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Abstract

Background: There is a high prevalence of gait impairments in individuals with dementia (IWD). Gait impairments
are associated with increased risk of falls, disability, and economic burden for health care systems. Only few studies
have investigated the effectiveness of physical activity on gait performance in IWD, reporting promising but
inconsistent results. Thus, this study aimed to investigate the effectiveness of a multimodal exercise program (MEP)
on gait performance in IWD.

Methods: In this parallel-group randomized controlled trial, we enrolled 319 IWD of mild to moderate severity,
living in care facilities, aged ≥ 65 years, and being able to walk at least 10 m. The control group (n = 118) received
conventional treatment, whereas the intervention group (n = 201) additionally participated in a 16-week MEP
specifically tailored to IWD. We examined the effects of the MEP on spatiotemporal gait parameters and dual task
costs by using the gait analysis system GAITRite. Additionally, we compared characteristics between positive, non-,
and negative responders, and investigated the impact of changes in underlying motor and cognitive performance
in the intervention group by conducting multiple regression analyses.

Results: Two-factor analyses of variance with repeated measurements did not reveal any statistically significant
time*group effects on either spatiotemporal gait parameters or dual task costs. Differences in baseline gait
performance, mobility, lower limb strength, and severity of cognitive impairments were observed between positive,
non-, and negative responders. Positive responders were characterized by lower motor performance compared to
negative and non-responders, while non-responders showed better cognitive performance than negative
responders. Changes in lower limb strength and function, mobility, executive function, attention, and working
memory explained up to 39.4% of the variance of changes in gait performance.

(Continued on next page)

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: sandra.trautwein@kit.edu
1Karlsruhe Institute of Technology, Institute of Sports and Sports Science,
Engler-Bunte-Ring 15, 76131 Karlsruhe, Germany
Full list of author information is available at the end of the article

Trautwein et al. BMC Geriatrics          (2020) 20:245 
https://doi.org/10.1186/s12877-020-01635-3

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/347159642?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1186/s12877-020-01635-3&domain=pdf
http://orcid.org/0000-0002-1874-0723
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:sandra.trautwein@kit.edu
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Conclusions: The effectiveness of a standardized MEP on gait performance in IWD was limited, probably due to
insufficient intensity and amount of specific walking tasks as well as the large heterogeneity of the sample. However,
additional analyses revealed prerequisites of individual characteristics and impacts of changes in underlying motor and
cognitive performance. Considering such factors may improve the effectiveness of a physical activity intervention
among IWD.

Trial registration: DRKS00010538 (German Clinical Trial Register, date of registration: 01 June 2016, retrospectively
registered, https://www.drks.de/drks_web/setLocale_EN.do).

Keywords: Physical activity, Neurodegenerative disorder, Walking, Physical functional performance, Cognition, Dual
task

Background
Gait impairments represent a major public health con-
cern [1]. Their prevalence increases with age, and more
than 32% of individuals aged 60 years and above have
gait impairments [2] such as decreased walking speed,
shortened stride length, and enhanced double support
phase [1, 3, 4]. Gait impairments are very prevalent in
individuals with dementia (IWD), with an estimated 50%
of IWD being affected [5, 6]. In contrast, among cogni-
tively unimpaired older adults, the prevalence rates
range between 7 and 36% [2, 5, 6]. Dementia is an um-
brella term for conditions that are characterized by a sig-
nificant decline in one or more cognitive domains and
behavioral changes that interfere with independence in
everyday activities [7]. The causes of dementia can vary,
with Alzheimer’s disease being the most common in
older adults. Other dementias include vascular dementia,
Lewy body dementia, or frontotemporal dementia. Fur-
thermore, mixed dementia is common [8].
Various other motor impairments, such as reduced

strength and postural control, may contribute to the in-
creased prevalence of gait impairments in IWD [5, 9].
Moreover, gait is not merely an automated motor activ-
ity but requires input from the cerebellum, the motor
cortex, and the basal ganglia, as well as an intact sensory
feedback [1, 10, 11]. Thus, dementia-related pathological
changes in these brain structures may also contribute to
gait impairments [3].
Both gait and cognitive impairments are associated with

an increased risk of falls and decreased quality of life [12,
13]. Accordingly, the incidence of falls in IWD is two to
three times higher than in cognitively unimpaired older
individuals [1, 5, 13]. Furthermore, the various health-
related and economic consequences of falls, such as higher
rates of institutionalization, disability, morbidity, mortality,
and increased financial burden [1, 5], underline the need
of interventions focusing on improving or maintaining gait
performance in IWD. Indeed, various pharmacological
and non-pharmacological interventions to improve gait
performance and reduce falls in older adults have been
studied [1, 5, 11, 13–16].

Physical activity interventions have shown to be effective
in cognitively unimpaired older individuals and may also
be beneficial for IWD [5]. However, to date, only few stud-
ies have evaluated the effectiveness of physical activity on
gait performance in IWD. These studies show promising
but inconsistent results. For example, seven studies ob-
served positive effects of physical activity on walking speed
as assessed through short distance walk tests [17–23],
whereas fifteen studies did not report statistically signifi-
cant findings [24–38]. Furthermore, ten studies applied an
instrumented gait analysis, and mainly reported positive
effects of physical activity on stride length [39–46], stride
time [43, 45], step time [46], double support time [40],
and stride frequency [41]. In contrast, no effects were
found on step length [44, 47], step width [43, 47], and per-
cent of single support [44]. Inconsistent results exist for
walking speed [40–44, 46–48], stride speed [39, 45], per-
cent of double support [43–45], and cadence [19, 39, 42,
43, 45, 46]. Findings of studies investigating dual task con-
ditions are also inconsistent regarding potential effects on
gait impairments and do not allow meaningful conclu-
sions [26, 28, 35, 36, 39, 45]. Thus, more research is
needed to better understand the potentially beneficial ef-
fects of physical activity on gait performance in IWD in
both single and dual task conditions.
Most previous studies conducted multimodal physical

activity interventions, including strength, balance, and
aerobic exercises [17–21, 23–25, 28, 30–36, 39–45, 47].
Given the relationship between motor, cognitive and gait
performance, as well as the positive impacts of cognitive
training programs [1, 11], interventions combining phys-
ical and cognitive activity may be most promising for
improving gait performance in IWD [15]. Indeed, studies
combining physical and cognitive activity predominantly
reported beneficial effects on gait performance [35, 39,
43, 45]. However, these studies had no randomized con-
trolled trial designs [35, 39, 45], did not use instru-
mented gait analysis systems [35], or focused on dual
task exercises while not considering other cognitive tasks
[43]. This research gap emphasizes the need for add-
itional investigations.
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When aiming to improve the effectiveness of physical
activity interventions on gait performance in IWD, it is
also important to consider and identify determinants
that may potentially impact the association between
physical activity and subsequent changes in gait per-
formance. However, research on such prerequisites, e.g.
specific characteristics of participants that may deter-
mine which participants are most likely to benefit from
specific physical activity interventions, is rare. With re-
gard to the expected direct and indirect effects of phys-
ical activity (see Fig. 1), little is known as to how
intervention-induced changes in underlying motor and
cognitive performance may be related to changes in gait
performance in IWD. As both other motor and cognitive
impairments explain the increased prevalence of gait im-
pairments in IWD [5], potential impacts of both factors
are possible. Based on theoretical considerations, associ-
ations between changes in gait performance with
changes in balance, mobility, strength and function of
lower limbs [9] as well as with changes in executive
function, attention, and working memory [49, 50] can be
assumed.
Therefore, the primary aim of the current study was to

determine the effectiveness of a multimodal exercise
program (MEP), which combined both motor and cogni-
tive tasks, on gait performance and dual task costs in
IWD residing in care facilities. We hypothesized that a
16-week MEP, in addition to conventional treatment,
may have a differential effect on gait performance in
IWD as compared to conventional treatment alone. Our
secondary aim was to identify determinants that may
affect the effectiveness of the MEP, by examining differ-
ences in characteristics closely related to gait perform-
ance between positive, non-, and negative responders.
Based on relations of gait performance with motor and
cognitive performance, as well as the etiology of demen-
tia [1, 3, 5, 9–11], we hypothesized that positive, non-,
and negative responders of the MEP would differ in
baseline performance (i.e. gait, balance, mobility,
strength and function of lower limbs, executive function,
attention, and working memory) and selected sample

characteristics (i.e. severity of cognitive impairments, eti-
ology of dementia, and use of walking aids). Further-
more, we also investigated impacts of intervention-
induced changes in underlying motor and cognitive per-
formance on changes in gait performance and hypothe-
sized that changes in underlying motor (balance,
mobility, strength and function of lower limbs) and cog-
nitive performance (executive function, attention, and
working memory) may have an impact on changes in
gait performance in IWD who participated in a
dementia-specific MEP. Due to limited prior research re-
lated to our secondary and third aim, we examined these
research questions based on an exploratory analysis
approach.

Methods
For this manuscript, we followed the guidelines and rec-
ommendations of the Consolidated Standards of Report-
ing Trials statements [51, 52]. The reader is referred to
the published study protocol for a detailed description of
the study design and methods [53]. The following sec-
tions will only provide a brief summary of study
methods. Further information is available in the German
National Register of Clinical Trials (DRKS00010538),
where we retrospectively registered this study. The eth-
ics committee of the Karlsruhe Institute of Technology
(Karlsruhe, Germany) granted ethical approval.

Study design
We performed a multicenter, parallel group randomized
controlled trial with baseline and post-intervention assess-
ments. We allocated participants to an intervention group
(IG) or control group (CG) with an allocation ratio of 2:1
using minimization software (MinimPy, Version 0.3 [54]).
This allocation ratio accounts for assumed higher dropout
quotes and insufficient adherence to the MEP in the IG.
The randomization was carried out separately for each of
the 36 care facilities that served as recruitment sites, and
minimization considered age, sex, Mini-Mental State
Examination (MMSE) score and performance in the
modified 30-s chair stand test (30s CST) of participants

Fig. 1 Direct and indirect effects of physical activity on gait performance
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(for details please refer to our study protocol [53]). If pos-
sible, we blinded investigators who examined gait, motor,
and cognitive performance to group allocation, i.e., the in-
vestigators did not know whether a participant was part of
the IG or CG in order to ensure objectivity of testing.
However, it was not possible to blind participants. In few
cases, participants themselves disclosed their group alloca-
tion to investigators.

Participants
A power analysis (G*Power 3, Version 3.1.9.2 [55], two-
factor analysis of variance (ANOVA) with repeated mea-
surements, two groups, two measurements, α = 0.05, 1-
β = 0.80, η2 = 0.01) revealed a required total sample size
of 200 participants. Considering various potential rea-
sons for dropout, missing data, and low adherence to the
MEP, we set the sample size to 405 participants. Partici-
pants were recruited from 36 care facilities in South-
Western Germany that had been contacted by the re-
search team and asked whether they would be interested
to participate in the study. Employees of the respective
care facilities that were identified by the respective lead-
ership to help with the conduct of the study identified
potential eligible participants, which had to fulfill the fol-
lowing inclusion and exclusion criteria:
Inclusion criteria: a) diagnosis of dementia or “sus-

pected” dementia (i.e. person with dementia as suspected
by the treating physician based on ICD-10 criteria and
MMSE performance but without a confirmed diagnosis
or awaiting further clinical evaluation); b) Alzheimer’s
disease, vascular dementia, or other primary dementia;
c) mild to moderate severity of dementia (MMSE score:
10–24); d) age above 65 years; e) walking ability of about
10 meters with or without walking aid; and f) clearance
from general practitioner.
Exclusion criteria: a) secondary dementia; b) other se-

vere cognitive impairments; c) other severe neurological
diseases; d) any severe acute diseases; and e) severe
motor impairments.
Based on these inclusion and exclusion criteria, we

verified the eligibility of participants at baseline assess-
ment. Furthermore, we obtained written informed con-
sent prior to the study from all participants or their legal
guardians, respectively. Participation in this study was
voluntary.

Sample characteristics
The employees of the care facilities documented charac-
teristics of participants including sex, year of birth, diag-
nosis of dementia, etiology of dementia, walking aids,
depression, Cumulative Illness Rating Scale (CIRS) [56],
and medication intake within 2 weeks of baseline assess-
ments based on medical reports. Whenever possible, we
asked physicians to retrospectively provide any missing

information on their patients. In addition, we measured
body weight and height in all participants.

Intervention
Details of the intervention including examples of motor
and cognitive tasks, ritualization as well as progression
of exercise intensity and requirements during the course
of the study are described in the study protocol [53].
Briefly, participants in the IG underwent an MEP com-
bining motor (i.e. strength, balance, endurance, and
flexibility) and cognitive tasks (i.e. memory, attention,
language, and executive function). The MEP was tailored
to fit the specific needs (e.g. sense of security and safety,
clear verbal instruction, simplicity of tasks) and charac-
teristics (e.g. impaired memory and attention, decreased
mobility, increased fall risk) of IWD, and was delivered
in the care facilities by instructors who had been specif-
ically trained for the purpose of this study. All instruc-
tors were experienced in sports science and participated
in a comprehensive training focusing on structure and
contents of MEP as well as specific demands of IWD
prior to delivering the intervention.
In order to provide a sense of security for partici-

pants, the MEP included a ritualization that ensured
an identical sequence for all sessions. During each
session, participants were asked to imagine a journey
while performing appropriate motor and cognitive ex-
ercises. For example, participants performed different
mobilization exercises while imagining packing their
luggage as beginning ritual. The journey as well as re-
lated motor and cognitive exercises alternated
throughout the course of the study. The MEP took
place twice a week over a period of 16 weeks. Ses-
sions had a duration of 60 min including about 45
min of physical exercise (the remaining 15 min were
used to explain exercises, to welcome and say
goodbye to participants, to answer questions or to
take a short break and drink water). The MEP was
delivered in a group setting (max. 12 participants, 2
instructors) and was mainly performed in a seated
position with medium to submaximal intensity. Fur-
thermore, it contained tasks in standing position and
specific walking exercises. Intensity and requirements
were determined on the basis of duration of exercises,
number of repetitions, applied training devices, and
amount of tasks in standing position as well as walk-
ing exercises. During the course of the 16 weeks, we
increased the intensity of the sessions as well as the
degree of motor and cognitive requirements, which
were determined in the training manual. Both CG
and IG participants received individually tailored con-
ventional treatment (e.g. medication, care, or thera-
peutic applications) as part of standard care in their
care facilities.
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Outcome measurements
We examined gait performance as outcome of interest
with various spatiotemporal gait parameters of the
right leg: walking speed (m/sec), stride length (cm),
stride time (sec), double support phase (% of stride
time), and stance phase (% of stride time). Gait ana-
lysis was performed using the electronic gait analysis
system GAITRite (CIR Systems Inc., Franklin, USA,
active length of 4.88 m), which has been shown to be
reliable in IWD [57, 58]. All participants underwent
gait analysis in single and two dual task conditions
(i.e. counting backwards starting from 50 and naming
animals while walking) to also assess dual tasks costs
of walking while talking [59, 60]. The same dual tasks
were applied for baseline and post assessment.
To eliminate acceleration and deceleration during the

recording, we asked participants to start walking two me-
ters in front of the GAITRite system and to stop walking
two meters behind the system [59]. While walking at com-
fortable speed, participants were allowed to use walking
aids as applied in everyday life. Instructions were repeated
if necessary. We asked participants to repeat all conditions
up to five times to generate three valid walks. Valid trials
consisted of a minimum of six consecutive steps of
steady-state walking, and complied with satisfactory cog-
nitive performance in dual task conditions (i.e., stating at
least three numbers in correct order and naming at least
one animal, respectively). To prevent potential bias due to
fatigue, participants were asked to rest between the trials
if needed and we limited the assessment to five trials; thus,
few participants had less than three valid trials. For statis-
tical analysis, we considered the trial with the smallest dif-
ference to mean walking speed of all valid trials of one
condition. We calculated dual-task costs using the equa-

tion dual task − single task
single task x 100 [61, 62]. Dual task costs show

the percentage difference between parameters assessed
during single and dual task conditions (e.g., walking speed
or stride length) and thus reflect the impact of the add-
itional cognitive task on these spatiotemporal gait parame-
ters [61, 62].
In order to analyze differences between positive, nega-

tive, and non-responders, as well as impacts of changes in
underlying motor and cognitive performance on changes
in gait performance, we determined related outcomes
using the motor and cognitive assessments displayed in
Table 1. Experienced study staff with background in sports
science supervised and administered all assessments. The
reader is referred to the published study protocol [53] for
a detailed description of all assessments.

Statistical analysis
Statistical analysis was performed using IBM SPSS Ver-
sion 25 (IBM Corporation, Armonk, USA). We ran a per

protocol analysis including participants who had a MEP
adherence of at least 75% (only in IG) and a complete
assessment of spatiotemporal gait parameters in at least
one condition of the gait assessment using GAITRite
(i.e. single or two dual task conditions). Additionally, we
implemented an intention-to-treat analysis and used
multiple imputation (fully conditional specification im-
putation method, ten imputations, and ten iterations) to
account for missing data. However, we did not impute
data of deceased participants. To ensure plausibility of
imputed data in the intention-to-treat analysis, we de-
fined the following constraints: gait performance as both
outcome and predictor variable, adherence to the MEP
as well as related motor and cognitive performance as
predictor variables only; minimum and maximum values
according to observed range in each variable; rounding
according to original data; and 100 maximal case draws,
ten maximal parameter draws. We considered pooled re-
sults as provided by SPSS or reported ranges observed
throughout the imputations, if SPSS did not support the
pooling procedure, as final point estimates.
Required assumptions were tested before performing

statistical analyses. For comparison of baseline values
and sample characteristics between IG and CG, we used
Chi-square tests, Mann-Whitney-U-Tests, and unpaired
T-Tests according to the scaling of the investigated out-
come. We analyzed treatment effects using two-factor
ANOVA with repeated measurements (time*group ef-
fects), and supplemented paired T-Tests (within group
time effects). A two-sided p-value less than 0.05

Table 1 Motor and cognitive assessments to analyze
differences between positive, non-, and negative responders, as
well as impacts of changes in underlying motor and cognitive
performance on changes in gait performance

Outcome Assessment

Balance Frailty and Injuries: Cooperative Studies of
Intervention Techniques - subtest 4 (score)
[63]

Mobility Timed Up & Go Test (TUG; time in s) [64]

Strength and function of
lower limb

Modified 30-Second Chair-Stand Test (30s
CST; number of repetitions) [65, 66]
Modified Short Physical Performance
Battery (SPPB; score) [67]a

Global cognition Mini-Mental State Examination (MMSE;
score) [68]

Executive function and
visual-spatial cognition

Clock Drawing Test (adapted Sunderland
score) [69, 70]

Executive function and
processing speed

Trail Making Test A (established score
considering time, final number, and non-
corrected mistakes, a higher score indi-
cates better performance) [71, 72]

Attention and working
memory

Digit Span forward and backward
(number of correct digit spans) [73]

aStanding balance, gait speed, and modified 5 times sit-to-stand (with
using arms)
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indicated statistical significance. To account for multiple
comparisons, we also considered adjusted significance
levels using Bonferroni-Holm correction in primary
analyses. Additionally, we calculated 95% confidence
intervals of differences between baseline and post-
intervention assessments and partial Eta2.
In secondary exploratory analyses, we included walking

speed, stride length, and double support of the per proto-
col IG sample and determined differences in baseline per-
formance (i.e. balance, mobility, strength and function of
lower limbs, executive function, attention, and working
memory) and selected sample characteristics (i.e. severity
of cognitive impairments, etiology of dementia, and use of
walking aids) between positive, non-, and negative re-
sponders using Chi-square tests, Kruskal-Wallis-Tests,
and one-factor ANOVA. For post-hoc analyses, we used
Dunn-Bonferroni-Tests and Tukey-Kramer post-hoc tests,
respectively. R and partial Eta2 served as effect sizes. We
defined positive responders as those participants, who im-
proved their gait performance at least 10% during the 16-
week MEP, while negative responders showed a decline of
at least 10% in gait performance, and non-responders were
participants with less than 10% improvement or decline.
This definition was based on percentage minimal detect-
able changes at 95% confidence interval of considered spa-
tiotemporal gait parameters which ranged between 7 and
12% in a reliability study using GAITRite [58, 74]. The
minimal detectable change is a measure of absolute reli-
ability, which delineates “expected” from “true” changes in
performance [57]. Moreover, we assessed the potential im-
pact of changes in underlying motor and cognitive per-
formance on changes in gait performance using multiple
linear regression models with stepwise selection. Based on
theoretical assumptions, we considered changes in bal-
ance, mobility, strength and function of lower limbs, ex-
ecutive function, attention, and working memory as
independent variables. The calculated effect size is f2.

Results
Recruitment and flow of participants
Recruitment took place between March 2015 and March
2017. We screened 600 IWD for eligibility, of whom 319
were enrolled in the study. Of these, 201 participants
were allocated to the IG and 118 to the CG. There was a
dropout rate of 8% in both IG and CG, respectively. Rea-
sons for dropouts are given in Fig. 2. There were no sta-
tistically significant differences in sample characteristics
or baseline measurements between participants who
dropped out versus those who completed the study. The
mean adherence in the IG was 62%. Overall, 107 partici-
pants (53%) of the IG completed the MEP in accordance
with the study protocol, i.e. defined by a minimum ad-
herence of at least 75% of all sessions. 65% of partici-
pants in the IG and 62% of participants in the CG

completed at least one condition of gait analysis at base-
line and post-intervention assessment. Based on the
above-mentioned criteria, 163 participants could be con-
sidered for the per protocol analysis. Even though we ex-
tended our initially planned recruitment phase for an
additional year, we were not successful in reaching our
intended sample size of 405 participants. This is due to
the fact that the number of participants who did not ful-
fill our inclusion and exclusion criteria was much larger
than expected. Nevertheless, a sensitivity analysis using
G*Power 3 (Version 3.1.9.2 [55]) showed that we were
still able to detect small to medium effects with our ac-
tual sample size (η2 = 0.013 to 0.018). Figure 2 displays
the flow of participants and states the reasons for drop-
outs and non- participations in assessments.

Sample characteristics
Table 2 provides an overview of the characteristics of
participants at baseline (per protocol analysis; see Add-
itional file 1 for sample characteristics of the intention-
to-treat analysis). High rates of dependency on walking
aids and a high mean CIRS morbidity index as well as
number of required medications may indicate presence
of medical comorbidities in the sample. We observed no
statistically significant differences in characteristics be-
tween the IG and CG, except for the number of
medications.

Effects of the multimodal exercise program on
spatiotemporal gait parameters
Per protocol analysis
Participants of the IG (per protocol sample) had a mean
adherence of 92%. Table 3 presents baseline and post-
intervention values, differences between baseline and
post-intervention assessments, group differences at base-
line, within group time effects, and time*group effects
including effect sizes of spatiotemporal gait parameters
of the right leg for single and dual task conditions as
well as dual task costs. We did not observe any statisti-
cally significant time*group effects. Furthermore, results
on gait parameters of the left leg were comparable.

Intention-to-treat analysis
Missing data analysis showed an amount of missing data
ranging between 8.5% (single task condition at baseline)
and 47.6% (dual task counting backwards at post-
intervention assessment). With respect to gait perform-
ance, 194 of 319 records were incomplete. Reasons for
missing values included not participating at post-
intervention assessment (see Fig. 2), weak physical con-
dition, medical constrains, refusal, discontinuation of the
assessment, invalid gait or dual task performance, and
technical problems. Participants with incomplete data
showed lower cognitive, motor, and gait performance,
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were older, required more medication, and had worse
CIRS scores, depending on walking condition and time
of assessment. Accordingly, we assumed missing at ran-
dom situation, which is necessary to apply multiple
imputation.
Findings of the intention-to-treat analysis were com-

parable to those shown in the per protocol analysis, i.e.
we did not observe any statistically significant

time*group effects. Please refer to Additional file 2 for
results of the intention-to-treat analysis.

Differences in characteristics between positive, negative,
and non-responders (intervention group, per protocol
analysis)
When taking into account walking speed, stride
length, and double support in all three walking

Fig. 2 Flow of participants (n: number)
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conditions, between 10 and 39% of participants in the
IG improved their gait performance by at least 10%
(considered as positive responders). Moreover, 23 to
61% of IG participants did not change their gait per-
formance (considered as non-responders), while 19 to
39% showed a decline in gait performance by at least
10% (considered as negative responders). Table 4 dis-
plays the proportion of positive, non-, and, negative
responders in the IG depending on spatiotemporal
gait parameter and walking condition, as well as mean
changes in gait performance.
Positive, non-, and negative responders differed statis-

tically significantly in terms of baseline performance of
walking speed (both dual tasks), stride length (single
task, dual task naming animals), double support (single
task, both dual tasks), Timed Up & Go Test (TUG; sin-
gle task: stride length, dual task naming animals: walking
speed), modified 30s CST (single task: double support),
MMSE (single task), and proportion of walking aids
(dual task naming animals: stride length; see Table 5,
Additional file 3 presents statistically non-significant
results).

The post-hoc analysis (see Table 5) revealed statisti-
cally significantly worse performance of positive com-
pared to negative responders for walking speed (both
dual tasks), stride length (single task, dual task naming
animals), and double support (single task, both dual
tasks). Besides we found worse performance of positive
compared to non-responders for stride length (single
task), double support (single task, dual task naming ani-
mals), TUG (single task: stride length), and modified 30s
CST (single task: double support), as well as better per-
formance of non- compared to negative responders for
MMSE (single task).

Impact of changes in underlying motor and cognitive
performance on changes in gait performance
(intervention group, per protocol analysis)
Several weak to moderate correlations (|r| = 0.248–
0.436, p < 0.05) suggested relations of changes in under-
lying motor and cognitive performance with changes in
gait performance in single and both dual task conditions.
Multiple regression analyses revealed that changes in
underlying motor and cognitive performance had an

Table 2 Sample characteristics of participants at baseline (per protocol analysis)

Intervention group
[n = 90]

Control group
[n = 73]

Group differences
[t (df)/z/Chi2(df), p]

Age, years
[M (SD), range]

85 (7), 67–97 86 (5), 70–98 t(160.931) = 1.918, p = 0.057

Sex, female 82% 86% Chi2(1) = 0.500, p = 0.479

Type of dementia Chi2 = 5.693, p = 0.199

- Alzheimer’s disease 14% 15%

- Vascular dementia 21% 11%

- Mixed dementia 2% 4%

- other 2% 0%

- unknown 31% 43%

- no confirmed/unknown diagnosis 29% 27%

MMSE [M (SD), range] 17 (4), 10–24 17 (4), 10–24 t(160.446) = 0.317, p = 0.752

Use of walking aid Chi2(2) = 4.644, p = 0.098

- walker 62% 77%

- walking stick/s 9% 8%

- no walking aid 29% 15%

CIRS [M (SD), range]

- Morbidity Index 9 (4), 1–20 8 (5), 2–26 t(101) = − 0.633, p = 0.528

- Severity Index 1.5 (0.4), 1–3
not available for 31%

1.5 (0.4), 1–3
not available for 44%

z = − 0.247, p = 0.805

Number of medications [M (SD), range] 8 (4), 1–27
unknown in 22%

5 (3), 0–12
unknown in 21%

t(126) = −3.627, p < 0.001

BMI, kg/m2

[M (SD), range]
28.4 (4.4), 19.7–48.5
unknown in 3%

27.1 (4.6), 17.6–36.5
unknown in 3%

t(156) = − 1.801, p = 0.074

BMI: Body Mass Index, CIRS: Cumulative Illness Rating Scale, df: degree of freedom, M: mean, MMSE: Mini-Mental State Examination, n: number, SD:
standard deviation
Statistically significant results appear bold
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Table 3 Effects of the multimodal exercise program on spatiotemporal gait parameters and dual task costs (per protocol analysis)

Baseline

[M (SD)]

Group differences
at baseline
[t (df), p]

Post
[M (SD)]

Difference post –
baseline
[M (SD), [CI95]]

Within group
time effects
[t (df), p]

Time*group effects

F (dfnumerator,
dfdenominator), p

Effect size
ηp2

Single task (IG: n = 89, CG: n = 73)

Walking speed, m/sec IG 0.67
(0.19)

t(160) = − 1.659,
p = 0.099

0.65
(0.22)

− 0.02 (0.13),
[− 0.05, 0.00]

t(88) = 1.787,
p = 0.077

F(1,160) = 0.036,
p = 0.849

0.000

CG 0.62
(0.19)

0.60
(0.20)

−0.02 (0.13),
[− 0.05, 0.01]

t(72) = 1.373,
p = 0.174

Stride length, cm IG 82.6
(19.7)

t(159.875) = −0.842,
p = 0.401

80.5
(21.2)

−2.1 (10.9), [−4.4,
0.2]

t(88) = 1.825,
p = 0.071

F(1,160) = 0.030,
p = 0.863 a

0.000

CG 80.2
(15.7)

77.8
(16.9)

−2.4 (10.4), [−4.8,
0.0]

t(72) = 1.973,
p = 0.052

Stride time, sec IG 1.3 (0.2) t(131.361) = 2.346,
p = 0.020

1.3 (0.2) 0.0 (0.2), [0.0, 0.1] t(88) = − 1.571,
p = 0.120

F(1,160) = 0.195,
p = 0.660 a

0.001

CG 1.3 (0.2) 1.4 (0.3) 0.0 (0.2), [0.0, 0.1] t(72) = −0.853,
p = 0.397

Double support,
% of stride time

IG 38.0
(8.1)

t(160) = 1.289,
p = 0.199

39.2
(8.4)

1.1 (4.9), [0.1, 2.2] t(88) = −2.182,
p = 0.032

F(1,160) = 0.005,
p = 0.943

0.000

CG 39.6
(7.4)

40.8
(7.3)

1.2 (4.9), [0.0, 2.3] t(72) = −2.070,
p = 0.042

Stance phase,
% of stride time

IG 68.9
(4.1)

t(160) = 1.368,
p = 0.173

69.5
(4.4)

0.6 (2.5), [0.1, 1.1] t(88) = −2.208,
p = 0.030

F(1,160) = 0.004,
p = 0.949

0.000

CG 69.8
(4.1)

70.4
(4.2)

0.6 (3.1), [−0.2, 1.3] t(72) = − 1.543,
p = 0.127

Dual task, counting backwards (IG: n = 62, CG: n = 52)

Walking speed,
m/sec

IG 0.55
(0.16)

t(112) = −2.236, p =
0.027

0.54
(0.16)

−0.02 (0.14), [−
0.06, 0.02]

t(61) = 1.001,
p = 0.321

F(1,112) = 0.101,
p = 0.752

0.001

CG 0.48
(0.17)

0.47
(0.16)

−0.01 (0.15), [−
0.05, 0.03]

t(51) = 0.470,
p = 0.641

Stride length,
cm

IG 78.2
(19.1)

t(112) = −1.407,
p = 0.162

78.8
(19.5)

0.5 (11.6), [−2.4,
3.5]

t(61) = −0.359,
p = 0.721

F(1,112) = 0.193,
p = 0.661

0.002

CG 73.5
(16.6)

75.1
(16.6)

1.6 (15.3), [−2.6,
5.9]

t(51) = −0.773,
p = 0.443

Stride time,
sec

IG 1.5 (0.3) t(95.044) = 2.446,
p = 0.016

1.5 (0.4) 0.1 (0.4), [0.0, 0.2] t(61) = −1.605,
p = 0.114

F(1,112) = 0.253,
p = 0.616 a, b

0.002

CG 1.6 (0.3) 1.7 (0.5) 0.1 (0.4), [0.0, 0.2] t(51) = −2.149,
p = 0.036

Double support,
% of stride time

IG 40.6
(9.3)

t(112) = 2.110,
p = 0.037

41.3
(8.7)

0.7 (5.9), [−0.8, 2.2] t(61) = −0.998,
p = 0.322

F(1,112) = 0.042,
p = 0.839

0.000

CG 44.2
(9.1)

44.7
(9.0)

0.5 (7.4), [−1.6, 2.6] t(51) = −0.481,
p = 0.632

Stance phase,
% of stride time

IG 70.3
(5.2)

t(112) = 1.850,
p = 0.067

70.4
(4.7)

0.2 (2.9), [−0.6, 0.9] t(61) = −0.414,
p = 0.680

F(1,112) = 0.009,
p = 0.925 b

0.000

CG 72.1
(5.2)

72.3
(5.2)

0.2 (4.3), [−1.0, 1.4] t(51) = −0.359,
p = 0.721

Dual-task costs, counting backwards (IG: n = 62, CG: n = 52)

Walking speed,
%

IG −20.5
(15.2)

t(112) = −1.105,
p = 0.271

−21.0
(15.5)

−0.6 (16.6), [−4.8,
3.6]

t(61) = 0.278,
p = 0.782

F(1,112) = 0.053,
p = 0.818

0.000

CG −23.5
(14.0)

−23.4
(17.3)

0.1 (17.3), [−4.7,
5.0]

t(51) = −0.061,
p = 0.952

Stride length,
%

IG −8.8
(11.7)

t(112) = −0.853,
p = 0.395

−7.0
(9.4)

1.7 (13.0), [−1.6,
5.0]

t(61) = − 1.042,
p = 0.302

F(1,112) = 0.759,
p = 0.386 b

0.007

CG −10.5
(9.9)

−6.6
(14.6)

3.9 (13.6), [0.1, 7.7] t(51) = −2.064,
p = 0.044

Trautwein et al. BMC Geriatrics          (2020) 20:245 Page 9 of 19



Table 3 Effects of the multimodal exercise program on spatiotemporal gait parameters and dual task costs (per protocol analysis)
(Continued)

Baseline

[M (SD)]

Group differences
at baseline
[t (df), p]

Post
[M (SD)]

Difference post –
baseline
[M (SD), [CI95]]

Within group
time effects
[t (df), p]

Time*group effects

F (dfnumerator,
dfdenominator), p

Effect size
ηp2

Stride time, % IG 17.3
(17.3)

t(112) = 0.806,
p = 0.422

21.0
(23.9)

3.7 (25.7), [−2.8,
10.2]

t(61) = −1.130,
p = 0.263

F(1,112) = 0.257,
p = 0.613

0.002

CG 19.9
(17.1)

25.9
(24.3)

6.0 (22.8), [−0.3,
12.4]

t(51) = −1.905,
p = 0.062

Double support, % IG 11.0
(14.3)

t(112) = 0.305,
p = 0.761

11.9
(12.8)

1.0 (15.5), [−3.0,
4.9]

t(61) = −0.491,
p = 0.625

F(1,112) = 0.081,
p = 0.776

0.001

CG 11.7
(10.8)

11.8
(14.8)

0.1 (15.1), [−4.1,
4.3]

t(51) = −0.069,
p = 0.945

Stance phase, % IG 3.1 (4.5) t(112) = 0.095,
p = 0.924

2.9 (3.6) −0.2 (4.8), [−1.4,
1.1]

t(61) = 0.252,
p = 0.802

F(1,112) = 0.130,
p = 0.719

0.001

CG 3.1 (3.7) 3.3 (4.8) 0.2 (5.5), [−1.3, 1.7] t(51) = −0.254,
p = 0.800

Dual task, naming animals (IG: n = 61, CG: n = 59)

Walking speed, m/sec IG 0.45
(0.14)

t(118) = −1.797,
p = 0.075

0.43
(0.13)

−0.01 (0.12), [−
0.04, 0.02]

t(60) = 0.805,
p = 0.424

F(1,118) = 0.972,
p = 0.326

0.008

CG 0.40
(0.14)

0.41
(0.13)

0.01 (0.12), [−0.02,
0.04]

t(58) = −0.593,
p = 0.555

Stride length, cm IG 70.4
(18.1)

t(118) = −1.415,
p = 0.160

71.2
(17.7)

0.9 (11.0), [−2.0,
3.7]

t(60) = −0.620,
p = 0.538

F(1,118) = 0.040,
p = 0.841

0.000

CG 65.9
(16.3)

66.3
(14.9)

0.4 (13.2), [−3.0,
3.9]

t(58) = −0.252,
p = 0.802

Stride time, sec IG 1.6 (0.4) t(118) = 1.480,
p = 0.141

1.7 (0.4) 0.1 (0.3), [0.0, 0.2] t(60) = −1.823,
p = 0.073

F(1,118) = 3.448,
p = 0.066

0.028

CG 1.7 (0.5) 1.7 (0.5) 0.0 (0.3), [−0.1, 0.1] t(58) = 0.801,
p = 0.426

Double support, % of
stride time

IG 45.9
(9.4)

t(118) = 1.526,
p = 0.130

45.2
(8.6)

−0.7 (7.1), [−2.5,
1.1]

t(60) = 0.758,
p = 0.452

F(1,118) = 0.085,
p = 0.771

0.001

CG 48.5
(9.5)

48.2
(8.6)

−0.3 (7.2), [−2.2,
1.6]

t(58) = 0.326,
p = 0.746

Stance phase, % of
stride time

IG 72.4
(4.7)

t(118) = 2.233,
p = 0.027

72.3
(4.4)

−0.1 (3.9), [−1.1,
0.9]

t(60) = 0.241,
p = 0.810

F(1,118) = 0.107,
p = 0.744

0.001

CG 74.5
(5.5)

74.1
(5.1)

−0.3 (3.7), [−1.3,
0.6]

t(58) = 0.727,
p = 0.470

Dual-task costs, naming animals (IG: n = 60, CG: n = 59)

Walking speed, % IG −34.4
(15.9)

t(117) = −0.520,
p = 0.604

−32.4
(18.6)

2.0 (19.7), [− 3.1,
7.1]

t(59) = − 0.776,
p = 0.441

F(1,117) = 0.696,
p = 0.406 a

0.006

CG −35.9
(16.0)

−31.2
(14.6)

4.8 (16.6), [0.4, 9.1] t(58) = −2.204,
p = 0.032

Stride length, % IG −17.9
(11.1)

t(117) = −0.406,
p = 0.685

− 14.3
(12.4)

3.7 (15.4), [− 0.3,
7.6]

t(59) = − 1.842,
p = 0.070

F(1,117) = 0.007,
p = 0.931

0.000

CG −18.8
(12.5)

−14.9
(12.7)

3.9 (12.9), [0.5, 7.3] t(58) = −2.316,
p = 0.024

Stride time, % IG 30.1
(27.1)

t(117) = 0.326,
p = 0.745

33.2
(29.8)

3.2 (30.3), [−4.7,
11.0]

t(59) = −0.807,
p = 0.423

F(1,117) = 2.558,
p = 0.112 b

0.021

CG 31.6
(24.6)

27.2
(22.7)

−4.4 (20.4), [−9.7,
0.9]

t(58) = 1.669,
p = 0.100

Double support, % IG 25.4
(17.6)

t(117) = −0.643,
p = 0.522

21.5
(17.8)

−3.9 (21.7), [− 9.5,
1.7]

t(59) = 1.401,
p = 0.166

F(1,117) = 0.005,
p = 0.946

0.000

CG 23.4
(15.6)

19.3
(16.2)

−4.2 (15.7), [−8.3,
−0.1]

t(58) = 2.027,
p = 0.047
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impact on changes in gait performance. Related models
were statistically significant and explained 12.6 to 39.4%
of the overall variance. Changes in TUG, modified 30s
CST, modified Short Physical Performance Battery
(SPPB), Clock Drawing Test, Digit Span forward and
backward, and Trail Making Test had statistically signifi-
cant regression coefficients (p < 0.05). Generally, im-
provements in gait performance were associated with
improvements in motor and cognitive assessments.
Table 6 presents the details of the multiple regression
analysis models.

Discussion
Effects of the multimodal exercise program on
spatiotemporal gait parameters
This multicenter randomized controlled trial aimed to
investigate the effectiveness of a dementia-specific MEP,
which combined motor and cognitive tasks, on gait per-
formance. As we did not observe any statistically signifi-
cant time*group effects, our primary hypothesis that a

16-week MEP may have a differential effect on gait per-
formance in IWD as compared to conventional treat-
ment alone could not be confirmed. This may be
explained by the heterogeneity of the study sample or
the relatively low amount of walking tasks included in
the intervention.
With regard to sample characteristics as well as motor,

cognitive, and gait performance at baseline, we observed
large standard deviations indicating that the sample of
IWD was highly heterogeneous in our study (see Tables 2
and 3, and Additional file 4). Due to this large heterogen-
eity, it was very difficult to adequately tailor one standard-
ized physical activity intervention to the needs of all
participants, and we postulate that there is likely no stand-
ard physical activity intervention that fits all IWD.
With respect to the applied intervention, an analysis of

components of the MEP showed that it did not include
a large amount of specific walking tasks. Even though
we had planned to increase the number of exercises fo-
cusing on walking throughout the intervention, this was

Table 3 Effects of the multimodal exercise program on spatiotemporal gait parameters and dual task costs (per protocol analysis)
(Continued)

Baseline

[M (SD)]

Group differences
at baseline
[t (df), p]

Post
[M (SD)]

Difference post –
baseline
[M (SD), [CI95]]

Within group
time effects
[t (df), p]

Time*group effects

F (dfnumerator,
dfdenominator), p

Effect size
ηp2

Stance phase, % IG 6.3 (4.5) t(117) = 0.832,
p = 0.407

5.5 (5.0) −0.7 (6.0),
[−2.3, 0.8]

t(59) = 0.986,
p = 0.337

F(1,117) = 0.389,
p = 0.534

0.003

CG 7.0 (4.9) 5.6 (4.6) −1.4 (4.8),
[−2.6, −0.1]

t(58) = 2.183,
p = 0.033

Statistically significant results appear bold for α = 0.05. When considering adjusted significance levels using Bonferroni-Holm correction for multiple comparisons,
no statistically significant results were observed
CG: control group, CI95: 95% confidence interval, df: degrees of freedom, IG: intervention group, M: mean, n: number, SD: standard deviation
avariance homogeneity not fulfilled
bcovariance homogeneity not fulfilled

Table 4 Positive, non-, and negative responders in the intervention group and mean changes in gait performance (per protocol
analysis)

All Negative responders Non-responders Positive responders

n Mean change (SD) % Mean change (SD) % Mean change (SD) % Mean change (SD)

Single task

Walking speed, m/sec 89 −0.03 (0.21) 35% −0.22 (0.09) 48% −0.01 (0.05) 17% 0.32 (0.19)

Stride length, cm 89 −2.07 (14.98) 26% −19.59 (10.15) 57% −0.75 (5.42) 17% 20.30 (9.81)

Double support, % of stride time 89 3.57 (12.58) 29% 18.99 (8.62) 61% −0.57 (4.69) 10% −16.15 (6.08)

Dual task, counting backwards

Walking speed, m/sec 62 0 (0.26) 39% −0.26 (0.11) 23% −0.02 (0.04) 39% 0.27 (0.14)

Stride length, cm 62 2.06 (17.08) 19% −18.36 (7.05) 50% −2.18 (4.88) 31% 21.87 (13.99)

Double support, % of stride time 62 3.16 (14.32) 29% 20.67 (9.37) 55% −0.36 (5.56) 16% −16.44 (4.76)

Dual task, naming animals

Walking speed, m/sec 61 0.02 (0.29) 34% −0.27 (0.12) 31% −0.01 (0.06) 34% 0.33 (0.23)

Stride length, cm 61 3.49 (19.36) 23% −18.66 (7.34) 49% 0.94 (6.27) 28% 26.21 (17.33)

Double support, % of stride time 61 −0.14 (14.68) 23% 21.12 (9.04) 56% −1.99 (4.65) 21% −18.20 (6.27)

n: number, SD: standard deviation
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often not possible due to our principle of ensuring the
safety of participants at all times during the MEP. Add-
itionally, we assumed that tasks aiming to improve bal-
ance, mobility, strength and function of lower limbs may
be sufficient to positively affect gait performance [75–

78]. However, based on our findings, this assumption
could not be confirmed. Thus, including a sufficient
amount of specific walking exercises should be ensured
in future physical activity interventions that aim at im-
proving gait performance.

Table 5 Statistically significant differences in baseline motor and cognitive performance as well as the use of walking aids between
positive, non-, and negative responders in the intervention group (per protocol analysis)

Negative
responders

Non-
responders

Positive
responders

Between group difference Post-hoc analysis

Mean (SD) Mean (SD) Mean (SD) F (dfnumerator, dfdenominator)/
Chi2(df), p

Single task, walking speed

MMSE (n = 89) 14.8 (4.0) 18.5 (3.9) 16.7 (5.1) Chi2(2) = 12.093, p = 0.002 z = −3.472, p = 0.002, r = 0.404 a

Single task, stride length

Stride length, cm (n = 89) 80.3 (19.9) 89.4 (15.2) 62.7 (20.0) F(2,86) = 14.129, p < 0.001,
ηp

2 = 0.247
p = 0.008, MD = -17.60, CI95 [−31.32,
− 3.89] b

p < 0.001, MD = -26.79, CI95 [−
38.93, −14.65] c

TUG, sec (n = 89) 22.9 (10.9) 19.0 (7.6) 31.5 (20.0) Chi2(2) = 8.234, p = 0.016 z = −2.800, p = 0.015, r = 0.325 c

MMSE (n = 89) 14.5 (3.5) 17.8 (4.3) 17.4 (5.2) Chi2(2) = 9.510, p = 0.009 z = −3.046, p = 0.007, r = 0.354 a

Single task, double support

Double support, % of stride
time (n = 89)

36.2 (6.9) 37.4 (7.3) 47.3 (10.4) F(2,86) = 7.721, p = 0.001
ηp

2 = 0.152
p = 0.001, MD = 11.09, CI95 [4.13,
18.05] b

p = 0.001, MD = 9.89, CI95 [3.41,
16.37] c

Modified 30s CST (n = 77) 7.5 (3.3) 9.0 (3.7) 4.8 (1.7) F(2,74) = 4.508, p = 0.014,
ηp2 = 0.109

p = 0.020, MD = -4.14, CI95 [−7.73,
−0.55] c

MMSE (n = 89) 15.1 (3.9) 17.9 (4.3) 16.3 (5.4) Chi2(2) = 6.742, p = 0.034 z = −2.558, p = 0.032, r = 0.286 a

Dual task, counting backwards, walking speed

Walking speed, m/sec (n = 62) 0.63 (0.17) 0.57 (0.11) 0.47 (0.15) F(2,59) = 6.336, p = 0.003,
ηp2 = 0.177

p = 0.001, MD = -15.08, CI95 [−25.35,
−4.81] b

Dual task, counting backwards, stride length

No statistically significant differences

Dual task, counting backwards, double support

Double support, % of stride
time (n = 62)

37.7 (9.2) 40.0 (7.1) 47.8 (12.9) Chi2(2) = 6.496, p = 0.039 z = −2.532, p = 0.034, r = 0.479 b

Dual task, naming animals, walking speed

Walking speed, m/sec (n = 61) 0.52 (0.11) 0.47 (0.13) 0.36 (0.12) F(2,58) = 9.917, p < 0.001,
ηp

2 = 0.255
p < 0.001, MD = -16.40, CI95 [−25.44,
−7.35] b

TUG, sec (n = 61) 18.8 (9.2) 20.8 (16.9) 24.8 (12.1) Chi2(2) = 6.360, p = 0.042 n.s.

Dual task, naming animals, stride length

Stride length, cm (n = 61) 77.9 (14.0) 71.8 (18.3) 61.6 (18.3) F(2,58) = 3.596, p = 0.034,
ηp2 = 0.110

p = 0.031, MD = -16.36, CI95 [−31.46,
−1.26] b

Walking aid, % (n = 61) 85.7% 50.0% 82.4% Chi2 = 7.540, p = 0.020

Dual task, naming animals, double support

Double support, % of stride
time (n = 61)

41.9 (8.6) 44.7 (7.9) 53.2 (10.2) F(2,61) = 6.570, p = 0.003,
ηp2 = 0.185

p = 0.003, MD = 11.35, CI95 [3.38,
19.32] b

p = 0.010, MD = 8.55, CI95 [1.79,
15.30] c

30s CST: 30-s chair stand test, CI95: 95% confidence interval, df: degrees of freedom, MD: mean difference, MMSE: Mini-Mental State Examination, n :number, n.s.:
not significant, SD: standard deviation, TUG: Timed Up & Go Test
a post-hoc analysis: statistically significant better performance of non- compared to negative responders
b post-hoc analysis: statistically significant worse performance of positive compared to negative responders
c post-hoc analysis: statistically significant worse performance of positive compared to non-responders
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Table 6 Impacts of changes in underlying motor and cognitive performance on changes of gait performance (intervention group,
per protocol analysis)

B SE β t p R2 Adjusted R2 F (dfnumerator, dfdenominator), p f2

Single task, changes in walking speed (n = 51)

Model 0.207 0.191 F(1,49) = 12.826, p = 0.001 0.24

Constant −1.082 1.696 −0.638 0.526

Changes in TUG −0.915 0.256 −0.455 −3.581 0.001

Single task, changes in stride length (n = 51)

Model 0.146 0.128 F(1,49) = 8.352, p = 0.006 0.15

Constant −2.774 1.518 −1.828 0.074

Changes in modified SPPB 2.107 0.729 0.382 2.890 0.006

Single task, changes in double support (n = 51)

Model 0.144 0.126 F(1,49) = 8.210, p = 0.006 0.14

Constant 1.218 0.520 2.341 0.023

Changes in modified SPPB −0.716 0.250 −0.379 −2.865 0.006

Dual task, counting backwards, changes in walking speed (n = 42)

Model 0.387 0.356 F(2,39) = 12.322, p < 0.001 0.55

Constant −5.331 1.995 −2.728 0.010

Changes in Clock Drawing Test 3.597 0.961 0.474 3.742 0.001

Changes in modified 30s CST 2.881 0.765 0.477 3.767 0.001

Dual task, counting backwards, changes in stride length (n = 42)

Model 0.334 0.300 F(2,39) = 9.771, p < 0.001 0.43

Constant −0.661 1.626 −0.406 0.687

Changes in modified SPPB 2.117 0.875 0.359 2.420 0.020

Changes in modified 30s CST 1.519 0.716 0.314 2.122 0.040

Dual task, counting backwards, changes in double support (n = 42)

Model 0.438 0.394 F(3,38) = 9.871, p < 0.001 0.65

Constant 2.449 0.654 3.745 0.001

Changes in Clock Drawing Test −1.167 0.306 −0.469 −3.814 < 0.001

Changes in modified 30s CST −0.934 0.244 −0.472 −3.834 < 0.001

Changes in Digit Span backward −0.682 0.333 −0.250 −2.052 0.047

Dual task, naming animals, changes in walking speed (n = 40)

Model 0.280 0.241 F(2,37) = 7.184, p = 0.002 0.31

Constant −1.991 1.823 −1.092 0.282

Changes in modified 30s CST 1.796 0.706 0.364 2.544 0.015

Changes in Trail Making Test 0.501 0.228 0.313 2.192 0.035

Dual task, naming animals, changes in stride length (n = 40)

Model 0.296 0.258 F(2,37) = 7.788, p = 0.002 0.35

Constant −0.360 1.681 −0.214 0.832

Changes in modified SPPB 2.790 0.781 0.500 3.571 0.001

Changes in Clock Drawing Test −1.774 0.785 −0.316 −2.259 0.030

Dual task, naming animals, changes in double support (n = 40)

Model 0.198 0.177 F(1,38) = 9.378, p = 0.004 0.22

Constant 1.426 0.927 1.538 0.132

Changes in Digit Span forward −1.736 0.567 −0.445 −3.062 0.004

30s CST: 30-s chair stand test, df: degrees of freedom, n: number, SE: standard error, SPPB: Short Physical Performance Battery, TUG: Timed Up & Go Test
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Differences in characteristics between positive, negative,
and non-responders and impact of changes in underlying
motor and cognitive performance on changes in gait
performance
Despite not having observed positive overall effects, add-
itional analyses showed that between 61 and 81% of par-
ticipants in the IG improved or maintained their gait
performance after participating in the MEP. In studies
among IWD, who usually experience rapid decline of
motor, cognitive, and gait performance [8], even main-
taining the current levels of performance is indicative of
a beneficial effect. In order to better understand the pre-
requisites and impacts to induce such benefits from
physical activity interventions, we conducted secondary
analyses that focused on examining differences of base-
line performance and sample characteristics between
positive, non-, and negative responders, and also consid-
ered impacts of underlying changes in motor and cogni-
tive performance on changes in gait performance.
As compared to negative and non-responders, positive

responders primarily showed lower gait performance at
baseline and additionally demonstrated lower perform-
ance in single motor assessments. Moreover, non-
responders were less cognitively impaired than negative
responders. Accordingly, low motor and gait perform-
ance as well as increased cognitive performance appear
to be prerequisites for IWD in order to benefit from the
MEP. Additionally, stepwise regression analyses sup-
ported the hypothesis that changes in underlying motor
and cognitive performance have an impact on changes
in gait performance. Indeed, the respective statistical
models explained between 12.6 and 39.4% of the overall
variance.
Focusing on prerequisites related to the effectiveness

of the MEP, the observed lower motor performance of
positive responders compared to non- and negative re-
sponders at baseline may indicate a greater potential for
performance improvements for participants who enter
the intervention with lower baseline levels of motor per-
formance. As described above, it was not always possible
to include more complex walking tasks throughout our
intervention. Accordingly, the requirements necessary to
induce improvements may not have reached critical
thresholds in all participants. Moreover, our findings
support the assumption that IWD must have sufficient
cognitive capacities in order for them to successfully
participate in physical activity interventions. In contrast,
severe cognitive impairments may affect IWD in follow-
ing instructions or adequately performing exercise tasks.
Individuals with more severe cognitive impairments may
depend even more on specific didactic concepts.
Surprisingly, we observed a statistically significant

higher cognitive performance only among non-
responders and in single task conditions. Positive

responders also showed higher cognitive performance
than negative responders, albeit not reaching statistical
significance possibly due to a relatively lower number of
positive responders. When we compared cognitive per-
formance of participants in single and dual task condi-
tions, we observed that participants with more severe
cognitive impairments were less likely to successfully
perform the walking with additional dual tasks (single
task: MMSE = 16.9 (4.5), 45% with MMSE < 17; dual
task: MMSE = 18.4 (4.0)/17.8 (4.3) 29%/26% with MMSE
< 17). Accordingly, cognitive performance of participants
who completed dual task conditions was more consist-
ent and this may explain why cognitive performance did
not differ between positive, non-, and negative
responders.
Stepwise regression analyses showed differential im-

pacts of changes in underlying motor and cognitive per-
formance, depending on spatiotemporal gait parameter
and walking condition. As expected, improvements in
gait performance were associated with improvements in
underlying motor and cognitive performance. The ob-
served opposite relation between stride length in dual
task naming animals condition and the Clock Drawing
Test requires further examination. The amount of ex-
plained variance was higher for dual task than single task
conditions. In dual task conditions, changes in motor
and cognitive performance were statistically significant
predictors, while gait parameters in the single task con-
dition were only affected by motor predictors. Accord-
ingly, changes in cognitive performance may be
particularly required for changes in dual task conditions,
which are primarily determined by motor and cognitive
demands. Dual task performance while walking is highly
relevant with regard to fall prevention, and worse per-
formance is associated with increased risk of falls [13].
Thus, fall prevention interventions should consider dual
tasks and include both, motor and cognitive exercises.
At the motor level, changes in strength and function

of lower limbs as well as mobility were statistically sig-
nificant predictors. The related performance was
assessed with modified 30s CST, modified SPPB, which
considers balance, mobility, and strength, and TUG.
These findings indicate that there are several motor im-
pacts related to changes in gait performance, and further
emphasize the importance of multimodal interventions.
Unexpectedly, changes in balance performance were not
a statistically significant predictor. However, we assessed
balance only in static positions, which may have different
demands as compared to dynamic balance conditions
while walking [79, 80]. Moreover, the frequent use of
walking aids may have eliminated the potential impact
of changes in balance performance [81]. Assumptions at
the cognitive level could not be made, as cognitive pre-
dictors differed across established regression models.

Trautwein et al. BMC Geriatrics          (2020) 20:245 Page 14 of 19



Comparison with previous studies
The findings of this randomized controlled trial are not
fully in line with those observed in previous studies. In
contrast to previous studies, which predominantly re-
ported positive effects for stride length and stride time
in single and dual task conditions [39–46], our investiga-
tion did not confirm the effectiveness of an MEP for
these spatiotemporal gait parameters. In accordance with
20 previous studies, we did not observe statistically sig-
nificant effects on walking speed [24–38, 42, 44, 47, 48]
and percent of double support [44, 45], while twelve
others did for single [17–23, 40, 41, 43, 46] and dual task
conditions [28].
These inconsistent findings may be related to different

study designs, gait assessments, interventions, and sam-
ple characteristics between previous research and our
study. For example, studies considering walking speed in
single task condition and reporting positive effects are
characterized by more walking tasks included in the
intervention [17, 19–21, 23, 40, 41, 43], higher exercise
intensities [19, 20, 43], participants with less cognitive
impairments [19, 21, 43], worse baseline walking per-
formance [17, 18, 22, 23, 46], better baseline walking
performance [19, 20, 43], as well as assessing gait per-
formance during fast walking [27, 29, 31, 48] compared
to our study. While the first four observations reflect the
results and indications of this study, better baseline
walking performance may enable instructors to imple-
ment higher exercise intensities and larger amounts of
specific walking tasks. Moreover, fast walking speed may
be a more specific indicator for changes. However, these
indications need to be considered with caution, as sev-
eral impacts and the heterogeneity of previous studies
hamper comparisons.
Heterogeneity is a challenge also occurring in other

studies. Some differences between our study and studies
showing positive effects (considering walking speed in
single task condition) may be due to less cognitive im-
pairments of participants [19, 21, 43], only including
participants able to walk without walking aids [19, 40,
43, 46], hints of enhanced individual supervision [20, 21,
23, 40, 41, 46], or classification in homogeneous sub-
groups [17]. One may argue that the negative impact of
heterogeneity is less critical in groups of participants in
mild stages of dementia, as these participants are rather
able to implement different instructions. Moreover, it
can be assumed that participants not dependent on
walking aids are less likely to fall. Accordingly, it is pos-
sible to apply the same exercise for those participants,
even if they differ in their walking performance. In con-
trast, participants with enhanced fall risks rely on several
modifications due to safety reasons. Besides these differ-
ences related to sample characteristics, an enhanced in-
dividual supervision allows the individualization of

exercise tasks and adapted support. However, such con-
cepts cannot always be transferred into practice because
of limited personal resources. Accordingly, new ap-
proaches feasible in group settings are necessary, such as
the classification of homogeneous subgroups.
In addition, the etiology or underlying causes of de-

mentia, as well as frequency and duration of physical ac-
tivity interventions differ considerably among previous
studies and make a comparison somewhat difficult. For
example, previous studies have included participants
with AD, whereas other have included individuals with
mixed etiologies or have not reported etiologies. Due to
differences in underlying pathologic changes, various eti-
ologies may have a differential impact on the effects of
physical activity on motor or cognitive performance. In
addition, duration and frequency of physical activity in-
terventions in previous studies vary between 3 weeks
and 36months, with sessions carried out once per week
to twice daily. However, most studies applied a protocol
consisting of two to three sessions per week for at least
12 weeks. This is in line with recommendations of recent
systematic reviews and seems to be most effective in eli-
citing any effects on motor and cognitive performance in
IWD [82–86]. Accordingly, our intervention had a dur-
ation of 16 weeks with a frequency of two sessions per
week.
To the best of our knowledge, there are no published

studies that compared the characteristics of positive,
non-, and negative responders or investigated impacts of
changes in underlying motor and cognitive performance
on changes in gait performance.

Strengths and limitations
With this multicenter randomized controlled trial, we
aimed at conducting high-quality research to investigate
the effectiveness of a physical activity intervention on
gait performance in IWD. The strengths of the study in-
clude the emphasis on high-quality methods and a de-
tailed reporting of our methods and findings [53]. Of
note, we had a large sample size of over 300 individuals
with mild to moderate dementia, our assessments were
deemed adequate for IWD by an expert panel [87], and
our MEP was specifically tailored to fit the needs and
characteristics of IWD (please refer to [53]).
Nevertheless, several limitations pertain. First, multi-

modal interventions do not allow to unambiguously
draw conclusions about causality, i.e. observed effects
may be related to the MEP itself, but could also be due
to the group setting and thus enhanced social inter-
action, or additional attention that participants received
from the exercise instructors. Therfore, additional con-
trol conditions such as non-exercise groups that engage
in mentally stimulating or social activities such as sing-
ing or playing cards together could have helped to limit
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this potential bias. Second, insufficient intensity and spe-
cificity may be potential limitations of the MEP related
to the primary aim to improve spatiotemporal gait pa-
rameters. Several factors, such as characteristics of par-
ticipants, group setting, or field conditions did not allow
us to reach higher intensity levels, a larger amount of
specific walking tasks, and progression of the MEP as
initially planned. Importantly, the MEP was mainly per-
formed in a seated position which may have limited im-
pact on gait performance albeit we chose exercises with
medium to submaximal intensity. One potential strategy
to overcome this limitation is to conduct exercise inter-
ventions with smaller groups to ensure safety of partici-
pants while reaching higher intensities at the same time.
In line with this, the secondary analysis showed that par-
ticipants who benefitted had a lower motor baseline per-
formance. Future interventions need to better consider
individual prerequisites of participants and accordingly
adapt intensity, specificity, as well as progression of exer-
cises. Third, the assessments to determine motor per-
formance used in this study are widely used in research
but have not been specifically developed for IWD. Even
though we intensively discussed the adequateness of
these assessments during an expert panel [87] and care-
fully selected the most appropriate ones, we cannot rule
out the possibility that the use of existing assessments
not specifically designed for IWD may have led to biased
results. For example, these assessments often do not suf-
ficiently take into account fluctuating daily forms and
motivational aspects that may play a role when examin-
ing IWD. Accordingly, results could reflect unfavorable
conditions, reduced motivation, or lack of interest in-
stead of actual motor performance. Therefore, it is crit-
ically important for future research to explore tailored
motor assessments for use in IWD. Finally, our study
sample included participants that did not have a con-
firmed diagnosis of dementia, in most cases due to lim-
ited financial resources or access to diagnostic tools and
assessments. This may have an impact on the interpret-
ability of findings.

Conclusions
This multicenter randomized controlled trial contributes
to the growing body of literature that aims at improving
physical activity interventions for IWD. It shows that
one standardized MEP is not effective in reducing the
decline in gait performance among IWD in general.
However, several participants of the IG were able to im-
prove or maintain their gait performance after undergo-
ing the MEP. Moreover, findings of secondary analyses
allow for drawing conclusions on prerequisites and re-
quired changes that may be necessary for IWD to benefit
from the MEP. These factors have important

implications and should thus be considered when estab-
lishing future physical activity interventions.
Our main conclusion is that it is essential to develop

and provide individualized physical activity interventions
for IWD, and to consider individual characteristics and
needs to improve effectiveness rather than having one
standardized physical activity intervention; albeit ac-
knowledging that this is currently more applicable to a
research setting and probably more challenging for clin-
ical settings such as nursing homes. Based on observed
results in responder-non-responder-analyses, we suggest
tailoring physical activity interventions to baseline per-
formance of intended outcomes and severity of cognitive
impairment. To this end, we here provide preliminary
criteria on how to tailor physical activity interventions to
fit the specific needs of IWD. However, further investi-
gation and refinement of these criteria is needed to bet-
ter characterize different clusters of IWD. Aside from
individual characteristics and needs, it is also important
to consider intended purposes when establishing phys-
ical activity interventions.
Our findings indicate that physical activity interven-

tions aiming to improve gait performance in IWD
should include multimodal motor exercises (e.g. walking,
strength, balance, and mobility). As changes in motor
and cognitive performance are statistically significant in-
dependent predictors for changes in gait performance,
both motor and cognitive tasks should be included in in-
terventions to potentially increase the beneficial effects
on gait performance and fall prevention. Linking both
conclusions, individualized approaches, which include
relevant contributors for improving intended outcomes,
while also tailoring requirements to prerequisites and fo-
cusing on those exercises in order to improve outcomes
of especially low capacity, seem to be most promising
for improving the effectiveness of physical activity inter-
ventions in IWD.
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