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Abstract Product-line optimization using consumers’ preferences measured by
conjoint analysis is an important issue to marketing researchers. Since it is a
combinatorial NP-hard optimization problem, several meta-heuristics have been
proposed to ensure at least near-optimal solutions. This work presents already
used meta-heuristics in the context of product-line optimization like genetic
algorithms, simulated annealing, particle-swarm optimization, and ant-colony
optimization. Furthermore, other promising approaches like harmony search,
multiverse optimizer and memetic algorithms are introduced to the topic. All
of these algorithms are applied to a function for maximizing profits with a
probabilistic choice rule. The performances of the meta-heuristics are measured
in terms of best and average solution quality. To determine themost suitable meta-
heuristics for the underlying objective function, a Monte Carlo simulation for
several different problem instances with simulated data is performed. Simulation
results suggest the use of genetic algorithms, simulated annealing and memetic
algorithms for product-line optimization.
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1 Introduction

A product-line is a bundle of similar products consisting of at least two products.
These products are determined by their attributes and their corresponding
attribute levels. Companies offer product-lines to satisfy a higher number of
consumers or consumer segments to maximize, e.g., market share or profit.
Therefore, Product-line optimization is one of the most important issues in
marketing science (Green and Krieger, 1985). So, new product development
is key for the profitability of an enterprise. There is enormous pressure on
enterprises due to globalization, shorter product life cycles and fast advances
in technology (Tsafarakis et al, 2011). Around 65-79% of all new product
placements flop (Hermann, 2006; Tacke et al, 2014). That is why there
is a strong need to develop methods for solving product-line optimization
problems because on the basis of preference measurement (especially conjoint
analysis) data product line optimization is a combinatorial optimization problem
and, therefore, NP-hard Kohli and Krishnamurti (1989). That means optimal
solutions are very hard to find with exact methods even for middle sized issues
in reasonable time (Belloni et al, 2008). A possible approach to this problem is
to approximate the optimal solutions by methods from machine learning. In this
work, seven different heuristics from machine learning are investigated in terms
of solution quality for the probabilistic profit optimization problem.

2 The Probabilistic Profit Function

For performance evaluation of the heuristics the probabilistic profit function of
Gaul et al (1995) and Gaul and Baier (2009) is used. It takes advantage of the
Bradley-Terry-Luce (BTL) (Bradley and Terry, 1952; Luce, 1959) decision
rule for modelling the choice of a consumer from its individual part-worths. In
this context, it should be stated, that the BTL model, like the multinomial logit
model, suffers from the violation of the independence of irrelevant alternatives
(IIA) property. Nevertheless, in this paper a probabilistic choice rule is used,
because it can lead to a more realistic consumer behavior in some situations
(Gaul and Baier, 2009). In comparison to the first choice rule, one expects
another structure of the solution space of the underlying optimization problem,
but due to the same structure of decision variables and problem configurations
no different performances of the heuristics. Another reason for using this type of
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probabilistic profit function is that to this point nobody performed a product-line
optimization for this model. Consumer utilities for the products are composed
of a linear additive model (see Equation 1) where the utility for a customer 8 and
a product 9 is the sum of the part-worths utilities of the corresponding attribute
levels.
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The probabilistic profit function maximizes the profit of new (T1) and own
established products (T2) of a company minus the fixed costs for new products
considering the individual purchase probability and a weighting factor that
reflects the number of items bought by a consumer. In this context, ’own products’
mean the already available products in the market of the company that performs
the optimization. A description of the probabilistic profit function is given
below.
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G 9:; ∈ {0, 1} ∀:, ;, 9 = � + � + 1, ..., � + � + '. (6)

Let � be the set of consumers with 8 = {1, .., �}, � the set of products with
9 = {1, .., �} that is composed by  attributes with : = {1, ..,  } with !: levels
for each attribute with ; = {1, ..., !: },∀: ∈  . The status-quo market is made
up by 9 = {1, .., �} products of competing firms and 9 = {� + 1, .., � + �}
own products. In the optimization model a number of 9 = 1, ..., ' new products
should be introduced into the market. So overall, there are � + � + ' products
in the market. The part-worths V8:; are the preference values of attribute : and
level ; for the i-th consumer. Every consumer has a certain weightl8 , 8 = 1, ..., �,
which reflects the number of products that are purchased by consumer 8. The
decision variable G 9:;, 9 = � + � + 1, ..., � + � + ', for the products to be
introduced indicates whether a product 9 has attribute : with level ;. The
marginal profit of attribute : with level ; of consumer 8 is denoted by 38:;. To
model fixed costs at the attribute levels the term 5:; is used. Constraint 3 ensures
that each attribute : of a products 9 has at most one level ; and Constraint 4
makes sure to offer just products with a full set of attributes and their respected
levels. The BTL purchase probability ?8 9 for consumer 8 for buying product 9 is
reflected by Constraint 5 whereby a calibration parameter U ≥ 0 can be used to
model additional market information. Constraint 6 is the binary restriction for
the decision variables G 9:; where G 9:; = 1 if product 9 = 1, ..., ' has attribute
level ; of attribute : . The decision variable considers only new products to be
introduced. This optimization model maximizes the marginal return of new and
already established products of a firm taking fixed costs, purchase probabilities
and weighting factors into account.

3 Machine Learning Techniques for Product-line
Optimization

Because it is a combinatorial optimization problem, the product-line optimization
is NP-hard (Kohli and Krishnamurti, 1989). Therefore, for most problem
instances of a product-line optimization problem it is not possible to enumerate
all product-lines for selecting the best one. There are

(#
'

)
product-lines that can

be composed by selecting ' products out of # permitted products. Even with
highly specialized algorithms which ensure the global optimum through the use
of Lagrangian relaxation in combination with branch and bound techniques,
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Belloni et al (2008), Camm et al (2006) and Wang et al (2009) showed that
even for middle sized problems the computation of the global optimum takes
far too long for practical purposes. Hence, there is a need of gradient free
optimization heuristics that give at least near optimal solutions to the underlying
optimization problem. An important issue for selecting such heuristics ist the
question which heuristic will perform well on the product-line optimization. A
natural approach would be looking at other NP-hard combinatorial optimization
problems like the travelling salesman or the knapsack problem. But as Wolpert
and Macready (1997) showed with the “no free lunch theorems for search”
this approach could be misleading and give wrong indications for the use of
certain algorithms because there is no heuristic algorithm for optimization that
is good for every problem instance. On average, heuristics are equally good
over all possible problem instances. Another important issue in the field of
heuristics is the massive amount of “novel” methods for solving optimization
problems approximately. Soerensen (2013) stated this issue and critizes that
most methods are conceptually not new and just re-combining already existing
methods hiding behind other metaphors. That is why we decided to take already
investigatedmethods or methods that are conceptually promising for product-line
optimization.
Now, the heuristics used in this work will be explained shortly. Parameter

configurations of the heuristics were either taken from the literature or by
conducting Monte Carlo simulations. Genetic algorithms (GA) simulate the
inheritance process by selection, recombination and mutation (Holland, 1975;
Balakrishnan and Jacob, 1996). There are different procedures for selecting
good individuals (here: product-lines) and recombining/mating them to get
new offspring with new promising product-lines for the next population. The
mutation operator prevents the algorithm of premature convergence and ensures
a higher diversity in the population. Particle-swarm optimization (PSO) mimics
the behavior of swarms of fishes or birds when foraging for food (Kennedy
and Eberhart, 1995; Tsafarakis et al, 2011). Ant-colony optimization (ACO)
emulates ants on their way of finding rich food sources (Dorigo and Stützle, 2004;
Albritton and McMullen, 2007) where every ant represents a product-line.
Good regions with rich food sources get higher selection probabilities than
regions with less food. So, a solution is constructed by a probability function
from one attribute to another. This probability function is updated throughout
the optimization process so that attribute levels of better solutions get higher
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chances to be selected in the next iteration. Simulated annealing (SA) is a
technique that works on a single solution (Kirkpatrick et al, 1983; Belloni
et al, 2008). It has good properties to escape from local extrema because it
keeps not necessarily each solution that leads to a better objective function
value. Instead, the acceptance of a solution is based on a probability which
takes the difference between objective function values and a decreasing cooling
schedule into account. It was one of the best algorithms in Belloni et al (2008).
The multiverse optimizer (MVO) is a relativly new population-based approach
(Mirjalili et al, 2015). It simulates phenomena from general relativity like
black, white and worm holes. A universe is the metaphor for a solution of the
optimization problem, and every variable represents an object in that universe.
The population is composed of a certain number of universes. Each universe
has an inflation rate which is proportional to the fitness function value of
the universe. MVO follows some rules: higher inflation rates correspond to
a higher probability of white holes and a lower probability of having black
holes. Universes with higher inflation rates tend to send objects through a
white whole to other universes and universes with lower inflation rates tend
to get objects from other universes through black holes. The last rule is the
existence of worm holes which send objects through worm holes all over the
population of universes coming from the best universe so far. These rules are
modeled with simple mathematical formulas leading to an algorithm which is
capabale of finding near optimal solutions. Harmony search (HS) like GA is an
evolutionary method which mimics the harmonies of music (Geem et al, 2001).
These harmonies seek a best state which reflects the optimal solution of the
optimization problem. To reach a best state, the algorithm follows some steps: As
a population-based algorithm, HS is initialized randomly with feasible solutions,
also called harmonies forming the harmony memory. After initialization, the
improvisation process starts which changes the values of the variables following
a harmony memory considering rate for selecting a variable from the harmony
memory with a certain probability and a pitch adjusting rate which selects
neighboring values at a certain probability. If a better solution is found, this
solution replaces the worst solution in the harmony memory. This process is
repeated until a stopping criterion is met. A memetic algorithm (MA) is a
combination of a GA and a SA. The algorithm works with the same operators
like a GA, but replaces the mutation operator through an annealing process
with a shorter cooling schedule and lesser iterations than in classical SA. A



Machine Learning in Product-line Optimization 7

certain number of randomly selected solutions from the population is taken and
annealed in each iteration of the GA. We should expect a better escape behavior
from local optima.

4 Design of the Simulation Study

The used parameter configurations for each heuristic for the following simulation
study are given by:

• GA: population size = 1000; parents rate = 0.4; mutation rate = 0.02.

• PSO: neighbourhoods = 28; particles = 18; F<8= = 0.1; F<0G = 0.9 ;
21 = 22 = 2.0; j = 0.728.

• ACO: number of ants = 500.

• SA: feature changes per temperature = 5000; cooling schedule =
{21.0, 0.9 · 21.0, ..., 0.1}.

• MVO: number of universes = 1000; F4?<0G = 1.0; F4?<8= = 0.05;
upper bound = 1.0; lower bound = −1.0; U = 1.0; scale = 1.0.

• HS: harmonies = 20; harmony memory considering rate = 0.99; pitch
adjusting rate = 0.02.

• MA: population size = 1000; parents rate = 0.4; annealing of 10 solutions
in each iteration; feature changes per temperature = 50; cooling schedule
= {7.3, 0.9 · 7.3, ..., 0.1}.

The values of the parameters are based on the literature and some small
simulations to get good parameters for the optimization. The concrete meaning
of them can be looked up in the stated literature.
To implement the constraint system into the algorithms a multinomial represen-
tation of the decision variable has been used. The main advantage is the better
performance in the running time of each algorithm. To perform the calculations
for the objective function these multinomial representation is converted to a
binary representation. This leads to the possibility of using the fast matrix
multiplication operations in R.
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5 Simulation Study

To compare different approaches for parameter estimation and optimization in
conjoint studies, in the marketing literature a long list of Monte Carlo studies is
available. The main idea behind these studies is to generate a set of synthetic
datasets that reflects real datasets as close as possible. Each synthetic dataset
is generated according to selected factor-levels (e.g. number of respondents,
number of product attributes and levels, assumed degree of heterogenity of
the respondends’ preference structure, assumed cost structures, assumed error
variance in data collection). All synthetic datasets try to reflect the assumed
variety of real datasets according to distributions of the factor-levels from
former empirical studies. Then, these synthetic datasets are used to compare the
different approaches and to decide which one is in which situation (factor-level-
combination) the most appropriate in this contribution. The composition of the
datasets is described in Baier (2014). We just refer to some of the best-known
samples of such studies, e.g., (Steiner and Hruschka, 2002) and, especially,
for the full factorial design used in these studies (Addelman, 1962). In our
simulation study we used these comparisons for defining our Monte Carlo
experiment which is close to the studies by (Carmone et al, 1978) and (Vriens
et al, 1996).
There are seven heuristics evaluated in a Monte Carlo simulation. All heuristics
were implemented with the R environment. For the implementation we built a
library for the these methods. Therefore, the parameter configurations used in our
experiments are taken from the literature. For the interested reader we refer to,
e.g., (Balakrishnan and Jacob, 1996) for the GA implementation, (Clerc, 1999)
for the PSO, (Albritton and McMullen, 2007) for the ACO, (Belloni et al, 2008)
for SA, (Mirjalili et al, 2015) for MVO, and (Geem et al, 2001) for HS.
The parameters used for MA are from shortened cooling schedule of (Belloni
et al, 2008) for the annealing process and selection and crossover from the GA
used in this article. In this simulation study the individual part-worths of the
consumers are generated by a normal distribution with a mean of zero and a
standard deviation of five (Tarasewich and McMullen, 2001, S. 66). The full
factorial design of the Monte Carlo simulation is composed by the factors and
levels from Table 1. Hence, 180 test problems are investigated (3 attributes ×
3 levels for each attribute × 2 product-line sizes × 10 iterations for each test
problem) which are solved by each heuristic. The number of consumers is kept
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constant throughout the simulation, whereas the number of status-quo products
is depending on the test problem size. For simulation purposes, the fixed costs are
set to zero for each level of the attributes ( 5:; = 0,∀; ∈ !: , : ∈  ). Furthermore,
the marginal return 38:; is randomly drawn from a uniform distribution from
(0, 1),∀8 ∈ �. That means, every consumer has the same marginal return for each
attribute level. The status quo market is composed of the status quo products,
depending on the problem size, there are 5 or 20 products composing the market.

Table 1: Factors and levels for the simulation study (See also Tsafarakis et al (2011)).

Factor Level

attributes 3 6 9
levels per attribute 3 4 10
products per product-line 3 5
consumers 200
status quo products 5 20
iterations for each problem 10

To investigate whether the heuristics show differences in the solution quality
with increasing test problem sizes, the 18 test problems are devided into three
different blocks with small, middle and big sized problem instances. Therefore,
the problems were ordered by the number of possible product-lines and then
assigned to their respective block. The smallest number of possible solutions is
4, 2 · 104 while the biggest problem instance has 8, 3 · 1042 possible solutions to
the problem. In Table 2 one can find the simulation results. In the header of the
table the numbers of possible solutions (product-lines) are given. Columns best
represent the best found solution for each heuristic in ten iterations for all test
problems per block divided by the best known solution of each test problem
over all heuristics. E.g., if GA has a best value of 1.00 means, that for every test
problem GA was able to find the best known solution to the six test problems
of a block in at least one iteration. If a best value is below 1.00, a heuristic
has missed the best known solution at least once. Columns avg show the mean
of the solutions for ten iterations of all test problems per block divided by the
number of test problems. If a avg value is 1.00, a heuristic was able to find
the best known solution to the six test problems of a block in every iteration.
The time in s column indicates the averaged run time of the heuristics for one
iteration in seconds.
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Table 2: Performances of algorithms for different problem sizes as share in % of the best
found solution. Abbreviations: GA...genetic algorithm, PSO...particle-swarm optimization, ACO...ant-
colony optimization, SA...simulated annealing, MVO...multiverse optimizer, HS...harmony search,
MA...memetic algorithm.

4, 2 · 104 - 3, 8 · 1010 8, 3 · 1012 - 1, 1 · 1022 1, 9 · 1023 - 8, 3 · 1042

solutions (small sized) solutions (middle sized) solutions (big sized)

best avg time in
s

best avg time in
s

best avg time in
s

GA 1.00 1.00 10.24 1.00 1.00 18.00 1.00 0.99 51.92
PSO 1.00 0.99 23.99 0.99 0.99 47.08 0.94 0.89 117.53
ACO 1.00 0.99 42.85 0.99 0.96 57.57 0.89 0.83 126.38
SA 0.99 0.96 37.89 1.00 0.99 39.24 1.00 0.99 43.48
MVO 1.00 0.99 48.29 1.00 0.99 78.37 0.99 0.99 220.42
HS 1.00 0.99 22.13 1.00 0.99 25.85 1.00 0.99 32.23
MA 1.00 1.00 18.30 1.00 1.00 30.59 1.00 1.00 65.29

In general, the results in Table 2 show that each heuristic performed very well
on small sized problems with a number of possible solutions lower or equal than
3, 8 · 1010. As one can see, SA missed at least one best known solution and had
the worst average performance in the first block. Surprisingly, SA performed
extremely well on the middle sized and big problem instances, where it is able to
find every known best solution with competitive average solutions with respect
to top performing heuristics like GA, HS andMA.With increasing problem sizes
PSO and ACO clearly fall behind the other heuristics in terms of solution quality.
Whereas the performance of PSO is acceptable for the middle sized problems,
ACO gets close to the best known solution but the average performance is worse
than for the other heuristics. For PSO the problem seems to be that it operates
on a continuous space which after the calculations is retransformed to a discrete
space. So the reason can be a loss of information throughout the learning process
of the algorithm. In the current implementation ACO solely uses the consumer
preferences for optimization which leads foremost to non optimal solutions for
the probabilistic profit function. MA finds the best known solution to every
problem instance and even gets the best known solution in every iteration.
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6 Conclusion and Outlook

At first, each heuristic seems to be well suited for (near optimal) maximizing
the probabilistic profit function. The best performing (with regard to solution
quality) heuristic in this simulation study is the MA. But, in fact, GA, SA,
MVO and HS are very close, so it is difficult to make a final conclusion which
heuristic performs best in terms of solution quality. Problem instances with
a higher number of possible solutions have to be investigated in the future
to see more differences in the performance of the heuristics. Statistical tests
have to be implemented to decide if a certain heuristic actually gives better
quality solutions. For future research, problems with bigger solution spaces
should be considered to get more insights in the algorithms’ performances.
The differences are quite small in this investigation. Furthermore, a more
realistic way to model the attribute-level-structure from real world conjoint
problems could be beneficial for more general-purpose statements. Another
limitation of this paper is the simulation of the consumers’ part-worths. More
sophisticated methods would be helpful for a more realistic preference structure.
Another interesting question is whether there is a difference in the performance
of the algorithms when comparing different choice rules for modeling the
choice behavior. A possibly fruitful approach the product-line optimization
problems in particular and for combinatorial optimization in general would
be the usage of quantum computing. Maybe, it is possible to solve even huge
problem instances exact in reasonable time, but at least, one could implement
quantum annealing which showed to have very desirable properties to escape
from local extrema (Finnila et al, 1994). Another interesting method from
artifical intelligence could be solving the underlying product-line optimization
problem by a neural combinatorial optimization technique with reinforcement
learning (Bello et al, 2016).
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