
Cutting Optimal Sections from Production Foils

Michael Kirchhof, Oliver Meyer, Stefan Mähr, Wolfgang Braunwarth and Claus
Weihs

Abstract Rechargeable Lithium-Ion battery cell production is one of the most
important processes in the field of electro mobility. The batteries’ electrodes are
produced in the form of long coated foils which are then cut into pieces of a
predefined length called electrode sheets. The production process of the coated
foils consists of several sequential process steps and quality parameters are
measured frequently along the foil after each sub-process. We aim at determining
the maximum number of electrode sheets that can be built from a produced foil
of a certain length, with respect to given quality requirements. In a second step,
we introduce an algorithm originated from the 0-1 multi-objective knapsack
problem that is able to efficiently determine the optimal positions of the sheets
based on all observed quality parameters.

Michael Kirchhof · Oliver Meyer · Claus Weihs
Computational Statistics, TU Dortmund University, 44221 Dortmund, Germany
� michael.kirchhof@tu-dortmund.de
� meyer@statistik.tu-dortmund.de
� weihs@statistik.tu-dortmund.de

Stefan Mähr ·Wolfgang Braunwarth
Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg, 89081 Ulm, Germany
� stefan.maehr@zsw-bw.de
� wolfgang.braunwarth@zsw-bw.de

Archives of Data Science, Series A
(Online First) DOI: 10.5445/KSP/1000087327/23
KIT Scientific Publishing ISSN 2363-9881
Vol. 5, No. 1, 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/347159899?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:michael.kirchhof@tu-dortmund.de
mailto:meyer@statistik.tu-dortmund.de
mailto:weihs@statistik.tu-dortmund.de
mailto:stefan.maehr@zsw-bw.de
mailto:wolfgang.braunwarth@zsw-bw.de
https://doi.org/10.5445/KSP/1000087327/23

2 Authors Suppressed Due to Excessive Length

1 Introduction

In many industrial applications, products are not individually manufactured,
but extracted from larger production items, e.g. pieces cut from a roll of foil.
In the age of Industry 4.0, modern producing machines keep track of various
quality parameters of these lines. These gathered data offer an opportunity to
diminish waste and improve the products’ quality by determining how many
individual products that comply with certain quality thresholds can be cut from
the production line and where the optimal cutting positions are found.

One of the use cases in which the quality of the cut products gives a huge com-
petitive advantage is the production of long coated electrode foils. From coated
foils of several hundred meters in length with varying quality, short electrodes
are cut and assembled into Rechargeable Lithium-Ion Batteries. The parameters
of the coated foil, like the uniformity of the eletrolyte or the residual humidity,
influence the electro-chemical characteristics of the finished batteries.
As a member of the battery research cluster ProZell, we focus on the

optimization of the production process of such coated foils. We found that the
just described problem demands an algorithmic solution that operates efficiently
even for fast consecutive measurements and many quality parameters with
different significances for the electrodes’ energy density.
In this paper, we present two algorithms that jointly compute the optimal

cutting positions. The first algorithm determines the maximum number of sheets
that can be cut from a given production line, with respect to upper and lower
specification limits for the observed quality parameters, by proceeding over the
line from the start to the end and picking sheets as soon as possible. As this does
not yield the highest quality sheets, a second algorithm originating from the
0-1 multi-objective knapsack problem further reduces the set of possible sheet
selections by improving the sheets with respect to all quality parameters.
In the following chapter, the optimization problem and its constraints are

defined. Next, the algorithm that identifies the maximum sheet count is presented.
Therafter, the second algorithm and its parallels to the knapsack problem are
discussed. Also, a runtime study is given to prove the efficiency even in
situations with large amounts of data. In the fifth chapter, the algorithms are
applied on real production data. Finally, we conclude on our findings and
discuss the opportunities and restrictions of the algorithms as well as possibilites
for further improvement.

Cutting Optimal Sections from Production Foils 3

2 Optimization Problem

Along the entire length P of a coated foil, I quality parameters are reported
periodically by the production machines. For the i-th quality parameter, the
quality qi (p) of the coated foil at position p, 0 ≤ p ≤ P, is defined as the
measurement of parameter i that is closest to p. For each parameter, a lower
and an upper specification limit LSLi,USLi are provided. This allows us to
define the relative amount of values outside those specification limits, hereafter
referred to as outliers, in parameter i for a sheet of length l that ends at position
p as:

ri (p) =
1
l

p∫
p−l

1{qi (x) < LSLi ∨ qi (x) >USLi } (x)dx . (1)

To take the inaccuracy of the measuring systems into account, a specific
percentage of outliers αi, 0 ≤ αi ≤ 1, is allowed in the i–th quality parameter of
each sheet. If any quality parameter exceeds this limit, the sheet is considered as
not in order (n.i.o.), which is expressed by defining the cost ci (p) of parameter i
for a sheet that ends at position p as:

ci (p) =

∞ , ∃i = 1, . . . , I : ri (p) > αi

ri (p) , else
. (2)

The goal of the optimization can be split into two parts: First, the maximum
number S of valid sheets that can be cut out of the coated foil has to be determined.
Second, the sum of costs in the first quality parameter when choosing S sheets
has to be minimized. If several selections of sheets lead to the same sum of costs,
the second to the I-th quality parameter have to be minimized in sequential order.
This can be summarized as priority based optimization. During the optimization,
the cut out sheets are not allowed to overlap. This is expressed by the constraint
that if a sheet ending at p is cut out, no more sheets ending at positions between
p − l and p + l may be picked.

4 Authors Suppressed Due to Excessive Length

3 Maximization of Sheet Count

To detect the maximum number of valid sheets in a given coated foil, we use a
naïve algorithm. The key idea is to start at the beginning of a foil and set the
possible ending p of the first sheet to the required length of the sheets l. Then
check whether a sheet ending at that position is valid in all quality parameters. If
this is the case, the count of valid sheets is increased by 1 and the ending position
is increased by l. If the current sheet is invalid, the position is increased by
the maximum difference of allowed and measured outliers over all parameters.
This is done because a shorter increase would always result into another invalid
sheet. For example if the number of outliers found is 15 with the maximum
number of allowed outliers being 10 an increase of 4 would lead to at least 11
outliers in the next sheet. These steps are repeated until the end of the foil is
reached. Pseudo code is given in Algorithm 1. Note that in some situations the
stepsize can converge to zero, causing the algorithm to stop accidentally. Thus,
a minimal increment is implemented in line 9.

Algorithm 1: Naïve Count Maximization.

Require: r1(·), . . . , rI (·), α1, . . . , αI , P, l, I
1: Define sheetCount ← 0
2: Define pos ← l

3: while pos < P do
4: if ∀i = 1, . . . , I : ri (p) ≤ αi then
5: sheetCount ← sheetCount + 1
6: step← l

7: else
8: step← max

i=1, . . ., I
ri (p) − αi

9: step← max(step, 1e − 16) · l

10: end if
11: pos ← pos + step
12: end while
13: return sheetCount

Cutting Optimal Sections from Production Foils 5

4 Optimization of Sheet Quality

Having found the maximum number of valid sheets, the next task is to find
the positions of the sheets that minimize the number of outliers. To make this
problem solvable with tolerable effort, it is discretized in such a way that it is not
allowed anymore to end a sheet at any position p, but only at a finite number of
J predefined positions pj, j = 1, . . . , J, which are structured in a fine grid. From
this perspective, each position pj has the costs ci (pj) ≥ 0, i = 1, . . . , I, and the
aim is to choose S out of the J positions that minimize the overall costs.

This is similar to the 0-1 multi-objective knapsack problem (MOKP) (Lust and
Teghem, 2012) in which a subset of J objects with different utility values and a
weight has to be put into a knapsack with a given weight limit so that the sum of
the chosen utility values is maximized. In the past decades, several approaches
to this problem have been published using approximations (Erlebach et al, 2001)
or dominance relations to compute a set of possible solutions that each can not
be further improved in at least one value parameter (Bazgan et al, 2009). While
this can be used to choose a priority-optimum of all non-dominated solutions a
posteriori, the runtime complexity for high dimensional value parameters (I)
or big numbers of objects (J) makes this approach unsuitable for our given
application. In section 4.2, these approaches will be used as benchmark for our
proposed method.
As a result, it is beneficial to point out the two main differences between

the MOKP and the sheet selection problem of this paper. In contrast to the
MOKP, in the sheet optimization the weight of each pj is 1, and a knapsack of
capacity S has to be filled. This offers a big runtime opportunity against using
a generalized MOKP solver. On the other hand, the sheet selection requires
the further constraint that selecting a sheet that ends at a position pj∗ prohibits
selecting further sheets that end at positions pj with a distance of ���pj − pj∗

��� < l
because of the sheets’ lengths.

In Section 4.1, an algorithm is presented that is based on a dynamic program-
ming approach for the knapsack problem and further implements a predecessor-
structure to efficiently solve the sheet selection problem for large scale problems.
In Section 4.2, a small simulation study is given to show the runtime efficiency
of the algorithm.

6 Authors Suppressed Due to Excessive Length

4.1 Sheet Selection Algorithm

The constraint introduced above is taken into account by creating sets of allowed
predecessors ϕ j,s. Each of these sets gives the permitted predecessors of the
sheet ending at position pj when this sheet and s − 1 other sheets have to be
chosen. This a priori allows to prohibit predecessors of each position according
to the length of the sheets. Moreover, these sets will be used when iterating
over the quality parameters to mark which sheet paths are optimal in the quality
parameters considered in previous iterations.
In analogy to the single-objective 0-1 knapsack problem (Martello and

Toth, 1990, p. 38), the cost di,s (pj) in quality parameter i of picking the sheet
that ends at position pj as well as the s − 1 best possible sheets out of the
permitted preceeding sheets is defined recursively as:

di,s (pj) =

ci (pj) + min
a ∈ϕ j,s

(di,s−1(pa)) if s > 1 ∧ ϕ j,s , ∅

∞ if s > 1 ∧ ϕ j,s = ∅

ci (pj) else

(3)

This formula is computed in Algorithm 2 by using dynamic programming.
Iterating over the number of sheets s and the current position pj , the matrix
ownCost[j, s] is filled with the corresponding costs of di,s (pj) (lines 6 to 14).
At the same time, the sets of valid predecessors valPred[j, s] are updated so
that for each sheet only the predecessors with minimal costs are kept as valid
predecessors.
After each iteration of the outer loop, only paths of sheets that are optimal

with regards to the corresponding quality parameter are left as input for the
optimization of the next quality parameter (lines 15 to 23). This ensures the
optimization in the given order of the quality parameters. After all quality
parameters are considered, a selection of S sheets that is optimal in terms of the
optimization goal is given out as optSelection (lines 24 to 30). Note that this
section can be modified to return all possibile optimal selections, which might
however entail a sharp increase of the running time.

Cutting Optimal Sections from Production Foils 7

Algorithm 2: Dynamic Sheet Optimization.
Require: valPred[1, . . . , J, 1, . . . , S], c1(·), . . . , cJ (·), I , J , S
1: /* Iterate over all quality parameters in their priority order */
2: for all quality parameters i = 1, . . . , I do
3: Define ownCost[1, . . . , J][1, . . . , S]← ∞
4: for all sheet counts s = 1, . . . , S do
5: for all positions p j with indices j = 1, . . . , J do
6: if valPred[j, s] , ∅ then
7: if s = 1 then
8: ownCost[j, s]← ci (p j)
9: else
10: /* Pick the sheet ending at p j and its cheapest predecessors */
11: minCost← min

a ∈ valPred[j,s]
ownCost[a, s − 1]

12: cheapestPreds← arg min
a ∈ valPred[j,s]

ownCost[a, s − 1]

13: ownCost[j, s]← ci (p j) +minCost
14: valPred[j, s]← cheapestPreds
15: end if
16: end if
17: end for
18: end for
19: /* Delete selections that are not optimal */
20: cheapestSelections← arg min

j=1, . . .,J
ownCost[j, S]

21: for j < cheapestSelections do
22: valPred[j, S]← ∅
23: end for
24: /* Delete subselections that have no valid successor */
25: for sheet counts s = S − 1, . . . , 1 do
26: for all position indices j = 1, . . . , J do
27: if j <

⋃
valPred[·, s + 1] then

28: valPred[j, s]← ∅
29: end if
30: end for
31: end for
32: end for
33: /* Return one optimal selection of sheets */
34: Declare optSelection[1, . . . , S]
35: cheapestSelections← arg min

j=1, . . .,J
ownCost[j, S]

36: optSelection[S]← one arbitrary element of cheapestSelections
37: for sheet counts s = S, . . . , 2 do
38: optSelection[s − 1]← one arbitrary element of valPred[optSelection[s], s]
39: end for
40: return optSelection

8 Authors Suppressed Due to Excessive Length

A numerical example of the algorithm is given in Figure 1. Here, the task is to
choose 4 out of 9 sheets with 2 quality parameters and predefined costs ci (pj).
Due to the sheets’ length there is the constraint that picking one sheet prohibits
to pick its direct predecessor. The two tables show the ownCost matrix in each
iteration. The lines and circles show which predecessors are still valid after the
corresponding iteration. After the first iteration, there are four selections with
optimal costs in the first parameter, those are the sheets ending at positions pj

with j ∈ {1, 4, 6, 8}, j ∈ {2, 4, 6, 8}, j ∈ {1, 5, 7, 9} or j ∈ {2, 5, 7, 9}. Out of these
possible selections, the sheets ending at positions pj, j ∈ {2, 5, 7, 9}, optimize
the costs of the second parameter and are therefore selected in the last iteration.
Their total cost is 9 in the first and 10 in the second parameter.

c1 (p j) 3 3 6 2 1 0 0 4 5

d1,1 (p j) 3 3 6 2 1 0 0 4 5

d1,2 (p j) ∞ ∞ 9 5 4 2 1 4 5

d1,3 (p j) ∞ ∞ ∞ ∞ 10 5 4 6 6

d1,4 (p j) ∞ ∞ ∞ ∞ ∞ ∞ 10 9 9

c2 (p j) 2 1 0 2 3 7 4 1 2

d2,1 (p j) 2 1 ∞ ∞ ∞ ∞ ∞ ∞ ∞

d2,2 (p j) ∞ ∞ ∞ 3 4 ∞ ∞ ∞ ∞

d2,3 (p j) ∞ ∞ ∞ ∞ ∞ 10 8 ∞ ∞

d2,4 (p j) ∞ ∞ ∞ ∞ ∞ ∞ ∞ 11 10

Figure 1: Example of Dynamic Sheet Optimization for I = 2 quality parameters to be
optimized, J = 9 possible sheets and S = 4 sheets to be selected. Optimal selections after
each iteration are highlighted. The top graphic represents the first quality parameter with
several different combinations of 4 sheets leading to a total cost of 9. The second graphic
shows the second quality prameter in the same manner with the possible choices of
selectable sheets being limited by the results in the first parameter .

Cutting Optimal Sections from Production Foils 9

4.2 Runtime Study

To evaluate the running time of the optimization algorithm, it is executed in
three settings, each with varying sizes of I, J and S:

1. Random costs: The costs are drawn independently from a binomial
distribution ci (pj) ∼ Bin(n = 20, p = 0.5), j = 1, . . . , J, i = 1, . . . , I.
The length of each sheet is set to 0, which means there are no constraints
in combining the sheets with each other. This does not correspond to
the industrial application but delivers runtimes that can be compared to
solvers of the MOKP.

2. Autocorrelated costs: Here, within each quality parameter i, the costs
are autocorrelated. This is achieved by drawing independent binomially
distributed variables Xi, j ∼ Bin(n = 20, p = 0.5) and defining the cost
as the cumulative sum ci (pj) =

∑J
a=1(Xi,a − 10). Moreover, the sheets’

length is taken into account by the constraint that each position pj must
not be selected together with the 5% · J positions laying before it. This
promises to be an application-oriented setting where the utility values
are natural numbers.

3. Realistic costs: Measurement series in real world applications can often
be well decomposed into different frequencies using, e.g., a Fourier
Transform. Hence, this strategy can be applied in reverse order to simulate
realistic measurement series. In this setting, the foil’s quality itself is
simulated by superimposing ten shifted and amplified sinus waves for
each quality parameter and adding a random measurement inaccuracy:

qi (pj) =
10∑
k=1

(
β1,k + β2,k · sin

(
pj ·

2 π
β4,k
+ β3,k

))
+ e j ,

with β1,k ∼ U[−0.25, 0.25], β2,k ∼ U[0, 0.3], β3,k ∼ U[−π, π], β4,k ∼

U[5, 50], e j ∼ N (0, 0.01) drawn randomly. The costs are then given
by the relative amount of outliers ri (pj) as defined in Chapter 2 with
αi = 0.2, where LSLi = −1 and USLi = 1,∀i = 1, . . . , I. The task is to
extract sheets of length l = 5 from a foil of length P = 100. The number
of sheets S depends on the simulated foils and is therefore computed by
Algorithm 1. Trivial cases in which S = 0 are rejected and re-simulated.

10 Authors Suppressed Due to Excessive Length

In the first two cases, a binomial distribution is used for generating the quality
parameters, because in any continuous distribution the optimization of the
first parameter would almost surely give a single optimal selection of sheets,
making the optimization of the remaining quality parameters redundant. In
the third case, continuous values can be used as they are truncated at 0 and
0.2. The simulations1 run in R (R Core Team, 2018) in the version 3.5.0. All
computations are executed on a single core of an Intel Xeon E5-2630 CPU at
2.30 GHz. Each simulation is repeated 100 times with different randomized
costs. Note that the generation of the cost functions as well as the declaration
of the inital valid predecessor structure and – if necessary – the determination
of S are not part of the algorithm and, therefore, not included in the reported
running times.
The results of the three settings are given in Tables 1, 2 and 3 in corresponding
order. Note that the worst-case running time of Algorithm 2 is dominated by
iterating over I parameters, S sheet counts and J positions and computing a
minimum over at most J other positions, yielding a runtime of O(I · S · J2).
The experimental running times in Table 1 provide evidence for this. It can
further be seen that the fastest and slowest running times are close to the median
in nearly all cases. As mentioned above, these results can be compared to
general MOKP solver. Bazgan et al (2009) and Delort and Spanjaard (2010)
have run experiments with a similar random sampling (called Type A) with
the goal of extracting the exact pareto front, which can be transformed into
the priority-optimum desired in our case. When comparing the runtime, our
approach performs similar on rather small instances (J = 100 and I = 2 to
3), but outperforms the MOKP solvers once J or I start growing. This allows
to solve problems with a number of positions (J) ten times bigger than in the
previous approaches, and to increase the number of considered costs (I) well
beyond the previous limit of 3. This shows that our approach utilizes the special
constraints in our problem well. In the second setting, there are less a priori valid
predecessors due to the length constraint. As can be seen from Table 2, this,
however, does not yield faster but comparable running times, except for some
minimum running times. In Table 3 the number of sheets S varies depending on
the randomly simulated quality functions. This explains the bigger variation in
running times. It is notable that the running times stay similar even for a higher

1Available underhttps://github.com/mkirchhof/optPiecesRuntimeStudy

https://github.com/mkirchhof/optPiecesRuntimeStudy

Cutting Optimal Sections from Production Foils 11

number of quality parameters (I). This may be explained by the fact that more
quality parameters lead to less regions where all parameters stay inside their
specification limits, therefore reducing the number of possible sheets S and thus
the running times. In fact, across I = 3, 5 and 10 the median S was 14, 10.5 and
5, respectively. In conclusion, the algorithm scales linearly with the number of
quality parameters I and the number of sheets to be selected S and quadratically
with the number of available positions J.

Table 1: Running time of the Dynamic Sheet Optimization in seconds with random costs.
The number of positions J, the number of quality parameters I and the number of sheets
to be selected S are varied.

I = 3 I = 5 I = 10

J Min Median Max Min Median Max Min Median Max

S
=

10

100 0.051 0.059 0.074 0.083 0.085 0.086 0.128 0.151 0.156
500 0.810 0.827 0.993 1.186 1.202 1.343 2.180 2.210 2.359
1000 1.782 2.996 3.066 4.452 4.527 4.686 7.643 8.245 9.437
5000 71.535 71.906 75.431 108.562 109.716 120.060 116.566 206.638 210.431
10000 281.555 292.278 307.464 436.649 439.539 443.903 797.267 822.193 884.786

S
=

20

100 0.102 0.123 0.128 0.161 0.178 0.195 0.290 0.327 0.460
500 1.629 1.660 2.000 2.461 2.487 2.622 4.396 4.431 4.733
1000 5.964 6.606 7.128 9.376 9.616 10.407 17.056 17.502 19.174
5000 148.384 150.138 158.015 226.139 229.181 241.768 422.145 428.372 448.539
10000 601.173 612.102 636.405 512.515 947.360 1001.984 934.023 1669.723 1705.086

S
=

50

100 0.288 0.329 0.406 0.425 0.470 0.588 0.794 0.825 0.983
500 4.358 4.521 4.875 6.906 7.027 7.859 11.221 11.421 12.962
1000 16.124 16.314 17.215 23.661 24.319 25.808 43.556 45.226 48.355
5000 385.053 394.631 445.054 589.267 596.445 622.367 1056.596 1109.547 1197.112
10000 868.156 896.929 1636.727 1303.283 1350.215 2555.631 2387.141 2508.293 4503.934

Table 2: Running time of the Dynamic Sheet Optimization in seconds with autocorrelated
costs. The number of positions J and the number of quality parameters I are varied, the
number of sheets to be selected is fixed at S = 10.

I = 3 I = 5 I = 10

J Min Median Max Min Median Max Min Median Max

100 0.049 0.058 0.080 0.048 0.089 0.096 0.088 0.141 0.191
500 0.784 0.880 0.976 1.194 1.253 1.428 2.264 2.302 2.483
1000 2.922 3.058 3.217 4.521 4.700 5.424 4.637 8.733 9.650
5000 52.947 71.417 75.561 107.680 108.678 112.456 205.328 208.497 217.378
10000 161.339 287.524 296.573 434.030 456.102 476.220 464.091 845.039 896.169

12 Authors Suppressed Due to Excessive Length

Table 3: Running time of the Dynamic Sheet Optimization in seconds with realistic costs.
The number of positions J and the number of quality parameters I are varied, the number
of sheets to be selected S is variable and depends on the simulated quality functions. For
I = 3 quality parameters, the median of S is 14, for I = 5 it is 10.5 and for I = 10 it is 5.

I = 3 I = 5 I = 10

J Min Median Max Min Median Max Min Median Max

100 0.003 0.101 0.201 0.004 0.126 0.332 0.008 0.061 0.392
500 0.273 1.498 2.764 0.048 2.210 5.614 0.097 1.884 7.603
1000 0.854 6.256 9.190 0.161 7.778 13.188 0.281 5.628 19.225
5000 2.041 136.111 193.631 17.013 141.708 314.461 6.102 130.901 477.014
10000 4.801 292.199 464.287 14.104 390.217 1224.821 16.312 364.728 1275.668

5 Application

After showing that our tool works for simulated data, we present a use case
inspired by experiments from the earlier described production of electrode
sheets located at the Zentrum für Sonnenenergie- und Wasserstoff-Forschung
Baden-Württemberg (ZSW).
The production process of these sheets consists of three sequential production
steps. First, an active material in form of a slurry is applied to the foil. This
slurry is the center component of the electrode sheets since in the finished
battery lithium-ions move between different layers of slurry producing electric
current. In the coating step, the applied mass of the slurry per cm2 defines the
quality of the coated foil.
Next, the foil is sent through a calander to compress the applied slurry.Afterwards,
the thickness of the coated foil is measured because it is highly correlated with
the density and porosity of the material. Since the density and porosity determine
the ability of the slurry to carry electronic charge but can only be determined
using destructive testing methods, the thickness is commonly used as a surrogate
inline quality parameter.
In order to reduce the production time, the foil is produced at twice the width of
the sheets used to construct the final batteries. Thus, in the final step the foil has
to be cut in half lengthwise. In the batteries themselves, a coil of three different
types of foils is used: Anode, cathode and a kind of seperator to ensure those
two do not contact each other directly. Since these foils need to overlap each
other in a predefined manner in order to prevent short circuits, the width of each
of the foils is another important quality parameter.

Cutting Optimal Sections from Production Foils 13

The following table shows the quality parameters of each of the three production
steps, including their corresponding specification limits and the relative number
of permitted outliers α.

Table 4: Quality parameters of electrode sheet production.

Production step Parameter Unit Target LSL USL α

Coating Dry weight g/m2 182 180.16 183.84 0.05
Calandering Thickness µm 140 136.00 144.00 0.05
Slitting Width mm 164 163.50 164.50 0.05

The first three plots in Figure 2 show what the sheet selection results for each
production step would look like if all three quality parameters were to be
optimized individually. This kind of analysis can be used to determine the
productivity of each of the production steps and can help to find the source of
waste in the final product. The results of the sheet selection algorithms after all
three process steps are shown in the bottom plot in Figure 2. From the 200 m
long foil, 25 sheets of length 4.4 m are selected. Altogether there is 110 m (55%)
of i.o. and 90 m (45%) of n.i.o. material. The unsatisfying results for the first
part of the coil can be explained by the fact that especially the coating process
needs some time at the beginning of every production phase to reach the targeted
production level. This part of the production process is usually left out of most
analyses, however, it was included here to better demonstrate the functionality
of the algorithm.

14 Authors Suppressed Due to Excessive Length

18
0

18
2

18
4

D
ry

 w
ei

gh
t [

g/
m

²]

●

●

●

●
●

●

●

●

●●
●

●

●
●

●●

●
●
●●

●

●
●●

●

●●

●

●

●
●●●

●

●

●

●

●
●

●
●

●
●

●
●

●●

●

●●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●
●●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●
●

●●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●●●

●

●

●
●

●●

●

●
●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●
●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●●
●

●
●

●

●

●
●
●●
●

●

●

●

●
●●

●
●

●
●●●

●

●
●

●

●
●
●

●●

●

●

●●

●

●
●

●
●

●●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●●
●

●●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●●

●

●
●

●

●
●●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

13
5

14
0

14
5

T
hi

ck
ne

ss
 [µ

m
]

●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●
●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●
●●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●
●
●●●●
●
●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●
●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●
●
●●●
●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●
●
●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●
●●●●●
●
●●
●●●●●
●●●●●●●
●
●●●●●●●●
●●●●●
●●●●●●●●●
●●●●●●
●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●
●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●
●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●
●
●●●●●●●
●●●●●
●
●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●
●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●
●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●
●●●●●●●●●●
●
●●●
●
●●●●
●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●
●●●
●
●●●●●●●●●
●
●●●●●●●●
●
●●●●
●●
●
●
●●●●●●●
●
●●●
●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●

●
●
●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●

●

●●
●●●●●●●●●●●
●

●
●
●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●
●

●●●●●
●
●●●●●
●●●●●●
●●
●●●●●
●
●
●●
●

●
●
●●
●
●

●

●●
●
●●●●●●
●

●
●●●

●
●●●●●●●
●●●●●●●
●●

●

●●●

●●●
●●
●
●●●●●●●●
●●●●

●
●●●●
●
●●
●●●●●●●●●●●
●
●●●
●

●
●
●●●

●

●●●●
●●●●●●●●●
●
●●●●●●●●●

●

●●●●●●

●

●●●

●

●●

●

●●●

●●●

●●●

●●

●●●●●

●

●
●
●

●

●

●
●

●
●

●

●

●
●
●

●

●●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●●

●●●●●

●

●●

●●

●

●

●
●
●●●

●

●
●

●

●

●
●
●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●●

●●

●

●

●●●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●●

●●●

●
●

●
●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●●●●●●●

●

●●

●●

●●
●●●●
●●●

●●

●●

●●
●

●

●

●

●

●

●

●●●●

●

●●●●●●●●●

●

●●

●
●
●●

●

●●

●●●●●

●

●

●

●●

●

●●

●

●
●●●●
●
●

●

●●
●

●●●●●●●
●

●

●●

●

●●

●

●

●
●●
●
●●●●●●

●

●

●

●●●●●●●●

●

●

●

●●

●

●●●●●

●

●

●●

●●●

●

●

●

●

●

●●●●●●

●

●

●●

●●

●●

●●●●

●●

●

●●●●●●●

●

●●●●
●●●●●

●

●●

●

●●●

●

●●
●●●●●

●

●

●●

●

●●

●

●

●●

●

●●●●●●●●●
●●●●●●

●

●
●●●●●●
●
●
●●●●

●

●

●

●●●●
●●●●●●
●
●
●●●
●
●●●
●
●●●●●
●
●●●●
●●
●
●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●
●
●
●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●
●
●
●●●●●●●●
●●●●●
●
●●●●●
●●●●●●●●●●
●
●●●●●
●●●●●●
●
●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●
●
●●●●●●●
●●
●
●●●
●
●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●
●●●●●●●●
●
●
●●●●●
●●●●●
●
●●●●●●●●●
●
●●
●●●●●●
●●●●●●●●●
●
●●●●●●●●●●●
●●●●
●
●●●
●●
●●
●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●●●●●
●●●
●●●●●●●●●●
●●
●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●
●●●●●●●●
●
●●
●
●●
●●●●●
●
●●●
●●●●
●●●●●●●●
●●●
●●●●●●●●●
●●●●●●●
●●●●●
●●
●
●●●●
●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●
●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●
●●●●●●
●●●●●
●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●
●
●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●●

●

●

●

●●●

●●

●●

●

●

●●

●

●

●
●

●

●

●
●
●●

●

●●

●

●

●

●

●

●

●
●

●
●

●
●

●

●●

●

●

●

●●

●

●
●
●
●

●
●
●

●
●●●

●●
●
●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●
●●

●

●
●

●

●

●
●

●

●

●
●
●
●

●

●●
●●

●

●

●

●

●

●●

●

●
●

●

●●
●●

●●

●
●

●●
●
●
●

●

●
●

●

●
●
●

●

●
●

●
●
●●

●●

●

●●●

●●●

●
●
●

●

●

●
●
●

●

●

●

●●

●●

●
●●

●

●

●

●

●●
●●
●
●

●

●●●

●●

●●
●
●
●
●
●●●
●
●

●

●

●
●●

●
●●●

●
●●
●

●
●●

●

●
●●

●
●●

●
●
●
●●

●

●
●●
●
●●

●●
●

●

●

●

●●

●

●●
●

●
●
●
●

●

●

●

●

●

●

●●

●

●●●
●●●
●●

●

●
●●
●●

●●

●
●●

●

●●

●
●
●●
●

●

●

●

●
●

●●
●

●●

●
●
●

●
●
●

●

●●

●
●

●
●

●
●

●●●●
●●
●
●
●

●

●
●

●

●

●●

●

●●

●

●

●

●●

●

●

●
●

●●
●

●

●
●●
●
●
●
●●

●

●●●●●
●●●●●●●●●
●
●
●
●●●●
●●●●●●
●●●●●●●●
●●●●●●
●●●●●●
●

●
●
●●
●

●●●●●●
●

●●●

●

●●
●●
●
●

●
●●●

●

●

●

●

●●●●
●●

●

●
●●

●●●●

●
●
●
●●
●●

●

●●●●

●

●

●●●●●●●●●●●●●●
●●
●●●
●●

●

●

●●●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●●

●

●

●●

●
●

●
●●
●
●●●●

●●

●

●

●

●

●

●●
●
●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●●

●●

●●

●
●
●●

●●

●

●
●●

●

●

●
●●
●
●

●

●

●
●

●●
●
●●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●●

●

●●
●

●●

●

●

●

●

●

●
●●

●
●●
●

●

●

●

●
●●

●

●
●

●

●
●

●●
●

●
●

●
●

●●

●

●●
●

●
●●
●
●
●

●

●●

●

●

●

●

●
●●●

●
●●

●
●

●

●
●

●

●
●●
●

●●

●

●●
●

●

●

●
●

●●

●

●
●

●●
●
●

●
●

●
●

●
●●●
●
●

●

●
●

●

●
●

●

●

●

●

●●
●●

●
●
●
●
●
●

●●●●
●
●
●

●●
●

●●

●

●
●●●

●
●●●
●
●●

●
●
●

●

●

●

●●●

●
●
●

●

●
●●

●●●●

●
●●

●
●

●

●
●
●●
●

●

●
●
●●●
●
●

●

●
●

●
●

●
●●●●
●

●●
●

●●
●

●
●

●

●●

●

●
●
●
●

●

●

●
●
●
●
●

●
●●
●
●

●●●

●
●
●●●●●●
●

●●●
●
●

●●

●●●

●●

●
●
●
●

●●●

●
●

●

●
●
●●

●

●

●●

●
●

●

●●●
●●●

●●●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●●

●
●
●●

●

●

●●
●●

●
●
●

●

●
●

●●

●●●

●●
●●
●
●●●
●
●

●
●
●●

●●
●

●●

●

●
●

●●

●

●
●●●●●●
●
●

●●●●

●

●

●●●

●

●

●

●
●●●●●●

●

●●●
●●

●
●

●
●

●●

●

●

●

●
●
●
●

●
●
●
●
●

●
●

●

●

●
●●●

●●●

●
●
●

●

●●

●

●●

●
●

●●

●

●
●●
●

●

●
●

●●●
●
●●

●

●●●

●●●●●

●

●

●
●
●
●

●●●

●

●
●

●●
●●

●

●
●
●
●●●●●●
●
●●

●●
●●●

●
●

●

●
●

●●

●

●

●

●

●

●
●
●
●

●
●

●
●●

●

●
●
●●●

●

●

●
●●

●

●
●

●

●

●

●●●
●
●●

●

●●●

●
●
●●
●●

●

●
●

●

●●●

●
●●

●●

●

●
●
●

●●

●●
●
●

●

●

●

●
●●●

●

●

●●

●
●●
●

●

●
●
●●●
●
●

●
●●●

●●●
●●
●

●●
●

●

●●●●
●●

●●

●

●

●●●

●
●
●

●

●
●
●●●●●

●

●
●
●

●

●

●

●
●●●
●

●
●

●
●●

●●●
●
●

●●

●

●●

●●

●
●
●

●

●
●
●

●●

●

●
●

●
●●
●
●

●

●

●

●

●
●●●

●

●

●

●

●●
●

●

●

●

●

●
●
●●

●

●

●

●
●

●

●
●
●●●●
●●

●

●

●

●●●

●

●

●

●

●

●
●
●

●
●

●
●●●

●●●

●●
●

●
●

●

●●
●
●

●●
●●
●
●●

●●●

●●
●●●

●

●

●

●

●
●

●

●●

●
●

●
●

●
●
●●
●

●●

●

●
●

●●
●
●

●

●●

●
●

●

●

●

●

●

●

●

●
●●●

●

●

●
●
●

●
●

●

●●●●
●

●

●

●

●

●●

●
●●

●

●●

●

●●
●

●

●

●

●

●

●

●
●

●

●●

●

●
●●
●●●

●

●
●
●●
●●
●
●

●
●
●●
●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●●●
●
●●
●●●●●
●

●

●●●●●

●
●
●
●

●

●

●

●●
●●
●

●
●
●●

●●

●

●●●

●

●

●
●

●

●
●
●

●
●

●
●●

●●

●●
●

●●

●

●

●
●

●●
●

●

●

●
●
●

●

●●
●
●●
●

●
●
●●
●

●
●●

●●●

●

●

●

●
●●●

●
●

●
●

●
●●

●

●●

●

●●

●●
●

●

●

●●

●

●
●
●

●

●

●

●

●

●
●

●

●
●●

●●
●●

●

●

●

●
●

●

●

●

●
●

●

●
●●

●

●
●

●●

●

●

●

●

●

●●

●●
●

●

●●
●

●

●
●

●
●

●
●
●

●●

●
●●●

●●

●

●

●

●

●
●

●●

●
●

●
●
●

●●
●

●●
●●
●

●
●●
●
●

●
●●
●
●
●

●●
●

●
●●●●

●

●
●●
●●
●
●
●
●

●

●●
●

●

●

●

●

●
●

●●

●

●
●●

●
●
●

●

●

●

●

●
●
●●
●

●

●

●

●

●

●●
●

●●

●

●
●

●●
●

●
●●

●

●

●

●
●

●●
●
●
●

●

●

●

●

●●

●
●
●
●
●●●
●

●

●
●

●

●●

●

●
●

●
●
●
●●●●

●

●

●

●●

●

●
●

●

●

●

●●
●
●

●

●●

●

●

●●●

●

●
●

●

●●●

●

●
●

●
●

●

●●

●

●

●

●●

●
●

●●●

●

●

●

●
●

●
●

●
●
●
●

●
●●●
●

●●

●
●
●

●

●●
●
●
●

●●●

●

●

●
●
●

●●

●●

●●

●
●
●
●●●●

●●

●

●

●●
●
●●

●●

●
●●●
●
●
●●

●

●

●●
●

●

●

●
●●●
●

●

●

●

●

●

●●
●

●

●●
●

●

●
●
●

●

●
●

●●
●
●
●

●

●
●●●●●
●

●

●
●

●

●

●●
●

●●

●
●●
●

●
●
●●

●●

●

●
●
●●

●●●●
●●

●
●
●●

●●
●●

●

●

●●
●
●

●

●

●

●

●

●
●
●
●

●

●●

●●
●

●

●
●

●
●
●
●●
●
●●
●
●
●
●

●
●●●
●●

●

●

●

●●●
●●

●●●

●

●●
●●
●

●●

●●

●

●

●

●
●●
●
●
●

●

●
●●

●

●●

●

●

●

●●
●

●●

●●●●

●

●

●

●
●
●●

●
●●●

●
●

●●
●●
●●
●

●
●

●
●

●●

●

●

●
●

●
●
●●●

●●●

●●
●●●

●
●

●●●●
●

●

●

●

●
●
●●

●

●

●

●
●

●●

●

●

●
●●
●

●

●

●

●
●

●
●●
●

●

●

●

●●

●
●
●

●●●●

●●
●●
●

●

●

●

●
●

●

●

●
●●

●
●
●
●

●●

●
●

●
●

●

●
●

●
●●

●
●
●●
●
●

●

●●

●●●●

●
●

●

●●

●●
●

●

●
●●

●
●
●●
●
●●
●

●

●●●

●
●●●
●
●

●

●

●●●

●●

●
●

●
●
●
●

●

●

●
●●
●●

●●
●

●

●
●●

●

●

●

●

●●
●

●●●

●
●
●
●

●●

●
●●

●

●
●●

●●●
●

●
●
●●
●
●●

●

●

●

●

●●●

●

●

●

●
●
●

●
●●●
●
●

●

●
●●

●

●

●
●
●

●●●

●
●
●

●

●

●

●
●

●
●
●
●●●
●●●
●●●

●
●●

●●●●
●
●●

●

●●●
●

●

●●

●
●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●●
●

●●

●

●
●●●●●

●
●●●

●

●
●

●

●●●

●●

●

●
●

●●

●

●

●

●
●●

●

●

●●●
●

●●
●●●●
●

●●

●●

●

●●

●

●
●●●●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●
●●

●

●●●

●

●

●
●
●●

●●

●

●●●

●

●
●

●●●

●●●
●●●●

●

●
●

●
●

●
●
●

●
●

●●●
●

●
●
●

●

●
●

●
●
●●●

●●●

●

●
●

●●
●

●●

●
●●●
●●

●

●●●

●

●
●
●●
●●
●

●

●

●

●

●●

●

●
●●
●

●

●●

●

●

●
●

●

●
●

●●

●

●

●
●●
●

●
●
●
●
●

●
●
●

●
●
●
●

●●

●

●●
●●

●
●

●

●

●●

●

●

●

●●●
●
●

●
●
●
●●

●
●●

●●

●●

●

●
●
●●
●

●

●
●
●●
●
●●

●

●
●●

●●

●

●

●

●●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●●

●

●

●●●

●

●

●
●
●

●
●

●
●●

●
●
●
●
●
●

●

●

●

●●●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●
●

●●●●
●
●●

●
●●●

●
●

●

●
●●
●●●●

●

●
●

●

●

●●
●
●

●

●

●

●
●
●●

●

●
●

●
●

●
●●
●●

●
●

●

●

●

●

●

●

●●

●

●●

●●
●

●

●

●●●

●

●●
●●

●

●

●●

●●
●●

●

●
●●
●
●

●

●

●

●

●
●●
●●
●●

●

●

●

●

●
●●
●

●

●●

●●

●●●
●

●
●●

●●

●

●●
●

●
●
●

●

●●

●

●
●
●●
●●●

●●

●●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●●
●●

●●●
●
●
●
●
●

●●
●●

●

●

●
●

●
●

●

●

●
●

●

●
●

●
●
●

●●

●

●●

●

●

●

●

●●

●

●
●
●●

●
●

●

●

●

●

●
●

●
●●

●

●
●

●
●
●
●●
●

●●

●

●●●●

●●

●
●●
●
●

●●●

●

●●
●
●

●●●
●

●

●
●

●●
●

●

●

●
●
●

●
●●●
●

●

●

●

●

●
●
●
●

●

●

●

●

●

●●●

●
●

●
●

●

●

●

●
●

●●●●

●

●

●

●●
●
●
●

●
●

●

●●●●
●●

●

●

●

●

●

●

●

●●
●●

●

●

●

●
●●●●
●●
●

●
●●
●
●●
●

●●
●
●
●●
●

●

●●●●
●

●

●
●

●

●

●
●

●

●
●●

●●

●
●

●

●

●

●●

●

●
●

●

●

●●
●●
●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●●

●

●

●

●
●●
●

●
●
●●●●

●
●

●

●●●
●
●●
●●●●●●●
●●
●●●

●

●
●
●●●●

●

●●●

●

●●●●●●
●●●

●
●
●

●

●●
●●●●

●

●●●●●●●

●

●●●●

●

●●●●

●

●●

●
●●●

●

●

●
●●●

●

●
●●
●

●●●●
●

●

●●
●●
●●●●●

●
●

●●●●●●●
●

●

●●●●
●●●●●●●

●

●●
●●

●
●
●●
●●
●●●
●●
●
●●●●●
●

●

●

●

●●

●

●

●●●●●●●
●●●●●●●●●●
●
●
●●

●●
●●
●●●●
●●●
●
●●●
●

●●
●

●

●●
●●●
●●●●

●
●
●
●
●
●

●●

●●●

●●

●

●

●
●

●●
●
●
●

●

●
●
●
●

●

●
●
●
●
●●

●

●
●●
●

●

●
●●

●

●
●
●

●

●
●

●
●
●
●

●●●

●
●●

●

●●●●

●

●
●
●

●

●
●●●

●

●●●
●●●

●

●
●

●

●●●●●●●●

●

●●●●

●●●

●●●

●

●
●●●●●●●

●●●●
●
●
●●●●●
●●●●
●●●●●●●

●

●●●

●

●●
●●●●●●
●●●●●●●●●

●

●
●
●●●

●

●●●●

●

●●●
●
●

●

●●●●

●●

●
●

●

●●

●●●

●

●

●

●●●●
●●●●●●
●
●
●
●●
●●●●
●
●
●●●
●●●●
●●●
●
●

●

●●
●●
●●
●●
●

●
●
●●●●●●●●
●
●●●●●
●

●●

●
●●●
●
●●●

●
●●
●
●
●●●●●
●●
●●

●

●
●●●●
●
●●●●●
●●●●●
●●●●●●●●●●●
●●●●●●●●

●

●●
●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●
●
●
●

●●

●
●●

●

●

●●

●
●

●

●
●

●●

●
●

●●

●

●●

●

●●●

●

●

●

●
●
●●●
●
●●●●
●
●
●●

●

●

●

●
●

●
●
●

●●●●

●

●

●

●
●
●

●

●
●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●●
●●

●●

●●●●●●●●

●
●
●

●●
●

●

●
●●●

●●
●
●
●
●

●
●●
●●
●●

●

●

●

●
●

●

●●
●

●

●
●●●
●
●
●

●
●

●
●

●

●●

●

●
●

●
●
●
●●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●
●

●
●

●●●

●
●
●

●

●

●●●

●●●
●●

●
●

●

●
●

●

●
●●●
●
●●●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●
●

0 50 100 150 200

16
3.

0
16

3.
5

16
4.

0
16

4.
5

16
5.

0

Position [m]

W
id

th
 [m

m
]

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●
●●●
●●●●●●
●●●

●●●●●●●●●
●●●

●●●

●●●●●●●●●
●●●●●●●●●●●●
●●●
●●●
●●●●●●●●●
●●●●●●
●●●

●●●
●●●
●●●●●●

●●●

●●●●●●●●●●●●●●●
●●●
●●●

●●●

●●●

●●●
●●●●●●
●●●
●●●●●●
●●●
●●●

●●●●●●

●●●●●●●●●●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●●●●●●●
●●●●●●

●●●
●●●●●●●●●

●●●
●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●

●●●

●●●

●●●●●●

●●●
●●●

●●●●●●

●●●
●●●

●●●
●●●

●●●

●●●
●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●●●●

●●●
●●●●●●

●●●
●●●

●●●●●●

●●●
●●●

●●●

●●●●●●

●●●●●●

●●●

●●●●●●

●●●

●●●●●●●●●
●●●

●●●

●●●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●
●●●

●●●●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●●●●
●●●●●●●●●●●●●●●
●●●
●●●
●●●
●●●●●●

●●●

●●●
●●●●●●

●●●

●●●
●●●●●●●●●●●●

●●●

●●●●●●
●●●
●●●●●●●●●●●●
●●●

●●●
●●●●●●●●●●●●●●●
●●●
●●●
●●●●●●
●●●

●●●
●●●
●●●

●●●

●●●

●●●
●●●

●●●
●●●
●●●●●●
●●●
●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●

●●●

●●●

●●●

●●●●●●

●●●
●●●

●●●
●●●
●●●

●●●
●●●

●●●
●●●●●●

●●●
●●●
●●●●●●
●●●●●●
●●●●●●

●●●●●●
●●●
●●●
●●●

●●●

●●●
●●●
●●●

●●●
●●●
●●●●●●

●●●●●●

●●●●●●●●●

●●●●●●

●●●

●●●●●●

●●●

●●●

●●●●●●

●●●●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●●●●

●●●

●●●
●●●

●●●

●●●●●●

●●●●●●

●●●●●●

●●●

●●●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●●●

●●●

●●●●●●
●●●

●●●●●●

●●●
●●●

●●●

●●●
●●●

●●●

●●●
●●●

●●●

●●●
●●●

●●●

●●●●●●

●●●

●●●●●●

●●●

●●●
●●●

●●●

●●●●●●

●●●

●●●

●●●●●●

●●●

●●●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●
●●●

●●●

●●●

●●●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●
●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●
●●●

●●●

●●●

●●●●●●

●●●

●●●

●●●

●●●

●●●

●●●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●●●
●●●
●●●
●●●

●●●

●●●

●●●
●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●
●●●

●●●

●●●

●●●

●●●
●●●

●●●
●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●●●

●●●

●●●
●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●
●●●
●●●
●●●●●●
●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●
●●●
●●●●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●
●●
●●●
●●●●●●●●●
●●●
●●●
●●●●●●
●●●

●●●

●●●●●●

●●●

●●●

●●●
●●●●●●●●●●●●
●●●

●●●

●●●

●●●●●●●●●

●●●●●●●●●
●●●●●●●●●

●●●

●●●
●●●
●●●
●●●

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●
●●●
●●●
●●●

●●●

●●●

●●●●●●●●●

●●●

●●●

●●●
●●●
●●●●●●

●●●

●●●●●●●●●

●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●
●●●

●●●
●●●

●●●
●●●

●●●●●●
●●●

●●●

●●●●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●●●●

●●●●●●
●●●●●●

●●●
●●●
●●●
●●●
●●●

●●●
●●●
●●●
●●●
●●●

●●●

●●●

●●●

●●●
●●●●●●

●●●
●●●●●●●●●
●●●
●●●
●●●

●●●
●●●●●●

●●●

●●●
●●●

●●●

●●●
●●●

●●●
●●●

●●●●●●

●●●
●●●●●●

●●●●●●●●●●●●

●●●●●●

●●●
●●●●●●●●●

●●●

●●●●●●
●●●
●●●
●●●
●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●

●●●

●●●

●●●●●●

●●●

●●●●●●●●●

●●●
●●●
●●●
●●●
●●●●●●
●●●

●●●
●●●

●●●●●●

●●●
●●●

●●●

●●●
●●●●●●

●●●
●●●●●●

●●●
●●●
●●●
●●●●●●

●●●●●●
●●●●●●●●●

●●●●●●●●●
●●●
●●●

●●●
●●●
●●●●●●
●●●

●●●●●●
●●●●●●
●●●
●●●
●●●●●●●●●
●●●
●●●●●●●●●
●●●●●●●●●
●●●

●●●
●●●●●●●●●●●●
●●●

●●●●●●
●●●●●●●●●

●●●
●●●●●●●●●●●●
●●●●●●●●●
●●●
●●●
●●●

●●●●●●●●●
●●●
●●●
●●●

●●●
●●●●●●●●●

●●●

●●●●●●●●●
●●●
●●●●●●

●●●●●●

●●●

●●●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●●●●●●
●●●

●●●
●●●

●●●●●●

●●●●●●●●●●●●
●●●

●●●●●●
●●●
●●●
●●●
●●●●●●

●●●●●●●●●
●●●
●●●

●●●
●●●
●●●
●●●
●●●
●●●

●●●

●●●●●●
●●●●●●●●●
●●●

●●●
●●●

●●●●●●

●●●
●●●●●●●●●
●●●
●●●

●●●

●●●
●●●
●●●●●●●●●●●●●●●

●●●
●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●

●●●
●●●

●●●●●●
●●●●●●

●●●

●●●
●●●●●●●●●
●●●

●●●●●●
●●●●●●
●●●

●●●
●●●
●●●
●●●
●●●

●●●●●●

●●●●●●●●●●●●
●●●

●●●

●●●
●●●
●●●
●●●
●●●●●●
●●●
●●●

●●●●●●
●●●

●●●
●●●
●●●

●●●●●●

●●●
●●●●●●

●●●●●●

●●●

●●●
●●●●●●

●●●

●●●

●●●
●●●
●●●●●●●●●

●●●
●●●
●●●
●●●
●●●

●●●
●●●●●●●●●●●●
●●●

●●●
●●●●●●●●●

●●●●●●
●●●
●●●
●●●

●●●
●●●
●●●
●●●●●●●●●●●●

●●●

●●●

●●●
●●●●●●

●●●●●●
●●●●●●
●●●

●●●
●●●●●●●●●●●●●●●●●●

●●●

●●●
●●●
●●●●●●

●●●
●●●
●●●
●●●
●●●
●●●

●●●●●●●●●
●●●

●●●●●●

●●●

●●●

●●●●●●●●●
●●●
●●●●●●
●●●
●●●

●●●
●●●●●●
●●●

●●●

●●●●●●

●●●

●●●

●●●
●●●
●●●
●●●
●●●●●●

●●●●●●
●●●
●●●
●●●
●●●
●●●

●●●
●●●

●●●
●●●
●●●
●●●

●●●

●●●●●●
●●●

●●●
●●●

●●●
●●●●●●●●●●●●

●●●
●●●
●●●●●●
●●●●●●
●●●
●●●
●●●

●●●

●●●

●●●
●●●
●●●●●●

●●●●●●

●●●

●●●

●●●●●●

●●●●●●
●●●
●●●
●●●

●●●

●●●

●●●

●●●
●●●●●●
●●●●●●
●●●
●●●

●●●●●●●●●●●●

●●●●●●
●●●

●●●

●●●

●●●●●●●●●●●●
●●●

●●●
●●●

●●●

●●●
●●●●●●
●●●●●●
●●●●●●
●●●
●●●

●●●
●●●●●●●●●

●●●

●●●

●●●
●●●

●●●

●●●
●●●●●●●●●
●●●
●●●

●●●●●●
●●●●●●
●●●●●●

●●●
●●●

●●●
●●●

●●●

●●●●●●
●●●
●●●
●●●
●●●
●●●

●●●
●●●●●●●●●
●●●
●●●
●●●●●●
●●●

●●●

●●●
●●●
●●●●●●
●●●

●●●
●●●
●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●

●●●
●●●●●●
●●●
●●●

●●●
●●●

●●●
●●●
●●●
●●●●●●
●●●
●●●
●●●●●●●●●

●●●●●●●●●●●●
●●●

●●●●●●
●●●●●●
●●●
●●●
●●●
●●●

●●●●●●
●●●●●●

●●●●●●
●●●

●●●
●●●●●●
●●●●●●●●●
●●●
●●●
●●●
●●●

●●●●●●
●●●●●●

●●●
●●●
●●●●●●
●●●
●●●
●●●●●●●●●●●●
●●●●●●
●●●

●●●
●●●●●●●●●

●●●
●●●●●●●●●

●●●
●●●●●●
●●●
●●●

●●●

●●●
●●●
●●●

●●●●●●●●●●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●

●●●●●●

●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●
●●●
●●●●●●●●●
●●●●●●●●●●●●
●●●●●●

●●●●●●●●●
●●●

●●●
●●●
●●●
●●●
●●●●●●

●●●
●●●

●●●

●●●

●●●
●●●
●●●
●●●

●●●
●●●●●●

●●●

●●●
●●●●●●●●●

●●●

●●●●●●●●●
●●●
●●●
●●●
●●●
●●●
●●●

●●●
●●●●●●
●●●
●●●
●●●●●●
●●●
●●●●●●
●●●

●●●

●●●●●●

●●●●●●●●●

●●●

●●●●●●
●●●

●●●
●●●
●●●
●●●

●●●

●●●●●●●●●

●●●
●●●●●●●●●
●●●
●●●

●●●

●●●
●●●
●●●●●●●●●●●●

●●●

●●●●●●●●●
●●●

●●●●●●●●●
●●●
●●●
●●●

●●●

●●●
●●●
●●●

●●●
●●●
●●●

●●●
●●●

●●●

●●●
●●●
●●●●●●●●●

●●●
●●●

●●●●●●●●●●●●
●●●
●●●
●●●

●●●

●●●

●●●
●●●
●●●
●●●
●●●●●●
●●●

●●●●●●●●●●●●
●●●
●●●●●●
●●●●●●●●●

●●●
●●●

●●●●●●●●●

●●●
●●●

●●●
●●●
●●●
●●●●●●

●●●●●●

●●●

●●●●●●

●●●
●●●●●●
●●●

●●●
●●●
●●●

●●●
●●●

●●●
●●●●●●
●●●
●●●

●●●
●●●

●●●●●●●●●
●●●●●●

●●●
●●●
●●●

●●●●●●●●●

●●●●●●
●●●
●●●
●●●

●●●

●●●
●●●●●●●●●
●●●●●●
●●●

●●●
●●●●●●
●●●●●●
●●●
●●●
●●●

●●●

●●●

●●●
●●●●●●

●●●
●●●●●●●●●

●●●●●●
●●●●●●●●●●●●
●●●
●●●
●●●

●●●
●●●●●●●●●

●●●
●●●
●●●

●●●
●●●●●●
●●●●●●

●●●

●●●

●●●●●●

●●●

●●●●●●
●●●
●●●
●●●●●●
●●●

●●●●●●
●●●●●●●●●
●●●

●●●

●●●
●●●

●●●

●●●
●●●●●●

●●●●●●

●●●
●●●

●●●
●●●
●●●
●●●●●●
●●●
●●●

●●●
●●●

●●●

●●●●●●

●●●●●●●●●
●●●●●●
●●●●●●
●●●
●●●●●●
●●●●●●

●●●
●●●

●●●
●●●●●●●●●

●●●

●●●

●●●
●●●●●●●●●

●●●
●●●●●●

●●●
●●●

●●●●●●
●●●●●●
●●●●●●

●●●●●●
●●●

●●●
●●●

●●●●●●
●●●●●●

●●●
●●●

●●●
●●●
●●●●●●

●●●●●●●●●
●●●●●●

●●●
●●●

●●●
●●●●●●
●●●

●●●

●●●

●●●
●●●
●●●●●●

●●●

●●●
●●●
●●●●●●

●●●
●●●●●●
●●●
●●●●●●

●●●●●●
●●●
●●●
●●●

●●●
●●●
●●●
●●●●●●

●●●●●●

●●●●●●
●●●●●●
●●●
●●●●●●●●●
●●●
●●●

●●●
●●●●●●
●●●
●●●

●●●

●●●

●●●
●●●●●●●●●
●●●●●●
●●●●●●●●●

●●●●●●

●●●●●●
●●●
●●●
●●●
●●●

●●●
●●●●●●●●●●●●●●●
●●●
●●●
●●●

●●●●●●●●●
●●●

●●●
●●●
●●●●●●

●●●●●●
●●●

●●●
●●●
●●●
●●●

●●●●●●

●●●●●●●●●
●●●

●●●●●●●●●
●●●
●●●●●●●●●
●●●
●●●
●●●

●●●●●●●●●
●●●●●●●●●●●●
●●●●●●
●●●●●●●●●

●●●
●●●
●●●
●●●
●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●
●●●

●●●
●●●
●●●
●●●
●●●

●●●

●●●

●●●
●●●

●●●●●●●●●
●●●●●●

●●●●●●●●●●●●
●●●

●●●

●●●

●●●

●●●

●●●●●●

●●●

●●●
●●●

●●●

●●●

●●●●●●

●●●●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●
●●●

●●●●●●
●●●

●●●

●●●●●●●●●
●●●
●●●
●●●
●●●●●●●●●●●●
●●●
●●●
●●●
●●●●●●●●●
●●●
●●●
●●●●●●●●●
●●●
●●●
●●●
●●●●●●
●●●●●●
●●●
●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●
●●●
●●●
●●●
●●●●●●●●●●●●

●●●
●●●

●●●●●●

●●●
●●●●●●●●●
●●●

●●●
●●●●●●●●●
●●●●●●●●●●●●●●●

●●●

●●●
●●●
●●●●●●
●●●●●●●●●

●●●●●●

●●●●●●
●●●●●●
●●●
●●●
●●●
●●●

●●●●●●
●●●

●●●●●●
●●●

●●●

●●●
●●●●●●
●●●●●●
●●●●●●
●●●
●●●

●●●
●●●●●●●●●
●●●●●●●●●

●●●

●●●

●●●

●●●●●●
●●●
●●●●●●
●●●

●●●

●●●●●●

●●●
●●●●●●●●●
●●●

●●●

●●●

●●●

●●●
●●●
●●●

●●●●●●●●●

●●●

●●●●●●

●●●●●●●●●
●●●

●●●
●●●

●●●
●●●
●●●
●●●
●●●
●●●●●●

●●●

●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●
●●●

●●●●●●●●●
●●●●●●
●●●
●●●

●●●●●●
●●●

●●●●●●

●●●
●●●

●●●●●●

●●●

●●●

●●●

●●●

●●●●●●●●●●●●

●●●●●●

●●●●●●●●●●●●
●●●

●●●●●●
●●●

●●●●●●
●●●
●●●●●●●●●●●●
●●●
●●●

●●●●●●●●●

●●●
●●●
●●●
●●●●●●

●●●
●●●●●●
●●●●●●●●●
●●●
●●●
●●●

●●●
●●●
●●●
●●●
●●●●●●

●●●●●●

●●●
●●●
●●●●●●●●●●●●
●●●
●●●

●●●

●●●
●●●●●●

●●●
●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●●●●

●●●

●●●●●●●●●

●●●
●●●
●●●

●●●

●●●

●●●
●●●●●●
●●●
●●●

●●●
●●●
●●●

●●●●●●●●●

●●●

●●●●●●●●●●●●

●●●

●●●
●●●●●●

●●●
●●●
●●●
●●●
●●●
●●●●●●
●●●●●●
●●●
●●●

●●●
●●●
●●●
●●●
●●●●●●●●●
●●●●●●
●●●
●●●
●●●
●●●●●●●●●

●●●
●●●

●●●●●●●●●
●●●

●●●
●●●●●●
●●●●●●
●●●
●●●
●●●●●●●●●●●●

●●●●●●

●●●
●●●
●●●
●●●
●●●
●●●●●●

●●●
●●●

●●●
●●●
●●●
●●●●●●
●●●

●●●●●●●●●
●●●

●●●

●●●
●●●●●●●●●

●●●

●●●

●●●
●●●●●●●●●

●●●●●●●●●
●●●●●●
●●●
●●●●●●●●●●●●
●●●

●●●●●●
●●●
●●●
●●●

●●●●●●
●●●
●●●

●●●●●●
●●●

●●●
●●●
●●●
●●●
●●●●●●
●●●
●●●
●●●
●●●

●●●
●●●●●●
●●●
●●●
●●●
●●●

●●●
●●●●●●●●●
●●●
●●●

●●●●●●
●●●

●●●

●●●●●●●●●
●●●

●●●
●●●●●●

●●●●●●

●●●

●●●●●●
●●●
●●●●●●●●●●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●

●●●●●●

●●●
●●●●●●
●●●
●●●

●●●
●●●●●●
●●●●●●
●●●●●●●●●
●●●

●●●

●●●
●●●

●●●
●●●
●●●

●●●●●●

●●●

●●●●●●
●●●
●●●●●●●●●●●●
●●●

●●●

●●●
●●●
●●●●●●●●●

●●●
●●●

●●●
●●●●●●
●●●●●●
●●●
●●●
●●●●●●
●●●

●●●●●●●●●●●●
●●●
●●●●●●●●●
●●●●●●●●●

●●●
●●●

●●●

●●●

●●●
●●●
●●●
●●●●●●
●●●
●●●●●●●●●
●●●●●●●●●
●●●
●●●●●●
●●●●●●
●●●

●●●

●●●●●●●●●●●●●●●

●●●●●●
●●●
●●●
●●●
●●●●●●●●●

●●●

●●●●●●

●●●

●●●

●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●
●●●
●●●●●●

●●●●●●
●●●
●●●
●●●
●●●
●●●●●●
●●●
●●●
●●●●●●●●●
●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●●●

●●●

●●●

●●●●●●

●●●●●●
●●●
●●●
●●●

●●●
●●●●●●
●●●●●●●●●●●●●●●●●●

●●●
●●●

●●●●●●●●●●●●
●●●

●●●

●●●●●●

●●●●●●

●●●●●●●●●
●●●
●●●

●●●

●●●

●●●
●●●
●●●●●●
●●●

●●●

●●●
●●●
●●●
●●●●●●
●●●●●●●●●
●●●

●●●●●●
●●●●●●●●●
●●●●●●
●●●

●●●
●●●

●●●●●●●●●
●●●●●●●●●

●●●
●●●
●●●
●●●●●●●●●
●●●●●●
●●●

●●●
●●●

●●●
●●●●●●
●●●
●●●
●●●
●●●

●●●●●●
●●●
●●●●●●

●●●●●●
●●●

●●●
●●●
●●●
●●●
●●●●●●
●●●

●●●
●●●

●●●
●●●
●●●
●●●●●●
●●●
●●●

●●●
●●●

●●●
●●●●●●●●●●●●
●●●●●●

●●●
●●●
●●●●●●

●●●
●●●●●●●●●
●●●
●●●
●●●●●●●●●
●●●

●●●
●●●
●●●

●●●

●●●●●●
●●●
●●●●●●●●●●●●

●●●

●●●●●●
●●●
●●●

●●●

●●●●●●

●●●

●●●
●●●●●●●●●●●●
●●●●●●

●●●

●●●

●●●
●●●
●●●●●●●●●

●●●●●●
●●●●●●
●●●

●●●
●●●
●●●●●●
●●●

●●●

●●●

●●●

●●●●●●●●●
●●●
●●●●●●

●●●

●●●●●●
●●●
●●●●●●●●●

●●●

●●●

●●●

●●●●●●●●●
●●●
●●●
●●●
●●●

●●●
●●●
●●●●●●
●●●
●●●

●●●

●●●

●●●

●●●

●●●
●●●●●●
●●●
●●●
●●●●●●

●●●●●●
●●●●●●
●●●●●●
●●●
●●●●●●
●●●
●●●
●●●●●●

●●●●●●
●●●
●●●
●●●
●●●
●●●●●●
●●●●●●●●●
●●●●●●●●●●●●
●●●
●●●

●●●●●●

●●●●●●
●●●
●●●

●●●

●●●
●●●

●●●
●●●
●●●●●●
●●●●●●
●●●●●●

●●●
●●●

●●●
●●●
●●●

●●●●●●●●●
●●●●●●
●●●
●●●

●●●●●●●●●
●●●

●●●

●●●●●●

●●●

●●●
●●●
●●●
●●●

●●●

●●●
●●●●●●●●●
●●●

0 50 100 150 200

Position [m]

C
on

jo
in

t

Figure 2: Upper three plots show individual sheet selection results. Bottom plot shows
conjoint sheet selection result. Upper and lower specification limits are highlighted as
horizontal lines. Red background indicates n.i.o. material, green background indicates the
selected sheets. The plots are limited in their y-axis and truncated points are shown as
triangles.

Cutting Optimal Sections from Production Foils 15

6 Conclusion
We developed a combination of two algorithms in order to detect the optimal
electrode sheets to be cut from a long production foil regarding multiple quality
parameters. The first algorithm uses a naïve approach to determine the maximum
number of possible sheets. The second algorithm builds upon the 0-1 multi-
objective knapsack problem and is customized to respect length constraints. We
showed that the latter algorithm is capable of cutting 50 sheets out of 10000
possible cutting points while considering 10 quality parameters of ordered
importance within a reasonable time. Moreover, we applied the algorithm on
data from the production of rechargeable Lithium-Ion battery cells. This use
case consisted of an analysis of 200m of coated foil and its overall quality was
subject to three quality parameters.
This approach is applicable in a variety of industrial use cases. The algorithm
also allows to include more complex length constraints such as cutting losses.
One downside is that the result is only optimal in terms of the discretized cutting
positions. This might also lead to situations in which the first algorithm that is
able to cut sheets on any position finds more valid sheets than the second. In
this case, the density of allowed cutting points has to be increased. Also, the
cost functions used in this paper only consider whether measurements are inside
the given specification limits. This might be extended to more sophisticated cost
functions. The second algorithm is, just like the knapsack problem, independent
of the choice of cost functions as long as the sum of costs over all sheets has to
be minimized. While a priori ordering the quality parameters by their priority is
a simplification compared to computing all non-dominated solutions and
selecting a good trade off a posteriori, it is necessary to give this order in an
automated production setting. Alternatively, the multiple cost functions could
be merged into a one-dimensional quality index. However, the method based on
the original quality parameters as was described here has so far been prefered
by our industry partners.
In order to introduce these algorithms for industrial usage, we are developing
a tool with a graphical user interface for convenient usage.2 To enable the
tool for big datasets, heuristics for increasing the speed of both algorithms can
be included depending on the specific optimization problem. Moreover, we
strive to generalize the priority optimization algorithm towards constrained
multi-objective knapsack problems with weights.

2 Available under https://github.com/mkirchhof/optPieces

https://github.com/mkirchhof/optPieces

16 Authors Suppressed Due to Excessive Length

Acknowledgements Financial support from the German Federal Ministry of Education and Research
(BMBF) under the grant 03XP0076A (Projectcluster: ProZell, Project: QS-Zell) is gratefully acknowl-
edged. We would like to thank the reviewers for their valuable comments and effort.

References
Bazgan C, Hugot H, Vanderpooten D (2009) Solving Efficiently the 0-1 Multi-Objective

Knapsack Problem. Computers & Operations Research 36(1):260–279. DOI: 10.
1016/j.cor.2007.09.009.

Delort C, Spanjaard O (2010) Using Bound Sets in Multiobjective Optimization: Appli-
cation to the Biobjective Binary Knapsack Problem. In: Experimental Algorithms,
Festa P (ed).

Erlebach T, Kellerer H, Pferschy U (2001) Approximating Multi-objective Knapsack
Problems. In: Algorithms and Data Structures, Dehne F, Sack J, Tamassia R (eds),
Springer, Berlin, Heidelberg (Germany), pp. 210–221. DOI: 10.1007/3-540-44634-
6_20.

Lust T, Teghem J (2012) The Multiobjective Multidimensional Knapsack Problem:
A Survey and a New Approach. International Transactions in Operational Re-
search 19(4):495–520. DOI: 10.1111/j.1475-3995.2011.00840.x

Martello S, Toth P (1990) Knapsack Problems: Algorithms and Computer Implementa-
tions. John Wiley & Sons, New Jersey (USA).

R Core Team (2018) R: A Language and Environment for Statistical Computing. Vienna,
Austria. R Foundation for Statistical Computing, Vienna, Austria. URL: https://
www.R-project.org/.

https://doi.org/10.1016/j.cor.2007.09.009
https://doi.org/10.1016/j.cor.2007.09.009
https://doi.org/10.1007/3-540-44634-6_20
https://doi.org/10.1007/3-540-44634-6_20
https://doi.org/10.1111/j.1475-3995.2011.00840.x
https://www.R-project.org/
https://www.R-project.org/

	Cutting Optimal Sections from Production Foils

