
Massively Parallel Stencil Strategies for
Radiation Transport Moment Model Simulations

Marco Berghoff1[0000−0003−4343−2228], Martin Frank1[0000−0001−8562−6982], and
Benjamin Seibold2[0000−0003−2879−6402]

1 Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Karlsruhe,
Germany {marco.berghoff, martin.frank}@kit.edu

2 Department of Mathematics, Temple University, Philadelphia PA 19122, USA
seibold@temple.edu

Abstract. The radiation transport equation is a mesoscopic equation
in high dimensional phase space. Moment methods approximate it via
a system of partial differential equations in traditional space-time. One
challenge is the high computational intensity due to large vector sizes
(1 600 components for P39) in each spatial grid point. In this work, we
extend the calculable domain size in 3D simulations considerably, by
implementing the StaRMAP methodology within the massively parallel
HPC framework NAStJA, which is designed to use current supercom-
puters efficiently. We apply several optimization techniques, including
a new memory layout and explicit SIMD vectorization. We showcase a
simulation with 200 billion degrees of freedom, and argue how the im-
plementations can be extended and used in many scientific domains.

Keywords: radiation transport · moment methods · stencil code · mas-
sively parallel

1 Introduction

The accurate computation of radiation transport is a key ingredient in many ap-
plication problems, including astrophysics [28,44,35], nuclear engineering [32,9,8],
climate science [24], nuclear medicine [20], and engineering [29]. A key challenge
for solving the (energy-independent) radiation transport equation (RTE) (1) is
that it is a mesoscopic equation in a phase space of dimension higher than the
physical space coordinates. Moment methods provide a way to approximate the
RTE via a system of macroscopic partial differential equations (PDEs) defined
in traditional space-time. Here we consider the PN method [7], which is based
on an expansion of the solution of (1) in Spherical Harmonics. It can be inter-
preted as a moment method or, equivalently, as a spectral semi-discretization
in the angular variable. Advantages of the PN method over angular discretiza-
tions by collocation (discrete ordinates, SN) [30] is that it preserves rotational
invariance. A drawback, particular in comparison to nonlinear moment meth-
ods [18,23,40,1,31,42], are spurious oscillations (“wave effects”) due to Gibbs
phenomena. To keep these at bay, it is crucial that the PN method be imple-
mented in a flexible fashion that preserves efficiency and scalability and allows

ar
X

iv
:2

00
4.

02
83

3v
1

 [
ph

ys
ic

s.
co

m
p-

ph
]

 6
 A

pr
 2

02
0

2 M. Berghoff et al.

large values of N .
Studies and applications of the PN methods include [7,26,25,34]. An im-

portant tool for benchmarking and research on linear moment methods is the
StaRMAP project [38], developed by two authors of this contribution. Based on
a staggered grid stencil approach (see §2.1), the StaRMAP approach is imple-
mented as an efficiently vectorized open-source MATLAB code [36]. The soft-
ware’s straightforward usability and flexibility have made it a popular research
tool, used in particular in numerous dissertations, and it has been extended
to other moment models (filtered [16] and simplified [33]), and applied in ra-
diotherapy simulations [12,19]. For 2D problems, the vectorized MATLAB im-
plementation allows for serial or shared memory (MATLAB’s automatic usage
of multiple cores) parallel execution speeds that are on par with comparable
implementations of the methodology in C++. The purpose of this paper is to
demonstrate that the same StaRMAP methodology also extends to large-scale,
massively parallel computations and yields excellent scalability properties.

While SN solvers for radiation transport are important production codes
and major drivers for method development on supercomputers (one example
is DENOVO [10], which is one of the most time-consuming codes that run in
production mode on the Oak Ridge Leadership Computing Facility [27]), we are
aware of only one work [14] that considers massively parallel implementations
for moment models.

The enabler to transfer StaRMAP to current high-performance computing
(HPC) systems is the open-source NAStJA framework [5,2], co-developed by one
author of this contribution. NAStJA is a massively parallel framework for stencil-
based algorithms on block-structured grids. The framework has been shown to
efficiently scale up to more than ten thousand threads [2] and run simulations in
several areas, using the phase-field method for water droplets [4], the phase-field
crystal model for crystal–melt interfaces [15] and cellular Potts models for tissue
growth and cancer simulations [6] with millions of grid points.

2 Model

The radiation transport equation (RTE) [8]

∂tψ(t, x,Ω) +Ω · ∇xψ(t, x,Ω) +Σt(t, x)ψ(t, x,Ω)

=

∫
S2

Σs(t, x,Ω ·Ω′)ψ(t, x,Ω′) dΩ′ + q(t, x,Ω),
(1)

equipped with initial data ψ(0, x,Ω) and suitable boundary conditions, describes
the evolution of the density ψ of particles undergoing scattering and absorption
in a medium (units are chosen so that the speed of light c = 1). The phase
space consists of time t > 0, position x ∈ R3, and flight direction Ω ∈ S2. The
medium is characterized by the cross-section Σt (see below) and scattering kernel
Σs. Equation (1) stands representative for more general radiation problems,
including electron and ion radiation [11] and energy-dependence [21].

Moment methods approximate (1) by a system of macroscopic equations. In

Massively Parallel Stencil Strategies for Radiation Transport 3

1D slab geometry, expand the Ω-dependence of ψ in a Fourier series, ψ(t, x, µ) =∑∞
`=0 ψ`(t, x) 2`+1

2 P`(µ), where µ is the cosine of the angle between Ω and x-axis,
and P` are the Legendre polynomials. Testing (1) with P` and integrating yields

equations for the Fourier coefficients ψ` =
∫ 1

−1 ψP` dµ as

∂tψ` + ∂x

∫ 1

−1
µP`ψ dµ+Σt`ψ` = q` for ` = 0, 1, . . . , (2)

where Σt` = Σt−Σs` = Σa+Σs0−Σs` and Σs` = 2π
∫ 1

−1 P`(µ)Σs(µ) dµ. Using
the three-term recursion for Legendre polynomials, relation (2) becomes

∂tψ` + ∂x

(
`+1
2`+1ψ`+1 + `

2`+1ψ`−1

)
+Σt`ψ` = q`.

These equations can be assembled into an infinite system ∂tu+M ·∂xu+C ·u = q,
where u = (ψ0, ψ1, . . .)

T is the vector of moments, M is a tri-diagonal matrix
with zero diagonal, and C = diag(Σt0, Σt1, . . .) is diagonal. The slab-geometry
PN equations are now obtained by omitting the dependence of ψN on ψN+1

(alternative interpretations in [22,37,13]).
In 2D and 3D, there are multiple equivalent ways to define the PN equa-

tions (cf. [7,38]). StaRMAP is based on the symmetric construction using the
moments ψm` (t, x) =

∫
S2 Y m` (Ω)ψ(t, x,Ω) dΩ, with the complex spherical har-

monics Y m` (µ, ϕ) = (−1)m
√

2`+1
4π

(`−m)!
(`+m)! e

imϕPm` (µ), where ` ≥ 0 is the moment

order, and −` ≤ m ≤ ` the tensor components. Appropriate substitutions [38]
lead to real-valued PN equations. In 3D the moment system becomes

∂tu +Mx · ∂xu +My · ∂yu +Mz · ∂zu + C · u = q , (3)

where the symmetric system matrices Mx, My, Mz are sparse and possess a very
special pattern of nonzero entries (see [38,36]). That coupling structure between
unknowns (same in 2D and 1D) enables elegant and effective staggered grid
discretizations upon which StaRMAP is based.

2.1 Numerical Methodology

We consider the moment system (3) in a rectangular computational domain
(0, Lx) × (0, Ly) × (0, Lz) with periodic boundary conditions (see below). The
domain is divided into nx × ny × nz rectangular equi-sized cells of size ∆x ×
∆y ×∆z. The center points of these cells lie on the base grid

G111 =
{((

i− 1
2

)
∆x,

(
j− 1

2

)
∆y,

(
k− 1

2

)
∆z
)
| (1, 1, 1) ≤ (i, j, k) ≤ (nx, ny, nz)

}
.

The first component of u (the zeroth moment, which is the physically meaningful
radiative intensity) is always placed on G111. The other components of u are then
placed on the 7 other staggered grids G211 = {(i∆x, (j−1/2)∆y, (k−1/2)∆z)},
G121 = {((i−1/2)∆x, j∆y, (k−1/2)∆z)}, . . . , G222 = {(i∆x, j∆y, k∆z)}, fol-
lowing the fundamental principle that an x-derivative of a component in (3)

4 M. Berghoff et al.

that lives on a (1, •, •) grid updates a component that lives on the correspond-
ing (2, •, •) grid. Likewise, x-derivatives of components on (2, •, •) grids update
information on the (1, •, •) grids; and analogously for y- and z-derivative. A key
result, proved in [38], is that this placement is, in fact, always possible.

Due to this construction, all spatial derivatives can be approximated via
simple second-order half-grid centered finite difference stencils: two x-adjacent
values, for instance living on the (1, 1, 1) grid, generate the approximation

∂xu(i∆x, (j− 1
2)∆y, (k− 1

2)∆z) =
u(i+1

2 ,j−
1
2 ,k−

1
2)
− u(i−1

2 ,j−
1
2 ,k−

1
2)

∆x
+O(∆x2)

on the (2, 1, 1) grid. We now call the G111, G221, G122, and G212 grids “even”,
and the G211, G121, G112, and G222 grids “odd”.

The time-stepping of (3) is conducted via bootstrapping between the even
and the odd grid variables. This is efficiently possible because of the approximate
spatial derivatives of the even/odd grids update only the components that live on
the odd/even grids. Those derivative components on the dual grids are considered
“frozen” during a time-update of the other variables, leading to the decoupled
update ODEs{

∂tu
e + Ce · ue = qe − (M eo

x ·Dx +M eo
y ·Dy +M eo

z ·Dz)u
o

∂tu
o + Co · uo = qo − (Moe

x ·Dx +Moe
y ·Dy +Moe

z ·Dz)u
e

(4)

for the vector of even moments ue and the vector of odd moments uo. In (4), the
right-hand sides are constant in time (due to the freezing of the dual variables, as
well as the source q). Moreover, because Ce and Co are diagonal, the equations
in (4) decouple further into scalar ODEs of the form

∂tuk(x, t) + c̄k(x)uk(x, t) = r̄k(x),

whose exact solution is

uk(x, t+∆t) = uk(x, t) +∆t (r̄k(x)− c̄k(x)uk(x, t))E(−c̄k(x)∆t). (5)

Here x = (x, y, z) is the spatial coordinate, and E(c) = (exp(c)− 1)/c (see [38]
for a robust implementation of this function). To achieve second order in time,
one full time-step (from t to t+∆t) is now conducted via a Strang splitting

u(x, t+∆t) = So
1
2∆t
◦ Se

∆t ◦ So
1
2∆t

u(x, t), (6)

where So
1
2∆t

is the half-step update operator for the odd variables, and S∆t
e the

full-step update operator for the even variables, both defined via (5).

The convergence of this method, given that ∆t < min{∆x,∆y,∆z}/3, has
been proven in [38]. Stability is generally given even for larger time-steps if
scattering is present.

Massively Parallel Stencil Strategies for Radiation Transport 5

3 Implementation

In the following section, we present our implementation of the StaRMAP model
and applied optimizations that are required to run on current HPC systems
efficiently. StaRMAP v1.0 [3] is published under the Mozilla Public License 2.0
and the source-code is available at https://gitlab.com/nastja/starmap.

3.1 The NAStJA Framework

The StaRMAP methodology described above was implemented using the open-
source NAStJA framework3. The framework was initially developed to explore
non-collective communication strategies for simulations with a large number of
MPI ranks, as will be used in exascale computing. It was developed in such a
way that many multi-physics applications based on stencil algorithms can be
efficiently implemented in a parallel way. The entire domain is build of blocks in
a block-structured grid. These blocks are distributed over the MPI ranks. Inside
each block, regular grids are allocated for the data fields. The blocks are extended
with halo layers that hold a copy of the data from the neighboring blocks. This
concept is flexible, so it can adaptively create blocks where the computing area
moves. The regular structure within the blocks allows high-efficiency compute
kernels, called sweeps. Every process holds information only about local and ad-
jacent blocks. The framework is entirely written in modern C++ and makes use
of template metaprogramming to achieve excellent performance without losing
flexibility and usability. Sweeps and other actions are registered and executed
by the processes in each time-step for their blocks so that functionality can be
easily extended. Besides, sweeps can be replaced by optimized sweeps, making
it easy to compare the optimized version with the initial one.

3.2 Optimizations

Starting with the 3D version of the MATLAB code of StaRMAP, the goal of
this work was to develop a highly optimized and highly parallel code for future
real-time simulations of radiation transports.

Basic implementation. The first step was to port the MATLAB code to C++
into the NAStJA framework. Here we decide to use spatial coordinates (x, y, z)
as the underlying memory layout. At each coordinate, the vector of moments u
is stored. The sub-grids G111 to G222 are only considered during the calculation
and are not saved separately. This means that the grid points on G111 and all
staggered grid points are stored at the non-staggered (x, y, z)-coordinates. Thus
it can be achieved that data that are needed for the update is close to each other
in the memory. As for Equation (4) described, all even components are used to
calculate the odd components and vice versa. This layout also allows the usage
of a relatively small stencil. The D3C7 stencil, which reads for three dimensions,
the central data point and the first six direct neighbors, is sufficient.

3 The MPL-2.0 source-code is available at https://gitlab.com/nastja/nastja.

https://gitlab.com/nastja/starmap
https://gitlab.com/nastja/nastja

6 M. Berghoff et al.

G111 (0, 0, 0)
G112 (0, 0, 12)
G121 (0, 12 , 0)
G122 (0, 12 , 12)
G211 (12 , 0, 0)
G212 (12 , 0, 12)
G221 (12 , 12 , 0)
G222 (12 , 12 , 12)

Initialization

Time loop

Sweep 1: So∆t/2u
Halo exchange u

Sweep 2: Se∆tu

Halo exchange u

Sweep 1: So∆t/2u
Halo exchange u

Write output data

Fig. 1. Left: Staggered grids for the first z-layer. The odd coordinates are blue triangles
and the even coordinates are marked by red shapes. The NAStJA-cells are blue squares.
The base (111) grid is denoted by the black lines. The grid points with dotted border are
the halo layer or the periodic boundary copy, the light grid points are not used. Center:
3D NAStJA-cell with the base grid point G111 (red circle) and the seven staggered grid
points. Right: Action and sweep setup in NAStJA.

For parallelization, we use NAStJA’s block distribution and halo exchange
mechanisms. The halo is one layer that holds a copy of the u vectors from the
neighboring blocks. Since a D3C7 stencil is used, it is sufficient to exchange the
six first neighboring sides. Fig. 1 left shows the grid points in NAStJA’s cells
and the halo layer. For the implemented periodic boundary condition, we use
this halo exchange to copy NAStJA-cells from one side to the opposite side, even
if only half of the moments are needed to calculate the central differences.

For the calculation of the four substeps in Equation (6), two different sweeps
are implemented, each sweep swipes over the spatial domain in z, y, x order. The
updates of each u component for each cell is calculated as followed. Beginning
with the first substep, sweep So calculates dxu, dyu, dzu of the even components
as central differences, laying on the odd components. Then, the update of the odd
components using this currently calculated dxu, dyu, dzu is calculated. After the
halo layer exchange, sweep Se calculates the second substep. Therefore, first, the
dxu, dyu, dzu of the odd components are calculated, followed by the update of
the even components. A second halo layer exchange proceeds before the sweep
So is called again to complete with the third substep. The time-step is finalized
by a third halo layer exchange and an optional output. Fig. 1 right shows the
whole sweep setup of one time-step in the NAStJA framework.

The time-independent parameter values as q, c̄k(x), and E(−c̄k(x)∆t/2) are
stored in an extra field on the non-staggered coordinates. Here, c̄k(x) for k ≥ 1
are identical. Their values on the staggered grid positions are interpolated.

Reorder components. For optimization purposes, the calculation sweeps can
easily exchange in NAStJA. Two new calculation sweeps are added for each of
the following optimization steps. The computational instructions for the finite
differences of the components on one sub-grid are the same, as well as the in-
terpolated parameter values. Components of the vector u are reordered, in that

Massively Parallel Stencil Strategies for Radiation Transport 7

way that components of individual sub-grids are stored sequentially in memory.
First, the even then, the odd sub-grid components follow, namely G111, G221,
G212, G122, G211, G121, G112, and G222.

Unroll multiplications. The calculation of w = Mx ·dxu+My ·dyu+Mz ·dzu
is optimized by manually unroll and skipping multiplication. The Matrices Mx

and My have in each row one to four non-zero entries while the Matrix Mz has
zero to two non-zero entries. Only these non-zero multiplication have to sum up
to w. The first if-conditions for the non-zero entries in Mx and My is always
true so that it can be skipped. A manual loop-unroll with ten multiplications
and eight if-conditions is used.

SIMD intrinsics. The automatic vectorization by the compilers results in
worse run times. So we decide to manually instruct the code with intrinsics using
the Advanced Vector Extensions 2 (AVX2), as supported by the test systems.
Therefore, we reinterpret the four-dimensional data field (z, y, x, u) as a fifth-
dimensional data field (z, y,X, u, x′), where x′ holds the four x values that fit
into the AVX vector register, and X is the x-dimension shrink by factor 4.
Currently, we only support multiples of 4 for the x-dimension. The changed
calculation sweeps allow calculating four neighbored values at once. The fact
that the studied number of moments are multiples of 4 ensures that all the
memory access are aligned. With this data layout, we keep the data very local
and can still benefit from the vectorization.

4 HPC System

To perform the scaling test, we use a single node (kasper) and the high-perfor-
mance computing systems ForHLR II, located at Karlsruhe Institute of Technol-
ogy (fh2). The single node has two quad-core Intel Xeon processors E5-2623 v3
with Haswell architecture running at a base frequency of 3 GHz (2.7 GHz AVX),
and have 4 × 256 KB of level 2 cache, and 10 MB of shared level 3 cache. The
node has 54 GB main memory.

The ForHLR II has 1152 20-way Intel Xeon compute nodes [39]. Each of these
nodes contains two deca-core Intel Xeon processors E5-2660 v3 with Haswell
architecture running at a base frequency of 2.6 GHz (2.2 GHz AVX), and have
10× 256 KB of level 2 cache, and 25 MB of shared level 3 cache. Each node has
64 GB main memory, and an FDR adapter to connect to the InfiniBand 4X EDR
interconnect. In total, 256 nodes can be used, which are connected by a quasi
fat-tree topology, with a bandwidth ratio of 10:11 between the switches and leaf
switches. The leaf switches connect 23 nodes. The implementation of Open MPI
in version 3.1 is used.

5 Results and Discussion

In this section, we present and discuss single core performance results as well
as scaling experiments run on a high-performance computing system. The pre-
sented performance results are measured in MLCUP/s, which stands for “million

8 M. Berghoff et al.

0 20 40 60 80 100 120 140

Basic implementation

Reorder components

Unroll multiplications

SIMD intrinsics

MLCUP/s for computation kernels

P3 , 64�
P7 , 40�
P39 , 16�

Fig. 2. Performance of the various optimization variants of the calculation sweeps
running on a single core. The block size (�) was chosen so that the number of the total
components is approximately equal for all number of moments M•. The marks denote
the average of three runs. The error bars indicate the minimum and maximum.

lattice cell component updates per second”. This unit takes into account that
the amount of data depends on the number of lattice cells and the number of
moments.

5.1 Performance Results

Single Core Performance The starting point of our HPC implementation
was a serial MATLAB code. A primary design goal of StaRMAP is to provide
a general-purpose code with several different functions. In this application, we
focus on specific cases, but let the number of moments be a parameter. A simple
re-implementation in the NAStJA framework yields the same speed as the MAT-
LAB code but has the potential to run in parallel and thus exceed the MATLAB
implementation.

Fig. 2 shows the performance of the optimization describes in §3.2. The
measurements based on the total calculation sweep time per time-step, i.e., two
sweep So + sweep Se. In all the following simulations, we use cubic blocks,
such that a block size of 40 refers to a cubic block with an edge length of 40
lattice cells without the halo. In legends, we write 40 �. The speedup from the
basic implementation to the reorder components version is small for P3 and P7

but significant for P39 (+54 %). The number of components on each subgrid is
small for the first both but large for P39, so the overhead of the loops over all
components becomes negligible. Unrolling brings an additional speedup of 38 %
for P3, 14 % for P7, and 9 % for P39. Vectorization has the smallest effect for P3

(+70 %). For P7 we gain +138 % and +160 % for P39

The combination of all optimizations results in a total speedup of factor 2.36,
2.77, 4.35 for P3, P7, P39, respectively. This optimization enables us to simulate
sufficiently large domains in a reasonable time to obtain physically meaningful
results. Note, these results run with a single thread, so the full L3 cache is used.
Since the relative speedup does not indicate the utilization of a high-performance
computing system, we have additionally analyzed the absolute performance of
our code. In the following, we will concentrate on the single-node performance

Massively Parallel Stencil Strategies for Radiation Transport 9

of our optimized code.

We show the performance analysis of the calculation sweeps on the single
node kasper. First, we use the roofline performance model to categorize our code
in the memory- or compute-bound region [43]. We use LIKWID[41] to measure
the maximum attainable bandwidth. On kasper we reach a bandwidth of approx-
imately 35 GiB/s, on one fh2 node we gain approximately 50 GiB/s. Since we are
using a D3C7 stencil to swipe across the entire domain, four of the seven values
to be loaded have already been loaded in the previous cell, so we can assume
that only three values need to be loaded. The remaining data values are already
in the cache, see §5.1 for details. The spatial data each holds the entire vector u.
For the interpolation of the time-independent parameter data, 130 Byte are not
located in the cache and have to be loaded for on lattice update. The sweeps have
to load 24 Byte per vector component. Remember that we need three sweeps to
process one time-step, so an average of 94.5 Byte for P3 are loaded per lattice
component update, 77.6 Byte, 72.2 Byte for P7, P39, respectively. If we only con-
sider the memory bottleneck, we would get a theoretical peak-performance on
fh2 of 50 GiB/s · 72.2 Bytes/LCUP = 3 785 MLCUP/s and 2 527 MLCUP/s on
kasper. That is far away from what we measured—an indication that we are op-
erating on the compute-bound side. Counting the floating-point operations for
one time-step, we get 392 + 40ve + 50voFLOP, where ve is the number of even
and vo the number of odd vector components.

So an average of 68.3 FLOP for P3 are used per lattice component update,
50.5 FLOP, 45.1 FLOP for P7, P39, respectively. This results in an arithmetic
intensity on the lower bound of 0.72 FLOP/Byte to 0.62 FLOP/Byte for P3,
P39, respectively. The Haswell CPU in kasper has an AVX base frequency of
2.7 GHz [17] and can perform 16 floating-point operations with double precision
per cycle. This results in 43.2 GFLOP/s per core. The achieved 139.1 MLCUP/s
per core corresponds to 6.3 GFLOP/s and so to 15 % peak-performance.

Cache Effects Even if the analysis in the previous section shows that our
application is compute-bound, it is worth taking a look at the cache behavior.
Running large blocks will result in an excellent parallel scaling because of the
computational time increase by O(n3) and the communication data only by
O(n2).

To discover the cache behavior, we run 20 single jobs in parallel on one
node on the fh2, this simulates the 2.5 MiB L3 cache per core. Fig. 3 show the
performance for different block sizes. For P7, a maximum block size of 13 fits
into the L2 cache, here the largest performance can be seen. At a block size
of 35, the performance drops, which can be explained by the fact that with a
maximum block size of 40, three layers fit into the L3 cache. For P3, a block size
of 20 still fits into the L2 cache, so here is the peak, up to a block size of 80
the performance remains almost constant after dropping firstly, this is the size
where the three layers fit into the L3 cache. The maximum for P39 is at a block
size of 5, here the three layers fit into the L3 cache. We have not tested a smaller
block size, because of the overhead of loops becomes too big. We will use the

10 M. Berghoff et al.

0 10 20 30 40 50 60 70 80

30

40

50

Block size

M
LC

U
P/
s

P3
P7
P39

Fig. 3. Performance of the calculation sweeps for different block sizes.

1 2 4 8 12 16 20

200

400

600

Cores

M
LC

U
P/
s

P7 , 10�
P7 , 20�
P7 , 35�

(a)

1 2 4 8 16 32 64 128 256
0

20

40

60

80

100

Nodes/20 cores

U
se
d
ca
lc
ul
at
io
n–

co
m
m
un

ic
at
io
n
tim

e/
% P3 , 20�

P7 , 20�
P39 , 20�

(b)

Fig. 4. (a) Single Node scaling on fh2. (b) Calculation time (dark) versus communica-
tion time (light).

marked block sizes for the scaling analysis in the following sections. The block
size of 20 was chosen so that all three moment orders can be compared here.

Scaling Results To examine the parallel scalability of our application, we
consider weak scaling for different block sizes. During one run, each process gets
a block of the same size. So we gain accurate scaling data that does not depend on
any cache effects described in §5.1. First, we look at one node of the fh2, and then
at the performance across multiple nodes, with each node running 20 processes
at the 20 cores. We use up to 256 nodes, which are 5 120 cores. Fig. 4(a) shows
P7-runs with different block sizes, where the MPI processes distributed equally
over the two sockets. All three block sizes show similar, well-scaling behavior.
Moreover, the whole node does not reach the bandwidth limit of 3 785 MLCUP/s,
which confirms that the application is on the compute-bound side.

Before conducting scaling experiments, we evaluate the various parts of the
application. Therefore, we show the amount of used calculation and communica-
tion time in Fig. 4(b). The calculation time for one time-step consists of the time
used by two sweeps So and one sweep Se. The communication time sums up the
time used for the three halo exchanges. A high communication effort of about

Massively Parallel Stencil Strategies for Radiation Transport 11

1 2 4 8 16 32 64 128 256

0

100

200

300

Nodes/20 cores

Ti
m
e
pe

rT
im

e-
st
ep

t a
vg
/ms

(a)

1 2 4 8 16 32 64 128 256

0

0.2

0.4

0.6

0.8

1

Nodes/20 cores

E�
ci
en

cy
η

P7 , 10� P39 , 5�
P3 , 20� P7 , 20� P39 , 20�
P3 , 80� P7 , 35�

(b)

Fig. 5. MPI scaling (a) average time per time-step and (b) efficiency on fh2 for up to
5 120 cores.

50 % is necessary. This proportion rarely changes for different vector lengths.
Fig. 5 shows the parallel scalability of the application for different vector

lengths and block sizes. The results of runs with one node are used as the basis
for the efficiency calculations. In (a) three regimes are identifiable, P3, 80� and
P39, 20� are more expensive and take a long time. P7, 35� is in the middle,
and the remainder takes only a short average time per time-step. As expected,
this is also reflected in the efficiency in (b). The expensive tasks scale slightly
better with approximately 80 % efficiency on 256 nodes, 5120 cores. The shorter
tasks still have approximately 60 % efficiency. From one to two nodes, there is a
drop in some jobs; the required inter-node MPI communication can explain this.
From 32 nodes, the efficiency of all sizes is almost constant. This is because a
maximum of 23 nodes is connected to one switch, i.e., the jobs must communicate
via an additional switch layer. For runs on two to 16 nodes, the job scheduler
can distribute the job to nodes connected to one switch but does not have to.

5.2 Simulation Results

With the parallelizability and scalability of the methodology and implementation
established, we now showcase its applicability in a representative test example.
We consider a cube geometry that resembles radiation transport (albeit with
simplified physics) in a nuclear reactor vessel, consisting of a reactor core with
fuel rods, each 1 cm (5 grid-points) thick, surrounded by water (inner box in
Fig. 6, and concrete (outer box). The non-dimensional material parameters are:
source q0 = 2, absorption Σw

a = 10, Σc
a = 5, scattering Σs = 1. The spatial

resolution of the rod geometry and surrounding has a grid size of 500�, which

12 M. Berghoff et al.

0 1 2 3 4 5 6 7 8 9 10

−20

−10

Length

lo
g(u)

P39
P29
P19
P7
P3

Fig. 6. Left: Rod geometry surrounded by water and concrete. The vertical slice shows
u and the plane log10(u). Right: Plot of the intensity log10(u) over the section.

we compute on up to 2000 cores via moment resolutions P3, P7, P19, P29, and
P39, depicted in Fig. 6 right. As one can see by comparing PN , N ≥ 19, the P19

simulation is well-resolved.

6 Conclusion

We have developed and evaluated a massively parallel simulation code for ra-
diation transport based on a moment model, which runs efficiently on current
HPC systems. With this code, we show that large domain sizes are now avail-
able. Therefore, an HPC implementation is of crucial importance. Starting from
the reference implementation of StaRMAP in MATLAB, we have developed a
new, highly optimized implementation that can efficiently run on modern HPC
systems. We have applied optimizations at various levels to the highly complex
stencil code, including explicit SIMD vectorization. Systematic performance en-
gineering at the node-level resulted in a speedup factor of 4.35 compared to the
original code and 15 % of peak performance at the node-level. Besides, we have
shown excellent scaling results for our code.

7 Acknowledgments

This work was performed on the supercomputer ForHLR funded by the Min-
istry of Science, Research and the Arts Baden-Württemberg and by the Federal
Ministry of Education and Research. B. Seibold wishes to acknowledge support
by the National Science Foundation through grant DMS–1719640.

References

1. Anile, A.M., Pennisi, S., Sammartino, M.: A thermodynamical approach to Ed-
dington factors. J. Math. Phys. 32, 544–550 (1991)

2. Berghoff, M., Kondov, I., Hötzer, J.: Massively parallel stencil code solver with
autonomous adaptive block distribution. IEEE Transactions on Parallel and Dis-
tributed Systems (2018)

Massively Parallel Stencil Strategies for Radiation Transport 13

3. Berghoff, M., Frank, M., Seibold, B.: StaRMAP A NAStJA Application (Apr
2020). https://doi.org/10.5281/zenodo.3741415

4. Berghoff, M., Kondov, I.: Non-collective scalable global network based on local
communications. In: 2018 IEEE/ACM 9th Workshop on Latest Advances in Scal-
able Algorithms for Large-Scale Systems (scalA). pp. 25–32. IEEE (2018)

5. Berghoff, M., Rosenbauer, J., Pfisterer, N.: The NAStJA Framework (Apr 2020).
https://doi.org/10.5281/zenodo.3740079

6. Berghoff, M., Rosenbauer, J., Schug, A.: Massively parallel large-scale multi-model
simulation of tumor development (2019)

7. Brunner, T.A., Holloway, J.P.: Two-dimensional time dependent Riemann solvers
for neutron transport. J. Comput. Phys. 210(1), 386–399 (2005)

8. Case, K.M., Zweifel, P.F.: Linear Transport Theory. Addison-Wesley (1967)
9. Davison, B.: Neutron Transport Theory. Oxford University Press (1958)

10. Evans, T.M., Stafford, A.S., Slaybaugh, R.N., Clarno, K.T.: Denovo: A new three-
dimensional parallel discrete ordinates code in scale. Nuclear Technology 171(2),
171–200 (2010). https://doi.org/10.13182/NT171-171

11. Frank, M., Herty, M., Schäfer, M.: Optimal treatment planning in radiotherapy
based on Boltzmann transport calculations. Math. Mod. Meth. Appl. Sci. 18, 573–
592 (2008)

12. Frank, M., Küpper, K., Seibold, B.: StaRMAP — A second order staggered grid
method for radiative transfer: Application in radiotherapy. In: Sundar, S. (ed.)
Advances In PDE Modeling and Computation. pp. 69–79. Ane Books Pvt. Ltd.
(2014)

13. Frank, M., Seibold, B.: Optimal prediction for radiative transfer: A new
perspective on moment closure. Kinet. Relat. Models 4(3), 717–733 (2011).
https://doi.org/10.3934/krm.2011.4.717

14. Garrett, C.K., Hauck, C., Hill, J.: Optimization and large scale computation of an
entropy-based moment closure. Journal of Computational Physics 302, 573 – 590
(2015). https://doi.org/10.1016/j.jcp.2015.09.008

15. Guerdane, M., Berghoff, M.: Crystal-melt interface mobility in bcc fe: Linking
molecular dynamics to phase-field and phase-field crystal modeling. Physical Re-
view B 97(14), 144105 (2018)

16. Hauck, C.D., McClarren, R.G.: Positive PN closures. SIAM J. Sci. Comput. 32(5),
2603–2626 (2010)

17. Intel Corporation: Intel Xeon Processor E5 v3 Product Family: Specification Up-
date. Technical Report 330785-011, Intel Corporation (2017)

18. Kershaw, D.S.: Flux limiting nature’s own way. Tech. Rep. UCRL-78378, Lawrence
Livermore National Laboratory (1976)

19. Küpper, K.: Models, Numerical Methods, and Uncertainty Quantification for Ra-
diation Therapy. Dissertation, Department of Mathematics, RWTH Aachen Uni-
versity (2016)

20. Larsen, E.W.: Tutorial: The nature of transport calculations used in radiation
oncology. Transp. theory Stat. Phys. 26, 739 (1997)

21. Larsen, E.W., Miften, M.M., Fraass, B.A., Bruinvis, I.A.D.: Electron dose calcu-
lations using the method of moments. Med. Phys. 24, 111–125 (1997)

22. Larsen, E.W., Morel, J.E., McGhee, J.M.: Asymptotic derivation of the multigroup
P1 and simplified PN equations with anisotropic scattering. Nucl. Sci. Eng. 123,
328–342 (1996)

23. Levermore, C.D.: Relating Eddington factors to flux limiters. J. Quant. Spectrosc.
Radiat. Transfer 31, 149–160 (1984)

https://doi.org/10.5281/zenodo.3741415
https://doi.org/10.5281/zenodo.3740079
https://doi.org/10.13182/NT171-171
https://doi.org/10.3934/krm.2011.4.717
https://doi.org/10.1016/j.jcp.2015.09.008

14 M. Berghoff et al.

24. Marshak, A., Davis, A.: 3D Radiative Transfer in Cloudy Atmospheres. Springer-
Verlag (2005)

25. McClarren, R.G., Evans, T.M., Lowrie, R.B., Densmore, J.D.: Semi-implicit time
integration for PN thermal radiative transfer. J. Comput. Phys. 227(16), 7561–
7586 (2008)

26. McClarren, R.G., Holloway, J.P., Brunner, T.A.: On solutions to the Pn equations
for thermal radiative transfer. J. Comput. Phys. 227(3), 2864–2885 (2008)

27. Messer, O.B., D’Azevedo, E., Hill, J., Joubert, W., Berrill, M., Zimmer, C.:
Miniapps derived from production hpc applications using multiple program-
ing models. Int. J. High Perform. Comput. Appl. 32(4), 582–593 (2018).
https://doi.org/10.1177/1094342016668241

28. Mihalas, D., Weibel-Mihalas, B.: Foundations of radiation hydrodynamics. Dover
(1999)

29. Modest, M.F.: Radiative Heat Transfer. Academic Press, 2nd edn. (1993)
30. Morel, J.E., Wareing, T.A., Lowrie, R.B., Parsons, D.K.: Analysis of ray-effect

mitigation techniques. Nucl. Sci. Eng. 144, 1–22 (2003)
31. Müller, I., Ruggeri, T.: Rational extended thermodynamics. Springer, New York,

second edn. (1993)
32. Murray, R.L.: Nuclear Reactor Physics. Prentice Hall (1957)
33. Olbrant, E., Larsen, E.W., Frank, M., Seibold, B.: Asymptotic derivation and

numerical investigation of time-dependent simplified PN equations. J. Comput.
Phys. 238, 315–336 (2013)

34. Olson, G.L.: Second-order time evolution of PN equations for radiation transport.
J. Comput. Phys. 228(8), 3072–3083 (2009)

35. Pomraning, G.C.: The equations of radiation hydrodynamics. Pergamon Press
(1973)

36. Seibold, B., Frank, M.: StaRMAP code. Website, http://www.math.temple.edu/
\simseibold/research/starmap

37. Seibold, B., Frank, M.: Optimal prediction for moment models: Crescendo diffu-
sion and reordered equations. Contin. Mech. Thermodyn. 21(6), 511–527 (2009).
https://doi.org/10.1007/s00161-009-0111-7

38. Seibold, B., Frank, M.: StaRMAP — A second order staggered grid method for
spherical harmonics moment equations of radiative transfer. ACM Trans. Math.
Software 41(1), 4:1–28 (2014)

39. Steinbuch Centre for Computing: Forschungshochleistungsrechner ForHLR II.
Website, https://www.scc.kit.edu/dienste/forhlr2.php

40. Su, B.: Variable Eddington factors and flux limiters in radiative transfer. Nucl. Sci.
Eng. 137, 281–297 (2001)

41. Treibig, J., Hager, G., Wellein, G.: Likwid: A lightweight performance-oriented
tool suite for x86 multicore environments. In: Proceedings of PSTI2010, the First
International Workshop on Parallel Software Tools and Tool Infrastructures. San
Diego CA (2010)

42. Turpault, R., Frank, M., Dubroca, B., Klar, A.: Multigroup half space moment
approximations to the radiative heat transfer equations. J. Comput. Phys. 198,
363–371 (2004)

43. Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual perfor-
mance model for multicore architectures. Communications of the ACM 52(4), 65–
76 (2009)

44. Zeldovich, Y., Raizer, Y.P.: Physics of Shock Waves and High Temperature Hy-
drodynamic Phenomena. Academic Press (1966)

https://doi.org/10.1177/1094342016668241
http://www.math.temple.edu/$\sim $seibold/research/starmap
http://www.math.temple.edu/$\sim $seibold/research/starmap
https://doi.org/10.1007/s00161-009-0111-7
https://www.scc.kit.edu/dienste/forhlr2.php

	Massively Parallel Stencil Strategies for Radiation Transport Moment Model Simulations

