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Figure 1: To measure respiration with an in-ear headphone IMU, we capture 3D acceleration and gyroscope data at 50 Hz (A).
We record the ground truth with a pressure transducer. Data is processed as illustrated in (B): we split the data into 20-second
windows and interpolate using cubic splines, resampling at 256 Hz. Our pipeline discards windows with too much movement.
We apply a Butterworth bandpass filter to remove noise and a triangle filter for further smoothening without loss of timing
information. Finally, we use FFT with zero padding in (C) and compute the maximum to calculate the respiratory rate.

ABSTRACT
State-of-the-art respiration tracking devices require specialized
equipment, making them impractical for every day at-home respi-
ration sensing. In this paper, we present the first system for sensing
respiratory rates using in-ear headphone inertial measurement
units (IMU). The approach is based on technology already avail-
able in commodity devices: the eSense headphones. Our processing
pipeline combines several existing approaches to clean noisy data
and calculate respiratory rates on 20-second windows. In a study
with twelve participants, we compare accelerometer and gyroscope
based sensing and employ pressure-based measurement with nasal
cannulas as ground truth. Our results indicate a mean absolute
error of 2.62 CPM (acc) and 2.55 CPM (gyro). This overall accuracy
is comparable to previous approaches using accelerometer-based
sensing, but we observe a higher relative error for the gyroscope. In
contrast to related work using other sensor positions, we can not re-
port significant differences between the two modalities or the three
postures standing, sitting, and lying on the back (supine). However,
in general, performance varies drastically between participants.
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1 INTRODUCTION
When tracking respiration rates in day-to-day scenarios, respira-
tory inductance plethysmography is the current state-of-the-art. A
belt straps around the user’s chest and abdominal wall to measure
the expansion while breathing in and out [21]. Such devices are
specialized and expensive equipment and not suitable for everyday
use. A different method, applied for instance in sleep labs and under
medical conditions, uses nasal cannulas made from plastic tubes
which redirect the airflow to pressure transducers [15]. These tubes
are uncomfortable to wear as they are placed inside the nostrils and
are unhygienic when used multiple times or with different users.
As an alternative, we investigate respiratory monitoring based on
a 6-axis inertial measurement unit (IMU) embedded into a standard
in-ear headphone form factor. This technology is potentially ac-
cessible to a broad set of users, as already today, earphones with
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integrated IMUs are commercially available (like e.g., the Apple
AirPods).

Embedding respiratory sensing into headphones opens up a set
of use cases where auditory feedback couples to breathing. For
example, Harris et al. suggest that auditory biofeedback can enable
the control of the respiration rate of users [5], which can help
with stress management or support guided meditations [17]. We
could also detect the interruption of breathing during sleep (apnea)
and alert the user after a defined time threshold. Such scenarios
naturally fit our sensor setup because the user maintains a steady
position which avoids movement artifacts, and the headphones
seamlessly integrate wit providing audio feedback.

In this paper, we propose the use of headphones equipped with a
6-axis IMU (accelerometer and gyroscope). We present the working
principle of our system and introduce a data processing pipeline.
We evaluated our system in a lab study with twelve participants and
compared between standing, sitting, and lying on the back (supine)
as well as accelerometer and gyroscope based tracking. Our results
indicate good outcomes for a subpopulation of participants.

2 BACKGROUND AND RELATEDWORK
Previous research proposes a broad set of alternatives to the for-
merly mentioned state-of-the-art for respiration rate tracking.

Systems based on UWB, WiFi, or vision [1, 12, 19] have signifi-
cant advantages because they are not attached to the user. However,
they require specialized setups which can be complicated or might
have problems with other people present in the room. Further tech-
niques which do not require nasal cannulas to measure respiration
from human breath include gas sensors that measure, e.g., volatile
organic compounds [16] or humidity [13]. They still require to be
placed in the air stream or have to be attached close to the area
around mouth and nose.

Acceleration and gyroscope data have significant advantages in
terms of cost and unobtrusiveness because many modern devices
already come equipped with these inexpensive sensors (< 5$, single
quantity). The idea to use the IMU’s data is not new, and others
have shown that the underlying principle does work. It has been
implemented using chest belts [2] or smartwatches [3, 18]. Another
approach which is particularly relevant because it is head-worn
uses Google Glass smart glasses [7]. However, this is impractical for
scenarios where glasses can not be comfortably worn, e.g., when
lying on the side. Additionally, it remained questionable to us if a
sensor plugged into the ear canal is capable of achieving similar
results. Nevertheless, we can use their results to add context to our
system’s performance and draw additional conclusions. Existing
work has also explored the option to support meditation sessions
with breathing monitored in real-time using a so-called breathing
model derived from a smartwatch’s IMU [4].

Tracking respiration rates with a headset has been explored
in [14] but their method requires placing the microphone of the
headset under users nose. In [11] a microphone is positioned in the
ear-canal using in-ear to record and interpret breathing sounds. It
was tested with 25 subjects and yielded 2.7 breathing cycles per
minute (CPM) absolute mean error for quiet environments, and
they report problems with increasing background noises. In [6],
an accelerometer-equipped device wraps around the user’s ear to

measure respiration. They only evaluate the device with a single
participant and do not consider gyroscope data as well as an in-ear
form factor.

3 WORKING PRINCIPLE
3.1 System Design

Figure 2: The Nokia Bell Labs eSense headphones [9]
(left) connect via Bluetooth and transfer gyroscope and ac-
celerometer data to the smartphone app (right).

We leverage the eSense platform [9], which has been kindly
provided to us by Nokia Bell Labs. It comes equipped with a six-axis
IMU in its left earbud and connects via Bluetooth Low Energy (BLE).
We record the x, y and z angular velocity in deд/s using the built-in
gyroscope and the x, y and z acceleration inm/s2 as illustrated in
Figure 2. We sample at the maximum frequency of 50 Hz and do
not use the integrated low pass filter settings. We do not record
other information provided by the platform (e.g., microphone).

We have implemented a mobile application in Swift for iOS,
which connects to the eSense earbuds. The data is stored locally
on the phone, and timestamps are taken on a rolling basis as the
Bluetooth packages arrive. To transfer the data to a computer, we
export it to a CSV file and send it using any of the options provided
natively by the operating systems’ sharing options (in our case,
AirDrop). Finally, we feed the files into our processing pipeline.

3.2 Data Processing Pipeline
To compute the respiration rate, we use the same steps independent
from gyroscope or accelerometer. We expand upon the approach
proposed in [7]. We apply steps (1), (2), (4), and (5) to each axis.
Additionally, steps (3) and (5) remove motion sensitivity.

(1) To remove signal shifts and trends, amoving averagewindow
of 3 samples is subtracted from each dimension. Additionally,
we apply an averaging filter with a window size of 2 seconds
to each of the components, corresponding to one respiration
cycle at the maximum breathing rate (30 breaths per minute).

(2) To inflate our data, we apply a cubic spline interpolation and
resample the resulting signal at 256 Hz. As there are small
variations in timestamps due to Bluetooth latency, this also
helps to create equidistant samples.

(3) Similar to [18] we discard windows if movement is too high.
If 3% or more of all accelerometer data points are above
our threshold of 10m/s2 the entire sequence is sorted out.
Additionally, we apply hard thresholding for samples ±2SD.

(4) We apply a bandpass Butterworth filter of order four and
cut-off frequencies of 0.1 Hz and 0.5 Hz, which removes noise
and is equivalent to 6 to 30 breath cycles per minute (CPM).



Figure 3: The graph in the top left corner shows the raw acceleration signal of the X-, Y- and Z-axis, the graph in the top
right the gyroscope data of the X-, Y- and Z-axis. The graph shown at the center-left displays the filtered acceleration signal
compared to the ground truth and the center-right the filtered gyroscope signal compared to the ground truth. The three
graphs in the bottom show the spectrum of the processed accelerometer signal (left), the ground truth pressure signal (center)
and the gyroscope (right).

(5) To further smoothen the signals while retaining the peak
positions, we apply a triangle filter with a width of 2 seconds
as described in [4].

(6) To make the results independent from changes on different
axes for different postures, we perform a principal compo-
nent analysis (PCA).

(7) We perform a spectral analysis of each principal component
using a Fast Fourier Transformation (FFT) with zero-padding
and compute the maximum peak and its magnitude for each
component. We then report the frequency corresponding to
the peakwith the highest magnitude as respiration frequency
that we can convert to CPM.

Figure 3 displays the raw signals captured from the accelerometer
(left) and gyroscope (right) of one of our study participants sitting.
The two graphs indicate how noisy the initial data signals are
along all axes. As the user breathes, the accelerometer signal visibly
oscillates around zero on the Y-axis and the gyroscope on the Z-
axis. The second row compares a normalized ground truth signal
captured using nasal cannulas hooked to a pressure transducer
(PRS) with our filtered signal. The bottom row displays the three
different spectra computed from the respective sensor signals. A
red star indicates the maximum in each spectrum, which illustrates
a minimal error between the three different modalities.

4 EVALUATION
4.1 Study Design
To evaluate our system, we recruited twelve participants (two fe-
male, ten male) between the ages of 21 and 39 (mean age 26) for
a lab study. The mean height was 179 cm and weight 81 kg. We
did not pay participants. Our experiment was conducted in a room
with a couch to lie on and a stable chair with armrests for sitting
down. We placed both eSense earbuds [9] into the participant’s ears
(left earbud equipped with the IMU) and hooked them up to nasal
cannulas as ground truth. No audio was played during the study.

Figure 4: Participant wearing nasal cannulas (red, left circle)
and the eSense headphones (blue, right circle).



Figure 5: Shows Bland-Altman plots for the accelerometer (left) and gyroscope (right) with an aggregated graph for the overall
performance and for the postures standing, sitting and lying on the back. Per-user results indicated in different colors.

Table 1: Respiration rate system performance in cycles-per-
minute (CPM).

Sensor MAE SD RMSE

Accelerometer 2.62 2.74 3.79
Gyroscope 2.55 2.63 3.67

Table 2: Comparison between modalities and postures
(MAE / SD) in cycles-per-minute (CPM).

Sensor Standing Sitting Supine

Accelerometer 3.15 / 2.74 3.10 / 2.80 2.56 / 2.19
Gyroscope 2.45 / 2.22 2.74 / 2.64 2.68 / 2.00

During the first phase of our evaluation, each participant was
asked to breathe normally for one minute each in three different
postures (standing, sitting, and lying) while otherwise keeping as
still as possible. This step was followed by a second phase, in which
we then asked them to perform a short 30-second jumping jacks
session before each of the three postures, which we anticipated to
result in a more dynamic dataset. After performing the activity, we
again recorded respiration data for one minute for every posture.

We used the Williams design generalized Latin squares [20] to
balance for first-order carryover effects introduced by a poten-
tially unnatural breathing behavior when asked to breathe on the

spot. For the three different postures, this resulted in six different
sequences, which we assigned to participants in a round-robin fash-
ion according to their arrival time. The sequence for the first and
second phase of the evaluation was identical within each session.
After completing these tasks, participants were asked to fill in a
short questionnaire, which included demographic questions (sex,
age, weight, height) as well as a question inquiring whether partici-
pants felt that they had breathed naturally and space for free-text
feedback.

The respiration ground truth was collected using a custom made
monitoring device: We wired a RedBear BLE Nano v2 to a pressure



Figure 6: The two diagrams in the first row above indicate how reducing the movement threshold increases the accuracy. The
diagrams in the second row compare the data of two participants, whereas P1 achieves a much lower mean error than P8 even
at a higher movement threshold of 5%. Per-User results indicated in different colors.

transducer that connects to nasal cannulas (see Figure 4). The device
samples pressure data at a frequency of 50 Hz. We filter the signal
with the same data processing pipeline as described in 3.2, except
we do not apply a PCA. It also connects to our mobile application,
which we installed on an Apple iPhone X for our study. Similarly to
the acceleration and gyroscope data, we use the arrival time of the
Bluetooth packages on the phone as timestamps, which makes it
easy to synchronize the data afterward. We also attached the device
on the user as displayed in Figure 4.

4.2 Results
In total, we collected 72 minutes of breathing data. We shift a sliding
window at an interval of 5 seconds over every one-minute data
frame. This process yields 669 twenty-second breathing sequences.
After removing the ones with too many movement artifacts, 253
remain. Ground truth respiration rates range from 7.6 to 22 in cycles-
per-minute (CPM) for those sequences. To evaluate the agreement
between our approach and the ground truth measurement, we uti-
lize Bland-Altman plots shown in Figure 5. In most settings, the
observed differences are centered around zero and show no signifi-
cant bias, also observable from the displayed mean error. The plots
also show the limits of agreement (interval between +1.96SD and
-1.96SD) that contain 95% of the measured differences. Additionally,
we have computed several metrics for ease of comparison, namely
the mean absolute error, its standard deviation, and the root mean
squared error shown in Table 1. We further broke it down by body
posture in Table 2. Overall, the performance of gyroscope is similar
to the accelerometer but varies between postures. We achieve the
best results for the accelerometer in the supine position, followed by
similar results for sitting and standing. For gyroscope, we achieve
comparable results for all three postures.

5 DISCUSSION
Generally, we can observe that our method is highly sensitive to
motion artifacts. The first row in Figure 6 shows that we achieve
better results after setting the motion threshold to 1% and limiting
the dataset to non-aroused participants. Introducing this limitation
reduces the MAE to 2.09 CPM for the accelerometer and to 1.90
CPM for the gyroscope. Additionally, we see significant differences
between subjects. For example, the second row in Figure 6 shows
that even after raising the motion threshold to 5% participant P1
has much better results than P8 (MAE 1.21 ACC / 1.45 GYR vs.
MAE 8.97 ACC / 4.58 GYR). We do not know what causes these
differences; however, bad fitting of the earplugs or differences in
pose and anatomy could be a reason.

5.1 Comparison with Related Work
In Table 3, we compare our results to related work. Hernandez et al.
[7] have evaluated smart glasses and also smartwatches [8] for
the same three postures as we did. Compared to [7] we do not ob-
serve significant differences between gyroscope and accelerometer.
Overall, the head seems to be a less suitable position for tracking res-
piration rates than e.g., the wrist. We yield higher error rates than
[7, 18], especially for the gyroscope. The root causes for differences
between the two head-worn devices are unclear.

Table 3: Performance (MAE / SD) in cycles-per-minute (CPM)
of our system compared to related work.

Sensor In-Ear Glasses [7] Watch [8]

Accelerometer 2.62 / 2.74 2.29 / 3.43 0.92 / 2.20
Gyroscope 2.55 / 2.63 1.39 / 2.27 0.38 / 1.19



Comparing the different poses, we have similar results to [7]
for the accelerometer in the standing posture; however, perform
worse for sitting and lying down. Additionally, the gyroscope’s
performance for standing is comparable, but we report higher errors
for the sitting and supine position.

According to [10], the thoracic spine moves back and forth,
whereas the spine moves up and down while breathing. The result-
ing motion of the head could be different when measuring above
the eye compared to the ear in different poses and on varying head
positions. We further theorize that the differences could be caused
by a dampening effect of the ear plugs’ flexible caps which might
absorb motion.

5.2 Limitations
For our evaluation, we measured nasal respiration using a pressure
transducer. After performing the physiologically straining task of
jumping jacks, several participants reported the urge to breathe
through the mouth afterward. We did not limit them to nose breath-
ing before the study, but several participants reported that they
"felt forced to not breathe through the mouth" (P2). An FDA-cleared
chest belt based on respiratory inductance plethysmography is a
more suitable methodology, which could support a more natural
breathing behavior and therefore positively affect results. To iden-
tify relationships between the fit of the earplugs and respiration
rate estimation accuracy, we suggest measuring ear sizes and film
participants in future studies. Additionally, our experimental envi-
ronment left things to explore visually (e.g., posters), which could
result in additional motion artifacts.

6 CONCLUSION AND FUTUREWORK
In this paper, we explored the feasibility to use in-ear headphones
for tracking respiratory rates and compared our results to related
work.We have evaluated a data processing pipeline which combines
multiple factors from previous work to fit an in-ear headphone use
case. We compared accelerometer and gyroscope data and present
results for the three different postures standing, sitting and lying on
the back (supine). Our approach was validated by comparing mea-
surements with ground truth data from nasal cannulas connected
to a pressure transducer. In general, our results suggest that the ear
is a less suitable position for measuring respiratory rates than, e.g.,
on the wrist. Overall, our solution has a high sensitivity to small
motion artifacts. Nevertheless, we achieve stable performances for a
subpopulation of participants. The underlying root causes for those
differences remain unclear at this point and will be investigated in
future research.

To explore the inaccuracies between subjects, we suggest to
investigate the potentially loose attachment of in-ear headphones
further and examine possible dampening effects created by the
headphone’s cushion. We suggest using different sizes of ear canal
caps depending on the user’s ear size.We also propose a comparison
study between the ear and above eye positions for respiratory
rate tracking, which could reveal further insights that cause the
performance differences discovered in this paper. Finally, a more
advanced approach fusing accelerometer and gyroscope data and
even microphone signals are likely to yield better results.
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