
The Spherical Grid Filter for Nonlinear
Estimation on the Unit Sphere

Florian Pfaff, Kailai Li, and Uwe D. Hanebeck

Intelligent Sensor-Actuator-Systems Laboratory (ISAS)
Institute for Anthropomatics and Robotics

Karlsruhe Institute of Technology (KIT), Germany
florian.pfaff@kit.edu, kailai.li@kit.edu, uwe.hanebeck@kit.edu

Abstract: Filters for the unit sphere have to consider its inherent periodic nature. Since the unit
sphere is a domain of finite size, suitable grids covering the manifold can be provided. We explain
the considerations for the grid generation and provide efficient ways to implement the prediction
and update steps of a novel grid filter for this manifold. The filter supports nonlinear system
and measurement models in the form of transition densities and likelihoods. In the evaluation,
the proposed filter achieves a higher estimation accuracy than competing approaches.

1. INTRODUCTION

Estimation problems on periodic manifolds, such as the
circle, the torus, and the sphere, are inherently nonlinear
and thus nontrivial. While nonlinear estimation is a large
field of research in which no universal approach that is
both accurate and fast is known, more and more problems
can be solved with success using approaches tailored to the
specific problems. In this paper, we consider estimation
on the unit sphere S2 = {x ∈ R3 : ‖x‖ = 1}, which is the
surface of the unit ball in R3. Modeling uncertainties on
spherical domains is of interest, e.g., in geosciences (see,
e.g., Watson (1956); Mardia (1981)) and for determining
crystal orientations, for example in Chen et al. (2015).
Tracking problems on spherical domains arise, e.g., when
estimating the orientation of objects for which the roll
angle in a roll, pitch, and yaw representation is irrelevant
or cannot be determined. Such tracking tasks may involve
tracking the direction certain types of antennas are facing
or the orientation of rotationally symmetric objects, such
as a spear. Other tracking tasks with this topology arise
in cases in which only a beam direction is relevant or can
be determined, such as in speaker tracking (see Traa and
Smaragdis (2014)).

Some existing filters for the unit sphere are based on density
assumptions, such as the von Mises–Fisher filter (VMFF)
proposed in Chiuso and Picci (1998), of which a nonlinear
variant was proposed in Kurz et al. (2016a). An approach
that does not depend on a density assumption is the particle
filter (PF). While the PF has not been explicitly proposed
for the unit sphere, its application to such problems is
trivial, and an implementation was released as part of
libDirectional (see Kurz et al. (2019)). Another approach
is the spherical harmonics filter that was recently proposed
in Pfaff et al. (2017). This filter is based on orthogonal basis
functions on the unit sphere called spherical harmonics.
While this filter often yields better results than the PF, it
does not support arbitrary system models in the prediction
step.
This work is supported by the German Research Foundation (DFG)
under grant HA 3789/16-1.

A vastly different approach that is popular for bounded
regions in Euclidean spaces is the use of grid filters, as
explained in Thrun et al. (2005, Ch. 8). Grid-based filters
for the unit circle were regarded in Kurz et al. (2016b);
Pfaff et al. (2019). Adapting such filters to the unit sphere
is easier and leads to a more efficient filter than adding
support for arbitrary transition densities to the spherical
harmonics filter. Therefore, we propose a filter for the unit
sphere that adopts the ideas of Pfaff et al. (2019). We call
it the spherical grid filter (SGF).

The paper is structured as follows. We begin by describing
how densities are represented using grid values in the second
section. In the third section, we explain how the prediction
and filter steps can be implemented for densities in the
grid-based representation. In Sec. 4, we compare the SGF
with the PF and the VMFF. In the last section, we provide
a conclusion and an outlook.

2. DENSITY REPRESENTATIONS

When approximating densities using a grid, one has to
decide on the semantic of the n values assigned to the
n grid points. In the first subsection of this section, we
introduce two closely related interpretations that facilitate
the comprehension of the derivations and the validity
of the filter. In the second subsection, we introduce our
method to represent densities on the unit sphere. In the
third subsection, we explain how we represent joint and
conditional densities on the unit sphere. This will be
essential for the prediction step of our novel filter.

2.1 Interpretations of the Grid Values

For both interpretations, each grid value γi can be thought
of as carrying information about the probability density
function (pdf) in a certain region Ai. By specifying that
the union of the regions must cover the entire sphere
without any overlapping regions 1, we obtain a partition
1 Neighboring patches may share points on the boundaries. We do
not go into detail on this because the probability mass contained in
the boundaries is zero for commonly used densities.



Table 1. Properties of the Two Representations

# Describes Domain Normalization Convert

1 pmf Discrete Sum to 1
Divide
by |Ai|

2 pdf Continuous Interpolation Multiply
(interpolated) integrates to 1 with |Ai|

A = {A1, . . . , An} of the domain. One point in each patch
is used as the corresponding grid point β

i
.

In the first interpretation, the grid value γi describes the
probability mass in Ai. The value can be obtained by
calculating an integral, which is a two-dimensional integral
for the unit sphere. The location of β

i
then essentially

loses its meaning and the resulting filter resembles a
Wonham filter—introduced in Wonham (1964)—in which
the individual patches correspond to different states. The
vector of grid values γ = [γ1, . . . , γn]> can then be
interpreted as the list of all probability masses of a
probability mass function (pmf). To obtain a pdf based on
the grid values, each probability mass γi can be distributed
evenly in the corresponding patch Ai, leading to a piecewise
constant function (see Kurz et al. (2016b)). The function
value in each patch corresponds to the grid value divided
by the area of the respective patch.

In the second interpretation, which we use for our imple-
mentation, the function values of the density at the grid
points are used as the grid values. Instead of calculating
the integral of the probability density in Ai, we pick one
point β

i
∈ Ai and assume that the function is constant

with a function value of γi = f(β
i
) in the entire patch.

This is reminiscent of the idea behind Riemann sums
that are used for numerically approximating (Riemann)
integrals. While the approximation based on the grid
values is not necessarily normalized, it converges to a
normalized density for n → ∞ due to the convergence
of Riemann sums to the Riemann integral. By multiplying
a grid value γi for the second interpretation with the
corresponding patch size |Ai|, an approximation for the
grid value for the first interpretation can be obtained (an
approximation is introduced due to the assumption that
the function is constant in the patch). The properties of
both representations, including ways to convert from one
representation to the other, are summarized in Table 1.

For the second interpretation, one way to obtain a contin-
uous density is to use the assumption that the function
is constant in the individual patches. However, the grid
values can also be used to obtain a different approximation
of the original density. Such an approximation preferably
converges to the true density for n→∞. On the unit circle,
the smooth interpolation used in Pfaff et al. (2019) based
on trigonometric polynomials (i.e., a Fourier series with
a finite number of nonzero coefficients) converged much
faster than the approximation based on piecewise constant
functions used in Kurz et al. (2016b). Since we use the
function values at the grid points for this interpretation,
their precise locations are evidently relevant. A reasonable
choice is to use the center of Ai as βi.

An important choice is how the domain is partitioned. To
obtain representative grid points, it is reasonable to choose

a partition that ensures that the boundaries of each patch
are reasonably close to a well-chosen corresponding grid
point. The filter would also work for patches that are, e.g.,
long and thin. However, the information derived from the
filter may be less useful for the user and point estimates may
have higher mean squared errors. As an intuitive example,
consider partitioning the unit sphere into patches that are
limited only by two azimuth angles and no elevation angles.
Then, a high grid value indicates a high probability of
being anywhere in the range of the two azimuth angles
but it does not provide information about the elevation
angle. Besides their shape, the sizes of the patches are of
interest. In this paper, we focus on partitions with equally
sized patches. Partitions with higher concentrations of grid
points in areas of high probability density may be beneficial
if suitable prior knowledge is available. However, such grids
put an emphasis on existing information and may not work
well if, e.g., unexpected measurements occur.

For circles, generating an equidistant grid is trivial. By
taking the Cartesian product of the grid points for multiple
circles, a grid for hypertoroidal manifolds can be easily
generated. As we explain in the next subsection, obtaining
a suitable grid is more complicated for the unit sphere.
Remark 1. Partitioning the domain into patches is not
essential for the second interpretation when the grid values
are used as data points for an interpolation. When inter-
polating the grid values using orthogonal basis functions,
each value can influence all basis functions. Since the basis
functions may have a global effect, changing a single grid
value might change the entire function, and thus, the grid
value does not only affect its neighborhood. However, since
generating piecewise constant functions based on the grid
values facilitates deriving valid operations for the prediction
and update steps, this piecewise constant interpolation will
be our focus in the derivation of the filter.

2.2 Representing Densities on the Sphere

Grids on the unit sphere that are generated similar to the
naïve grid explained for the hypertorus are equiangular
grids (see Colombo (1981)). To generate an equiangular
grid, one considers spherical coordinates and takes the
Cartesian product of the grid points of two equidistant
grids on the azimuth and elevation angles. Due to the
differences in the lengths of the circles around the sphere
for different elevation angles, the grid points are spaced
more densely toward the poles. An advantage of using this
grid would be that a fast spherical harmonics transform
exists (see Healy et al. (2003)), which is in O(n2(log n)2)
for n grid points.

For the reasons mentioned before, we use equally sized
patches. Grids based on such partitions also simplify the
derivations and the formulae for the prediction and update
steps. Partitioning a sphere into patches of equal size is a
task with various degrees of freedom and there is no single
established approach. One possible approach would be to
use a centroidal Voronoi tessellation obtained, e.g., using
an adapted version of the algorithm in Lloyd (1982).

In our implementation, we use the fast and efficient
recursive zonal equal area (EQ) partitioning algorithm
proposed in Leopardi (2006) to obtain equally sized patches.
In the partition illustrated in Fig. 1, there are two patches



Fig. 1. Illustration of an EQ-based partition with 30 patches.
The patches are limited by the blue lines and the grid
points are shown in red. The graphic was generated
using code by Leopardi (2006).

Algorithm 1: Obtaining a Grid-Based Representation
Input: Density f , desired number of grid points n
Output: Grid values γ, grid points B

A ← GetEQPartitionS2(n);
B← GetCenters(A);
for i← 1 to n do

γi ← f(β
i
); // Store values in γ

end

(one on the bottom and one at the top of the sphere) that
are limited by only an elevation angle. The other patches
are limited by two elevation and two azimuth angles. For
each of these patches, there are four outermost points,
which are connected by curved lines following the surface
of the sphere. Depending on the coordinate system used,
the grid points (in our case the centers of the patches) can
be stored as either two- or three-dimensional vectors. In
our implementation, we stack the 3× 1 column vectors in
Cartesian coordinates horizontally, yielding a 3× n matrix
B = [β

1
, . . . , β

n
] for n grid points. The grid values are

stored in an n× 1 vector γ comprising the function values
at the grid points. Pseudocode for obtaining a grid-based
representation of a density is provided in Algorithm 1. The
partition A is not stored in our implementation but will
be used in the derivation of the filter.

Since continuous pdfs are not required to perform predic-
tion and update steps, we can consider the problem of
interpolating the grid values separately from the actual
filter. Thus, while we will consider the function to be
constant in each patch in our explanation of the prediction
and update steps, we interpolate the function values on the
grid using spherical harmonics in our implementation. This
can be interpreted as an adaption of the idea described
(for the unit circle) in Pfaff et al. (2019) to the unit
sphere. When directly calculating the spherical harmonic
coefficients based on the function values, the interpolation
may take on negative function values. To avoid this, we first
take the square roots of the grid values. This is possible
since the function values of the initial prior are always
nonnegative and none of the operations in the prediction
and update steps voids their nonnegativity. Then, we
interpolate the square roots using spherical harmonics. By
squaring the values of the interpolation, the approximation
of the actual density is nonnegative everywhere.
Example 2. In Fig. 2, we provide an example that illus-
trates different representations and the interpolation of
the grid values using spherical harmonics. In Fig. 2a, we

(a) Original density of the Bingham
distribution.

(b) Representation of the PF
with equally weighted sam-
ples.

(c) Representation of the SGF
with 15 grid points. The differ-
ent grid values are represented
by the sizes of the circles.

(d) Interpolation of the grid values of
the SGF.

Fig. 2. Example of a density and the corresponding
representations and interpolations.

show the pdf of a Bingham distribution (see Bingham
(1974)) with an identity matrix as its shape matrix M
and a concentration matrix Z with −2, −0.5, and 0 on
the diagonal. In Fig. 2b, we show 100 random samples of
the density. This is an example of a representation that
a PF with 100 samples may use. The representation used
by the SGF with an EQ-based grid with 15 grid points is
illustrated in Fig. 2c. An interpolation of the grid values
based on spherical harmonics is shown in Fig. 2d. The
interpolation clearly resembles the original density, even
though only 15 grid points were used.

2.3 Representing Joint and
Conditional Densities on the Sphere

The joint density f j(xt+1, xt) is a function of two vectors
xt+1 and xt, i.e., a function on S2×S2. Similarly, we consider
the conditional density fT(xt+1|xt) to be a function of
xt+1 and xt. In our implementation, the first sphere of
the Cartesian product describes xt+1 and the second xt. A
joint density on S2 × S2 integrates to 1 when integrating
over both spheres simultaneously. For a conditional density
fT(xt+1|xt), fT(xt+1|x̃t) describes a valid pdf on the first
sphere for every fixed x̃t on the second sphere.

To obtain a grid for S2 × S2, we start by generating a
grid for S2 using the EQ partitioning algorithm. Then, the
Cartesian product of the set of grid points with itself is
used as the grid for S2 × S2. The function values obtained
for all combinations of grid points on the first and second
sphere are stored in an n×n matrix Γ. We go into detail on
this for conditional densities in Algorithm 2. Each column
of Γ describes the grid values for all points on the first
sphere for a fixed point on the second sphere. Likewise,



Algorithm 2: Obtaining a Grid-Based Representation
for Conditional Densities
Input: Conditional density f , desired number of grid

points n for Cartesian product
Output: Grid values Γ, grid points B
A ← GetEQPartitionS2(n);
B← GetCentroids(A);
for i← 1 to n do

for j ← 1 to n do
/* Store value in ith column and jth row of Γ */
γ[i,j] ← f(β

i
|β
j
);

end
end

each row of Γ contains the grid values for all points on the
second sphere for a fixed point on the first sphere.

3. THE SPHERICAL GRID FILTER

To implement the filter, we need to be able to initialize
the vector of grid values (which describes all knowledge we
have about the state) and perform update and prediction
steps. The length n of the vector is the only parameter
of the filter that the user can set freely. n determines the
resolution of the grid and higher values generally result in
more accurate results. Thus, n should be set as high as
feasible while considering available computation power and
real time constraints. As the evaluation in Sec. 4 will show,
hundreds of grid points can be used at hundreds of Hertz
even with an unoptimized implementation on a laptop.

In combination with the partition, the vector of grid values
provides us information about the probability density on
the entire domain. Unlike in the Kalman filter, this vector
does not merely describe a point in the state space. To
obtain an estimate in the state space, we treat the grid
points as a weighted set of samples and determine their
mean direction (see Jammalamadaka and Sengupta (2001,
Sec. 2.1)). The vector is initialized by applying Algorithm 1
to the initial prior density fp

0 to obtain the vector of grid
values γp

0
. In the first subsection, we regard the update

step. The second subsection addresses the prediction step.

3.1 Update Step

An update step can be implemented based on the likelihood
function fL

t (zt|xt) that describes the probability density
of the measurement zt when the actual state is xt. Since
the update step is performed after the measurement is
obtained, the measurement is usually fixed. For the fixed
measurement ẑt, fL

t (ẑt|xt) is only a function of xt and not
necessarily a pdf.

Likelihood functions can be provided even when the mea-
surement is not on the unit sphere and instead, e.g., on R as
in Pfaff et al. (2017). If only an equation based on random
variables is available, a likelihood function has to be derived
from it. For measurements on the sphere, a likelihood
function can be provided when the measurement is (after
applying a potentially nonlinear vector-valued measurement
function ht to the state) perturbed by a measurement
noise with a zonal (i.e., rotationally symmetric around a
specified axis) pdf. For example, for a von Mises–Fisher-
distributed (see Mardia and Jupp (1999, Sec 9.3.2)) noise

Multiplication

Normalization
Divide by

t
pf t

Lf

t
ef

tdx)tẑ, . . . ,1ẑ|tx(t
ef̆

x�

∫
t
ef̆

(a) Operations performed on the con-
tinuous densities.

Hadamard
product

Normalization Divide by

t
pγ

t
Lγ

t
eγ̆

t
eγ

)
t
eγmean(˘π4

(b) Operations performed on
the grid values.

Fig. 3. Illustration of how the required operations for the
update step are implemented in the SGF.

with concentration parameter κv, the likelihood function is
fL
t (ẑt|xt) = VMF(ẑt;ht(xt), κ

v) = VMF(ht(xt); ẑt, κ
v).

For arbitrary domains, Bayes’ rule can be used to describe
the posterior density f e

t (xt|ẑ1, . . . , ẑt) integrating the new
measurement based on the prior density before the up-
date step fp

t (xt|ẑ1, . . . , ẑt−1) and the likelihood function
fL
t (ẑt|xt). Using Bayes’ rule, we obtain

f e
t (xt|ẑ1, . . . , ẑt) =

fL
t (ẑt|xt)f

p
t (xt|ẑ1, . . . , ẑt−1)∫

Ωx
fL
t (ẑt|xt)f

p
t (xt|ẑ1, . . . , ẑt−1) dxt

∝ fL
t (ẑt|xt)f

p
t (xt|ẑ1, . . . , ẑt−1)︸ ︷︷ ︸

f̆e
t (x

t
|ẑ

1
,...,ẑ

t
)

,

in which Ωx denotes the sample space of the state and ∝
that the expression following the sign is only equal up to a
(nonzero) scaling factor. As illustrated in Fig. 3a, we can
thus obtain the posterior density by first determining the
unnormalized posterior density f̆ e

t (xt|ẑ1, . . . , ẑt), which is
the product of the likelihood function and the prior density,
and then normalizing the result. We now address how these
two operations can be performed based on the grid values.

We start with the vector γp
t
comprising function values

of the prior density. To obtain the function values of
the unnormalized posterior density at the grid points,
we multiply each component of the vector γp

t
with the

likelihood at the corresponding grid point, i.e.,

γ̆e
t

=
[
γp
t,1f

L
t (ẑt|β1

), · · · , γp
t,nf

L
t (ẑt|βn)

]>
. (1)

If we store the values of the likelihood function at the grid
points in a vector γL

t
, γ̆e

t
is equal to the Hadamard (entry-

wise) product of γp
t
and γL

t
. If γp

t
comprises the actual

function values of the prior density, then the values in γ̆e
t

accurately describe the function values of f̆ e
t (xt|ẑ1, . . . , ẑt).

To normalize the result, we determine the integral of the
unnormalized posterior density over the entire domain.
Instead of integrating over the entire domain, we sum up
the integrals over the patches in the partition A, i.e.,∫

S2
f̆ e
t (xt|ẑ1, . . . , ẑt) dx =

n∑
i=1

∫
Ai

f̆ e
t (xt|ẑ1, . . . , ẑt) dx .

Now, we use our assumption that the function is constant
in each patch. Since γ̆e

t
describes the function values in the

patches, we obtain



Algorithm 3: Update Step of the SGF
Input: Current grid values γp

t
, grid points B,

likelihood function fL
t , measurement ẑt

Output: New grid values γe
t

/* Determine unnormalized grid values */
for i← 1 to n do

γ̆e
t,i ← γp

t,if
L
t (ẑt|βi);

end
γe
t

= n
4π γ̆

e
t
/
∑n
i=1(γ̆e

t,i); // Normalize result

n∑
i=1

∫
Ai

f̆ e
t (xt|ẑ1, . . . , ẑt) dx =

n∑
i=1

γ̆e
t,i

∫
Ai

1 dx .

The surface area of the unit sphere is 4π and all n patches
are equally sized, and thus,

n∑
i=1

γ̆e
t,i

∫
Ai

1 dx =
4π

n

n∑
i=1

γ̆e
t,i = 4πmean(γ̆e

t
) . (2)

Thus, we can obtain a vector of grid values describing a
normalized posterior density using

γe
t

=
1

4πmean(γ̆e
t
)
γ̆e
t
.

When the values of γ̆e
t
are all zero, the filter will fail at

this point. However, in this case, the vector γ̆e
t
contains

no usable information about the posterior density, and
using a higher number of grid points should be attempted.
The values in γe

t
are, in general, not equal to the function

values of the true posterior density. While the utilized
normalization constant ensures that the approximation is
normalized, the factor may not be identical to the one
that would normalize the true unnormalized posterior
density. For example, if the true posterior density is highly
concentrated and there are no grid points in regions in
which the probability density is high, the values obtained
when normalizing γ̆e

t
will be significantly higher than the

actual function values of f e
t (xt|ẑ1, . . . , ẑt) at the grid points.

The operations for the update step based on the grid values
are illustrated in Fig. 3b and summarized in pseudocode in
Algorithm 3. The computational complexity of the update
step is in O(n) and the likelihood function has to be
evaluated n times. The presented update step can also be
applied similarly for other grids. While the multiplication
in (1) does not need to be adapted, changes are generally
required for the normalization step as the first equality
in (2) may not hold. For non-equally sized patches, the
grid values need to be multiplied with the corresponding
patch sizes to obtain a suitable normalization constant.

3.2 Prediction Step

For the prediction step, the system model has to be given
in form of a transition density fT

t (xt+1|xt) that describes
the probability density of being in state xt+1 when the
previous state was xt. Based on the transition density, the
prior density for the next time step t+ 1 is given by the
Chapman–Kolmogorov equation

fp
t+1(xt+1|ẑ1, . . . , ẑt) =

∫
Ωx

fT
t (xt+1|xt)f e

t(xt|ẑ1, . . . , ẑt)︸ ︷︷ ︸
f j
t(xt+1,xt|ẑ1,...,ẑt)

dxt .

Multiplication

Marginalization

t
ef

t
Tf t

ef

t
jf

Marginalize
out     tx

(a) Operations performed on
the continuous densities.

Matrix–vector
multiplication
scaled by      

t
TΓ t

eγ

+1t
pγ

n
π4

(b) Operations performed on
the grid values.

Fig. 4. Illustration of how the required operations for the
prediction step are implemented in the SGF.

It is possible to implement the formula on the right-
hand side using two successive operations, as illustrated in
Fig. 4a. First, the transition density is multiplied with the
posterior density of time step t. This yields a joint density
f j
t(xt+1, xt|ẑ1, . . . , ẑt) defined on S2 × S2 that describes
both the knowledge about xt+1 and xt and considers the
information of all measurements until time step t. Then,
a marginalization is performed to obtain the prior density
that describes only the pdf for the state at time step t+ 1.

We now consider how these operations can be realized based
on the grid values. For this, the transition density needs to
be converted into a matrix of grid values ΓT

t , as described
in Sec. 2.3. As before, the posterior density of time step t is
described by a vector of grid values γe

t
. To easily multiply

the transition density with the posterior density, the grids
should be compatible. This is the case if the grid used
for the posterior density is also used as the basis for the
Cartesian product for the grid on S2×S2. If the grids are not
inherently compatible, it is possible to interpolate the grid
values and evaluate one of the two functions on the other
grid. This, however, introduces additional approximation
errors, may void the normalization of the approximation,
and requires special care to prevent negative grid values.

For each grid point β
j
(j ∈ {1, . . . , n}), γe

t,j is the function
value of the posterior density at β

j
. Further, the density

fT
t (xt+1|βj) is described by the jth column of ΓT

t , which
we denote by γT

t,[:,j]
. To obtain the function values of

the joint density at all points in the Cartesian product
(i.e., f j

t(βi, βj |ẑ1, . . . , ẑt) for all (i, j) ∈ {1, . . . , n}2), we
multiply the function values of fT

t (β
i
|β
j
) with those of

f e
t (β

j
|ẑ1, . . . , ẑt). Thus, we obtain the formula

Γj
t =

[
γT
t,[:,1]

γe
t,1, · · · , γT

t,[:,n]
γe
t,n

]
(3)

for the matrix of grid values for the joint density.

We implement the marginalization by calculating the
integral for every β

i
, which yields the function values of

the predicted density on the grid. Using the formula for
the integral presented in the update step, we obtain

∀i ∈ {1, . . . , n} : γp
t+1,i = 4πmean

(
γj
t,[i,:]

)
.

The two operations for the prediction step can be combined
into one very efficient operation. If γj

t,[i,j] and γ
T
t,[i,j] denote



Algorithm 4: Prediction Step for Time-Variant Tran-
sition Densities
Input: Current grid values γe

t
, transition density fT

t

Output: New grid values γp
t+1

n← NumberOfElements(γe
t
);

ΓT
t ← GetGridValuesCond(fT

t , n) // Algorithm 2

γp
t+1
← 4π

n ΓT
t γ

e
t
; // Perform prediction according to (5)

the entries at the ith row and jth column of Γj
t and ΓT

t ,
respectively, we can calculate γp

t+1,i according to

γp
t+1,i =

4π

n

n∑
j=1

γj
t,[i,j] =

4π

n

n∑
j=1

γT
t,[i,j]γ

e
t,j . (4)

The rightmost sum in (4) describes the formula for
multiplying the ith row of the matrix ΓT

t with the column
vector γe

t
. As illustrated in Fig. 4b, the column vector γp

t+1
containing all grid values can be determined using the
scaled matrix–vector product

γp
t+1

= 4π
n ΓT

t γ
e
t
. (5)

Adjustments to this formula may be required for other
grids than the EQ-based grid. While the formula for the
joint density (3) remains valid, the marginalization has to
be adjusted to respect the sizes of the individual patches.

Pseudocode for tracking tasks with time-variant system
models is given in Algorithm 4. If the transition density is
time invariant, the matrix of grid values ΓT can be precalcu-
lated and used as an input instead of fT

t . One should verify
that NumberOfElements(ΓT) = NumberOfElements(γe

t
)2

to ensure that (assuming the same grid generation scheme
is used) the grid values are based on compatible grids.
The computational complexity of the prediction step is in
O(n2) due to the matrix–vector multiplication. Further, for
time-variant transition densities, n2 function evaluations
of fT

t are required in each prediction step. This effort is
only required once for time-invariant transition densities.

4. EVALUATION

For our evaluation, we simulated the time steps 0 to
9 of a scenario with a simple measurement model and
a complicated system model. We compare the newly
proposed SGF with the PF and the nonlinear variant of
the VMFF. The SGF is evaluated for different numbers of
grid points and the PF for different numbers of particles.
The estimation error is assessed by determining the angular
distance (see Kennedy and Sadeghi (2013, Sec. 7.2.1))

dang(x̃9, x̂
e
9) = acos(x̃>9 x̂

e
9)

between the true state x̃9 and the posterior estimate x̂e
9 at

the last time step. To obtain reliable results, we take the
mean of the errors of 10000 runs.

The code for the PF and VMFF is part libDirectional
(see Kurz et al. (2019)), and the latest version in the GitHub
repository also contains the SGF. All evaluations were
performed on a laptop with an Intel Core i7-7500U CPU
and 16 GB of RAM, running Matlab 2020a on Windows 10.
In the remainder of this section, we first describe the
scenario in detail and then present the evaluation results.

4.1 Evaluation Scenario

The random variable x0 describing the initial state is
distributed according to the von Mises–Fisher distribution
VMF(x0; [0, 0, 1]>, 100), which is rather concentrated and
thus challenging to approximate. The system function

a(xt, u) =
αxt + (1− α)u

‖αxt + (1− α)u‖
is based on the normalized linear interpolation function,
which was also considered in Kurz et al. (2016a). After
applying the system function, the result is perturbed
by von Mises–Fisher-distributed noise with concentration
parameter 100. The transition density for this system model
can be written as

fT
t (xt+1|xt) = VMF(xt+1; a(xt, u), 100) .

We set u = [0, 1, 0]> and keep the vector constant for all
time steps. Explained verbally, the state is attracted to
u but the applied system noise causes it to jump around
and never quite reach the target point. Due to the time
invariance of the model, the grid values of the transition
density only have to be determined once.

The measurement model is simpler. The measurement
function is the identity function and the measurements are
merely perturbed by von Mises–Fisher-distributed noise
with concentration parameter 100. The likelihood function
is thus

fL
t (zt|xt) = VMF(zt;xt, 100) .

4.2 Evaluation Results

The mean of the errors is shown for all filters and all
numbers of parameters in Fig. 5a. Using 100 grid points,
the SGF achieves an estimation accuracy that is close to its
optimal accuracy. The PF converges slowly and even with
1500 particles, it does not reach the estimation accuracy of
the VMFF and SGF.

The run times per time step are shown for all filters in
Fig. 5b. For the PF, the main computational cost is caused
by sampling the von Mises–Fisher distribution for each
particle in the prediction step. This explains the linear
increase in computation time with the number of particles.
The VMFF is faster than all configurations of the SGF and
PF. Using 100 grid points, the SGF achieves better results
than the VMFF at approximately twice the run time. With
a run time of less than 5 ms, the tracking can run at 200 Hz
for this configuration of the SGF (using other programming
languages may result in even lower run times). The SGF is
only slightly better than the VMFF because the scenario
lends itself well to the use of the VMFF. Noises with other
distributions (e.g., multimodal ones) could significantly
reduce the estimation quality of the VMFF. The increase
in the run time of the SGF is slow compared with the PF.
While the complexity of the SGF is in O(n2), it is very
fast in practice because the matrix–vector multiplication
is implemented efficiently in Matlab.

Since the SGF was faster and (except for very few grid
points) more accurate than the PF, the SGF performed
better overall. The VMFF was very fast and yielded high-
quality results. The SGF provided even better estimates at
run times that are suitable for many real time applications.



(a) Errors for different numbers of parameters.

(b) Run times for different numbers of parameters.

Fig. 5. Evaluation results. The results for the VMFF
are shown as horizontal lines because the number of
parameters cannot be varied.

5. CONCLUSION AND OUTLOOK

In this paper, we proposed the SGF as a novel approach to
filtering on the unit sphere. A fast and efficient algorithm
was used to generate the required grids. By taking the
Cartesian product of such a grid with itself, a suitable
grid for the transition density was obtained. To perform
prediction and update steps, it must merely be possible
to evaluate the transition density and likelihood function
on suitable grids. The SGF allows providing a pdf via
interpolation, is fully deterministic, and outperformed the
PF in a scenario involving highly concentrated densities.

In future work, partitions with varying patch sizes could
be considered. Further, the SGF could be generalized to
arbitrary-dimensional spheres. Moreover, other manifolds,
such as a hemisphere of the hypersphere S3, which can be
used to represent rotations in the form of unit quaternions,
could be considered. Based on generalizations of the SGF,
filters for relevant Cartesian products of periodic and Eu-
clidean domains could be derived via Rao–Blackwellization.
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