
Belief State Planning for Autonomous
Driving: Planning with Interaction,
Uncertain Prediction and Uncertain

Perception

Zur Erlangung des akademischen Grades

Doktor der Ingenieurswissenschaften

von der KIT-Fakultät für Maschinenbau
des Karlsruher Instituts für Technologie (KIT)

angenommene

Dissertation

von

M. Sc. Constantin Hubmann
aus München

Tag der mündlichen Prüfung: 8. November 2019
Hauptreferent: Prof. Dr.-Ing. Christoph Stiller
Korreferent: Prof. Dr. Mykel Kochenderfer

Foreword

This thesis presents the results of my time as a PhD student, working in
cooperation between the BMW Group and the Karlsruhe Institute of Tech-
nology (KIT). I would like to express my gratitude to the people who joined
me on this path over the last years and contributed to my graduate career:

My sincere thanks go to Prof. Dr.-Ing. Stiller for the supervision of this
thesis. I am especially thankful for his guidance and motivational support
which made me follow my first ideas to the end. Further thanks go to all
the PhD students of Prof. Dr.-Ing. Stiller which made every visit to the lab,
summer seminars and conferences a fruitful experience.

A special thanks go to Prof. Dr. Kochenderfer of Stanford University for
acting as co-examiner of this thesis. I feel honored having an expert in the
field of decision making under uncertainty reviewing this thesis.

I also want to thank Prof. Dr.-Ing. Werner Huber at the BMW Group who
initiated this thesis and gave me the chance to work on my research ideas.
Furthermore, I want to greatly thank my supervisor at the BMW Group,
Dr.-Ing. Daniel Althoff, for the many challenging discussions about my
approaches, co-authoring of publications and general advice. I also want
to thank my manager, PD Dr.-Ing. Moritz Werling, for many discussions
and especially for creating a great, academic environment inside the BMW
Group that enabled this thesis.

Furthermore, I want to thank the students I supervised and greatly en-
joyed working with, Marvin Becker and Nils Quetschlich, for their dedica-
tion and effort.

I also want to greatly thank the other PhD students in my group, namely
Jens Schulz, Christian Pek, Sascha Steyer, Kai Stiens and Branka Mircevska.
This thesis would have not been possible without the coffee breaks, lunches
and after work beers which led to endless motivational, technical and fun
discussions. The time would have not been the same without you guys.

I also want to express my deep gratitude to my family, who always sup-
ported me during my education. Finally, my deepest thanks go to Annelie,
for supporting me in every intense time and for sharing this journey.

Munich, August 2019 Constantin Hubmann

i

Abstract

This thesis presents a behavior planning algorithm for automated driving in
urban environments with an uncertain and dynamic nature. The uncertainty
in the environment arises by the fact that the intentions as well as the future
trajectories of the surrounding drivers cannot be measured directly but can
only be estimated in a probabilistic fashion. Even the perception of objects
is uncertain due to sensor noise or possible occlusions. When driving in
such environments, the autonomous car must predict the behavior of the
other drivers and plan safe, comfortable and legal trajectories. Planning
such trajectories requires robust decision making when several high-level
options are available for the autonomous car.

Current planning algorithms for automated driving split the problem into
different subproblems, ranging from discrete, high-level decision making to
prediction and continuous trajectory planning. This separation of one prob-
lem into several subproblems, combined with rule-based decision making,
leads to sub-optimal behavior.

This thesis presents a global, closed-loop formulation for the motion
planning problem which intertwines action selection and corresponding
prediction of the other agents in one optimization problem. The global
formulation allows the planning algorithm to make the decision for certain
high-level options implicitly. Furthermore, the closed-loop manner of the
algorithm optimizes the solution for various, future scenarios concerning
the future behavior of the other agents. Formulating prediction and plan-
ning as an intertwined problem allows for modeling interaction, i.e. the
future reaction of the other drivers to the behavior of the autonomous car.

The problem is modeled as a partially observable Markov decision pro-
cess (POMDP) with a discrete action and a continuous state and observa-
tion space. The solution to the POMDP is a policy over belief states, which
contains different reactive plans for possible future scenarios. Surrounding
drivers are modeled with interactive, probabilistic agent models to account
for their prediction uncertainty. The field of view of the autonomous car is
simulated ahead over the whole planning horizon during the optimization
of the policy. Simulating the possible, corresponding, future observations

iii

allows the algorithm to select actions that actively reduce the uncertainty of
the world state. Depending on the scenario, the behavior of the autonomous
car is optimized in (combined lateral and) longitudinal direction. The al-
gorithm is formulated in a generic way and solved online, which allows for
applying the algorithm on various road layouts and scenarios.

While such a generic problem formulation is intractable to solve exactly,
this thesis demonstrates how a sufficiently good approximation to the opti-
mal policy can be found online. The problem is solved by combining state
of the art Monte Carlo tree search algorithms with near-optimal, domain
specific roll-outs.

The algorithm is evaluated in scenarios such as the crossing of intersec-
tions under unknown intentions of other crossing vehicles, interactive lane
changes in narrow gaps and decision making at intersections with large oc-
cluded areas. It is shown that the behavior of the closed-loop planner is
less conservative than comparable open-loop planners. More precisely, it is
even demonstrated that the policy enables the autonomous car to drive in a
similar way as an omniscient planner with full knowledge of the scene. It
is also demonstrated how the autonomous car executes actions to actively
gather more information about the surrounding and to reduce the uncer-
tainty of its belief state.

iv

Kurzfassung

Diese Arbeit stellt einen neuen Ansatz für die Verhaltensgenerierung au-
tomatisierter Fahrzeuge in dynamischen, urbanen Umgebungen vor. Der
Fokus der Arbeit liegt im Besonderen auf der Berücksichtigung von Unsi-
cherheiten die in einem urbanen Umfeld vorkommen. Diese Unsicherheiten
existieren, da die Intention der anderen Fahrer, ihr individuelles Fahrver-
halten sowie mögliche Interaktionen mit dem autonomen Fahrzeug nicht
deterministisch sondern nur probabilistisch vorhergesagt werden können.
Zudem ist die Wahrnehmung der anderen Verkehrsteilnehmer durch die
Sensorik zumindest Messrauschen unterworfen, kann aber auch aufgrund
von Verdeckungen unvollständig sein.

Bisherige Ansätze zur Verhaltensgenerierung für das automatisierte Fah-
ren lösen das Problem durch eine Aufteilung in verschiedene Teilprobleme:
die Entscheidungsfindung für eine bestimmte Fahroption auf höchster Ebe-
ne, die Prädiktion der anderen Fahrer sowie die Planung einer kontinuier-
lichen Trajektorie. Diese Aufteilung des Problems, sowie die Verwendung
regelbasierter Ansätze zur Entscheidungsfindung, führt in vielen Fällen zu
suboptimalem Fahrverhalten.

Diese Arbeit präsentiert einen global optimalen Closed-Loop Ansatz, der
das Auswählen einer Aktion des autonomen Fahrzeuges sowie die Prädikti-
on der anderen Verkehrsteilnehmer in einer gekoppelten Problemformulie-
rung beschreibt. Die globale Formulierung erlaubt hierbei, dass Entschei-
dungen für Fahroptionen auf höchster Ebene implizit als Teil des Planungs-
problems getroffen werden können. Der Closed-Loop Ansatz optimiert aus-
serdem das Verhalten des autonomen Fahrzeuges für mehrere, mögliche zu-
künftige Szenarien bezüglich des Verhaltens der anderen Verkehrsteilneh-
mer. Die kombinierte Formulierung der Planung für das autonome Fahr-
zeug sowie der Prädiktion für die anderen Verkehrsteilnehmer erlaubt die
Modellierung von Interaktion. Dies bedeutet, dass die Reaktion der anderen
Fahrzeuge auf das Verhalten des autonomen Fahrzeugs bei der Verhaltens-
planung bereits berücksichtigt wird.

Das Problem ist als teilweise beobachtbarer Markov Entscheidungspro-
zess (POMDP) auf einem kontinuierlichen Zustands- und Beobachtungs-

v

raum mit diskreten Aktionen modelliert. Diese Formulierung wird durch
eine Policy gelöst, welche reaktive Aktionen für zukünftige Ereignisse ent-
hält. Das unbekannte, zukünftige Verhalten der Fahrer in der Umgebung
des autonomen Fahrzeuges wird mit Hilfe von probabilistischen, interakti-
ven Fahrermodellen beschrieben. Das Sichtfeld des autonomen Fahrzeuges
wird während der Optimierung der Policy über den kompletten Planungs-
horizont simuliert. Ebenso werden mögliche zukünftige Messungen des au-
tonomen Fahrzeuges simuliert, was dem Algorithmus erlaubt Aktionen zu
wählen, welche die Unsicherheit des Weltzustandes aktiv minimieren. Der
Algorithmus optimiert das Verhalten je nach Modellierung nur in longitu-
dinaler oder zugleich auch in lateraler Richtung Eine generische Problem-
formulierung sowie dessen Lösen zur Laufzeit erlauben einen Einsatz des
Algorithmus in vielfältigen Szenarien.

Diese generische Problemformulierung exakt zu lösen ist nach gegen-
wärtigem Stand der Forschung nicht möglich. Dennoch zeigt diese Arbeit
wie eine ausreichend gute Approximation der optimalen Lösung sogar wäh-
rend der Laufzeit (online) gefunden werden kann. Dies ist möglich indem
hochmoderne, stochastische Verfahren (Monte Carlo Baum Suche) mit spe-
zifischen Heuristiken des jeweiligen Problems kombiniert werden.

Der Algorithmus wird vielfach in der Simulation evaluiert. Dies ge-
schieht in Szenarien mit kreuzendem Verkehr mit verschiedenen, mögli-
chen Intentionen, interaktiven Spurwechseln in sehr kleine Lücken sowie
Szenarien mit grossen Sensorverdeckungen an Kreuzungen. Es wird ge-
zeigt, dass der Closed-Loop Planungsansatz ein weniger konservatives Ver-
halten ermöglicht als vergleichbare Open-Loop Planer. Ausserdem wird
gezeigt, dass die Policy nahezu ein Fahrverhalten ermöglicht, welches an-
sonsten nur mit einem allwissenden Planer erreicht werden kann. Zudem
wird gezeigt, dass der Algorithmus in der Lage ist, aktiv Aktionen zu wäh-
len, die die Unsicherheit des aktuellen Zustandes reduzieren.

vi

Contents

Notation and Symbols . xi

1 Introduction . 1
1.1 Motivation: Motion Planning Under Uncertainty 4
1.2 Related Work: Motion Planning 6

1.2.1 Properties of Planning Algorithms 7
1.2.2 Consideration of Constraints 7
1.2.3 Graph Search for Trajectory Planning 8
1.2.4 Probabilistic Search for Trajectory Planning . . . 9
1.2.5 Variational Trajectory Planning 10
1.2.6 Trajectory Planning for Autonomous Vehicles . . 11

1.3 Related Work: Motion Planning Architectures 12
1.3.1 Non-Interactive Planning with Given Prediction . 15
1.3.2 (Interactive) Planning with Given Maneuvers . . 17
1.3.3 Optimizing Interactive Maneuvers 19

1.4 Motion Planning with Policies 20
1.4.1 Open-Loop Planning 21
1.4.2 Closed-Loop Planning 21
1.4.3 Definition of Policy Optimization 23

1.5 Closed-Loop Behavior Planning Under Uncertainty . . . 23
1.6 Contributions and Outline 25

2 Background . 27
2.1 Planning with Deterministic Models 27
2.2 Planning with Probabilistic Models 29
2.3 Planning with State Uncertainty 30

2.3.1 Complexity of Solving POMDPs 31
2.3.2 Solving POMDPs 31

vii

Contents

2.3.3 The Simplified QMDP Formulation 35
2.3.4 Policy Optimization: Online vs Offline 36

2.4 Solving POMDPs in this Thesis 37
2.4.1 Monte Carlo Tree Search 37
2.4.2 MCTS for POMDPs 38
2.4.3 UCT Action Selection 40
2.4.4 Belief State Tracking and Observation Clustering 41
2.4.5 Calculating Optimized Roll-Outs 42
2.4.6 Creating Consistent Plans 43
2.4.7 Batch Sampling of Episodes 44

2.5 Reducing the Dimensionality of the Action Space 45

3 Planning for Combinatorial Decision Making 47
3.1 Related Work . 48
3.2 Problem Formulation 49
3.3 Approach . 50

3.3.1 Transition Model 50
3.3.2 Cost Function 51
3.3.3 Domain Specific Heuristics 56
3.3.4 Goal State Formulation 58
3.3.5 Implementation 58

3.4 Results . 58
3.4.1 Performance 59
3.4.2 Qualitative Simulation Scenario 59

3.5 Summary . 60

4 Planning with Uncertain Intentions of Crossing Traffic 63
4.1 Related Work . 65
4.2 Problem Formulation 67
4.3 Approach . 68

4.3.1 State Space . 69
4.3.2 Action and Transition Model 70
4.3.3 Reward Model 71
4.3.4 Observation Model 72
4.3.5 Implementation 74

4.4 Results . 74
4.4.1 Convergence 74
4.4.2 Policy Behavior Planning 77

4.5 Summary . 83

viii

Contents

5 Coupled 2D Planning for Interactive Merging 85
5.1 Related Work . 87

5.1.1 Gap Assessment Algorithms 87
5.1.2 Planning-Based Algorithms 87

5.2 Approach . 89
5.2.1 State Space . 90
5.2.2 Action and Transition Model 91
5.2.3 Motion Model of Surrounding Agents 92
5.2.4 Observation Model 93
5.2.5 Reward Model 93
5.2.6 Learned Yielding Model 94
5.2.7 Implementation 96

5.3 Results . 97
5.3.1 Analysis of Belief State Policy 97
5.3.2 Online Simulation 100

5.4 Summary . 101

6 Planning under Sensor Occlusions 103
6.1 Related Work . 105
6.2 Approach . 106

6.2.1 State Space . 107
6.2.2 Observation Model 109
6.2.3 Representation of Phantom Vehicles 109
6.2.4 Action and Transition Model 110
6.2.5 Reward Model 113
6.2.6 Implementation 113

6.3 Results . 113
6.3.1 Static Occlusion 114
6.3.2 Dynamic Occlusion 118
6.3.3 2D Motion Primitives 118

6.4 Summary . 121

7 Conclusion . 123
7.1 Future Research Directions 125

Bibliography . 127

ix

Notation and Symbols

Abbreviations

2D 2-dimensional
ABT Adaptive Belief Tree
ACC Adaptive Cruise Control
BFS Breadth-First Search
CHOMP Covariant Hamiltonian Optimization for Motion Planning
DARPA Defense Advanced Research Projects Agency
DESPOT Determinized Sparse Partially Observable Tree
DFS Depth-First Search
DNN Deep Neural Net
DQL Deep Q-Learning
DRL Deep Reinforcement Learning
FoV Field of View
HSVI Heuristic Search Value Iteration
ICS Inevitable Collision States
IDM Intelligent Driver Model
IMM Interacting Multiple Model
MCTS Monte Carlo Tree Search
MDP Markov Decision Process
MIP Mixed Integer Programming
MIQP Mixed Integer Quadratic Programming
MOMDP Mixed Observability Markov Decision Process
MPC Model Predictive Control
MPDM Multi Policy Decision Making
PBVI Point-Based Value Iteration
PCLRHC Partially Closed-Loop Receding Horizon Control
PGM Probabilistic Graphical Model
POMCP Partially Observable Monte Carlo Planning
POMDP Partially Observable Markov Decision Process
PRM Probabilistic Road Maps
QMDP Fully Observable Value Approximation
QP Quadratic Programming

xi

Notation and Symbols

RL Reinforcement Learning
RRT Rapidly Exploring Random Trees
SARSOP Successive Approximations of the Reachable Space under

Optimal Policies
SQP Sequential Quadratic Programming
TAPIR Toolkit for Approximating and Adapting POMDP

Solutions in Real Time
UCT Upper Confidence Bound for Trees

Symbols

General
‖ · ‖, ‖ · ‖2 Euclidean norm of a vector
| · | cardinality of a set/absolute value of a scalar
E[·] expected value
𝒩 Normal distribution
𝑃 (·) probability
𝑃 (· | ·) conditional probability
𝑓(·) deterministic function
N natural numbers
R real numbers
(·)* optimal valuê︁(·) estimated value
(·)(𝑡) value (·) at continuous time 𝑡
(·)(𝑡) value (·) at discrete time 𝑡

Planning
𝒞config configuration space of the robot
𝒞free free space of the robot
𝑁𝑘 agent 𝑘 in the environment
𝑝𝑘 path of agent 𝑘
𝒫𝑘 set of path hypotheses of agent 𝑘
𝑟𝑘 a certain route in the topological map
ℛ set of all routes in the topological map
𝑚𝑘 a high-level maneuver of agent 𝑘
ℳ𝑘 set of available maneuvers of agent 𝑘
𝜉𝑘 trajectory of agent 𝑘̃︀𝜉 𝑡0:𝑇
𝑘 set of predicted trajectories of agent 𝑘 for [𝑡0, 𝑇]

xii

Notation and Symbols

𝑣des(𝑠) reference velocity on the path at position 𝑠
𝜅(𝑠) road curvature at position 𝑠
𝐽 cost function
𝑎𝑘 action of agent 𝑘
𝒳 state of the environment
ℎ(𝒳) heuristic estimate of future costs starting at 𝒳

𝑠𝑘 longitudinal position of agent 𝑁𝑘 on its path
𝑣𝑘 longitudinal velocity of agent 𝑁𝑘 on its path
𝑙𝑘 lane of agent 𝑁𝑘

𝑑𝑘 lateral position of agent 𝑁𝑘

𝑚𝑘 interaction friendliness of 𝑁𝑘

𝑔𝑙 existence state of phantom car in a occlusion
Ψ𝑙 field of view on the path of phantom car 𝑁𝑙

𝑡 time
𝑡hor planning horizon

POMDP
𝑏, 𝑏(𝒳) belief state, probability of being in state 𝒳

𝜋(·, 𝑎) policy, mapping an action 𝑎 on a (belief) state (·)
𝑅(𝒳 , 𝑎) reward for choosing action 𝑎 in state 𝒳

T(𝒳 , 𝑎,𝒳′) probability of traversing to 𝒳′ after choosing 𝑎 in 𝒳

Z(𝒳′, 𝑎, 𝑜) probability of observing 𝑜 when in 𝒳′ after choosing 𝑎
𝑉 (·) value of a certain (belief) state (·)
𝑄(·, 𝑎) expected value when executing 𝑎 in a (belief) state (·)
𝛾 discount factor of the rewards
𝑐 UCT factor balancing exploration and exploitation
𝛼𝑎 vector representing the reward 𝑅(·, 𝑎) for every state 𝒳

ABT
𝒯 belief tree
𝑢 A sampled episode in the belief tree
𝑈(𝑏, 𝑎) The set of all episodes which select 𝑎 in 𝑏
𝑈(𝑏) The set of all episodes passing 𝑏
𝑛 The depth in the belief tree
𝑜max Maximum observation distance of one cluster

xiii

1 Introduction

The transportation industry faces the biggest change in its history: the
automation of vehicles. Fully autonomous systems exist to date only in
closed, structured environments, such as factories and manufacturing cells.
Nowadays, academia and industry work closely together on the transfer of
such autonomous systems to public environments [36]. This is the case
for small, unmanned delivery robots, autonomous vehicles and even aerial
vehicles such as drones.

Especially, automated vehicles are in the focus as they are currently of
high interest to the industry. The capabilities of advanced driver assistance
systems are enhanced over the years to continually improve safety and com-
fort (see [88] for a definition of the different levels of automation). These
systems extend the degree of automation but still rely on a human driver
to bear responsibility. Nonetheless, completely automated systems are now
on the verge of becoming reality in small, geo-fenced areas [64] and are
considered to have game changing capabilities for the transportation indus-
try.

The largest desired effect is hereby a expected, potential decline of acci-
dents and fatalities. This is the case as 94% of all accidents in the United

Figure 1.1: Left: ‘Electricity may be the driver’, advertisement of the Central Power
and Light Company in 1956 (graphic from [108]) . Right: Nonetheless, it took until
2015, that vehicles, being rigorously designed for autonomous driving, were hitting
urban roads for testing passenger rides (graphic from [1], c○Waymo).

1

1 Introduction

Figure 1.2: A typical intersection as seen by an autonomous vehicle. Future trajec-
tories of the other vehicles are not known, but possible hypotheses can be made in
a probabilistic fashion (graphic from [106], c○Waymo).

States are attributed to driver errors, with recognition (41%) and decision
error (33%) being the most critical reasons [97]. Such a drastically reduced
amount of accidents, combined with a reduced fuel consumption and opti-
mized traffic management may reduce the costs of operating a car. This will
provide access to individual transportation possibilities for people without
driving license or for elderly, intoxicated or disabled persons who are phys-
ically unable to drive [78]. Especially, ride-hailing services may start to
provide on-demand transportation in inner cities at a reduced rate compared
to common taxi services. This is due to reduced operating costs because of
spared drivers [76].

It is of major importance how such autonomous systems behave in ur-
ban traffic. The generated behavior must not only comply with traffic rules
but also be comfortable to gain the trust of the potential passengers [49].
Furthermore, such cars must guarantee a certain degree of safety to be ac-
cepted by society and regulating authorities. At the same time, autonomous
vehicles cannot drive too conservatively without creating frustration among
surrounding human drivers [26] or even getting completely stuck as they do
not dare to move in scenarios with a high degree of uncertainty [103]. To
design such a system, different problems have to be tackled.

A perception system records raw sensor data of the environment. This
sensor data is processed to detect static and dynamic objects. In a second
step, the dynamic objects are tracked over time. The sensor data of the
perception system may also be used to localize the robot in the environment.

2

A prediction system uses the information about the tracked objects as
input and provides their predicted future behavior.

The motion planner is responsible for guiding the autonomous car in
a safe, comfortable and legal way through the traffic. It is a crucial part
of such an autonomous system as it must cope with the accumulated un-
certainties of the previous layers while it must present a safe and comfort-
able plan at the same time. This means, the planner must be able to act
in semi-structured, dynamic and uncertain environments. The environment
is semi-structured because of the fact that other dynamic agents move on
predefined entities such as lanes, pavements, etc. Nonetheless, topological
maps may be outdated and the motion of the other agents is not necessar-
ily limited to these entities. The uncertain nature of the environment arises
because of the limitations (range, non-observable states) and noise in the
perception system. Therefore, the location of the autonomous car as well
as the future trajectories of the surrounding traffic can only be estimated
in a probabilistic fashion. Especially, the uncertain future behavior of the
surrounding traffic poses a challenge for generating sensible behavior for
the autonomous car.

This is the case as there are numerous possible future scenarios which
must be considered by the autonomous vehicle. For example, it cannot be
determined if another car will drive straight or turn right at an intersection.
Fig. 1.2 shows an example of the variety of possible future trajectories of a
real-world scenario.

The goal of this thesis is to develop a new behavior planning algorithm
for autonomous vehicles in urban environments.

The underlying idea of this work is, that generating an optimal behavior
for the autonomous car and predicting the uncertain future behavior of the
other agents is a coupled problem that must be modeled in a coupled man-
ner to generate optimal behavior. While this results in a very hard problem
formulation, the goal of this thesis is to present an online algorithm for this
problem.

The further introduction is structured as follows. At first, Sec. 1.1
presents the different uncertainties that arise in urban environments. In
the following, Sec. 1.2 formally defines the problem of motion planning
followed by an overview of the state of the art in the field. Subsequently,
Sec. 1.3 gives an overview of different planning architectures which can be
used to generate a behavior for the autonomous car. Sec. 1.4 gives an intro-
duction about the advantages of using policies in motion planning instead

3

1 Introduction

of trajectories. In Sec. 1.5, the main idea of this thesis is described. The last
section of this chapter, Sec. 1.6, describes the main contributions as well as
the outline of the whole thesis.

1.1 Motivation: Motion Planning Under Uncertainty

A motion planning algorithm for urban traffic scenarios must cope with the
uncertainty of various possible future scenarios. This uncertain prediction
of the other drivers is modeled in this work as follows (see Fig. 1.3 for an
illustration):

At first, the intended path to follow of the other vehicle is not known
but can only be estimated in a probabilistic fashion. This is referred to as
unknown intention of the other agents. Secondly, assuming that the path
of the other vehicle is known, the motion on the path is dependent on the
style of the respective driver which is, again, unknown. This uncertainty
is described by a probabilistic driver model. Additionally, the potential
influence of the future motion of the autonomous car on the behavior of
the other agent must be modeled. This interplay is probabilistic (e.g. other
vehicles yield to the autonomous car or not) and is denoted as interaction
throughout this thesis. Additionally, the uncertain measurements of the
configuration of the other vehicles are referred to as sensor uncertainty,
while the uncertainty, describing if other vehicles can be perceived at all, is
denominated as occlusion uncertainty.

Motion planning algorithms must consider prediction uncertainties to
plan safe and comfortable trajectories. The motion prediction of the other
drivers can be represented in various ways.

The future behavior of the other agents can be presented by trajectories
which are either learned from data or modeled from human experience.
This approach is not capable of respecting every possible, future behavior,
even if sets of possible future trajectories are considered. Therefore it does
not guarantee safety.

Probability density functions can be used to describe the probability of
possible future configurations. While this allows for a precise modeling,
describing these probability distributions can be difficult. This is the case,
as strongly non-Gaussian distributions are difficult to model. Gaussian dis-
tributions on the other hand are often unable to describe the real distribution
and also introduce so-called long tails. To overcome the problem of long

4

1.1 Motivation: Motion Planning Under Uncertainty

?

Unknown Intention

Probabilistic Model

Probabilistic Interaction

Sensor Uncertainty

Occluded Areas

Figure 1.3: The planned path of the autonomous vehicle is depicted in blue, while
the possible motion hypotheses of the other car is drawn in red. Planning the mo-
tion for the autonomous car requires us to take various uncertainties into account.
This is at first the unknown behavior of the other agents (due to their unknown in-
tention, probabilistic driver models and uncertain interaction with the autonomous
car). Additionally, sensor noise as well as the existence probability of possibly
occluded objects must be respected [124].

tails, chance constraints are often used to cut off the unlimited Gaussian
distribution at a certain point.

Reachability Analysis calculates an over approximated set of possible
future vehicle configurations [2]. The approach allows us to guarantee
safety of an evaluated trajectory, given assumptions on the worst case be-
havior of the other agents. Nonetheless, it may result in conservative tra-
jectories as the reachable set grows drastically over simulated time when
future observations are not considered.

5

1 Introduction

1.2 Related Work: Motion Planning

The general problem of motion planning is to generate a possible path 𝑝0
or trajectory 𝜉0 from a given start state 𝒳 start to a goal state 𝒳goal with
𝒳 ∈ 𝒳 . The robot can traverse from one state to the other by using a
certain control action 𝑎 ∈ 𝒜. The trajectory must consider the dynamic
and kinematic constraints of the robot 𝑁0 while respecting constraints of
the environment such as static and dynamic obstacles 𝑁1:𝐾 . A potential
trajectory of the autonomous vehicle, 𝜉0, is evaluated by a cost function
𝐽 which may be denoted as a weighted sum of different measures such as
total acceleration/jerk and collisions.

The goal of an optimal planning algorithm is to find the optimal trajec-
tory 𝜉*0 , defined as

𝜉*0 := arg min
𝜉0

∫︁ 𝑡goal

0

𝐽(𝒳(𝑡), 𝑎(𝑡)) d𝑡, (1.1)

for given system dynamics �̇�(𝑡) = 𝑓(𝒳(𝑡), 𝑎(𝑡)) and inequality and equal-
ity constraints:

ℎ𝑖(𝒳(𝑡), 𝑎(𝑡)) ≤ 0, for 𝑖 ∈ [1, . . . ,𝑚],𝑚 ∈ N0 (1.2)
𝑔𝑗(𝒳 , 𝑎) = 0, for 𝑗 ∈ [1, . . . , 𝑛], 𝑛 ∈ N0. (1.3)

In the context of autonomous driving, constraints such as speed limits,
traffic rules (e.g. traffic lights), lane boundaries, static objects and dynamic
objects must be considered. Respecting dynamic objects is nontrivial as
their future trajectory is not known (probabilistic prediction) and may also
depend on the executed trajectory of the autonomous vehicle (interaction).
This is the case as the different agents cannot be considered as independent
which makes it a coupled problem.

The problem of optimally considering the uncertainty of future states can
be addressed by planning in the space of policies instead of in the space of
trajectories. An introduction to the planning of policies instead of trajecto-
ries is given in Sec. 1.4.

In the following, general characteristics of motion planning algorithms
are introduced first. This is followed by on overview of the state of the art
in motion planning.

6

1.2 Related Work: Motion Planning

1.2.1 Properties of Planning Algorithms

Motion planning algorithms can be described by several different charac-
teristics. The most common ones are shortly reviewed in the following.

Optimality - The algorithm guarantees to find the global optimal solu-
tion if it exists. This is opposed to local algorithms, which find one local
optimum, depending on their initial solution.

Completeness - The algorithm guarantees to find a solution if one exists.
This can be relaxed to Resolution Completeness for grid-based planners,
where the planner is guaranteed to find the solution if the underlying grid
cells are sufficiently small. It can also be relaxed to Probabilistic Com-
pleteness which assures that the probability to find a solution converges to
one over runtime. This is for example the case for many sampling based
techniques.

Anytime - Anytime algorithms find an initial solution first and improve
it over time as long as further runtime is given. This is often the case for
sampling based algorithms such as Monte Carlo algorithms.

Online - An algorithm which is able to find a solution online, i.e. during
runtime. This allows the robot to not have an a priori plan for every possible
scenario, but to solve the current situation when it occurs. It is desired to
have a planner which computes the solution online, s.t. it can account for
changes in the environment [94] (see Sec. 2.3.4 for a detailed description
of the advantages).

1.2.2 Consideration of Constraints

Furthermore, motion planning algorithms can be distinguished in terms of
what kind of constraints are incorporated in the planning problem.

Dynamic constraints - The dynamics of the autonomous robot are con-
sidered in the formulation by expressing them in the constraint equalities.

Kinematic constraints - Constraints concerning the degrees of freedom
in the movement of an autonomous robot. Of special interest in the con-
text of autonomous mobile robots are holonomic constraints. A holonomic
robot has only holonomic constraints, i.e. equality constraints based on co-
ordinates and time but no time derivatives. This allows the robot to move in
a certain direction independently of the current velocity. A non-holonomic
robot has inequality constraints which include time derivatives of the co-
ordinates. A standard car is for example a non-holonomic system as its

7

1 Introduction

capability to move in lateral direction is dependent of its longitudinal ve-
locity [35].

Kinodynamic constraints - A motion planning algorithm which consid-
ers dynamic as well as kinematic constraints is referred to as kinodynamic
planner.

Topologic and Traffic Rule Constraints - Further constraints may arise
in the area of autonomous vehicles when the topological map and traffic
rules must be considered.

1.2.3 Graph Search for Trajectory Planning

Search based motion planning algorithms (also called geometric motion
planning algaorithms) aim to find the optimal trajectory by searching on
a constructed graph. This allows for global, non-convex optimization due
to the combinatorial nature of the algorithms, but also requires some sort
of discretization (state or action discrete). The respective algorithms can
be distinguished by the search algorithm itself and the way the graph is
constructed.

Grid based motion planners generate the graph by discretization of the
configuration space 𝒞config of the robot with a grid first. By assuming, that
a transition between neighboring cells is possible, the grid may be searched
with graph search algorithms such as Breadth-First Search (BFS), Depth-
First Search (DFS), the well-known Dijkstra algorithm [25] and its heuristic
based extension 𝐴* [86]. As grids are not able to account for the kine-
matic constraints of the robot, new search algorithms were introduced to
find smoother trajectories (Field 𝐷* [30]) or to even account for kinematic
constraints by sacrificing optimality [73]. The different ideas are sketched
in Fig. 1.4.

As the number of grid cells grows dramatically when the kinematics of
the robot must be considered, another idea is to either create a state-lattice
which is constructed with feasible motion primitives in a way, such that
smooth transitions at every state are guaranteed (see Fig. 1.5) [82].

Instead of creating this state-lattice beforehand, it may also be con-
structed online during search by expanding only the required nodes [83].
The growth of the graph can be reduced by truncating branches whose esti-
mated remaining costs are too high. The costs can be estimated by heuris-
tics which represent a lower bound on the future costs. Typical heuristics
for autonomous driving are presented in Fig. 1.6.

8

1.2 Related Work: Motion Planning

Figure 1.4: Comparison, of different motion planning algorithms for grid based
search (graphic from [73]). 𝐴* (left) connects the center of cells which does not
allow for considering kinematic constraints of the vehicle. While Field 𝐷* [30]
allows to plan smoother paths/trajectories by interpolating on the edges of the cor-
ners of the grid, kinematic constraints can still not be considered. The hybrid 𝐴*

(right) uses motion primitives to account for the kinematic constraints of the robot
and assigns them to the related grid cells [73]. While this reduces the size of the
search tree, the algorithm is not guaranteed to find the optimal solution anymore.

Figure 1.5: An example of a constructed state-lattice. The motion primitives are
chosen in a way that continuous transitions from one motion primitive to another
are always possible (graphic from [82]).

Further possibilities to construct a search-graph are for example Voronoi
diagrams, visibility graphs and cell decomposition [61].

1.2.4 Probabilistic Search for Trajectory Planning

Another possibility to construct a search graph is to use various sampling
techniques to cover the configuration space 𝒞config. These algorithms may
provide only probabilistic completeness [61].

The idea of Probabilistic Road Maps (PRM) is to sample possible states
from the configuration space 𝒞config and test if they have a potential col-
lision with obstacles. If the state is collision free, it is connected with a

9

1 Introduction

Figure 1.6: Two different heuristics for planning a trajectory to the goal configura-
tion (blue). Either the non-holonomic characteristic of the car is considered (left) or
potential obstacles are considered (right) (graphic from [68]).

local planner to a neighboring state, given that a certain distance metric is
fulfilled. This is done until the resulting graph efficiently covers the search
space or until the maximum runtime is reached. The resulting graph may
then be searched in a second step with one of the graph search algorithms
presented in Sec. 1.2.3. Potentially existing non-holonomic constraints of
the robot may hereby be considered by a subsequent local planning stage.

Another popular algorithm is the Rapidly Exploring Random Trees (RRT)
algorithm [62]. Instead of creating the graph at arbitrary sampled positions
in the configuration space 𝒞config, a tree is grown by steering it in the most
undiscovered areas of the 𝒞config by sampling. By sampling uniformly in
the state space coordinates, the probability of sampling a state in a cer-
tain area is proportional to the size of its Voronoi region. In other words,
sparsely explored areas in the state space are more likely to be sampled
during the construction of the graph.

1.2.5 Variational Trajectory Planning

The goal of variational approaches is to formulate the problem with a con-
vex cost functional. If such a convex problem formulation is possible, it
allows to solve the problem on a continuous state space by use of vari-
ous gradient descent methods. In general, the advantage of variational ap-
proaches is, that these formulations can be solved very fast and the solution
is continuous. Nonetheless, because of the convex approximation of the
problem, only a local minimum is found. This local minimum is closest to
an initial solution (e.g. a reference path, reference trajectory). Therefore, to

10

1.2 Related Work: Motion Planning

find the global optimal solution, it must be ensured that the initial solution
is close enough to the optimal solution [61].

Despite the local nature of the algorithms, they often can be extended to
find the global optimum by being parameterized for different minima. This
is for example the case for the Mixed Integer Programming (MIP) extension
of convex optimization algorithms such as Quadratic Programming (QP).

A well-known variational motion planning algorithm is the Covariant
Hamiltonian Optimization for Motion Planning (CHOMP) algorithm [119].
It can be used for optimizing paths and trajectories locally. CHOMP uses
functional gradient techniques to optimize smoothness and collision avoid-
ance simultaneously.

Another popular variational approach for path and trajectory planning
is presented in [89]. The approach uses a sequential convex optimization
formulation for the planning of collision-free trajectories. The sequential
nature of the algorithm penalizes collisions with a hinge loss in an inner
loop and uses an outer loop to increase the penalty coefficients if necessary.

1.2.6 Trajectory Planning for Autonomous Vehicles

This section reviews domain specific trajectory planning algorithms for au-
tonomous driving. In this context, trajectory planning algorithms typically
generate a trajectory which is local or global optimal on a certain time hori-
zon (typically 3 s−10 s) or a spatial length. A local optimal trajectory refers
hereby to a trajectory describing a local minimum in the cost function. The
trajectory planner has no information about the long-term navigation goal
but is parameterized continuously by a higher layer. The main focus of the
trajectory planner is to optimize a reference trajectory or reach a goal state
while optimizing comfort and respecting constraints [78].

In the following, popular trajectory planning algorithms are presented.
The interested reader is referred to the surveys [36,78] for a broader overview
about motion planning algorithms for autonomous driving.

Global trajectory planners:

In [29], different geometric splines are used for creating simple longitudinal
and lateral motion patterns. The resulting trajectories are evaluated and,
depending of a rule-based decision maker, combined with other possible
longitudinal profiles. As soon as a sufficiently good trajectory is found, it
is tracked by a motion controller.

11

1 Introduction

A resolution complete, optimal trajectory planning method is presented
in [112]. Kinematically feasible trajectories are sampled on the Frenet
frame by use of quintic polynomials. In a second step, the trajectory can-
didates of the created manifold are evaluated given a certain cost function.
This leads to a jerk-optimal solution, given the discretization of the sampled
polynomials.

A spatio-temporal state lattice is used by [116] to plan trajectories in on-
road driving scenarios with dynamic obstacles. The resulting trajectories
are based on quintic polynomials and are second-order continuous.

Local trajectory planners:

The variational algorithm, Sequential Quadratic Programming (SQP) is
used in [115] to generate continuous trajectories. While the method is lo-
cal, constraints for static and dynamic objects are introduced in a way such
that the resulting solution is often globally optimal.

Another variational approach is presented in [38]. A local trajectory is
generated by use of a linear time-varying Model Predictive Control (MPC),
which is formulated as a QP. The algorithm needs an initial solution which
is improved by a gradient descent algorithm. This guarantees to find a
kinematically feasible, locally optimal solution very fast.

Another QP formulation is used by the authors of [74] which use the QP
problem formulation at first to generate a longitudinal speed profile. In a
second step, the speed profile is also optimized in lateral direction. This
separation between longitudinal and lateral optimization allows on the one
hand for two simple problem formulations, but constrains the solution space
on the other hand.

The presented algorithms in this section allow to plan trajectories from
a start state 𝒳 start to a goal state 𝒳goal. While the formulation of these
problems often allows to even consider the kinodynamic constraints of the
robot, they lack the possibility of explicitly considering interaction and the
uncertainties of real-world environments. This is due to their simplified
problem formulations which are used to make the problem either tractable
at all or to represent the trajectory in a continuous fashion.

1.3 Related Work: Motion Planning Architectures

An autonomous vehicle must not only optimize its trajectory but also make
high-level decisions, given the uncertain nature of the prediction. These

12

1.3 Related Work: Motion Planning Architectures

𝐽(𝜃)

𝜃(𝜉)

𝐻(1) 𝐻(2)

𝑚(1) 𝑚(2)

𝜉*0

Figure 1.7: Schematic of a possible cost function evaluating the parameters of dif-
ferent continuous trajectories. It can be seen that two possible homotopies (𝐻(1)

and 𝐻(2)) exist (e.g. passing a object on the left or right side). The a priori defined
maneuvers (𝑚(1) and 𝑚(2)) are able to extract two local minima. Nonetheless, the
global optimal trajectory 𝜉*0 may not be found.

decisions are for example to either stop in front of or to traverse a zebra
crossing, pass before or behind a crossing pedestrian or to decide for a
certain gap during lane changes.

Formulating a continuous trajectory optimization problem which incor-
porates decision making, interaction and uncertain prediction is possible
but intractable to solve. Therefore, various planning architectures exist
which split the problem into different subproblems. Every subproblem con-
siders only a single aspect of the motion planning problem, which makes it
tractable to solve. A trajectory planning algorithm (as the ones presented
in Sec. 1.2.6) may therefore be just a part of a larger planning architecture.

This section gives an overview of different, popular planning architec-
tures for autonomous vehicles. As there is no unified solution to the prob-
lem of autonomous driving, many approaches exist. Designs focus either
on autonomous vehicles [78] in general, on cooperative vehicles [102] or
specific frameworks are used for tasks such as the the Defense Advanced
Research Projects Agency (DARPA) challenge [34,73]. A general architec-
ture or clear definition of different frameworks is both missing and difficult
to establish due to the early stage of this technology.

Nonetheless, the following five modules are present in motion planning
designs:

Navigation layer - A navigation system is responsible of guiding the
autonomous car through the route network. It defines for example on which
lane to drive.

Behavior layer - The behavioral layer makes the high-level decisions

13

1 Introduction

such as in which gap to merge, passing before or after a crossing vehicle,
etc. The behavior can either be optimized itself (as done in this thesis) or
realized as a selector, choosing an a priori defined maneuver 𝑚 ∈ ℳ. A
maneuver 𝑚 ∈ ℳ denotes an abstract, high-level behavior, which can be
described in an human understandable way (such as turning right, or cross-
ing before another vehicle). The goal of selecting a maneuver a priori to
the planner, is to constrain the problem to a small, convex solution space.
A maneuver may be equivalent to the global optimal behavior but may not
necessarily. An optimized behavior on the other hand represents the global
optimal behavior on the planning horizon which may not be found by us-
ing predefined maneuvers. While a precise definition of a maneuver does
not exist, it is often compared to the mathematical concept of homotopies.
Two continuous trajectories are in the same homotopy class if a continuous,
collision-free projection exists that transforms one trajectory to the other
one. For example, two different trajectories, one overtaking an obstacle on
the right side and one on the left side lie in different homotopies, assuming
a 2-dimensional configuration space. General concepts for finding of ho-
motopies are presented for path-planning in [12] and for trajectory planning
in [11]. Nonetheless, extracting the constraints of homotopies is a complex
problem in dynamic, urban environments due to to the high uncertainty in
the prediction of others. In [101], an approach is presented for the retrieval
of different driving corridors in autonomous driving scenarios. It assumes a
set-based prediction (realized with constant velocity assumptions) to tackle
the problem of uncertain prediction. The relation between maneuvers and
homotopies is visualized in Fig. 1.7.

Prediction layer - The prediction module is responsible for providing
the estimated, future configurations of the surrounding traffic.

Trajectory layer - The trajectory planning layer is able to provide a
smooth, continuous trajectory. It is mostly dependent on input from the
behavior planner (parameterization) and the prediction module.

Controller - Finally, the generated trajectory is tracked with a controller.
The order of this list does neither imply, that the layers must be executed

in that order nor that a sequential execution of the modules is the only
possibility. Especially, the behavior, prediction and trajectory layers may
be interleaved.

Different approaches in the area of motion planning for autonomous driv-
ing may be distinguished based on how and in what hierarchical level the
following aspects are considered:

14

1.3 Related Work: Motion Planning Architectures

Plan ego trajectory 𝜉0 = 𝑓(𝒳 𝑡0
0 , ̃︀𝜉 𝑡0:𝑇

1:𝐾 ,𝑚)

Predict other agents ̃︀𝜉 𝑡0:𝑇
1:𝐾

Select desired maneuver 𝑚 ∈ ℳ

̃︀𝜉 𝑡0:𝑇
1:𝐾

𝑚

̃︀𝜉 𝑡0:𝑇
1:𝐾

Figure 1.8: The classic separation of prediction and planning is a hierarchical de-
sign. In a first step, the other agents are predicted until the planning horizon 𝑇 and a
maneuver 𝑚 ∈ ℳ is chosen. In a second step, the trajectory 𝜉0 of the ego vehicle is
planned, given the existing prediction of the other vehicles and a desired maneuver
(such as Adaptive Cruise Control (ACC), lane change).

∙ the various uncertainties (see Fig. 1.3)

∙ interaction

∙ the type of constraints (objects, traffic rules, kinematics, dynamics)

The following notation is used throughout the thesis: The autonomous
car is defined as 𝑁0 and the surrounding vehicles are defined as 𝑁𝑘, with
𝑘 ∈ [1,𝐾]. Correspondingly, the state of vehicle 𝑁𝑘 at time 𝑡 is defined as
𝒳 𝑡
𝑘. The set of predicted, future trajectories of the other vehicles 𝑁1:𝐾 in

the time interval [𝑡0, 𝑡0 + 𝑇] is denoted as ̃︀𝜉 𝑡0:𝑇
1:𝐾 . The trajectory of an agent

𝑁𝑘 is defined over time as 𝜉𝑘(𝑡).
The next sections present often used architectures which deal with possi-

ble combinations of the behavior, trajectory and prediction layer in different
ways. Possible algorithms which are used within the architectures are re-
viewed. Following the focus of this thesis, the architectures are differed by
how interaction and prediction is considered throughout the motion plan-
ning process.

1.3.1 Non-Interactive Planning with Given Prediction

A common approach is to separate prediction and planning. In this case, all
the trajectories of the other agents, ̃︀𝜉 𝑡0:𝑇

1:𝐾 , are predicted first.
Given the predicted trajectories, ̃︀𝜉 𝑡0:𝑇

1:𝐾 , a maneuver 𝑚 is selected for the
autonomous car (by the behavior layer) and a correspondent trajectory is
planned by the trajectory planner (see Fig. 1.8).

15

1 Introduction

This approach is based on the assumption, that the probabilistic future
behavior of the other agents is independent of the future behavior of the
autonomous agent, i.e.:

𝑃 (̃︀𝜉 𝑡0:𝑇
1:𝐾 |𝜉0) = 𝑃 (̃︀𝜉 𝑡0:𝑇

1:𝐾). (1.4)

While this is a heavily used assumption in most prediction algorithms
[65], it is only valid if the behavior of the other agents 𝑁1:𝐾 is independent
of the behavior of 𝑁0. This assumption is valid for scenarios such as a lead-
ing vehicle on a highway, but in urban scenarios various counterexamples
exist (as demonstrated in Fig. 1.9). Interactive behavior is hereby simply
retrieved by the reactive, replanning behavior of the algorithm [103].

As the interactive behavior of the other vehicles is not considered during
planning, this approach can lead to too conservative planning, especially
when considering many predicted trajectories [103].

This is because the behavior layer must choose a maneuver 𝑚 in a way
such that it can be executed safely, without respecting that other agents may
react to the maneuver. The maneuver selector of such architectures is of-
ten realized as a rule-based system, which chooses a certain maneuver 𝑚
and parameterizes the trajectory planner accordingly (e.g. to cross an in-
tersection or to stop before). The trajectory planner is realized as planning
algorithm (see Sec. 1.2.6 for an overview), optimizing on a certain tempo-
ral/spatial horizon. Two possible maneuver selectors are shown in Fig. 1.9.
Both planning algorithms make the decision to cross or not with rules de-
pending on the position and velocity of the other car. Possible trajectory
planners for this scenario are presented in [112, 115].

Possible algorithms for predicting the other cars may rely on physics-
based, model-based or interaction-aware models as surveyed in [65]. As
part of this thesis, prediction algorithms have also been designed which
combine all of these three methods. In [120], a interactive forward simu-
lation of the scene is performed, which generates a likelihood for each dis-
crete maneuver given the current scene. A classifier uses then the prior as
well as current measurements to provide probabilities for each maneuver.
Another approach is to track various possible interactive motion models
with a particle filter [126] or a multiple model unscented Kalman filter to
infer the latent variables of the driver model (e.g. the route intention) [127].

Such rule-based systems allow us to solve many of the simpler problems
in real-world environments [73, 117] by use of a fast replanning behavior.

16

1.3 Related Work: Motion Planning Architectures

Figure 1.9: Two possible rule based maneuver selection algorithms from partici-
pants of the DARPA urban challenge (namely vehicle Annieway (left) and vehi-
cle BOSS (right)). The decision of entering the intersection or stopping before is
made in both cases with rules concerning the positions and velocities of all vehicles.
Nonetheless, the behavior of the other agents is highly dependent of the autonomous
car’s behavior (graphics from [47] (left) and [107] (right)).

Nonetheless, handcrafting the decision rules for different cases is a costly
process which may require individual solutions for each scenario.

However, the potential prediction of the other vehicles has to be con-
strained to the most likely cases to impede conservative behavior. This is
the case as the many, possible predicted trajectories of the other agents nar-
row the free space in which the robot is able to plan. This is also enforced as
most trajectory planning algorithms are not able to consider the interaction
explicitly itself.

If interaction is not considered, i.e. the reaction of other agents to the
trajectory of the autonomous car is not modeled, the robot may only exe-
cute very conservative trajectories. In the worst-case, it may even lead to
standstill behavior because the robot cannot find a trajectory which does
not collide with one of the various possible predictions of the other agents.
This is the so called freezing robot problem [103].

1.3.2 (Interactive) Planning with Given Maneuvers

Another possibility is to design a framework in such a way that the be-
havior layer retrieves the different maneuver possibilities first. Following a
general concept of robotics motion planning, the idea is to avoid a poten-
tially exhaustive search of the whole configuration space. Therefore, the
idea is to extract the different path or trajectory homotopies first to con-
strain the following optimization problem to this subspace [11]. The ma-

17

1 Introduction

SELECT DESIRED MANEUVER 𝑚 ∈ ℳ

SELECT EGO TRAJECTORY 𝜉0(𝑡) = argmin𝜉𝑚0
𝐽(̃︀𝜉 𝑡0:𝑇

0 , ̃︀𝜉 𝑡0:𝑇
1:𝐾 ,𝑚)

CALCULATE 𝜉𝑚0 = 𝑓(̃︀𝜉 𝑡0:𝑇
0 , ̃︀𝜉 𝑡0:𝑇

1:𝐾 ,𝑚)

∀𝑚 ∈ ℳ𝑚

Figure 1.10: At first a certain set of possible maneuvers ℳ is retrieved (e.g. cross
the intersection before/after the other car). Now a trajectory is planned for each of
the maneuvers in ℳ and evaluated with a cost function 𝐽 . The trajectory of the
maneuver with the minimum cost is then selected.

neuvers can be described with driving corridors represented by one reach-
able set per homotopy/maneuver [101], with different constraints retrieved
by a forward search [90], or directly with a designed policy for every given
maneuver [32, 23].

In a second step, a trajectory is planned for every potential maneuver
𝑚 ∈ ℳ and the best one is selected for execution. This idea is demon-
strated in Fig. 1.10. This method has especially its advantages when used
with variational methods. As these methods are only able to find a local
minimum, the repeated calculation for every possible maneuver, may allow
to find the global optimum.

In [9], a deterministic local planner is used on every set of maneuver
constraints to find the global optimum. Uncertainty and interaction are
hereby not considered. As the authors mention, it is difficult to extract
all constraints and calculating a trajectory for every maneuver may become
intractable for combinatorial problems with a high amount of possibilities.

Different approaches consider planning and prediction as a combined
problem, such that the prediction of the other agents is also part of the plan-
ning problem. In [118], the interaction in terms of the expected reaction of
other vehicles to the planned ego trajectory is considered in a deterministic
way.

The authors of [84] use a Mixed Integer Quadratic Programming (MIQP)

18

1.3 Related Work: Motion Planning Architectures

approach. They assume static obstacles as well as dynamic agents with a
single predicted trajectory. Various maneuver possibilities for passing the
objects in different sequences are extracted and used for the formulation of
the MIQP formulation.

A combined planning and state estimation approach for all different ma-
neuvers is presented in [90]. The authors introduce so called collective ma-
neuvers, which describe the possible maneuver combinations in a certain
scene. Every vehicle tracks the maneuver probability of every other car
online. By use of a cooperative cost function every agent plans interactive
maneuvers in a collective maneuver set which is formulated as MIP.

In [37], the different maneuver homologies (i.e. relaxed homotopies) are
extracted by introducing pseudo homologies first. Hereby the homology
assumption is further relaxed, so that trajectories with different end states
may lie in the same homology, as long as both end states fulfill some con-
ditions about how they relate to each other.

The authors of [32,23] formulate the planning problem as a Markov De-
cision Process (MDP) with possible, hand-tuned policies for each maneu-
ver. This allows for stochastic forward simulations of the whole scene given
the different policies to determine the expected cumulative reward of every
policy. The potentially non-linear and probabilistic transition function of
the Markov Decision Process (MDP) allows considering interaction as well
as uncertainty in the planning problem.

In general, the approach of simply optimizing for one (Sec. 1.3.1) or sev-
eral maneuvers (Sec. 1.3.2) has drawbacks. At first, all maneuvers must be
enumerated beforehand, which is a challenging task that does not guarantee
finding the optimal behavior. Additionally, the solution space is absolutely
constrained to these a priori maneuvers. Solutions which e.g. optimize for
two possible maneuvers are not found.

1.3.3 Optimizing Interactive Maneuvers

The approaches in the previous two sections depend on the a priori selec-
tion of a certain maneuver 𝑚 or even a set of maneuvers for the autonomous
vehicle. Instead of defining certain maneuvers beforehand and planning
corresponding local optimal trajectories, graph-based search techniques al-
low to find a global optimal solution [101] directly. This global optimal
solution may contain a high-level maneuver implicitly, such that there is no
need anymore for an a priori maneuver selection.

19

1 Introduction

Such a search may either assume the prediction of the other agents as
independent or also model the interactive behavior of the other agents by
representing them directly in the state space. A probabilistic search, such
as Monte Carlo Tree Search (MCTS) allows even for representing the pos-
sibly interactive behavior of the other drivers in a probabilistic instead of a
deterministic fashion. The general framework is shown in Fig. 1.11.

As it is intractable to search the whole configuration space, it is essential
for these methods to constrain the search. This may be done with heuristics,
probabilistic sampling or intelligently designed search graphs.

In [44], a visibility graph in the reachable set is created around the edges
of dynamic objects. This allows to create a minimum sized graph which
can be searched for the optimal solution. The graph resembles generated
maneuver hypotheses due to its minimum size and structure around existing
objects. The behavior of the other drivers is predicted in advance, such that
it allows not for interactive behavior.

The authors of [67] present a MCTS based planner for highway driv-
ing. The approach is strongly focused on modeling the potential interaction
during planning but does not account for uncertainties.

In [59], a decentralized cooperative MCTS approach for lane changes
is presented. Every agent optimizes a cooperative cost function, while ne-
glecting uncertainties. The authors use a hierarchical MCTS variation with
macro actions and progressive widening to allow for continuous actions on
a constrained search space.

While these methods have the advantage of finding a global optimum,
they are considered difficult to use in reality. This is the case as the exhaus-
tive search may limit the online capability of the algorithm and reduces its
completeness to resolution completeness. This leads to a small, discretized
action set 𝒜 to constrain the possible branching factor. Such a discretized
action set reduces the completeness of the planner to resolution complete-
ness as the reachable state space is limited. This is due to the limited num-
ber of actions and the time resolution.

1.4 Motion Planning with Policies

Most existing motion planning algorithms plan a trajectory from a given
start state 𝒳 start to a goal state 𝒳goal. Executing a global optimal trajec-
tory leads to global optimal behavior, given that the system dynamics are
deterministic. This work assumes perfect localization and control during

20

1.4 Motion Planning with Policies

EXPAND 𝑎 ∈ 𝒜

RETRIEVE 𝜉*0 FROM GRAPH/FORWARD SIMULATIONS

SIMULATE FORWARD 𝑁0, 𝑁1:𝐾 FOR Δ𝑡

UNTIL
𝑡 = 𝑡hor

Figure 1.11: A search based optimization technique provides a trajectory solution
directly and optimizes the maneuver implicitly. It searches the whole configura-
tion space 𝒞config by expanding possible motion primitives and simulating the other
vehicles simultaneously.

the execution of a trajectory. Nonetheless, the future trajectories of the sur-
rounding traffic are not known and can only be described in a probabilistic
fashion. Two different possibilities exist to handle these uncertainties:

1.4.1 Open-Loop Planning

Open-loop motion planning algorithms do not consider future measure-
ments which arrive during the execution of the planned motion. In this
case, two possibilities exist. Firstly, every possible future motion of the
other vehicle can be respected by the planner. In Fig. 1.12, a scenario is
shown where the planner has to consider three possible predictions (turning
left/right and passing the intersection) of the other vehicle for the scenario
presented in Fig. 1.3. Respecting every possible prediction leads to safe but
potentially conservative behavior. Another possibility is to consider only
the most likely prediction(s). While this allows for less conservative plans,
safety cannot be guaranteed as not every possible prediction is considered
in the planning stage.

1.4.2 Closed-Loop Planning

Closed-loop motion planning on the other hand allows to consider the pos-
sible future observations in the planning stage. Instead of a trajectory, these

21

1 Introduction

0 2 4 6 8 10 12
0

5

10

15

20

̃︀𝜉 𝑡0:𝑇
1 (𝑚1)

̃︀𝜉 𝑡0:𝑇
1 (𝑚2)

𝜉0(̃︀𝜉 𝑡0:𝑇
1 (𝑚1/𝑚2/𝑚3))

𝑡 [s]

𝑠
[m

]

Figure 1.12: Open-loop trajectory plan-
ning: a conservative trajectory evades all
possible, predicted trajectories.

0 2 4 6 8 10 12
0

5

10

15

20

̃︀𝜉 𝑡0:𝑇
1 (𝑚1)

̃︀𝜉 𝑡0:𝑇
1 (𝑚2)

𝜉0(𝒳1 ∈ ̃︀𝜉 𝑡0:𝑇
1 (𝑚2/𝑚3))

𝜉0(𝒳1 ∈ ̃︀𝜉 𝑡0:𝑇
1 (𝑚1))

𝑡 [s]

𝑠
[m

]
Figure 1.13: Closed-loop policy plan-
ning: a policy optimizes the expected
reward and provides different plans, de-
pending of the next observed state.

Figure 1.14: Transfer of the scenario in Fig. 1.3 into a spatio-temporal cost map.
The longitudinal position on the planned path of the autonomous vehicle is plotted
on the y-axis, the planning time on the x-axis. The predicted maneuvers of the car
on the left of the intersection are depicted in grey, the planned trajectory of the au-
tonomous vehicle is depicted in black. The other car has three potential maneuvers
(𝑚1 = cross straight, 𝑚2 = turn left, 𝑚3 = turn right). Planning of closed loop
policies allow for less conservative driving. The policy contains future plans for all
possible observations. If it will be observed at 𝑡 = 1 that the other car turns left, the
autonomous car merges before the other car. If maneuver 𝑚1 is observed, it will
execute the plan to pass behind the crossing car. If the other car is observed to turn
right, the autonomous car has the same behavior as for maneuver 𝑚2.

algorithms plan a policy which contains reactive plans for different possi-
ble future scenarios. Such a policy is shown in Fig. 1.13 for the scenario
presented in Fig. 1.3. The policy contains two plans about how to react
to the observation which arrives at 𝑡 = 1. This allows for less conserva-
tive initial actions as the policy allows to react to the future observation.
Closed-loop planning is rarely used for online planning. This is the case as
it must consider an infinite amount of possible measurements which makes
the approach often intractable to use. In [28], the authors present Partially
Closed-Loop Receding Horizon Control (PCLRHC) to overcome this prob-
lem. The idea is to only consider the most likely future observation. While
this makes the approach tractable, it may lead to unsafe behavior as relevant
future observations may be ignored.

22

1.5 Closed-Loop Behavior Planning Under Uncertainty

1.4.3 Definition of Policy Optimization

The goal of a policy is to map an action on a state to maximize the reward
over all possible, future scenarios (see Fig. 1.13). Therefore, a potential
policy is evaluated by its expected reward to account for the uncertainty of
the future observations.

To account for these requirements, the motion planning problem is
described as follows. A probabilistic transition model is defined as
T(𝒳′,𝒳 , 𝑎) = 𝑃 (𝒳′|𝒳 , 𝑎), describing the probability of ending in a new
state 𝒳′, after executing a certain action 𝑎 in state 𝒳 . A reward function
𝑅(𝒳 , 𝑎) is defined for executing an action 𝑎 ∈ 𝒜 in a state 𝒳 ∈ 𝒳 .

Instead of minimizing a cost functional, the optimization aims for finding
the policy which maximizes the expected, discounted future reward:

𝜋* := arg max
𝜋∈Π

E

[︃ ∞∑︁
𝑡=0

𝛾𝑡𝑅𝑡

]︃
. (1.5)

The policy defines a mapping from states on actions, 𝜋 : 𝒳 → 𝒜, such
that the 𝑎 = 𝜋(𝒳). The future reward may be discounted by a discount fac-
tor 𝛾, to favor immediate rewards over long-term rewards. This formulation
allows to model combinatorial decision problems with a non-linear, proba-
bilistic transition function T and a deterministic reward function 𝑅(𝒳 , 𝑎).

1.5 Closed-Loop Behavior Planning Under Uncertainty

This thesis describes a new behavior planner for autonomous driving in ur-
ban environments. The underlying idea is to formulate the behavior planner
itself as an optimization problem on a receding horizon.

The presented planner is not dependent on any a priori maneuver gener-
ation but finds the global optimal solution on the receding horizon online.
This means that decisions, such as passing before or after a crossing pedes-
trian are made implicitly by the optimization problem. The solution may
represent a typical high-level maneuver implicitly but not necessarily. This
is enabled by formulating the problem as a search-based planning problem,
which respects static/dynamic objects as well as other constraints such as
traffic rules.

The planner respects all relevant uncertainties of the other agents (see
Fig. 1.3) as well as their potential interaction with the autonomous car.

23

1 Introduction

∙ decision problem

∙ 𝑡hor ≥ 10𝑠

∙ may consider:
– prediction uncertainty
– interaction

𝑥 ∈ R4 = [𝑠, 𝑑, 𝑣, 𝑡]𝑇

∙ possibly convex problem

∙ 𝑡hor ∼ 3𝑠

∙ may consider:
– dynamic constraints
– kinematic constraints

Behavior planner

Trajectory planner

𝜉(𝑡)

𝜉ref(𝑡)
𝜋

Figure 1.15: The behavior planner optimizes the policy on a receding horizon in a
global manner and parameterizes the trajectory planner for finding the continuous
local optimal trajectory in the global minimum. The provided reference trajectory
is the most probable trajectory in the policy, s.t. 𝜉ref = argmax𝜉∈𝜋 𝑃 (𝜉).

Considering the various different uncertainties with an open-loop planner
would lead to very conservative results due to the large manifold of possi-
ble, predicted trajectories. To overcome this problem, this thesis presents
a closed-loop planner which generates a policy over an uncertain belief
space. The policy contains reactive plans for possible future observations,
i.e. measurements of the uncertain behavior of the other agents. The policy
is optimized for the most probable future scenarios and also incorporates at
what point in the future certain beliefs (e.g. over the yielding behavior of
other agents) become more certain.

The problem is modeled as a Partially Observable Markov Decision Pro-
cess (POMDP). Solving this problem formulation exactly is known to be an
intractable problem (see Sec. 2.3.1). Therefore, the problem is reduced by
using only a discrete set of actions. The policy is retrieved from simulating
thousands of possible scenarios online on the planning horizon. This allows
to provide an optimized behavior online, that contains respective decisions
and considers uncertainty and interaction.

While such a policy considers the aforementioned uncertainties, interac-

24

1.6 Contributions and Outline

tion and has the capability of decision making, the discrete actions lead to
non-optimal trajectories concerning comfort and smoothness. Therefore,
the separation between behavior planning and trajectory planning is also
used within this work. The behavior planner generates an optimal plan
first, but under different optimization criteria than the trajectory planner.
In a second step, a local trajectory planning algorithm optimizes the most
probable trajectory in the generated policy of the POMDP on a shorter hori-
zon (Fig. 1.15). This is e.g. done with optimization criteria like minimizing
jerk [112] or minimizing the total turn rate of the steering angle [38]. Sim-
pler trajectory planning approaches minimize acceleration by smoothing
the speed profile without considering the kinodynamic constraints [113].

1.6 Contributions and Outline

The main contributions of this thesis are the following:
Firstly, it presents a global optimization formulation for autonomous

driving scenarios. This allows to generate a global optimal behavior in-
stead of behaviors which display certain high-level, hand-selected maneu-
vers only.

Secondly, this thesis shows how various uncertainties can be explicitly
modeled by a POMDP formulation. The uncertainties are namely the un-
known intentions of other drivers, their uncertain prediction, possible inter-
action, noisy sensor measurements as well as the uncertainty introduced by
occlusions. The problem is formulated on a continuous state/belief space
and uses a discrete action space to optimize the behavior of the autonomous
car.

By designing a closed-loop policy planner which respects not only the
current belief state but also the most likely future scenarios, less conser-
vative behavior can be realized. This formulation even allows the agent
to actively reduce the uncertainty by executing information gathering ac-
tions. Additionally, modeling intertwined prediction and planning allows
to consider the reaction of other agents to the trajectory of the autonomous
car.

Thirdly, it is shown how this POMDP formulation can be solved online.
This is possible by extending state of the art solvers with domain specific
heuristics which allows to focus on promising branches in an otherwise
intractable graph search.

25

1 Introduction

Finally, an extensive evaluation demonstrates the capabilities of the
planner for scenarios such as the crossing of intersections, lane changes in
dense traffic and the handling of occlusions. It is shown how the presented
closed-loop planner outperforms common open-loop planning approaches.
It is demonstrated how the planner allows for non-conservative behavior
in uncertain environments that can only be achieved by common open-loop
planners if they have full knowledge of the future scene, i.e. are omniscient.

The remaining thesis is structured as follows: Chap. 2 will introduce the
general POMDP formulation and explain in detail how POMDPs are solved
in this thesis. This is combined with general background and characteristics
of POMDPs including various techniques to solve them.

In Chap. 3, a deterministic planning algorithm based on the popular
𝐴* formulation is introduced. It demonstrates how an optimal behavior
planning algorithm can be realized without using a predefined maneuver
set. The algorithm considers the predicted trajectory of dynamic objects
and other dynamic constraints (such as switching traffic lights). While it
does not consider any uncertainties, it demonstrates planning based deci-
sion making.

In Chap. 4 the POMDP planning approach is presented for intersection
scenarios. The algorithm optimizes a longitudinal policy under the uncer-
tainty of the unknown intention, driver models and interaction of the other
agents.

Chap. 5 extends the action set, s.t. the policy is optimized in a 2D space.
This combined longitudinal and lateral optimization is combined with a be-
lief state formulation which includes the friendliness of the other drivers. It
is demonstrated how this formulation allows the agent to merge in too small
gaps by actively considering the potential interaction with the surrounding
traffic.

Finally, Chap. 6 introduces how reasoning over potentially existing
agents in occluded areas can be formulated as a POMDP. The approach
allows the autonomous car to actively gather more information about oc-
cluded areas by explicitly considering the field of view of the car in the
forward simulation.

Chap. 7 summarizes the results of the thesis and gives an outlook how
the approach may be extended and improved in the future.

26

2 Background

This chapter introduces algorithms and their mathematical notations used
in this thesis. The theoretical foundations of sequential decision making
under different degrees of uncertainty are introduced. This is followed by
an overview of different solvers and a detailed discussion on how POMDPs
are solved in this thesis. Finally, the reduction of a 2-dimensional planning
problem is discussed, the so called path-velocity decomposition.

Sequential decision making models a problem where a series of deci-
sions have to be made. The problems may be distinguished by the nature
of the transition model and by the observability of the state. The transition
model can either be deterministic or probabilistic and the state of the envi-
ronment may either be fully observable or only partially observable. Partial
observability of the state leads to a description of the environment with a
belief state as the real state cannot be measured.

2.1 Planning with Deterministic Models

Given a set of discrete, fully observable states, a set of discrete actions and
a deterministic state transition function, s.t. 𝒳′ = 𝑓(𝒳 , 𝑎), the sequential
decision making problem can be solved by the graph search algorithms
presented in Sec. 1.2.3. This is the case as the deterministic nature of the
state transition function and the fully observable state allows to present the
planning problem as a graph.

One of the most well-known algorithms for graph search is the Dijkstra
algorithm [25]. It keeps track of two sets, a set of open nodes𝒳open (not yet
expanded) and a set of closed nodes 𝒳closed (already expanded). The idea
behind the Dijkstra algorithm is to select the node with the minimum cost-
to-come in 𝒳open as the next node to be expanded. This allows to steer the
search in a promising direction and guarantees to find the shortest path [86].
Despite the directed search, the algorithm has still a worst-case runtime of
𝒪(|𝐸| + |𝑉 | log |𝑉 |). The algorithms in this thesis use a extension of the
Dijkstra algorithm, the so called 𝐴* algorithm [86]. It uses a heuristic to
truncate non-promising branches early. Instead of expanding the node with

27

2 Background

the lowest costs, i.e. 𝑥 = arg min𝒳open
𝑥.𝑐, the 𝐴* algorithm expands the

node which describes the state 𝒳 = arg min𝒳open
𝒳 .𝑐+ℎ(𝒳). The heuristic

Algorithm 1 A* graph search on a receding horizon

1: 𝒳 start, 𝑡hor,𝒜 //𝒳 start: start state, 𝑡hor: planning horizon
function 𝐴*(𝑥start, 𝑡Hor,𝒜)

2: 𝒳open = [], 𝒳closed = []
3: 𝒳open ← 𝑥start

4: while 𝒳open ̸= ∅ do
5: 𝒳 ← arg min𝒳open

𝒳 .𝑔 //𝒳 .𝑔: heuristic + cost-to-come
6: if 𝒳 .𝑡 ≥ 𝑡hor then
7: return 𝒳

8: end if
9: for all 𝑎 ∈ 𝐴 do

10: 𝑥′ ← 𝑥 + 𝑎
11: if 𝑥′ /∈ 𝒳closed then
12: 𝑥′.𝑐← 𝑥.𝑐 + 𝐽(𝒳 , 𝑎,𝒳′)
13: 𝑥′.𝑔 ← 𝑥′.𝑐 + ℎ(𝑥′)
14: 𝑥′.𝑝← 𝑥 //𝒳′.𝑝: parent state of 𝒳′

15: if 𝑥′ ∈ 𝒳open and 𝑥′.𝑔 < 𝑥′
𝑜𝑙𝑑.𝑔 then

16: Remove 𝑥′ in 𝒳open

17: end if
18: add 𝒳′ to 𝒳open

19: end if
20: end for
21: add 𝒳 to 𝒳closed

22: end while
23: return trace back trajectory from 𝒳

function ℎ(𝒳) estimates the remaining total costs from state 𝒳 to the goal
state. As long as the heuristic function ℎ is a lower bound to the real costs
as well as consistent, the 𝐴* algorithm is complete. Consistency is fulfilled
if ℎ(𝒳) ≤ 𝐽(𝒳 , 𝑎,𝒳′) + ℎ(𝒳′)∀𝒳 ,𝒳′. The 𝐴* algorithm is presented in
Alg. 1 for planning on a limited time horizon.

28

2.2 Planning with Probabilistic Models

2.2 Planning with Probabilistic Models

For the case of a probabilistic state transition function T(𝒳′ | 𝒳 , 𝑎) :=
𝑃 (𝒳′ | 𝒳 , 𝑎), the sequential decision making problem can be modeled
as a Markov Decision Process (MDP). An MDP is defined by the tuple
⟨𝒳 ,𝒜,T, 𝑅, 𝛾⟩. The reward function, 𝑅(𝒳 , 𝑎), defines a reward for choos-
ing an action 𝑎 ∈ 𝒜 in state 𝒳 . The reward is discounted over time 𝑡 by a
discount factor 𝛾 to favor immediate rewards over long term rewards. The
state 𝒳 ∈ 𝒳 of an MDP is assumed to be fully observable. The goal of
an MDP is to find an optimal policy, 𝜋*, which maximizes the expected
cumulative discounted reward, i.e. the value 𝑉 (𝒳) when starting in state 𝒳

and following the optimal policy thereafter:

𝜋*(𝒳) := arg max
𝜋

𝑉 𝜋(𝒳). (2.1)

To solve an MDP, a technique called dynamic programming is used. It is
described by Bellman’s principle of optimality:

Principle of Optimality: An optimal policy has the property
that whatever the initial state and initial decision are, the re-
maining decisions must constitute an optimal policy with re-
gard to the state resulting from the first decision [8].

In other words, an optimal solution to a problem is composed by optimal
solutions of the subproblems. This is known as the Bellman equation [8]
which defines the optimal value function, 𝑉 * of an MDP as follows:

𝑉 *(𝒳) = max
𝑎∈𝒜

[︃
𝑅(𝒳 , 𝑎) + 𝛾

∑︁
𝒳′∈𝒳

T(𝒳 , 𝑎,𝒳′)𝑉 *(𝒳′)

]︃
. (2.2)

Widely known algorithms such as policy iteration and value iteration
are based on the idea of the Bellman equation [51]. These algorithms it-
eratively perform backups over the (whole) state space 𝒳 and update the
value function accordingly until convergence is reached. Although they
guarantee to find the optimal policy, they are are mostly used for offline
MDP approaches. Their general computational complexity and the curse
of dimensionality makes them comparably slow and therefore only suited
for low dimensional problems. On the contrary, approximate techniques
such as sparse sampling or MCTS are better suited for online MDP ap-
proaches [51].

29

2 Background

Certain assumptions even allow to simplify solving an MDP. In the case
of a linear system with a quadratic cost function, the general MDP formu-
lation becomes a linear quadratic regulator and can be solved analytically.

For more details about MDPs, the reader is referred to [51] and [86].

2.3 Planning with State Uncertainty

MDPs rely on the assumption that a state is fully observable. POMDPs
on the other hand do not rely on this assumption and are formulated over
a probabilistic belief state instead of a fully observable state. Since the
current state is not known, the belief state is described by 𝑏(𝒳)∀𝒳 ∈ 𝒳 , i.e.
the probability of being in a certain state 𝒳 .

A POMDP is defined by the tuple ⟨𝒳 ,𝒜,T,𝒪,Z, 𝑅, 𝑏0, 𝛾⟩. The state is
defined as 𝒳 ∈ 𝒳 and a possible action of the agent is defined as 𝑎 ∈ 𝒜.
T(𝒳 , 𝑎,𝒳′) = 𝑃 (𝒳′|𝒳 , 𝑎) is the transition probability of ending in state 𝒳′

when executing action 𝑎 in state 𝒳 . 𝑅(𝒳 , 𝑎) is the reward for selecting
action 𝑎 in state 𝒳 . The initial belief of the problem is 𝑏0. Additionally,
the discount factor 𝛾 ∈ [0, 1) is used to favor immediate rewards over long-
term rewards.

The differences to an MDP are the possible observations 𝑜 ∈ 𝒪 and
the observation function Z which allows to describe future beliefs 𝑏(𝒳),
given possible future observations 𝑜, a prior belief 𝑏, the state transition
probabilities T and the observation function Z.

The observation function Z(𝒳′, 𝑎, 𝑜) = 𝑃 (𝑜|𝒳′, 𝑎) provides the proba-
bility to observe a certain observation 𝑜 after taking action 𝑎 and ending in
the new state 𝒳′. The policy of a POMDP maps a belief state 𝑏 an action,
𝜋 : 𝑏 ↦→ 𝑎. The solution of a POMDP is the optimal policy, 𝜋*, which
maximizes the expected discounted cumulative reward

𝜋* := arg max
𝜋

E

[︃ ∞∑︁
𝑡=0

𝛾𝑡𝑅(𝑏𝑡, 𝜋(𝑏𝑡))|𝑏0, 𝜋

]︃
. (2.3)

The definition of the optimal value function can also be transferred to
POMDPs, such that the corresponding Bellman equation for belief states,
𝑉 *(𝑏) is defined as follows:

𝑉 *(𝑏) := max
𝑎∈𝒜

[︃
𝑅(𝑏, 𝑎) + 𝛾

∑︁
𝑏′∈ℬ

T(𝑏, 𝑎, 𝑏′)𝑉 *(𝑏′)

]︃
. (2.4)

30

2.3 Planning with State Uncertainty

The reward model over a belief state, 𝑅(𝑏, 𝑎), is defined as:

𝑅(𝑏, 𝑎) =
∑︁
𝒳∈𝒳

𝑏(𝒳)𝑅(𝒳 , 𝑎). (2.5)

2.3.1 Complexity of Solving POMDPs

POMDPs are often considered to be computationally intractable to solve
exactly. This is the case for two reasons:

The first reason is due to the curse of dimensionality: Even a limited
number of discrete states |𝒳 | leads to a (|𝒳 | − 1)-dimensional continu-
ous belief space ℬ [81]. Therefore, naive discretization of the belief space
results in an exponential number of belief states over the number of states.

The second reason is the curse of history: The number of possible action-
observation sequences, starting at a belief 𝑏0, is (|𝒜||𝒪|)𝑛 and therefore
grows exponentially with the length of the history 𝑛. Nonetheless, to calcu-
late exact solutions to POMDPs, all possible histories must be considered.

This makes finding an optimal policy for a finite-horizon POMDP
PSPACE complete [79]. Solving a POMDP for an infinite horizon is even
undecidable [70].

Nonetheless, many algorithms have been developed which calculate ap-
proximate solutions for POMDPs as surveyed in [85]. These approximate
techniques allow to successfully approximate optimal solutions online on
large state spaces (|𝒳 | > 100.000).

These positive results lead to further investigations about what under-
lying characteristics of POMDPs make them easier to solve. The authors
of [41] introduce a so called covering number of a POMDP as the number
of balls of a certain diameter which are needed to cover the reachable belief
space. It is shown that a solution can be calculated in time polynomial in the
covering number of a reachable belief state and the authors argue that the
number of states may be a poor measure of the complexity of a POMDP.

2.3.2 Solving POMDPs

In the following, it is explained how the belief state of the world can be
estimated over time and how POMDPs can be solved. An overview of the
most common online POMDPs solvers is given.

31

2 Background

Belief Update

The policy contains the optimal action 𝑎𝑡 = 𝜋(𝑏𝑡) at time 𝑡, given the
current belief 𝑏𝑡. The current belief 𝑏𝑡 can be estimated with recursive
Bayesian estimation by using the last belief state, 𝑏𝑡−1, the last action 𝑎𝑡−1

as well as the actual observation 𝑜𝑡:

𝑏𝑡+1(𝒳 𝑡+1) = 𝑃 (𝑜𝑡, 𝑎𝑡, 𝑏𝑡). (2.6)

The Bayesian filter can also be used for state estimation only, as done
in [126], to track the model parameters of the surrounding agents. In
general, formulations with discrete states and formulations with linear-
Gaussian transition models and Gaussian observation models can be solved
exactly [51]. For discrete state problems a Bayesian discrete state filter is
used. Problems on a continuous state space with a linear-Gaussian tran-
sition and observation model can be solved exactly with the well-known
Kalman filter [46]. If the transition model is non-linear, exact solutions

Algorithm 2 Unweighted particle filter

1: function UPDATE BELIEF(𝑏, 𝑎, 𝑜)
2: 𝑏← ∅
3: for 𝑖← 1 to |𝑏| do
4: 𝒳 ∼ 𝑏
5: repeat
6: 𝒳′ ∼ T(𝒳 , 𝑎,𝒳′)
7: 𝑜′ ∼ Z(𝑜, 𝑎,𝒳′)
8: until 𝑜′ = 𝑜
9: add 𝒳′ to 𝑏

10: end for
11: return 𝑏′

do not exist anymore. For the case of a non-linear, continuous transition
function various modifications of the Kalman filter exist. The extended
and unscented Kalman filters allow to find non-optimal solutions in these
cases [45] by using linearized transition functions or approximated Gaus-
sian distributions.

The above mentioned approaches do only work, if the probability density
function of the belief state can be described analytically, e.g. with a (set
of) Normal distributions. Another possibility is to describe the probability

32

2.3 Planning with State Uncertainty

𝒳

𝑝(𝒳)

𝜇𝜇 − 𝜎 𝜇 + 𝜎

(a) Analytic description of
𝒩 (𝜇, 𝜎).

𝒳

𝑝(𝒳)

(b) Description with an un-
weighted set of particles.

𝒳

𝑝(𝒳)

(c) Description with a
weighted set of particles.

Figure 2.1: Different methods to present the probability density function of a nor-
mal distribution. The representation with particles allows for describing arbitrary
probability density functions.

density function, by a set of (weighted) state instance, i.e. particles. The
underlying idea is shown in Fig. 2.1 for the case of a normal distribution.
Additionally, typical filters based on the idea of particles are able to track
the probability even for highly non-linear or even non-continuous transition
models. This work uses an unweighted particle filter to track the current
belief state, the pseudo code of the algorithm is presented in Alg. 2 and is
inspired by [51].

Point-Based Solvers

As introduced in Sec. 2.3.1, one of the main difficulties in solving POMDPs
is the continuous belief state. Nonetheless, the authors of [100] showed,
that the value function of a POMDP is always piece-wise linear and convex
in the belief (see the left figure in Fig. 2.2 for an example). This character-
istic allows a simple representation of the optimal value function over the
continuous belief by a set of 𝛼-vectors. An alpha vector 𝛼𝑎 contains the
reward for every possible state, assuming action 𝑎, s.t. 𝛼𝑎 = 𝑅(·, 𝑎). The
alpha vector describes a |𝒳 |-dimensional hyperplane in the belief space ℬ
and allows to describe the value function as

𝑉 (𝑏) = max
𝛼

∑︁
𝒳∈𝒳

𝛼(𝒳)𝑏(𝒳). (2.7)

The idea of POMDP value iteration is to describe every possible plan
until a certain depth by 𝛼 vectors. Nonetheless, solving a POMDP ex-
actly with such an approach is infeasible as the number of needed al-

33

2 Background

Figure 2.2: Left: Point-Based Value Iteration (PBVI) keeps a set of 𝛼-vectors to
approximate the value function over the whole belief. Right: Grid based approaches
approximate the value function only for a set of belief-value pairs [14] (graphic
from [81]).

pha vectors |𝛼𝜋| for optimization depth of 𝑛 grows exponentially, s.t.
|𝛼𝜋| = |𝒜|(|𝒪|𝑛−1)/(|𝒪|−1) [51].

The idea of point-based algorithms is to overcome that problem by back-
ing up the value function only for a discrete set of chosen belief-points.
The first algorithm, alleviating this idea, was the PBVI algorithm, pro-
posed by [81]. The algorithm selects an initial set of belief points and
estimates their value by use of 𝛼-vectors. In a next step, further belief
points are added if it introduces a strong improvement on the value of the
belief. Two other known algorithms are Heuristic Search Value Iteration
(HSVI) [98] and Successive Approximations of the Reachable Space un-
der Optimal Policies (SARSOP) [57]. Both algorithms use graph search to
limit the optimization to the reachable belief while pruning the tree with
upper and lower bounds.

A complete survey of point-based solvers can be found in [93].

Sampling-Based Solvers

While the point-based solvers in the previous section simulate full belief
trajectories, sampling-based solver use simulated histories to estimate the
value of certain belief states.

The belief state itself is hereby represented by particles (similar to the
belief state of a particle filter). Potential histories are simulated based on a
particle. Simply representing the belief state by a set of particles may sound
like a simple approach compared to representing the value function over a
continuous belief with 𝛼-vectors. Nonetheless, the characteristic of MCTS

34

2.3 Planning with State Uncertainty

based search, i.e. focusing on the most promising branch, allows to produce
fast approximations to the optimal value function for relevant beliefs.

The first Monte-Carlo algorithm for POMDPs was introduced by [96].
The idea is to represent the current belief by a set of particles and construct
a belief tree by sampling possible episodes in the reachable belief. That
way, the optimized policy is only calculated for the current belief. Repre-
senting the belief state by a set of particles allows to update the belief by
an unweighted particle filter given the current observation. This allows to
keep the relevant part of the belief tree alive instead of reconstructing the
tree from scratch. The authors of the Adaptive Belief Tree (ABT) algorithm
adapt the algorithm to be able to keep the belief tree even in cases where the
model changes by detecting the relevant episodes. A Determinized Sparse
Partially Observable Tree (DESPOT) is constucted in [99]. The idea is to
constrain the growing of the belief tree by observing if new branches do
change the current optimal policy or not. The authors of [21] drastically
speed up the idea of DESPOT by parallelizing action selection as well as
roll-outs on a CPU and GPU simultaneously.

2.3.3 The Simplified QMDP Formulation

While the POMDP formulation is very generic, simplified formulations ex-
ist.

A popular one is the so-called Fully Observable Value Approximation
(QMDP). The idea behind a QMDP is to calculate a solution under the
assumption that the state uncertainty disappears after the fist planning step,
i.e. the next state is fully observable [69].

The QMDP approximation is defined as follows:

𝑄(𝑏, 𝑎) =
∑︁
𝒳∈𝒳

𝑏(𝒳)𝑄MDP(𝒳 , 𝑎). (2.8)

This leads to selection of the action which maximizes the long term re-
ward, weighted over all states. The underlying assumption, that all uncer-
tainty vanishes in the next step, makes it a overly confident, unsafe planner.
Nonetheless, it can be shown that a QMDP solution is an upper bound to
the value function of a POMDP [51]. This makes it very interesting for use
as heuristic.

35

2 Background

2.3.4 Policy Optimization: Online vs Offline

In the context of solving a POMDP, offline is referred to finding a suffi-
ciently optimized policy over the whole belief space prior to execution. An
online solver on the other hand, calculates only the optimal action for the
current belief assuming a certain optimization depth 𝑛. After execution of
the optimal action, the belief is updated and the optimal policy is optimized
again for the new belief.

As it is computationally challenging to solve a POMDP online, one
might argue that solving it offline could be a possibility.

Nonetheless, this is not the case due to various reasons. At first, finding
a (belief) state representation for every possible scenario with a completely
varying number of agents, lanes, traffic regulations, etc. is intractable for
planning-based approaches due to the sheer manifold of situations. Even if
such a representation could be found, the dimensionality of the state space
may explode as every detail (geometries, lane markings) of the scene must
be incorporated in the state space. This makes the problem to solve by
magnitudes harder. In the case of online approaches on the other hand, only
the dynamic agents must be part of a state space whereas scene information
such as lane geometries can simply be considered as actual parameters of
the motion models of the agents which does not change the dimensionality
of the state space. Moreover, online solver calculate the optimal policy for
the current belief only which allows them to only consider the reachable
belief space on a limited horizon. Additionally, even if a generic problem
formulation can be found and solved, describing and storing the resulting
policy may become difficult due its sheer size.

Nonetheless, the idea of offline approaches is pursued in different,
promising ways. Learning based approaches try to tackle the problem of
a generic input space by using either various, preprocessed top-down views
as input for a deep imitation learning architecture (as done by Waymo’s
ChauffeurNet [6]) or by learning directly from front camera images [13].
Nonetheless, these approaches are currently in an early stage and are lim-
ited by the amount of possible training data (including corner-cases) and
have difficulties to give guarantees on the learned behavior in the Deep
Neural Net (DNN). Approaches which combine both worlds exist and are
very promising. The these cases, the idea is to have an online graph/tree
search which relies heavily on heuristics, which are learned offline. Such
a approach is for example used for the artificial intelligence used to play

36

2.4 Solving POMDPs in this Thesis

and win against humans in the board game Go [95]. Hence the problem is
solved online in this thesis.

2.4 Solving POMDPs in this Thesis

In this thesis the Toolkit for Approximating and Adapting POMDP
Solutions in Real Time (TAPIR) [50] is used to solve a POMDP online.
It is an implementation of the ABT algorithm [58], one of the fastest
POMDP solvers today. The algorithm is anytime and capable of solving
large POMDPs even on continuous belief states online.

It approximates the optimal policy by Monte Carlo sampling of potential
episodes in the reachable belief space. ABT uses MCTS, but modified for
POMDPs. This section explains at first the standard MCTS algorithm. It is
followed by the transfer of MCTS to POMDPs and further details on how
ABT and the implementation in this thesis works.

2.4.1 Monte Carlo Tree Search

MCTS was first introduced in [22] where it was used for sequential decision
making in games. The transition model in games is probabilistic as the next
state of the game depends on the controllable action of the agent but also
on the unknown action of the other player. The general idea of MCTS is
to combine a deterministic tree search with random sampling. This allows
to solve MDP formulations, which cannot be solved by traditional graph-
search due to the non-deterministic nature of their transition model.

A major breakthrough occurred with the introduction of the Upper Confi-
dence Bound for Trees (UCT) algorithm [52]. UCT balances the search in a
way which allows to sample promising branches more frequently to achieve
a very precise estimate of the value of promising branches. Less promis-
ing actions on the other hand are sampled less often. This procedure is
very powerful and allows to solve otherwise infeasible, probabilistic graph
search. The idea behind the UCT is similar to the exploration-exploitation
dilemma in Reinforcement Learning (RL), but happens completely offline.
The nodes of the tree correspond to states. The algorithm performs many
simulations of so-called possible histories to estimate the state-action value
function 𝑄(𝒳 , 𝑎). One simulation is composed by four steps as shown in
Fig. 2.3:

37

2 Background

1. Selection: Traverse the tree until an expandable node is reached (non-
terminal state and unexpanded children)

2. Expansion: Expand the node

3. Simulation: Do a roll-out with a default policy to estimate future
rewards

4. Backpropagation: The received rewards are propagated back to up-
date the statistics of prior nodes

Figure 2.3: The 4 steps of MCTS: Selection, Expansion, Simulation, Backpropaga-
tion (graphic from [19]).

The combination of a smart selection method (e.g. the UCT algorithm)
and the fast estimation of future rewards by a sufficiently good default pol-
icy allows to reduce the search space drastically, which gives the algorithm
its online capabilities. For a more detailed description of MCTS, the reader
is referred to [19].

2.4.2 MCTS for POMDPs

The idea of using MCTS for POMDPs was introduced in [96] and has been
advanced by ABT [58]. In the following, the ABT algorithm is explained
in detail as it serves as an algorithmic foundation in this thesis.

ABT describes the root node 𝑏 of the belief tree 𝒯 by a set of particles. To
construct 𝒯 , ABT selects randomly one of the particles of the root node and

38

2.4 Solving POMDPs in this Thesis

0 s 1 s time

Planning horizon

𝑏0

𝑎0 𝑎1 𝑎2

𝑜0 𝑜0 𝑜0𝑜1 𝑜1

𝑏1 = 𝜏(𝑏0, 𝑎, 𝑜)

sample action:
𝑎 ∈ 𝒜(𝑥) = argmaxUCT()

sample observation:
𝑜 ∼ 𝑍(𝑜, 𝑥′, 𝑎) = 𝑃 (𝑜|𝑥′, 𝑎)

sample new state:
𝑥′ ∼ 𝑇 (𝑥′, 𝑥, 𝑎) = 𝑃 (𝑥′|𝑥, 𝑎)

𝐴* roll-out

𝐶𝑉 roll-out

Approximate ̂︀𝑉 (𝑏′) by calculating a near-optimal
solution for one deterministic particle.

sampling of episodes

𝜉ref 𝜉ref 𝜉ref

particle

tracked belief

𝑜

𝑎 = 𝑎𝑟𝑔 𝑚𝑎𝑥 ̂︀𝑄(𝑏0, 𝑎)

𝑏′

Figure 2.4: Construction of the belief tree by online sampling of possible episodes
(graphic from [124], c○2018 IEEE).

samples a so called episode 𝑢 (see Fig. 2.4). An episode is one possible sce-
nario with a maximum length of the planning horizon 𝑡hor. It is described
by a sequence of quadruples (𝒳 , 𝑎, 𝑜, 𝑅). The tree is traversed by the UCT
algorithm during the selection step (see Sec. 2.4.3 for further details). If
an expandable node is reached, a not yet expanded action is sampled. This
is followed by sampling a new state 𝒳′ and by sampling a corresponding
observation 𝑜′ using the transition function T and the observation function
Z. The newly discovered belief state 𝑏′, is therefore described by only one
state particle until further episodes reach that belief. From that belief, an
optimal roll-out strategy is determined online in the simulation step (see
Sec. 2.4.5 for further details on the roll-out) to get a first estimate of 𝑉 (𝑏′).

The goal of the ABT algorithm is to approximate the optimal policy
𝜋*(Eq. (2.3)). Estimating 𝜋*(𝑏) is done by estimating the Q-function
𝑄(𝑏, 𝑎) first. It describes the expected reward, given a certain action, s.t.

𝑄(𝑏, 𝑎) = 𝑅(𝑏, 𝑎) + 𝛾
∑︁
𝑜∈𝑂

𝜏(𝑏, 𝑎, 𝑜)𝑉 *(𝜏(𝑏, 𝑎, 𝑜)). (2.9)

39

2 Background

This allows to retrieve the optimal policy 𝜋*(𝑏) as

𝜋*(𝑏) := arg max
𝑎∈𝒜

𝑄(𝑏, 𝑎) (2.10)

with 𝜏(𝑏, 𝑎, 𝑜) being the belief update function, s.t. 𝑏′ = 𝜏(𝑏, 𝑎, 𝑜), given
the old belief 𝑏, the received observation 𝑜 and the previously executed
action 𝑎.

In case of an MDP, the state-value Q-function, 𝑄(𝒳 , 𝑎), is directly es-
timated via the cumulative rewards following action 𝑎. The difference in
the case of POMDPs is that the Q-function is estimated via the recorded
episodes 𝑢. After every episode, the rewards of the episode are backpropa-
gated and 𝑄(𝑏, 𝑎) of passed beliefs is updated. The Q-function is estimated
as ̂︀𝑄(𝑏, 𝑎) =

1

|𝑈(𝑏,𝑎)|
∑︁

𝑢∈𝑈(𝑏,𝑎)

𝑉 (𝑢, 𝑛) (2.11)

with 𝑈(𝑏,𝑎) ⊆ 𝑈 being the subset of the set of all sampled episodes 𝑈 , that
contain the sequence (𝑏, 𝑎). The depth of the tree is defined as 𝑛, the value
of an episode 𝑢 starting from depth 𝑛 is defined as 𝑉 (𝑢, 𝑛). The value of a
history 𝑉 (𝑢, 𝑛) is defined as

𝑉 (𝑢, 𝑛) =

|𝑢|∑︁
𝑖=𝑛

𝛾𝑖−𝑛𝑅(𝑢𝑖.𝒳 , 𝑢𝑖.𝑎). (2.12)

2.4.3 UCT Action Selection

Action selection is required during the selection step and in the expansion
step. Both can be formulated together as

𝑎 :=

⎧⎨⎩∼ 𝒜
′ , if𝒜′ ̸= ∅

arg max
𝑎∈𝒜

̂︀𝑄(𝑏, 𝑎) + 𝑐
√︁

𝑙𝑜𝑔(|𝑈𝑏|)
|𝑈(𝑏,𝑎)|

, otherwise
(2.13)

with 𝐴′ being the uniform distribution over all actions which have not yet
been selected in the corresponding belief state, |𝑈𝑏| the number of episodes
containing belief 𝑏 and |𝑈(𝑏,𝑎)| the number of episodes executing action 𝑎 in
𝑏. A scalar, proportional exploration coefficient is defined as 𝑐 and allows to
trade off between exploration and exploitation. This type of action selection
is called UCT [52].

40

2.4 Solving POMDPs in this Thesis

The benefit of the UCT algorithm is twofold. First, it balances explo-
ration and exploitation. This avoids searching the belief space exhaustively
and at the same time allows to estimate promising solutions precisely very
fast. Secondly, the search focus on promising actions is needed to converge
to the optimal Q-function, given enough runtime. The Q-function ̂︀𝑄(𝑏, 𝑎)
is estimated via the mean of all episodes starting at 𝑏. It does only converge
to the optimal Q-function 𝑄*(𝑏, 𝑎) if the actions of the optimal policy are
selected more often via the UCT action-selection (see Eq. (2.13)). Despite
that the algorithm may find non-optimal solutions given not enough run-
time, it is observed that simply more conservative policies are found in this
case. This is the case as the branch of the currently best action is most
likely expanded and even an unlikely collision is found very fast.

2.4.4 Belief State Tracking and Observation Clustering

The current belief state is represented via a set of particles containing the
possible state instances (see e.g. Fig. 2.4). The belief state is tracked with
an unweighted particle filter using simple rejection sampling for two rea-
sons (see Alg. 2). First, the probability distribution of the belief state may
become very different to Normal distributions during the interactive for-
ward simulation. Therefore more exact filtering methods cannot be used.
Secondly, tracking the belief state directly in the belief tree allows to con-
serve the relevant part of the tree and not to reconstruct the complete tree
anew. This is possible by using the subtree which is constructed by all the
episodes, that contain the sequence of the previously selected action and
the new belief.

Observation Clustering

The belief update as well as the sampling of episodes in the belief tree re-
quires the binary comparison of two continuous observations. This is done
by comparing two observations, 𝑜1 and 𝑜2, with their maximum Euclidean
distance 𝑜max as follows:

𝑜1 = 𝑜2, iff ||𝑜1 − 𝑜2||2 ≤ 𝑜max. (2.14)

During the simulation of the belief tree, the observations which are fol-
lowing a certain action 𝑎 must be clustered into a discrete number of pos-
sible observations. This is the case as the structure of a tree can only be

41

2 Background

𝑎1 𝑎2

𝑜

𝑏0

𝑏′1 = 𝑓(𝑎1, 𝑜1) 𝑏′2 = 𝑓(𝑎1, 𝑜2) 𝑏′3 = 𝑓(𝑎2, 𝑜3) 𝑏′4 = 𝑓(𝑎2, 𝑜4)

𝑜1 𝑜2 𝑜3 𝑜4

Figure 2.5: The clustering of continuous observations into a discrete set of possible
observation clusters. Every observation cluster is defined by one certain observation
𝑜1:4 which defines the center of an observation.

generated when a discrete number of observations exist. Respecting the
continuous nature of the observation space also in the belief tree would
lead to an infinite number of possible observations.

The clustering method is presented in Fig. 2.5. Every possible observa-
tion cluster is defined by a certain observation 𝑜1:4. If a new observation
arrives, it is tried to match it on one of the existing observation clusters. If
this is not possible, the new observation defines a new observation cluster
itself. This may lead to observation clusters which do overlap as shown in
Fig. 2.5 for the clusters generated by observations 𝑜3 and 𝑜4. A new ob-
servation which matches both clusters is assigned to the cluster, which has
been generated first.

This clustering is suboptimal due to two reasons. At first the center of
the clusters is selected without having seen all the data. Secondly, possi-
ble overlapping clusters can introduce a higher uncertainty in a belief on a
certain depth of the tree than necessary. This may result in a suboptimal
policy.

2.4.5 Calculating Optimized Roll-Outs

As soon as a new belief state is explored (labeled 𝑏′ in Fig. 2.4), the initial
value of the belief state is set to a heuristic estimate to allow the UCT al-

42

2.4 Solving POMDPs in this Thesis

gorithm to converge faster. This can be done by a default roll-out strategy
or even a random walk until the planning horizon. Nonetheless, a good
approximation of the optimal value function of the newly explored belief̂︀𝑉 *(𝑏) allows the algorithm to converge by magnitudes faster [19]. In this
theses, the heuristic value is calculated by solving a deterministic, simpli-
fied problem online as soon as a new belief state is encountered. As the
new belief state is at that point described by one sample only, the belief
state is deterministic until more episodes pass this belief. By additionally
removing the Gaussian noise on the motion models of the other agents, the
planning problem becomes deterministic.

The optimization problem is solved by either a Dijkstra or 𝐴* graph
search throughout the thesis. Solving a graph search on a longer horizon
is computationally too expensive for use as a heuristic. This is the case as
the heuristic will be called once per episode, i.e. several 1000 times during
one optimization run. Therefore, an approximation is used to the complete
search by aborting the graph search after a certain number of steps and
using constant velocity actions afterwards. Throughout this thesis, opti-
mization is used for the first three steps, followed by a constant velocity
roll-out until the optimization horizon.

2.4.6 Creating Consistent Plans

It is desired that the behavior layer creates consistent plans. This means that
the reference trajectory does not jump from one behavior to another without
major changes in the predicted behavior of the other agents. Nonetheless,
this undesired effect can occur because of the fact that the algorithm replans
frequently and that the reference trajectory is not tracked accurately. This
is the case as the trajectory planner optimizes the trajectory with another
cost function, focusing on comfort instead of behaviors. Next to this de-
sired deviation of the trajectory planner, the controller itself is not able to
track the trajectory exactly. Therefore, the driven trajectory deviates from
the planned 𝜉ref (see Fig. 2.6 for a visualization). In the case of replan-
ning the trajectory, which happens frequently in a receding horizon control,
the planner may find another, cheaper maneuver due to the different start
state. To prohibit such a jump in behaviors, the current desired state on the
reference trajectory instead of the measured state is used for replanning.
The idea is presented in Fig. 2.6 with an example based on trajectories but
works in the same way for closed loop planning with policies. This method

43

2 Background

t

s

1

𝜉𝑡=0
ref

𝜉𝑡=1
ref

𝒳meas

𝒳des

possible deviation
of trajectory planner

possible deviation
of controller ̃︀𝜉 𝑡0:𝑇

0

0

trajectory planner
controller

Figure 2.6: The trajectory planner as well as the control algorithm deviate from the
reference trajectory 𝜉ref . Frequent replanning behavior may therefore result in a
jump from one maneuver (𝜉𝑡=0

ref , i.e. passing before the dynamic agent) to another
(𝜉𝑡=1

ref , i.e. passing behind the dynamic agent). To avoid this undesired behavior,
replanning at 𝑡 = 1 is performed from the currently desired state 𝑥des = 𝜉𝑡=0

ref (1)
instead of the currently measured state 𝑥meas.

is also used for replanning of trajectories without integrating a drift due to
control errors [110].

2.4.7 Batch Sampling of Episodes

The ABT algorithm is anytime. Therefore, the planner has to trade off
between the used time interval for the optimization of the policy and the
introduced delay until sampling of episodes is done and a policy is avail-
able. The more time is used for sampling of episodes, the better the policy
is approximated. On the other hand, the earlier the policy is send to the tra-
jectory layer, the less delay is introduced between the sensor measurements
and the corresponding policy. Hence, it is chosen in this work to approx-
imate the policy by sampling possible episodes for 200 ms (see Fig. 2.4).
After 200 ms, the reference trajectory 𝜉ref is extracted from the approxi-
mated, optimal policy ̂︁𝜋*. It is send to the trajectory planning layer for
execution. The reference trajectory is extracted from the optimal policy by
choosing the most likely trajectory which is included in the policy:

𝜉ref = arg max
𝜉∈𝜋

𝑃 (𝜉). (2.15)

44

2.5 Reducing the Dimensionality of the Action Space

While the solution is optimized for 200 ms, a step size of ∆𝑡 = 1𝑠 is used
to construct the tree to allow for a planning horizon of 8-10 s. Therefore,
the particle filter can only match an observation, which is received after 1 s.
The spare time until a new observation arrives is used to sample additional
episodes, to make the tree more robust. This is done in several blocks of
200 ms and the updated 𝜉ref is send to the planning layer after every block
(see Fig. 2.4 for more details).

2.5 Reducing the Dimensionality of the Action Space

The autonomous agent is operating in a dynamic, 2-dimensional workspace
(assuming a planar environment). To allow the autonomous agent to reach
various configurations in the workspace, the action space 𝒜 must contain
actions for its longitudinal accelerations as well as different steering angles
and also the combinations thereof. Nonetheless, the size of the action space
grows exponentially with its dimension, due to combinations of actions in
different dimensions. Even if the 2-dimensional action set 𝒜 is reduced by
non-holonomic constraints, it may be intractable to solve if the number of
discrete actions in each dimension increase.

The idea of the path-velocity decomposition [48] is to decompose the
problem into two simpler subproblems:

1. plan a path around static obstacles while considering kinematic con-
straints

2. plan the longitudinal speed profile considering dynamic objects and
dynamic constraints.

The path-velocity decomposition is applicable, as long as the path is in-
dependent of the longitudinal velocity. As this is the case for many sce-
narios of automated driving (see [113] for a comparison of scenarios), the
path-velocity decomposition is widely used for motion planning algorithms
for autonomous driving. In this thesis, path-velocity decomposition is used
throughout all chapters, except for the algorithms concerning lane changes
(Chap. 5) and in parts for the algorithms handling occlusions (Chap. 6).
These scenarios present a strongly coupled problem which require com-
bined longitudinal and lateral optimization.

45

3 Planning for Combinatorial Decision
Making

This chapter describes an optimal behavior planner for urban environments.
Most current motion planning frameworks are based on rule-based decision
making for one of a discrete set of potential maneuvers (see Sec. 3.1). Such
an approach relies on an a priori selection of a discrete set of maneuvers.
Nonetheless, the a priori definition of such a set as well as the design of a
logical-reasoning based arbiter for the maneuver decision may become in-
feasible in complex, urban environments. This is the case as their countless,
different road topologies including intersecting lanes (as opposed to high-
ways), a varying number of other vehicles/pedestrians and multiple traffic
rules lead to a large amount of parameters to be considered. This is either
intractable with a rule-based system or leads to suboptimal behavior.

The main contribution of this section is the presentation of a globally
optimal planner that optimizes in the space of behaviors and trajectories.
Its non-convex formulation allows for planning of global optimal trajecto-
ries on a receding time horizon. That implies that the planning algorithm
itself allows for implicit decision making. It considers various different
events and constraints at the same time in the optimization formulation.
These are traffic rules (e.g. traffic lights, speed limits) as well as dynamic
objects which are formulated as constraints. The planner is an open loop
planner, i.e. an estimated future trajectory of the other agents is consid-
ered but future, possible observations are not considered. The result is a
reference trajectory representing an optimal behavior which contains all
decisions implicitly. A key idea of the algorithm is to do a path-velocity
decomposition (see Sec. 2.5) first and optimize the velocity only in lon-
gitudinal direction on the preplanned path. While this does not allow for
combined, longitudinal and lateral optimization, the optimal solution may
still be found in most scenarios (see [113] for a comparison of the different
cases). The longitudinal formulation enables fast solving of an 𝐴* formu-
lation by use of a heuristic based on the idea of Inevitable Collision States
(ICS) [31]. The provided trajectories are dynamically feasible, safe and le-
gal. Also, comfort is optimized over the complete planning horizon. The

47

3 Planning for Combinatorial Decision Making

presented deterministic planner can be used as a standalone, open loop, be-
havior planning module. Additionally, it is also used as heuristic itself in
the presented algorithms in the following chapters.

The chapter is based on and was previously published in [121].

3.1 Related Work

Solving the global optimization problem under the high demand of com-
bined longitudinal and lateral comfort optimization and environment con-
straints is considered to be computationally intractable [116]. Nonetheless,
motion planning algorithms which solve single, capsulated subproblems,
exist. In [71, 63] the approaching of and decision making at traffic lights
is handled from an energy-optimal perspective while [72] minimizes jerk
while making crossing decisions at intersections. Anticipatory, energy ef-
ficient approaching on slower vehicles is presented in [55]. A supervised
learning model for car following behavior is presented in [114]. An algo-
rithm which also does a path-velocity decomposition [48] and plans in the
velocity-time frame is presented in [43]. It creates a graph first by plan-
ning trajectories between the edges of crossing vehicles and searches the
generated graph for the minimum-cost solution afterwards. This allows for
global optimization but on a very sparse graph.

As these algorithms only solve certain subproblems, a local trajectory
planner is normally embedded in a framework, where a higher layer does
the decision making for a certain behavior and parameterizes the trajectory
planner accordingly. These decision making systems are often rule-based
and for example formulated as a decision tree [3] or as a state machine as
teams of the DARPA Urban Challenge [107, 117] did. Another approach
is to represent the situation with high-level, semantic states and search the
generated graph in a second step [53]. Nonetheless, the retrieved solution
may be dynamically infeasible and must therefore be validated [54]. The
approach also requires a set of rules which describe how the current situa-
tion may be processed into the high-level, abstract state space. Instead of
rule-based systems, also the maneuver with the minimum acceleration or
minimum total cost may be chosen, as done in [111, 56]. While the ap-
proach of only considering a limited amount of predefined maneuvers is
feasible on highways, this may become intractable in urban environments
due to the high amount of varying topological situations and corresponding
maneuver possibilities. Especially, more complex maneuvers such as early

48

3.2 Problem Formulation

braking during following behavior because of a traffic light switching to
red in a larger distance is difficult to be designed by a rule-based system.

None of these algorithms is able to find the optimal maneuver in urban
environments under the combined consideration of comfort-optimization,
respecting traffic rules and a varying number of dynamic objects.

3.2 Problem Formulation

The algorithm expects a global path 𝑟0 of the autonomous vehicle 𝑁0. This
path can be retrieved by a path planning algorithm such as the variational,
local planner presented in [119]. The path must be at least represented
by sampled global positions 𝑞𝑖 ∈ R2 and 𝑖 ∈ [0, . . . , 𝐼], 𝐼 ∈ N, with an
assumed, sufficiently dense, spatial sampling distance such that an approx-
imate transformation to the Frenet frame is possible. The transformation to
the Frenet frame describes the arc length 𝑠 ∈ R along the path 𝑟0 from a
path origin 𝑞0 to the current point 𝑞𝑖 as: 𝑞𝑖 → 𝑠 [112].

The absolute velocity is bounded by �̇� ∈ [0, 𝑣max] with 𝑣max(𝑠) being a
function of the path’s curvature 𝜅 at distance 𝑠, i.e. 𝑣max(𝑠) = 𝑓(𝜅(𝑠))
and the vehicle’s acceleration 𝑎 being the system’s bounded input 𝑎 ∈
[𝑎min, 𝑎max]. The motion of the autonomous car on its path can be de-
scribed by a set of linear, differential equations:[︂

�̇�
𝑠

]︂
=

[︂
0 1
0 0

]︂[︂
𝑠
�̇�

]︂
+

[︂
0
1

]︂
𝑎. (3.1)

Along the given path 𝑟0 exists a finite set 𝐸 of events 𝑒𝑖 that are described
by 4-tuples: 𝑒𝑖 =

(︁
𝑡𝑒𝑆start, 𝑡

𝑒𝑆
end, 𝑠

𝑒𝑖
0,start, 𝑠

𝑒𝑖
0,end

)︁
. The event 𝑒 occupies the

lane for a time interval [𝑡𝑒𝑖start, 𝑡
𝑒𝑖
end] at positions

[︁
𝑠𝑒𝑖0,start, 𝑠

𝑒𝑖
0,end

]︁
. These

events must not intersect with the position 𝑠 of the autonomous vehicle at
any time. In addition, a finite set 𝐿 of traffic laws 𝑙𝑖(𝑠) is imposed along the
road and limits for example the absolute velocity. The goal of the driving
strategy is to generate an optimal behavior in longitudinal direction, repre-
sented as trajectory. This may be formulated as the following combinatorial
optimization problem:

𝑎(𝑡) = arg min
𝑎(𝑡)

𝑡hor∑︁
𝑡=0

𝐽(𝑠, �̇�, 𝑠, 𝜅(𝑠), 𝐸, 𝐿). (3.2)

49

3 Planning for Combinatorial Decision Making

As this problem does, in general, not only have one global minimum but
different local ones (i.e. different maneuvers) as well as various constraints
(e.g. speed limits), it is a constrained non-convex problem.

The task of the behavior planner is hereby to find a global optimum,
i.e. a long term solution (𝑡hor ≥ 10𝑠) for the combinatorial optimization
problem. The reference solution is then provided to the trajectory planner
presented in [112] and executed in a jerk optimal way. This combination of
a global and a local planner is described in Sec. 1.5 illustrated in Fig. 1.15.

3.3 Approach

This algorithm plans global optimal behavior that consider traffic laws, long
term comfort and human driving conventions.

The corresponding optimization problem is formulated as a global, dis-
crete planning problem [61] and solved with an 𝐴* graph search [86]. The
state space 𝒳 ⊆ R3 describes only the configuration of the autonomous
robot. This is sufficient as the problem is solved online and because the
other agents are predicted independently and because possible future mea-
surements are not taken into account. Therefore, the state is described by
𝒳 = [𝑠, 𝑣, 𝑡]T ∈ 𝒳 , with 𝑠 being the longitudinal position along the path,
𝑣 being the longitudinal velocity and with 𝑡 being the the corresponding
time. The search graph is expanded online by use of a set of discrete set
of actions 𝒜, used for a sample time of ∆𝑡. As no states with a negative
velocity, 𝑣𝑖 < 0 are considered, the result is a directed, acyclic graph.

3.3.1 Transition Model

The discretized state transition from a state 𝒳 to the next state 𝒳′ is formu-
lated as

𝒳′ =

⎡⎣𝑠′𝑣′
𝑡

⎤⎦ =

⎡⎣1 ∆𝑡 0 0
0 1 0 0
0 0 1 ∆𝑡

⎤⎦
⎡⎢⎢⎣
𝑠
𝑣
𝑡
1

⎤⎥⎥⎦ +

⎡⎣ 1
2 (∆𝑡)2

∆𝑡
0

⎤⎦𝑎 (3.3)

with 𝑎 being the action of the autonomous car, i.e. the acceleration, selected
in state 𝒳 and executed for ∆𝑡.

50

3.3 Approach

Crossing Pedestrian

Switching Traffic Light

𝑟0
𝑁0

0 10 20 30 40 50
0

5

10

15

𝑠 [m]

𝑡
[s
]

Area Event: 𝑒𝐴
𝜉𝐴*

Static Event: 𝑒𝑆
Dynamic Event: 𝑒𝐷

Figure 3.1: Idea: The algorithm maps a typical urban traffic scene (top figure) into a
spatio-temporal cost map (bottom figure) along the planned path of the autonomous
car. The objects of the traffic scene are represented as constraints in the free space
of the cost map. This allows to find a global optimal behavior while respecting
various events simultaneously (graphic from [121], c○2016 IEEE).

3.3.2 Cost Function

The step cost 𝐽(𝒳 , 𝑎,𝒳′, 𝐸, 𝐿) is the cost for taking action 𝑎 in state 𝒳 to
traverse to state 𝒳′. The total cost of a trajectory is the sum of all interme-
diate costs [86, p. 68], s.t.

𝐽(𝜉) =

𝒳goal∑︁
𝒳=𝒳start

𝐽(𝒳 , 𝑎,𝒳′, 𝐸, 𝐿). (3.4)

51

3 Planning for Combinatorial Decision Making

The goal is to find the path from the start state to a goal state with mini-
mal costs. A sum of different costs terms is used to describe the different
optimization objectives:

𝐽(𝒳 , 𝑎,𝒳′, 𝐸, 𝐿) = 𝐽V(𝒳′, 𝐿) + 𝐽𝐴(𝑎) + 𝐽𝐸(𝒳 ,𝒳′, 𝐸) (3.5)

with 𝐽V(𝒳′) being the cost for any deviation to the desired speed, 𝐽𝐴(𝑎)
being the cost for taking action 𝑎 and 𝐽𝐸(𝒳 ,𝒳′, 𝐸) being the cost for a
collision while traversing from 𝒳 to 𝒳′.

Action Set

The discrete set of actions𝒜 represents different accelerations during a dis-
crete planning step ∆𝑡. Punishing accelerations quadratically reduces the
duration and intensity of acceleration which increases the driver’s comfort.
Therefore, the acceleration costs are defined as:

𝐽𝐴(𝑎) = 𝑎2. (3.6)

Reference Velocity

A so called reference velocity is defined to guide the autonomous vehicle
to drive with appropriate velocity. Therefore, a desired speed 𝑣des(𝑠) is de-
fined along the planned path, 𝑟0, of the autonomous car. The desired speed
at position 𝑠 is the desired speed under the assumption that no events exist.
It is a combination of the current legal speed limit 𝑣law(𝑠) and 𝑣curve(𝑠),
i.e. the limit introduced by the road’s curvature. The maximum curve speed
𝑣curve is defined as in [56] via a maximum allowed lateral acceleration,
𝑎𝑙𝑎𝑡,𝑚𝑎𝑥, in the curve which is defined by its curvature 𝜅(𝑠) along the path
of the autonomous vehicle:

𝑣curve(𝑠) =

√︂
𝑎lat,curve
𝜅(𝑠)

. (3.7)

The desired speed is retrieved by applying a smoothed curve approach fil-
tering to the minimum of the different velocities:

𝑣des(𝑠) = min(𝑣law(𝑠), 𝑣curve(𝑠)). (3.8)

This is shown in Fig. 3.2.

52

3.3 Approach

The velocity-dependent costs, 𝐽V, are defined by the deviation to the de-
sired velocity 𝑣des. Too high velocities are punished quadratically, too low
velocities are punished linearly to allow lower velocities during decelerat-
ing upon events (as red traffic lights). 𝐽V(𝑥𝑖+1) is then defined as follows:

𝐽V(𝑠′) =

⎧⎪⎨⎪⎩
(𝑣′ − 𝑣des(𝑠

′))2, 𝑣′ > 𝑣des(𝑠
′)

0, 𝑣′ = 𝑣des(𝑠
′)

1
2 (𝑣des(𝑠

′)− 𝑣′), 𝑣′ < 𝑣des(𝑠
′)

. (3.9)

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

𝑠 [m]

𝑣
[m
s
]

𝑣law

min(𝑣curve, 𝑣law)
𝑣des

Figure 3.2: Along the path 𝑟0, the desired velocity is limited by speed limits and
the curvature. The desired velocity is retrieved by smoothing the jumps to lower
velocities with an approach deceleration (graphic from [121], c○2016 IEEE).

This is done for curve approaches but not for curve departures. This is the
case, as the approach phase helps the algorithm to converge faster at these
points. When leaving curves, the delta to the desired velocity automatically
draws the velocity to the desired velocity.

Representation of the Environment

Along the path, there may be merging/crossing cars, traffic lights and cross-
ing pedestrians. Independently of their different causes of existence and
type, a behavior planner must incorporate all events in the decision making
process. The idea of this work is to present a very generic event definition,

53

3 Planning for Combinatorial Decision Making

capable of presenting arbitrary scenarios along the road. The set of existing
events is defined as 𝐸 = {𝑒1, 𝑒2, . . . , 𝑒𝐼}. A set of events may consist of
different types of events such that 𝐸 = 𝐸𝑆 ∪ 𝐸𝐷 ∪ 𝐸𝐴 with 𝐸𝑆 and 𝐸𝐴

representing events with a constant position/area on the path 𝑟0 and 𝐸𝐷

events with a time-dependent position.
A static event 𝑒𝑆 prohibits the autonomous vehicle to traverse a cer-

tain position 𝑠 on its path 𝑟0 at a certain position during a time interval
[𝑡𝑒𝑆start, 𝑡

𝑒𝑆
end] and can therefore be defined with the 3-tuple

𝑒𝑆 = (𝑡𝑒𝑆start, 𝑡
𝑒𝑆
end, 𝑠

𝑒𝑆). (3.10)

Dynamic events on the other hand have a time dependent position such
that 𝑠𝑒𝑆 = 𝑓(𝑡). In addition, a specific dynamic event 𝑒𝐷 has a de-
fined length of the corresponding object, 𝑙𝑒𝐷 , and therefore a plane in the
position-time dimension of the state space 𝒳 (see Fig. 3.1). It also al-
lows for the definition of a following distance 𝑑𝑒𝐷 , which defines a spatio-
temporal cost map 𝑀𝑒𝐷 , to realize a smooth following behavior of the
autonomous car. The cost map 𝑀𝑒𝐷 is realized as an increasing linear
function, defined by 𝑠𝑒𝐷 (𝑡), 𝑑𝑒𝐷 , 𝑙𝑒𝐷 in the interval [𝑡

𝑒𝐷,𝑖

start, 𝑡
𝑒𝐷,𝑖

end].
Therefore, the dynamic event is defined as the 5-tuple

𝑒𝐷 = (𝑡𝑒𝐷start, 𝑡
𝑒𝐷
end, 𝑠

𝑒𝐷 (𝑡), 𝑑𝑒𝐷 , 𝑙𝑒𝐷). (3.11)

Area events are defined as a conditional spatial cost map. They get acti-
vated when the autonomous vehicle is in the area and 𝑣 = 0 holds. There-
fore, they are only defined by a spatial tuple, such that

𝑒𝐴 = (𝑠𝑒𝐴start, 𝑠
𝑒𝐴
end). (3.12)

54

3.3 Approach

The total event-based costs are defined as

𝐽𝐸(𝒳 ,𝒳′, 𝐸) = 𝐽𝐸𝑆
(𝒳 ,𝒳′) + 𝐽𝐸𝐷

(𝒳′) + 𝐽𝐸𝐴
(𝒳′)

=
∑︁
𝐸𝑆

𝐽𝑒𝑆 (𝒳 ,𝒳′) +
∑︁
𝐸𝐷

𝐽𝑒𝐷 (𝒳′) +
∑︁
𝐸𝐴

𝐽𝑒𝐴(𝒳′)

with

𝐽𝑒𝑆 =

{︃
∞, if

−−→
𝒳𝒳′ ∩ 𝑒𝑆 ̸= ∅

0, otherwise
,

and

𝐽𝑒𝐷 =

⎧⎪⎨⎪⎩
∞, if𝒳′ ∈ 𝑒𝐷

𝑀𝑒𝐷 (𝒳′), if𝒳′ ∈𝑀𝑒𝐷

0, otherwise

,

and

𝐽𝑒𝐴 =

{︃
𝑐area, if𝑠 ∈ [𝑠𝑒𝐴start, 𝑠

𝑒𝐴
end] ∩ 𝑣 = 0

0, otherwise
.

(3.13)

The motion primitive connecting 𝒳 and 𝒳′ is defined as
−−→
𝒳𝒳′. Allowing the

ego to stop on an area can be balanced with the area costs, 𝑐area.
The various, different event types define interfaces which allow to frame

relevant things along the road as events. This enables easy extension of
the behavior planner as extending simply means to frame a new event as
one of the different event types and add it to the cost function. The behav-
ior planner will immediately respect the new event and consider it in the
combined decision making process. Hence, adding an event is completely
independent from the other events. This limits the complexity of the al-
gorithm from a design perspective as every event may be considered and
added independently of the others.

Modeling of Traffic Lights as Dynamic Events

The decision making and speed adaptation at traffic lights motivated differ-
ent other publications [72, 56, 63]. Therefore, the representation of a traffic
light as static event is demonstrated. The interval [𝑡𝑒𝑆start, 𝑡

𝑒𝑆
end] defines the

forbidden (red phase) time interval, while 𝑠𝑒𝑆 is the position of the traf-
fic light. If no further CAR2X information is available, the current green

55

3 Planning for Combinatorial Decision Making

and red phase is assumed to last forever. During a yellow phase, the le-
gal length of the yellow phase is used to predict the traffic signal switch,
such that 𝑡𝑒𝑆start is the predicted start of the red phase and 𝑡𝑒𝑆end is set to in-
finity. That way, the algorithm implicitly handles the decision to pass or
not to pass a (recently switched) traffic light. While the algorithm’s event
is therefore independent to potentially available CAR2X information that
information can be easily added if available by a different event handling.

Modeling of Leading/Merging Vehicles as Dynamic Events

A dynamic event 𝑒𝐷, which is in front of the autonomous vehicle is pa-
rameterized by the 5 tuple (𝑡𝑒𝐷start, 𝑡

𝑒𝐷
end, 𝑠

𝑒𝐷 (𝑡), 𝑑𝑒𝐷 , 𝑙𝑒𝐷). As the focus of
this work is on the planning algorithm but not on predicting the longitudi-
nal behavior of other vehicles, the velocity of dynamic events is assumed
to be constant (i.e. a constant velocity prediction). Nonetheless, a better
prediction function can be easily included by replacing the linear function
𝑠𝑒𝐷 (𝑡). In addition, lane changes (onto the path 𝑟0) are predicted with a
simple rule-based classifier based on a threshold concerning the other ve-
hicles lateral position and lateral velocity. The time interval [𝑡𝑒𝐷start, 𝑡

𝑒𝐷
end] of

the corresponding event is set accordingly. Such an intention estimation en-
ables foresighted decision making in terms of early reaction to the planned
trajectory of the other vehicles.

Modeling of Crosswalks and Intersections as Area Events

Area events are used to allow the autonomous vehicle to cross certain areas,
but to prohibit the autonomous vehicle to enter certain areas when they can-
not be left again. This may be the case when the path of the autonomous
vehicle lies on an oncoming/crossing lane (e.g. in the case of overtak-
ing/intersection crossing) or on a zebra crossing.

3.3.3 Domain Specific Heuristics

The A* algorithm uses a heuristic to speed up the graph search by truncat-
ing non-promising branches early (see Alg. 1 for details). Such a heuristic
must be admissible (underestimate the real costs) and consistent (the heuris-
tic must be monotonically decreasing along a path to the goal). The idea
of this work is to use the concept of Inevitable Collision States (ICS) [31]

56

3.3 Approach

as a heuristic. An ICS is a state from which at least one collision is in-
evitable in the future given the available system input. When a new state
𝒳 is generated, it is tested for being an ICS. If this is the case, the remain-
ing estimated costs are at least the collision costs. By setting the heuristic
value of the state, ℎ(𝒳) to the collision costs, an admissible and consistent
heuristic is found which furthermore allows to react to upcoming events
which are currently ahead of the currently expanded graph depth or even
the planning horizon itself. In the case of a movement in a one dimensional
direction, the test for an ICS can be done analytically and is therefore fast
enough to be used as heuristic. Formally written, a newly expanded state 𝒳

may be labeled as an ICS if and only if

∀𝑎 ∈ 𝒜,∃𝑒 ∈ 𝐸𝑆 ∪ 𝐸𝐷 : {𝑠 + 𝑣 · 𝑡 +
1

2
𝑎𝑡2|𝑡 ∈ [0 ∞[} ∩ 𝑒 ̸= ∅. (3.14)

The concept is demonstrated for static events in Fig. 3.3.

30 35 40 45 50 55
0

2

4

6

𝑠 [m]

𝑡
[s
]

𝑣0(𝑡 = 1) = 𝑣1
𝑣0(𝑡 = 1) = 𝑣2
𝑒𝑆

Figure 3.3: Analytic calculation of the Inevitable Collision States [31]. The plot
shows the potential trajectories with maximum acceleration/deceleration for the two
different states 𝑥1 and 𝑥2 with 𝑣1 > 𝑣2. If a collision is inevitable, the heuristic
of this state may be set to ∞. It can be seen, that a collision cannot be avoided for
𝑥2, while the static event can be avoided for state 𝑥1. Therefore, ℎ(𝑥1) = 0 while
ℎ(𝑥2) = ∞ (graphic from [121], c○2016 IEEE).

57

3 Planning for Combinatorial Decision Making

3.3.4 Goal State Formulation

A state 𝒳 is defined as a goal state 𝑥𝐺 if 𝑡𝐺 = 𝑡hor as done for MPC ap-
proaches [60]. This ensures a constant behavior length in the time domain.
Setting the goal state condition to a more complex equation, advanced prob-
lems may be tackled. The behavior planner may be used for example for
gap approaches for lane changes as demonstrated in successive work of this
algorithm [113].

3.3.5 Implementation

As the 𝐴* planner considers only one simple prediction for the surrounding
traffic, it must run with a higher frequency to reactively account for sudden
changes in the environment. Therefore, the behavior planner is set to a
replanning frequency of 10 Hz. As the behavior planner shall only provide
a reference solution for the trajectory planning layer, the step size is chosen
in a coarse way of ∆𝑡 = 1 s to allow for a long planning horizon of 𝑡hor =
13 s. The set of actions 𝒜 is 𝒜 = {−2,−1, 0, 1}. It is important that
the behavior planner generates consistent behavior. Therefore, instead of
planning from the actual, measured state 𝑥meas(𝑡0) the currently desired
state, retrieved from the previous planning step, 𝑥des(𝑡0) is used as the start
state 𝑥start (see Sec. 2.4.6). Furthermore, to fulfill Bellman’s Principle of
Optimality in a discrete planning problem, the actions must be sampled at
the same absolute points in time. This is impossible when sample steps of
∆𝑡 = 1 s are used with a planning frequency 𝑓 = 10 Hz. Therefore, the
first planning step is not executed with a length of ∆𝑡 but with the temporal
difference to the last solution’s second state.

To prevent the generated graph from expanding too many nodes, only
the cheapest state of two very close states is expanded. This is a similar
approach as done for the Hybrid 𝐴* planner [73]. Closeness between state
𝐴 and 𝐵 is defined by

(𝑡𝐴 − 𝑡𝐵)2 + (𝑠𝐴 − 𝑠𝐵)2 + (𝑣𝐴 − 𝑣𝐵)2 < 1. (3.15)

3.4 Results

The behavior planner is implemented in the software framework for auto-
mated driving which is used at the BMW Group for research and develop-

58

3.4 Results

ment. It is tested in a complex simulation scenario which allows to show
the capabilities of the planner.

3.4.1 Performance

The algorithm’s performance is evaluated on a simulated round course con-
taining four different intersections with traffic lights, various road curva-
tures and randomly generated traffic. The system runs on an Intel Core i7-
4900MQ CPU at 2.8 Ghz. The runtime of the algorithm depends strongly
on the length of the planning horizon 𝑡hor and the micro traffic situation,
i.e. the number and configuration of the different events. Therefore, the
worst-case runtime is approximated empirically by running many simula-
tions in an urban scenario, using different planning horizons. Fig. 3.4 shows
the runtime for a worst case scenario during driving on a evaluation circuit
with four traffic lights and intersections. The average runtime is lower than
the worst-case runtime by a factor of 10. While this gives an idea of the
runtime of the planner, more efficient implementations exist.

8 9 10 11 12 13 14 15
0

100

200

300

𝑡hor [s]

ru
nt

im
e

[m
s]

worst-case runtime

Figure 3.4: Empirical worst-case performance of the algorithm for different plan-
ning horizons 𝑡hor during the simulation of the round course scenario (graphic
from [121], c○2016 IEEE).

3.4.2 Qualitative Simulation Scenario

To evaluate the different capabilities of the algorithm, a complex situation
is set up and evaluated in a simulation run. The situation with its recorded
data is shown in Fig. 3.5 and described in the following. The autonomous

59

3 Planning for Combinatorial Decision Making

car drives along a road, when another agent cuts in before it (Sit. 1). The
other car is predicted to enter the autonomous vehicle’s lane in two seconds.
Adding this cut-in action as a dynamic event allows the autonomous vehi-
cle to react anticipatory and cooperatively by starting to decelerate already
before the other car enters the lane. Subsequently, the autonomous car
follows the other car with ACC behavior, realized by the spatio-temporal
cost map. At (2), the autonomous vehicle starts to brake upon a red traf-
fic light, which is in front of the vehicle running ahead. At (3), the traffic
light switches from red to yellow and the forbidden passing time (ongoing
yellow period) of the traffic light is predicted to last for another second. In
addition, it is detected that the preceding vehicle changes its lane to the left
and it is predicted to actually leave the lane in two seconds. It can be seen
in Fig. 3.5b, how the driving strategy optimizes its behavior over these dif-
ferent events. While the vehicle ahead is braking during its lane change, the
autonomous vehicle already starts to accelerate to 𝑣des as it incorporates the
prediction of the vehicle in front (when it will leave the lane) and that the
currently red-yellow traffic light will have switched at arrival time. It can
also be seen, that the maximum velocity is constrained by the slight road
curvature, such that 𝑣des is lower than 𝑣law. In this situation, the algorithm
optimizes its behavior under consideration of other vehicles, a currently
switching traffic light and the road’s curvature.

3.5 Summary

This chapter demonstrates how a global, open loop planner can be used for
implicit decision making for autonomous driving. Furthermore, it is shown
how the provided reference trajectory of the global planner can be used for
the parameterization of a local trajectory planner. The introduced global
planner is able to consider various events and provides an optimal solution
accordingly. Generic interface formulations for so called static, dynamic
and area events allows for fast and simple extension of the algorithm to
consider more incidents on the road. Although deterministic interaction
could be considered in the framework, interaction as well as uncertainties
are not modeled in this approach. The presented algorithm is only able to
handle deterministic prediction(s) of the surrounding traffic but may reach
its limits for scenarios with many agents, very uncertain prediction or re-
quired interaction. Nonetheless, this algorithm can be succesfully used for
motion planning in the presented urban scenarios. This is, as fast replan-

60

3.5 Summary

0 50 100 150 200 250 300 350 400
0

20

40

𝑠 [m]

𝑡
[s
] Behavior Planner (𝜉ref (𝑡))

Trajectory Planner (𝜉(𝑡))
Static Event
Dynamic Event (Cost Map)
Dynamic Event

0 50 100 150 200 250 300 350 400
0

5

10

15

other car cuts in (1)

braking upon red traffic light (2)
traffic light switches to yellow (3)

start of curve approach (4)

𝑠 [m]

𝑣
[m
s
]

Behavior Planner (𝜉ref (𝑡)
Trajectory Planner (𝜉(𝑡))
vdes

(a) Snapshot of situation 1: A cut-in is de-
tected by the autonomous car. The time of the
entering the autonomous lane is predicted and
allows for a foresighted reaction.

(b) Snapshot of situation 3: The traffic light
ahead switches from red to yellow. There-
fore, the current red-yellow phase is predicted
to last for one second (duration of red-yellow
phase). As the vehicle ahead is predicted to
leave the autonomous lane in 4 seconds, the
autonomous car can start to accelerate.

Figure 3.5: Overview of the driven trajectories of the simulation scenario, described
in Sec. 3.4.2 (graphic from [121], c○2016 IEEE).

61

3 Planning for Combinatorial Decision Making

ning behavior may also allow to solve complexer scenarios including inter-
action and uncertain prediction. Additionally, this algorithm will serve as a
heuristic for the probabilistic algorithms, presented in the next chapters of
this thesis.

62

4 Planning with Uncertain Intentions of
Crossing Traffic

The open-loop behavior planner in Chap. 3 transfers traffic rules and the
predicted behavior of other agents in the environment directly into a spatio-
temporal cost map. That planner considers only the most likely prediction
of every agent and does neglect the information of possible future observa-
tions. The uncertainty in the prediction is addressed by frequent replanning.
This is possible if the various possible future scenarios do not differ heavily
(e.g. ACC scenarios).

Figure 4.1: Visualization of the closed-loop, online algorithm: The planning algo-
rithm approximates the optimal policy on a receding horizon for the most probable
future scenarios online. The optimal policy 𝜋* is shown in blue, plotted with its ve-
locity over the longitudinal distance. The policy branches for cases where different,
possible, future observations lead to different optimal actions for the autonomous
car. It even finds behaviors for the different homotopy classes automatically. The
other vehicles follows one of two possible paths (drive straight, turn right) and are
modeled with interactive, probabilistic driver models.

In urban environments on the other hand, the manifold of possible paths
of the other vehicles (i.e. intention uncertainty) is larger due to a road

63

4 Planning with Uncertain Intentions of Crossing Traffic

topology with splitting/joining/crossing road elements (e.g. at intersec-
tions). Additionally, sensor and model uncertainty create even more possi-
ble predicted trajectories in even different homotopies (pass before or after).
Moreover, the uncertain interactive nature of the agents must be modeled
to account for the inter-relationships between the actions of the agents. A
summary of all these uncertainties is displayed in Fig. 1.3.

Extending the idea of the 𝐴* planner in Chap. 3 by simply adding ev-
ery possible maneuver in the spatio-temporal cost-map would lead to very
conservative behavior or even standstill [103]. This is the case as the au-
tonomous vehicle plans a trajectory which avoids every possible future tra-
jectory of the other agents. In the worst case, the only safe trajectory is
standstill.

To overcome this drawback, this chapter presents a problem formula-
tion as global, closed-loop planner on a receding horizon. A POMDP is
used to formulate the problem due to its generic nature (see Sec. 2.3 for
the formulation). The solution to a POMDP is an optimal policy instead of
an optimal trajectory which optimizes the expected reward, starting from
an initial belief state. It contains reactive plans for possible, future obser-
vations. A path-velocity decomposition is used to design a longitudinal
planning problem. The capabilities of the planner are demonstrated for the
crossing of intersections with a various number of other agents and road
geometries.

The key contributions of this chapter are as follows:

∙ consideration of uncertain driver models and uncertain intentions for
other agents

∙ consideration of interactive behavior of the other vehicles

∙ explicitly take possible, future observations into account

∙ online optimization of a closed-loop formulation on a continuous
state and belief space

∙ combination of MCTS with a deterministic 𝐴* roll-out heuristic for
fast convergence to the optimal policy

This chapter is based on and was previously published in [122,124,129].

64

4.1 Related Work

4.1 Related Work

Low-level motion planning approaches separate the problems of planning
and prediction and consider uncertainties most times only in a limited way.
These simplifications are done to allow to formulate the problem in contin-
uous time with continuous actions. Hence, it is formulated on a state space
of higher dimension including e.g. derivatives of acceleration and veloc-
ity of steering angle [38]. This allows to plan a very smooth, continuous
trajectory which is e.g. jerk optimal [112].

In the following, algorithms which do respect uncertainties and/or inter-
action are reviewed. The focus is strongly on algorithms in the context of
intersection crossing of autonomous vehicles.

Uncertainty

One possibility to integrate the controller uncertainties directly in the con-
troller itself is demonstrated in [66]. By using a stochastic MPC with
chance constraints, the execution uncertainty of the robot may be directly
considered in the controller.

The well-known sampling-based RRT* algorithm is extended in [7] to
include localization and controller uncertainties via a Gaussian belief space.

The authors of [24] build so called risk maps with the existence prob-
abilities of other vehicles given their potential future maneuvers. Then a
trajectory is planned on the combined risk maps, which therefore reacts
to the most probable case. In a second step, the generated trajectory is
extended with branching back-up trajectories for the case that improbable
scenarios are happening.

Interaction

Interaction can be modeled as a multi-agent planning approach [90]. By
preselecting a discrete set of possible, collective maneuvers, each problem
can be formulated as QP problem and solved via a MIP. The maneuver
of the other vehicles is unknown but tracked with an Interacting Multiple
Model (IMM) filter.

In [118], a reactive model is integrated in the prediction model of the
other drivers. The variational problem formulation is extended with a dy-
namic programming approach over the possibly interacting trajectories.
This allows to consider interaction while using a variational formulation.

65

4 Planning with Uncertain Intentions of Crossing Traffic

Belief State Planning with a POMDP

A popular formulation of a belief state planning algorithm is a POMDP
(Sec. 2.3). This is because its generic formulation allows to describe com-
binatorial optimization problems with state and model uncertainty, while no
limitations on the transition function exist. Nonetheless, this generic for-
mulation makes it also difficult to solve. Therefore, it is often solved offline.
In [92], the merging at a T-Junction is formulated as a Mixed Observability
Markov Decision Process (MOMDP) on a discrete action and observation
space. A simple behavior model is used for the other agent, based on their
intended route at the intersection and the level of aggressiveness. The au-
thors demonstrate promising results for one real-world scenario.

While these results are promising, offline approaches do not generalize
well for complex scenarios with a variable number of agents and lanes (see
Sec. 2.3.4). In [5], a similar scenario to the one presented in [92] is shown
and solved online with the MCTS based solver Partially Observable Monte
Carlo Planning (POMCP). While the state space and action space is dis-
cretized, promising results are shown for various planning problems in en-
vironments with dynamic agents.

The authors of [4] use a online POMDP for the navigation in environ-
ments, densely populated with pedestrians. They represent the unknown
intentions of the pedestrians as latent variables in their belief state. As they
are operating at low speeds, a safe state can be reached very quickly.

The complex POMDP model is simplified in [32] by having a discrete
set of policies instead of actions for the other vehicles as well as for the au-
tonomous vehicle. A Bayesian model and the Viterbi algorithm are used to
calculate the belief state over possible policies of the other agents onlineṪhe
policy for the autonomous vehicle is then selected by the expected reward
of each policy, given the most probable policies of the other vehicles.

The authors of [15] demonstrate an online POMDP planner for intersec-
tion scenarios. They track the belief state with an IMM and describe the
behavior of the other vehicles with two possible models: constant velocity
or constant acceleration. The other vehicles are modeled to switch their
model with a certain probability. The problem is modeled on a continuous
state space with continuous actions. The performance of the POMDP is
nonetheless constrained by the simple motion models of the other vehicles.

66

4.2 Problem Formulation

𝑟3

𝑟2

𝑟1

𝑁0

𝑁1

𝒫1

𝑐(𝑟0, 𝑟3) = 1

𝑟0

Figure 4.2: A typical urban intersection with the autonomous car 𝑁0 driving on path
𝑟0 and one oncoming vehicle 𝑁1 which may intersect with 𝑟0 (graphic from [124],
c○2018 IEEE).

4.2 Problem Formulation

This work focuses on the online decision making for the ego vehicle, i.e. the
generation of a sequence of desired accelerations 𝑎0 = (𝑎𝑡00 , 𝑎𝑡10 , 𝑎𝑡20 , . . .),
e.g. for traversing an unsignalized intersection with an arbitrary layout and
a variable number of other traffic participants with unknown intentions and
probabilistic motion models.

The path of the ego vehicle 𝑝0 is assumed to be collision-free regarding
static-obstacles and is either generated by a path planner a priori or simply
retrieved from the road geometry of a given map. In a second step, the
longitudinal velocity is planned along 𝑝0. This practice is referred to as
path-velocity decomposition in the literature [48] and reduces the trajectory
planning problem to a one dimensional workspace.

The environment is populated by a set of agents 𝒩 = {𝑁0, . . . , 𝑁𝐾},
with 𝐾 ∈ N0 and the ego vehicle 𝑁0. Every other agent 𝑁𝑘, with
𝑘 ∈ {1, . . . ,𝐾}, has a set of future path hypotheses. The path of the
ego vehicle, 𝑟0, and all other path hypotheses are retrieved from the
topological map ℛ, defined as ℛ = {𝑟0, 𝑟1, . . . , 𝑟2}, with 𝐼 ∈ N0,
𝑟𝑖 = {−−−−→𝑞𝑖,0𝑞𝑖,1, . . . ,

−−−−−−→𝑞𝑖,𝐽−1𝑞𝑖,𝐽} for 𝑖 ∈ {0, d, 𝐼}, 𝑗 ∈ {0, . . . , 𝐽} and
𝐽 ∈ N0, and 𝑞𝑖,𝑗 ∈ R2 being the position of waypoint 𝑗 of route 𝑖. Ev-
ery agent 𝑁𝑘 is assumed to drive on a certain route on which its motion is

67

4 Planning with Uncertain Intentions of Crossing Traffic

described by 𝑣𝑘(𝑡) ∈ [0, 𝑣max] for time 𝑡 ∈ [0,∞). For every agent 𝑁𝑘 a
set of possible path hypotheses is defined as 𝒫𝑘 ⊆ ℛ.

As the various route elements may intersect with each other, an intersec-
tion function 𝑐(𝑟𝑖, 𝑟𝑗) is defined as

𝑐(𝑟𝑖, 𝑟𝑗) =

{︃
1, if 𝑟𝑖 ∩ 𝑟𝑗 ̸= ∅
0, otherwise

∀𝑖, 𝑗∈{0, . . . , 𝐼}, 𝑖 ̸= 𝑗. (4.1)

The different paths are retrieved from the road network and may there-
fore be referred to as routes. An example of this route definition can be
seen in Fig. 4.2.

Given the uncertainty about the movement of the other cars, the au-
tonomous vehicle has to continuously choose an optimal acceleration 𝑎*

to maximize the expected, cumulative discounted future reward:

𝑎* := arg max
𝑎

E

[︃ ∞∑︁
𝑡=0

𝛾𝑡𝑅𝑡|𝒳0

]︃
. (4.2)

The reward may take into account collisions, the total acceleration (provid-
ing comfort) and the deviation to a traffic-law and curvature based reference
velocity

4.3 Approach

This chapter describes the algorithm to generate an optimized policy for
the autonomous vehicle online. The main focus is hereby that it takes the
uncertain future behavior of the other vehicles into account. The approach
describes the road layout in a generic way and can therefore be used for ar-
bitrary intersections. An external prediction algorithm is not needed as the
other agents are simulated stepwise ahead as part of a forward simulation.
Various models are used, one for each of the different possible maneu-
vers. The models contain interactive behavior which allows the planning
of complex and interactive maneuvers for the autonomous car. To reduce
the dimension of the state space and to simplify the representation, possible
path hypotheses acite generated for the other vehicles. The path hypothe-
ses are extracted from the topological map. This allows a low-dimensional,
compact agent representation with the path of the other agent as hidden
variables (Fig. 4.3). The configuration of the other agents can then simply

68

4.3 Approach

be described in longitudinal direction on their path. The problem descrip-
tion from Sec. 4.2 is formulated as a POMDP to allow for the representation
of state uncertainty (belief states) and model uncertainty.

The POMDP problem formulation is solved online with the library
TAPIR, which is an implementation of the sampling-based ABT algorithm
(see [50]). Because the utilized ABT algorithm samples multiple episodes
to approximate the solution, the model properties of the POMDP (e.g. prob-
ability distributions) do not need to be specified explicitly but as a genera-
tive model. As previously presented in the longitudinal planning approach
in the authors’ previous work [121], the algorithm provided here solves the
motion planning problem in a coarse way on the behavioral layer (see [102]
for the definition). The solution is an optimized policy. Parts of the policy
are then provided to the trajectory planning layer for smooth execution.

4.3.1 State Space

The motion models of the different agents are not independent, as interac-
tive behavior is represented in the forward simulation. Therefore, all agents
are represented in the state space. A certain state 𝒳 ∈ 𝒳 is defined in
continuous space as

𝒳 = [𝒳0,𝒳1,𝒳2, . . . ,𝒳𝐾]T. (4.3)

The state of the autonomous car is represented by 𝒳0 and the surrounding
agents are represented by 𝒳𝑘, 𝑘 ∈ {1, . . . ,𝐾}. The configuration of all
agents is described by their longitudinal position 𝑠𝑘 on their path 𝑝𝑘 by use
of the Frenet-Serret formulas.

The state of the autonomous car is thus defined as

𝒳0 = [𝑠0, 𝑣0]T (4.4)

and the state of the other vehicles is

𝒳𝑘 = [𝑠𝑘, 𝑣𝑘, 𝑝𝑘]T. (4.5)

The path 𝑝𝑘 defines the latent variable which cannot be measured directly
but only inferred over time. Nonetheless, a discrete set 𝒫𝑘 of potential path
candidates is retrieved from the topological map for every vehicle 𝑁𝑘. The
notation of the state space is illustrated in Fig. 4.3.

69

4 Planning with Uncertain Intentions of Crossing Traffic

𝑠0

𝑁0

𝑠1

𝑟0

𝑁1

Figure 4.3: Visualization of the definition of the state space (graphic from [124],
c○2018 IEEE).

4.3.2 Action and Transition Model

A simple physical transition model is used instead of more advanced kine-
matic models as the planning problem is solved on the behavior layer. The
transition model of the other vehicles is a discrete time physical model with
a step size of ∆𝑡:⎡⎣𝑠′𝑘𝑣′𝑘

𝑝′𝑘

⎤⎦=

⎡⎣1 ∆𝑡 0
0 1 0
0 0 1

⎤⎦⎡⎣𝑠𝑘𝑣𝑘
𝑝𝑘

⎤⎦ +

⎡⎣ 1
2 (∆𝑡)2

∆𝑡
0

⎤⎦𝑎𝑘, 𝑘∈{0, . . .,𝐾}. (4.6)

As mentioned in Sec. 4.2, the path of an agent is assumed to be constant,
such that 𝑝′𝑘 = 𝑝𝑘. It represents the hidden state which is not dynamic. The
acceleration 𝑎𝑘 is retrieved from a car-following model (Intelligent Driver
Model (IDM) [104]) which also respects reference velocity, 𝑣ref , which is
retrieved by constraining the lateral acceleration (as shown in Sec. 3.3.2).
The IDM is extended by adding an interaction-based acceleration 𝑎int:

𝑎𝑖𝑛𝑡,𝑘 =

{︃
0 m

s2 , if𝑐(𝑟𝑘, 𝑟0) = 0,

−1.5 m
s2 , if𝑐(𝑟𝑘, 𝑟0) = 1 ∧ (𝑡𝑐,𝑘 − 𝑡𝑐,0) ∈ [1, 5]

. (4.7)

Assuming a constant velocity 𝑣𝑘, 𝑡𝑐,𝑘 is the time needed by agent 𝑘 to

70

4.3 Approach

reach the conflict point where both paths intersect. The interaction based
acceleration is an empirically chosen heuristic value, but could also be
learned from training data or be a probabilistic function.

The acceleration is also constrained by a maximum acceleration 𝑎max.
The acceleration of the other vehicles is additionally perturbed by use of
Gaussian noise to represent the model uncertainty. Nonetheless, precise
motion models (either learned or tuned) are favorable to keep the variance
low. This is the case as a high variance leads to a high degree of uncertainty
of the future position/velocity of the other vehicles, which may lead to a
more conservative policy. The resulting total acceleration for every other
agent is therefore:

𝑎𝑘 = min(𝑎ref,𝑘 + 𝑎int,𝑘, 𝑎max) +𝒩 (0, 𝜎2). (4.8)

The transition model of the ego vehicle is defined in the same way as for
the other vehicles in Eq. (4.6), except that its path must not be incorporated
in its state. This is the case as the autonomous vehicle has only one path,
calculated a priori.

4.3.3 Reward Model

The reward 𝑅(𝒳 , 𝑎) model is defined as follows:

𝑅(𝒳 , 𝑎) = 𝑅coll(𝒳) + 𝑅vel(𝒳) + 𝑅acc(𝑎). (4.9)

The term 𝑅coll punishes a collision with a high negative reward.
The second term, 𝑅v(𝒳), punishes the deviation to a reference ve-
locity (defined as a desired velocity on a road without vehicles, see
Sec. 3.3). It is defined as, 𝑅vel = −𝐾v+(𝑣ref − 𝑣0)2, if𝑣0 > 𝑣ref and
𝑅𝑣 = −𝐾𝑣−(𝑣ref − 𝑣0), if𝑣0 < 𝑣ref . By quadratically punishing too high
velocities, the ego vehicle is more unlikely to clearly overshoot the desired
velocity. Punishing lower velocities in a linear way motivates the planner to
drive with the desired velocity but allows for slower solutions (e.g. because
of a temporarily occupied lane). The third term, 𝑅acc punishes accelera-
tions to avoid unnecessary reactive behavior.

71

4 Planning with Uncertain Intentions of Crossing Traffic

4.3.4 Observation Model

An observation 𝑜 ∈ 𝒪 is also defined on the whole state vector, with

𝑜 = [𝑜0, 𝑜1, . . . , 𝑜𝐾]T. (4.10)

The observation of the autonomous vehicle is defined as 𝑜0 and the obser-
vations of the other vehicles are defined as 𝑜𝑘 with 𝑘 ∈ {1, . . . ,𝐾}.

The state of the autonomous vehicle is considered as fully observable
and therefore the state and the corresponding observation is equal:

𝑜0 = [𝑠0, 𝑣0]T. (4.11)

The possible route of the other vehicles is not directly observable. There-
fore, neither the route, nor the longitudinal position on the (unknown) route
can be measured. Instead, the longitudinal position is transformed to global
coordinates which are used as observation, s.t.:

𝑜𝑘 = [𝑣𝑘, 𝑥𝑘, 𝑦𝑘]T. (4.12)

The ABT algorithm solves a POMDP formulation by generating the be-
lief tree via sampling of possible episodes. Hereby, the observation model
Z(𝑜,𝒳′, 𝑎) = 𝑃 (𝑜|𝒳′, 𝑎) does not need to be given explicitly but possible
observations must be sampled when episodes are generated.

The path 𝑝𝑘 of another vehicle 𝑁𝑘 is generally unobservable. After gen-
erating a new state with the transition model 𝑥′

𝑘 = [𝑠′𝑘, 𝑣
′
𝑘, 𝑝

′
𝑘]T, this state is

used to generate the corresponding observation. By using the unambiguous
transformation 𝑊𝑇𝐿, a possible future observation following the new state

can be created: [𝑠′, 𝑣′, 𝑝′]
𝑊𝑇𝐿↦−−−→ [𝑣′𝑜𝑏𝑠, 𝑥

′
𝑜𝑏𝑠, 𝑦

′
𝑜𝑏𝑠] (see Fig. 4.2). Comparing

the real, measured observations with the previously generated observations
will allow to infer the hidden state over time.

Additionally, observation noise is embedded in the model. Instead of
simply adding Gaussian noise to the deterministic observation which is re-
trieved from the new state 𝒳′, the uncertainty of the perception concerning
the lane of the other vehicle is included. The perception of the other ve-
hicle is normally tracked and probabilistically mapped on a certain route.
This uncertainty is modeled with the probabilities from a Bayes classifier.
It simulates the uncertainty concerning the tracked route of another vehicle
in future time steps. The Bayes classifier uses a 2-dimensional feature vec-

72

4.3 Approach

𝑞pred,𝑟1

(𝑥obs, 𝑦obs)

𝑞pred,𝑟2

𝑞pred,𝑟3

Figure 4.4: Demonstration of the distance feature 𝑓𝑘,2 for the generation of the ob-
servation classifier. It is defined as the Euclidean distance between the simulated ob-
servation’s position (𝑥obs, 𝑦obs) and the assumed Euclidean position 𝑞𝑝𝑟𝑒𝑑,𝑟𝑖 given
a certain path hypothesis 𝑝𝑘 = 𝑟𝑖 ∈ 𝒫 (graphic from [124], c○2018 IEEE).

tor 𝑓𝑘 (velocity and position based, see Fig. 4.4) for vehicle 𝑁𝑘, that can be
generated from the observation space:

𝑓𝑘 =

[︂
𝑓𝑘,1
𝑓𝑘,2

]︂
=

[︂
|𝑣′𝑘 − 𝑣ref,𝑟𝑖(𝑠

′
𝑘)|⃦⃦

[𝑥′
𝑘 𝑦′𝑘]T − [𝑥𝑘,pred,𝑟𝑖 𝑦𝑘,pred,𝑟𝑖]

T
⃦⃦
2

]︂
. (4.13)

The probability of vehicle 𝑁𝑘 being on a certain route 𝑟, 𝑃 (𝑝𝑘 =
𝑟),with𝑟 ∈ 𝒫𝑘 can be defined via Bayes rule as

𝑃 (𝑝𝑘 = 𝑟𝑖|𝑓𝑘,1, 𝑓𝑘,2) =
𝑃 (𝑟𝑖)𝑃 (𝑓𝑘,1, 𝑓𝑘,2|𝑟𝑖)

𝑃 (𝑓𝑘,1, 𝑓𝑘,2)
. (4.14)

With the assumption that every route has the same a priori probability, s.t.
(𝑃 (𝑝𝑘 =𝑟1) = 𝑃 (𝑝𝑘 =𝑟2) = 𝑃 (𝑝𝑘 =𝑟3) . . .), the law of total probability
and the assumption of independent features, Eq. (4.14) may be rewritten to:

𝑃 (𝑝𝑘 = 𝑟𝑖|𝑓𝑘,1, 𝑓𝑘,2) =
𝑃 (𝑓𝑘,1|𝑟𝑖)𝑃 (𝑓𝑘,2|𝑟𝑖)∑︀𝐼
𝑙=1 𝑃 (𝑓𝑘,1|𝑟𝑙)𝑃 (𝑓𝑘,2|𝑟𝑙)

. (4.15)

73

4 Planning with Uncertain Intentions of Crossing Traffic

Table 4.1: Simulation parameters

𝑐 20000 𝑡hor 8 𝑅coll −10000
𝛾 1 𝐾𝑣+ −100 𝐾𝑣− −100

𝑃 (𝑓1/2|𝑟𝑖) can be learned from sample data, or simply designed as done
in this work. It is normally distributed with 𝑃 (𝑓1|𝑟𝑖) = 𝒩 (0, 4.0) and
𝑃 (𝑓2|𝑟𝑖) = 𝒩 (0, 6.0) to simulate the uncertainty of the lane object match-
ing. The observation 𝑜𝑘 is generated for every particle based on the proba-
bility of route 𝑟𝑖 that is sampled from Eq. (4.15).

4.3.5 Implementation

The POMDP formulation in this chapter is solved as described in Sec. 2.4.
As roll-out plan, a graph search is combined with a constant velocity roll-
out as described in Sec. 2.4.5. The important parameters of the POMDP
are given in Tab. 4.1.

4.4 Results

This section shows the results of the POMDP behavior planner. The evalu-
ation is twofold: At first the convergence as well as the policies for various
uncertainties are shown. This is done with a simple example to show the
capabilities of the planner. As the planner approximates the optimal policy
online, the intent of the first section is to show with what probability the
optimal action is found. The second part of the evaluation demonstrates the
capabilities of the planner in full simulation scenarios for the crossing at a
complex intersection. A proprietary simulator at BMW Group is used for
the simulations [39]. The system (containing the simulation environment
and the algorithm) runs on an Intel Core i7-4910MQ CPU with 2.9 GHz for
the simulation scenarios.

4.4.1 Convergence

The ABT algorithm approximates the optimal policy online by sampling of
episodes. During the runtime of the anytime algorithm (see Sec. 2.4), the
optimal policy is constructed from the sampled episodes. In the following,
it is evaluated how well the optimal policy can be approximated for the

74

4.4 Results

𝑁1
𝑁0

𝑟0
𝑟1

𝑟2

Figure 4.5: The simple example scenario for the evaluation of convergence to the
optimal policy. The scenario is chosen such that the path probabilities of the initial
belief are 𝑃 (𝑝1 = 𝑟1) = 0.05 and 𝑃 (𝑝1 = 𝑟2) = 0.95. The initial velocities are
𝑣0 = 8.6 m

s
and 𝑣1 = 8 m

s
(graphic from [124], c○2018 IEEE).

scenario shown in Fig. 4.5. The convergence rate is shown in Fig. 4.6 as
a function over the optimization time of the anytime algorithm. The con-
vergence results are shown for various heuristics to motivate their usage.
The approximation quality is evaluated with a loss function, defined as the
absolute difference between the optimal action of the ground truth and the
approximated Q-value:

𝐿(̂︀𝑄,𝑄*) = | ̂︀𝑄(𝑏, 𝑎*)−𝑄*(𝑏, 𝑎*)|. (4.16)

The ground-truth is generated by sampling episodes until convergence
is reached and sampling of further episodes does not lead to a change of
the policy anymore. The upper plot of Fig. 4.6 shows the absolute differ-
ence of the approximated values of Q-function compared to the values of
the optimal Q-function. The plot in the middle of Fig. 4.6 shows the av-
erage number of episodes which are sampled during runtime. The lower
plot of Fig. 4.6 shows the percentage of how likely a non-optimal action
selection is. The plot shows, that all heuristics result in a significantly re-
duced probability of selecting a non-optimal action for a runtime of up to
500 ms. The reason for this, is that the heuristics allow to steer the search
in the right direction. Nonetheless, for a longer sampling time, the heuris-
tic approaches underperform the non-heuristic approaches. This is the case
as the heuristics underestimate the potential future reward (i.e. potentially
overestimating costs). This is especially the case for the constant velocity
heuristic. As the heuristic must present a lower bound on the value func-
tion, the heuristic is non-optimal and prohibits exploring the right branches
in the long run. It can also be seen, that the 3-step Dijkstra heuristic per-
forms better than the 𝑛-step Dijkstra heuristic. This is the case as the 3-step

75

4 Planning with Uncertain Intentions of Crossing Traffic

0 1,000 2,000 3,000 4,000 5,000

−5

0

5

·104

runtime [ms]

|̂︀ 𝑄(𝑏
,𝑎

*
)
−

𝑄
*
(𝑏
,𝑎

*
)|

No Heuristic Constant velocity

3-Step Dijkstra 𝑛-Step Dijkstra

0 1,000 2,000 3,000 4,000 5,000

102

104

runtime [ms]

#
of

ep
is

od
es

No Heuristic Constant velocity

3-Step Dijkstra 𝑛-Step Dijkstra

0 1,000 2,000 3,000 4,000 5,000
0

0.2

0.4

0.6

0.8

1

runtime [ms]

pr
ob

ab
ili

ty
fo

rn
on

-o
pt

im
al

ac
tio

n
se

le
ct

io
n

No Heuristic Constant velocity

3-Step Dijkstra 𝑛-Step Dijkstra

Figure 4.6: Comparison of the convergence of different heuristics for the scenario
presented in Fig. 4.5 (graphic from [124], c○2018 IEEE).

76

4.4 Results

Dijkstra heuristic needs less calculation time, because of the smaller opti-
mization horizon. This allows to sample more episodes to capture the state
uncertainty, which the heuristic itself is not capable of considering.

In the following some additional remarks about convergence are given.
The general assumption is, that the problem becomes exponentially harder
to solver for an increasing number of other vehicles and an increasing num-
ber of potential paths, |𝒫|. Nonetheless, as the algorithm only searches in
the reachable belief space, adding non relevant vehicles (i.e. not directly
influencing the ego vehicle’s reward) does not make the problem harder
to solve. This is the case as sampling based POMDP solvers scale with
the reachable belief space and not in general with the size of the belief
space [41]. It is even noticed, that also problems with more relevant ve-
hicles may lead to faster convergence as the reachable, free belief space is
smaller because of the more possible trajectories of the other vehicles. This
may lead then to a smaller exploration space of the algorithm and therefore
to faster convergence. It may be summarized that the complexity of the
underlying POMDP formulations varies mostly with the given micro traffic
situation.

4.4.2 Policy Behavior Planning

The approximated policy presents an optimized behavior for various fu-
ture, possible scenarios which may arise during the execution of the policy.
This is the case, as the policy contains not only a single trajectory, but an
optimized reactive action for the most probable future scenarios. This sec-
tion shows the policies for different degrees of considered uncertainty. The
policies for the scenario in Fig. 4.5 are shown in Fig. 4.7. The other ve-
hicle has two possible paths to drive on (drive straight or turn right), but
it is unknown at the beginning on which of both paths it is driving. The
optimal behavior of the autonomous vehicle is strongly related to the fu-
ture behavior of the other vehicle. The open-loop planner (Fig. 4.7a) has to
slow down immediately as it is not able to incorporate future observations
in the planning phase. This means, that the planner reacts to both possible
future situations simultaneously. On the contrary, the POMDP planner (see
Fig. 4.7b - e) for various considered uncertainties) is able to reason about
both possible scenarios. This results in a policy that postpones the decision
of crossing vs. braking to a future point in time when more observations
has been recorded. It can be seen, that the introduction of further uncertain-
ties (such as motion model uncertainty (Fig. 4.7c), observation uncertainty

77

4 Planning with Uncertain Intentions of Crossing Traffic

0
2

4
6

8
1
0

5

1
0

𝑡
[s]

𝑣 [m
s
]

a)

D
eterm

inistic
open-loop

planner

0
2

4
6

8
1
0

5

1
0

𝑡
[s]

𝑣 [m
s
]

b)

N
o

U
ncertainty

0
2

4
6

8
1
0

5

1
0

𝑡
[s]

𝑣 [m
s
]

c)

Transition
N

oise
(T

)

0
2

4
6

8
1
0

5

1
0

𝑡
[s]

𝑣 [m
s
]

d)T
+

O
bservation

N
oise

(O
)

0
2

4
6

8
1
0

5

1
0

𝑡
[s]

𝑣 [m
s
]

e)

T
+

O
+

Interaction
(I)

0
2

4
6

8
1
0

5

1
0

𝑡
[s]

𝑣 [m
s
]

f)T
+

O
+

I+
SensorN

oise

Figure
4.7:C

om
parison

of
a

open-loop
planner

and
PO

M
D

P
for

differentconsidered
uncertainties.

T
he

plots
show

the
approxi-

m
ated

policies.T
he

policies
are

recorded
w

ith
a

U
C

T
factorof200000

to
m

otivate
broaderexploration

ofthe
belieftree

(graphic
from

[124],
c○

2018
IE

E
E

).

78

4.4 Results

𝑁0

𝑁1

𝑁2

𝑟1

𝑟2
𝑟3

𝑟0

Figure 4.8: Top view of the T-junction scenario as presented in (graphic from [124],
c○2018 IEEE).

(Fig. 4.7d) and sensor noise (Fig. 4.7f) results in a more conservative pol-
icy which also contains more branches to account for the increased number
of scenarios. One can also notice that the introduction of the interaction
model (Fig. 4.7e)) allows for a less conservative policy again (i.e. less
braking, faster intersection approach), compared to not incorporating inter-
action (Fig. 4.7d)). This is because the planner is going to consider that the
other vehicle is going to react on the actions of the autonomous vehicle,
given that it is nearer to the intersection.

Simulation: Merging on a T-junction

This section presents the recorded trajectories of a simulation run for merg-
ing at a T-junction. The scenario, presented in Fig. 4.8, is as follows.
The ego vehicle intends to do a left turn to merge into a main road at a
T-junction. While the other vehicles on the main road have the right of
way, the ego vehicle must yield if required. The ego vehicle has to de-
cide whether to merge before or after vehicle 𝑁2, which is approaching
the intersection from the right. While merging before vehicle 𝑁2 would
be possible, an approaching vehicle from the left (𝑁1) makes the scenario
more complex. This is because vehicle 𝑁1 has two possible options and
therefore its predicted behavior is not known to the autonomous vehicle.
The options of vehicle 𝑁1 are driving straight and intersect with the au-
tonomous vehicle or turning right without any influence on the behavior of

79

4 Planning with Uncertain Intentions of Crossing Traffic

0 5 10 15 20 25
0

5

10

9 12

𝑡 [s]

𝑣
[m
s
]

open-loop planner (50% right, 50% straight)

omniscient (100% right)

POMDP
𝑣des

0 5 10 15 20 25
0

0.5

1

9 12

𝑡 [s]

𝑃
(𝑝

1
)

𝑃 (𝑝1 = 𝑟2)(straight)

𝑃 (𝑝1 = 𝑟1)(right turn)

Figure 4.9: Evaluation for a T-junction scenario where vehicle 2 turns right. The
upper figure compares the different trajectories for the different planners. The
lower figure shows the path probabilities of vehicle 2, generated by the particle
filter (graphic from [124], c○2018 IEEE).

the autonomous car. In addition to the uncertainty of the chosen route of
vehicle 𝑁1, the ego vehicle also has to consider the uncertain longitudinal
prediction of both vehicles which is realized by the interactive and proba-
bilistic motion model. This uncertainty is incorporated by adding Gaussian
noise on the interactive motion model (see Eq. (4.8)).

The upper figure of Fig. 4.9 shows the driven trajectory of the au-
tonomous car for different planners as well as the desired reference ve-
locity. The lower figure shows the estimated probability for each maneuver
of vehicle 𝑁2, tracked over time. The following description of the scene
follows the description in the corresponding publication [124].

At the beginning, the ego vehicle accelerates up to the desired curve
velocity (defined in [121]). After 9 seconds, the belief for the behavior

80

4.4 Results

0 5 10 15 20 25

−20

0

20

40

60
9 12

𝑡 [s]

𝑠
[m

]

predicted conflict areas

actual conflict areas

open-loop planner (50% right, 50% straight)

omniscient (100% right turn)

POMDP

0 2 4 6 8 10 12 14 16 18 20 22

Time of prediction for conflict [s]

Figure 4.10: The figure shows the planned positions over time when the POMDP
planning is executed with different fixed probabilities and with the probability from
prediction and POMDP sampling (graphic from [124], c○2018 IEEE).

of vehicle 𝑁2 is still uncertain, therefore the planner starts to decelerate
slightly to reduce the probability of a collision and to have more time to
receive new measurements. Thus, the two possible options, yielding to
vehicle 𝑁1 or merging immediately, are kept open for the ego vehicle. This
behavior (also known as information gathering) is the result of the policy
because the observation model has simulated, that the next measurements
will lead to a less uncertain belief state. Because of the observation model,
it can even infer at what point in time the belief becomes less uncertain and
approach the intersection accordingly. After 12 seconds, the prediction is
precise enough such that the ego vehicle can cut in before vehicle 𝑁1.

For the same scenario, Fig. 4.10 plots the position over time and espe-
cially the predicted time interval during which the other vehicles occupy
the areas that conflict with the path of the ego vehicle. It can be seen that
the point of a conflict between the ego vehicle and vehicle 𝑁1 is constantly
postponed while vehicle 2 breaks upon the intersection, leading to even
having no conflict at all when the turning behavior of vehicle 𝑁2 becomes
apparent.

81

4 Planning with Uncertain Intentions of Crossing Traffic

𝑁1

𝑁0

𝑁3

𝑁2

Figure 4.11: Top view of a more complex intersection scenario with three other
vehicles (graphic from [124], c○2018 IEEE).

The POMDP approach is compared to different planning algorithms with
either omniscient behavior (no uncertainty about the behavior of vehicle
𝑁1) or conservative behavior (open-loop planner). It can be seen, that the
POMDP planner performs nearly as well (it is able to merge before vehicle
1) as the omniscient approach, which has no uncertainty about the future
behavior of both vehicles at all. The open-loop planner approach on the
other hand considers all possible trajectories and does not incorporate fu-
ture measurements. This results, as shown in Fig. 4.9, in a conservative
suboptimal trajectory, such that the ego vehicle cannot merge before vehi-
cle 𝑁2.

Simulation: Crossing of a Complex Intersection

A key strength of the algorithm is that it can be used for various intersec-
tions because of its generic formulation. Therefore, the performance of the
algorithm is also presented for a more complex scenario. The scenario in
Fig. 4.11, contains a larger, unsignalized intersection, with in total 10 dif-
ferent possible routes for the other three vehicles. The results are very sim-
ilar to the previous T-junction scenario. Again, the POMDP planner acts

82

4.5 Summary

0 5 10 15 20 25

−60

−40

−20

0

20

40

𝑡 [s]

𝑠
[m

]

predicted conflict

actual conflict area

open-loop planner

omniscient planner

POMDP

0 2 4 6 8 10 12 14 16 18

Time of prediction for conflict [s]

Figure 4.12: Evaluation of the complex intersection scenario. The figure shows
the planned positions over time for three different planners as well as the predicted
and actual conflicts. The lowest rectangles represent the conflict area with vehicle
𝑁1, the rectangles in the middle the conflict area with vehicle 𝑁2 and the upper
rectangles the conflict area with vehicle 𝑁3 (graphic from [124], c○2018 IEEE).

with very similar behavior as the omniscient approach (see Fig. 4.12 for
the trajectories). On the other hand, the resulting behavior of the open-loop
planner is very conservative as the planner has to consider many different
predictions at the same time.

4.5 Summary

This chapter demonstrates a closed-loopmotion planning algorithm for au-
tonomous driving in uncertain, urban environments. The algorithm is able
to retrieve an optimized policy online for the crossing of arbitrary intersec-
tions. To reduce the complexity of the algorithm, the behavior of the au-
tonomous vehicle is optimized in longitudinal direction along a preplanned
path. For the surrounding vehicles, a set of possible paths is determined for
each vehicle a priori.

83

4 Planning with Uncertain Intentions of Crossing Traffic

The key focus of the algorithm is the incorporation of various uncertainties,
namely:

∙ perception uncertainty

∙ path uncertainty

∙ model uncertainty

∙ interaction.

The POMDP formulation is solved online by combining Monte Carlo
sampling (the ABT algorithm) with near optimal roll-out heuristics which
can be calculated fast at runtime. By considering possible future observa-
tions explicitly, the algorithm is able to predict in what ways the current
belief state may change in the future. This enables the postponing of deci-
sions, such as merging before or after another vehicle, as the algorithm is
able to predict that future observations will lead to a less uncertain predic-
tion. The policy implicitly contains the different maneuvers for the different
homotopy classes. It is shown in various simulation scenarios how the algo-
rithm outperforms simpler approaches (namely open-loop planner), which
do not consider the uncertainties explicitly. The results show, that the possi-
bility to postpone decisions allows the algorithm to drive less conservative
trajectories. These trajectories are even similar to the ones of omniscient
planning algorithms which have full knowledge about the future trajectories
of the surrounding vehicles.

84

5 Coupled 2D Planning for Interactive
Merging

The algorithms in the previous chapters (Chap. 3 and Chap. 4) are based on
the simplification of an a priori path-velocity decomposition [48]. By plan-
ning a path around static obstacles first, the planning problem is reduced to
one spatial dimension and therefore easier to solve due to a lower dimension
of the action and state space. This is a valid approach for scenarios where
the path of the autonomous car is independent of the longitudinal veloc-
ity (e.g. crossing of an intersection). Nonetheless, scenarios exist, where
this assumption is not valid. This is for example the case for lane changes
(see [113] for a scenario overview). In that case, the longitudinal position

Figure 5.1: Visualization of the closed-loop, online algorithm: The planning algo-
rithm approximates the optimal policy on a receding horizon for the most probable
future scenarios online. The optimal policy 𝜋* is shown in blue, plotted with its
velocity over the itudinal distance and lateral offset. The policy contains reactive
plans, depending on different, future observations of the environment. The plans
correspond to the different, reachable homotopy classes. It can be seen, that the
policy approaches the gap and merges in case of an observed yielding behavior of
the other vehicle.

of the actual lane change is dependent on the previously driven longitudinal

85

5 Coupled 2D Planning for Interactive Merging

velocity. This is especially important for merging scenarios in dense traffic,
where the longitudinal speed profile incorporates gap-approach and speed
adaption.

This chapter extends the algorithm presented in Chap. 4 to lane change
scenarios. It describes an algorithm which is able to execute lane changes
that are requested from the navigational layer (as described in [102]) of
an autonomous vehicle. Lane changes are necessary to follow the desired
route through the topological map, to circumvent obstacles or to progress
faster depending on the current traffic flow information.

The presented algorithm optimizes the longitudinal and lateral behavior
in a combined manner. It also incorporates the potential interaction with
other traffic participants (their yield behavior to the merge attempt) and the
uncertainty of the corresponding prediction. The policy is optimized in a
closed-loop manner, by considering future observations about the behavior
of the other vehicles. This is especially necessary for lane changes in con-
gested traffic. In these scenarios, gaps on neighboring lanes are often small,
such that planning of a collision-free merge trajectory is not possible. In-
stead, the car with the intent to merge is dependent on interactive, friendly
behavior of another vehicle. The presented algorithm is able to reduce the
uncertainty about the friendliness of the other drivers by approaching cer-
tain gaps to gather information about their potential behavior. This allows
for merging in congested traffic where gaps of sufficient size do not exist.

The main contributions of this chapter are as follows:

∙ gap selection, approach and merge are combined in one algorithm
and are implicitly part of the optimal policy

∙ combined longitudinal and lateral optimization

∙ explicit modeling of the interaction with other vehicles

∙ trained model to predict yield behavior of the surrounding vehicles

∙ online optimization of a closed-loop formulation on a continuous
state and belief space

∙ combination of MCTS with a deterministic 𝐴* roll-out heuristic for
fast convergence to the optimal policy

The chapter is based on and was previously published in [125].

86

5.1 Related Work

5.1 Related Work

Lane changes can be divided in different stages which are: gap selection,
gap approach, gap evaluation and the merge maneuver into the gap. More
often than not, these tasks are separated into different algorithms instead
of being solved in one generic algorithm. While this allows for a simpler
algorithm design, it also reduces the space of possible, interactive solutions
which may lead to suboptimal behavior. It may even lead to not finding
a solution at all in critical cases. In the following, simple gap assessment
algorithms are reviewed first and are followed by various planning algo-
rithms.

5.1.1 Gap Assessment Algorithms

The first algorithms which performed lane changes in real traffic were real-
ized during the Darpa Urban Challenge [20]. These approaches were rule-
based and separated the lane change into different subtasks. For example,
the winning team [107] designed an arbiter which evaluated the feasibil-
ity to merge into a certain gap based on the velocities of the surrounding
drivers, the gap size and further metrics.

More advanced rule-based concepts go a step further and asses the util-
ity of different gaps. Hereby, not only the current state, but also the mea-
surement uncertainty as well as the predicted behavior of the other agents
is used to decide for suitable gaps. Nonetheless, the lane change itself
is still separated into a gap approach and a merge maneuver [3]. While
such a utility based approach cannot guarantee safety, other algorithms ex-
ist which can guarantee the safety of lane changes by using verification
methods based on reachability analysis [80].

Another approach which uses a POMDP formulation is presented in
[105]. The authors design a high-level state space of eight states and ac-
count for sensor uncertainty of the surrounding vehicles. Limiting the hori-
zon of the policy to two planning steps allows to solve the problem online.

5.1.2 Planning-Based Algorithms

Next to the gap assessment algorithms, various algorithms exist which gen-
erate a trajectory or policy to merge into a certain gap. The algorithms can
be distinguished by their capability of combined longitudinal and lateral
planning as well as the consideration of interaction and uncertainties.

87

5 Coupled 2D Planning for Interactive Merging

Longitudinal Planning

Given a map layout in which the current lane of a certain vehicle merges
into another lane, combined longitudinal and lateral planning must not be
considered. This is the case as the spatial coordinates of the merge position
are independent of the velocity of the autonomous car but defined a priori
by the topological map (the point where both lanes start to intersect).

The authors of [27] use a Probabilistic Graphical Model (PGM) to in-
fer from various measurements how likely a yielding behavior of the other
vehicles is. Given the estimated yield probabilities, the algorithm selects
a certain target for a longitudinal, model-based ACC planner. In [23], the
authors introduce Multi Policy Decision Making (MPDM), which provides
a fast solution for a POMDP formulation. They use a predefined set of
potential policies describing high level maneuvers (such as lane following,
merge, . . .). By use of online forward simulations, the value of each policy
is estimated, given various potential behaviors of the other agents. Finally,
the policy which maximizes the expected reward is chosen. The complex-
ity of the forward simulations is reduced by using non-probabilistic motion
and observation models.

To avoid such a forward simulation, the authors of [75] use passive Actor
critic RL to learn the value function for a similar framework.

The algorithm presented in Chap. 4 may also be used for longitudinal
merging scenarios and allows to generate an optimal policy given uncer-
tainty of prediction and interaction.

Longitudinal and Lateral Planning

A hybrid formulation for the merge problem is presented in [113]. At first,
a deterministic graph search algorithm plans a trajectory into a gap of suf-
ficient size while neglecting uncertainty and interaction. In a second step,
an MPC algorithm is used to optimize the speed profile in longitudinal and
lateral direction separately.

The authors of [74] use an a priori defined set of constraints to optimize
a longitudinal speed profile, by use of a QP, to approach and merge in a
certain, preselected gap. In a subsequent step, another QP formulation is
used to optimize the lateral speed profile for the lane change. Again, the
formulation does not allow to incorporate interaction and uncertainties.

The authors of [67] demonstrate how cooperative and interactive behav-
ior may be generated for the case of lane changes on highways. The well-

88

5.2 Approach

known MCTS algorithm is used to model the deterministic interaction be-
tween the various traffic participants. The degree of aggressiveness in the
interactive, cooperative behavior is designed by weighting the costs of the
other drivers in a combined cost functional. A similar approach with con-
tinuous actions is presented in [59]. The authors use a decoupled MCTS
formulation and use guided search and semantic actions to allow for solv-
ing the problem on a continuous action space. While both approaches are
able to model interaction and uncertainties, hidden variables are not intro-
duced. Therefore, the algorithms do not reason over a belief state which
also prohibits information gathering.

5.2 Approach

This chapter describes the design of an algorithm which generates an opti-
mal policy for the lane change problem in congested traffic. To respect the
uncertainty of the other drivers (uncertain interaction and prediction) in an
optimal way, a policy is generated over a belief state. To allow for actively
gathering information about the hidden states of the surrounding drivers,
possible future observations are considered during planning. This leads
to a closed-loop optimization of the optimal policy by use of a POMDP.
This allows for the generation of a behavior, in which the autonomous car
approaches the most promising gap given the current scene configuration,
while already considering various potential future scenarios (merge or abort
merge) in the optimal policy. However, using a simple vehicle model and
discrete actions leads to non-optimal smoothness of the trajectory regarding
higher derivatives such as jerk.

To address this limitation, the most probable trajectory is extracted from
the policy. This trajectory is then optimized by a sampling-based [112] or
a MPC-based trajectory planning algorithm [38], using continuous actions
(see Sec. 1.5 for further details).

The problem is solved online with the anytime, MCTS-based ABT algo-
rithm (see Sec. 2.4 for further details). The generic problem formulation
as well as the online capability allows the application of the algorithm in
various real-world scenarios.

89

5 Coupled 2D Planning for Interactive Merging

𝑁1

𝑁3

𝑁2

𝑠

𝑙 = 0

𝑙 = −1

𝑙 = 1

𝑑

𝑑

𝑑

𝑑0𝑁0

𝑠3

Figure 5.2: Visualization of the dimensions of the state space of the autonomous
and the other cars. The desired lane of the ego vehicle is always defined as 𝑙 = 0
(graphic from [125], c○2018 IEEE).

5.2.1 State Space

To allow the modeling of interaction, the autonomous car 𝑁0 as well as the
other agents 𝑁𝑘 are represented in the state space. An actual state 𝒳 ∈ 𝒳
is defined in continuous space as

𝒳 = [𝒳0,𝒳1,𝒳2, . . . ,𝒳𝐾]T. (5.1)

Hereby, 𝒳0 represents the state of the autonomous car and 𝒳𝑘, with
𝑘 ∈ {1, . . . ,𝐾}, represents the states of the other agents 𝑁𝑘 on the same
or neighboring lanes. The position of a vehicle 𝑁𝑘 is described by the
Frenet-Serret formulas on a certain lane 𝑙𝑘 at longitudinal position 𝑠𝑘, with
longitudinal velocity 𝑣𝑘 and lateral position 𝑑𝑘 (see Fig. 5.2). The origin of
the Frenet-Serret coordinate system is located at the beginning of the next
intersection (see Fig. 5.2). The state of the autonomous vehicle is defined
as

𝒳0 = [𝑠0, 𝑑0, 𝑣0, 𝑙0]T, (5.2)

while the other vehicles are described with

𝒳𝑘 = [𝑠𝑘, 𝑣𝑘, 𝑙𝑘, 𝑚𝑘]T. (5.3)

90

5.2 Approach

The variable 𝑚𝑘 describes a hidden variable. It cannot be measured di-
rectly, but inferred via observations over time. The variable is used to de-
scribe the friendliness of the other driver i.e. if he will react by yielding
(𝑚𝑘 = 1) to a merge attempt or not (𝑚𝑘 = 0).

5.2.2 Action and Transition Model

The action space 𝒜 is defined as 𝒜 = 𝒜long × 𝒜lat with a set of discrete
longitudinal accelerations𝒜long = {−1m

s2 , 0
m
s2 , 1

m
s2 } and a set of lateral ve-

locities𝒜𝑙𝑎𝑡 = {−𝑣lat ms , 0
m
s , 𝑣lat

m
s }. A possible action of the ego vehicle

is defined as a 𝑎0 = [𝑎0,long, 𝑣0,lat]. The non-holonomic kinematics (see
Sec. 1.2.2) of the autonomous car are taken into account by constraining
𝑣lat via a maximum side slip angle as defined in [74]:

𝑣lat = min(0.17𝑣0, 0.5
m

s
). (5.4)

While the action in longitudinal direction is a discrete acceleration, the ac-
tion in lateral direction is a lateral velocity. The underlying assumption,
that a lateral velocity may be reached immediately is valid as long as the
lateral velocity is constrained on the current longitudinal velocity.

The transition model T(𝒳′,𝒳 , 𝑎0) of the autonomous car and the other
vehicles is defined for discrete time with a step size of ∆𝑡 as followed for
the different dimensions:

𝑠′𝑘 = 𝑠𝑘 − 𝑣∆𝑡− 1

2
𝑎𝑘,long∆𝑡2 𝑘∈{0, . . .,𝐾}

𝑣′𝑘 = 𝑣𝑘 + ∆𝑡𝑎𝑘,long 𝑘∈{0, . . .,𝐾}
𝑚′

𝑘 = 𝑚𝑘 𝑘∈{0, . . .,𝐾}
𝑙′𝑘 = 𝑙𝑘 𝑘∈{1, . . .,𝐾}

𝑙′𝑘 = 𝑙𝑘 ± 1 𝑑𝑘 + 𝑑𝑘𝑣𝑘,lat ≶ ∓
𝑤lane

2
, 𝑘∈{0}

𝑑′𝑘 = 𝑑𝑘𝑣𝑘,lat + (𝑙′𝑘 − 𝑙𝑘)𝑤lane 𝑘∈{0}.

The width of the lane is assumed to be constant, s.t.𝑤lane(𝑠𝑘) = 𝑤lane.
Furthermore, the assumption is made, that the other vehicles do not change
lanes and drive in the middle of their lane. While the action of the au-
tonomous car, 𝑎0, is part of the optimization problem, the action of the
surrounding agents, 𝑎𝑘(𝒳), with 𝑘∈{0, . . .,𝐾} is determined by a model,
given the current state.

91

5 Coupled 2D Planning for Interactive Merging

Table 5.1: IDM parameters

𝑇 0.5 s 𝛿 4
𝑎IDM 1.75m

s2 𝜎2 0.1
𝑑IDM 2 m ∆𝑣𝑘 𝑣𝑘 − 𝑣target
𝑏 −0.8m

s2 𝜙𝑘 𝑠target + 𝐿target − 𝑠𝑘

5.2.3 Motion Model of Surrounding Agents

For the behavior generation of the surrounding agents, the IDM [104] is
used to realize car following behavior. It is also adapted for the case of
interactive yielding.

In general, two possible behaviors must be modeled: Cooperative yield-
ing to the merge attempt of the autonomous vehicle or non-yielding car
following behavior. These two behaviors can be modeled by either using
the preceding vehicle as target vehicle 𝑁target for the IDM (not yielding)
or by using the merging, autonomous car as target vehicle. If a preceding
vehicle does not exist, the desired reference velocity 𝑣𝑘,des is approached.
The reference velocity is based on the road curvature and speed limit and
extracted as described in Sec. 3.3.2.

The acceleration 𝑁𝑘(𝒳) of another vehicle 𝑁𝑘 used for the transition
model is

𝑎𝑘 = 𝑎IDM

[︂
1−

(︂
𝑣𝑘

𝑣target

)︂
𝛿 −

(︂
𝜑(𝑣𝑘,∆𝑣𝑘)

𝜙𝑘

)︂
2

]︂
+𝒩 (0, 𝜎2) (5.5)

and
𝜑(𝑣𝑘,∆𝑣𝑘) = 𝑑IDM + 𝑣𝑘𝑇 +

𝑣𝑘∆𝑣𝑘

2
√
𝑎IDM𝑏

. (5.6)

The model parameters are the desired time headway 𝑇 , a comfortable dece-
laration 𝑏, a minumum distance 𝑑IDM, a maximum acceleration 𝑎IDM and
the acceleration exponent 𝛿.

The target vehicle 𝑁target is set depending of the yield classification
𝑃𝑘,yield:

𝑁𝑡𝑎𝑟𝑔𝑒𝑡 =

{︃
𝑁0 if 𝑃𝑘,yield = 1

𝑁𝑘,front otherwise
. (5.7)

92

5.2 Approach

𝑁𝑘,front denotes the leading vehicle of vehicle 𝑁𝑘 on the lane 𝑙𝑘 and 𝐿𝑘

denotes the absolute length of vehicle 𝑘.
For the case of non-existing front vehicles, Eq. (5.6) is set to zero. The

acceleration of the model is disturbed with Gaussian noise to account for
prediction uncertainty. The parameters for the IDM are given in Tab. 5.1.

5.2.4 Observation Model

The variable 𝑚𝑘 is a hidden state and describes if the driver of vehicle 𝑁𝑘

will behave cooperative or not during a merge attempt. This variable can-
not be measured directly but can be inferred observations over time. The
POMDP formulation allows to predict what possible future observations
may be measured and in what way they are going to influence future be-
lief states. This enables the policy to choose certain actions which lead to
more precise belief states, a behavior known as information gathering. This
means for the merge scenario, that configurations in which the autonomous
vehicle is approaching a certain gap are preferred, as the potential interac-
tive behavior can be observed. Is is assumed, that there is no measurement
noise and therefore the observation 𝑜 = 𝑍(𝒳′, 𝑎) is defined as follows:

𝑜 = [𝑜0, 𝑜1, . . . , 𝑜𝐾]T (5.8)

with 𝑜0 = [𝑠′0, 𝑑
′
0, 𝑣

′
0, 𝑙

′
0]T and 𝑜𝑘 = [𝑠′𝑘, 𝑣

′
𝑘, 𝑙

′
𝑘]T for 𝑘∈{0, . . .,𝐾}.

5.2.5 Reward Model

The reward function 𝑅(𝒳 , 𝑎,𝒳′) is the sum of different possible rewards,
motivating different behaviors:

𝑅(𝒳 , 𝑎,𝒳′) = 𝑅vel + 𝑅act + 𝑅end_lane + 𝑅wrong_lane + 𝑅center + 𝑅coll.
(5.9)

The different rewards are explained in more detail in the following.

Reference Velocity

The goal of 𝑅vel is to realize a behavior which follows a certain reference
velocity, defined for each lane. The reference velocity is defined based
on the maximum speed limit, adapted by a comfortable reference speed in

93

5 Coupled 2D Planning for Interactive Merging

curvatures including an approach phase (see Sec. 3.3.2 for more details).
The reward is defined as:

𝑅vel(𝒳
′
0) =

{︃
−100 · (𝑣ref − 𝑣0)2 , if 𝑣0 > 𝑣ref

−100 · (𝑣ref − 𝑣0) , if 𝑣0 < 𝑣ref
. (5.10)

Desired Lane

The purpose of the desired lane rewards is to motivate a lane change
in general (𝑅wrong_lane) and in particular when the lane is going to end
(𝑅end_lane). The reward for being on a non-desired lane, 𝑅wrong_lane(𝒳0),
is simply defined with a negative reward of−600 if the autonomous vehicle
is not on its desired lane (𝑙0 ̸= 0). The end of lane reward, 𝑅end_lane(𝒳0),
is a negative reward whose absolute value increases linearly over the last
50 meters of a lane from 0 to −1000.

Lane Center

A quadratic reward on the lane center, 𝑅center(𝒳0), is used to motivate the
ego vehicle to drive in the middle of the lane, with 𝑅center = −200 · 𝑑20.

Action Selection

To minimize the used accelerations the action of the ego vehicle has a re-
ward of 𝑅act(𝑎) = −100 ·

(︁
𝑎20,𝑙𝑜𝑛𝑔 + 2 · |𝑣0,𝑙𝑎𝑡|

)︁
.

Collision

Finally, a collision reward 𝑅coll(𝒳) punishes with −106 if the autonomous
car is entering the longitudinal area of another vehicle on the lane of the
other vehicle. A simple linear increasing cost map at the back of the other
vehicles is used to realize following behavior after a merge, as done in
Sec. 3.3.2.

5.2.6 Learned Yielding Model

For the surrounding agents, two possible motion models exist. Yielding to a
possible merge attempt or simply following the existing front vehicles. The

94

5.2 Approach

−5
0

5
10

15

−2

0

2
0

0.5

1

𝑠𝑘 − 𝑠0

d 0

𝑃

𝑃 (𝑁𝑘,front = 𝑁0|𝑓𝑘)

𝑁𝑘

𝑁𝑘+1𝑣0 = 7𝑚
𝑠

𝑣0 = 5𝑚
𝑠

𝑣0 = 3𝑚
𝑠

Figure 5.3: The probability 𝑃 (𝑁𝑘,front = 𝑁0|𝑓𝑘) for a yield of vehicle 𝑁𝑘 for
various possible configurations of the autonomous car in the gap. The probability
is drawn over feature 𝑑0 and the feature, 𝑠𝑘 − 𝑠0. The probability is also shown for
three different velocities of the autonomous vehicle 𝑣0. The other two vehicles are
driving with 𝑣𝑘 = 𝑣𝑘+1 = 5m

s
(graphic from [125], c○2018 IEEE).

POMDP formulation is based on the definition of realistic transition mod-
els. Therefore, the idea is to learn from recorded data what world situation
is most promising to see a yield reaction of the other agent. This allows
that the policy steers the autonomous car to the most promising position. A
logistic regression classifier is used to determine the probability of vehicle
𝑁𝑘 yielding to 𝑁0, in a given scene, described by the feature vector 𝑓𝑘:

𝑓𝑘 = [1, 𝜙𝑘, 𝑑0, 𝑣0, 𝑠𝑘 − 𝑠0, 𝑣𝑘, 𝑣𝑘,front]
T. (5.11)

The longitudinal position of the ego vehicle in the gap is described with
𝑠𝑘 − 𝑠0 and the absolute gap size 𝜙𝑘 = 𝑠𝑘,front + 𝐿𝑘,front − 𝑠𝑘 and the

95

5 Coupled 2D Planning for Interactive Merging

length of the front vehicle as 𝐿target. The result of the logistic regression
classifier is the yield probability of vehicle 𝑁𝑘 for a scene described by 𝑓𝑘:

𝑃 (𝑁𝑘,front = 𝑁0|𝑓𝑘) =
1

1 + 𝑒−𝜃T𝑓𝑘
. (5.12)

The vector 𝜃 is the trained weight vector of the logistic regression model.
The probability 𝑃 (𝑁𝑘,front = 𝑁0|𝑓𝑘) and a threshold probability 𝛽yield

is used to choose the front car 𝑁𝑘,front of agent 𝑁𝑘 as follows:

𝑁𝑘,front = 𝑁0, if 𝑃 (𝑁𝑘,front = 𝑁0|𝑓𝑘) > 𝛽yield ∧𝑚𝑘 = 1. (5.13)

Increasing/decreasing the threshold allows for less/more aggressive poli-
cies.

The classifier is trained with recorded data of real-world lane changes.
Used training data is labeled to the two different maneuver classes, repre-
sented by using a different target vehicle for the IDM. The feature vector
𝑓 is normalized and scaled by its variance such that every feature can con-
tribute in the same way. The training data contains 4847 positive data points
(vehicle yields to the merge request) and 1691 negative ones (vehicle does
not yield). The accuracy of the algorithm is 84.3% in the test set.

5.2.7 Implementation

As in Chap. 4, the merge planner is solved as described in Sec. 2.4. The
used parameters are presented in Tab. 5.2.

Heuristic Function

To steer the construction of the belief tree in a promising direction, the value
of newly explored belief states is estimated by use of a heuristic function
Sec. 2.4. The value estimate is obtained with a roll-out 𝑔(𝒳) from the cur-
rent particle. The roll-out uses a near-optimal plan, generated by an 𝐴* [61]
graph search with three steps and a following constant velocity action up to
the planning horizon. This idea is described in Sec. 2.4.

The 𝐴* [61] search itself also needs a heuristic which is realized over
the reward 𝑅non_des_lane. The heuristic ℎnon_des_lane presents an estimate
of the future costs by calculating how many further steps are at least on a
non-desired lane:

ℎnon_des_lane = −600 · ⌊(|𝑙0| − 1)𝑤lane +
1

2
𝑤lane + 𝑠𝑔𝑛(𝑙0)𝑑0⌋. (5.14)

96

5.3 Results

Table 5.2: TAPIR parameters

𝑐 20 𝛾 1.0
𝑡hor 10 s ∆𝑡 1 s

5.3 Results

The scenarios are set up in a simulation software at the BMW Group and the
algorithm is evaluated on a system with an Intel Core i7-4910MQ CPU with
2.9 GHz. The simulation vehicles are controlled with a rule-based expert
system [39] and not the IDM, which is used in the forward simulation.

5.3.1 Analysis of Belief State Policy

At first, a generated policy and its capability to plan closed-loop interac-
tive behaviors is examined in detail. The policy is shown in Fig. 5.4 for the
merge scenario presented in Fig. 5.1. The plot shows the subset of all sam-
pled episodes which are part of the approximated optimal policy, which
considers various possible future scenarios. The figure is split up in two
parts. While the right side shows how the belief over the friendliness of
the other drivers (𝑚1 and 𝑚2) is predicted to change, the left side shows
the actual policy. It can be seen, that the two maneuvers of the rear vehicle
((non) cooperative behavior) of the gap are present in the policy. But, the
policy does not only respect the two different maneuvers but also the uncer-
tain longitudinal prediction in each maneuver class. Additionally, it can be
seen that the policy considers the current uncertainty of the belief and in-
corporates that more information will be available in the next time step. At
𝑡 = 1𝑠 the belief tree is predicted to split in one tree representing possible
cooperation and another tree representing non-cooperative behavior of the
rear vehicle (Fig. 5.4, right side). A non-cooperating rear vehicle will lead
to a merge behind it, while a cooperative behavior allows the autonomous
car to merge in front. The right picture of Fig. 5.4 show how the estimation
of 𝑚 is predicted to change, given particular actions of the autonomous car.
It can be seen, that the belief of the rear vehicle is assumed to be known in
the next time step (by observing the reaction to the merge attempt) while
it is not yet known at 𝑏0. It is also interesting to see, that no better es-
timation will be available for the front vehicle, as information about the
belief state can only be gathered by approaching the corresponding gap. As

97

5 Coupled 2D Planning for Interactive Merging

010203040 −5

0

0

5

10

s [m]

d [m]

𝑡
[s
]

POMDP open-loop planner
𝑁front 𝑁back

0 0.5 1
0

2

4

6

8

10

P(mk =1)

𝑡
[s
]

Figure 5.4: Policy of the ego car (blue) for merging onto another lane with two other
vehicles (red). It can be seen that the ego car accelerates first up to the velocity
of the gap (implicit gap approach). The policy contains two different future plans
depending on the behavior of the other vehicle. After receiving the next observation,
the ego vehicle plans to merge either before or behind the other car. The optimal
policy contains 37 potential scenarios and was optimized for 2000 ms to retrieve
many episodes. The POMDP policy is compared to a open-loop planner, which
does not respect future observations but considers all predictions simultaneously.
It can be seen, that the open-loop planner plans directly for the more conservative
maneuver, i.e. merging behind 𝑁back (graphic from [125], c○2018 IEEE).

the autonomous car does not approach the gap in front of the first vehicle,
information about its possible cooperative behavior will not be gathered.

The policy of the closed-loop POMDP planner is compared with the pol-
icy of an open-loop planner. The open-loop planner assumes the same ini-
tial belief state as the POMDP, but does not incorporate future measure-
ments. This prohibits it to take into account that more observations will be
perceived which allow to estimate the state 𝑚 more precisely and to post-
pone the merge decision accordingly. Therefore, the open-loop planner has
to plan a more conservative policy and merge behind the rear vehicle.

98

5.3 Results

0
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

05

1
0

𝑣[
m
s]

0
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

−
4
0

−
2
00

2
0

4
0

s[m]
𝑁

0
L

an
e

ch
an

ge
v 0

,d
es

T
P

N
1

N
2

N
3

N
4

0
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

−
2

−
1012

𝑑0[m]

0
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

0
0
.2

0
.4

0
.6

0
.81

𝑡
[s
]

𝑃(𝑚𝑘=1)

Fi
gu

re
5.

5:
T

he
tr

aj
ec

to
ri

es
of

al
l

ag
en

ts
in

a
on

lin
e

si
m

ul
at

io
n

of
th

e
sc

en
ar

io
in

Fi
g.

5.
1,

ex
te

nd
ed

to
fo

ur
ve

hi
cl

es
.

T
P

is
th

e
tr

aj
ec

to
ry

of
th

e
eg

o
ve

hi
cl

e,
w

hi
ch

is
ge

ne
ra

te
d

fr
om

th
e

PO
M

D
P’

s
re

fe
re

nc
e

tr
aj

ec
to

ry
by

th
e

tr
aj

ec
to

ry
pl

an
ne

r
(g

ra
ph

ic
fr

om
[1

25
],

c ○
20

18
IE

E
E

).

99

5 Coupled 2D Planning for Interactive Merging

5.3.2 Online Simulation

Addtionally to the direct evaluation of the policy in the previous section,
this section shows a qualitative evaluation of the performance of the plan-
ner in an online simulation. The online simulation is run for the scenario
shown in Fig. 5.1 which is extended by two more vehicles, such that four
vehicles occupy the neighboring lane. Given the uncertainty in the longi-
tudinal prediction, the gaps are too small to allow for planning of a tra-
jectory in one of them. The longitudinal position of all vehicles is shown
in the upper plot of Fig. 5.5. It can be seen, that the autonomous car 𝑁0

approaches the gap between vehicle 𝑁2 and 𝑁3 first by approaching the
longitudinal position of 𝑁3 (𝑡 = 2𝑠 − 6𝑠). The autonomous car observes,
that vehicle 𝑁3 does not start to act cooperatively (i.e. braking to allow a
merge). Its hidden state, 𝑚3 is therefore inferred to be non-cooperative, i.e.
𝑚3 = 0 which can be seen in the lower plot of Fig. 5.5. The autonomous
car stops the merge attempt, slows down (see third subplot in Fig. 5.5) and
approaches the other gap in front of vehicle 𝑁4 (see the velocity during the
gap approach 𝑡 = 3𝑠−9𝑠 of 𝑁0). At time 𝑡 = 10𝑠, a significant observation
is received, i.e. vehicle 𝑁4 is braking for the autonomous car. This results
in an inferred estimation of 𝑚4 = 1 for 𝑁4. That leads to a predicted,
cooperative trajectory of vehicle 𝑁4, such that the autonomous car starts to
merge immediately. The merge friendly behavior of the other agents may
be estimated in a discrete manner as the behavior of each maneuver class is
very different and no measurement noise is assumed. As soon as the lane
change of the autonomous vehicle has happened (𝑡 = 11𝑠), the belief state
is not tracked anymore.

This example shows how the different phases of a lane change: decision
for a gap, approach, yield prediction and merge are handled implicitly in
one optimization problem. None of these steps is needed to be modeled
in a single module, which is the case for the state of the art. Aside from
that, one of the key strengths of a POMDP formulation show up in this
simulation. The planner uses actions to reach positions (close to a potential
merge gap), where it can gather information about the latent states of the
other agents. This allows the planner to quickly asses the possibility to
merge in a certain gap and to act accordingly.

One can also notice, that the trajectory planning layer provides a
smoother execution of the reference trajectory, which is provided by the
POMDP. This also leads to deviations to the reference trajectory, which
can be seen, e.g., for the lateral position of the autonomous car (second plot

100

5.4 Summary

in Fig. 5.5) where the behavior planner expects the autonomous car to enter
the other lane at 𝑡 = 13𝑠, while it already happened at 𝑡 = 11𝑠 due to a
small offset.

5.4 Summary

This chapter presents a behavior planning algorithm, based on a POMDP
formulation, that allows to execute lane changes in densely populated en-
vironments. It is demonstrated how the different stages of a lane change
algorithm (gap selection, gap approach and merge) can be modeled in one
optimization problem. The policy is optimized in a closed-loop manner by
respecting possible future observations. These observations allow to derive
information about the hidden variables of the driver models. The models
respect the

∙ longitudinal uncertainty in the prediction

∙ unknown willingness for yielding.

Incorporating these uncertainties in the closed-loop optimization of the pol-
icy allows the autonomous car to merge in (too) narrow gaps. The formu-
lation as a POMDP allows for a behavior, where the autonomous car ap-
proaches the gap to reduce the uncertainty about the prediction of the other
vehicle (yielding to the merge attempt or not) by considering possible fu-
ture observations. For every possible future observation, the policy contains
a reactive plan to act accordingly.

To allow for optimal approach behavior, the action of the autonomous car
is optimized simultaneously in longitudinal and lateral direction. MCTS is
used with domain specific heuristics to allow for solving the non-convex,
probabilistic optimization problem online.

101

6 Planning under Sensor Occlusions

The previous chapters demonstrate how various uncertainties can be con-
sidered explicitly during behavior planning for autonomous vehicles. For
example, the unknown intention and the likelihood for yielding/interaction
of the other drivers can be modeled as hidden variables in their motion
models.

Nonetheless, these algorithms work under the assumption that the phys-
ical state of the environment can be fully observed. This is an invalid as-
sumption in real-world environments as existing agents may not be per-
ceived when acting in occluded areas.

Figure 6.1: Visualization of the closed-loop, online algorithm: The goal of the au-
tonomous car is to turn left at an intersection. Due to the constrained Field of View
(FoV), other potential vehicles cannot be observed. The policy is shown in blue,
with its velocity plotted over the longitudinal distance. It can be seen, that the pol-
icy contains several, closed-loop plans (crossing or stopping) for the point of time
in the future where a sufficient FoV will exist (graphic from [123], c○2019 IEEE).

In this chapter, the behavior planning algorithm from the previous chap-
ters is advanced. A formulation is presented which considers explicitly

103

6 Planning under Sensor Occlusions

that other agents may be occluded and that they cannot be perceived by the
sensors of the autonomous car.

Handling this existence probability in an optimal way is a non-trivial
problem. Simply using a worst-case assumption for the configuration of
another vehicle is not possible. This is the case, as the worst-case config-
uration of the other agent is dependent on the behavior of the autonomous
car, which is yet to be optimized.

Standard approaches limit the longitudinal velocity of the autonomous
car, such that braking before a possible conflict point is always possible if
the FoV is not large enough at the current point in time. This results in
planning of a trajectory which leads to a stop in front of the occlusion. This
trajectory is executed until the FoV is suddenly large enough, s.t. a potential
occluded vehicle is not relevant anymore. At that point in time, replanning
generates a new trajectory which does not respect the occlusion anymore.
This behavior is rather conservative, even a full stop, the so called freezing
robot is possible (see [103]).

This chapter presents a less conservative approach. The presented algo-
rithm reasons over a belief state, representing the existence probability of
occluded vehicles, so called phantom vehicles. It considers occluded areas,
created by static as well as by dynamic objects. Hereby, the planner does
not only consider the current FoV but also reasons about the future change
of the FoV. This is done, by simulating the FoV over the planning horizon,
to model at what vehicle configurations the FoV may be sufficiently large.
Such closed-loop planning allows for behaviors which actively explore the
environment to reduce uncertainty in the belief. Potentially existing, i.e.
phantom vehicles, are described by their reachable set instead of their con-
figuration. This representation allows to represent an unknown number of
vehicles in an occluded area by one set. By combining the FoV simulation
with the simulation of possible phantom vehicles, the decision point in the
policy can be determined.

The problem is formulated as a POMDP, which creates a policy contain-
ing various future plans for different future observations (see Fig. 6.1).

The key contributions of this chapter are as follows:

∙ modeling of the FoV during planning to allow for information-
gathering

∙ modeling of phantom vehicles with their reachable sets

∙ evaluation in various simulations

104

6.1 Related Work

∙ online optimization of a closed-loop formulation on a continuous
state and belief space

∙ combination of MCTS with a deterministic 𝐴* roll-out heuristic for
fast convergence to the optimal policy

This chapter is based on and was previously published in [123, 130].

6.1 Related Work

A worst-case approximation of potential vehicles in an occluded area can
be done by reachability analysis. The general idea of reachability analysis
is to describe all possible, future configurations of a certain vehicle by a
set [2]. This idea can be transfered to occlusions, by describing all possible
vehicle configurations in one occlusion by one reachable set. An unknown
number of objects in one occluded area can therefore be described by one
reachable set only. By use of motion models and certain assumptions on
the underlying parameters, all future configurations of these vehicles can
also be described by one reachable set. The authors of [87] use a simple
heuristic to calculate a safety distance to the occluded areas. The occluded
areas itself are calculated by a geometric model. In [77], the authors pro-
vide a safety verification method for planning trajectories under occlusions.
Kamm’s circle [109] is used for the physical models to define the reachable
set, describing all possible, future vehicle configurations, more exactly. The
approach is evaluated with static and dynamic occlusions at intersections.
In [40], the unobservable area at the current point in time is extracted by
mapping a static grid on a topological map. As long as potential objects are
not far enough away from the path of the autonomous vehicle, planning on
that area of the path is not allowed.

The aforementioned approaches assume no knowledge about vehicles
inside the occlusions. In [33], the authors observe vehicles entering the oc-
clusion and track it throughout their time of being not observable. Various
potential tracks are created when the vehicle enters the occluded area (for
the different possible behaviors in the occluded area) and tracked through-
out the intersection with a hybrid Gaussian Mixture Model. The behavior
planner can therefore respect the occluded car by respecting the various
hypotheses. As soon as the vehicle leaves the occlusion, the observation
is matched on the most likely synthetic track, using the Kullback-Leibler
divergence.

105

6 Planning under Sensor Occlusions

The previous approaches consider occlusions by constraining the plan-
ner with predictions or reachable sets of potentially existing vehicles. In the
following, approaches which reason over the uncertainty directly during op-
timization of a trajectory are presented. The authors of [17] use a POMDP
to respect observation uncertainty due to occlusions in their planning prob-
lem. A scenario-specific discretization of the state space is learned and a
policy is approximated offline with the solver presented in [18]. The re-
sulting policy contains information gathering actions which decrease the
uncertainty about the positions of the other agents by optimizing the set of
possible observations. It is shown that the approach is capable of merging
into traffic under existence of non-trivial occlusions with an a priori known
number of other vehicles

A POMDP formulation is used in [16] to cross occluded intersections
and zebra crossings while considering the occlusions generated by static
obstacles. The authors use a scalable approach which transfers the problem
to several subproblems, containing the autonomous car and one other vehi-
cle. After solving the POMDP for every subproblem, a common Q-function
is retrieved by using the sum or minimum of the different Q-functions. The
authors use a Gaussian belief over the position of occluded agents and solve
the problem offline.

The authors of [91] use a POMDP to model occlusions at intersections.
The problem formulation assumes a fixed number of agents in the envi-
ronment, including in occlusions. Raytracing is used for the calculation of
the FoV, which is mapped on a lanelet [10] representation. The problem is
solved offline with use of the ABT algorithm.

A Deep Reinforcement Learning (DRL) approach for the crossing of in-
tersections with occlusions is presented in [42]. The authors use a dis-
cretized state space, realized as a grid with color codes as input for a Deep
Q-Learning (DQL) formulation. The results demonstrate that the network
is able to learn explorative behavior in front of intersections. However,
DRL impedes generalization to unseen scenarios and suffers from approx-
imation errors.

6.2 Approach

This chapter presents the problem formulation for online decision mak-
ing for an autonomous car under occlusions. The drawbacks of existing
approaches are overcome by combining the strengths of reachability anal-

106

6.2 Approach

ysis, probabilistic reasoning and closed-loop planning. By representing oc-
cluded vehicles with reachable sets, all possible vehicle configurations in
one occlusion can be represented by one set. The set of possibe occluded
vehicles on one occluded lane is referred to as phantom vehicle because of
their uncertain existence. The phantom vehicles are used within a POMDP
formulation to allow for probabilistic reasoning over their existence prob-
ability. Simulating the future FoV during planning allows even for active
information-gathering. Static and dynamic obstacles are considered during
the calculation of the FoV. The focus of the approach is, that the algorithm
finds implicitly an optimal behavior for the handling of occlusions.

6.2.1 State Space

The problem is defined with a state space that is a composition of the state
𝒳0 of the autonomous car 𝑁0, the states 𝒳𝑘 with 𝑘 ∈ 1, . . . ,𝐾 of the sur-
rounding vehicles 𝑁𝑘 and the states 𝒳 𝑙 with 𝑙 ∈ [𝐾 + 1, . . . , 𝐿] of the so
called phantom vehicles 𝑁𝑙, i.e. possibly existing vehicles in occlusions.
As it is infeasible to describe all possible vehicle configurations in occlu-
sions by particular states, the idea is to describe all possible configurations
on a occluded lane by one set. This set can be described for the longitu-
dinal modeling as one phantom vehicle with infinite length and a certain
maximum velocity (see Sec. 6.2.3 for more details).

The state of the environment is described as

𝒳 = [𝒳0,𝒳1, . . . ,𝒳𝐾 ,𝒳 𝑙, . . . ,𝒳𝐿]T (6.1)

with the state of the autonomous car defined as

𝒳0 = [𝑠0, 𝑑0, 𝑣0]T (6.2)

and the states of the other vehicles as

𝒳𝑘 = [𝑠𝑘, 𝑣𝑘, 𝑝𝑘]T (6.3)

and the states of possible phantom vehicles as

𝒳 𝑙 = [𝑠𝑙, 𝑝𝑙, 𝑔𝑙]
T. (6.4)

The autonomous vehicle 𝑁0 follows a path 𝑝0 which is generated
collision-free regarding static obstacles and is either generated by a path

107

6 Planning under Sensor Occlusions

𝑠0

𝑟0

𝑁0

𝑁𝑘

𝑁𝑙

𝑟1

𝑟2

𝑟3

𝑟4

𝑟5

𝑠𝑘

𝒳 𝑙 Ψ𝑙

Ψ𝑙+1

phantom vehicles

static object

dynamic object

𝑁𝑙+1

Figure 6.2: This schematic demonstrates the a state space representation advanced
from Chap. 4. All vehicles are encoded by their distances to the intersection on their
respective path. The autonomous vehicle follows its path, 𝑝0 = 𝑟0, while the other
vehicles have various path hypotheses (𝑟1, ..., 𝑟5). Crossing paths define conflict
areas, which may not be occupied by the autonomous and another (phantom) vehicle
at the same time. The conflict areas are not drawn for simplification issues but are
explained in detail in Chap. 4. Phantom vehicles are drawn as red boxes (𝑁𝑙),
starting at the edges of the FoV of the autonomous car 𝑁0 which is mapped on each
lane (red dashed line) of the topological map (graphic from [123], c○2019 IEEE).

planner a priori or simply retrieved from the road geometry of a topologi-
cal map, s.t. 𝑝0 = 𝑟0 (see Sec. 2.5 for an introduction to the path-velocity
decomposition). The other agents drive on a certain path 𝑝𝑘 which is ex-
tracted from the road Topology ℛ, s.t. 𝑝𝑘 = 𝑟𝑖 ∈ ℛ = {𝑟1, ..., 𝑟𝐼} for
𝐼 ∈ N. Agents are described by its longitudinal position 𝑠 and its absolute
velocity 𝑣 in the Frenet frame on their path 𝑝. The velocity of the phantom
vehicles is not part of the state space as they are assumed with a certain
maximum velocity. The variable 𝑔 is a boolean, indicating whether there is
a car in the occluded area (𝑔 = 1) or not (𝑔 = 0). Therefore, 𝑔𝑙 = 0 de-
scribes a world configuration in which there is no vehicle behind the field

108

6.2 Approach

of view on 𝑝𝑙. The state cannot be directly measured but only be inferred
over time. Again, the policy is described over a belief state 𝑏(𝒳) which de-
scribes the probability, that another car exists in the occlusion. Simulating
the phantom vehicles ahead in the belief tree allows to infer at what future
configuration the required FoV will be reached.

6.2.2 Observation Model

The state of the environment cannot be fully observed due to the existence
of hidden states. Nonetheless, the hidden states can be inferred over time by
possible observations of the environment. The observation space is defined
in a similar way as the state space, s.t. an observation 𝑜 ∈ 𝒪 is

𝑜 = [𝑜0,𝒳1, . . . ,𝒳𝐾 ,𝒳 𝑙, . . . ,𝒳𝐿]T. (6.5)

The localization of the autonomous car is assumed to be noise free. The au-
tonomous car can therefore be fully observed and the observation is defined
as: 𝑜0 = [𝑠0, 𝑣0]T.

The observation of the surrounding vehicles is defined in global coor-
dinates, as the path is a latent variable and cannot be observed directly:
𝑜𝑘 = [𝑣𝑘, 𝑥𝑘, 𝑦𝑘]T. This is done in the same way as presented in Sec. 4.3.4.

For every potential phantom vehicle, an observation is also generated.
The goal is to define an observation which is independent of the unknown
number of possible agents in the occlusion and that can be matched on the
phantom vehicle. This must be the case as the number of vehicles in an
occlusion is unknown. Therefore, a observation is defined by the FoV on
every lane. The FoV Ψ defines the edge of the FoV on the path of phantom
vehicle 𝑙 (see Fig. 6.2), s.t. 𝑜𝑙 = [Ψ𝑙, 𝑝𝑙].

6.2.3 Representation of Phantom Vehicles

Representing all possible vehicle configurations in the occluded area is
computationally infeasible. Nonetheless, the idea of using a certain worst-
case configuration instead is also not viable. This is the case as a worst-case
configuration cannot be calculated as it is completely dependent of the fu-
ture trajectory of the ego vehicle which is yet to be optimized. This coupled
problem is analytically not solvable. The idea of the problem formulation
is to define a phantom vehicle for each occluded lane, representing all pos-
sible vehicle configurations in a certain occlusion. This is realized by plac-

109

6 Planning under Sensor Occlusions

ing a phantom vehicle at the start of the FoV with assumed infinite length
and a velocity above the speed limit (to represent a worst-case speeding
assumption), s.t. 𝑣phantom = 1.3 𝑣max. If every possible, occluded vehi-
cle configuration would be represented explicitly, a certain subset of these
configurations would be discovered, when the FoV is expanded. Nonethe-
less, in this work, the idea is to represent all these configurations by one
reachable set. Instead of splitting the set into many discretized subsets, the
idea is to sample if the phantom vehicle is detected or not. The probability
of this sampling is proportional to the revealed occluded area during the
transition from 𝒳 to 𝒳′. This is realized via the traffic density, defined as
a uniform probability distribution in the occluded area. Given the uncer-
tainty of the existence of another vehicle, the only safe way to cross is a
sufficiently high, free FoV at the future point in time where the crossing
decision has to be made. The probability 𝑃𝜑(∆Ψ) for the existence of at
least one phantom car in the revealed FoV with length ∆Ψ = Ψ′ − Ψ, is
defined with the Bernoulli distribution:

𝑃𝜑(∆Ψ) =

⎧⎪⎨⎪⎩
0 , for∆Ψ < 0
ΔΨ
𝜔 , for∆Ψ ≥ 0 ∧∆Ψ < 𝜔

1 , for∆Ψ >= 𝜔

. (6.6)

The specific volume 𝜔 is defined as the average number of vehicles in an
occluded area per 100 m.

6.2.4 Action and Transition Model

The presented planning approach can be used with a longitudinal action set
𝒜long or a union of 𝒜long and an additional lateral action set 𝒜lat. While
the longitudinal action set only allows the autonomous vehicle to follow its
path 𝑟0 exactly, the union with a 𝒜lat allows the autonomous car to drive
with offset to the path, to potentially increase the FoV if needed. The lon-
gitudinal action set is defined as

𝒜long = {−2
m

s2
,−1

m

s2
, 0

m

s2
, 1

m

s2
}. (6.7)

110

6.2 Approach

𝑥0𝑥′
0

Ψ

Ψ′
𝑥′
𝑙

(a) 𝑔 = 1 ∧ 𝑠𝑙 > Ψ𝑙:
A phantom car which has
been already moved out of
the FoV before is set a step
forward.

𝑥′
𝑙

Ψ

Ψ′

𝑥′
0 𝑥0

(b) 𝑔 = 1 ∧ 𝜑 = 0: A
phantom car is sampled to
not drive out of the occluded
area.

𝑥′
𝑙

Ψ

Ψ′

𝑥0𝑥′
0

(c) 𝑔 = 1∧𝜑 = 1: A phan-
tom car is sampled to drive
out of the occluded area.

Figure 6.3: The three different cases of phantom vehicles which must be handled by
the probabilistic transition model (graphic from [123], c○2019 IEEE).

For the case of combined longitudinal and lateral actions, non-negative
longitudinal actions are combined with a set of lateral velocities 𝒜lat =
{−𝑣lat, 0, 𝑣lat}, s.t.

𝒜long,lat = 𝒜long ∪ ({𝒜long ≥ 0} × 𝒜lat). (6.8)

In this case, the planning problem changes from a longitudinal one to a
combined longitudinal and lateral planning problem. The lateral velocity
actions are proportionally constrained by the longitudinal velocity of the
autonomous car to guarantee kinematic feasibility. Therefore, 𝑣lat is de-
fined as 𝑣lat = min(0.17𝑣0, 0.75) as explained in Sec. 5.2.2.

The motion model for the autonomous vehicle is formulated with the
discrete longitudinal dynamics as

𝒳′
0 =

⎡⎣𝑠′0𝑣′0
𝑑′0

⎤⎦ =

⎡⎣1 −∆𝑡 0
0 1 0
0 0 1

⎤⎦⎡⎣𝑠0𝑣0
𝑑0

⎤⎦ +

⎡⎣− 1
2∆𝑡2 0
∆𝑡 0
0 ∆𝑡

⎤⎦[︂𝑎long
𝑣lat

]︂
. (6.9)

111

6 Planning under Sensor Occlusions

For the surrounding vehicles it is defined as

𝒳′
𝑘 =

⎡⎣𝑠′𝑘𝑣′𝑘
𝑟′𝑘

⎤⎦ =

⎡⎣1 −∆𝑡 0
0 1 0
0 0 1

⎤⎦⎡⎣𝑠𝑘𝑣𝑘
𝑟𝑘

⎤⎦ +

⎡⎣− 1
2∆𝑡2

∆𝑡
0

⎤⎦𝑎k. (6.10)

The action 𝑎𝑘 of another agent 𝑁𝑘 is retrieved from an extended version of
the IDM which e.g. also adapts to road curvatures Sec. 4.3.2.

For the phantom vehicles, various cases exist for the transition model.
As the states are expanded during simulation, every state transition (𝒳 ,𝒳′)
defines a current and next FoV for every lane, i.e. (Ψ(𝑠0),Ψ′(𝑠0)). The
transition model of the phantom vehicles is dependent on 𝑔 and the amount
of new exploration, i.e. ∆Ψ(𝑠0, 𝑠

′
0) = Ψ′(𝑠′0) − Ψ(𝑠0). A positive ∆Ψ

denotes an increased FoV and a negative ∆Ψ denotes a decreasing FoV on
a certain lane.

The different cases are explained in the following:
Case 1: 𝑔 = 0
In the case of a state which is representing a non-existing phantom vehi-

cle, the transition is:

𝒳′
𝑙 = [max(Ψ𝑙,Ψ

′
𝑙), 𝑝𝑙, 𝑔𝑙]

T. (6.11)

If the state represents an existing phantom vehicle, various transitions
exist (see Fig. 6.3):

Case 2a): 𝑔 = 1 ∧ 𝑠𝑙 > Ψ𝑙

The first possibility is that a phantom vehicle moved already out of the
occluded area in previous steps of the forward simulation. In that case, it is
simply advanced for the passed time step:

𝒳′
𝑙 =

⎡⎣𝒳′
𝑙

𝑝′𝑙
𝑔′𝑙

⎤⎦ =

⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦⎡⎣𝑠𝑙𝑝𝑙
𝑔𝑙

⎤⎦−
⎡⎣1

0
0

⎤⎦1.3 · 𝑣max ·∆𝑡. (6.12)

For the cases that an existing phantom vehicle is still at the edge of the
FoV, a sample 𝜑 is drawn form the Bernoulli distribution, s.t. 𝜑 ∼ 𝑃𝜑(∆Ψ).

Case 2b): 𝑔 = 1 ∧ 𝜑 = 0
If a phantom vehicle is sampled to not drive out of the occlusion (𝜑 = 0),

it is simply set to the new field of view:

𝒳′
𝑙 = [max(Ψ𝑙,Ψ

′
𝑙), 𝑝𝑙, 𝑔𝑙]

T. (6.13)

112

6.3 Results

Case 2c): 𝑔 = 1 ∧ 𝜑 = 1
A vehicle is sampled to drive out of the occlusion (𝜑 = 1). The min

operator is needed to respect the cases in which the environment changes
in a way s.t. the FoV decreases:

𝒳′
𝑙 = [min(Ψ𝑙,Ψ

′
𝑙)− 1.3∆𝑣max𝑡, 𝑝𝑙, 𝑔𝑙]

T. (6.14)

6.2.5 Reward Model

The immediate reward in POMDPs is defined for a state-action pair. To
balance various objectives, the overall reward contains different terms:

𝑅(𝒳 , 𝑎) = 𝑅act(𝑎0) + 𝑅vel(𝑣) + 𝑅coll(𝒳). (6.15)

Accelerations are punished with a small negative reward, s.t.
𝑅act = −100𝑎20, to maximize comfort.

𝑅vel(𝒳) =

{︃
−400 · |𝑣0 − 𝑣des| , 𝑣0 ≤ 𝑣des

−400 · (𝑣0 − 𝑣des)
2 , otherwise

. (6.16)

A crash with a (phantom) vehicle is punished with 𝑅coll = −20000. In
the case of combined 2-D planning, a special lateral reward, 𝑅center =
𝑅FOV(𝒳0)+𝑅act,lat+𝑅d(𝑑0), is added to the the reward functional. 𝑅FOV

motivates increasing the FoV, while 𝑅lat,acc and 𝑅d punish lateral acceler-
ations or driving with lateral offset.

6.2.6 Implementation

The algorithm is implemented by use of the ABT algorithm. It is imple-
mented in the same way as the algorithms from Chap. 4 and Chap. 5. The
framework and implementation is explained in detail in Sec. 2.4. As men-
tioned, the algorithm is heavily based on a deterministic roll-out. The opti-
mal behavior in the roll-out is determined with an 𝐴* graph search using a
heuristic based on the idea of ICS for collisions with ghost vehicles.

6.3 Results

The occlusion-aware planning approach is evaluated with the parameters
given in Tab. 6.1. The POMDP planner of this thesis is evaluated against

113

6 Planning under Sensor Occlusions

Table 6.1: Parameter values for the evaluation of the occlusion POMDP planner.

𝑐 20000 𝛿𝑡 1 s
𝛾 0.8 𝑡hor 6s
𝜌 1 agent

100m

(7)
(6)

(5)
(4)(3)(2)(1)

𝑁0

conflict area

𝑁1

Figure 6.4: An urban scenario with a static occlusion. It is evaluated for several
initial configurations of the occluded vehicle (graphic from [123], c○2019 IEEE).

two other approaches: An omniscient planner, acting with full observability
of occluded objects in the scene and a baseline approach, which makes
its decision based on the current FoV only. This baseline approach does
not simulate the FoV ahead and does therefore not consider how the FoV
changes during execution. This is an often used standard approach which
is only able to solve the problem by constant replanning. The approach is
evaluated in scenarios with static and dynamic occlusions.

6.3.1 Static Occlusion

The algorithm is at first evaluated in a scenario with a static occlusion (see
Fig. 6.4 for the scenario). It is generated by the edge of a house and has the
effect that the autonomous car is unable to fully observe another lane. The
speed limit is reduced to 𝑣max = 5.5 [ms], as this emphasizes the different
planning behaviors. Results, showing the behavior of the autonomous car
are presented in two parts. First, Fig. 6.5 compares the driven trajectories
of the POMDP planner, the omniscient planner and the baseline approach
during a simulation run. Secondly, the planner is evaluated in a quantitative

114

6.3 Results

−
2
2

−
2
0

−
1
8

−
1
6

−
1
4

−
1
2

−
1
0

−
8

−
6

−
4

−
2

0
2

4
6

8
1
0

1
2

1
4

1
6

1
8

0246

𝑠 0
[m

]

𝑣0
m
s

PO
M

D
P

𝑣
d
e
s

V
eh

ic
le

de
te

ct
ed

M
ax

.F
O

V
C

on
fli

ct
ar

ea
O

m
ni

sc
ie

nt
B

as
el

in
e

0
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

0246

𝑣0
m
s

0
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

−
2
00

2
0

−𝑠0[m]

0
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

0

5
0

1
0
0

𝑡
[s
]

Ψ1[m]

Fi
gu

re
6.

5:
Si

m
ul

at
io

n
of

a
sc

en
ar

io
w

ith
a

st
at

ic
oc

cl
us

io
n

an
d

a
cl

os
e

on
co

m
in

g
ve

hi
cl

e
(g

ra
ph

ic
fr

om
[1

23
],

c ○
20

19
IE

E
E

).

115

6 Planning under Sensor Occlusions

Table 6.2: Evaluation of the scenario with a static occlusion, described in Fig. 6.5
(graphic from [123], c○2019 IEEE).

Setup Planner 𝑡 [s]
∑︀
|𝑎0| [ms2]

No car
baseline 13.309 10.320
omniscient 11.237 8.880
POMDP 11.481 8.660

setup (1)
baseline 13.355 10.560
omniscient 11.283 8.520
POMDP 11.632 9.390

setup (2)
baseline 13.942 11.500
omniscient 12.803 10.670
POMDP 13.353 13.560

setup (3)
baseline 15.316 14.090
omniscient 13.881 14.618
POMDP 15.384 16.490

setup (4)
baseline 16.194 13.817
omniscient 10.249 9.816
POMDP 10.654 9.515

setup (5)
baseline 14.262 12.326
omniscient 10.953 8.720
POMDP 11.334 9.357

setup (6)
baseline 13.638 11.421
omniscient 10.946 8.700
POMDP 11.362 8.930

setup (7)
baseline 13.775 10.540
omniscient 10.961 8.670
POMDP 11.358 8.870

way by comparing its performance over many simulations (Tab. 6.2) to
account for its probabilistic nature.

Qualitative Evaluation:

Fig. 6.5 shows the driven trajectories for the scenario demonstrated in
Fig. 6.4 for the different planners (POMDP, omniscient, baseline). In the
beginning (until 𝑡 = 4𝑠) all planning approaches accelerate towards the in-
tersection. From 𝑡 = 4𝑠 on, POMDP and the omniscient planner are able to

116

6.3 Results

𝑁1

𝑁0

conflict area
𝑁2

(7) (6) (5)(4)
(2)(3)

(1)

Figure 6.6: A typical scenario in which the autonomous vehicle wants to turn left,
but the view is occluded by another vehicle. Different possible configurations of the
other vehicle are denoted in brackets (graphic from [123], c○2019 IEEE).

accelerate further, while the baseline approach already starts to decelerate
because the current FoV is not yet large enough for safe crossing of the
intersection. Because the baseline planner is not able to predict the FoV,
it starts to brake immediately. The POMDP planner on the other hand,
acts nearly as optimistic as the omniscient approach, due its capability, to
already plan several options for future observations. This behavior, of plan-
ning for various future scenarios, can also be seen in Fig. 6.1.

Quantitative Evaluation:

As the POMDP formulation is solved by a sampling-based solver, the gen-
erated solution is not deterministic. Moreover, it is not known which con-
figuration of the occluded car is most interesting. Therefore, each of the
7 scenarios presented in Fig. 6.4 is run 50 times and the results are com-
pared in terms of average time to cross the intersection and in terms of the
average, accumulated, absolute acceleration of the autonomous car. This
is shown in Tab. 6.2. It can be seen that the POMDP performs nearly as
good in terms of average crossing time and comfort as the omniscient plan-
ner, due its capability of predicting the FoV. The baseline approach crosses
the intersection 30% slower in average and has less comfort (i.e. acceler-
ates/decelerates more often) due its more reactive approach.

117

6 Planning under Sensor Occlusions

6.3.2 Dynamic Occlusion

The planner is also evaluated in a dynamic scenario (see Fig. 6.6). It
presents a typical situation in which the autonomous vehicle intends to turn
left at an intersection while the oncoming traffic cannot be observed as it is
occluded by a front vehicle of the autonomous car.

The scenario is evaluated in a quantitative way by doing 50 simulations
for each planner (POMDP, omniscient, baseline). The results are shown in
Tab. 6.3. It can be seen, that the POMDP does not outperform the other
planners as strongly as for the static scenario. Only in setup three, the
baseline planner is obviously outperformed by the POMDP planner. The
reason for this is, that the vehicle in front of the autonomous car drives over
the intersection and therefore creates the occlusion only for a short period
of time. Therefore, only very specific world configurations are solved with
more intelligent behavior by the POMDP planner.

6.3.3 2D Motion Primitives

This sections demonstrates a scenario with the goal of showing results for
a combined optimization of lateral and longitudinal optimization including
information gathering behavior. The scenario is shown in Fig. 6.8. The
scenario demonstrates an occluded left turn and is set up in a way s.t. that
actively exploring the FoV is the only possibility for safe turning. In this
scenario, the action vector 𝒜long/lat is selected to allow for lateral explo-
rative behavior. As this combined optimization problem (lateral, longitu-
dinal, information gathering) is very hard to solve online the additional
reward 𝑅lat is introduced to motivate lateral exploration (both are defined
in Sec. 4.3).

The scenario is set up in a way, that the autonomous vehicle is not able
to turn left without lateral planning, as the FoV is not big enough for safe
traversing.

In Fig. 6.8, two snapshots of the planning problem are shown, comparing
the longitudinal POMDP with the POMDP formulation with 𝒜long/lat. It
can be seen, that the longitudinal POMDP gets stuck at the intersection,
demonstrating the freezing robot problem.

Additionally, the driven trajectory of the POMDP planner is compared
with the driven trajectory of the omniscient planner in Fig. 6.7. It can be
seen that both planners drive nearly the same trajectory with the only dif-
ference of a lateral offset of the POMDP planner to increase the FoV.

118

6.3 Results

Table 6.3: Evaluation of the scenario with a dynamic occlusion, described in Fig. 6.5
(graphic from [123], c○2019 IEEE).

Setup Planner 𝑡 [s]
∑︀
|𝑎0| [ms2]

No car
baseline 9.505 8.600
omniscient 9.116 9.100
POMDP 9.197 9.160

setup (1)
baseline 11.382 10.100
omniscient 11.724 11.200
POMDP 11.637 11.071

setup (2)
baseline 13.638 12.960
omniscient 13.573 13.406
POMDP 13.491 12.700

setup (3)
baseline 14.274 13.074
omniscient 10.927 10.925
POMDP 12.247 11.789

setup (4)
baseline 9.194 9.024
omniscient 9.087 9.030
POMDP 9.107 8.900

setup (5)
baseline 9.430 8.745
omniscient 9.109 9.040
POMDP 9.201 8.930

setup (6)
baseline 9.584 8.630
omniscient 9.105 9.090
POMDP 9.285 8.650

setup (7)
baseline 9.638 8.660
omniscient 9.109 9.060
POMDP 9.382 8.730

119

6 Planning under Sensor Occlusions

−
8

−
6

−
4

−
2

0
2

4
6

8
1
0

1
2

1
4

0 2 4 6

𝑠
0
[m

]

𝑣0 [
m
s
]

PO
M

D
P

R
eference

velocity
M

ax.FO
V

O
m

niscientbaseline

0
0
.5

1
1
.5

2
2
.5

3
3
.5

4
4
.5

5
5
.5

6
6
.5

7
7
.5

8
0 2 4 6

𝑣0 [
m
s
]

0
0
.5

1
1
.5

2
2
.5

3
3
.5

4
4
.5

5
5
.5

6
6
.5

7
7
.5

8

0

1
0

𝑠0 [m]

0
0
.5

1
1
.5

2
2
.5

3
3
.5

4
4
.5

5
5
.5

6
6
.5

7
7
.5

8

−
1 0 1

𝑑0 [m]

0
0
.5

1
1
.5

2
2
.5

3
3
.5

4
4
.5

5
5
.5

6
6
.5

7
7
.5

8
0

2
0

4
0

6
0

8
0

1
0
0

𝑡[s]

Ψ1 [m]

Figure
6.7:E

xtensive
evaluation

forcom
bined

lateraland
longitudinalplanning

as
show

n
in

(graphic
from

[123],
c○

2019
IE

E
E

).

120

6.4 Summary

(a) No lateral actions result in stillstand of
the car, i.e. the Freezing robot problem.

(b) With lateral actions, the FoV can be in-
creased and turning left is possible.

Figure 6.8: Presentation of a scenario where actively exploring the surrounding is
necessary. The POMDP planner is once executed without and once with lateral
planning (graphic from [123], c○2019 IEEE).

6.4 Summary

This chapter extends the POMDP formulation of the previous chapters, s.t.
explicit reasoning over potentially occluded objects is incorporated. An on-
line, closed-loop planner is presented which generates optimized behaviors
for scenarios with occlusions. The key focus of the algorithm is the

∙ propagation of the FoV over the planning horizon

∙ representation of occluded vehicle configurations with reachable sets

∙ probabilistic reasoning over the existence of occluded vehicles.

The generic POMDP formulation allows to reason over a varying num-
ber of occlusions on arbitrary map layouts, generated by static or dynamic
obstacles. The policy is optimized for the existence uncertainty of vehicles
in occlusions. The policy contains various, closed-loop plans for different
future scenarios of (not) revealing vehicles in the occluded areas. Sim-
ulating the FoV over the planning horizon allows the autonomous car to
choose actions which maximize the FoV for critical areas. The POMDP
approach is compared in simulation scenarios to simpler approaches which
make decisions based on the current FoV only. It is shown how the POMDP

121

6 Planning under Sensor Occlusions

approach is able to outperform these approaches in terms of intersection
crossing time and total, accumulated acceleration. The created behavior
of the POMDP planner is even similar to the one of an omniscient plan-
ner with full knowledge about the configurations of the occluded agents.
This is possible because of the capability of the planner to predict what
information may be perceived in the future and to postpone the decision
accordingly.

122

7 Conclusion

The first contribution of this thesis is the introduction of optimization based
behavior planning and decision making for autonomous driving. Instead of
selecting a certain behavior from an a priori defined set of potential behav-
iors, the planners of this thesis generate an optimal behavior itself. Hereby,
the planner respects the predicted trajectories of the other agents as well as
traffic rules in one cost functional. The underlying decisions are made im-
plicitly during the non-convex optimization of the trajectory/policy instead
of by a rule-based system.

The main contribution of this thesis is the presentation of such a global
planner which optimizes in the space of policies instead of trajectories. It
considers the uncertainty of the behavior of the other agents as well as
their potentially interactive behavior explicitly by combining prediction and
planning in one problem. The respected uncertainty of the other agents are
namely the unknown intention to follow a certain path, their uncertain lon-
gitudinal motion models, possible interaction as well as uncertain measure-
ments and existence uncertainty due to occlusions. The problem is formu-
lated with discretized actions on a continuous state and observation space.
The result is a policy over the current belief state, describing the optimal
action of the autonomous car, given the most likely future scenarios.

Such a policy allows for less conservative behavior compared to a re-
active trajectory planner. This is the case as the optimization for various
future scenarios often results in a behavior which postpones decisions un-
der the knowledge that more information about the other drivers is likely to
be available in the future. It also allows for actively gathering information
about the intent of the other drivers to reduce the uncertainty of the tracked
belief space of the world.

Such a generic problem formulation is considered to be intractable to
solve on a continuous state space. The second main contribution of this
thesis is to demonstrate how such a problem formulation can be solved
online. This is realized by combining state of the art solvers, based on
MCTS, with domain specific heuristics.

Summarized, the main contributions of the thesis are:

123

7 Conclusion

∙ Formulation of behavior generation as a POMDP

∙ Formulation on a continuous state and observation space

∙ Combining a state of the art solver with domain specific near-optimal
roll-outs

∙ Solving a intertwined planning-prediction formulation online

∙ Evaluation of all algorithms in various, online simulation scenarios

The capabilities of the planner are incrementally advanced and demon-
strated throughout the thesis:

At first, Chap. 3 presents how a sequential decision making formulation
can be used to generate one behavior (i.e. a single trajectory) which is opti-
mal given various, future, deterministic events on the road.

In Chap. 4, the problem formulation is advanced to a belief state. The al-
gorithm handles uncertain prediction as well as the interaction of the other
traffic participants with the autonomous car. This allows the algorithm to
act non-conservatively for scenarios in which dynamic agents with uncer-
tain prediction are potentially crossing or merging on the path of the au-
tonomous car. The algorithm optimizes the policy on a longitudinal path
over the uncertain belief state of possible predicted trajectories of the other
agents.

In Chap. 5 the algorithm is advanced in two ways. At first longitudinal
and lateral optimization is combined in one problem formulation. This al-
lows the algorithm to adapt the right longitudinal speed and merge in a gap
at the same time. Secondly, the algorithm is able to perfom so-called infor-
mation gathering actions (approach a certain gap) to estimate the intent to
yield of other drivers. This allows the algorithm to merge in gaps, which
are initially too small. The algorithm generates a combined longitudinal
and lateral policy over the belief space.

Finally, Chap. 6 presents an extension to the algorithm which allows
to reason over the existence uncertainty of potentially occluded objects.
By sampling different scenarios, the algorithm is able to implicitly find
a optimal policy for the autonomous car, with a sufficient field of view
to act safely. It can implicitly predict at what point in the future enough
information will be available. The resulting policy contains respective plans
to act accordingly, given the corresponding observation. The algorithm
generates a policy over the belief of possibly existing, occluded objects.

124

7.1 Future Research Directions

7.1 Future Research Directions

The presented algorithms can be further advanced in several directions.
The current problem formulation, does not allow to formally guarantee

safety as it optimizes the expected reward. Changing the problem formu-
lation to POMDPs with constraints would allow to guarantee safety on a
theoretical basis. Secondly, just as the problem formulation, the approxi-
mate solver also cannot give safety guarantees. This is due to the sampling-
based nature of the solver which can miss important episodes in theory.
This could be overcome by extending the overall architecture, s.t. formal
verification methods are applied on the optimal action before execution.
These changes would allow for a formally safe architecture.

The particle filter which tracks the belief state over time is implemented
as an unweighted version. This is done as the real observation of the filter
is directly matched on one observation in the belief tree to keep the tree
alive. As the episodes in the belief tree are unweighted itself, matching
of observations is easier to fulfill by use of an unweighted particle filter.
Nonetheless, the performance of the particle filter is not very efficient, due
to the large step-size of the POMDP planner and the unweighted version of
the filter. Further research could go in the direction on how to use weighted
particle filters with a higher frequency, while simultaneously keeping the
belief tree intact.

The particle filter as well as the policy optimization itself may be im-
proved by using learned instead of hand-tuned motion models. First
promising results were already realized during this thesis [128].

Further room for improvement lies in the solver itself. All state of the
art solvers rely on Monte-Carlo sampling of episodes. The procedure of
sampling possible episodes to construct the belief tree is predestined for
parallelization to speed up the solving of POMDP formulations by magni-
tudes. Parallelized Monte-Carlo solvers have been published recently [21].

For the case that drastically faster solving of POMDPs becomes tractable
in the future, the coupling between behavior planner and trajectory planner
may be revised. Under the assumption, that the problem can be solved for
a larger action space, the possible configuration space of the autonomous
car can be sampled more densely. By combining this with sampling
over the parameters of motion primitives that are optimized for minimum
jerk/acceleration, smoother policies may be created which could make the
trajectory planner obsolete. The technique of progressive widening would
allow to even generate a policy on a continuous parameter/action space.

125

Bibliography

Literature

[1] Waymo press footage. https://waymo.com/press/ [Online. Accessed:
2019-08-23] 2019.

[2] M. Althoff, “Reachability analysis and its application to the safety
assessment of autonomous cars,” PhD thesis, Technische Universität
München, 2010.

[3] M. Ardelt, C. Coester, and N. Kaempchen, “Highly Automated Driv-
ing on Freeways in Real Traffic Using a Probabilistic Framework,”
IEEE Transactions on Intelligent Transportation Systems, vol. 13,
no. 4, pp. 1576–1585, 2012.

[4] H. Bai, S. Cai, N. Ye, D. Hsu, and W. S. Lee, “Intention-aware on-
line POMDP planning for autonomous driving in a crowd,” in IEEE
International Conference on Robotics and Automation, pp. 454–460,
2015.

[5] Y. Bai, Z. J. Chong, M. H. Ang, and X. Gao, “An Online Approach
for Intersection Navigation of Autonomous Vehicle,” in IEEE Inter-
national Conference on Robotics and Biomimetics, pp. 2127–2132,
2014.

[6] M. Bansal, A. Krizhevsky, and A. S. Ogale, “Chauffeurnet: Learn-
ing to drive by imitating the best and synthesizing the worst,”
arXiv:1812.03079 [cs.RO]. 2018.

[7] H. Banzhaf, M. Dolgov, J. Stellet, and J. M. Zollner, “From Foot-
prints to Beliefprints: Motion Planning under Uncertainty for Ma-
neuvering Automated Vehicles in Dense Scenarios,” in IEEE In-
ternational Conference on Intelligent Transportation Systems, pp.
1680–1687, 2018.

[8] R. Bellman, Dynamic Programming. Princeton University Press,
1957.

127

https://waymo.com/press/

Bibliography

[9] P. Bender, O. Ş. Taş, J. Ziegler, and C. Stiller, “The combinatorial
aspect of motion planning: Maneuver variants in structured envi-
ronments,” in IEEE Intelligent Vehicles Symposium, pp. 1386–1392,
2015.

[10] P. Bender, J. Ziegler, and C. Stiller, “Lanelets: Efficient map repre-
sentation for autonomous driving,” in IEEE Intelligent Vehicles Sym-
posium, pp. 420–425, 2014.

[11] S. Bhattacharya and R. Ghrist, “Path Homotopy Invariants and their
Application to Optimal Trajectory Planning,” in IMA Conference on
Mathematics of Robotics, pp. 139–160, 2015.

[12] S. Bhattacharya, V. Kumar, and M. Likhachev, “Search-based path
planning with homotopy class constraints,” in AAAI Conference on
Artificial Intelligence, pp. 1230–1237, 2010.

[13] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner et al., “End to
end learning for self-driving cars,” arXiv:1604.07316 [cs.CV]. 2016.

[14] B. Bonet, “An epsilon-Optimal Grid-Based Algorithm for Partially
Observable Markov Decision Processes,” in International Confer-
ence on Machine Learning, pp. 51–58, 2002.

[15] M. Bouton, A. Cosgun, and M. J. Kochenderfer, “Belief State Plan-
ning for Autonomously Navigating Urban Intersections,” in IEEE
Intelligent Vehicles Symposium, pp. 825–830, 2017.

[16] M. Bouton, A. Nakhaei, K. Fujimura, and M. Kochenderfer, “Scal-
able Decision Making with Sensor Occlusions for Autonomous
Driving,” in IEEE International Conference on Robotics and Au-
tomation, pp. 2076–2081, 2018.

[17] S. Brechtel, T. Gindele, and R. Dillmann, “Probabilistic MDP-
behavior planning for cars,” in IEEE International Conference on
Intelligent Transportation Systems, pp. 1537–1542, 2011.

[18] S. Brechtel, T. Gindele, and R. Dillmann, “Solving Continuous
POMDPs: Value Iteration with Incremental Learning of an Effi-
cient Space Representation,” in International Conference on Ma-
chine Learning, pp. 370–378, 2013.

128

[19] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas et al., “A
Survey of Monte Carlo Tree Search Methods,” IEEE Transactions
on Computational Intelligence and AI in Games, vol. 4, no. 1, pp.
1–43, 2012.

[20] M. Buehler, K. Iagnemma, and S. Singh, “The darpa urban chal-
lenge: Autonomous vehicles in city traffic,” Springer Tracts in Ad-
vanced Robotics, 2009.

[21] P. Cai, Y. Luo, D. Hsu, and W. S. Lee, “Hyp-despot: A hy-
brid parallel algorithm for online planning under uncertainty,”
arXiv:1802.06215 [cs.AI]. 2018.

[22] R. Coulom, “Efficient selectivity and backup operators in monte-
carlo tree search,” in International Conference on Computers and
Games, pp. 72–83. Springer, 2006.

[23] A. G. Cunningham, E. Galceran, R. M. Eustice, and E. Olson,
“MPDM: Multipolicy decision-making in dynamic, uncertain envi-
ronments for autonomous driving,” in IEEE International Confer-
ence on Robotics and Automation, pp. 1670–1677, 2015.

[24] F. Damerow and J. Eggert, “Risk-aversive behavior planning under
multiple situations with uncertainty,” in IEEE International Confer-
ence on Intelligent Transportation Systems, pp. 656–663, 2015.

[25] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numererical Mathmatics, vol. 1, no. 1, pp. 269–271, 1959.

[26] J. D’Onfro. ’I hate them’: Locals reportedly are frustrated
with alphabet’s self-driving cars. https://www.cnbc.com/2018/08/28/
locals-reportedly-frustrated-with-alphabets-waymo-self-driving-cars.
html [Online. Accessed: 2019-08-23] 2018.

[27] C. Dong, J. M. Dolan, and B. Litkouhi, “Interactive ramp merg-
ing planning in autonomous driving: Multi-Merging leading PGM
(MML-PGM),” in IEEE International Conference on Intelligent
Transportation Systems, pp. 1–6, 2017.

[28] N. Du Toit and J. Burdick, “Robot motion planning in dynamic,
uncertain environments,” IEEE Transactions on Robotics, vol. 28,
no. 1, pp. 101–115, 2012.

129

https://www.cnbc.com/2018/08/28/locals-reportedly-frustrated-with-alphabets-waymo-self-driving-cars.html
https://www.cnbc.com/2018/08/28/locals-reportedly-frustrated-with-alphabets-waymo-self-driving-cars.html
https://www.cnbc.com/2018/08/28/locals-reportedly-frustrated-with-alphabets-waymo-self-driving-cars.html

Bibliography

[29] D. Ferguson, T. M. Howard, and M. Likhachev, “Motion planning in
urban environments,” Journal of Field Robotics, vol. 25, no. 11-12,
pp. 939–960, 2008.

[30] D. Ferguson and A. Stentz, “The field D* algorithm for improved
path planning and replanning in uniform and non-uniform cost envi-
ronments,” CMU Technical Report, 2005.

[31] T. Fraichard and H. Asama, “Inevitable collision states. a step to-
wards safer robots?” in IEEE/RSJ International Conference on In-
telligent Robots and Systems, pp. 388–393, 2003.

[32] E. Galceran, A. G. Cunningham, R. M. Eustice, and E. Olson, “Mul-
tipolicy decision-making for autonomous driving via changepoint-
based behavior prediction,” in Robotics: Science and Systems, 2015.

[33] E. Galceran, E. Olson, and R. M. Eustice, “Augmented vehicle track-
ing under occlusions for decision-making in autonomous driving,” in
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, pp. 3559–3565, 2015.

[34] T. Gindele, D. Jagszent, B. Pitzer, and R. Dillmann, “Design of
the planner of Team AnnieWAY’s autonomous vehicle used in the
DARPA Urban Challenge 2007,” in IEEE Intelligent Vehicles Sym-
posium, pp. 1131–1136, 2008.

[35] H. Goldstein, C. Poole, and J. Safko, Classical Mechanics. Addison
Wesley, 2002.

[36] D. González, J. Pérez, V. Milanés, and F. Nashashibi, “A review of
motion planning techniques for automated vehicles,” IEEE Transac-
tions on Intelligent Transportation Systems, vol. 17, no. 4, pp. 1135–
1145, 2016.

[37] T. Gu, J. M. Dolan, and J.-W. Lee, “Automated tactical maneuver
discovery, reasoning and trajectory planning for autonomous driv-
ing,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 5474–5480, 2016.

[38] B. Gutjahr, L. Gröll, and M. Werling, “Lateral Vehicle Trajectory
Optimization Using Constrained Linear Time-Varying MPC,” IEEE
Transactions on Intelligent Transportation Systems, vol. 18, no. 6,
pp. 1586 – 1595, 2017.

130

[39] A. Hochstädter, P. Zahn, and K. Breuer, “A comprehensive driver
model with application to traffic simulation and driving simulators,”
in IEEE Human-Centered Transportation Simulation Conference,
2001.

[40] S. Hoermann, F. Kunz, D. Nuss, S. Renter, and K. Dietmayer,
“Entering Crossroads with Blind Corners. A Safe Strategy for Au-
tonomous Vehicles,” in IEEE Intelligent Vehicles Symposium, pp.
727–732, 2017.

[41] D. Hsu, W. S. Lee, and N. Rong, “What makes some POMDP prob-
lems easy to approximate?” in Advances in Neural Information Pro-
cessing Systems, pp. 689–696, 2007.

[42] D. Isele, A. Cosgun, K. Subramanian, and K. Fujimura, “Navigating
Intersections with Autonomous Vehicles using Deep Reinforcement
Learning,” in ArXiv, 2017, arXiv:1705.01196 [cs.AI].

[43] J. Johnson and K. Hauser, “Optimal acceleration-bounded trajectory
planning in dynamic environments along a specified path,” in IEEE
International Conference on Robotics and Automation, pp. 2035–
2041, 2012.

[44] J. Johnson and K. Hauser, “Optimal longitudinal control planning
with moving obstacles,” in IEEE Intelligent Vehicles Symposium, pp.
605–611, 2013.

[45] S. Julier and J. Uhlmann, “Unscented Filtering and Nonlinear Esti-
mation,” Proceedings of the IEEE, vol. 92, no. 3, pp. 401–422, 2004.

[46] R. Kalman, “A new approach to linear filtering and prediction prob-
lems,” Transactions of the ASME-Journal of Basic Engineering,
vol. 82, no. Series D, pp. 35–45, 1960.

[47] S. Kammel, J. Ziegler, B. Pitzer, M. Werling et al., “Team An-
nieWAY’s autonomous system for the 2007 DARPA Urban Chal-
lenge,” Journal of Field Robotics, vol. 25, no. 9, pp. 615–639, 2008.

[48] K. Kant and S. W. Zucker, “Toward efficient trajectory planning: The
path-velocity decomposition,” The International Journal of Robotics
Research, vol. 5, no. 3, pp. 72–89, 1986.

131

Bibliography

[49] K. Kaur and G. Rampersad, “Trust in driverless cars: Investigating
key factors influencing the adoption of driverless cars,” Journal of
Engineering and Technology Management, vol. 48, pp. 87–96, 2018.

[50] D. Klimenko, J. Song, and H. Kurniawati, “Tapir: A software toolkit
for approximating and adapting pomdp solutions online,” in Proc.
Australasian Conference on Robotics and Automation, 2014.

[51] M. J. Kochenderfer, C. Amato, G. Chowdhary, J. P. How et al., De-
cision Making Under Uncertainty: Theory and Application, 1st ed.
The MIT Press, 2015.

[52] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo planning,”
in European Conference on Machine Learning, pp. 282–293, 2006.

[53] R. Kohlhaas, T. Bittner, T. Schamm, and J. M. Zöllner, “Seman-
tic state space for high-level maneuver planning in structured traf-
fic scenes,” in IEEE International Conference on Intelligent Trans-
portation Systems, pp. 1060–1065, 2014.

[54] R. Kohlhaas, D. Hammann, T. Schamm, and J. M. Zöllner, “Planning
of high-level maneuver sequences on semantic state spaces,” in IEEE
International Conference on Intelligent Transportation Systems, pp.
2090–2096, 2015.

[55] R. Kohlhaas, T. Schamm, D. Nienhüser, and J. M. Zöllner, “An-
ticipatory energy saving assistant for approaching slower vehicles,”
in IEEE International Conference on Intelligent Transportation Sys-
tems, pp. 1966–1971, 2011.

[56] R. Kohlhaas, T. Schamm, D. Lenk, and J. M. Zollner, “Towards
driving autonomously: Autonomous cruise control in urban envi-
ronments,” in IEEE Intelligent Vehicles Symposium, pp. 116–121,
2013.

[57] H. Kurniawati, D. , and W. S. Lee, “SARSOP: Efficient Point-Based
POMDP Planning by Approximating Optimally Reachable Belief
Spaces.” in Robotics: Science and Systems, 2008.

[58] H. Kurniawati and V. Yadav, “An online POMDP solver for uncer-
tainty planning in dynamic environment,” in International Sympo-
sium on Robotics Research, pp. 611–629, 2013.

132

[59] K. Kurzer, F. Engelhorn, and J. M. Zöllner, “Decentralized Coopera-
tive Planning for Automated Vehicles with Continuous Monte Carlo
Tree Search,” in IEEE Intelligent Vehicles Symposium, pp. 452–459,
2018.

[60] W. H. Kwon, A. M. Bruckstein, and T. Kailath, “Stabilizing state-
feedback design via the moving horizon method,” International
Journal of Control, vol. 37, no. 3, pp. 631–643, 1983.

[61] S. LaValle, Planning Algorithms. Cambridge University Press,
2006.

[62] S. M. Lavalle, “Rapidly-exploring random trees: A new tool for path
planning,” Tech. Rep., 1998.

[63] A. Lawitzky, D. Wollherr, and M. Buss, “Energy optimal control to
approach traffic lights,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 4382–4387, 2013.

[64] P. Le Beau. Waymo starts commercial ride-
share service. https://www.cnbc.com/2018/12/05/
waymo-starts-commercial-ride-share-service.html [Online.
Accessed: 2019-08-23]

[65] S. Lefèvre, D. Vasquez, and C. Laugier, “A survey on motion predic-
tion and risk assessment for intelligent vehicles,” Robomech Journal,
vol. 1, no. 1, pp. 1–14, 2014.

[66] D. Lenz, T. Kessler, and A. Knoll, “Stochastic model predictive con-
troller with chance constraints for comfortable and safe driving be-
havior of autonomous vehicles,” in IEEE Intelligent Vehicles Sympo-
sium, pp. 292–297, 2015.

[67] D. Lenz, T. Kessler, and A. Knoll, “Tactical Cooperative Planning
for Autonomous Highway Driving using Monte-Carlo Tree Search,”
in IEEE Intelligent Vehicles Symposium, pp. 447–453, 2016.

[68] M. Likhachev and D. Ferguson, “Planning long dynamically feasible
maneuvers for autonomous vehicles,” The International Journal of
Robotics Research, vol. 28, no. 8, pp. 933–945, 2009.

133

https://www.cnbc.com/2018/12/05/waymo-starts-commercial-ride-share-service.html
https://www.cnbc.com/2018/12/05/waymo-starts-commercial-ride-share-service.html

Bibliography

[69] M. L. Littman, A. R. Cassandra, and L. P. Kaelbling, “Learning poli-
cies for partially observable environments: Scaling up,” in Interna-
tional Conference on Machine Learning, pp. 362–370, 1995.

[70] O. Madani, S. Hanks, and A. Condon, “On the Undecidability
of Probabilistic Planning and Infinite-Horizon Partially Observable
Markov Decision Problems,” in AAAI Conference on Artificial Intel-
ligence, 1999.

[71] S. Mandava, K. Boriboonsomsin, and M. Barth, “Arterial velocity
planning based on traffic signal information under light traffic condi-
tions,” in IEEE International Conference on Intelligent Transporta-
tion Systems, pp. 1–6, 2009.

[72] A. Mazzalai, F. Biral, M. D. Lio, M. Darin, and L. D’Orazio, “Au-
tomated crossing of intersections controlled by traffic lights,” in
IEEE International Conference on Intelligent Transportation Sys-
tems, 2015.

[73] M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp et al., “Junior: The
stanford entry in the urban challenge,” Journal of Field Robotics,
vol. 25, no. 9, pp. 569–597, 2008.

[74] J. Nilsson, M. Brannstrom, J. Fredriksson, and E. Coelingh, “Lon-
gitudinal and Lateral Control for Automated Yielding Maneuvers,”
IEEE Transactions on Intelligent Transportation Systems, vol. 17,
no. 5, pp. 1404–1414, 2016.

[75] T. Nishi, P. Doshi, and D. Prokhorov, “Freeway Merging in Con-
gested Traffic based on Multipolicy Decision Making with Passive
Actor Critic,” arXiv:1707.04489 [cs.AI]. 2017.

[76] A. Nunes and K. Hernandez, “Autonomous vehicles and
public health: High cost or high opportunity cost?”
psyarXiv:10.31234/osf.io/6e94h. 2019.

[77] P. F. Orzechowski, A. Meyer, and M. Lauer, “Tackling Occlusions &
Limited Sensor Range with Set-based Safety Verification,” in IEEE
International Conference on Intelligent Transportation Systems, pp.
1729–1736, 2018.

134

[78] B. Paden, M. Cap, S. Yong, D. Yershov, and E. Frazzoli, “A Survey
of Motion Planning and control techniques for self-driving urban ve-
hicles,” IEEE Transactions on Intelligent Vehicles, vol. 1, pp. 33–55,
2016.

[79] C. Papadimitriou and J. Tsisiklis, “The complexity of markov de-
cision processes,” Mathematics of Operations Research, pp. 441 –
450, 1987.

[80] C. Pek, P. Zahn, and M. Althoff, “Verifying the safety of lane change
maneuvers of self-driving vehicles based on formalized traffic rules,”
in IEEE Intelligent Vehicles Symposium, pp. 1477–1483, 2017.

[81] J. Pineau, G. Gordon, and S. Thrun, “Point-based value iteration an
anytime algorithm for POMDPs,” in International Joint conference
on Artificial Intelligence, pp. 1025–1032, 2003.

[82] M. Pivtoraiko and A. Kelly, “Efficient constrained path planning via
search in state lattices,” in International Symposium on Artificial In-
telligence, Robotics and Automation in Space, 2005.

[83] M. Pivtoraiko, R. A. Knepper, and A. Kelly, “Differentially con-
strained mobile robot motion planning in state lattices,” Journal of
Field Robotics, vol. 26, no. 3, pp. 308–333, 2009.

[84] X. Qian, F. Altche, P. Bender, C. Stiller, and A. de La Fortelle, “Op-
timal trajectory planning for autonomous driving integrating logical
constraints: An MIQP perspective,” in IEEE International Confer-
ence on Intelligent Transportation Systems, pp. 205–210, 2016.

[85] S. Ross, J. Pineau, S. Paquet, and B. Chaib Draa, “Online plan-
ning algorithms for POMDPs,” Journal of Artificial Intelligence Re-
search, vol. 32, pp. 663–704, 2008.

[86] S. Russell and P. Norvig, Artificial Intelligence: A Modern Ap-
proach. Prentice Hall Press, 2009.

[87] M. Sadou, V. Polotski, and P. Cohen, “Occlusions in Obstacle Detec-
tion for Safe Navigation,” in IEEE Intelligent Vehicles Symposium,
pp. 716–721, 2004.

135

Bibliography

[88] SAE International, “Taxonomy and Definitions for Terms Related to
On-Road Motor Vehicle Automated Driving Systems,” SAE Interna-
tional, Tech. Rep. SAE J 3016, 2014.

[89] J. Schulman, J. Ho, A. Lee, I. Awwal et al., “Finding locally optimal,
collision-free trajectories with sequential convex optimization,” in
Robotics: Science and Systems, 2013.

[90] J. Schulz, K. Hirsenkorn, J. Löchner, M. Werling, and D. Burschka,
“Estimation of collective maneuvers through cooperative multi-
agent planning,” in IEEE Intelligent Vehicles Symposium, pp. 624–
631, 2017.

[91] P. Schörner, L. Tröttel, J. Doll, and M. Zöllner, “Predictive Trajec-
tory Planning in Situations with Hidden Road Users Using Partially
Observable Markov Decision Processes,” in IEEE Intelligent Vehi-
cles Symposium, pp. 2299–2306, 2019.

[92] V. Sezer, T. Bandyopadhyay, D. Rus, E. Frazzoli, and D. Hsu, “To-
wards autonomous navigation of unsignalized intersections under
uncertainty of human driver intent,” in IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, pp. 3578–3585, 2015.

[93] G. Shani, J. Pineau, and R. Kaplow, “A survey of point-based
POMDP solvers,” Autonomous Agents and Multi-Agent Systems,
vol. 27, no. 1, pp. 1–51, 2013.

[94] Z. Shiller, “Off-Line and On-Line Trajectory Planning,” Motion and
Operation Planning of Robotic Systems, vol. 29, pp. 29–62, 2015.

[95] D. Silver, A. Huang, C. J. Maddison, A. Guez et al., “Mastering the
game of Go with deep neural networks and tree search,” Nature, vol.
529, no. 7587, pp. 484–489, 2016.

[96] D. Silver and J. Veness, “Monte-Carlo planning in large POMDPs,”
in Advances in Neural Information Processing Systems, pp. 2164–
2172, 2010.

[97] S. Singh, “Critical Reasons for Crashes Investigated in the National
Motor Vehicle Crash Causation Survey,” NHTSA Traffic Safety Facts,
2015.

136

[98] T. Smith and R. Simmons, “Heuristic search value iteration for
POMDPs,” in AUAI Conference on Uncertainty in artificial intel-
ligence, pp. 520–527, 2004.

[99] A. Somani, N. Ye, D. Hsu, and W. S. Lee, “DESPOT: Online
POMDP planning with regularization,” in Advances in Neural In-
formation Processing Systems, pp. 1772–1780, 2013.

[100] E. J. Sondik, “The optimal control of partially observable markov
processes,” PhD thesis, Stanford University, 1971.

[101] S. Sontges and M. Althoff, “Computing possible driving corridors
for automated vehicles,” in IEEE Intelligent Vehicles Symposium, pp.
160–166, 2017.

[102] C. Stiller, G. Färber, and S. Kammel, “Cooperative cognitive au-
tomobiles,” in IEEE Intelligent Vehicles Symposium, pp. 215–220,
2007.

[103] P. Trautman and A. Krause, “Unfreezing the robot: Navigation in
dense, interacting crowds,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 797–803, 2010.

[104] M. Treiber, A. Hennecke, and D. Helbing, “Congested Traffic States
in Empirical observations and Microscopic Simulations,” in Physi-
cal Revue E Interdisciplinary Topics, vol. 62, no. 2, pp. 1805–1824,
2000.

[105] S. Ulbrich and M. Maurer, “Probabilistic online POMDP decision
making for lane changes in fully automated driving,” in IEEE In-
ternational Conference on Intelligent Transportation Systems, pp.
2063–2067, 2013.

[106] C. Urmson. Ted: How a driverless car sees the road. https:
//www.youtube.com/watch?v=tiwVMrTLUWg [Online. Accessed:
2019-04-01] 2015.

[107] C. Urmson, J. Anhalt, D. Bagnell, C. Baker et al., “Autonomous
driving in urban environments: Boss and the Urban Challenge,”
Journal of Field Robotics, vol. 25, no. 8, pp. 425–466, 2008.

137

https://www.youtube.com/watch?v=tiwVMrTLUWg
https://www.youtube.com/watch?v=tiwVMrTLUWg

Bibliography

[108] P. Vack. Self-drive cars and you: A his-
tory longer than you think. https://www.velocetoday.com/
self-drive-cars-and-you-a-history-longer-than-you-think/ [Online.
Accessed: 2019-08-23] 2014.

[109] E. Velenis, “Analysis and control of high-speed wheeled vehicles,”
PhD thesis, Georgia Institute of Technology, 2006.

[110] M. Werling, “Ein neues Konzept für die Trajektoriengenerierung
und -stabilisierung in zeitkritischen Verkehrsszenarien,” PhD thesis,
Karlsruher Institute für Technologie, 2010.

[111] M. Werling and L. Gröll, “Low-level controllers realizing high-level
decisions in an autonomous vehicle,” in IEEE Intelligent Vehicles
Symposium, pp. 1113–1118, 2008.

[112] M. Werling, J. Ziegler, S. Kammel, and S. Thrun, “Optimal trajec-
tory generation for dynamic street scenarios in a Frenet Frame,” in
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, pp. 987–993, 2010.

[113] W. Zhan, J. Chen, C.-Y. Chan, C. Liu, and M. Tomizuka, “Spatially-
Partitioned Environmental Representation and Planning Architec-
ture for On-Road Autonomous Driving,” in IEEE Intelligent Vehicles
Symposium, pp. 632–639, 2017.

[114] D. Zhao, “Supervised adaptive dynamic programming based adap-
tive cruise control,” in IEEE Symposium on Adaptive Dynamic Pro-
gramming and Reinforcement Learning, pp. 318–323, 2011.

[115] J. Ziegler, P. Bender, T. Dang, and C. Stiller, “Trajectory planning
for bertha - a local, continuous method,” in IEEE Intelligent Vehicles
Symposium, pp. 450–457, 2014.

[116] J. Ziegler and C. Stiller, “Spatiotemporal state lattices for fast trajec-
tory planning in dynamic on-road driving scenarios,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp.
1879–1884, 2009.

[117] J. Ziegler, P. Bender et al., “Making Bertha Drive - An Autonomous
Journey on a Historic Route,” IEEE Intelligent Transportation Sys-
tems Magazine, vol. 6, no. 2, pp. 8–20, 2014.

138

https://www.velocetoday.com/self-drive-cars-and-you-a-history-longer-than-you-think/
https://www.velocetoday.com/self-drive-cars-and-you-a-history-longer-than-you-think/

[118] J. R. Ziehn, M. Ruf, D. Willersinn, B. Rosenhahn et al., “A tractable
interaction model for trajectory planning in automated driving,” in
IEEE International Conference on Intelligent Transportation Sys-
tems, pp. 1410–1417, 2016.

[119] M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko et al., “CHOMP:
Covariant Hamiltonian optimization for motion planning,” The Inter-
national Journal of Robotics Research, vol. 32, no. 9-10, pp. 1164–
1193, 2013.

139

Bibliography

Publications of the Author

[120] M. Bahram, C. Hubmann, A. Lawitzky, M. Aeberhard, and D. Woll-
herr, “A Combined Model- and Learning-Based Framework for
Interaction-Aware Maneuver Prediction,” IEEE Transactions on In-
telligent Transportation Systems, vol. 17, no. 6, pp. 1538–1550,
2016.

[121] C. Hubmann, M. Aeberhard, and C. Stiller, “A generic driving strat-
egy for urban environments,” in IEEE International Conference on
Intelligent Transportation Systems, pp. 1010–1016, 2016.

[122] C. Hubmann, M. Becker, D. Althoff, D. Lenz, and C. Stiller, “De-
cision making for autonomous driving considering interaction and
uncertain prediction of surrounding vehicles,” in IEEE Intelligent
Vehicles Symposium, pp. 1671–1678, 2017.

[123] C. Hubmann, N. Quetschlich, J. Schulz, J. Bernhard et al., “A
POMDP Maneuver Planner For Occlusions in Urban Scenarios,” in
IEEE Intelligent Vehicles Symposium, pp. 2172–2179, 2019.

[124] C. Hubmann, J. Schulz, M. Becker, D. Althoff, and C. Stiller, “Auto-
mated Driving in Uncertain Environments: Planning with Interaction
and Uncertain Maneuver Prediction,” IEEE Transactions on Intelli-
gent Vehicles, vol. 3, no. 1, pp. 5–17, 2018.

[125] C. Hubmann, J. Schulz, G. Xu, D. Althoff, and C. Stiller, “A belief
state planner for interactive merge maneuvers in congested traffic,”
in IEEE International Conference on Intelligent Transportation Sys-
tems, pp. 1617–1624, 2018.

[126] J. Schulz, C. Hubmann, J. Löchner, and D. Burschka, “Interaction-
aware probabilistic behavior prediction in urban environments,” in
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, pp. 3999–4006, 2018.

[127] J. Schulz, C. Hubmann, J. Lochner, and D. Burschka, “Multiple
Model Unscented Kalman Filtering in Dynamic Bayesian Networks
for Intention Estimation and Trajectory Prediction,” in IEEE Interna-
tional Conference on Intelligent Transportation Systems, pp. 1467–
1474, 2018.

140

[128] J. Schulz, C. Hubmann, N. Morin, and J. Loechner, “Learning
Interaction-Aware Probabilistic Driver Behavior Models from Urban
Scenarios,” in IEEE Intelligent Vehicles Symposium, pp. 1326–1333,
2019.

141

Bibliography

Supervised Theses

[129] M. Becker, “Decision making for autonomous driving at urban in-
tersections under intention-uncertainty of other vehicles,” Master’s
thesis, fortiss GmbH and Robotics and Embedded Systems Group,
Technische Universität München, 2016.

[130] N. Quetschlich, “Handling occlusions in urban scenarios: A belief
state planner for autonomous driving,” Master’s thesis, fortiss GmbH
and Robotics and Embedded Systems Group, Technische Universität
München, 2018.

142

	Notation and Symbols
	1 Introduction
	1.1 Motivation: Motion Planning Under Uncertainty
	1.2 Related Work: Motion Planning
	1.2.1 Properties of Planning Algorithms
	1.2.2 Consideration of Constraints
	1.2.3 Graph Search for Trajectory Planning
	1.2.4 Probabilistic Search for Trajectory Planning
	1.2.5 Variational Trajectory Planning
	1.2.6 Trajectory Planning for Autonomous Vehicles

	1.3 Related Work: Motion Planning Architectures
	1.3.1 Non-Interactive Planning with Given Prediction
	1.3.2 (Interactive) Planning with Given Maneuvers
	1.3.3 Optimizing Interactive Maneuvers

	1.4 Motion Planning with Policies
	1.4.1 Open-Loop Planning
	1.4.2 Closed-Loop Planning
	1.4.3 Definition of Policy Optimization

	1.5 Closed-Loop Behavior Planning Under Uncertainty
	1.6 Contributions and Outline

	2 Background
	2.1 Planning with Deterministic Models
	2.2 Planning with Probabilistic Models
	2.3 Planning with State Uncertainty
	2.3.1 Complexity of Solving POMDPs
	2.3.2 Solving POMDPs
	2.3.3 The Simplified QMDP Formulation
	2.3.4 Policy Optimization: Online vs Offline

	2.4 Solving POMDPs in this Thesis
	2.4.1 Monte Carlo Tree Search
	2.4.2 MCTS for POMDPs
	2.4.3 UCT Action Selection
	2.4.4 Belief State Tracking and Observation Clustering
	2.4.5 Calculating Optimized Roll-Outs
	2.4.6 Creating Consistent Plans
	2.4.7 Batch Sampling of Episodes

	2.5 Reducing the Dimensionality of the Action Space

	3 Planning for Combinatorial Decision Making
	3.1 Related Work
	3.2 Problem Formulation
	3.3 Approach
	3.3.1 Transition Model
	3.3.2 Cost Function
	3.3.3 Domain Specific Heuristics
	3.3.4 Goal State Formulation
	3.3.5 Implementation

	3.4 Results
	3.4.1 Performance
	3.4.2 Qualitative Simulation Scenario

	3.5 Summary

	4 Planning with Uncertain Intentions of Crossing Traffic
	4.1 Related Work
	4.2 Problem Formulation
	4.3 Approach
	4.3.1 State Space
	4.3.2 Action and Transition Model
	4.3.3 Reward Model
	4.3.4 Observation Model
	4.3.5 Implementation

	4.4 Results
	4.4.1 Convergence
	4.4.2 Policy Behavior Planning

	4.5 Summary

	5 Coupled 2d Planning for Interactive Merging
	5.1 Related Work
	5.1.1 Gap Assessment Algorithms
	5.1.2 Planning-Based Algorithms

	5.2 Approach
	5.2.1 State Space
	5.2.2 Action and Transition Model
	5.2.3 Motion Model of Surrounding Agents
	5.2.4 Observation Model
	5.2.5 Reward Model
	5.2.6 Learned Yielding Model
	5.2.7 Implementation

	5.3 Results
	5.3.1 Analysis of Belief State Policy
	5.3.2 Online Simulation

	5.4 Summary

	6 Planning under Sensor Occlusions
	6.1 Related Work
	6.2 Approach
	6.2.1 State Space
	6.2.2 Observation Model
	6.2.3 Representation of Phantom Vehicles
	6.2.4 Action and Transition Model
	6.2.5 Reward Model
	6.2.6 Implementation

	6.3 Results
	6.3.1 Static Occlusion
	6.3.2 Dynamic Occlusion
	6.3.3 2D Motion Primitives

	6.4 Summary

	7 Conclusion
	7.1 Future Research Directions

	Bibliography

