
http://snapstanfordedu/data/cit-HepThhtml

1 3

Distributed and Parallel Databases

 37. Syalim, A., Nishide, T., Sakurai, K.: Preserving integrity and confidentiality of a directed acyclic
graph model of provenance. In: Data and Applications Security and Privacy, vol. XXIV, pp. 311–
318 (2010)

 38. Van Liesdonk, P., Sedghi, S., Doumen, J., Hartel, P., Jonker, W.: Computationally efficient search-
able symmetric encryption. In: Workshop on Secure Data Management, pp. 87–100. Springer, New
York (2010)

 39. Wang, H., Lakshmanan, L.V.: Efficient secure query evaluation over encrypted xml databases. In:
Proceedings of the 32nd International Conference on Very Large Data Bases, VLDB Endowment,
pp. 127–138 (2006)

 40. Wang, J., Du, X.: A secure multi-dimensional partition based index in das. In: Asia-Pacific Web
Conference, pp. 319–330. Springer, New York (2008)

 41. Wang, Q., Ren, K., Du, M., Li, Q., Mohaisen, A.: Secgdb: Graph encryption for exact shortest dis-
tance queries with efficient updates. In: International Conference on Financial Cryptography and
Data Security, pp. 79–97. Springer, New York (2017)

 42. Yi, P., Fan, Z., Yin, S.: Privacy-preserving reachability query services for sparse graphs. In: 2014
IEEE 30th International Conference on Data Engineering Workshops (ICDEW). IEEE, pp. 32–35
(2014)

 43. Zhang, Y., Su, S., Wang, Y., Chen, W., Yang, F.: Privacy-assured substructure similarity query over
encrypted graph-structured data in cloud. Secur. Commun. Netw. 7(11), 1933–1944 (2014)

 44. Zhou, B., Pei, J.: Preserving privacy in social networks against neighborhood attacks. In: IEEE 24th
International Conference on Data Engineering, (ICDE 2008). IEEE, pp. 506–515 (2008)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	Secrecy and performance models for query processing on outsourced graph data
	Abstract
	1 Introduction
	2 Related work
	2.1 Secrecy notions
	2.2 Bucketization on relational databases
	2.3 One dimensional bucketization
	2.4 Multidimensional bucketization
	2.5 Secure storage for graph-structured data

	3 Preliminaries and notation
	4 The secrecy notion
	5 Our secrecy approach
	5.1 Overview and system architecture
	5.2 Bucketization: challenges
	5.3 The optimal bucketization problem
	5.4 The bucketization algorithm
	5.4.1 The initialization phase
	5.4.2 The merging phase

	5.5 Query transformation
	5.6 Our bucketization approach is Ind-Graph

	6 Performance model
	6.1 Scale-free networks
	6.2 The number-of-buckets model NBM
	6.3 Query-cost model

	7 Experiments
	7.1 Experiment setup
	7.1.1 Input datasets
	7.1.2 Queries
	7.1.3 Evaluation measures

	7.2 Results
	7.2.1 NBM evaluation
	7.2.2 Performance evaluation

	8 Conclusions
	Acknowledgements
	References

