
X =1.00

X =0.01
perf

lossSD
Software Design and Quality

Automated Cloud-to-Cloud Migration
of Distributed So�ware Systems

for Privacy Compliance

Master’s Thesis of

B.Sc. Philipp Weimann

at the Department of Informatics

Institute for Program Structures and Data Organization (IPD)

Reviewer: Prof. Dr. Ralf H. Reussner

Second reviewer: Jun.-Prof. Dr.-Ing. Anne Koziolek

Advisor: Dr. rer. nat. Robert Heinrich

Second advisor: Dipl.-Inform. Kiana Rostami

01. March 2017 – 07. July 2017

Karlsruher Institut für Technologie

Fakultät für Informatik

Postfach 6980

76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself, and

have not used sources or means without declaration in the text.

Karlsruhe, 07.07.2017

. .

(B.Sc. Philipp Weimann)

Abstract

With the steadily increasing number of (distributed) cloud systems and more strict data

protection regulations, an increasing interest in privacy law compliant cloud applications

arises. Many distributed cloud systems are operated without knowing whether the system

is compliant the law. When in 2018 the new EU Data Protective Regulations come into

force, severe punishments are possible if law violations are detected. A major factor

to privacy compliance is the distribution of personal data among the geo-location. We

developed, formalized, implemented and evaluated a privacy analyser to ensure privacy

law compliance. Further, we extend iObserve after the MAPE feedback loop for automated

privacy violation detection, alternative deployment generation and an according cloud

system adaptation. This way we can provide continuous privacy compliance on a soft-

ware architecture level, without code analysis. However, we require the closed world

assumption for privacy compliance. PerOpteryx is used for the generation of an alternative,

privacy compliant system deployment. Based on this alternative we compute a series

of adaptation steps to re-establish privacy compliance. On error occurrence, we make

use of the operator-in-the-loop approach of iObserve to help with the system evolution.

iObserve and PerOpteryx use the Palladio Component model as Architecture Description

Language. In this thesis, we are describing our concepts, point out implementation details

and evaluate the iObserve extension. The accuracy evaluation shows our system works as

intended and the scalability evaluation reveals the good performance characteristics.

i

Zusammenfassung

Mit der ständig wachsenden Zahl von verteilten Cloudanwendungen und immer mehr

Datenschutzverordnungen wächst das Interesse an legalen Cloudanwendungen. Jedoch

ist vielen Betreibern der Legalitätsstatus ihrer Anwendung nicht bekannt. In 2018 wird

die neue EU Datenschutzverordnung in Kraft treten. Diese Verordnung beinhaltet emp-

�ndliche Strafen für Datenschutzverletzungen. Einer der wichtigsten Faktoren für die

Einhaltung der Datenschutzverordnung ist die Verarbeitung von Stammdaten von EU-

Bürgern innerhalb der EU. Wir haben für diese Regelung eine Privacy Analyse entwickelt,

formalisiert, implementiert und evaluiert. Außerdem haben wir mit iObserve Privacy ein

System nach dem MAPE Prinzip entwickelt, dass automatisch Datenschutzverletzungen

erkennt und eine alternatives, datenschutzkonformes Systemhosting errechnet. Zudem

migriert iObserve Privacy die Cloudanwendung entsprechend dem alternativen Hosting

automatisch. Wir eine rechtskonforme Verteilung der Cloudanwendung gewährleisten,

ohne das System in seiner tiefe zu analysieren oder zu verstehen. Jedoch benötigen wir die

Closed World Assumption. Wir benutzen PerOpteryx für die Generierung von rechtskon-

formen, alternativen Hostings. Basierend auf diesem Hosting errechnen wir eine Sequenz

von Adaptionsschritten zur Wiedererlangung der Rechtskonformität. Wenn Fehler auf-

treten nutzen wir das Operator-in-the-loop Prinzip von iObserve. Als Datengrundlage

nutzen wir das Palladio Component Model. Diese Thesis beschreiben wir detailliert die

Konzepte, weisen auf Implementierungsdetails hin und evaluieren iObserve nach Präzision

und Skalierbarkeit.

iii

Contents

Abstract i

Zusammenfassung iii

1 Introduction 1
1.1 Motivation . 1

1.2 Problems . 2

1.3 Goals and Research Questions . 2

1.4 Outline . 3

2 Foundations 5
2.1 MAPE-K loop . 5

2.2 Palladio Component Model . 5

2.3 Kieker . 6

2.4 iObserve . 6

2.5 PerOpertyx . 7

3 Privacy Concept 9
3.1 General Concept . 9

3.2 Deployment Constraints . 10

3.3 Component categorization . 12

3.4 Information storage . 12

4 Overview 15

5 PCM Extension 17
5.1 General . 17

5.2 Implementation . 17

6 iObserve Extension 19
6.1 Kieker . 19

6.2 iObserve Privacy . 20

7 Privacy Analysis 23
7.1 Analysis Theory . 23

7.1.1 Required information . 23

7.1.2 Data-�ow direction . 24

7.1.3 Joining data streams . 24

7.2 Component categorization . 25

v

Contents

7.3 Deployment analysis . 27

7.4 Privacy Analysis implementation . 28

7.4.1 Information preprocessing . 29

7.4.2 Component categorization implementation 29

7.4.3 Deployment analysis implementation 30

8 PerOpteryx Extension 33
8.1 Plug-in Design . 33

8.2 PerOpteryx Modi�cation . 33

9 System Adaptation 35
9.1 Adaptation Planning . 35

9.1.1 Adaptation Actions . 36

9.1.2 Action Ordering . 37

9.2 Adaptation Execution . 38

9.3 Implementation . 38

10 Evaluation 41
10.1 Evaluation Design . 41

10.2 Evaluation Scenarios . 42

10.2.1 Scenario 1: Default . 42

10.2.2 Scenario 2: System extension . 43

10.2.3 Scenario 3: Failing Adaptation . 43

10.2.4 Scenario 4: Missing Alternative 43

10.2.5 Futile Scenario . 44

10.3 Evaluation Models . 44

10.3.1 CoCoME-Cloud . 44

10.3.2 Medi System . 44

10.3.3 Generated Models . 45

10.4 Transformation . 46

10.4.1 Transformation: Accuracy Evaluation 46

10.4.2 Transformation: Scalability Evaluation 47

10.5 Privacy Analysis . 48

10.5.1 Privacy Analysis: Accuracy Evaluation 48

10.5.2 Privacy Analysis: Scalability Evaluation 51

10.6 Model Generation . 52

10.7 System Adaptation . 54

10.7.1 Adaptation: Accuracy Evaluation 54

10.7.2 Adaptation: Scalability Evaluation 56

10.8 Threats to validity . 58

10.8.1 Internal Validity . 58

10.8.2 External Validity . 59

10.8.3 Construction Validity . 59

10.8.4 Conclusion Validity . 59

vi

Contents

11 RelatedWork 61
11.1 Application Monitoring . 61

11.2 Privacy Analysis . 61

11.3 Data-�ow Analysis & Rights Management 63

11.4 Privacy Analysis . 63

11.5 Automated Model Optimization & Modi�cation 63

11.6 Automated Cloud Migration & Adaptation 64

12 Conclusion 65
12.1 Limitations & Assumptions . 65

12.2 Future Work . 66

Bibliography 69

vii

List of Figures

2.1 iObserve cloud application life cycle [10] 7

3.1 Privacy violating deployment . 11

3.2 Privacy violating deployment . 11

3.3 Privacy compliant deployment . 11

4.1 iObserve Privacy pipeline . 15

5.1 PCM Privacy meta-model . 18

6.1 Server Geo-Location Record and Sampler 19

6.2 iObserve Privacy Filter . 20

7.1 Initial component categorization . 26

7.2 Post categorization analysis - basic example 26

7.3 Post categorization analysis - advanced example 26

7.4 Deployment analysis example . 28

7.5 PCM Privacy information spread . 29

7.6 Graphs meta-model for Privacy Analysis 30

10.1 Initial component categorization . 45

10.2 Transformation runtime & Standard Deviation 48

10.3 Initial system state . 49

10.4 Initial categorization . 49

10.5 Categorization analysis result . 49

10.6 Deployment analysis result (1) . 50

10.7 Deployment analysis result (2) . 51

10.8 Privacy Analysis runtime . 52

10.9 Privacy Analysis runtime standard deviation 53

10.10 Runtime model . 56

10.11 Redeployment model . 56

10.12 Adaptation runtime . 58

10.13 Adaptation runtime SD . 59

11.1 R-PRIS meta-model . 62

11.2 R-PRIS runtime model . 62

ix

List of Tables

7.1 Minimal information for privacy analysis 23

7.2 iObserves information for runtime privacy checks 24

9.1 Pre-Execution-Conditions for adaptation actions 37

9.2 Universal action execution order . 37

10.1 The correct execution set . 46

10.2 The error execution set . 47

10.3 Component categorization, runtime deployment and re-deployment . . . 53

10.4 The ordered adaptation sequence . 55

10.5 iObserve input event translated adaptation sequence 55

10.6 Expected adaptation sequence for Scenario #4 57

10.7 Expected adaptation sequence for Scenario #4 57

11.1 R-PRIS information for runtime privacy checks [24] 62

xi

1 Introduction

During the introduction we will motivate (Section 1.1) for the topic at hand and introduce

the problems (Section 1.2) arising from it. Further, we will introduce the goal and research
questions (Section 1.3) handled in this thesis. Finally, we will give a short outline (Section 1.4)

about the remainder of this thesis.

1.1 Motivation

Over the last years, cloud computing has become more and more popular. This is a result

of its business advantages, the continuing simpli�cation of its usage and the abundance of

own data centres. Net�ix, for example, closed all its owned data centre in 2015 and moved

completely to Amazons AWS[6]. This trend results in the expected revenue of about 200

Billion $ in 2016[26]. The high degree of elasticity, automation, self-service, �exibility in

payment and, as a result, lower costs are only some of the many advantageous points of

cloud computing.[3]

However, many – especially European - companies fear dependencies, loss of data

control, industrial espionage or privacy law violations. Precautionary measures like

encryption or data splitting - among data centres - is not enough to prevent a public

relations disaster, due to complex EU Data Protective Regulations[4] or the US HIPAA

act[19]. To tell the whole truth, the complexity, the hidden usage of services and the

therefore resulting unawareness of many EU citizens (and law enforcement institutes)

makes it very unlikely for current law violators to face any consequences. Nevertheless,

citizens start to be more aware and the law enforcement point of attention tends to change

quickly, like the Max Schrems’ "Facebook Process" showed [14]. Further, in 2018 the

"reform of EU data protection rules" will come into force, which states severe punishments

for privacy violations[4]. As a result, entrepreneurs, companies and institutions need to

be more aware of privacy compliance to prevent major monetary and reputation losses.

The EU General Data Protection Regulations sets the legal boundaries for European

companies. It de�nes multiple regulations about data handling, data trading, personal

advertising and more. One rule sets the boundaries for personal data processing and

saving. It states, for example, that the processing of personal data is only allowed in data

centres inside the EU or certain certi�ed countries with equivalent privacy laws. As a

result, software systems require a pre-deployment law compliance checking, considering

especially the hosts geo-locations. The problem comes to a head with the ease of migration

of whole cloud services during runtime with next to no downtime. With this in mind

a potential privacy violation could occur even though the initial deployment was law

compliant. This requires a non-stop observation of the applications geo-location and

automatic, law compliant redeployment onto other cloud providers.

1

1 Introduction

1.2 Problems

To create such a privacy aware system adaptor, a couple of non-trivial problems need to

be solved. The major ones will be outlined shortly, categorized after the MAPE-K feedback

loop [5].

Initially, we need to acquire the geo-location information of a cloud server. This is the

fundamental task to be able to determine whether a system is compliant to the EU General
Data Protection Regulations or the HIPAA act. Further, we need to store this information

adequately in the available information sources. In our case that is the Palladio Component
Model (PCM), an architecture description language. However, the PCM is not designed to

store geo-information of any kind.

After the acquisition of the geo-location information, we need to determine, whether the

observed system is in a privacy compliant state. We refer to this task as privacy analysis.
The major obstacles for the privacy analysis are the limited information about the system

and the complicated legal regulations. So, the problem is to gain a meaningful result,

without signi�cantly extending the information sources or increasing the PCM complexity.

During the planning phase, a privacy compliant alternative system deployment needs

to be calculated. While automated performance optimization was achieved in the past,

the privacy compliance has never been considered during this task. Depending on the

parameters, alternative generation and evaluators this is a considerable optimization

problem.

To regain a privacy compliant system state, the system needs to be modi�ed towards

the generated alternative. For this task, the system adaptation steps need to be calculated

and ordered. The migration of a live system usually in�icts man dependencies and ripple

e�ects that have to be considered before executing these steps.

We provided a rough overview of the problems at hand. Further details and the according

solution will be explained in the according chapters of this thesis.

1.3 Goals and Research Questions

This thesis’ goal is to contribute and outline a piece of software, that ensures continues

privacy compliance, modelled after the MAPE-K feedback loop. Connected to this goal, a

number of important research questions arise:

• Monitoring

– RQ-M1: How can the required information be monitored and transformed

into the architectural description language?

– RQ-M2: How accurate is the monitoring and transformation?

– RQ-M3: How good does the monitoring and transformation scale?

• Analysing

– RQ-A1: How can we detect privacy violations on a architectural level?

– RQ-A2: Are there scenarios that can not be detect?

2

1.4 Outline

– RQ-A3: How good does the privacy analysis scale with the system size?

• Planning

– RQ-P1: How can we generate an alternative, privacy compliant deployment?

– RQ-P2: How accurate is the alternative generation?

• Executing

– RQ-E1: How can we calculate an automated system adaptation sequence?

– RQ-E2: How good does the adaptation calculation work?

– RQ-E3: How good does the adaptation scale with the system size and the

potential modi�cations?

1.4 Outline

The remainder of this thesis is structured as follows: The thesis continues by introducing

the foundations (chapter 2) of this thesis. The main part starts with the privacy concept

(chapter 3), leading into the system overview (chapter 4), followed by the big conceptual

work packages: Palladio extension (chapter 5), iObserve extension (chapter 6), privacy

analysis (chapter 7), PerOpteryx extension (chapter 8) and the system adaptation (chapter 9).

The thesis goes on with the evaluation (chapter 10) and the related work (chapter 11) and

�nally closes with the conclusion (chapter 12).

3

2 Foundations

In this chapter we will introduce applications and principles on which this thesis is based

on. This introduction aims for a general understanding. We would like to point out that

some topics may be discussed in more detail in the corresponding section.

2.1 MAPE-K loop

MAPE-K or MAPE was �rst introduced by IBM for automatic computing and later discussed

in the context of self-adaptive systems. A MAPE system is usually a stand alone application,

which is specially build for optimizing and adapting a monitored system. MAPE-K is an

acronym, consisting of the �rst letters of the loops stages: Monitor, Analyse, Plan, Execute

and Knowledgebase. These stages are sequentially ordered in a pipeline structure, each

one has a well de�ned task [5]:

• Monitor: Collects, aggregates, �lters and correlates information about a monitored

system.

• Analyse: Performs (complex) data analysis and reasoning on the monitored data.

The analysis is often supported by data from the knowledgebase. If changes are

required, a change request is passed to the plan function.

• Plan: Determines what kind of changes are required and develops a transformation

which adapts the monitored system towards the desired state.

• Execute: Executes the transformation calculated during the planning phase.

• Knowledgebase: Additional or advanced information that are shared among all

stages.

The monitored system runs independently from the MAPE application. However, the

desired monitoring information are usually explicitly provided via specially designed APIs,

intefaces or probes [5].

2.2 Palladio Component Model

The Palladio Component Model (short PCM) is an Architecture Description Language

(ADL) for component based software, originally designed to enable software architects

to run pre-implementation performance analysis. The Palladio Simulator reports on

"performance bottlenecks, scalability issues, reliability threats, and allows for a subsequent

optimisation." The PCM is composed of several sub-models which depend on another.

Each model represents a certain aspect of a component based software:

5

2 Foundations

• Repository Model: De�nes Components with required and provided interfaces.

Interfaces include function signatures.

• System Model: De�nes the complete software system, by connecting components

de�ned in the repository model.

• Usage Model: De�nes process workload, based on the systems interfaces.

• Resource Environment Model: De�nes available host environments with its

provided performance.

• Allocation Model: De�nes the deployment of system components onto the pro-

vided hosts.

The separation of concern enables the system architect to manage the complexity of

even bigger software systems and still gain meaningful results from the performance

simulation.

Since its initial release, the Palladio Component Model was adapted and used in several

research �elds alongside the performance prediction, like automated Data�ow Analysis

and Application Monitoring. Due to its explicit representation of the software architecture

and �exible component-host-mapping it is perfectly suited to model distributed cloud

systems. Although, PCM was not designed to be used as a runtime model, it has proven to

be suited for this task due to its versatile model elements [2].

2.3 Kieker

Kieker is a software system monitoring application with the goal of retrieving runtime

information for performance evaluation, (self-)adaptation control and many other tasks.

Kieker gains these information from the designated software by instrumenting the system

with probes during pre-compilation. Each probe has designated purpose and gathers data

accordingly, for example hardware utilization, stack trace or host geo-location. Kieker

uses event-based probes, as well as periodic-based (heart-beat) probes [22].

2.4 iObserve

iObserve is a system optimization tool after the MAPE feedback loop. The two primary

goals are an automated system adaptation and an operator-in-the-loop system evolution

(see Figure 2.1).

For the initial MAPE step, monitoring, iObserve uses Kieker. The gathered information

are transformed to a Palladio Component Model. Due to the live characteristic this PCM

model is called a runtime model. Further, iObserve is designed to support distributed cloud

systems. Key features of the transformation are the processing stack trace information

for usage model updates, so more precise performance simulations are possible, as well

as, the processing of deployment and un-deployment events and hardware utilization

measurements.

6

2.5 PerOpertyx

Figure 2.1: iObserve cloud application life cycle [10]

Currently, iObserve goes as far as updating the model. iObserve uses the TeeTime

framework [30], a pipeline-�lter-framework with signal based stage invocation. More

details on iObserve can be found in [10][11].

2.5 PerOpertyx

"PerOpteryx is an optimization framework to improve component-based software architec-

ture"[17]. The optimization uses model-based quality prediction techniques. Starting from

an input model, the framework generates multiple Pareto-optimal alternative deployments,

based on given simulation and alternation algorithms. This approach is usually described

as Design Space Exploration (DSE). PerOpteryx uses multiple dimensions for its DSE, like

alternating component multiplicities, runtime parameters or changing component alloca-

tions. The Pareto-optimal models are calculated through multiple iterations of a series of

tasks. Initially a variance of candidates is created through an evolutionary algorithm and

random generation. In the next step, the candidates are analysed for the desired quality

marks along the di�erent dimensions. The iteration concludes with the elimination of

poorly performing candidates. PerOpteryx is designed to optimize Palladio Component

Models, is based on the Rich Client Platfrom and uses the Opt4J Framework [18].

7

3 Privacy Concept

Many say: Data is the new oil and the most valuable resource there is. This shows how

important the control of our personal data is. To achieve this, many players have to

ful�ll their obligations. On the one hand, the personal awareness of every user himself to

only communicate the required and necessary information. On the other hand, the data

handling institutes duty to guarantee legal compliance to laws like the EU’s general data

protective regulations. While one can’t act for the individual, we can provide tools and

rules for institutions to help with legal compliance.

3.1 General Concept

The EU General Data Protective Regulations clearly states, that data of EU citizens have to

be saved and processed within EU countries [4]. Only a view countries with equal data

protective laws are excepted from this constraint. As a consequence, one needs a simple

data-�ow analysis (Section 11.3) to know the data distribution in our software system. To

put it straight, one needs to know, what kind of data are available on which server. This

task got especially important, since distributed cloud systems are reality and data saved

on "on premise" servers are becoming increasingly rare.

As mentioned in Section 11.3, the automated data-�ow analysis on architecture level is

still in its early stages and therefore not suited for practice. As a compromise we decided

on manual data tagging. To ease the data tagging and analysis process, we decided to use

the common well de�ned categories [24]:

• Type 0: Personal Information: Data relates directly or indirectly to personal

information. This is independent from encryption or pseudonymization. (e.g. call

detail record)

• Type 1: Personally Identi�able Information: Data does not contain personal

information. However, by combining, fusing or analysing data sets, the personal data

could be reconstructed for complete or partial personal information. (e.g. browser

history without user)

• Type 2: Anonymous Data: Data does not contain any personal information. Even

by extensive data analysis no direct or indirect personal information can be extracted.

(e.g. shop inventory data)

These three categories are used, since many data do not contain any direct or indirect

link onto private data, however still contain indicators onto private data. This means, they

neither qualify for the type 0 category (Personal), nor for the type 2 category (Anonymous).

9

3 Privacy Concept

For example an online shop wants to analyse which products usually get ordered together.

The orders got anonymized by removing the customer and shipping address. Nevertheless,

the time-stamp is required to get a timed evaluation factor. These data are not personal.

However, combining and evaluating these with user-login-times, also non-personal data,

privacy relevant data can be extracted. This also disquali�es them for Type 2, completely

anonymous data [23][24].

Summarizing, a manual, categorized annotation approach to identify the system com-

ponents privacy level is used. Based on this privacy level categorization, the analysis,

whether a systems deployment is privacy compliant, can be performed.

3.2 Deployment Constraints

How can one guarantee legal compliant distribution? As mentioned in Section 1.1, personal

data of EU citizens are only allowed to be processed, transferred or saved inside EU

countries [...]. We argue that the following constraints, combined with correct manual

annotation, are su�cient to accomplish this:

• Rule #1: Type 0 components must be deployed in a "save" geo-location.

• Rule #2: Type 2 components can be deployed anywhere.

• Rule #3: Type 1 components can be deployed anywhere.

• Rule #4: Only deploy Type 1 components together in an "un-save" geo-location, if

they receive their information (transitively) from the same Type 1 component.

Rule 1 & 2 does not need any further explanation. Rule 3 states that Type 1 components

can be deployed anywhere. This is due to the fact that Type 1 data should not contain any

personal information. Rule 4 however limits this deployment. This constraint is necessary,

because the combination of multiple Type 1 data streams could lead to privacy relevant

information. If the data streams, however, have a common type 1 component as data

source, the deployment can be considered privacy compliant.

The ideas is, when a depersonalised component (d) has a single edge to a personal com-

ponent (p), and many edges to other depersonalised components (D), and the components

(D) do not have any connection a personal categorized component, then they share the

data passed via the connection between d and p, which can not be personal. Otherwise d

would be categorized as personal. Note that data streams with type 2 components can be

ignored, since - by de�nition - they don’t get in contact with any privacy relevant data.

We are aware, that these rules are over-approximations towards legal compliance.

However, we are using a software architecture model as the only source of information.

Therefore, detailed information about actual privacy symbiotic data streams are not avail-

able on this high level ob abstraction. Nevertheless, we argue, that these rules already

help to identify illegal deployments and establish privacy compliant (re-)deployments.

Figure 3.1, Figure 3.2 and Figure 3.3 illustrate the di�erent base scenarios applying to

Rule 4. In the remainder of this section, we will elaborate their privacy compliance state

by applying Section 3.2, rule 4.

10

3.2 Deployment Constraints

Server #1
Location: Save

Server #2
Location: Un-save

Server #3
Location: Un-save

Component A
Type 0

Component B
Type 1

Component C
Type 1

Component D
Type 1

Figure 3.1: Privacy violating deployment

The deployment shown in Figure 3.1 is illegal. Server#3 contains components with

data streams from two di�erent components, where one is a type 1 and one is a type 0

component. Even though A and C receives its data transitively from the same source,

component A. This source is categorized as personal (type 0). Further, the data passes via

di�erent initial communication edges. As a result, Server #3 hosts two type 1 components,

which don’t contain privacy relevant data by themselves. However, after combination, the

data could be privacy relevant. So, this deployment is considered illegal.

Server #1
Location: Save

Server #2
Location: Un-save

Server #3
Location: Un-save

Component A
Type 0

Component B
Type 1

Component C
Type 1

Component D
Type 1

Figure 3.2: Privacy violating deployment

Figure 3.2 also shows an illegal considered deployment. Component C and D share the

same data source, which is marked as type 0. As previously shown, the combination of

data on Component C and D could lead to privacy relevant informations on Server #3.

Server #1
Location: Save

Server #2
Location: Un-save

Server #3
Location: Un-save

Component A
Type 0

Component B
Type 1

Component C
Type 1

Component D
Type 1

Figure 3.3: Privacy compliant deployment

11

3 Privacy Concept

(Figure 3.3) shows a privacy compliant deployment. Due to, Component C and D sharing

the same data source (Component B), which already only contains type 1 data. As a result,

Component C and D can only contain data, already obtained by Component B. This

means, even through data combination and extensive data analysis, no privacy concerning

information can be extracted.

3.3 Component categorization

Components can be very complex due to multiple communication partners and dozens

of interfaces. In such cases it can be considered impossible, to keep track of every sin-

gle information �ow on every component. This shows, that a component shouldn’t be

categorized by hand.

In contrast, a single data stream between two components is easy to understand and

easy to analyse. In a component based software architecture, data exchange happens via

component interfaces. During system composition the software architect must be aware

of what data he passes through an interfaces.

As a result, the decision was made to categorize each interface communication during

system composition. The components privacy categorization is then derived by evaluating

the components communication.

We need to point out, that this categorization is only valid with the Closed World
Assumption (CWA) [20]. Simpli�ed, the CWA states, that if a system doesn’t contain any

information about a given statement, this statement is automatically wrong. Applied onto

the privacy concept this means: The model contains all the information and information

sources that exist. Naturally, this assumption is wrong, since every component may be

connected to the internet and can access a nearly in�nite amount of data. However, we need

the CWA, in order to be able to make any statement about the systems privacy compliance.

Considering the limited information we have available, the system architecture model, the

statement we are providing can be considered outstanding, even while using the CWA.

3.4 Information storage

We are using the Palladio Component Model (Section 2.2), which is just one of several

Architecture Description Languages. Most ADLs share a comparable structure, which can

di�er, due to the designated purpose. We will describe the storage exemplarily on the

PCM.

The runtime model is supposed to re�ect every relevant information, concerning the

models purpose. As a result, we need to store the components privacy level and the servers

geo-location in the PCM model.

The geo-location belongs to a server, which is part of the resource environment model in

PCM. The resource environment contains resource containers, which represents a server

or virtual machine. So the resource container is the perfect place for storing the severs

geo-location.

12

3.4 Information storage

As mentioned in Section 3.3, we need to categorize the communication between two

connected component interfaces. The PCM system model uses the Assembly Connector

to connect two component interfaces. This is the optimal model element to store the data

privacy level for the inter interface communication.

13

4 Overview

In this chapter we will give an overview on the approach developed during this thesis

and the according research. The system is massively extending iObserve, while keeping

its original purpose. For the fundamentals on iObserve see Section 2.4. All extensions

are made for accomplishing the goals, de�ned in Section 1.3. The extended iObserve is

referred to as iObserve Privacy during this thesis. iObserve Privacys architecture is a �lter

pipeline, where each �lter represents one stage of the MAPE feedback loop (Section 2.1).

Distributed
Cloud
Application

Compliance
Analyser

Runtime Model

iObserve

PerOpteryx

Runtime Model

ReDeployment
Model

System
Adaptationer

Distributed
Cloud

Application

Figure 4.1: iObserve Privacy pipeline

The initial step, monitoring, is provided by the original iObserve. However, iObserve

does not support geo-location processing. So, iObserve needs to be extended. This ex-

tension is made directly in the original iObserve and Kieker. Upon detected geo-location

or deployment changes, the runtime model is updated and the next �lter stage is in-

voked. We have determined the required data for a privacy analysis and provide a suited

transformation of these information to the PCM Privacy runtime model.

The compliance checker, mostly referenced as Privacy Analysis, represents the analysis

phase in the MAPE loop. It analyses the current runtime model for privacy violations. The

fundamental principles were discussed in chapter 3. When a privacy violation is detected,

the MAPE Planning phase gets activated.

The planning stages task is to �nd a privacy compliant redeployment model. For this

job PerOpteryx is used. PerOpteryx (Section 2.5) is a complex model generation and

15

4 Overview

optimization framework. However, PerOpteryx doesn’t support privacy or deployment

constraints and therefore needs an extension. Furthermore, an output model needs to be

selected as the �nal redeployment candidate, which is transmitted to the �nal pipeline

�lter stage.

The execute phase of the MAPE loop compares the architectural re-deployment model to

the architectural runtime model. Based on comparison, a migration adaptation sequence is

calculated. The adaptation sequence is technology independent and consists of individual

adaptation actions. Finally, the adaptation sequence is executed. The execution is based on

scripts, that represent a technology dependent implementation of the individual adaptation

actions. After the execution the observed software system needs to be in privacy compliant

state.

16

5 PCM Extension

As mentioned in Section 2.2, the Palladio Component Model was designed for early

architectural performance analysis. On this basis, the PCM was modi�ed many times to

ful�l many adjacent tasks. Instead of a modi�cation, we decided to extend the existing

PCM meta-model. This enables us to keep compatible with the existing Palladio Models

and other Palladio applications.

5.1 General

The standard Palladio meta-model is insu�cient for privacy compliance analysis. To save

the required information, an extension is the best practice approach. The extension was

designed to be as minimal invasive as possible and to keep the adaptation e�ort for existing

Palladio models to a minimum.

Our extension is based on deriving the PCM meta-model entities. This way the new

models stay compatible to other PCM applications like the Performance Simulators or

PerOpteryx. Further, other extension possibilities like the steriotype extension needs to be

updated with every PCM meta-model update. This is not necessary, when the model is

derived. Only changes in reference structure require the derived model to apply minor

alterations. For details on referencing and modularizing in meta-models see [28].

The concept was described in Section 3.4.

5.2 Implementation

The Palladio meta-model was modelled with the Eclipse Modeling Framework [EMF]. So,

our extension, namely PCM Privacy, is also modelled with EMF and references the original

Palladio meta-model. The required classes were extended in corresponding sub-packages.

As described in Section 3.4, we need to save a servers geo-location. The Resource

Container was extended and the attribute Geolocation added. The derived element is

named Resource Container Privacy. The geo-location itself is saved as an EInt Ecore type, a

standard integer, encoded in the ISO country code (ISO 3166-1 [32]). By using an integer

encoded international standard we stay wildly compatible with other applications. Further,

potential error sources like spelling di�erences, shifting borders and name changes are

avoided.

The Assembly Connector Privacy is derived from the Assembly Connector and saves

the data privacy categorization. The attribute is designed as an EEnum Ecore type, with

the values Personal, Depersonalized, Anonymized. This way, extending the potential

categorization values requires minimal e�ort and is less error prone then a dynamic

17

5 PCM Extension

ResourceContainer

ResourceContainerPrivacy

-Geolocation : EInt

AssemblyConnector

AssemblyConnectorPrivacy

-PrivacyLevel : DataPrivacyLvl

AssemblyContext AllocationContext

RepositoryComponent

encapsulates

providing requiring

<<Enumeration>>

DataPrivacyLvl

+Personal
+Depersonalised
+Anonymous

Figure 5.1: PCM Privacy meta-model

categorization via a �oat or an integer value. The value Personal is set as default, to provide

a over-estimation towards the legally compliant categorization, when the categorization if

a connector was not performed. Figure 5.1 shows a simpli�ed PCM meta-model with the

three added privacy elements.

18

6 iObserve Extension

iObserve was brie�y introduced in Section 2.4. iObserve uses Kieker (Section 2.3) to

gain real-time information about an observed (distributed) software system. iObserve

transforms these information onto a Palladio Component Model. This model is referenced

as runtime PCM or runtime model, since it re�ects the actual observed software system

during runtime [11].

6.1 Kieker

Kieker was also brie�y introduced in Section 2.3. Kieker had already speci�ed the geo-

location record for transporting the geo-location information form the observed system to

Kieker. However, a probe was still missing. As a result, we created a heart-beat/periodic

probe (ServerGeoLocationSampler). This probe uses a ICountryInvestigator to determine

the actual geo-location and creates a ServerGeoLocation record (see Figure 6.1).

As an alternative, we could have created an event-based geo-location probe. Possible

event could have been the component deployment or un-deployment or the server acqui-

sition or release. This however, would mean, there would not be a geo-location update

between these events and potential privacy violation could stay undetected inde�nitely

or for a long period. Even though a heart-beat probe often takes longer to send an initial

record, eventual changes will de�nitely be detected due to the regular updates.

AbstractEvent

-timestamp : DateTime

ServerGeoLocation

-isoCountryCode : short
-hostname : String
-address : String

AbstractMonitoringRecord

<<Abstract>>

AbstractGeoLocationSampler

+sample(monitoringController: IMonitoringController)

<<Schnittstelle>>

ICountryInvestigator

+getServerGeoLocationCountry(): short

uses

<<Schnittstelle>>

ISampler

+sample(monitoringController: IMonitoringController)

+getGeoLocationRecord(...)

ServerGeoLocationSampler

+getGeoLocationRecord(...)

generates

Figure 6.1: Server Geo-Location Record and Sampler

19

6 iObserve Extension

Kieker gather the information from the observed system probes and redirects them to

iObserve. More information on Kieker can be found at [22].

6.2 iObserve Privacy

iObserve uses the TeeTime framework. Its allows easy pipeline building by connecting

matching input and output ports during runtime [30]. This mechanism is used by iObserve

to invoke di�erent transformations. Based on the received Monitoring Record, the according

output port gets invoked and the matching transformation will be executed.

For the ServerGeoLocation Record (see Figure 6.1) another output port and transformation

was added. The transformation uses the records host and address �eld to �nd the record

sending resource container. The according geo-location attribute of the Resource Container
Privacy is compared to the incoming geo-location and updated if needed.

ABSTRACT LINEAR
COMPOSITION<I, O>

+getInputPort() : InputPort<I>

Stage I <I, A> Stage II <A, B> Stage III <B, O>

ABSTRACT
TRANSFORMATION<X, Y>

#inputPort : InputPort<X>
#outputPort : OutputPort<Y>

+getInputPort() : InputPort<X>

+getOutputPort() : OutputPort<O>

+getOutputPort() : OutputPort<Y>

+execute(element : X)

COMPOSITION STAGE<I, O>

return stage_I.getInputPort()

return stage_III.getOutputPort()

Figure 6.2: iObserve Privacy Filter

iObserve has a well de�ned structure due to the TeeTime framework. We decided to

keep this structure and extend it. Figure 4.1 shows the conceptual �lter pipeline structure

for our planned extension. One conceptual stage usually consists of several sub tasks.

The system adaptation, for example, consists of an adaptation calculation, an adaptation

planning and an execution. To embrace re-usability and lose coupling, we decided to

keep on using the TeeTime framework structure and compose one conceptual stage out

of several sub-stages. Figure 6.2 shows the general structure of a conceptual stage. The

Composistion Stage functions as a wrapper for the conceptual �lter, while the Stages I to

III represent the sub-tasks.

This structure does not only allow easy restructuring of the conceptual pipeline and

encapsulates the sub-tasks, it also allows for simple reuse and a clear separation of concerns.

For the TeeTime framework, the �lter stages looks like a series of linear connected stages,

while the developer gets easy to handle packages. It is worth mentioning, that Stages

20

6.2 iObserve Privacy

linked to each other require matching data. The actual task executed, must be placed

inside the execute method.

The extended iObserve contains the following conceptual �lter stages: Monitoring,

Snapshot (creates a copy of the current runtime model), Privacy Analysis, Model Generation,

System Adaptation and Evaluation. In the remainder of this thesis the extended iObserve

is referenced as iObserve Privacy, so potential misunderstandings are avoided.

21

7 Privacy Analysis

The Privacy Analysis represents the analysis stage in the MAPE-K feedback loop (Sec-

tion 2.1). The goal is to check whether the runtime model contains any deployment related

privacy violations. The privacy concept, described in chapter 3, states that privacy analysis

consist of two major tasks. First, the correct privacy categorization for each software

components needs to be determined. Second, the deployment evaluation, based on the

deployment rules, de�ned in Section 3.2, needs to be performed.

The remaining chapter is divided into a theoretical part (Section 7.1), a component

categorization part (Section 7.2), a deployment evaluation part (Section 7.3) and the imple-

mentation part (Section 7.4).

7.1 Analysis Theory

The exclusive source of information for the privacy analysis is the systems PCM Privacy

runtime model. For an e�cient analysis one �rst need to identify the minimal required

information and substitute them, depending on the available sources.

7.1.1 Required information

In the context of Privacy Analysis there is a minimum of two pieces of information which

are required for privacy analysis:

Required information for privacy analysis
M1 Information on components privacy level

M2 Information on components geo-location

Table 7.1: Minimal information for privacy analysis

Usually M1 and M2 is not directly available. As a consequence other ones must substitute

these, while containing the same information. A suitable substitution, di�ers based on the

sources and their contained information.

The used PCM Privacy meta-model provides a data privacy categorization of the com-

municated information between component interfaces. This enables a component classi�-

cation, based on the most critical communication with another component. As a result, a

components privacy level can be determined without knowing its exact purpose, analysing

any inner processes or knowing the exact data-�ow. So, M1 gets substituted by information

about inter interface communication and its privacy categorization.

In order to get an information equivalent of M2, a components host must be determined,

as well as that hosts geo-location. The PCM Privacy model provides these information.

23

7 Privacy Analysis

However, it is spread over multiple models. As a result we require only four pieces of

information (Table 7.2), compared to R-PRISs six pieces of information (Table 11.1).

Required information to carry out runtime check
I1 Interactions of two components per interface

I2 Information on component deployments on physical resources

I3 Geo-location information of physical resources

I4 Data Privacy categorization per interface communication

Table 7.2: iObserves information for runtime privacy checks

7.1.2 Data-flow direction

Usually component interfaces are categorized into providing and requiring interfaces.

Interface connections are made between a pair of required and provided interfaces of

the same type. This suggests a certain data- and control-�ow direction. This is a wrong

assumption. While there are cases, when the control-�ow can be derived from this structure,

the data-�ow is completely independent from this categorization.

For example, a database component (usually) only has provided interfaces. These

interfaces allows the user to store and retrieve data from the database and therefore

contains getter and setter methods. This means, there is no data-�ow direction for the

whole interfaces, since the data needs to "�ow" into both directions. Note, that we are

explicitly speaking of an interface as a whole, since individual methods can have a data-�ow

direction.

Information passed through an interface are available on the providing and requiring

component. In other terms, if an component connector got categorized as Personal, in-

formation of this type are available in both components. These components need to get

categorized accordingly.

7.1.3 Joining data streams

In Section 3.2 we elaborated on the danger of two Personally Identi�able Information
(Type 1) data streams, from two sources, joining on a single server. In such a case, the

combination of these data streams could lead to personal, privacy relevant data. (Compare

Section 3.2, Rule 4). This concept applies on the described deployment level and also on

the component categorization process.

While on deployment level, the information streams are not actively merged, this is a

realistic possibility on the component categorization level. So the argument of applying an

overestimation is not valid and this scenario must be taken seriously. In the following this

special case will be refereed to as joining data streams (short: JDS). In the following section,

a couple of categorization and deployment examples will help clarifying this scenario.

24

7.2 Component categorization

7.2 Component categorization

The component categorization requires two tasks. The initial categorization of every

component and the analysis for with join data streams.
The initial data privacy level of a component is equal the components most critical

communication level (see Subsection 7.1.2). This task is performed during the model

graph construction. The search for joining data streams is more complex and requires

a formalization, as well as an extended explanation. We will continue with the formal

description, followed by an textual explanation and close with some examples.

De�nitions

• The Graph G := (N ,E)

• The Nodes N consist of personal Nodes p ∈ Np , depersonalised Nodes d ∈ Nd

and anonymized Nodes a ∈ Na ∧ Np ∪ Nd ∪ Na = N ∧ Np ∩ Nd ∩ Na = {∅}

• The edges E consist of personal Edges ep ∈ Ep , depersonalised Edges ed ∈ Ed
and anonymized Edges ea ∈ Ea ∧ Ep ∪ Ed ∪ Ea = E ∧ Ep ∩ Ed ∩ Ea = {∅}

• Path P = 〈(p1,p2, . . . ,pn), (e1, e2, . . . , en−1)〉 with p ∈ N and e ∈ E

Formalization

Every component is correctly categorized

⇔

� Path P with let i, j ∈ [0,n − 1] ∧ i , j : ei , ej ∧ ei ∈ Ed

∧(p2,p3, . . . ,pn−1) ∈ Nd ∧ {p1,pn} ∈ Np ∧ n ≥ 3

The formalization states, that every component in the graph G is correctly categorized

if no path from one personal component to a personal component exist. However, the

path must traverse at least three components, while every edge is only used once and

only depersonalised edges are used. Further, all internal nodes must have a depersonalised

categorization.

When such a case is found, the depersonalised components of the path must be cat-

egorized as Personal. As a result, the case is eliminated and categorization is corrected

according to the joining data stream. The following examples will illustrate the categoriza-

tion and point out certain special cases.

Figure 7.1 shows the components data privacy level after the initial categorization phase.

Figure 7.2 shows the result of categorization analysis. The comparison of these two states

show, that component D and E get "upcasted" and gain a Personal - more critical - data

privacy categorization. This is due to the fact, that component D and E have a connection

onto two personal data sources (Component A and B). Applying the formalization, a path

from component A to B via component E and D, using only depersonalised edges, can be

found. This means, as mentioned above, a joining data stream exists and component D

and E needs to be categorized as Personal.

25

7 Privacy Analysis

Component A Component C

Component E

Component B

Personal Depersonalized Anonymized Legend:

Personal Personal

Depersonalized

Anonymized

Component D

Depersonalized

Component F

Depersonalized

Figure 7.1: Initial component categorization

Component A Component C

Component E

Component B

Personal Depersonalized Anonymized Legend:

Personal Personal

Personal

Anonymized

Component D

Personal

Component F

Depersonalized

Figure 7.2: Post categorization analysis - basic example

Two special cases are shown in Figure 7.3. So is component D categorized as Personal
even though it has only one other component as data source. However, it has two individual

connections to component B, which could contain a joining data stream, since B has a

personal categorization. The formalization states, that a personal component needs to be

reached, while using every edge only once. This conditions are ful�lled.

Component A Component C

Component E

Component B

Personal Depersonalized Anonymized Legend:

Personal Personal

Depersonalized

Anonymized

Component D

Personal

Component F

Depersonalized

Figure 7.3: Post categorization analysis - advanced example

Component F doesn’t get an Personal categorization since it can only contain privacy

relevant data that are already present on component E. And component E has a depersonal-

ized categorization. All anonymized categorized connections and components are ignored,

26

7.3 Deployment analysis

since they don’t contain any privacy related information. Applying the formalization, no

path from A to a personal component can be found, using only depersonalised edges and

each edge only once. So, the categorization is correct.

7.3 Deployment analysis

The deployment analysis’ goal is to �nd out whether the current deployment is privacy

compliant. A deployment is considered privacy compliant if no deployment violation is

found. The rules for a privacy compliant deployment were described in Section 3.2. In the

following we will formalize the deployment analysis, describe the formalization textually

and �nally give an example.

De�nitions

• The Graph G := (N ,E, S)

• The Nodes N consist of personal Nodes p ∈ Np , depersonalised Nodes d ∈ Nd

and anonymized Nodes a ∈ Na ∧ Np ∪ Nd ∪ Na = N ∧ Np ∩ Nd ∩ Na = {∅}

• The edges E consist of personal Edges ep ∈ Ep , depersonalised Edges ed ∈ Ed
and anonymized Edges ea ∈ Ea ∧ Ep ∪ Ed ∪ Ea = E ∧ Ep ∩ Ed ∩ Ea = {∅}

• The servers S consist of save Servers ss ∈ Ss and un-save Servers su ∈ Su ∧
Ss ∪ Su = S ∧ Su ∩ Ss ∩ Na = {∅}

• Let Nsi are the nodes deployed on server si

• Path P = 〈(p1,p2, . . . ,pn), (e1, e2, . . . , en−1)〉 with p ∈ N and e ∈ E

Formalization

The deployment is illegal

⇔

∃n ∈ Nsi : n ∈ Np ∧ n deployed on si ∧ si ∈ Su

∨

∃sx ∈ Su� Path with Nsx ⊂ P ∧ pi ∈ Nd ∧ ej ∈ Ed

∨

∃ Paths {P1, P2, . . . , Pn} from Np to Nsi with i ∈ [0,n], j,k ∈ [0, |Pi |] :

ej ∈ Ed ∧ epj ∩ epk = {∅} ∧ n ≥ 2

The formalization states three independent conditions for an illegal deployment. First,

the deployment of an as personal categorized component on a server located in an un-

save geo-location. Second, the depersonalised components on a un-save server are not

connected. The potential connection must consist of depersonalised edges but can be

transitive via depersonalised components and edges. The third condition states, that if

there is more then one path, from the set of personal components to the depersonalised

27

7 Privacy Analysis

Component A Component C

Component E

Component B

Personal Depersonalized Anonymized Legend:

Personal Personal

Depersonalized

Depersonalized

Component D

Depersonalized

Component F

Depersonalized

Server #1
Location: Save

Server #2
Location: Unsave

Server #3
Location: Unsave

Figure 7.4: Deployment analysis example

components hosted by an un-save server, then the deployment is illegal. However, must

consist of individual, non overlapping and depersonalised edges.

Figure 7.4 shows an illegal deployment. The deployment of Component A and B is

obviously valid, due to its deployment on a "save" geo-location. Component C and F

are also legally deployed, since both components share a single communication edge

onto privacy relevant information and the joining data streams situation does not apply.

Applying the formalization, the �rst condition is broken, since server #3 does not host a

personal component, the second condition is also false, since the components C and D

are transitive and direct connected via depersonalised edges. The third condition does

also not apply, since only one individual path via depersonalised edges from the personal

components exists.

Server#2, however, hosts an illegal deployment. Component D and E have di�erent single

data sources edges and can therefore save, process or transmit data, which can combine

to privacy relevant data. The second and the third condition of the formal speci�cation

are true. So, are component E and D not transitively connected via depersonalised nodes.

Further, two individual paths from the set of personal components to the components

hosted by server #2 exist.

7.4 Privacy Analysis implementation

The PCM meta-model de�nes multiple models, each providing knowledge about a certain

aspect of the target system (see Figure 7.5). This is not suited for an e�cient privacy

analysis and therefore requires an information preprocessing. So the implementation is

spread over three steps:

1. build e�cient data structure

2. categorize components

3. analyse deployment

28

7.4 Privacy Analysis implementation

7.4.1 Information preprocessing

In the �rst algorithm phase, all informations I1 to I4 are extracted from the di�erent

models. I1 and I4 is part of the System models Assembly Connector Privacy. Where I1
consist of the Providing Assembly Context and the Requiring Assembly Context. I4 is the

Data Privacy Level. I3 is a �eld in the Resource Container, which represents a server in the

Resource Environment model. The Allocation model contains I2 in Allocation Contexts,

which provide a mapping of an Assembly Contexts on a Resource Containers.

After extracting all required information, the basic data privacy level for every compo-

nent/Assembly Context is calculated by applying the most critical privacy level from the

corresponding Assembly Connectors.

As last step of the preprocessing, the data are reassembled by constructing a su�cient

graph (Figure 7.6). The graph is a simple, more direct representation of host-component-

allocation structure from the PCM model. The graph contains two types of nodes: the

DeploymentNode, a host representation, and the ComponentNode, a component represen-

tation. The data streams/interfaces are represented by the ComponentEdge:

Interface

AssemblyContextAssemblyConnectorPrivacy

<<EEnum>>

DataPrivacyLevel

ResourceContainer

AllocationContext

RepositoryComponent

encapsulates

-providingInterface
-requiringInterfac

provided

-ServerGeoLocation

required

Figure 7.5: PCM Privacy information spread

7.4.2 Component categorization implementation

The second phase of the privacy analysis algorithm �nalizes the component categorization.

As described in Section 7.2, joining data streams need to be found and �tting components’

data privacy level corrected.

29

7 Privacy Analysis

DeploymentNode

-geoLocation : int
-ressourceContainerID : String

ComponentNode

-dataPrivacyLvl : DataPrivacyLvl

ComponentEdge

-assemblyConnectorID : String
requiringRole

providingRole
-assemblyContextID : String -dataPrivacyLvl : DataPrivacyLvl

Figure 7.6: Graphs meta-model for Privacy Analysis

The algorithm (Algorithm 1) searches for depersonalised-marked connections from one

personal categorized component to another. It uses a deep search �rst approach, while

never using an edge twice. Note, that once a joining data stream is found, the involved

components are appended to the list of personal components.

7.4.3 Deployment analysis implementation

The �nal privacy analysis phase is the deployment evaluation. The base analysis is

very simple, since it simply checks whether every as personal categorized component is

deployed on an as save considered geo-location. The a geo-location is considered as save,

when it is contained in the save-geo-location list. When a server is located in an un-save

geo-location and contains more then one depersonalised component, an extensive analysis

for joining data streams has to be made. This extensive analysis is described in Algorithm

2.

The Algorithm works similar to Algorithm 1. Initially, it extracts all as depersonalised

categorized components on the server. These components have to form a transitive hull

and share a single depersonalised communication link to a single personal component.

The algorithm uses a deep search �rst approach to traverse through the components. If a

second link to a personal component is found or not every depersonalised component on

the server is reached, the deployment is illegal.

Note, that anonymized categorized components and edges can be ignored during analysis.

Also, a server won’t contain any personal marked component since such a deployment

would be automatically illegal due to the servers un-save geo-location.

30

7.4 Privacy Analysis implementation

Algorithm 1 Component categorization algorithm

1: List of Components components
2: Set of Edges usedEdдes
3:

4: procedure StartCategorization(List<Components> components)
5: personalComponents ← componentswithPrivacyLvl == PERSONAL
6: for all personalComponent ← Components do
7: clear(usedEdдes)

8: TraverseComponent(personalComponent)

9: end for
10: end procedure
11:

12: function TraverseComponent(Component component)
13: dePersonalEdдes ← component .GetEdges with PrivacyLvl == DEPERSONAL
14: for all edдe ← dePersonalEdдes do
15:

16: if usedEdдes .Contains(edдe) then
17: Continue

18: else
19: usedEdдes .Add(edдe)

20: edдeParnter ← edдe .GetEdgePartner(component)

21:

22: if edдeParnter .PrivacyLvl == PERSONAL then
23: return edдeParnter
24: else
25: secondSource ← TraverseComponent(edдeParnter)

26: if secondSource , PERSONAL then
27: component .PrivacyLvl ← PERSONAL
28: components .Add(component)

29: return secondSource
30: end if
31: end if
32: end if
33: end for
34: return Null

35: end function

31

7 Privacy Analysis

Algorithm 2 Deployment analysis algorithm

1: Set of Components compToReach
2: Set of Edges usedEdдes
3: Edge dataSourceEdдe
4:

5: procedure ExtensiveAnalysis(Server server)

6: compToReach ← server .GetComponents with PrivacyLvl == DEPERSONAL
7: dataSourceEdдe ← Null
8: startComp ← compToReach.GetAny
9: clear usedEdдes

10: sinдlePersonalDataSource ←TraverseComponent(startComp)

11: return sinдlePersonalDataSource AND compToReach.IsEmpty
12: end procedure
13:

14: function TraverseComponent(Component component)
15: compToReach.Remove(component)

16: dePersonalEdдes ← component .GetEdges with PrivacyLvl == DEPERSONAL
17:

18: for all edдe ← dePersonalEdдes do
19: if usedEdдes .Contains(edдe) then
20: Continue

21: else
22: usedEdдes .Add(edдe)

23: edдeParnter ← edдe .GetEdgePartner(component)

24:

25: if edдeParnter .PrivacyLvl == PERSONAL then
26: if dataSourceEdдe == Null then
27: dataSourceEdдe ← edдe
28: else
29: return False

30: end if
31: else
32: sinдleDataSource ← TraverseComponent(edдeParnter)

33: if sinдleDataSource then
34: return False

35: end if
36: end if
37: end if
38: end for
39: return True

40: end function

32

8 PerOpteryx Extension

PerOpteryx, brie�y introduced in Section 2.5, is a model optimization framework. It is

designed to calculate performance and cost optimised PCM models. For this purpose

PerOpetryx uses an evolutionary algorithm to generate new PCM candidates. PerOpteryx

uses a Design Decisions EMF model to create a Design Space. The design space is de�ned

via Degrees Of Freedom. Every degree of freedom allows for a �nite amount of Decisions. A

Candidate consists of one choice per degree of freedom and represents a PCM instance.

Every candidate needs to be evaluated in order to decide if the Decisions made during

its constructions lead to a good results. Each evaluator can produce multiple results per

analysis run. Each result belongs to a certain QML dimension. A dimension has Objectives
and/or Constraints, which helps the evolutionary algorithm to �nd the Pareto-optimal

candidates. Every evaluator is encapsulated in an Eclipse Plug-in [17]. Since we need

another evaluator, we need to create a new plug-in.

Some plug-ins require additional data. The cost analysis for example uses a cost model
to provide a cost result for the resource containers allocation and usage costs.

8.1 Plug-in Design

We want to provide a Privacy Analysis evaluator for PerOpteryx, while using our previously

developed Privacy Anylsis (chapter 7). Since both systems are based on the Palladio

Component Model, the privacy analysis itself can be used as described in chapter 7.

However, PerOpteryx does not know a "Privacy Dimension", which is required, since every

analysis result needs an according dimension. A new dimension is required, since using a

pre-existent dimension - like the "cost dimension" - would undermine the evolutionary

algorithms optimizations e�ort. The privacy analysis has a single result, which is a

Constraint. It states, that no privacy violation is permitted.

As mentioned before, we need to create a new QML Dimension, the Privacy Dimension,

which is referenced in a QML Contract Type. The contract type references all the evaluation

dimensions. The QML Declaration references the contract type and speci�es the actual

objectives and constraints for the dimensions. Further, it speci�es a QML Pro�le, which

Usage Model is used for the evaluation.

8.2 PerOpteryx Modification

PerOpteryx’ prior structure considers every generated candidate to be valid, only with

di�erent runtime results. This is incorrect, when the privacy dimension is included. Only

privacy compliant models are valid options. As a result, we can abort the evaluation of the

33

8 PerOpteryx Extension

current PCM model, if the privacy constraint is broken. However, this means we need to

execute the privacy evaluation �rst, check if the constraint is broken, break the evaluation

if the model is invalid and �ll all other objectives and constraints with according values.

As mentioned above, every evaluation is encapsulated in an Eclipse Plug-in. So, every

evaluation is represented as Proxy Analysis in PerOpteryx, who has no information on

what evaluation he is actually currently executing. To save evaluation time and increase

our search space, we need to execute the Privacy Analysis �rst, while not breaking the

generic evaluation characteristic. As a result, the IAnalysis interface for every evaluation

was extended with a Evaluation Complexity query, returning an Enum representing the

analysis runtime duration. PerOpteryx was modi�ed in a way, that analysis returning the

value VERY_SHORT get executed �rst. The Privacy Analysis evaluator returns this value.

Further, PerOpteryx was modi�ed, to output the most cost e�cient candidate once

all evaluation iterations are completely executed. The cost criteria was chosen over

performance due to PerOpteryx’s tendency to spread the allocation over many server to

optimize the performance. The cost optimal model tends to group components on servers,

reducing the servers required and therefore saving money, while still having a decent

performance.

34

9 System Adaptation

In the system adaptation stage of iObserve Privacy the observed software system is

modi�ed to match the re-deployment PCM. This �ler stage represents part of the planning

and the complete execution phase of the MAPE loop (Section 2.1).

The remainder of this chapter is divided into the calculation of an adaptation plan

(Adaptation Planning, Section 9.1) and the execution of this adaptation plan (Adaptation
Execution, Section 9.2). It closes with a look onto the implementation (Section 9.3).

9.1 Adaptation Planning

The planning phases job is to calculate what actions are required to bring the observed

software system into the state de�ned by the re-deployment model. While the task is

pretty clear, the available source of informations are quite uncertain.

There are multiple potential sources of information that can be used to calculate adapta-

tion steps. For example, the Design Decisions �le used and modi�ed by PerOpteryx (see

chapter 8). This �le contains all choices made during generation of the re-deployment

model. These informations are a viable source for the action computation. However, this

source create a strong dependency on PerOpteryx. This means, when PerOpteryx would

be exchanged for another model optimization tool, the complete adaptation planning

needs to be re-thought and developed.

Another information source for the adaptation planning could be the close observation

of the candidate calculation/generation. This could be achieved by logging decisions

made by the evolutionary algorithm. When considering that the starting point of an

evolutionary algorithms is usually a given input, the modi�cation steps could be traced

and remodelled for the system adaptation. However, evolutionary algorithms usually

don’t take the shortest path onto their end result and also random mutations are an valid

generation factor. This means, the results needs to be analysed and optimized, while also

injecting observations probes. While being a good potential information source, the e�ort

for post-generation analysis and the resulting dependencies make it a bad choice.

We decided to make a direct comparison of the architectural runtime model and the

architectural re-deployment model. This builds up no further dependencies and the

shortest adaptation path can be found. However, the information preprocessing and the

comparison algorithm can be more complex than the other options. The comparison itself

is based around identi�er and content equality. The Adaptation Caluclation compares

the model graphs (see Subsection 7.4.1) whether a component was added, removed or

modi�ed, as well as a server was acquired or released. Derived from these di�erences,

Adaptation Actions are created.

35

9 System Adaptation

9.1.1 Adaptation Actions

Palladio models are independent from programming languages, technologies and other

speci�cs. We decided to enforce this characteristic by de�ning technology independent

actions. They contain the required information, without knowing anything about the used

technologies.

Further, we designed a set of basic actions which allows us to (theoretically) transform

any PCM runtime instance into any PCM re-deployment instance. These are derived from

the runtime changes speci�ed in [10] and the potential variation PerOpteryx calculates

during its optimization process. The actions can be grouped into two major disjunct

subgroups: the Assembly Context Actions and the Resource Container Actions.

• Assembly Context Actions

– Allocate Action

– Deallocate Action

– Migrate Action

– Change Repository Component Action

• Resource Container Actions

– Acquire Action

– Replicate Action

– Terminate Action

Assembly Context Actions re�ect all model changes around a software component. The

Allocate action represents a new or �rst deployment of a system component, the Deallocate

action represents the exact opposite, the deleting or un-deployment of a component. And

Migration action moves a component from a server to another. The Change Repository

Component action addresses the possibility to exchange a software component with an

equivalent one. This can happen due to better �tting performance characteristics, while

required and provided interfaces stay the same. As a result, the structure of the system

model stays unchanged, but an encapsulated component gets exchanged for another one.

Resource Container Actions re�ect changes around a virtual or physical server. Acquire

and Terminate Actions start and release a server/virtual machine. A Replicate Action

clones a server instance with its containing components.

We decided to model these actions into an EMF model and reference the PCMmeta-model.
This allows us to directly reference the a�ected resource container or assembly contexts

without any technology implications. Writing this code by hand would cause more e�ort

on a PCM meta-model update, however, the generated EMF models perform poorly during

debugging. Nevertheless, EMF meta-models are easily extendable and modi�able and

therefore perfect for the task at hand. These actions were designed and developed in

cooperation with [21].

36

9.1 Adaptation Planning

9.1.2 Action Ordering

For each action a set of pre-execution-conditions can be determined. Using this sets, a

universal order can be derived. However, we need two assumptions for this order to be

valid:

• Each component is a�ected by an action only once.

• The Change Repository Component Action does not a�ect a component.

• A server never gets acquired a terminated in one sequence.

The assumptions state, that neither assembly contexts, nor resource container are af-

fected by transitive actions. These assumptions are true, since the Adaptation Caluculation
(Section 9.1) is designed to calculate a direct transition into an entities �nal (re-deployment)

state. As a result, the order inside a set of actions from the same type does not matter.

Further, the order within all Assembly Context Actions does not matter. The pre-execution-

condition per action are:

Action Pre-Execution-Condition
Allocate execute after Acquire

Deallocate execute before Terminate
Migrate execute after Acquire & before Terminate

Change Repository Component execute before Migrate
Acquire –

Terminate –

Replicate –

Table 9.1: Pre-Execution-Conditions for adaptation actions

Note, that the change repository component condition is not a "hard" condition, since

the encapsulated component could be exchanged even after the migration is performed.

However, the action appended data reference the hosting resource container and assembly

context before the component is migrated. Without this condition, the action execution

would have to check, whether the component was migrated.

Based on the pre-execution-conditions of Table 9.1 the following order was calculated:

1 Acquire

2 Change Repository Component

3 Deallocate & Allocate & Migrate

4 Terminate & Replicate

Table 9.2: Universal action execution order

This order is a universal execution order for the actions calculated by the Adaptation
Calculation. When the actions are executed in this order no dependency con�icts will

occur. Note, execution errors are not considered, since the are independent form planning.

37

9 System Adaptation

9.2 Adaptation Execution

The adaptation executions task is to execute the adaptation sequence calculated by adap-
tation planning. Since the actions are technology independent, we require a technological

dependent script/function that represents the action. A scripts can be considered the im-

plementation of an action. These scripts are given to iObserve Privacy via input parameter.

The technological implications are not considered by this thesis and are therefore not

further discussed. However, the separation of technology independent and dependent part

of the execution is very futile to the whole iObserve principle.

We recommended to execute the scripts asynchronous. This enables iObserve privacy

to track the changes in real-time. This allows for post-adaptation evaluation. This means,

iObserve (privacy) can check, whether the runtime model is now semantically equivalent

to the re-deployment model. Further details on the execution of the adaptation actions can

be found in [21].

9.3 Implementation

The implementation is split into three parts: the action calculation, the action ordering

and the action execution. The calculation is based on the same graph as used during the

Privacy Analysis (Figure 7.6). The Assembly Context Actions get calculated independently

from the Resource Container Actions, the principle however is the same. See Algorithm 3

for the pseudo code.

Initially the algorithm adds all assembly components to a dictionary. In the main

procedure, the algorithm iterates over all re-deployment assembly components and tries

to �nd a matching one in the runtime model. If no match as found, it is a new assembly

component and needs to be allocated. If an equivalent was found, di�erent comparisons

are performed, to check whether adjustments have to be made. Keep in mind, that

the migration of a assembly component and the exchange of encapsulated repository

component do not exclude each other. At the end of every iteration, the found runtime

components get removed from the dictionary. At the end of the algorithm all remaining

runtime assembly components are no longer required and can be deallocated. We need to

point out, that the comparing operators are simpli�ed for the purpose of a pseudo-code.

The calculation of the Resource Container Actions is implemented similar. Initially all

servers get added to a dictionary, all re-deployment servers get compared against those

and the actions calculated accordingly.

The whole calculation is build around the stability of IDs on Palladio model elements. If

the re-deployment model creates a completely new system model, while changing only

minor details, the calculation will deallocate the old system and allocate a totally new one.

PerOpteryx modi�es the system model, keeping the assembly context IDs - as intended -

stable and therefore produces only minimal actions.

38

9.3 Implementation

Algorithm 3 Action Calculation algorithm

1: Dictionary components
2: List of Action actions
3:

4: procedure Init(List<Components> runtimeComponents)
5: for all runComponent ← runtimeComponents do
6: components .put(runComponent .AssemblyContextID, runComponent)

7: end for
8: end procedure
9:

10:

11: procedure CalculateActions(List<Components> reDeplComponents)
12:

13: for all reDeplComp ← reDeplComponents do
14: runComp ← get(reDeplComp.AssemblyContextID)

15: if runComp == Null then
16: actions .add(new AllocateAction(. . .))

17: else
18: if runComp.ComponentID != reDeplComp.ComponentID then
19: actions .add(new ChanдeRepoAction(. . .))

20: end if
21: if runComp.ResContainerID != reDeplComp.ResContainerID then
22: actions .add(new MiдrateAction(. . .))

23: end if
24: end if
25: components .remove(reDeplComp.AssemblyContextID)

26: end for
27:

28: for all runComp ← components do
29: actions .add(new DeallocateAction(. . .))

30: end for
31: end procedure

39

10 Evaluation

This chapter is structured as follows: Initially the concept is elaborated (Section 10.1),

followed by evaluation scenarios (Section 10.2) and the evaluation models (Section 10.3).

The actual evaluation consists of the single tasks: monitoring (Section 10.4), privacy

analysis (Section 10.4), model generation (Section 10.5) and system adaptation (Section 10.7).

Finally we are analysing the threats of validity (Section 10.8). Note, all evaluation models,

test data and results can be found at [31].

10.1 Evaluation Design

iObserve Privacy is a complex approach with many depending tasks. Evaluating the

program as a whole is next to impossible due to the multiplexing dependencies. The

evaluation factors would not be manageable and inconclusive results would make the

evaluation itself pointless. So we decided to evaluate every task independently. The order

and structure was inspired by the iObserve pipeline.

The task evaluation is generally split into an Accuracy evaluation and a Scalability
evaluation. The accuracy evaluation aims for the correct functionality. This means, we

are testing whether the actual results are equal to expected results. For the evaluation we

are creating a set of Evaluation Scenarios, which re�ect real-world situations by de�ning a

starting point and an expected endpoint. If the systems result di�ers from the endpoint,

the reasons must be found and analysed.

The scalability evaluation aims for the systems runtime characteristic, based on an

increasing work load. The actual accuracy result of the task is of no interest during

the analysis. The primary measurement is the tasks execution time, dependent on the

assembly context count and resource container count. Both axis are logarithmic scaled, so

the execution behaviour is clearly visible. The individual models are randomly generated,

based on a repository model input.

We will use the Jaccard Coe�cient to evaluate model changes during the accuracy

evaluation. Prior to the execution a target model is created, representing the desired

post-execution state. The runtime model is compared to the target model, di�erences are

calculated, as well as the jaccard coe�cient. The coe�cient is de�ned as the intersection
set of runtime and target model divided through the union set of these models:

JC(A,B) =
|A ∩ B |

|A ∪ B |

If the models are completely equal, the result is 1.0 [1]. We are comparing the system

model, the resource environment model and the allocation model. The repository and

the usage model model is not modi�ed by iObserve Privacy and therefore do not need

41

10 Evaluation

any comparison. All models elements are matched by element content. The system and

resource environment model are also compared by element ID. All models modi�ed by

iObserve Privacy are order independent, so an order match, like the Spearman Coe�cient,
is not required.

The test device is a Surface Pro 4 using Windows 10 as Operating System. The important

hardware speci�cations are a i7-6650U processor with 2.2 up to 3.4 GHz, 4 MB cache and 2
cores with hyper-threading. The system uses 16 GB of RAM and a 265 GB Solid State Drive.

For more details see [33]. The used Java version is 1.8.0_121 form Oracle.

10.2 Evaluation Scenarios

The scenarios are structured in PRE, EVENT, REACTION and POST. PRE describes the

distributed software system before the event takes place. The EVENT is a trigger for a

certain process or task chain, usually referenced as REACTION. POST de�nes the state of

the software system after the reaction.

The scenarios describe the behaviour of iObserve Privacy through out all tasks, while

each task gets evaluated individually. Nevertheless, details of a scenario may need clari�-

cation during the evaluation of this task.

The following scenarios are derived from the runtime changes mentioned in [10]. This

runtime changes are possible modi�cation to a distributed software system. However,

not all mentioned scenarios are of interest in the privacy analysis context, these will be

discussed in Subsection 10.2.5. Scenarios 1 and 2 represent the observed system runtime

changes, which trigger the iObserve privacy pipeline. These are designed to show the

successful execution of a pipeline run with di�erent triggers. Scenario 3 and 4 cover

the operator-in-the-loop scenarios. The operator is required, when an error occurs that

iObserve privacy can not handle itself. These scenarios are design speci�c and therefore

not derived from the runtime changes described in [10].

10.2.1 Scenario 1: Default

This scenario describes the "default" setting. It is used to evaluate the geo-location transfor-
mation, the privacy analysis, a successful execution of the re-deployment generation and

the adaptation planning.

• PRE: All components of the software system are deployed on Amazons EC2 service

on the EU Frankfurt location. The system is privacy compliant.

• EVENT: Amazons EU Frankfurt data centre has a critical failure. As a result Amazon

starts migrating local virtual machines towards the US Ohio and EU Ireland locations.

• REACTION: iObserve Privacy monitors the migration and starts a privacy analy-

sis. The analysis shows a privacy violation and as a result an alternative, privacy

compliant re-deployment is generated. A system adaptation plan is calculated based

on the re-deployment and �nally executed.

• POST: The software system is in a privacy compliant state.

42

10.2 Evaluation Scenarios

10.2.2 Scenario 2: System extension

This scenario describes the deployment runtime change. It is used to evaluate the de-
ployment transformation, the privacy analysis, a successful execution of the re-deployment
generation and the adaptation planning.

• PRE: All personal categorized components of the software system are deployed on

Amazons EC2 service on the EU Frankfurt location. All other components are hosted

by an Ukrainian provider. The system is privacy compliant.

• EVENT: The system operator adds another component categorized as deperson-

alised to the Ukrainian server.

• REACTION: iObserve Privacy monitors the migration and starts a privacy analysis.

The privacy analysis shows a privacy violation due to joining data streams. An

alternative, privacy compliant deployment is computed by PerOpteryx. A system

adaptation plan is successfully calculated by the adaptation planning. Finally the

adaptation sequence is executed.

• POST: The software system is in a privacy compliant state.

10.2.3 Scenario 3: Failing Adaptation

This scenario is used to evaluate the operator-in-the-loop during the execution of the

adaptation sequence. Due to at least one non-automated adaptation action the operator

needs to be informed.

• PRE: All components of the software system are hosted by multiple server instances

of a cloud reseller.

• EVENT: The reseller migrates some of his servers to another cloud provider.

• REACTION: iObserve Privacy monitors the migration and starts a privacy analysis.

The privacy analysis results in a privacy violation. An alternative privacy compliant

deployment is computed. The adaptation calculation and planning is successful. The

adaptation sequence contains actions that can not be executed automatically. The

operator is informed about the action that can not be executed by the adaptation
execution.

• POST: iObserve Privacy shows the operator the adaptation sequence with emphasis

on the manual tasks.

10.2.4 Scenario 4: Missing Alternative

This scenario is used to evaluate the operator-in-the-loop during the re-deployment genera-
tion. PerOpteryx did not provide a privacy compliant re-deployment model and therefore

the operator is noti�ed.

• PRE: All components of the software system are hosted by multiple server instances

of a cloud resellers.

43

10 Evaluation

• EVENT: The reseller starts migrating his servers to another cloud provider.

• REACTION: iObserve Privacy monitors the migration and starts a privacy anal-

ysis. The privacy analysis shows a privacy violation. The computation of an al-

ternative privacy compliant deployment fails. iObserver privacy detects that the

re-deployment model is missing or not privacy compliant. The operator is noti�ed

about the situation.

• POST: iObserve Privacy noti�es the operator about the missing privacy compliant

re-deployment model.

10.2.5 Futile Scenario

There are a couple of scenarios which do not apply to iObserve Privacy, due to various

reasons [10]. We will elaborate those scenarios shortly.

Performance or workload characteristics are not tackled, since performance and privacy

analysis combined wouldn’t be manageable in the scope of this thesis.

The un-deployment or de-replication are two scenarios which reduce the complexity of

the privacy analysis. A privacy violation can not be triggered by eliminating a component

and/or a server from the system.

The replication of a server, with all its components, will trigger a deployment event.

This means, this scenario is already covered by Scenario 2.

10.3 Evaluation Models

In the previous sections we de�ned a couple of scenarios for the evaluation. In order to

execute these scenarios, we need PCM Privacy models (chapter 5). Scenario and model

need to get selected individually, depending on the task to evaluate.

10.3.1 CoCoME-Cloud

The CoCoME Cloud PCM model is a representation of the CoCoME system as a distributed

cloud variant. It is a representation of a supermarket IT infrastructure. It consists of six

individual deployed components: logic.webservice.cashdeskline.cashdeskservice, cloud.web,

traidingsystem.inventory, traidingsystem.cashdeskline, webservice.inventory and traidingsys-
tem.external.bank. The system design is oriented on real distributed software systems with

dozens of interfaces and multiple composite components. As a result, CoCoME-Cloud

is very complex and not suited for the evaluation of speci�c aspects like the component

categorization or the deployment analysis. However, it is as the only available model fully

speci�ed and "PerOpteryx ready". See [12] for detailed information on CoCoME.

10.3.2 Medi System

The Medi System is an PCM model, specially developed for the evaluation of this thesis. It

is supposed to re�ect the web system of a medical insurance. The required and provided

interfaces are reduced to the minimal necessity, to limit side e�ects and to gain meaningful

44

10.3 Evaluation Models

Personal Depersonalized Anonymized Legend:

OnlineServices

Personal

DataManager

Personal

AccountingService

Personal

MarketingAnalysis

Depersonalized

TreatmentAnalysis

Depersonalized

CourseAnalysis

Depersonalized

ErrorDetection

Depersonalized

GovStatistics

Depersonalized

Figure 10.1: Initial component categorization

results. Figure 10.1 shows the medi system with all components and interface connections.

The deployment will depend on the evaluation scenario.

10.3.3 Generated Models

We developed a model generator and model modi�cator for the scalability analysis. The

generator requires an input repository and creates a valid PCM Privacy model with the

given amount of assembly contexts and resource containers. The contained component in

the assembly context is randomly selected, as well as the resource container it is allocated

on. All required interfaces are correctly connected, primarily to provided interfaces without

an existing connection.

The model is usually constructed with a distribution of 40% Resource Container and

60% Assembly Contexts. This means, a model with 1000 nodes consists of 400 servers and

connected 600 components. We argue, that this leads to a near real-world distribution

of servers with the majority of servers hosting one or two components, a few hosting

three or more components and some empty servers. The classi�cation of the Assembly

Connectors is distributed among 15% Personal, 35% Depersonalised and 50% Anonymous.

This distribution is oriented on the CoCoME classi�cation.

The combination of node and classi�cation distribution leads to every possible execution

path during the execution, as tests have shown. This is the primary concern for the

scalability tests, since the tests aim for a near real-world setting.

The model modi�cator adapts the system randomly, based on action counts speci�ed.

The modi�cation supports server acquisition and termination and assembly context al-

location, deallocation and migration. Further, it supports the exchange of the contained

repository component for a component with the same interfaces. Note, the generated

models are only suited for the scalability analysis.

45

10 Evaluation

10.4 Transformation

The Transformation evaluation consists of an accuracy and a scalability evaluation. The

main purpose is to test the transformation of the sent information to the architectural

runtime model. Further, the iObserve privacy pipeline has to be triggered upon changes.

Scenario #1 (Subsection 10.2.1) and Scenario #2 (Subsection 10.2.2) describe the two possible

triggers: the Deployment Event, when a component is deployed on a server, and the

GeoLocation Event, when the geo-location of a server changes.

10.4.1 Transformation: Accuracy Evaluation

For the accuracy evaluation we are using the CoCoME-Cloud model (Subsection 10.3.1),

since it is completely speci�ed and re�ects a real-world system the most appropriate way

available. We need to show, that the TDeployment, TUndeployment and TGeoLocation

Transformations apply the sent data correctly to the PCM model. Potential errors must be

handled and processed. For this purpose we will use two executions. First, we will execute

a logically valid input set of events, to show the correctness of the transformation. In a

second execution we will show, that logically wrong inputs are processed correctly. Both

runs start with an empty allocation model.

Table 10.1 shows the initial input event sequence. Initially all components are being

deployed, followed by a geo-location update for each server and a re-deployment of the

cloud.web component from Server1-EU to Server5-EU and �nally a geo-location update on

Server4-EU to Ukraine.

Action Values
Deployment tradingsystem.external.Bank on Server6-EU

Deployment tradingsystem.cashdeskline on Server4-EU

Deployment cloud.web on Server1-EU

Deployment webservice.inventory on Server1-EU

Deployment tradingsystem.inventory on Server2-EU

Deployment logic.webservice.cashdeskline.cashdeskservice on Server3-EU

GeoLocation Server1-EU on 276 (GER)

GeoLocation Server2-EU on 276 (GER)

GeoLocation Server3-EU on 250 (FRA)

GeoLocation Server4-EU on 250 (FRA)

GeoLocation Server5-EU on 826 (GBR)

GeoLocation Server6-EU on 826 (GBR)

UnDeployment cloud.web from Server1-EU

Deployment cloud.web on Server5-EU

GeoLocation Server4-EU on 804 (UKR)

Table 10.1: The correct execution set

We expect a run without any errors, an allocation model, which represents the described

deployment and a design decisions model, with the according degree of freedoms.

46

10.4 Transformation

The results are true to our expectations. The system reports no errors and the models

represent the system exactly as intended. The Jaccard Coe�cient is 1.0.

Action Values
Table 10.1 commands

Deployment cloud.web on Server1-EU*

UnDeployment cloud.web from Server5-EU

UnDeployment cloud.web from Server5-EU*

Deployment cloud.web on Server7-EU*

Deployment IllegalComonent on Server1-EU*

UnDeployment IllegalComonent from Server1-EU*

UnDeployment tradingsystem.inventory from Server3-EU*

GeoLocation Server7-EU on 826 (GBR)*

Table 10.2: The error execution set

To test the error behaviour, we need to input logically false events. To gain a valid system

state, we are starting with the valid order (Table 10.1) and append illegal orders. Table 10.2

shows the exact execution sequence. Illegal events are marked with a *. We expect these

orders to give a warning and to be ignored. The system must continue running. The test

includes the following cases: Deployment of an already deployed component, deployment

or undeployed on a non-existing server, geo-location record from a non-existing server,

un-deployment of a non-existing deployment.

The error run ends up to be exactly as intended. All faulty commands got ignored and

the Jaccard Coe�cient is 1.0. Both Jaccard coe�cients show, that the (un-)deployment

and geo-location transformation works as anticipated. As a consequence we argue, that

the monitoring research question, RQ-M1, was successfully answered and that we have a

very good accuracy (see RQ-M2), since no case could be identi�ed that did not work as

intended.

10.4.2 Transformation: Scalability Evaluation

For the scalability analysis we are using the Medi-System model with generated input.

The Medi-Model is chosen due to its less generic characteristic then the Gen-Model and

therefore more realistic result. Further, the Medi-Model as complex as the CoCoME model

in the �eld to test, while easier to understand and less error prone during input generation.

The inputs are logically and syntactically valid. 30% of the inputs are deployments and

un-deployments, distributed relative to the current allocation status. The other 70% of

inputs are geo-location events, randomly distributed over all available servers. This ratio

is an over-approximation towards the more complex and computation intensive allocation

and de-allocation events. The expected real-world occurrence of a deployment events

to the geo-location event is about 1 to 10000. This way, we expect the deployment and

un-deployment event to have a more signi�cant impact on the runtime behaviour. Every

measurement was repeated ten times to eliminate potential measurement errors. The log

47

10 Evaluation

outputs remain active, the snapshot creation is deactivated, so no further pipeline �lters

are activated. We use input sizes from 10 to one million events on a logarithmic scale.

0,01

0,1

1

10

100

1000

10 100 1000 10000 100000 1000000

Ti
m

e
 [

s]

Model Size [|Nodes|]

Transformation Runtime

Runtime Standard Deviation

Figure 10.2: Transformation runtime & Standard Deviation

The results (Figure 10.2) show a linear runtime behaviour, for the maximum input size of

1 million events the execution takes about 820 seconds. The according standard deviation

of 22 makes it a stable and fast result, concerning RQ-M3.

10.5 Privacy Analysis

The Privacy Analysis was discussed in chapter 3 (Privacy Concept) and chapter 7 (Pri-

vacy Analysis). As described there, the privacy analysis consists of two sequential parts:

Component Classi�cation and Deployment Analysis. According to this tasks, the accuracy

evaluation is also split. The accuracy evaluation uses the Medi-System model (Subsec-

tion 10.3.2), due to its moderate complexity level, where e�ects like the Joining Data Stream
occur, but the results are still traceable.

10.5.1 Privacy Analysis: Accuracy Evaluation

We will show, that the Component Classi�cation categorizes components correctly. This

includes the correct initial categorization (C1), the �nding of joining data streams (C2) and

single data stream (C3). Further, we will show, that the Deployment Analysis �nds illegally

deployed personal components on un-save geo-locations (D1), joining data streams on the

deployment level (D2) and ignores joining data streams on a save geo-location (D3). As

a result, we demonstrate the correctness of our privacy analysis, as speci�ed in the goal

section (Section 1.3).

The scenarios #1 (Subsection 10.2.1) and #2 (Subsection 10.2.1) aim to trigger a privacy

analysis and describe di�erent privacy violations. We showed in Section 10.4, that both

trigger, the deployment event and the geo-location event are correctly processed and the

48

10.5 Privacy Analysis

information, are successfully transformed to the PCM model. Both pipeline triggers lead

to the same privacy analysis and are therefore equivalent for this accuracy evaluation.

Personal Depersonalized Anonymized Legend:

OnlineServices DataManager

AccountingService MarketingAnalysis

TreatmentAnalysisCourseAnalysis

ErrorDetection

Server1
Location: GER

Server4
Location: GBR

Server2
Location: CZE

Server3
Location: UKR

Figure 10.3: Initial system state

The initial system state is as shown in Figure 10.3. The system is privacy compliant

and only the GovStatistics component is not allocated on a server. iObserve will trigger

the pipeline by processing a TGeoLocation transformation, which migrates the Server2
to Belarus. With this trigger, we will show, that the component categorization works as

intended.

We expect the initial component categorization to be equal to the most personal interface

level the component has (C1). After the Categorization Analysis the MarketingAnalysis
component should be classi�ed as personal, due to its two personal communication partners

(C2). The privacy level categorization of the components ErrorDetection, TreatmentAnalysis
and CourseAnalysis must remain unchanged, since they share a single depersonalised

interface as data source (C3). The deployment must remain legal.

Personal Depersonalized Anonymized Legend:

OnlineServices

Personal

DataManager

Personal

AccountingService

Personal

MarketingAnalysis

Depersonalized

TreatmentAnalysis

Depersonalized

CourseAnalysis

Depersonalized

ErrorDetection

Depersonalized

Figure 10.4: Initial categorization

Personal Depersonalized Anonymized Legend:

OnlineServices

Personal

DataManager

Personal

AccountingService

Personal

MarketingAnalysis

Personal

TreatmentAnalysis

Depersonalized

CourseAnalysis

Depersonalized

ErrorDetection

Depersonalized

Figure 10.5: Categorization analysis result

After the execution we calculated a Jaccard Coe�cient of 1.0. This shows us that

the pipeline trigger was correctly processed. Figure 10.4 shows the initial component

categorization, Figure 10.5 shows the categorization analysis result. This states show,

that our expectations on the component categorization, C1,C2 and C3, were met. The

49

10 Evaluation

deployment analysis reports a legal deployment, which is also what we anticipated. So,

the results are true to our expectations.

To trigger the pipeline another time, we will deploy the GovStatistics component onto

Server2. The component must be tagged depersonalised and the deployment analysis must

report a joining data stream on Server2 (D2).

Personal Depersonalized Anonymized Legend:

OnlineServices

Personal

DataManager

Personal

AccountingService

Personal

MarketingAnalysis

Personal

TreatmentAnalysis

Depersonalized

CourseAnalysis

Depersonalized

ErrorDetection

Depersonalized

GovStatistics

Depersonalized

Server1
Location: GER

Server4
Location: GBR

Server2
Location: BLR

Server3
Location: UKR

Figure 10.6: Deployment analysis result (1)

Figure 10.6 visualises the component categorization and deployment analysis result.

The execution of the second pipeline trigger, reports a privacy violation. The cause is a

joining data stream on Server2. This is what we provoked and expected (D2). The Jaccard
Coe�cient for the trigger processing is 1.0, again.

For the �nal pipeline trigger, we will migrate Server2 into the EU, to Italy. We expect,

that the server no longer reports a illegal deployment, despite the potential joining data
stream on the server (D3). During the migration, Great Britain is removed from the save
country list, due to a management decision. As a consequence, we predict a new privacy

violation concerning the deployment of the personal MarketingAnalysis component on

Server4 (D1).
Figure 10.7 shows the �nal trigger result. As expected, the Marketing Analysis deploy-

ment on Server4 is reported as privacy violation. Further, Server2 is now privacy compliant.

The Jaccard Coe�cient is 1.0, so the geo-location transformation was successfully executed.

The result is true to our expectations, this means, we have successfully shown D1 and D3.

We have shown, that the Component Classi�cation algorithm and the Deployment Anal-
ysis works as intended. Further, we proofed the concept of a privacy analysis on an

architectural level as intended in Section 1.3 (RQ-A1). We exemplary showed the correct-

ness of the component categorization and the deployment analysis. This includes the two

major tasks of detecting joining data streams on component categorization and deployment

analysis level. Further, we showed the correct identi�cation of a set of components, located

on a server, sharing a single depersonalised component as a data source. So, concerning

RQ-A2, we have a perfect accuracy. Further, exemplary privacy violations will be used in

the other accuracy evaluations.

50

10.5 Privacy Analysis

Personal Depersonalized Anonymized Legend:

OnlineServices

Personal

DataManager

Personal

AccountingService

Personal

MarketingAnalysis

Personal

TreatmentAnalysis

Depersonalized

CourseAnalysis

Depersonalized

ErrorDetection

Depersonalized

GovStatistics

Depersonalized

Server1
Location: GER

Server4
Location: GBR

Server2
Location: ITA

Server3
Location: UKR

Figure 10.7: Deployment analysis result (2)

10.5.2 Privacy Analysis: Scalability Evaluation

For the scalability evaluation of the privacy analysis, we will use the generated model

(Subsection 10.3.3), since models of the intended scale are not constructable by hand.

The time measurement starts before the graph is constructed from the model. Time

measures are taken for the component classi�cation and the deployment analysis. Complex

console outputs, like the system structure, are deactivated to minimise random performance

in�uences.

We measure a graph size of 10 to one million nodes on a logarithmic scale. The model set-

up was described in Subsection 10.3.3. The legal geo-locations consist of 40 random chosen

countries, while the server geo-locations are distributed among roughly 200 countries.

This proportion was chosen to provoke many privacy violations and a signi�cant amount

of joining data stream analysis. Each model measurement is repeated ten times to minimize

runtime e�ects.

Figure 10.8 shows the accumulated runtime in the order the tasks are executed. Initially,

the graph for the privacy analysis is created, followed by the component classi�cation and

�nally the deployment analysis. The graph shows a nearly linear increasing runtime. The

major time is consumed by the graph construction, while the component classi�cation

and deployment analysis only show minor size e�ects. The accumulated runtime for

one million nodes is still signi�cantly below ten seconds. The limiting task for further

scalability tests is the graph generation due to memory limitations and java HashMap
over�ow errors. However, graphs with the size of 1000 and more nodes are already very

unlikely.

The standard deviation Figure 10.9 is increasing - in general - linear with the model

size. The deployment analysis however, shows some irregular behaviour. This could be

due to the randomly selected save countries. A standard deviation of three times the

actual mean runtime shows signi�cantly runtime computation di�erences. Nevertheless,

a maximum deployment analysis time of ten seconds on a one million nodes graph is still

51

10 Evaluation

0,001

0,01

0,1

1

10

10 100 1000 10000 100000 1000000

R
u

n
ti

m
e

 [
s]

Model Size [|Nodes|]

Accumulated Privacy Analysis Runtime

Building Graph Component Classification Deployment Analysis

Figure 10.8: Privacy Analysis runtime

considered very fast. And an overall privacy analysis runtime of maximum 15 seconds

is also very quick. So, concerning the research question RQ-A3, we can argue, that the

privacy analysis has good scaling characteristics and a very fast execution time.

10.6 Model Generation

The privacy compliant model generation is only evaluated under the Accuracy aspect. The

Scalability evaluation was already performed by the creators of PerOpteryx (see [16]) and

our Privacy Analysis was evaluated in Section 10.5. We will focus on the problem speci�ed

in Section 1.2, the generation of a privacy compliant re-deployment model.

For this evaluation we use the CoCoME model (Subsection 10.3.1) together with the

scenarios #2 (Subsection 10.2.2) and #4 (Subsection 10.2.4). Scenario #2 describes a complete

iObserve Privacy execution, including the successful execution of PerOpteryx for the re-

deployment model generation. Scenario #4 describes the case, in which PerOpteryx fails

to generate a privacy compliant candidate. We will start with Scenario #2.

We deploy the CoCoME components on one EU server each and adjust the individ-

ual server costs to re�ect EU and Non-EU status (see chapter 8). We will trigger the

pipeline by moving the Server4-EU, which hosts the component, categorised as personal,

webservice.inventory, to Ukraine.

After the execution of our model generation framework, PerOpteryx, we expect the

re-deployment model to be privacy compliant. This is the major concern and primary

focus. However, we further anticipate a deployment with fewer server in use, as well as a

migration of multiple depersonalised components to Non-EU servers.

PerOpteryx is con�gured to execute four iterations with 20 candidates per iteration. This

means, a total of 80 candidates will be created and evaluated.

52

10.6 Model Generation

0,0001

0,001

0,01

0,1

1

10

10 100 1000 10000 100000 1000000

St
an

d
ar

d
 d

ev
ia

ti
o

n
 [

s]

Model Size [|Nodes|]

Privacy Analysis Runtime - Standard deviation

Building Graph Component Classification

Deployment Analysis Moving Mean (size 2) of Building Graph

Moving Mean (size 2) of Component Classification Moving Mean (size 2) of Deployment Analysis

Figure 10.9: Privacy Analysis runtime standard deviation

Component Categorization Deployment Redeployment
cloud.web Depersonalized Server1-EU Server6-EU

tradingsystem.inventory Personal Server2-EU Server1-EU

cashdeskline.cashdeskservice Depersonalized Server3-EU Server2-NonEU

webservice.inventory Personal Server4-EU Server6-EU

tradingsystem.cashdeskline Depersonalized Server5-EU Server4-EU

tradingsystem.external.Bank Depersonalized Server6-EU Server3-NonEU

Table 10.3: Component categorization, runtime deployment and re-deployment

The Table 10.3 shows the components, their data privacy level classi�cation, the initial

deployment and the generated re-deployment. A performed privacy analysis on the re-

deployment model shows, that the model is privacy compliant. So, the major goal (see

Section 1.3) was accomplished. Further, depersonalised components were moved to more

cheap Non-EU severs and two components were deployed onto the same server. Both

deployment goals indicate, that the most cost e�cient model was chosen - as intended.

However, no component stays at this original server, which produces (unnecessary) mi-

gration costs. The execution time of PerOpteryx was about 30 seconds and elven of 80

candidates were privacy compliant.

In scenario #4, no privacy compliant re-deployment model can be found, PerOpteryx

crashes or any kind of error occurs. However, the end result stays unchanged, no valid

re-deployment model is available after the PerOpteryx execution. We are provoking this

situation by deploying all components onto a single server. As the pipeline trigger we are

moving this server to a Non-EU geo-location. We expect iObserve Privacy to report, that

no privacy compliant PCM model was found. Basically, we expect, that iObserve invokes

the operator-in-the-loop for manual error treatment.

53

10 Evaluation

The execution shows an error, which states, that the given re-deployment model is not

privacy compliant. If a listener would be registered, the listener would have been noti�ed.

The execution lives up to our expectations.

Concerning the research questions in Section 1.3, we have shown that we are able to

generate a privacy compliant re-deployment model (RQ-P1) and that we are able to invoke

the operator-in-the-loop on an error situation (RQ-P2).

10.7 System Adaptation

The Adaptation Planing, described in chapter 9, aims for calculating a sequence of adap-

tation actions. The execution of this adaptation order must result in a runtime model,

that is equivalent to the redeployment model. This is one of the research goals stated in

Section 1.3. We will evaluate this task towards its accuracy and scalability.

10.7.1 Adaptation: Accuracy Evaluation

We will continue with scenario #2 from the generation evaluation (Section 10.6). This

means, we use the input model from model generation, as well as the calculated re-

deployment model to calculate the adaptation sequence. We will show the correctness of

the adaptation sequence calculation, by translating the adaptation order to an equivalent

iObserve privacy input event sequence. After iObserve privacy processed the events, the

Jaccard Coe�cient - between the computed re-deployment model from PerOpteryx and the

iObserve runtime model - must be 1.0. As mentioned, this example shows the continues

MAPE loop and is therefore as close as possible to a real world example.

We expect the calculated adaptation sequence to represent a series of adaptation actions

that migrates the runtime model towards the re-deployment model. Further, we anticipate

the order to be sorted after the Unversal Action Order speci�ed in Table 9.2. This means,

the sequence is initially acquiring the newly used servers, followed by a series of migration
actions, that move the components to their new servers. Finally there should be three

terminate actions to release the servers, that are no longer needed.

Table 10.4 shows the output adaptation sequence for scenario #2. The result is true to

our expectations. The Unversal Action Order is met. For the transformation onto iObserve

input events, we can ignore the acquire actions, since the resource containers already exist

in the resource environment model. Every migrate action needs to be translated into two

events: a Undeployment event and a Deployment event. The terminate actions can also be

ignored, since there is no real server to release or terminate. We expect the system to be

in a privacy compliant state after the execution of the iObserve input events. Table 10.5

shows the resulting iObserve input events.

The execution of the transformed adaptation sequence (Table 10.5) results in a privacy

compliant PCM model and the Jaccard Coe�cient of the post-execution runtime model

and the calculated redeployment model is 1.0. So, the result ful�lls our expectations and

solves the in Section 1.2 stated research question RQ-E1 concerning automated privacy
compliance re-establishment.

54

10.7 System Adaptation

Action Values
Acquire Server3-NonEU

Acquire Server2-NonEU

Migrate webservice.inventory Server4-EU -> Server6-EU

Migrate tradingsystem.cashdeskline Server5-EU -> Server4-EU

Migrate tradingsystem.external.Bank Server6-EU -> Server3-NonEU

Migrate cashdeskline.cashdeskservice Server3-EU -> Server2-NonEU

Migrate cloud.web Server1-EU -> Server6-EU

Migrate tradingsystem.inventory Server2-EU -> Server1-EU

Terminate Server3-EU

Terminate Server2-EU

Terminate Server5-EU

Table 10.4: The ordered adaptation sequence

Action Values
UnDeployment webservice.inventory from Server4-EU

Deployment webservice.inventory on Server6-EU

UnDeployment tradingsystem.cashdeskline from Server5-EU

Deployment tradingsystem.cashdeskline on Server4-EU

UnDeployment tradingsystem.external.Bank from Server6-EU

Deployment tradingsystem.external.Bank on Server3-NonEU

UnDeployment cashdeskline.cashdeskservice from Server3-EU

Deployment cashdeskline.cashdeskservice on Server2-NonEU

UnDeployment cloud.web from Server1-EU

Deployment cloud.web on Server3-EU

UnDeployment tradingsystem.inventory from Server2-EU

Deployment tradingsystem.inventory on Server1-EU

Table 10.5: iObserve input event translated adaptation sequence

We will continue to evaluate the System Adaptation with scenario #3 to show the

limitations and so far unseen capabilities of the adaptation calculation. PerOpteryx only

adapts the system given according to the Design Decision model (see chapter 8). For

iObserve Privacy PerOpteryx will only produce acquire, migrate and terminate actions.

These are (usually) automatically executable.

For this scenario the Medi-Sys is used. We will modify the Medi-Sys model to provoke

one of each action. Figure 10.10 shows the runtime model, Figure 10.11 shows the re-

deployment model. The anticipated di�erence between these models is shown in Table 10.6.

We expect each of the seven actions to be detected, except the replicate action, since this is

not (yet) supported by the adaptation calculation. It will be subsided by an aquire Server2-2
and an allocate GovStatistics on Server2-2.

The execution of the adaptation calculation shows the expected result (see Table 10.7).

The replicate action is split into the expected acquire and allocate actions (marked with an

*). To summarize, the results are true to our expectations.

55

10 Evaluation

Personal Depersonalized Anonymized Legend:

OnlineServices

Personal

DataManager

Personal

AccountingService

Personal

MarketingAnalysis

Personal

TreatmentAnalysis

Depersonalized

CourseAnalysis

Depersonalized

ErrorDetection

Depersonalized

GovStatistics

Depersonalized

Server1
Location: GER

Server4
Location: GBR

Server2
Location: FRA

Server3
Location: UKR

Server5
Location: FRA

Figure 10.10: Runtime model

Personal Depersonalized Anonymized Legend:

OnlineServices

Personal

DataManager

Personal

AccountingService

Personal

TreatmentAnalysis

Depersonalized

CourseAnalysis-2

Depersonalized

ErrorDetection

Depersonalized

Server1
Location: GER

Server3
Location: UKR

Server5
Location: FRA

Server2-2
Location: FRA

GovStatistics

Depersonalized

Server6
Location: GBRAccountingService-2

Personal

Figure 10.11: Redeployment model

Scenario #4 intends to invoke the operator-in-the-loop. We are unable to evaluate this

scenario, since no technology dependent scripts (see Section 9.2) for the actual execution

are available to decide whether an action is automatically executable. This depends strongly

on the used system binary management tools.

Concerning the research questions stated in Section 1.3, we have proved the concept of

calculating an automated system adaptation sequence (RQ-E1). However, not all de�ned

corner cases could be detected correctly. Nevertheless, the default real-world CoCoME

example was successfully calculated and proven to be correct. Overall, RQ-E2 shows a

moderate to good accuracy.

10.7.2 Adaptation: Scalability Evaluation

For the scalability analysis we are using generated, logically valid PCM Privacy models

(Subsection 10.3.3). These models are randomly modi�ed with respect to the logically

validity. This means, that the model does not contain any errors like unconnected required

interfaces, not allocated assembly contexts and deployments on non-existing resource

containers. So, the model is error-free. We are measuring the time it takes to build the

56

10.7 System Adaptation

Action Values
Acquire Server-6

Exchange Component CourseAnalysis to CourseAnalysis-2

Deallocate MarketingAnalysis from Server-4

Allocate AccountingService-2 on Server-6

Migrate ErrorDetection from Server-3 to Server-6

Replicate Server-2 (with GovStatistics)

Terminate Server-4

Table 10.6: Expected adaptation sequence for Scenario #4

Action Values
Acquire Server-6

Acquire Server2-2 (*)

Exchange Component CourseAnalysis to CourseAnalysis-2

Allocate AccountingService-2 on Server-6 (*)

Allocate GovStatistics-2 on Server2-2

Deallocate MarketingAnalysis from Server-4

Migrate ErrorDetection from Server-3 to Server-6

Terminate Server-4

Table 10.7: Expected adaptation sequence for Scenario #4

model graphs, as well as the time for the execution of the Adaptation Calculation and the

Adaptation Planning.

The initial model is constructed as described in Subsection 10.3.3. The modi�cation is

linear distributed over the acquire, terminate, allocate, deallocate, migrate and exchange

component modi�cations. However, not every modi�cation in the model leads to an

adaptation action. The adding of another resource container is only recognized as an

acquire action, if an assembly context is allocated on that new resource container. The

termination of a resource container, that hosts one or more components, leads also to a

migration action. With this in mind, we measure the time of the adaptation calculation and

adaptation planning based on the amount of modi�cations in the model. The model itself

is three times as big as the modi�cations provoked, so the anticipated amount of changes

are possible. A model with 100 nodes can not contain 1000 modi�cations. We decided

against a static model size due to long evaluation runs. Each measurement is repeated

ten times, to reduce the impact of runtime e�ects. The input sizes are 10, 100, 1000 and

10000. An evaluation run with 100000 provoked changes was aborted after twelve hours

of computation.

Figure 10.12 shows the runtime results. The graph creation shows a linear runtime

behaviour, like in Subsection 10.5.2 already noticed. The adaptation calculation consumes

an increasingly amount of time. This can be explained with the increasing model size, since

the actual action calculation is optimized for O(1) operations, while the action creation

operates with PCM model elements directly. The EMF framework in general shows poor

performance characteristics, which can also be seen at the failed 100000 changes evaluation

57

10 Evaluation

0,001

0,01

0,1

1

10

100

10 100 1000 10000

R
u

n
ti

m
e

 [
s]

Model Size [|Nodes|]

Accumulated Adaptation Runtime

Building Graphs Adaptation Calculation Adaptatin Planning

Figure 10.12: Adaptation runtime

[8][27]. The adaptation planning needs next to no time, shown by the time line on top of

the adaptation calculation line.

The standard deviation (Figure 10.13) shows mostly constant deviations. However, the

adaptation calculation increases signi�cantly on the last evaluation run. We assume this

is due to JVM memory management and EMF e�ects. However, a standard deviation of

roughly 3 seconds to a runtime of 30 seconds is within an acceptable ratio, considering

that two models and graphs of 30000 nodes have to be managed.

The Adaptation Planning scalability evaluation shows satisfying results. Concerning

the research question RQ-E3 it is considered very fast with an acceptable variance.

10.8 Threats to validity

Like in any scienti�c publications, the evaluation has threats to its validity. We will scope

the most important points and highlight the crucial aspects.

10.8.1 Internal Validity

Our decision to evaluate every major iObserve Privacy task independently is a key stone

to the internal validity. It allowed us to provoke every possible reaction and e�ect without

potential side e�ects. As a result, we could perfectly track cause and result of certain

e�ects.

Scalability tests often require an even more isolated and specialised testing. In our

case the individual task had to be called from outside their ordinary call scheme, the

TeeTime framework. This was necessary so enable tests of the performed size. This blurs

the results in the context of the whole system, however, sharpens the individual tasks

runtime behaviour.

58

10.8 Threats to validity

0,001

0,01

0,1

1

10

10 100 1000 10000

St
an

d
ar

d
 d

ev
ia

ti
o

n
 [

s]

Model Size [|Nodes|]

Adaptation Runtime - Standard deviation

Building Graphs Adaptation Calculation

Adaptatin Planning Moving Mean (size 2) of Building Graphs

Moving Mean (size 2) of Adaptation Calculation Moving Mean (size 2) of Adaptation Planning

Figure 10.13: Adaptation runtime SD

10.8.2 External Validity

One threat towards external validity are the missing live tests. Since testing on a real

software system takes way longer, technology speci�c side e�ects, dependencies and errors

have to be handled, we created inputs by hand. The input is logically and syntactically

valid, however, potential corner cases could have been missed, despite extensive testing.

Nevertheless, all tests aiming for a real-world authenticity were using the CoCoME PCM

model. This model was designed to provide a scienti�c comparable, near real-world

standard. So, iObserve Privacy was evaluated as close to a real-world application as

possible, while using realistic inputs.

10.8.3 Construction Validity

While the individual task evaluation was the internal validities strength, it is a weakness

of the construction validity. However, during the accuracy evaluations, the whole pipeline

was (usually) invoked, evaluation scenarios were continued and an internal logically

validity was established. So, the evaluation is well interleaved and the likelihood of

construction errors should be, despite the individual task evaluation, minimized.

Nevertheless, the target evaluation models are constructed by hand, which tends to

be error prone. However, to produce the same error in the evaluation target model like

iObserve Privacy does is very unlikely.

10.8.4 Conclusion Validity

The accuracy evaluation is considered very conclusive with su�cient tests, scenarios and

models. Most of the scalability evaluations are also quite conclusive. However, the bad

59

10 Evaluation

EMF performance limits the test sizes. This is especially true for the adaptation planning

scalability evaluation, with the maximum input of 10000 changes. This makes the result

not as meaning as possible, but still viable.

60

11 RelatedWork

In this chapter we are presenting a couple of related publications, this work can be

referenced to. The sections are oriented on the task and problems mentioned in Section 1.3.

11.1 Application Monitoring

The monitoring of software systems is common task in many research �elds. Automated

data-�ow analysis, software pro�ling and hardware utilization are only a small selection

of groups, using this term. In the following, we use application monitoring in the sense of

online extraction of runtime data form a (distributed cloud) application for architecture

optimization.

R-PRIS (Section 11.2) and Kieker are application monitoring frameworks. While iObserve

uses Kieker to extract the desired information, R-PRIS is independent from other programs.

Neither of them uses a meaningful architecture description language (ADL) to process and

store the gathered information. iObserve however gathers the transmitted data, processes

them and stores them into a PCM model, enabling all kind of PCM-based applications to

use the gathered information [22][23][11].

11.2 Privacy Analysis

R-PRIS is a monitoring and analysing tool for distributed cloud systems. Like iObserve,

R-PRIS updates a runtime model by monitoring the cloud systems. During the analysis

phase the model is checked for (potential) privacy violations.

Like Kieker, R-PRIS combines push-based heartbeat monitoring with event processing,

and graph grammars for e�ciently updating those models [23]. R-PRIS uses a formal

speci�cation for geo-location policies. These consists of data classi�cation S , data content

types T and geo-locations L. Every speci�ed policy p = (S,T ,L) is forbidden. This means,

a data modelling is required with a Classi�cation and the containing ContentType (see Fig-

ure 11.1). During privacy analysis R-PRIS checks whether a privacy protected information

can be accessed from an non-privacy compliant location. This can be transformed into

an st-connectivity problem, a standard problem in graph theory and analysis. Based on

the runtime model (Figure 11.2) - with its meta-model (Figure 11.1) - R-PRIS performs a

reachability check [24].

In terms of software, R-PRIS searches for communication paths in the distributed system,

which can potentially transmit personal data to a non-privacy compliant geo-location.

In order to detect these communication paths a policy p must be speci�ed, representing

exactly this case, which however doesn’t necessarily communicate private data. As a

61

11 Related Work

Figure 11.1: R-PRIS meta-model Figure 11.2: R-PRIS runtime model

result, a lot of policies have to be speci�ed, which prohibit many potentially harmless

communication paths.

Based on their runtime model, Schmieders et al. identi�ed four relevant migration-cases

and extracted six required informations to detect a policy violation[24]:

Required information to carry out runtime check
R1 Interactions of two components

R2 Access of components to locally stored �les

R3 Meta-information of stored or processed data

R4 Information on component deployments on physical resources

R5 Geo-location information of physical resources

R6 Explicit or implicit information on transitive data transfers

Table 11.1: R-PRIS information for runtime privacy checks [24]

Due to the comparable core task of detecting privacy violations, we are comparing

the R-PRIS privacy analysis against the iObserve Privacy privacy analysis. More detailed

information on R-PRIS can be found in [23][24].

Runtime Model R-PRIS uses the specially developed model shown in Figure 11.1. Even

while it models components, VMs and process, it does not capture the systems

architecture as the Palladio Component Model does. Further, it is not known, whether

tool support or other compatible programs exist, like the PCM has.

Categorization We are utilizing a component communication classi�cation, which leads

to a component classi�cation and a deployment analysis. Therefore, we do not

know what data are actually processed in a component or on a server. R-PRIS,

however, tags the data itself, traces the transitive access and prohibits rule violating

access. As a result, R-PRIS, uses the more accurate data tracking, which requires

more information and a more detailed knowledge about the observed system then

iObserve privacy. While iObserve privacy uses data categorization by hand, the

R-PRIS approach does not explain their modelling and categorization process.

62

11.3 Data-�ow Analysis & Rights Management

Rule Compliance iObserve Privacy is clearly build to stay EU General Data Protection

Regulation and HIPAA compliant. Therefore, a simple �le input with save geo-

locations is su�cient. R-PRIS requires a rule input, which speci�es prohibited

data access. Compared to iObserve privacy, this is a more powerful and �exible

input. Nevertheless, it complicates the usage and scales poorly with the system size,

deployment locations and data variety, since every prohibited access needs to be

speci�ed for every data type per geo-location and content type.

11.3 Data-flow Analysis & Rights Management

(Access) Rights Management, like the Bell-LaPadula Model or Role-based access control,

are fundamentals in our modern information society. These systems restrict or allow

access on certain entities with the intention of information protection. The fundamen-

tals are well researched, so research currently is focused on resource and time e�cient

rights management in large scale systems like companies, as well as automated rights

management on small, mobile devices [7].

Data-�ow Analysis is a hot research topic due to the omnipresence of cloud services

and mobile devices with rich data sources. Applications like JOANA [25], TaintDroid [9],

Privacy Oracle [15] or automated privacy instrumentation [29] are only some of many

applications and approaches around data-tracking, data-�ow analysis and leak detection.

However, nearly all of these approaches are using actual code or information rich models.

For our purposes we need automated data-�ow analysis on architecture level, to deter-

mine if a system violates privacy regulations. This research is still in its early stages and

therefore not suited for applications with our designated level of complexity.

11.4 Privacy Analysis

Most research in this �eld focuses on prevention of policy violation. “However, changes

of data geo-locations imposed by migration or replication of the component storing the

data are not considered. Data transfers between the client services and further services

are not covered. Transitive data transfers that may lead to policy violations thus remain

undetected.”[24]

As mentioned in Section 11.2, R-PRIS is searching for potential access violations in the

application model, by using a st-connectivity analysis.[24][23] This approach is overesti-

mating the privacy aspects by not including which kind of data are actually communicated

between components and geo-locations. This makes it impractical for many business

applications, due to the high likelihood of allowing only deployments on save-considered

geo-locations.

11.5 Automated Model Optimization &Modification

The research �eld of model analysis based performance optimizer can be roughly divided

into two sections. First, the rule-based approaches, which apply a prede�ned rule, based

63

11 Related Work

on the detected problem, onto the system model. Second, metaheuristic-based approaches,

which use a generic framework and evolutionary algorithms for multiple arbitrary quality

criteria.[18]

PerOpteryx (Section 2.5) is a metaheuristic-based approach. However, PerOpteryx does

not consider a hosts geo-location during its optimization process. This can be changed by

adding an allocation constraint, preventing privacy violating deployments.

11.6 Automated Cloud Migration & Adaptation

Since the start of cloud computing there has been plenty of research on how to migrate

regular on premise applications and software into the cloud. Either software is cloud-

enabled in the most automatic fashion possible or the software is cloud-native, meaning

specially developed or redesigned, by developers, for running inside the cloud. While

there has been good progress semi-automatically cloud-enabled software, the �eld of

migrating cloud applications form one cloud provider to another is just beginning. One of

the main issues is resulting in provider individual Cloud-APIs. Current, state of the art

is the "Docker" or container-technology, which wraps the application like a VM and is

suitable for many cloud provider. Nevertheless, many cloud provider o�er special purpose

solutions, where a docker solution is not viable. The technology side of cloud to cloud

migration will be left out in this thesis. [13][3]

64

12 Conclusion

In this chapter we will wrap up this thesis with the limitations and the future work sections.

12.1 Limitations & Assumptions

Like every other scienti�c work, we can not build a universal, world ready system. We

need to accept and sometimes even require limitations to produce meaningful results for

certain aspects.

Cloud Provider objectives A cloud provider, like any other person or company, has his

own objectives. In the most cases pro�t maximization can be assumed as the primary

goal. This can be interpreted in multiple ways, from law in-compliant behaviour over

SLA violations to premium prices for extended services. Nevertheless, in general

the assumption stands, that Cloud Providers want to stay SLA and law compliant to

avoid lawsuits and reputation loss. Based on this, we assume our providers are law

and SLA compliant.

Separation of virtual servers For simplicity reasons, we need to assume that we can deploy

multiple Type 1 Data, depersonalised data, (Section 3.1) onto one data-centre, but on

di�erent (virtual) server, without considering joining data stream (Subsection 7.1.3)

implications. Basically we assume, every virtual server has its own independent disk

and memory storage. If this assumption wouldn’t be made, massive per-instance

encryption or per data-centre deployment would be the valid solution. However,

encryption as a cloud-ready middle wear is a hot research topic around the globe

and not considered by this thesis.

Geo-location API To make a statement about the systems current privacy compliance, we

need the Resource Containers geo-location. If we don’t want to make extensive

geo-location determination process, like the ping round trip measurement, we need

the cloud provider to provide the geo-location via his cloud API.

ClosedWorld Assumption As mentioned in Section 3.3 we need the close world assumption

to make any statement about the privacy compliance. The implications of privacy

and data protective laws are too complex to make a automated, detailed and well

balanced statement on privacy compliance without the CWA.

Privacy Analysis Overestimation For the privacy analysis we forbid joining data streams
(Subsection 7.1.3). We are aware, that this is a considerably overestimation, especially

during the deployment analysis. We are doing so to ensure privacy compliance

without taking any chances and prevent deep component inspection and extensive

data protective law discussions.

65

12 Conclusion

(In-)Correct Component Based Architecture Modern software systems and distributed cloud

applications in particular, are designed after the separation of concern principle. Sys-

tems designed after this principle encapsulate cohesive functionality in a component.

If a system ignores this basic design principle, it is possible that our approach does

not detect a privacy violation. Since a component gets its data privacy level from

the Assembly Connector, a component that saves personal data, but does not commu-

nicate them via an Assembly Connector can receive a incorrect data privacy level.

An example is a component, that receives personal information via an user interface

(e.g. Graphical User Interface) and saves or processes them itself. We argue that

such a monolithic system stands contrary to the fundamental idea of distributed

cloud systems. As a result, we ignored this case during this thesis.

12.2 Future Work

During the work on iObserve Privacy a couple of future oriented tasks and development

directions came visible to improve iObserve. In the following we are introducing a couple

of them.

Thesis merge B. Sc. Tobias Pöppke developed in his master thesis, Design Space Exploration
for Adaptation Planning in Cloud-based Applications [21], another iObserve modi�-

cation. His modi�cation aims for the automated support of modern cloud system.

The development of our iObserve systems happened under close cooperation and is

therefore well aligned for merging.

PerOpteryx integration PerOpteryx provides one of the core features of iObserve Privacy,

as a model generation framework. However, its huge dependencies, immense com-

plexity and plug-in architecture makes it nearly impossible to directly migrate it

into iObserve Privacy. Even small modi�cations take major e�ort. The changed

mechanic must be well understood to prevent the system from breaking while mod-

ifying. A well thought and designed re-engineering is required to keep the core

functionality while reducing dependencies and complexity to a minimum. Such

a radical re-development e�ort should not be taken lightly, however would make

future extensions way easier.

Live tests Due to a missing distributed test system, iObserve Privacy could not be tested

in a real situation. Even though many test were run during the evaluation (see chap-

ter 10) and proven Kiker concepts were used, a live test provides further reassurance

and validity to the system as a whole.

Re-deploymentmodel choice PerOpteryx chooses the most cost e�cient model in the set

of privacy compliant models as the re-deployment model. This selection can be

improved by adding more factors to the decision process. Potential factors could

be the amount of potential migrations, more performance characteristics or the

communication links.

66

12.2 Future Work

(Semi-)automated Assembly Connector Privacy categorization We are using a manual ap-

proach for the Assembly Connectory Privacy data privacy level categorization. Fur-

ther, we don’t have any tool support, except the EMF editors. A heuristic-based

or neuronal network-based approach could support during the connector catego-

rization or even categorize the connector automatically. The potential angles of

approach are as wide as the imagination goes: from signature analysis to structure

analysis.

Datamodelling The Palladio Component Model does not support data modelling. However,

Schmieders et al. based his complete privacy analysis around a data model with

geo-location access [24][23]. By modelling the system data a more accurate approach

could be created. However, the current extension to the base PCM meta-model are

as minimal as possible. The modelling of the data used by the system would change

this and increase the model complexity signi�cantly.

67

Bibliography

[1] Andale. Jaccard Index / Similarity Coe�cient. Ed. by Statistics How To. 2016. url:

http://www.statisticshowto.com/jaccard-index/ (visited on 06/28/2017).

[2] Ste�en Becker, Heiko Koziolek, and Ralf Reussner. “The Palladio component model

for model-driven performance prediction”. In: Journal of Systems and Software 82.1

(2009), pp. 3–22. issn: 01641212. doi: 10.1016/j.jss.2008.03.066.

[3] Tobias Binz et al. “Migration of enterprise applications to the cloud”. In: it - Infor-
mation Technology 56.3 (2014). issn: 1611-2776. doi: 10.1515/itit-2013-1032.

[4] COMM/JUST/01. Protection of personal data. Brussels, 2011. url: http://ec.europa.

eu/justice/data-protection/ (visited on 04/24/2017).

[5] Kashif Dar. MAPE-K ada MAPE-K adaption control loop. Ed. by University of Oslo.

2012. url: http : / / www . uio . no / studier / emner / matnat / ifi / INF5360 / v12 /

undervisningsmateriale / MAPE - K % 20adap % 20control % 20loop . pdf (visited on

11/06/2016).

[6] David Chernico�. Net�ix closes data centers and goes to public cloud. London, 2015.

url: http : / / www . datacenterdynamics . com / content - tracks / colo - cloud /

netflix-closes-data-centers-and-goes-to-public-cloud/94615.fullarticle

(visited on 04/24/2017).

[7] Jochen Dinger and Hannes Hartenstein. Netzwerk- und IT-Sicherheitsmanagement:
Eine Einführung. Karlsruhe: Univ.-Verl. Karlsruhe, 2008. isbn: 3866442092.

[8] eclipse.org. Eclipse Community Forums: EMF » EMF performance with big models.
2009. url: https://www.eclipse.org/forums/index.php/t/126826/ (visited on

07/05/2017).

[9] William Enck et al. “TaintDroid”. In: Communications of the ACM 57.3 (2014), pp. 99–

106. issn: 00010782. doi: 10.1145/2494522.

[10] Robert Heinrich. “Architectural Run-time Models for Performance and Privacy Anal-

ysis in Dynamic Cloud Applications?” In: ACM SIGMETRICS Performance Evaluation
Review 43.4 (2016), pp. 13–22. issn: 01635999. doi: 10.1145/2897356.2897359.

[11] Robert Heinrich. iObserve. Ed. by SDQ-Wiki. Karlsruhe, 2016. url: https://sdqweb.

ipd.kit.edu/wiki/IObserve (visited on 10/17/2016).

[12] Robert Heinrich et al. “A Platform for Empirical Research on Information System Evo-

lution”. In: The 27th International Conference on Software Engineering and Knowledge
Engineering. International Conferences on Software Engineering and Knowledge

Engineering. KSI Research Inc. and Knowledge Systems Institute Graduate School,

2015, pp. 415–420. doi: 10.18293/SEKE2015-066.

69

http://www.statisticshowto.com/jaccard-index/
https://doi.org/10.1016/j.jss.2008.03.066
https://doi.org/10.1515/itit-2013-1032
http://ec.europa.eu/justice/data-protection/
http://ec.europa.eu/justice/data-protection/
http://www.uio.no/studier/emner/matnat/ifi/INF5360/v12/undervisningsmateriale/MAPE-K%20adap%20control%20loop.pdf
http://www.uio.no/studier/emner/matnat/ifi/INF5360/v12/undervisningsmateriale/MAPE-K%20adap%20control%20loop.pdf
http://www.datacenterdynamics.com/content-tracks/colo-cloud/netflix-closes-data-centers-and-goes-to-public-cloud/94615.fullarticle
http://www.datacenterdynamics.com/content-tracks/colo-cloud/netflix-closes-data-centers-and-goes-to-public-cloud/94615.fullarticle
https://www.eclipse.org/forums/index.php/t/126826/
https://doi.org/10.1145/2494522
https://doi.org/10.1145/2897356.2897359
https://sdqweb.ipd.kit.edu/wiki/IObserve
https://sdqweb.ipd.kit.edu/wiki/IObserve
https://doi.org/10.18293/SEKE2015-066

Bibliography

[13] Baskaran Jambunathan and Dr.Y. Kalpana. Multi Cloud Deploymentwith Containers.
Ed. by International Journal of Engineering and Technology. (Visited on 11/04/2016).

[14] Julia Bähr. Schrems’ jahrelanger Kampf gegen Facebook. Ed. by Frankfurter All-

gemeine Zeitung. Frankfurt am Main, 2015-09-23. url: http://www.faz.net/

aktuell/feuilleton/medien/max-schrems-jahrelanger-kampf-gegen-facebook-

13819522.html (visited on 04/24/2017).

[15] Jaeyeon Jung et al. “Privacy oracle”. In: Proceedings of the 15th ACM Conference
on Computer and Communications Security. Ed. by Peng Ning, Paul Syverson, and

Somesh Jha. New York, NY: ACM, 2008, p. 279. isbn: 9781595938107. doi: 10.1145/

1455770.1455806.

[16] Anne Koziolek. Automated Improvement of Software Architecture Models for Perfor-
mance and Other Quality Attributes: Zugl.: Karlsruhe, Karlsruher Institut für Technolo-
gie (KIT), Diss., 2011. Vol. 7. The Karlsruhe Series on Software Design and Quality

/ Ed. by Prof. Dr. Ralf Reussner. Karlsruhe: KIT Scienti�c Publishing, 2014. isbn:

9783866449732.

[17] Anne Koziolek. PerOpteryx - SDQ Wiki. 2017-06-27. url: https://sdqweb.ipd.kit.

edu/wiki/PerOpteryx (visited on 06/27/2017).

[18] Anne Martens et al. “Automatically Improve Software Models for Performance,

Reliability and Cost Using Genetic Algorithms”. In: Proceedings of the �rst joint
WOSP/SIPEW international conference on Performance engineering. Ed. by Alan Adam-

son et al. WOSP/SIPEW ’10. ACM, New York, NY, USA, 2010, pp. 105–116. isbn: 978-1-

60558-563-5. doi: 10.1145/1712605.1712624. url: http://www.inf.pucrs.br/wosp.

[19] O�ce for Civil Rights. Summary of the HIPAA Security Rule. Washington, D.C., 2013-

07-26. url: https://www.hhs.gov/hipaa/for-professionals/security/laws-

regulations/index.html (visited on 05/29/2017).

[20] Juan F. Ph.D. Sequeda. Introduction to: Open World Assumption vs Closed World As-
sumption. Ed. by Datavercity. 2012.url: http://www.dataversity.net/introduction-

to-open-world-assumption-vs-closed-world-assumption/ (visited on 06/13/2017).

[21] Tobias Pöppke. “Design Space Exploration for Adaptation Planning in Cloud-based

Applications”. Master thesis. Karlsruhe: Karlsruher Institut für Technology, 2017-

06-26. (Visited on 06/26/2017).

[22] Prof. Dr. Wilhelm (Willi) Hasselbring. Kieker Framework | Kieker. 2017. url: http:

//kieker-monitoring.net/framework/ (visited on 06/26/2017).

[23] Eric Schmieders, Andreas Metzger, and Klaus Pohl. “Architectural Runtime Models

for Privacy Checks of Cloud Applications”. In: 2015 IEEE/ACM 7th International
Workshop on Principles of Engineering Service-Oriented and Cloud Systems (PESOS),
pp. 17–23. doi: 10.1109/PESOS.2015.11.

70

http://www.faz.net/aktuell/feuilleton/medien/max-schrems-jahrelanger-kampf-gegen-facebook-13819522.html
http://www.faz.net/aktuell/feuilleton/medien/max-schrems-jahrelanger-kampf-gegen-facebook-13819522.html
http://www.faz.net/aktuell/feuilleton/medien/max-schrems-jahrelanger-kampf-gegen-facebook-13819522.html
https://doi.org/10.1145/1455770.1455806
https://doi.org/10.1145/1455770.1455806
https://sdqweb.ipd.kit.edu/wiki/PerOpteryx
https://sdqweb.ipd.kit.edu/wiki/PerOpteryx
https://doi.org/10.1145/1712605.1712624
http://www.inf.pucrs.br/wosp
https://www.hhs.gov/hipaa/for-professionals/security/laws-regulations/index.html
https://www.hhs.gov/hipaa/for-professionals/security/laws-regulations/index.html
http://www.dataversity.net/introduction-to-open-world-assumption-vs-closed-world-assumption/
http://www.dataversity.net/introduction-to-open-world-assumption-vs-closed-world-assumption/
http://kieker-monitoring.net/framework/
http://kieker-monitoring.net/framework/
https://doi.org/10.1109/PESOS.2015.11

Bibliography

[24] Eric Schmieders, Andreas Metzger, and Klaus Pohl. “Runtime Model-Based Privacy

Checks of Big Data Cloud Services”. In: Service-Oriented Computing: 13th Interna-
tional Conference, ICSOC 2015, Goa, India, November 16-19, 2015, Proceedings. Ed. by

Alistair Barros et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 71–86.

isbn: 978-3-662-48616-0. doi: 10.1007/978-3-662-48616-0{\textunderscore}5.

url: http://dx.doi.org/10.1007/978-3-662-48616-0_5.

[25] Gregor Snelting et al. “Checking probabilistic noninterference using JOANA”. In: it -
Information Technology 56.6 (2014). issn: 1611-2776. doi: 10.1515/itit-2014-1051.

[26] statista.com. Umsatz mit Cloud Computing** weltweit von 2009 bis 2016 (in Milliarden
US-Dollar). Ed. by statista.com. 2016. url: http://de.statista.com/statistik/

daten/studie/195760/umfrage/umsatz-mit-cloud-computing-weltweit-seit-

2009/ (visited on 09/05/2016).

[27] Dave Steinberg and Elena Litani. EMF Performance Tips. 2005. url: http://www.

eclipse.org/modeling/emf/docs/performance/EMFPerformanceTips.html (vis-

ited on 07/05/2017).

[28] Misha Strittmatter et al. “A Modular Reference Structure for Component-based

Architecture Description Languages”. In: 2nd International Workshop on Model-
Driven Engineering for Component-Based Systems (ModComp). CEUR, 2015, pp. 36–

41. url: http://ceur-ws.org/Vol-1463/paper6.pdf.

[29] G. Edward Suh et al. “Secure program execution via dynamic information �ow

tracking”. In:ACMSIGOPSOperating Systems Review 38.5 (2004), p. 85. issn: 01635980.

doi: 10.1145/1037949.1024404.

[30] teetime. TeeTime Framework. 2017-05-16. url: http://teetime-framework.github.

io/ (visited on 05/26/2017).

[31] Philipp Weimann. iObserve Privacy Evaluation Data & Results. 2017-06-25. url:

https : / / github . com / cocome - community - case - study / cocome - cloud - jee -

privacy/tree/master/Evaluation (visited on 06/25/2017).

[32] Wikipedia, ed. ISO 3166. 2017-04-18. url: https://de.wikipedia.org/wiki/ISO_

3166#ISO_3166-1 (visited on 05/04/2017).

[33] Wikipedia. Surface Pro 4 - Wikipedia. Ed. by Wikipedia. 2017-06-13. url: https:

//en.wikipedia.org/w/index.php?oldid=783726963 (visited on 06/29/2017).

71

https://doi.org/10.1007/978-3-662-48616-0{\textunderscore }5
http://dx.doi.org/10.1007/978-3-662-48616-0_5
https://doi.org/10.1515/itit-2014-1051
http://de.statista.com/statistik/daten/studie/195760/umfrage/umsatz-mit-cloud-computing-weltweit-seit-2009/
http://de.statista.com/statistik/daten/studie/195760/umfrage/umsatz-mit-cloud-computing-weltweit-seit-2009/
http://de.statista.com/statistik/daten/studie/195760/umfrage/umsatz-mit-cloud-computing-weltweit-seit-2009/
http://www.eclipse.org/modeling/emf/docs/performance/EMFPerformanceTips.html
http://www.eclipse.org/modeling/emf/docs/performance/EMFPerformanceTips.html
http://ceur-ws.org/Vol-1463/paper6.pdf
https://doi.org/10.1145/1037949.1024404
http://teetime-framework.github.io/
http://teetime-framework.github.io/
https://github.com/cocome-community-case-study/cocome-cloud-jee-privacy/tree/master/Evaluation
https://github.com/cocome-community-case-study/cocome-cloud-jee-privacy/tree/master/Evaluation
https://de.wikipedia.org/wiki/ISO_3166#ISO_3166-1
https://de.wikipedia.org/wiki/ISO_3166#ISO_3166-1
https://en.wikipedia.org/w/index.php?oldid=783726963
https://en.wikipedia.org/w/index.php?oldid=783726963

	Abstract
	Zusammenfassung
	Introduction
	Motivation
	Problems
	Goals and Research Questions
	Outline

	Foundations
	MAPE-K loop
	Palladio Component Model
	Kieker
	iObserve
	PerOpertyx

	Privacy Concept
	General Concept
	Deployment Constraints
	Component categorization
	Information storage

	Overview
	PCM Extension
	General
	Implementation

	iObserve Extension
	Kieker
	iObserve Privacy

	Privacy Analysis
	Analysis Theory
	Required information
	Data-flow direction
	Joining data streams

	Component categorization
	Deployment analysis
	Privacy Analysis implementation
	Information preprocessing
	Component categorization implementation
	Deployment analysis implementation

	PerOpteryx Extension
	Plug-in Design
	PerOpteryx Modification

	System Adaptation
	Adaptation Planning
	Adaptation Actions
	Action Ordering

	Adaptation Execution
	Implementation

	Evaluation
	Evaluation Design
	Evaluation Scenarios
	Scenario 1: Default
	Scenario 2: System extension
	Scenario 3: Failing Adaptation
	Scenario 4: Missing Alternative
	Futile Scenario

	Evaluation Models
	CoCoME-Cloud
	Medi System
	Generated Models

	Transformation
	Transformation: Accuracy Evaluation
	Transformation: Scalability Evaluation

	Privacy Analysis
	Privacy Analysis: Accuracy Evaluation
	Privacy Analysis: Scalability Evaluation

	Model Generation
	System Adaptation
	Adaptation: Accuracy Evaluation
	Adaptation: Scalability Evaluation

	Threats to validity
	Internal Validity
	External Validity
	Construction Validity
	Conclusion Validity

	Related Work
	Application Monitoring
	Privacy Analysis
	Data-flow Analysis & Rights Management
	Privacy Analysis
	Automated Model Optimization & Modification
	Automated Cloud Migration & Adaptation

	Conclusion
	Limitations & Assumptions
	Future Work

	Bibliography

