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We report searches for B0 → invisible and B0 → invisible þ γ decays, where the energy of the photon is
required to be larger than 0.5 GeV. These results are obtained from a 711 fb−1 data sample that contains
772 × 106BB̄ pairs and was collected near the ϒð4SÞ resonance with the Belle detector at the KEKB eþe−

collider. We observe no significant signal for either decay and set upper limits on their branching fractions
at 90% confidence level of BðB0 → invisibleÞ < 7.8 × 10−5 and BðB0 → invisibleþ γÞ < 1.6 × 10−5.

DOI: 10.1103/PhysRevD.102.012003

The decays B0 → invisible and B0 → invisibleþ γ, with
“invisible” defined as particles that leave no signal in the
Belle detector, are sensitive to new physics beyond the
Standard Model (SM). For instance, models with R-parity
violation [1] or dark matter contributions [2] predict that the
branching fraction of B0 decays to an invisible final state
could be as high as 10−6 − 10−7. In the SM, such a decay is
B0 → ðγÞνν̄, which proceeds through the Feynman dia-
grams in Fig. 1. The B0 → νν̄ decay is strongly helicity
suppressed by a factor of ðmν=mB0Þ2 [3], and the estimated
branching fraction is at the 10−25 level. A recent calculation
[4] predicts that a B0 → νν̄νν̄ decay, which has the same
signature as B0 → νν̄ in the detector, also contributes to the
invisible final state, and the estimated branching fraction is
at the 10−16 level. For the B0 → γνν̄ decay, despite the
removal of helicity suppression, the branching fraction
predicted from the SM is of order 10−9 [5], which is still too
small to be observed by current experiments. A very low
background from the SM indicates that a signal of B0 →
invisibleðþγÞ in the current B-factory data would indicate
new physics.
Several experimental searches for B0 → invisibleðþγÞ

have been performed and no signal has been observed. The
most stringent branching-fraction upper limits [6], BðB0 →
invisibleÞ < 2.4 × 10−5 and BðB0 → invisibleþ γÞ <
1.7 × 10−5, were provided by the BABAR Collaboration
using the semileptonic tagging method and with 424 fb−1

of data. A previous search [7] from Belle with 606 fb−1 of

data adopted a hadronic tagging method and reported the
upper limit, BðB0 → invisibleÞ < 1.2 × 10−4, a factor of 5
higher than the BABAR results. Here we report the updated
results with the full Belle dataset and improved hadronic
tagging.
These searches are based on a data sample that was

collected with the Belle detector at the KEKB asymmetric-
energy eþe− (3.5 on 8 GeV) collider [8]. The sample
contains 772 × 106BB̄ pairs accumulated at the ϒð4SÞ
resonance, corresponding to an integrated luminosity of
711 fb−1, and an additional 90 fb−1 of off-resonance data
recorded at the center-of-mass (c.m.) energy 60 MeV below
the ϒð4SÞ resonance.
The Belle detector is a large-solid-angle magnetic

spectrometer that consists of a silicon vertex detector
(SVD), a 50-layer central drift chamber (CDC), an array
of aerogel threshold Cherenkov counters, a barrel-like
arrangement of time-of-flight scintillation counters, and
an electromagnetic calorimeter (ECL) comprised of CsI
(Tl) crystals located inside a superconducting solenoid coil
that provides a 1.5 T magnetic field. Outside the coil, the
K0

L and muon detector (KLM), composed of alternating
layers of charged particle detectors and iron plates, is
instrumented to detect K0

L mesons and to identify muons.
The detector is described in detail elsewhere [9]. Two inner
detector configurations were used. A 2.0 cm radius beam
pipe and a three-layer SVD were used for the first 140 fb−1

data sample, while a 1.5 cm radius beam pipe, a four-layer
SVD and a small-cell inner CDC were used to record the
remaining 571 fb−1 data sample [10].
To determine our signal efficiency and optimize event

selection criteria, we use Monte Carlo (MC) simulated
events. All MC samples in the analysis are generated by the
EvtGen package [11], with the detector response simulated
by the Geant3 package [12]. Ten million B0 → νν̄ and B0 →
γνν̄ signal events are generated with a phase-space decay
model. However, for the B0 → γνν̄ search, a phase-space
decay model is not appropriate to describe the process.
Thus, the signal efficiency is reweighted according to
theoretical calculations [5], in which the “quark constituent
model” is assumed and differential branching fraction as a
function of squared missing mass (M2

miss) is given.M
2
miss is

defined as

M2
miss ¼ ðP⃗beam − P⃗Btag

− P⃗γÞ2=c2; ð1ÞFIG. 1. Feynman diagrams for B0 → ðγÞνν̄ in the Standard
Model.
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where P⃗beam, P⃗Btag
and P⃗γ are the four-momenta of the eþe−

system, the other B meson and the photon for a B0 → γνν̄
signal event, respectively. In addition, a second model-
independent binned analysis is performed in five different
M2

miss regions using the signal MC sample generated
with the phase-space decay model: M2

miss < 5 GeV2=c4,
5 GeV2=c4 < M2

miss < 10 GeV2=c4, 10 GeV2=c4 <
M2

miss < 15 GeV2=c4, 15GeV2=c4 <M2
miss < 20GeV2=c4

and 20 GeV2=c4 < M2
miss (bin 1–bin 5, respectively).

Since the signal-side particles, except for the photon,
cannot be detected, a technique that fully reconstructs the
other B meson (tag-side Btag meson) is used. The signature
of B0 → invisible or a photon for B0 → invisibleþ γ is
then identified in the remaining part of the event.
The hadronic full reconstruction is a hierarchical process

for reconstructing the Btag meson [13]. The B0 candidates
are reconstructed from 489 decay channels in which B0

mesons decay to hadrons. The process consists of four
stages, starting from an initial selection of charged tracks,
photons, K0

S, and π0, followed by two stages of forming
intermediate particles, (D�

ðsÞ, D
0, J=ψ) and (D��

ðsÞ , D
�0), and

ending at the stage of reconstructing the B0 meson from its
daughter products. The neural network (NN) package
NeuroBayes [14] is used to assign a signal probability
(PFR) to the reconstructed particle at each individual stage.
The NN at each stage is trained with the PFR of the daughter
particles and properties of the candidate, such as invariant
mass and the opening angle between daughters. If there are
multiple B0 meson candidates in an event, the candidate
with the highest PFR is selected as the Btag. From the
previous study [13], the number of correctly reconstructed
Btag in the full dataset is 1.4 × 106. In the case of B0 → νν̄
and B0 → γνν̄ signal MC simulation, the reconstruction
efficiencies of the Btag are 0.41% and 0.47%, respectively.
Comparing to the full reconstruction algorithm used in the
previous B0 → invisible study at Belle [7], the tagging
efficiency is improved by approximately a factor of 1.5 due
to the newly introduced NN tool within the framework. In
this analysis, a loose preselection on the beam-energy-
constrained Btag mass, Mbc;tag > 5.26 GeV=c2, is applied.

This mass is calculated as Mbc;tag ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
beam − P⃗2

Btag
c2

q
=c2,

where the Ebeam is the beam energy in the eþe− c.m. frame
and the P⃗Btag

is also defined in this frame.
For B0 → invisibleþ γ, at least one photon is required.

The signal photon is detected by the ECL and an energy
threshold of 0.5 GeV in the eþe− c.m. frame is applied in
order to eliminate the huge number of photons from the
beam background. Furthermore, we require that the cor-
responding ECL cluster does not match with a track in the
CDC and that the fraction of energy detected in the inner
3 × 3 array of crystals relative to the 5 × 5 array of crystals
centered on the crystal with the maximum energy exceeds

0.9. In the case that more than one photon satisfies the
selection criteria, the one with the highest energy is selected
as the signal photon.
After the reconstruction of Btag, and selecting the photon

for B0 → invisibleþ γ, events with extra tracks, π0, or K0
L

are rejected because no extra detectable particles except
photons are expected in the event. Extra tracks are defined
as those passing the loose impact parameter selections dr <
4 cm and jdzj < 35 cm, where dr and dz are the shortest
distance from the track to the interaction point (IP) on the
transverse plane and along the beam axis, respectively.
The loose requirement aims to include low-momentum
tracks that are ill reconstructed and tracks not produced
around the IP. Extra π0 candidates are reconstructed from
photon pairs passing the following requirements: each
photon has energy larger than 40 MeV; the absolute cosine
value of the angle between a photon direction and the boost
direction of the lab system in the π0 rest frame smaller than
0.9; 120 MeV=c2 < Mπ0 < 145 MeV=c2, which corre-
sponds to a window within 1.5 standard deviations (σ)
of the nominal mass [15]. Extra K0

L candidates are detected
in the KLM detector, where a minimum of two hit layers is
required.
A powerful variable to identify B0 → invisible and B0 →

invisibleþ γ signal is EECL, which is defined as the sum
of all the remaining energies of ECL clusters that are
not associated with tag-side B daughter particles. For
B0 → invisibleþ γ, the signal photon is also excluded.
In the EECL calculation, in order to reduce a contribution
from beam background, only the ECL clusters that
satisfy the following energy thresholds are included:
Ecluster > 0.05, 0.10 and 0.15 GeV for the barrel region
(32.2° < θ < 128.7°), forward end cap (θ < 32.2°) and
backward end cap (θ > 128.7°), respectively, where θ is
the polar angle in the lab frame. Since the distribution for
signal events peaks at zero, the EECL signal box is defined
as EECL < 0.3 GeV, and the EECL sideband is defined
as 0.3 GeV < EECL < 1.2 GeV.
After the signal event selections, eþe− → qq̄ðq ¼

u; d; s; cÞ continuum events are the dominant background,
followed by BB̄ decay with a b → c transition (generic B
background). Two separate NN implemented using the
NeuroBayes package are used in order to reduce the former.
The first NN focuses on rejecting fake Btag, and the input
variables are those related to the Btag reconstruction
qualities: PFR of the Btag; Mbc;tag; ΔEtag, which is defined
as the energy difference between the reconstructed Btag

meson and the beam energy at the eþe− c.m. frame. The
second NN focuses on the jetlike topology of continuum
events. The input variables are the sum of the transverse
momentum M2

miss, which is defined in Eq. (1) without the
P⃗γ term, and 16 modified Fox-Wolfram moments [16]. For
B0 → invisibleþ γ, the signal photon is excluded in all the
momentum-related calculations in order to reduce model
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dependence. Outputs of the two NN (Otag and Oshape,
respectively) are continuous variables within the range
ð−1; 1Þ, and larger (smaller) values correspond to events
more (less) likely to be signal. We find that Otag and Oshape

are also effective at distinguishing the generic B back-
ground from the signal. The Otag and Oshape distributions
for signal and both kinds of the background are shown
in Fig. 2.
Thresholds for Otag and Oshape are determined jointly

by maximizing a figure of merit (FOM) separately for the
modes, B0 → invisible and B0 → invisibleþ γ, and the
fiveM2

miss bins. The optimization is done in the EECL signal
box and the FOM has the form [17]

FOM ¼ ϵsig
ð0.5nσ þ

ffiffiffiffiffiffiffiffiffi
Nbkg

p Þ ; ð2Þ

where ϵsig is the signal efficiency in MC simulation and
Nbkg is the number of background events reconstructed as
signal in MC. Here nσ is the number of σ in a one-tailed
Gaussian test, where nσ ¼ 1.28 corresponds to the choice
of a 90% confidence level. The optimized NN output
thresholds, Otag > 0.7 and Oshape > −0.1ð−0.2Þ for B0 →
invisible (B0 → invisibleþ γ), eliminate 97% of back-
ground events while retaining around 60% of signal in
both cases. For different bins in the binned analysis, lower
bounds for the Otag and Oshape lie between (0,0.7) and
ð−0.4; 0.2Þ, respectively. With the thresholds, 92%–98% of

background events are reduced while 60%–80% of signal
events are kept.
The signal yield for B0 → invisible is extracted from

data through fitting variables EECL and cos θT , where cos θT
is the cosine of the angle between the two thrust axes in the
eþe− c.m. frame. The thrust axis is defined as the direction
that maximizes the sum of the longitudinal momenta of
particles, and here one of the axes is constructed using Btag

final-state particles, while the other is from the remaining
part of the event. The latter is composed of photons and
charged tracks that survive the extra-track rejection. In case
there is no particle in the remaining part, the beam axis
replaces the second thrust axis. In data and the signal MC
simulation, this occurs in less than 1% of events.
Beside generic B and continuum backgrounds, back-

ground from rare BB̄ decays (i.e., with a b → u, b → d, or
b → s transition) and from eþe− → τþτ− are also consid-
ered. From MC simulation, it is found that the rare BB̄
decay background has cos θT and EECL distributions similar
to those of generic B background, and thus those two
background sources are combined. In addition, the con-
tinuum and eþe− → τþτ− background also have similar
cos θT distributions, and their EECL combined distribution
can be described by the off-resonance data. As a result,
continuum and eþe− → τþτ− backgrounds are combined
and referred to as non-B background.
An extended unbinned maximum likelihood fit is applied

with the form

L ¼ e−
P

j
nj

N!

YN
i¼1

�X
j

njPjðEi
ECL; cos θ

i
TÞ
�
; ð3Þ

where i is the events identifier and nj is the number of
event belonging to the jth category. PjðEECL; cos θTÞ is a
direct product of the probability density functions (PDFs)
PjðEECLÞ and Pjðcos θTÞ. With the exception that the EECL

distribution for the non-B component is obtained from the
off-resonance data, all the other PDFs are obtained from
MC simulation. In order to enhance the statistics when
constructing PDFs, the Otag threshold is removed after
verifying that no correlation exists between Otag and the
fitting variables. From the MC simulation, the proportions
of the continuum background among the non-B back-
ground are ð83� 5Þ% and ð75� 1Þ% before and after
removing theOtag threshold, respectively, consistent within
1.6σ uncertainty. Second-order Legendre polynomials are
used to describe cos θT , while histogram PDFs are used for
the EECL distributions. No correlation is found between the
fitting variables in background components. However, a
small but non-negligible correlation between variables
exists for signal events. The direct product between
PDFs is used nonetheless, and the corresponding system-
atic uncertainty is determined by generating an ensemble

tagO
1− 0.6− 0.2− 0.2 0.6 1

A
rb

itr
ar

y 
U

ni
ts

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

shapeO
1− 0.6− 0.2− 0.2 0.6 1

A
rb

itr
ar

y 
U

ni
ts

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

tagO
1− 0.6− 0.2− 0.2 0.6 1

A
rb

itr
ar

y 
U

ni
ts

0

0.1

0.2

0.3

0.4

0.5

shapeO
1− 0.6− 0.2− 0.2 0.6 1

A
rb

itr
ar

y 
U

ni
ts

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

FIG. 2. Otag (left) and Oshape (right) distributions for continuum
(blue and hatched area), generic B (green and shaded area)
background, and signal MC simulation (red and blank area). Top,
B0 → invisible; bottom, B0 → invisible þ γ. Histograms are
normalized such that the sum of all bins equals one.
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according to two-dimensional histogram PDFs and then
fitting with the product of one-dimensional PDFs.
The validity of the EECL PDFs for background is checked

using the sideband samples excluded by the Otag threshold.
Comparison between sideband data and the combined
distribution of non-B and generic B background according
to the MC ratio shows consistency, as shown in Fig. 3. In
the comparison, the correctness of the MC ratio between
background components is further verified by fitting cos θT
in the sideband sample, which is shown in Fig. 4. In this fit,
there are ð23� 8Þ% of generic B events among the
combined background, which is consistent with the pro-
portion of ð25� 1Þ% from MC simulation.
To verify the EECL PDF obtained from the signal

MC simulation, B0 → D�−lþν (l ¼ e; μ; D�− → D0π−,

D0 → Kþπ−) is used as a control sample. In these events,
Btag is fully reconstructed, and the other B meson is
identified by decays to Dð�Þlν from the remaining part
of the event (double tagging). To mimic the invisible final
state, particles used in the signal-side reconstruction are
excluded, such as in the EECL and the shape variables
calculations. Event selections are done in the same manner
as in the B0 → invisible study. The extra tracks, π0, and K0

L
vetoes are demanded after removing particles involved in
the reconstruction of Btag and Bsig. The Otag and Oshape are
also based on the algorithms established before. Additional
selections include 1.855 GeV=c2 < MD0 < 1.885 GeV=c2

(1.8σ window); 0.143 GeV=c2 < ΔMD < 0.148 GeV=c2

(2.2σ window), where ΔMD is the difference between the

reconstructed D�− and D0 masses; −0.5 GeV2=c4 <
M2

miss < 0.5 GeV2=c4 (1.5σ window), where M2
miss is

defined in Eq. (1) with P⃗γ replaced by P⃗D�−l. After the
double tagging, background for the B0 → D�−lþν becomes
negligible. Comparison of the EECL distribution between
the doubly tagged data and the B0 → νν̄ MC simulation
shows excellent agreement as seen in Fig. 3.
The projections of the 2D fitting result for B0 →

invisible are shown in Fig. 5. The corresponding fitting
yields of each component are listed in Table I. No
significant signal is observed.
The systematic uncertainty due to the statistical error of

the EECL and cos θT PDFs modeling is estimated by varying
the content of each bin in the histogram PDFs and
parameters of the Legendre polynomials by �1σ, respec-
tively, and repeating the fit on data. All of the systematic
uncertainties of signal yields are listed in Table II, and the
total systematic uncertainty is the sum in quadrature of
all terms.
The significance of the signal yield is defined asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2 lnðL0=Ls

p Þ, where L0 and Ls are the maximized
likelihood values when the signal yield is constrained to
zero and floated, respectively. The systematic uncertainty is
taken into consideration by convolving the likelihood
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function with a Gaussian function whose width equals to
the systematic uncertainty. The signal significance thus
obtained for B0 → invisible is 1.2σ.
Since few events are expected in data for B0 →

invisibleþ γ and in the binned analysis, an approach that
counts events in the EECL signal region and then subtracts
the background is employed to measure any signal. The
number of background events in the signal box (Ndata

bkg;box) is
estimated from the EECL sideband data (Ndata

bkg;s:b:) by
multiplying by a parameter NMC

bkg;box=N
MC
bkg;s:b::

Ndata
bkg;box ¼ Ndata

bkg;s:b: ×
NMC

bkg;box

NMC
bkg;s:b:

; ð4Þ

where the NMC
bkg;box and NMC

bkg;s:b: denote the number of
background events in the EECL signal box and sidebands
from MC simulation, respectively.
Uncertainties of Ndata

bkg;box come from the statistical error
of the first term and the systematic error of the second term
in the right-hand side of Eq. (4). The latter is estimated by a
control sample B0 → D−lþν (l ¼ e; μ; D− → Kþπ−π−).
Similar to the case of B0 → D�−lþν, the double tagging,
MD− requirements, extra particles vetoes, Otag and Oshape

thresholds are applied. In the control sample, background
numbers in the EECL signal box and sideband are obtained
through fitting the M2

miss distribution to data, which is
shown in Fig. 6. The ratio of the background yields in the
two regions is compared with the ratio in the control sample
MC simulation. The difference and the statistical uncer-
tainty of fitting, which is between 16% and 20%, are added
in quadrature and taken as the systematic uncertainty. For

B0 → invisibleþ γ, the uncertainty is 33% and for the
binned cases, the uncertainties are between 23% and 30%.
The counting results in the EECL signal box are shown for
B0 → invisibleþ γ and the binned analysis in Table III.
Figure 7 shows theM2

miss and EECL distributions of data and
the expected background for B0 → invisibleþ γ. The
observed numbers of events are all consistent within
uncertainties with the expected backgrounds.
Taking the data-MC difference in selection rates into

account, the signal efficiencies are calibrated through the
formula

ϵdatasig ¼ ϵMC
sig × CFR × Ctr × Cπ0 × CK0

L
× CNN ð5Þ

where ϵdatasig and ϵMC
sig are the signal efficiencies from data and

MC, respectively, and CFR, Ctr, Cπ0 , CK0
L
and CNN are

calibration factors due to the full reconstruction process, the
extra tracks, π0, K0

L vetoes and the NN output thresholds,
respectively. The CFR factor has been studied [18] using
charmed semileptonic signal-side B decays, and its value
depends on the PFR of the Btag and the tag-side recon-
structed channel. For B0 → invisible, B0 → invisibleþ γ,

TABLE I. Fitting yield (B0 → invisible).

Component Yields

Signal 18.8þ15.3
−14.5

Generic B 68.1þ12.2
−11.7

Non-B −3.9þ19.5
−17.5

TABLE II. Summary of systematic uncertainties on fitting
yield.

Sources Systematic uncertainty (Events)

Signal PDF �0.6

Generic B PDF
þ1.9
−1.8

Non-B PDF
þ6.6
−6.7

Signal PDF correlation
þ0.3
−0.0

Total
þ6.8
−7.0
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and the binned analysis, the CFR factor lies between 0.64
and 0.70. On the other hand, Ctr, Cπ0 , CK0

L
, and CNN are

estimated through control samples, in which the signal
efficiencies before and after each selection on data and MC
simulation are compared. The control samples include six
modes, with the signal side decaying, respectively, through

B0 → D�−lþν (D�− → D0π−, D0 → Kþπ−); B− → D�0l−ν
(D�0 → D0π0, D0 → K−πþ); and B0 → D−lþν
(D− → Kþπ−π−), where l ¼ e or μ. The events are doubly
tagged with the selections on MD0 , M2

miss, and ΔMD
the same as mentioned before. In addition, we re-
quire −0.5 GeV2=c4 < M2

miss < 0 (0.4σ window) for
B0 → D−lþν, EECL < 0.4 GeV for all the control sample
modes and the difference between the reconstructed D�0

and D0 masses to lie within 0.138 − 0.146 GeV=c2 (2.4σ
window) for B− → D�0l−ν. The averaged calibration fac-
tors obtained from the six modes are used to calibrate the
B0 → invisibleðþγÞ signal efficiencies. Results forCtr,Cπ0 ,
and CK0

L
are 0.98, 0.96, and 1.06, respectively. For the

CNN, values vary between 0.90 and 0.95 according to the
different Otag and Oshape thresholds for B0 → invisible,
B0 → invisibleþ γ, and the binned analysis.
Systematic uncertainties associated with the signal effi-

ciency are from the full reconstruction and signal-side
selections. Uncertainties of the calibration factors contribute
to both sources, which are 4.5%, 3.0%, 3.6%, 3.2% and
3.1% for the full reconstruction, extra tracks, π0, K0

L veto,
and the NN output thresholds, respectively. For the modes
with a photon, the uncertainties due to photon detection
efficiency are within 2.8%–3.0%, which is studied using a
radiative Bhabha sample and B0 → K�0γ in the ECL barrel
and end cap region, respectively [19]. Combining all the
sources, the systematic uncertainty of the signal efficiency is
7.9% for B0 → invisible and around 8.4% for B0 →
invisibleþ γ and the binned analysis. The calibrated signal
efficiencies for B0 → invisible in the whole fitting region,
B0 → invisibleþ γ and the five bins in the EECL signal box
are ð7.1� 0.6Þ × 10−4, ð5.5� 0.5Þ × 10−4, ð6.3� 0.5Þ×
10−4, ð7.7� 0.6Þ × 10−4, ð6.6� 0.5Þ × 10−4, ð7.2�
0.6Þ × 10−4 and ð3.4� 0.3Þ × 10−4, respectively.

Since the signal yield is not significant for both B0 →
invisible and B0 → invisibleþ γ (whole range or the five
M2

miss bins), upper limits at 90% confidence level on the
branching fraction (BUL) are calculated. ForB0 → invisible,
the upper limit is obtained by solving the equation

Z
BUL

0

LðBÞdB ¼ 0.9
Z

∞

0

LðBÞdB; ð6Þ

where B is the assumed branching fraction and LðBÞ is
the corresponding maximized likelihood from the fit on
data. The 1.4% uncertainty on the number of produced
B-meson pairs, systematic uncertainties of signal yield
and efficiency are taken into consideration by convolv-
ing the likelihood function with a Gaussian function
whose width equals the total systematic uncertainty. The
result is

BðB0 → invisibleÞ < 7.8 × 10−5 at 90% C:L:

For B0 → invisibleþ γ, a frequentist style limit evalu-
ated in the TRolke package [20] is used to obtain upper limits
on the branching fraction. The method is based on the
profile likelihood with the uncertainties on background and
signal efficiency taken into account. The upper limits of the
branching fraction are shown in Table IV.
In summary, we have searched for the decays B0 →

invisible and B0 → invisibleþ γ and find no evidence for
them. For the latter decay, the energy of the photon is
required to be greater than 0.5 GeV. We set upper limits on
the branching fractions BðB0 → invisibleÞ < 7.8 × 10−5

and BðB0 → invisibleþ γÞ < 1.6 × 10−5 at 90% confi-
dence level. We improve upon the previous Belle limit
[7] on B0 → invisible, and the limit obtained for B0 →
invisibleþ γ is the most stringent.
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Bin 5 6.6� 2.9 7

TABLE IV. Branching-fraction upper limits for the B0 →
invisible þ γ mode.
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B0 → invisibleþ γ, bin 3 < 8.1 × 10−6
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Y. KU et al. PHYS. REV. D 102, 012003 (2020)

012003-8



NETwork 5 (SINET5) for valuable network support. We
acknowledge support from the Ministry of Education,
Culture, Sports, Science, and Technology (MEXT) of
Japan, the Japan Society for the Promotion of Science
(JSPS), and the Tau-Lepton Physics Research Center of
Nagoya University; the Australian Research Council
including Grants No. DP180102629, No. DP170102389,
No. DP170102204, No. DP150103061, and
No. FT130100303; Austrian Science Fund (FWF); the
National Natural Science Foundation of China under
Contracts No. 11435013, No. 11475187, No. 11521505,
No. 11575017, No. 11675166, and No. 11705209; Key
Research Program of Frontier Sciences, Chinese Academy
of Sciences (CAS), Grant No. QYZDJ-SSW-SLH011;
the CAS Center for Excellence in Particle Physics
(CCEPP); the Shanghai Pujiang Program under Grant
No. 18PJ1401000; the Ministry of Education, Youth
and Sports of the Czech Republic under Contract
No. LTT17020; the Carl Zeiss Foundation, the Deutsche
Forschungsgemeinschaft, the Excellence Cluster Universe,
and the VolkswagenStiftung; the Department of Science
and Technology of India; the Istituto Nazionale di Fisica

Nucleare of Italy; National Research Foundation
(NRF) of Korea Grants No. 2016R1D1A1B01010135,
No. 2016R1D1A1B02012900, No. 2018R1A2B3003643,
No. 2018R1A4A1025334, No. 2018R1A6A1A06024970,
No. 2018R1D1A1B07047294, No. 2019K1A3A7A09033840,
and No. 2019R1I1A3A01058933; Radiation Science
Research Institute, Foreign Large-size Research Facility
Application Supporting project, the Global Science
Experimental Data Hub Center of the Korea Institute of
Science and Technology Information and KREONET/
GLORIAD; the Polish Ministry of Science and Higher
Education and the National Science Center; the Ministry of
Science and Higher Education of the Russian Federation,
Agreement No. 14.W03.31.0026; University of Tabuk
research Grants No. S-1440-0321, No. S-0256-1438, and
No. S-0280-1439 (Saudi Arabia); the Slovenian Research
Agency; Ikerbasque, Basque Foundation for Science,
Spain; the Swiss National Science Foundation; the
Ministry of Education and the Ministry of Science and
Technology of Taiwan; and the United States Department
of Energy and the National Science Foundation.

[1] A. Dedes, H. Dreiner, and P. Richardson, Phys. Rev. D 65,
015001 (2001).

[2] A. Badin and A. A. Petrov, Phys. Rev. D 82, 034005 (2010).
[3] G. Buchalla and A. J. Buras, Nucl. Phys. B400, 225 (1993).
[4] B. Bhattacharya, C. M. Grant, and A. A. Petrov, Phys. Rev.

D 99, 093010 (2019).
[5] C. D. Lu and D. X. Zhang, Phys. Lett. B 381, 348

(1996).
[6] J. P. Lees et al. (BABAR Collaboration), Phys. Rev. D 86,

051105 (2012).
[7] C. L. Hsu et al. (Belle Collaboration), Phys. Rev. D 86,

032002 (2012).
[8] S. Kurokawa and E. Kikutani, Nucl. Instrum. Methods

Phys. Res., Sect. A 499, 1 (2003), and other papers included
in this volume; T. Abe et al., Prog. Theor. Exp. Phys. 2013,
03A001 (2013), and references therein.

[9] A. Abashian et al. (Belle Collaboration), Nucl. Instrum.
Methods Phys. Res., Sect. A 479, 117 (2002); also see
Sec. 2 in J. Brodzicka et al., Prog. Theor. Exp. Phys. 2012,
4D001 (2012).

[10] Z. Natkaniec et al. (Belle SVD2 Group), Nucl. Instrum.
Methods Phys. Res., Sect. A 560, 1 (2006).

[11] D. J. Lange, Nucl. Instrum. Methods Phys. Res., Sect. A
462, 152 (2001).

[12] R. Brun et al., CERN Report No. DD/EE/84-1, 1987.
[13] M. Feindt, F. Keller, M. Kreps, T. Kuhr, S. Neubauer, D.

Zander, and A. Zupanc, Nucl. Instrum. Methods Phys. Res.,
Sect. A 654, 432 (2011).

[14] M. Feindt and U. Kerzel, Nucl. Instrum. Methods Phys.
Res., Sect. A 559, 190 (2006).

[15] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98,
030001 (2018) and 2019 update.

[16] S. H. Lee et al. (Belle Collaboration), Phys. Rev. Lett. 91,
261801 (2003).

[17] G. Punzi, eConf C 030908, MODT002 (2003).
[18] A. Sibidanov et al. (Belle Collaboration), Phys. Rev. D 88,

032005 (2013).
[19] N. Taniguchi, Ph.D. Thesis, Kyoto University, 2008.
[20] W. A. Rolke, A. M. Lopez, and J. Conrad, Nucl. Instrum.

Methods Phys. Res., Sect. A 551, 493 (2005).

SEARCH FOR B0 DECAYS TO INVISIBLE FINAL STATES … PHYS. REV. D 102, 012003 (2020)

012003-9

https://doi.org/10.1103/PhysRevD.65.015001
https://doi.org/10.1103/PhysRevD.65.015001
https://doi.org/10.1103/PhysRevD.82.034005
https://doi.org/10.1016/0550-3213(93)90405-E
https://doi.org/10.1103/PhysRevD.99.093010
https://doi.org/10.1103/PhysRevD.99.093010
https://doi.org/10.1016/0370-2693(96)00587-4
https://doi.org/10.1016/0370-2693(96)00587-4
https://doi.org/10.1103/PhysRevD.86.051105
https://doi.org/10.1103/PhysRevD.86.051105
https://doi.org/10.1103/PhysRevD.86.032002
https://doi.org/10.1103/PhysRevD.86.032002
https://doi.org/10.1016/S0168-9002(02)01771-0
https://doi.org/10.1016/S0168-9002(02)01771-0
https://doi.org/10.1093/ptep/pts102
https://doi.org/10.1093/ptep/pts102
https://doi.org/10.1016/S0168-9002(01)02013-7
https://doi.org/10.1016/S0168-9002(01)02013-7
https://doi.org/10.1093/ptep/pts072
https://doi.org/10.1093/ptep/pts072
https://doi.org/10.1016/j.nima.2005.11.228
https://doi.org/10.1016/j.nima.2005.11.228
https://doi.org/10.1016/S0168-9002(01)00089-4
https://doi.org/10.1016/S0168-9002(01)00089-4
https://doi.org/10.1016/j.nima.2011.06.008
https://doi.org/10.1016/j.nima.2011.06.008
https://doi.org/10.1016/j.nima.2005.11.166
https://doi.org/10.1016/j.nima.2005.11.166
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevLett.91.261801
https://doi.org/10.1103/PhysRevLett.91.261801
https://doi.org/10.1103/PhysRevD.88.032005
https://doi.org/10.1103/PhysRevD.88.032005
https://doi.org/10.1016/j.nima.2005.05.068
https://doi.org/10.1016/j.nima.2005.05.068

