
Scheduling Algorithms for the Smart Grid

Zur Erlangung des akademischen Grades eines

Doktors der Naturwissenscha�en

von der KIT-Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Lukas Franz Josef Barth

Tag der mündlichen Prüfung: 15.5.2020
Erste Referentin: Prof. Dr. Dorothea Wagner
Zweiter Referent: Prof. Dr. Veit Hagenmeyer

This document is licensed under a

Creative Commons Attribution 4.0 International License (CC BY 4.0).

https://creativecommons.org/licenses/by/4.0/deed.en

https://creativecommons.org/licenses/by/4.0/deed.en

iii

0Danksagung

Diese Dissertation ist der – vorläu�ge – Höhepunkt meiner Reise durch die Informatik,

die im Herbst 2009 begann. Eine meiner ersten Vorlesungen hieß „Theoretische

Grundlagen der Informatik“ und wurde von meiner heutigen Doktormutter Dorothea

Wagner gehalten. Die Vorlesung hat mich damals für die theoretische Informatik

begeistert, und an ihrem Ende machte Dorothea den versammelten Studierenden ein

Angebot: Gerne würde sie Abschlussarbeiten auch ins Ausland vermitteln. Als ich

zwei Jahre später in ihrem Büro saß, stand das Angebot o�enbar noch, und sie (und

mein späterer Kollege Ignaz Rutter) machten es möglich, dass ich ein Semester lang

bei einem Aufenthalt bei und als Teil der Arbeitsgruppe von Stephen Kobourov an

der University of Arizona „Forschungsluft schnuppern“ konnte. In meinem darauf

folgenden Masterstudium habe ich die Vorlesungen von Dorotheas Lehrstuhl mehr

oder weniger „durchgespielt“, und im Jahr 2016 hat Dorothea mir angeboten, in ihrer

Gruppe zu promovieren. Ich möchte allen, die meinen Weg in die Forschung so geebnet

haben – allen voraus Dorothea Wagner – dafür danken.

Als Teil von Dorotheas Gruppe durfte ich mit großartigen Kolleginnen und Kol-

legen zusammenarbeiten, denen ich (in alphabetischer Reihenfolge) dafür danken

möchte: Moritz Baum, Guido Brückner, Valentin Buchhold, Lars Gottesbüren, Sascha

Gritzbach, Michael Hamann, Paul Jungeblut, Tamara Mchedlidze, Benjamin Nieder-

mann, Martin Nöllenburg, Roman Prutkin, Marcel Radermacher, Ignaz Rutter, Jonas

Sauer, Ben Strasser, Torsten Ueckerdt, Franziska Wegner, Matthias Wolf, Tim Zeitz

und Tobias Zündorf. Die Zeit am Institut besteht ja zum Glück nicht nur aus Arbeit,

und so danke ich euch allen neben der fachlichen Zusammenarbeit auch für große

Emotionen bei epischen Kicker-Matches, für nervenzerreißende Damenwasserball-

weltmeisterschaften im legendären Gernsbach, für unzählige gute Gespräche und das

warme Gefühl, nicht der einzige zu sein, der manchmal an LaTeX, der Forschung oder

Studierenden verzweifelt. Es ist ein o�enes Geheimnis, dass die eigentlichen Chefs

einer jeden Arbeitsgruppe die Sekretärinnen (und Sekretäre) und Systemadministra-

toren (und Systemadministratorinnen) sind. Ich danke Lilian Beckert, Isabelle Junge,

Ralf Kölmel, Laurette Lau�er, Tanja Wehrmann für all die Unterstützung beim Kampf

mit der Technik und der Bürokratie.

Als Teil der ersten Generation des Graduiertenkollegs „Energy Status Data“ hatte

ich eine zweite Gruppe von Kolleginnen und Kollegen, von denen ich viel gelernt habe.

Allen diesen gilt mein Dank für die fruchtbare interdisziplinäre Zusammenarbeit, ins-

besondere meiner „Selbstorganisierten Studiengruppe“ bestehend aus Nicole Ludwig,

v

Esther Mengelkamp und Philipp Staudt. Für die Ermöglichung des Graduiertenkollegs

möchte ich auch Herr Böhm danken.

Frei nach Karl Valentin gilt für eine Dissertation: „Promovieren ist schön, macht

aber viel Arbeit.“ Bei dieser Dissertation haben mich korrekturlesenderweise Sascha

Gritzbach, Matthias Wolf und Sophie Fendel unterstützt. Vielen Dank dafür, dass ihr

euch das angetan habt. Vielen Dank auch an Marcel Radermacher, Tobias Zündorf

und Valentin Buchhold, denen ich jeweils viel Zeit damit gestohlen habe, Fragen der

Typographie, der richtigen Darstellung von Diagrammen oder der Schreibweise von

Fachbegri�en zu erörtern. Den Gutachtern dieser Dissertation, Dorothea Wagner und

Veit Hagenmeyer, möchte ich ebenfalls danken.

Abschließend möchte ich denen danken, die außerhalb der Universität dafür gesorgt

haben, dass ich heute diese Dissertation einreichen kann. Danke an meine Eltern,

die mir nicht nur das Studium ermöglicht, sondern die auch schon viel früher dafür

gesorgt haben, dass ich allen meinen Interessen nachgehen konnte. Und nicht zuletzt

besonderen Dank an Sophie, dafür dass du die Belastung, die meine Promotion auch

für uns beide war, immer mitgetragen und mich zu jeder Zeit unterstützt hast.

vi

0Deutsche Zusammenfassung

Diese Dissertation behandelt Themen rund um das Scheduling von elektrischen Lasten

mit einem Bezug zu zukünftigen Smart Grids.

Die Problematik, Prozesse, die mit einem (elektrischen) Verbrauch einhergehen, zu

schedulen, ergibt sich im Kontext von Smart Grids insbesondere bei der sogenannten

Demand Response. Zukünftige Energiesysteme werden hauptsächlich auf erneuerbare

Stromquellen wie Solar- oder Windenergie setzen, die im Gegensatz zu herkömmlichen

Energieträgern wie Kohle- oder Kernenergie in ihrer Erzeugung nicht steuerbar sind.

Da in einem Energienetz die Erzeugung aber zu jedem Zeitpunkt dem Verbrauch

entsprechen muss, können diese erneuerbaren Erzeuger unsere bisherigen Kraftwerke

nicht ohne weitere Änderungen ersetzen. Zu den Strategien, um damit umzugehen,

gehört neben dem Ausbau von Speichern und Übertragungsnetzen auch die Demand

Response (DR). Demand Response zielt darauf ab, den Verbrauch kurzfristig so zu

verändern, dass er besser zur Erzeugung passt. Die naheliegendste Veränderung ist,

Prozesse, die zeitlich �exibel sind, zu verschieben. Einen besonderen Fokus legt diese

Arbeit dabei auf Verfahren, die Peak Shaving zum Ziel haben, das heißt die Reduktion

von Verbrauchsspitzen. Dies ist insofern nützlich, als Kapazitäten im Energiesystem,

sowohl was die mögliche Erzeugung als auch was die Übertragung angeht, auf diese

Spitzenlasten ausgelegt werden müssen.

Diese Arbeit be�ndet sich an der Schnittstelle mehrerer weitläu�ger Forschungs-

felder: Zum einen ist der Bereich der Demand Response derzeit sehr aktiv, einen

Überblick gibt beispielsweise Siano [Sia14]. Was den Scheduling-Aspekt angeht,

ähnelt vor allem das Project Scheduling aus dem Bereich des Operations Research

den hier behandelten Problemstellungen. Einen Überblick hierüber geben Brucker

und Knust [BK12] und Węglarz [Węg99]. Insbesondere das Time-Constrained Project

Scheduling Problem (TCPSP), beziehungsweise das spezi�schere Resource Acquirement

Cost Problem (RACP) (auch als Resource Investment Problem (RIP) bekannt) kommen

den hier betrachteten Problemen nahe.

Ein großer Teil der Optimierung zu den genannten Problemen, insbesondere auch

im Bereich der Demand Response, �ndet mittels gemischt-ganzzahlig linearer Pro-

gramme (engl. Mixed-Integer Linear Programs, MIPs) statt. Deshalb, und weil MIPs

ein wertvoller Benchmark für eigene Algorithmen sein können, befasst sich der er-

ste Teil dieser Dissertation mit Themen rund um MIP-Formulierungen für solche

Scheduling-Probleme. Zunächst wird in Kapitel 3 ein MIP-Framework vorgestellt,

das die Modelle zahlreicher anderer Arbeiten vereint. Diese Veröffentlichung bietet

einen Überblick über die in der Literatur modellierten Merkmale �exibler elektrischer

vii

Lasten. Darauf baut ein MIP-Framework auf, das fast alle dieser Merkmale vereint.

Mit einer experimentellen Evaluation wird gezeigt, dass die resultierenden Modelle

trotz der Mächtigkeit des Frameworks für realistische Instanzgrößen immer noch in

vertretbarer Zeit optimiert werden können.

Bei diesem Modell — ebenso wie bei den meisten MIP-Modellen in der Literatur

— wird davon ausgegangen, dass für jeden Prozess ein Maß an Flexibilität Teil des

Modells, also der Eingabe, ist. Das hat den Nachteil, dass die zeitliche Flexibilität jedes

einzelnen Prozesses von z. B. einer Industrieanlage im Voraus bekannt sein muss.

Dies hat sich als eine unrealistische Annahme herausgestellt. In Hinblick darauf stellt

Kapitel 4 ein weiteres Modell-Framework vor. Anstelle einer zeitlichen Flexibilität pro

Prozess bekommen diese neuen MIPs ein einziges, globales Maß für Flexibilität als

Nebenbedingung. Die Lösung eines solchen MIPs kann als eine Empfehlung dafür

aufgefasst werden, welche Prozesse bei einer zeitlichen Verschiebung den größten

Nutzen erzielen würden.

Beide bisher vorgestellten MIP-Modelle haben gemeinsam, dass sie auf einer zeitex-

pandierten Formulierung basieren, deren Komplexität mit dem zeitlichen Horizont

der Probleminstanz wächst. Mit diesem Problem befasst sich die Umformulierung in

Kapitel 5, die zu e�zienter optimierbaren MIP-Modellen führt. Kapitel 6 rundet diesen

ersten Teil der Arbeit mit einem Benchmark-Datensatz für Scheduling-Probleme rund

um Demand Response ab.

Neben der modellgetriebenen Optimierung stellt diese Arbeit in ihrem zweiten Teil

zwei Heuristiken vor, die zur Optimierung der durch die Modelle spezi�zierten Prob-

leme geeignet sind. Eine erste Heuristik, die Resource Utlitization Scheduling Heuristic

(RUSH), vorgestellt in Kapitel 7, ist darauf ausgelegt, auch auf großen Instanzen sehr

schnell zu akzeptablen Ergebnissen zu gelangen. Dazu wird die Ressourcennutzung in

diskrete Niveaus zerlegt und es wird in einer e�zienten Datenstruktur vorgehalten,

in welchen Zeitintervallen welche Niveaus der Ressourcennutzung erreicht werden.

Mithilfe dieser Information lässt sich für jeden Prozess sehr e�zient berechnen, an

welche Zeitpunkte er verschoben werden könnte, um die Ressourcennutzung zu re-

duzieren. Dieser Vorgang wird iterativ wiederholt und so die Lastspitze gesenkt.

Die zweite, in Kapitel 8 vorgestellte Heuristik fasst das Scheduling-Problem teilweise

als Graphproblem auf: Ist ein Abhängigkeitsgraph für ein Scheduling-Problem gegeben,

so ergibt sich ein “schnellstmöglicher” Schedule, in dem jeder Prozess so früh wie

vom Abhängigkeitsgraphen erlaubt gestartet wird. Dies erlaubt es, einen Graphen

mit einem Schedule zu assoziieren. Es lässt sich zeigen, dass zu jedem gegebenen

Scheduling-Problem und Abhängigkeitsgraphen ein “augmentierter” Graph, das heißt

ein Supergraph des ursprünglichen Abhängigkeitsgraphen, existiert, sodass dessen

assoziierter Schedule eine optimale Lösung des ursprünglichen Problems ist. Die

Vorgehensweise der Heuristik zielt darauf ab, diesen Graphen anzunähern. Dazu

werden iterativ neue Kanten in den Abhängigkeitsgraphen eingefügt. Eine neue Kante

viii

im Abhängigkeitsgraphen trennt zwei Prozesse zeitlich voneinander, kann also dazu

genutzt werden, um die Spitzenlast zu senken, indem zwei Prozesse, die beide parallel

zur Zeit der Spitzenlast ausgeführt werden, voneinander getrennt werden.

Beide Heuristiken werden intensiv experimentell evaluiert. Dabei werden auf

Echtweltdaten basierende Probleminstanzen generiert und verwendet. Die Ergebnisse

werden verglichen mit Ergebnissen aus der MIP-Optimierung, aber auch mit denen

eines anderen aktuellen Optimierungsalgorithmus für dieses Problem, GRASP [Pet+14].

Es wird gezeigt, dass die neuen Heuristiken bessere Ergebnisse als die bestehenden Ver-

fahren berechnen bzw. Ergebnisse für Instanzen berechnen, auf denen die MIP-Modelle

nicht mehr praktikabel sind. Die aus Echtweltdaten generierten Test-Datensätze wer-

den als Benchmarks ebenfalls verö�entlicht.

Der letzte Teil der Dissertation betrachtet einige algorithmische Grundlagen für

Scheduling-Algorithmen. Ein Thema, dem sich die Arbeit intensiv widmet, sind Daten-

strukturen, die für Scheduling-Algorithmen von besonderer Wichtigkeit sind. Hierbei

handelt es sich um besondere Formen von Suchbäumen, den dynamischen Segmentbäu-

men. Da deren E�zienz maßgeblich von den zugrundeliegenden selbstbalancierenden

binären Suchbäumen abhängt, evaluiert Kapitel 9 verschiedene Varianten, unter an-

derem klassische Rot-schwarz-Bäume oder gewichtsbalancierte Bäume, aber auch

weniger bekannte Varianten wie Zip Trees. Insbesondere Letztere erweisen sich als

eine gute Wahl zum Engineering der dynamischen Segmentbäume. Da die evaluierten

gewichtsbalancierten Bäume ebenfalls einige Punkte zum Tuning anbieten, widmet

sich Kapitel 10 deren Engineering. Eine spannende Einsicht ist hier, dass die klassische

Parametrisierung von gewichtsbalancierten Bäumen oft keine gute Wahl ist.

Ein weiteres Ergebnis dieses Teils der Arbeit, vorgestellt in Kapitel 11, ist die Einsicht,

dass bei Scheduling-Problemen der Art, wie sie in dieser Dissertation betrachtet werden,

die lokale Komplexität ausschlaggebend ist. Der zeitliche Horizont eines solchen

Problems ist also bezüglich der Komplexität zweitrangig, solange die Komplexität zu

jedem möglichen Zeitpunkt — das heißt insbesondere die Anzahl der Prozesse, die

möglicherweise zu diesem Zeitpunkt ausgeführt werden könnten — nicht zu hoch

ist. Zu dieser Einsicht gelangt man mittels eines einfachen, exakten Exponentialzeit-

Algorithmus, dessen Zeitkomplexität polynomiell wird, sobald man die erwähnte

lokale Komplexität beschränkt.

ix

0Contents

1 Introduction 1

2 Preliminaries 11
2.1 Scheduling . 11

2.1.1 Machine Scheduling . 11

2.1.2 Project Scheduling . 12

I Modeling 15

3 A Comprehensive Modeling Framework for Demand Side Flexibility 17
3.1 Introduction . 17

3.2 Related Work . 19

3.3 Modeling Flexibility . 20

3.4 Optimization Model . 23

3.5 Experimental Evaluation . 28

3.6 Discussion . 32

3.7 Conclusion . 33

4 Exploring the Benefits of Flexibilization in Industrial Contexts 35
4.1 Introduction . 35

4.1.1 Problem De�nition . 37

4.2 Related Work . 39

4.3 The Framework . 40

4.3.1 Data . 40

4.3.2 Motif Discovery . 41

4.3.3 Generation of Synthetic Instances 41

4.3.4 Scheduling . 43

4.4 Evaluation . 45

4.4.1 Discovered Motifs . 45

4.4.2 Instance Sets . 46

4.4.3 Evaluation Environment . 48

4.4.4 Evaluation of FPSP-PS and FPSP-PSG 49

4.4.5 Evaluation of FPSP-OM . 54

4.5 Modeling Fluctuating Demand via Job Chains 55

xi

4.6 Motif Analysis . 56

4.7 Discussion . 58

4.7.1 Optimization Aspects . 60

4.8 Conclusion & Outlook . 60

5 An Order-Based Model for the Resource Acquirement Cost Problem 63
5.1 Introduction . 63

5.2 Preliminaries . 64

5.3 The Order-Based Model . 65

5.3.1 Full Description . 66

5.3.2 Viable Model Features . 67

5.3.3 Model Size . 68

5.4 Competitor Model: Event-Based Model 68

5.4.1 Reducing Variable Count . 71

5.4.2 Model Size . 71

5.5 Experimental Evaluation . 71

5.5.1 Optimization Performance . 72

5.5.2 Empirical Model Sizes . 74

5.6 Conclusion . 74

6 Industrial Demand Side Flexibility: A Benchmark Data Set 79
6.1 Introduction . 79

6.2 Preliminaries . 81

6.2.1 Single-Resource Project Scheduling 81

6.2.2 Non-Constant Power Demands 81

6.3 Finding Process Patterns . 82

6.4 Generating S-RACP Instances . 83

6.4.1 Grouped Generation . 85

6.5 The Benchmark Data Set . 85

6.5.1 Data Origin . 85

6.5.2 Data Set Parameters and Publication 86

6.6 Evaluation: Characteristics of the Patterns 86

6.7 Evaluation: Block Decomposition Granularity 88

6.7.1 Approximation of the Original Power Demand Curve 89

6.7.2 Scheduling Complexity . 92

6.7.3 Quality of Schedules with Few Blocks 94

6.8 Conclusion . 95

xii

II Heuristics 97

7 Exploiting Flexibility in Smart Grids at Scale 99
7.1 Introduction . 99

7.1.1 Related Work . 100

7.1.2 Contribution and Outline . 101

7.2 Problem Formulation . 101

7.3 Resource Utilization Scheduling Heuristic 102

7.4 Experimental Evaluation . 105

7.4.1 Results . 106

7.5 Conclusion and Future Work . 108

8 Shaving Peaks by Augmenting the Dependency Graph 111
8.1 Introduction . 111

8.1.1 Our Contribution . 112

8.1.2 Related Work . 112

8.2 Preliminaries . 113

8.2.1 The Problem . 113

8.2.2 Notation . 115

8.3 Scheduling With Augmented Graphs 115

8.3.1 Algorithm Details . 116

8.3.2 Selecting Edges for Deletion 118

8.3.3 Optimizations . 119

8.4 Competitor Algorithm: GRASP . 122

8.5 Evaluation . 123

8.5.1 Instance Sets . 124

8.5.2 Parameter Tuning . 126

8.5.3 SWAG analysis . 127

8.5.4 Comparison SWAG vs. GRASP 130

8.6 Conclusion . 131

III Algorithmic Foundations 133

9 E�iciently Finding Peaks Using Dynamic Segment Trees 135
9.1 Introduction . 135

9.2 Preliminaries . 136

9.2.1 Union-Copy Data Structure 137

9.3 Dynamic Segment Trees . 138

9.3.1 Red-Black Tree Operations 140

9.3.2 General Interval Borders . 142

xiii

9.4 Zipping Segment Trees . 143

9.4.1 Insertion and Unzipping . 144

9.4.2 Deletion and Zipping . 145

9.4.3 Numeric Annotations . 149

9.4.4 Complexity . 149

9.4.5 Generating Ranks . 150

9.5 Experimental Evaluation of Dynamic Segment Trees Bases 151

9.6 Conclusion . 155

10 Engineering Top-Down Weight-Balanced Trees 157
10.1 Introduction . 157

10.2 Top-Down Weight-Balanced Trees . 159

10.2.1 Weight-Balanced Trees . 159

10.2.2 From Bottom-Up to Top-Down 162

10.3 Evaluation . 163

10.3.1 Timing Operations . 165

10.3.2 Tree Balance . 168

10.3.3 Real-Life Sequences . 170

10.3.4 Rotated Node Weight . 171

10.4 Conclusion . 172

11 TCPSP is Fixed-Parameter Tractable in a Local Measure 175
11.1 Introduction . 175

11.2 Preliminaries . 176

11.2.1 Pseudo Fixed-Parameter-Tractability 176

11.2.2 Problem De�nition . 177

11.3 Local Con�gurations . 178

11.3.1 Con�guration Continuation 179

11.3.2 Extensible Cost Functions . 180

11.4 An Exact Algorithm . 182

11.4.1 Schedule Reconstruction . 182

11.5 Complexity . 183

11.6 Objective Functions . 184

11.7 Conclusion . 186

12 Conclusion 187

Bibliography 189

xiv

A Appendix for: Exploring the Benefits of Flexibilization in Industrial
Contexts 215
A.1 Data Publication . 215

A.2 Omitted Figures and Tables . 216

A.3 Discovered Motifs . 224

B Appendix for: Industrial Demand Side Flexibility: A Benchmark
Data Set 227
B.1 Full Figures for Section 6.7.1 . 227

C Appendix for: Top-Down Weight-Balanced Trees 233
C.1 Engineering Top-Down Weight-Balanced Trees: Code and Data Publi-

cation . 233

C.2 Omitted Benchmark Plots . 234

xv

1 Introduction

Energy systems all over the world are in upheaval. Germany with its Energiewende is

one of the pioneers of transitioning an energy-hungry society from traditional, fossil-

fuel based electricity generation to cleaner, renewable energies. Figure 1.1 shows the

development of the primary energy carriers in the German electricity generation from

1990 to today. Starting at a meager 6.6% of the energy mix in 2000, the Energiewende

has boosted the share of renewables in the German electricity mix to 40.1% in 2019. At

the same time, the reliance on coal has been drastically reduced. In recent years, similar

transitions have picked up speed in other places, for example in China and India — so

much speed in fact that one could argue that these countries have overtaken Germany.

For example, with a total of 200 GW of installed generation capacity in 2017 [ISE20],

Germany added just 1.66 GW of installed photovoltaics in that year [Fed19]. In the

same year, China, with an installed total capacity of 1750 GW [Ren18], expanded its

photovoltaics capacity by 53 GW [den19]. Even in countries critical of renewable

energy sources such as the United States of America with its intensely coal- and gas-

focused electricity generation, the speed of solar parks being built is ever increasing.

Renewables Nuclear Lignite Hard Coal Gas Oil Other

Figure 1.1: Development of primary energy carriers in German electricity generation from

1990 to today. Source: Agora Energiewende (2020). (* preliminary data)

1

Chapter 1 Introduction

In 2017, the U.S.A. installed a total of 10.6GW of photovoltaics, which amounts to 30%

of newly installed generation capacity [Ass17].

Electrical grids are behemoths. The European so-calledContinental Synchronous Area

alone connects more than 400 million customers to about 700 gigawatts of generator

power. It is a single electrical grid spanning the area from Portugal to Turkey and

from Denmark to Algeria, with plans to expand into the Baltics and larger parts of

northern Africa. Tightly coupled to it via high-voltage direct current connections are

other large networks such as the British, Norwegian, Swedish and Finnish electrical

grid. On the other side of the globe, China is pushing towards uni�cation of its two

currently existing wide-area electrical grids, with a combined generation capacity of

more than 1.8 terawatts [Ren18].

Electrical grids are fragile. In November 2006, the routine shutdown of a single

transmission line in Germany — planned well in advance — caused a chain reac-

tion of line overloads, protective shutdowns and �nally the split of the continental

synchronous area into three separate areas, cutting the European electrical grid diago-

nally across Germany and Austria. The �nal report on the incident by the European

Network of Transmission System Operators for Electricity (ENTSO-E) [Tra06] lists

grave consequences: The e�ects of the incident reached as far as Morocco, which

had to emergency-disconnect 300 megawatts of loads, causing a blackout for many

consumers. In total, more than 17 gigawatts of loads had to be disconnected from the

grid, especially in western Europe. The reasons for the failure are manifold and reach

from last-minute changes to the shutdown schedule to the miscon�guration of line

load limits. One major contributing factor, however, was the fact that at the moment

the �rst line was intentionally shut down, it carried ten gigawatts of wind-produced

electricity from the north of Germany into the southern parts of the grid — a situation

that becomes more and more frequent with an increasing share of renewables.

Electrical grids are challenged. They are traditionally designed under the assumption

that the amount of generated power can be tightly controlled to match the demand.

On shorter time scales, the massive angular momentum of hundreds of turbines, each

rotating one hundred tons of steel at 3000 revolutions per minute, is able to gracefully

absorb any suddenly occurring demand spikes. Another assumption is that electricity

�ows from few central points — the power plants — towards the consumers. All

three assumptions are challenged in electrical systems primarily based on solar and

wind generation: Neither of them can be arbitrarily controlled, making the infamous

Dunkel�aute the dread of German electrical systems engineers. At the same time,

too much renewable generation can also cause problems, as Figure 1.2 illustrates.

It shows the electricity generation, disaggregated into conventional and renewable

generation, during a week in June 2019. It also displays the resulting day-ahead

price for a megawatt-hour of electricity. On the 8th of June, when large amounts

of solar energy were available and consumption was low, the market price dropped

2

Section 1.0

D
ay-A

head P
rice per M

W
h

Conventional Renewables Price Demand

5. June 6. June 7. June 8. June 9. Juni 10. June 11. June 12. June 13. June
0 GW

15 GW

30 GW

45 GW

60 GW

75 GW

90 GW

105 GW

120 GW

-100 €

-75 €

-50 €

-25 €

0 €

25 €

50 €

75 €

100 €

G
e
n
e
ra

ti
o
n
 a

n
d

 C
o
n
su

m
p

ti
o
n

Figure 1.2: Electricity prices at the German day-ahead spot market and the corresponding

mix, from 5.6.2020 to 16.6.2020. Source: Agora Energiewende (2020).

to about −90 €/MWh. Electricity producers were paying a considerable amount of

money for their energy to be consumed. This happened because �rst curtailing the

remaining conventional generation and ramping it back up shortly after would have

been prohibitively expensive. This situation arises more and more frequently in the

German electricity market — for a total of 134 hours distributed over 25 days in the

year 2018 [Bun19]. Regarding the amount of angular momentum that can be used to

instantly absorb abrupt changes in demand, even though wind turbines of course do

have a rotating shaft, rotating mass is drastically reduced. Finally, generation capacity

in future energy systems will connect to the transmission grid in a multitude of points

instead of few central points. Not only are solar �elds and wind turbines much more

dispersed than traditional power plants, but consumers have also started to install

solar panels on their roofs, scattering generation even further.

In the face of these challenges, the scienti�c, commercial and political communities

involved with energy systems are developing mitigation strategies. The most promi-

nent categories of mitigation strategies are network expansion, energy storage, sector

coupling and demand side management. Expanding the electrical grid, i.e., building

new transmission lines and reinforcing existing ones, helps to smooth out renewable

generation at a continental scale. Network expansion achieves in the spatial dimension,

what storage does along the dimension of time: Smoothing generation and consump-

tion over time addresses the problem of renewables, especially solar energy, producing

electricity at a schedule which only partially �ts the demand curve. Sector coupling

can also serve as a bu�ering mechanism by �exibly converting energy between elec-

tricity, gas and heat whenever one of the sectors has a surplus. However, by combining

3

Chapter 1 Introduction

power-to-gas technology with the gas distribution network it is even thinkable to

exploit sector coupling to alleviate congestion in the electricity transmission networks.

The topic of this thesis �ts into the category of demand side management (DSM).

The term is used for a wide range of techniques and policies aimed at in�uencing

when, where, and how much energy is consumed. The aim of DSM usually is to better

match the demand to the (renewable) generation available at any point in time. DSM

measures can be loosely grouped into two categories: The �rst aims at improving

the amount of energy consumed, for example by increasing the energy e�ciency of

devices. The second tries to control when energy is consumed, i.e., to control the

power demand. This latter category is called demand response (DR). The United Statesdemand
response Department of Energy [US 06] de�nes demand response as “changes in electric usage

by end-use customers from their normal consumption patterns [. . .] to induce lower

electricity use at times of high wholesale market prices or when system reliability

is jeopardized”. The scheduling techniques presented in this thesis are intended to

facilitate demand response.

The �eld surrounding DR is currently very active. Siano [Sia14] provides a general,

broad survey. Deng et al. [Den+15] present a survey with a focus on mathematical

modeling, while Vardakas et al. [VZV15] provide a general overview of methods used

for demand side management. Haider et al. [HSE16] review the literature focused on

demand side management involving residential customers. Pudjianto and Strbac [PS17]

as well as Strbac [Str08] consider the possible bene�ts from and challenges to the

implementation of DR.

Simple techniques for DR include time-of-use electricity tari�s or dynamic tar-

i�s with price signals communicated e.g. via internet, which try to incentivize the

consumer to consume power when plenty of generation is available. In fact, tradi-

tional night storage heaters can be seen as a demand response scheme, encouraging

consumers to use electricity at night using a cheaper night tari�.

On the other hand, approaches to DR that do not rely on consumers controlling their

devices themselves envision central coordinators to communicate with consumers’

devices via a smart grid. This communication enables consumers to transfer a certain

amount of control over their devices to the coordinator, and allows the coordinator to

schedule consumption to optimally �t the available generation. Techniques involving

such a central coordinator are usually called centralized or direct demand response.

Other techniques, such as distributed-computing approaches based on game theoretic

techniques, for example by Barbato et al. [Bar+15], range in the gray area between

centralized and purely consumer-reliant DR. Just like DR based on time-of-use tari�s,

centralized DR based on price signals has been evaluated in reality, for example by

Larsen et al. [Lar+17] in a setting with 1900 households on the island of Bornholm. In

this setting, the peak demand could be reduced by up to 27%.

4

Section 1.0

Centralized approaches require the controller to frequently solve complex schedul-

ing problems. Depending on the goal of the controller, the required speed of optimiza-

tion can be substantial. One possible use for centralized DR is to provide balancing

energy. Balancing energy is the term used for the amount of idle electricity generators

held in reserve to react to fast changes in electricity demand. This reserve generation

capacity is traded on a market similar to the market used for the actual electricity

generation. The German energy system knows three forms of balancing energy: a

primary reserve that must respond withing 30 seconds, a secondary reserve required

to be fully available in �ve minutes, and a tertiary reserve operating on a scale of

between �ve to 60 minutes. Thus, to participate in any of these markets, the controlled

devices must be rapidly rescheduled. But even for plain marked-based electricity

trading, fast scheduling would be bene�cial — as an example, the German intra-day

market operates on a �fteen-minute basis.

The scheduling problems arising from these scenarios are close to project scheduling

problems, a well-studied area of research in operations research. In his survey of the

�eld, Węglarz [Węg99, page ix] de�nes project scheduling problems as “problems of

allocating scarce resources over time to perform a given set of activities”. In smart grid

scheduling problems, the most obvious scarce resource is electricity, however, incorpo-

rating more resources can be bene�cial. If sector coupling is taken into consideration,

gas and heat can be additional resources. Also, capturing (electric) storage such as bat-

teries in scheduling problems can sometimes be done via additional resources. Brucker

and Knust [BK12] provide another broad overview of the �eld, as do Demeulemeester

and Herroelen [DH02]. Research into optimization of project scheduling problems

is plentiful. On the one hand, model-based optimization is widely used, and many

modeling techniques have been proposed, as for example discrete-time formulations

by Pritsker et al. [PWW69], Rieck et al. [RZG12], or Naber and Kolisch [NK14], two

event-based approaches by Koné et al. [Kon+11], or �ow-based modeling techniques

by Artigues et al. [AMR03]. Another very popular optimization technique are genetic

(respective evolutionary) algorithms, as for example presented by Ballestín [Bal07],

Ranjbar et al. [Ran13] or Ponsz-Tienda et al. [Pon+13].

Aside from classical scheduling research, the �eld of energy informatics has yielded

results in the �eld of optimization techniques applicable to demand response, too. A

survey of scheduling techniques with an explicit focus on demand response is not

known to the authors. However, scheduling time-�exible electrical loads is closely

related to scheduling virtual power plants (which can incorporate �exible loads) and

certain optimization problems in the operation in microgrids. In that �eld, Nosratabadi

et al. [NHG17] provide a survey on scheduling techniques. However, we are unsure

about the quality of that survey; for example, the authors treat centralized DR (called

direct load control in their terminology) as a form of incentive-based DSM (see [NHG17,

Section 10]), which blurs the boundaries between di�erent forms of DSM.

5

Chapter 1 Introduction

Much e�ort has gone into optimization of smart buildings; for example, Allerding et

al. [All+12] use evolutionary algorithms to optimize smart homes, Bradac et al. [BKF15]

use mixed-integer linear programming and Mahmood et al. [Mah+16] use particle

swarm optimization. A multitude of other studies could be named; for a survey, see

Haider et al. [HSE16]. Another active cluster of research focuses on the optimization

of processes in industry, often with a focus on speci�c industrial plants. Ashok and

Banerjee [AB00] look at a fertilizer plant, Ashok [Ash06] optimizes a steel plant and

Eissa [Eis11] evaluates a time-of-use tari� scheme for industrial consumers in Saudi

Arabia. Finn and Fitzpatrick [FF14] evaluate real-time pricing for industrial customers.

Uncoupled from the actual scheduling technique, Merkert et al. [Mer+15] provide an

overview over challenges and opportunities for industrial consumers.

However, there is little research explicitly developing scheduling heuristics for

an application in demand response. In most cases, model-based optimization, i.e.,

mathematical programming, is used. The survey by Nosratabadi et al. lists a total of

57 publications related to the virtual power plant problem (see [NHG17, Table 6]). Out

of these, 51 use mathematical programming for optimization. Of the remaining six,

one uses a game-theoretic approach, i.e., distributed computation, and one does not

formally optimize at all but uses simulation based on MATLAB. The remaining four

papers each employ well-established metaheuristics: Twice, genetic algorithms are

used, one paper uses particle swarm optimization, and one uses a greedy randomized

adaptive search procedure (GRASP). We use this latter work by Petersen et al. [Pet+14]

in Chapter 8 as the competitor algorithm for our own heuristic.

It seems fair to conclude from this that looking into heuristics tailored speci�cally to

smart grid scheduling problems is a worthwhile undertaking — if one takes the extra

step of experimentally evaluating them and showing their applicability, and ideally:

superiority, to previous heuristics. Furthermore sorting, assessing and unifying the

bulk of mathematical-programming-based techniques could contribute to a clearer

�eld of research.

This thesis strives to contribute towards both these goals.

Thesis Outline

The contributions in this thesis are divided into three parts. We start by investigating

ways to describe and mathematically model demand side �exibility in Part I. We

thoroughly evaluate the suggested modeling techniques and compare them to models

from literature. In Part II, we present two heuristics that can be employed to optimize

large-scale scenarios, and experimentally demonstrate the e�ectiveness of the two

heuristics. Finally, in Part III, we dive deeper into some algorithmic foundations of

scheduling. We describe data structures used to facilitate some operations in the

6

Section 1.0

heuristics mentioned above, and we look into the �xed-parameter tractability of smart

grid scheduling.

Part I: Modeling

The �rst part is concerned with modeling scheduling problems that capture smart grid

scheduling, and using model-based optimization, while always trying to manage the

balancing act of capturing enough aspects in our models for them to be employed in

reality, and keeping the optimization complexity of the models manageable.

Chapter 3: A Comprehensive Modeling Framework for Demand Side Flexi-
bility. We start by creating a mixed-integer linear programming framework that

unites the modeling power of several other mixed-integer linear programs from litera-

ture. In an experimental evaluation, we demonstrate that using the resulting models

for optimization is still reasonable.

Chapter 4: Exploring the Benefits of Flexibilization in Industrial Contexts.
Based on the modeling technique from Chapter 3, we present a modi�ed modeling

technique that is able to optimize electricity usage with less required domain knowl-

edge: Instead of requiring information about the �exibility of the individual processes

to be scheduled, a global measure of �exibility is speci�ed in this model. The output

of the model can be interpreted as a suggestion concerning the processes that should

be made �exible. A domain expert can use repeated re-optimization of the model with

changed parameters to explore how and with how much e�ort electricity usage can

be improved.

Chapter 5: An Order-Based Model for the Resource Acquirement Cost Prob-
lem. We complement the presentation of the two modeling frameworks from chap-

ters 3 and 4 with an investigation into how to speed up the underlying modeling

technique. We suggest a new modeling technique that can be used as a drop-in re-

placement of the previous models, and demonstrate that the resulting models can be

optimized more e�ciently.

Chapter 6: Industrial Demand Side Flexibility: A Benchmark Data Set.
Considering the multitude of published optimization methods for scheduling prob-

lems in smart grids, having a way of comparing these methods against each other is

imperative. Experimental evaluation plays the most important role in this case, and

good experiments require good input data on which the experiments can be footed.

We present a set of instances for scheduling problems that can serve as a benchmark

for various algorithms. Our analysis of the presented instances illustrates that the

7

Chapter 1 Introduction

instances are neither too hard nor too easy, so that one can see interesting di�erences

between optimization methods using our instance set.

Part II: Heuristics

In the second part, we present two heuristic algorithms to optimize the smart grid

scheduling problems modeled in Part I. The optimization objective throughout this

part is peak shaving, i.e., the minimization of the demand peak. Both heuristics are

based on a fast iterative process, providing a simple time-quality tradeo�.

Chapter 7: Exploiting Flexibility in Smart Grids at Scale.
The �rst heuristic, RUSH, is based on the simple idea that repeatedly moving jobs

which currently contribute to the peak demand will result in the reduction of the peak

value. The main focus of this heuristic is speed, i.e., to very quickly achieve results

with an acceptable quality.

Chapter 8: Shaving Peaks by Augmenting the Dependency Graph.
The second presented heuristic, SWAG, approaches the scheduling problem as a graph

problem, using a dependency graph on the processes as representation of a possible

solution. Inserting new dependencies, i.e., edges, into the graph, allows the algorithm

to separate two processes that were running concurrently. Doing this repeatedly

with jobs that participate in the peak allows us to reduce the peak demand by solely

manipulating the dependency graph.

Part III: Algorithmic Foundations

The third part of the thesis examines several more fundamental aspects of scheduling

algorithms, such as supporting data structures and computational complexity.

Chapter 9: E�iciently Finding Peaks Using Dynamic Segment Trees.
The key to success for both presented heuristics in Part II is the availability of fast

primitive operations. One such operation is the determination of the time interval

during which the peak demand occurs in a given schedule, as well as the magnitude of

the peak demand. We present a variation of the dynamic segment tree, a data structure

that can be used to answer these queries very e�ciently. We tune the dynamic segment

tree by swapping out its underlying tree and changing the way annotations work.

Chapter 10: Engineering Top-Down Weight-Balanced Trees.
Weight-balanced trees are a form of balancing binary search trees, which can be used

as a basis for the aforementioned dynamic segment trees. With weight-balanced

trees, rebalancing can be done either in a top-down or in a bottom-up fashion. Both

8

Section 1.0

rebalancing algorithms additionally have a set of parameters that control their inner

workings. We perform a thorough investigation of the e�ects of parameter choices

and arrive at the conclusion that unconventional parameter choices lead to the best

performance, and that top-down rebalancing is the superior method.

Chapter 11: TCPSP is Fixed-Parameter Tractable in a Local Measure .
A theoretic aspect of smart grid scheduling problems that we looked into aside from

supporting data structures is parameterized complexity. The scheduling problems

encountered in this thesis are computationally very hard problems — to the point that

the theoretic informatics community believes that deterministic algorithms will never

be able to solve instances of realistic size to optimality. One way of dealing with this

hardness is to isolate the factors that make instances hard to solve. Then, if one is

able to control these factors, one might be able to optimize instances of large size after

all. We present such a factor which captures how complex a scheduling instance is at

every point in time.

9

2 Preliminaries

This chapter introduces basic notation and concepts used throughout this thesis. It

mainly focuses on the various scheduling problems touched and their relation. For

basic algorithmic concepts, we refer to the work of Cormen et al. [Cor+09]. In addition,

we assume familiarity with basic concepts related to graphs and recommend the work

by Diestel [Die17] as a reference.

2.1 Scheduling

Scheduling problems are optimization or decision problems that ask for the assignment

of start times to jobs. A job is an abstract object that can have various properties start time
jobdepending on the concrete scheduling problem, but usually each job has at least a

processing time, i.e., an amount of time that the job must be executing after it was processing time
started. We call the set of all jobs J and use n = |J | as the number of jobs. The jobs

in J are j1, j2, . . . jn . A schedule S = (s1, s2, . . . sn) is then an assignment of a start time schedule
si to each job ji . Usually, jobs are associated with the usage of resources. If such an resource
association is given, each schedule results in a resource usage over time, also called a

resource pro�le. Most scheduling scenarios either place constraints on the resource resource profile
usage, or aim to somehow optimize the shape of the resource pro�le.

Note that this model does not allow for jobs to be interrupted and resumed or

restarted after they were started once. To model these possibilities, a schedule would

need to hold more information than just one start time per job. The models used

throughout this thesis never allow for jobs to be interrupted (also called preemption). preemption
However, in Section 4.5 of Chapter 4 and Section6.2.2 of Chapter 6 we brie�y outline

how the models used can be made to mimic interruptible jobs.

2.1.1 Machine Scheduling

So far, we speci�ed neither constraints on the start times of jobs nor an optimization

criterion. For the �rst group of scheduling problems, so-called machine scheduling machine
schedulingproblems, the most important constraint is that only a certain number of jobs may

execute concurrently. The number of jobs that is allowed to execute in parallel is the

number of machines, and each machine can execute only one job at a time. Depending

on the concrete model used, additional constraints may be given. One popular example

is to limit the execution of individual jobs to a certain time window. In this case, each

job is associated with a release time, which is the earliest possible start time of the release time

11

Chapter 2 Preliminaries

job, and a deadline, which is the �rst point in time when the job must have stoppeddeadline
running. Together, they form the window of the job. Another common constraint iswindow
the presence of dependencies between jobs, which are usually given in the form of a

partial order on the job set. In its simplest form, a dependency from ja to jb means

that ja can start only after jb has �nished running.

Brucker and Knust [BK12] give an overview over various machine scheduling

problems. In their earlier survey, Graham et al. [Gra+79] not only provide an overview

over the �eld, but also propose a notation to classify machine scheduling problems.

In this notation, every problem is assigned three �elds α , β and γ . Field α contains

information about the available machines, β describes the jobs and their constraints and

γ speci�es the objective function. Using this notation, the “scheduling zoo” database

by Dürr et al. [Dür+16] provides a convenient way of searching for problems and

known algorithms or hardness results.

A variant of machine scheduling problems that is close to several of the problems

under study in this thesis is machine minimization scheduling. For such problems, themachine
minimization number of machines, i.e., the maximum number of concurrently running jobs, is not

�xed. Instead, other constraints are given, and the objective is to �nd a schedule that

minimizes the number of necessary machines.

To illustrate that even seemingly simple scheduling problems can already be algo-

rithmically hard, consider such a machine minimization problem, namely Scheduling

with Release Times and Deadlines on a Minimum Number of Machines (SRDM).SRDM
In SRDM, additionally to a processing time, each job is associated with a release time

and deadline as de�ned above. The objective is to �nd a schedule that minimizes the

number of machines. Cieliebak et al. [Cie+04] have shown this problem not only to be

NP-hard, but also show that there cannot be an approximation algorithm with an

approximation factor of 2 − ϵ for any ϵ > 0.

2.1.2 Project Scheduling

In contrast to machine scheduling introduced above, project scheduling problems usuallyproject
scheduling associate jobs withm resources, form ≥ 1. Each job requires a certain amount (possibly

resource zero) of each resource. Machine scheduling then becomes a special case of project

scheduling, in whichm = 1 and every job requires exactly one unit of the sole resource.

A more thorough overview over project scheduling problems than this section can

give as well as some algorithmic approaches is given by Węglarz [Węg99] as well as

Brucker and Knust [BK12]. In his survey, Węglarz concisely de�nes project scheduling

problems to be “problems of allocating scarce resources over time to perform a given

set of activities”. The relationship to scheduling electrical loads in smart grids becomes

immediately clear: Here, the main (and in most cases only) resource we care for is the

electrical power required by the tasks to be run.

Project scheduling problems can be coarsely classi�ed into two categories:resource-resource-
constrained

12

Scheduling Section 2.1

constrainedproject scheduling problems (RCPSP) and time-constrained project schedul- time-
constraineding problems (TCPSP). Problems of the category RCPSP usually have a hard usage

limit on each resource, and the most common objective is to minimize the �nishing

time of the project, i.e., have all jobs completed as early as possible. On the other hand,

TCPSP problems have �xed time limits, either on a per-job basis or globally, and the

objective depends on the resource usage during the schedule.

This thesis is mostly exploring the possibilities of peak shaving, i.e., the objective is

to reduce the maximum power demand. This naturally leads to a TCPSP problem. The

Resource Acqirement Cost Problem (RACP), �rst de�ned by Möhring [Möh84]
1
,

is a good �t. To establish notation that is used throughout much of this thesis, we now

formally de�ne the RACP. RACP
An instance I of RACP consists of m ∈ N+ resources and a set J of n jobs. Each

ji ∈ J is a four-tuple: ji = (ri ,di ,pi ,ui). Here, ri speci�es the earliest possible start

(the release) of ji , while di speci�es the deadline, i.e., the �rst point in time when ji release
deadlinemust be �nished. The processing time pi speci�es the amount of time that ji must run

processing timewithout interruption after being started. Finally, the usage vectorui ∈ R
m

speci�es the

usageresource usage. For a resource ρ ∈ {1, . . .m}, ui,ρ determines how much of resource

ρ job ji requires. Additionally, for each resource ρ, a weighting factor wρ is given.

The task is to determine a schedule S = (s1, s2, . . . sn) which assigns a start time

si ∈ [ri ,di − pi] to each job ji . Given such a schedule, we can determine the usage for

resource ρ at time t as

Uρ (t) =
∑

i : si ≤t∧
si+pi>t

ui,ρ (2.1)

This sums over all jobs that run at t , i.e., that have been started at t (enforced by si ≤ t)
and have not yet �nished (enforced by si + pi > t). From this, we can get the costs at t
as C(t) =

∑m
ρ=1

wρ ·Uρ (t). The objective is then to �nd the schedule that minimizes

maxt C(t).
Another common aspect of project scheduling problems is the presence of precedence precedence

constraintconstraints. These constraints place a requirement on the relation of pairs of jobs. The

simplest form are �nish-start constraints. For a job pair (ja , jb), a �nish-start constraint

means that job jb can start only after ja has �nished, or formally that sb ≥ sa + pa .

The more general form of time lag constraints allows to specify arbitrary amounts of time lag
time (instead of just pa) that must pass between the start of a job ja and the start of

job jb . We usually specify these in the form of a partial function L : J × J 7→ Z. If

(ja , jb) ∈ L, that means that sb ≥ sa + L(ja , jb) must hold.

For smart grid scheduling, we often only care for one resource, namely electrical

power demand. We call the RACP restricted tom = 1 (and without thewl factors, which

become irrelevant) the Single-Resource Acqirement Cost Problem (S-RACP). S-RACP
1
Note that in literature, the same problem is also knows as Resource Investment Problem (RIP)

13

Part I

Modeling

3 A Comprehensive Modeling Framework
for Demand Side Flexibility

The increasing share of renewable energy generation in the electricity system comes

with signi�cant challenges, such as the volatility of renewable energy sources. To

tackle those challenges, great hopes lie with demand response. The cornerstone of

(especially centralized) demand response is the coordination of �exible electrical loads.

To facilitate this coordination, �exible electrical loads need to be modelled and opti-

mized. Although extensive research exists that describes, models and optimises various

processes with �exible electrical demands, there is no uni�ed notation. Additionally,

most descriptions are very process-speci�c and cannot be generalised.

In this chapter, we develop a comprehensive modeling framework to mathematically

describe demand side �exibility in smart grids while integrating a majority of con-

straints from di�erent existing models. We provide a universally applicable modeling

framework for demand side �exibility and evaluate its practicality by looking at how

well mixed-integer linear program (MIP) solvers are able to optimize the resulting mod-

els, if applied to arti�cially generated instances. From the evaluation, we derive that

our model improves the performance of previous models while integrating additional

�exibility characteristics.

This chapter is based on joint work with Nicole Ludwig, Esther Mengelkamp and

Philipp Staudt [Bar+18c].

3.1 Introduction

While many societies aim at shifting their energy mix towards renewable energy

sources (RES), the stability of the current electrical grid relies on a centralised dispatch

of generation, as explained for example by Schleicher-Tappeser [Sch12]. The high

�uctuations of RES in supply, as well as strong intra-day patterns e. g. in the case

of solar energy, are challenges for a smooth integration. On the demand side, the

traditional consumer behaviour is strenuous for the power grid as it results in high

peaks and low valleys of the electric load. Currently, this �uctuation is compensated by

conventional steerable power plants to ensure a reliable operation of the electricity grid.

As more and more intermittent renewable sources generate electricity, this balancing

technique is threatened, as Weidlich et al. [Wei+12] point out. However, the decrease

in supply side �exibility might be o�set by an increase in demand side �exibility.

Therefore, one possibility to ease the integration of RES is to steer the consumer

demand and adapt it to the supply side. Strbac [Str08] elaborates on this possibility

and arrives at the result that su�cient demand �exibility can signi�cantly reduce

17

Chapter 3 Modeling Framework for Demand Side Flexibility

the necessary installed generator capacity of renewables. Demand side management

(DSM) summarizes measures that foster an energy consumption that is more easy for

the energy system to ful�l. Among DSM techniques, demand response (DR) denotes

techniques that aim at short-term changes in demand, for example by postponing

currently running processes.

Our objective is to design a comprehensive modeling framework to capture and

schedule demand side �exibility. Scheduling energy loads, hence exploiting the �exi-

bility in the system to enhance grid stability or reduce energy costs for the consumer,

is not a new idea. However, previous work predominantly employs very application-

speci�c formulations to describe the loads and their characteristics to be scheduled.

This speci�city results in a vast amount of di�erent modeling formulations. Existing

modeling techniques are usually not readily transferable to new data sets or di�erent

use cases. In this context, it is especially noteworthy that demand side �exibility of

private households and industrial applications exhibits very di�erent characteristics.

For example, household appliances can usually run independently from each other

while industrial processes often depend on other production steps. As the considered

papers always focus on only one application, no formulation (known to the authors)

exists that integrates all of the features necessary to comprehensively describe demand

side �exibility across multiple domains and applications. This variety of formulations

in the literature makes it di�cult to compare the modeling approaches, their respective

results and adaptability.

We present a novel comprehensive modeling framework in the �eld of energy

informatics to represent �exibility in households as well as in an industrial context.

Based on current literature, we classify the most important characteristics of �exi-

bility represented in previous work and incorporate the majority of them in a single

modeling framework. We combine currently existing, wide-ranging research and, to

our knowledge, are the �rst to integrate the di�erent approaches into a single model-

ing framework. We complement the presentation of the framework with a practical

evaluation that shows the optimization performance of the models resulting from our

technique.

The various �avours of scheduling problems arising when scheduling time-�exible

electrical loads are similar to problems well known in the �eld of operations re-

search, especially in the area of project scheduling. The best-�tting group of problems

from project scheduling is called Time-Constrained Project Scheduling Problem

(TCPSP). Related to these problems, and better understood, is a group of problems

called Resource-Constrained Project Scheduling Problem (RCPSP). The model-

ing framework presented in this chapter is an adaption of the discrete-time modeling

approach presented by Pritsker et al. [PWW69] for the RCPSP.

This chapter is structured as follows. In Section 3.2, we give a short overview of

existing literature concerning demand side �exibility and management. Following

18

Related Work Section 3.2

this, we describe common features found in the literature modeling demand �exibility

in Section 3.3. Section 3.4 introduces our modeling framework which is evaluated

with regards to its performance in the following Section 3.5. We discuss our work in

Section 3.6, before giving an outlook and a conclusion in Section 3.7.

3.2 Related Work

Demand side management is currently seeing a growing interest from researchers.

A variety of authors has been dealing with demand �exibility of private households.

Consequently, they ignore most characteristics of industrial loads. For example, He et

al. [He+13] provide a classi�cation of household �exibility along di�erent dimensions,

while Allerding et al. [All+12] focus on developing demand response for private

households. Gottwalt et al. [Got+16] also concentrate on private households, however,

they incorporate several additional restrictions. Scott et al. [Sco+13] characterize the

�exibility of individual household devices. However, the description is tailored to

speci�c appliances and therefore not domain independent. In [Feh+14], Fehrenbach

et al. show that thermal appliances and speci�cally the expansion of heat pump use

may have the largest �exibility potential of private households. Du and Lu [DL12]

provide a scheduling algorithm for those thermal appliances. Their work is extended

by Alizadeh et al. [Ali+15], who di�erentiate between curtailable thermal loads and

other deferrable loads. Household behaviour with regards to the provision of �exibility

and e�ects on electricity costs is simulated by Gottwalt et al. [Got+11]. They conclude

that saving potentials for households are moderate when compared to the investment

in smart meter technology. Contrary to this result, Setlhaolo et al. [SXZ14] come

to the conclusion that a reduction of up to 25% of the electricity costs of private

households is possible. The investigation by Soares et al. [SGA14] also considers

customer dissatisfaction besides the monetary compensation. In [Sou+11], Sou et

al. model household appliances as an interruptible sequence of uninterruptible tasks

and demonstrate that in their model, energy costs can be signi�cantly lowered by

scheduling these tasks.

An introduction to using demand side �exibility as a means to integrate renewable

generation is given by Palensky and Dietrich [PD11]. Other research has established

that �uctuations of renewable generation can be o�set by demand side �exibility, as

for example shown by Strbac [Str08]. However, the authors argue that it is hard to de-

termine how to compensate the providers of the demand side �exibility. Halvorsen and

Larsen [HL01] describe the e�ects of appliance endowment and additional investment

on the ability to provide �exibility. A new approach for a scheduling algorithm was

developed by Ströhle et al. [Str+14] to match uncertain supply with di�erent demand

packages to maximize total welfare. The optimal combination of private household

19

Chapter 3 Modeling Framework for Demand Side Flexibility

�exibility is investigated by Gärttner et al. [GFW16], providing recommendations to

�exibility portfolio aggregators.

Ashok and Banerjee [AB00] pioneer the �eld of industrial demand response. Their

model is speci�ed in [Ash06] but leaves certain restrictions for future research. An

extensive description of characteristics of demand side �exibility beyond residential

�exibility is given by Petersen et al. [Pet+13]. The same authors also develop a �rst

taxonomy for �exibility but chose not to incorporate a variety of characteristics of

�exibility [Pet+14]. Paulus and Borggrefe [PB11] establish that demand side manage-

ment bears considerable monetary potential in energy intensive industries. Qureshi et

al. [QGJ14] develop a model to investigate economic potential of demand response in

o�ce buildings. In [SP96], Schilling and Pantelides present a MIP model that schedules

tasks with recurring instances. Mitra et al. [Mit+12] as well as Moon and Park [MP14]

consider scheduling with regards to electricity costs for industrial production. Oudalov

et al. [OCB07] use batteries to reduce demand peaks.

3.3 Modeling Flexibility

In this section, we systematically categorize the most important aspects and features

of demand side �exibility that are captured by models present throughout literature.

Based on the presented features of �exibility, we classify the most relevant models of

demand side �exibility with regards to the features they incorporate in Table 3.1.

1. Time Frame. States whether the described model uses discrete time steps or con-

tinuous time.

2. Interruptible Jobs. The model allows for interruptible jobs, i. e., jobs which do

not have to be executed consecutively. We do not distinguish between the ability to

stop jobs at any time, or at prede�ned time slots. Indirect modeling: Models which

allow for interdependent jobs with arbitrary time lags (see below) enable us to

split up interruptible jobs into small chunks and connect these with dependencies.

This way, the original job can either be executed consecutively (if all chunks are

scheduled consecutively) or with interruptions. (Negative) lag times can be used to

specify maximal interruption times. Thus, all models supporting interdependent

jobs with arbitrary time lags with indirectly support interruptible jobs.

3. Storage. The model allows to include some form of storage possibility. Indirect

modeling: Storage can be modelled indirectly via a special kind of dummy jobs

which can be moved forward to simulate charging of the storage. The place where

dummy jobs were moved away from then has more power available, simulating

getting energy out of storage.

20

Modeling Flexibility Section 3.3

4. Interdependent Jobs. Jobs can have predecessors, allowing a job to be scheduled

only as soon as all its predecessors are completed. Optionally, time lags can be

associated with dependencies, enforcing a certain amount of time to pass between

the �nish of a predecessor and the earliest start of a successor.

5. Earliest Start Time. Jobs can be associated with an earliest start time and may

not be scheduled before that time.

6. Deadline. Jobs can be associated with a deadline and must be scheduled such that

they are �nished at that time. From this, the possibility of an overall deadline

directly follows.

7. Multiple Resources. The model can contain more resources than electrical energy

alone, and jobs may require amounts of more than one resource simultaneously.

Table 3.1: Comparison of the integrated �exibility features in related work to our modeling

framework. Checkmarks mean yes, crosses mean no. A dash means that a feature is not

applicable (see detailed feature description). Checkmarks in parentheses indicate that a feature

is not explicitly modelled, but can be expressed approximately using other modeling features.

We did not check for possibilities to use this indirect modeling approach for the related work.

[
A

l
l
+

1
2
]

[
A

B
0
0
]

[
A

s
h

0
6
]

[
C

M
B

0
2
]

[
F
H

M
1
4
]

[
G

o
t
+

1
6
]

[
L

u
o

+
9
8
]

[
M

i
t
+

1
2
]

[
M

P
1
4
]

[
O

C
B

0
7
]

[
P

e
t
+

1
3
,
P

e
t
+

1
4
]

[
S
P

9
6
]

[
S
o

u
+

1
1
]

T
hi
s
C
ha

pt
er

Time Frame
a

d d d c d d d d d d d d c d

Interruptible Jobs 3 3 3 7 7 3 7 7 7 7 7 7 7 (3)

Storage 7 3 3 3 3 3 7 3 3 3 3
b

3 3 (3)

Interdependent Jobs 7 7 7 7 7 7 7 7 3 7 7 7 7 3

Earliest Start Time 3 7 7 7 7 3 7 7 7 7 7 7 7 3

Deadline 3 7 7 7 7 3 3 3 3 7 3 3 3 3

Multiple Resources 7 7 3 3 7 7 7 3 3 7 7 7 7 3

Base loads 7 7 7 7 3 3 7 3 7 7 3 3 3 3

Modes 7 7 7 7 7 7 3 3 3 7 7 7 7 3

Drain, Losses 7 7 7 7 3 7 3 7 7 7 7 7 7 3

Ramping 7 7 3 7 3 7 7 3 3 7 7 7 7 3

Multiple Runs 7 3 3 3 3 3 3 3 3 3 3 3 3 7

Down-/Uptime — 7 7 7 3 3 3 3 3 3 3 3 7 —

Production — 3 3 3 7 7 3 3 3 7 7 7 7 —

a
d = discrete, c = continuous

b
Only in [Pet+13]

21

Chapter 3 Modeling Framework for Demand Side Flexibility

8. Base loads. Uncontrollable loads, i.e., jobs that must be scheduled at a speci�c time,

may be part of the model. Indirect modeling: Base loads can be modelled indirectly

if earliest start times and deadlines are present, or if deadlines and interdependent

jobs are present, by inserting dummy jobs that can only be scheduled at the speci�ed

times.

9. Modes. Jobs may have multiple modes, where every mode is a combination of

a run time and resource requirements. Each job can have a possibly large set of

possible operation modes. Modes with less required resources usually take longer.

The scheduler can decide in which mode to run a job. We assume all modes of a job

to be of equal value, i.e., things like product quality do not depend on the chosen

mode of a job.

10. Drain, Losses. Energy spent on the execution of a job may drain over time, i.e.,

another job which is scheduled later might need to replenish energy (and thus use

more resources or take longer) if it is scheduled late.

11. Ramping. Jobs may be associated with a ramping function of some kind, describ-

ing how resource usage slowly increases when the job is started and decreases

when the job �nishes. Ramping might be unnecessary if another job is executed

right before the ramping job starts or directly after the job. If ramping is necessary,

the runtime of a job usually increases.

12. Multiple Runs. Every job can either be scheduled once or multiple times, over

the span of the optimization period. Multiple runs are most useful when we choose

the time horizon in such a way that we need to meet a production target.

13. Down-/Uptime. Jobs can be associated with a �xed amount of time where they

need to be shut down after running (downtime), or a �xed amount of time that

they have to be used (uptime). In contrast to the �exible description of minimum

and maximum runtime, this is a �xed amount of time. This makes only sense when

multiple runs (see above) are possible.

14. Production. Jobs can be associated with a production output, and the whole

schedule has to meet a production target. Again, this only makes sense when

multiple runs are possible, as otherwise each jobs has to run exactly once and the

production is �xed.

Table 3.1 summarizes the papers we examined and gives an overview of the features

considered. The features we address with our new formulation are indicated with check

marks. Brackets indicate that we can reasonably express a certain feature indirectly,

although we do not meet all subtleties encountered in the literature presented. Features

not yet included in our modeling framework are marked with crosses. In total, we

take 14 di�erent features into account, which we describe as follows:

22

Optimization Model Section 3.4

3.4 Optimization Model

In this section, we describe our proposed comprehensive modeling framework. We

incorporate the majority of features which we found in related papers and summarized

in Table 3.1.

The basis for our model are jobs, representing uninterruptible processes that require job
a certain amount of electrical power during their execution. We associate a duration duration
with each job.

The optimization model that results from our modeling technique is a mixed-integer

linear program (MIP). Given an instance with n jobs in which job i can be run in

Mi ≥ 1 di�erent modes and the latest job deadline is Dmax, the decision variables

consist of two groups of binary variables. A group si (t) of variables indicating whether

job i starts running at time step t and a group of variables mi, j indicating whether

job i is run in mode j . This limits the number of decision variables to n · Dmax +
∑
Mi .

All other variables are derived from these decision variables. Table 3.2 lists all used

variables as well as the constants that are part of the input instance.

For each job i , P̃i speci�es the base power requirement of i . This base power require- base power
requirementment can be modi�ed by the mode coe�cients, if the job has more than one possible

mode. The same holds for the base run time T̃i . Job i can be run in Mi di�erent modes. base run time
modeFor each modem ∈ {1, . . .Mi }, the actual power requirement for job i is ϕi,m · P̃i , and

the actual run time isψi,m · T̃i if job i is run in modem. If Mi = 1, it makes sense to set

ϕi,1 = ψi,1 = 1, and P̃i becomes the actual power demand and T̃i becomes the actual

run time. The deadline Di speci�es the �rst time step at which i must be �nished, and deadline
Ri speci�es the release time, i.e., the �rst time step at which it can run. release time

For a pair of jobs i and j, the value of Li, j ∈ Z ∪ {−∞} speci�es the minimal time

that must pass between the start of i and the start of j. Note that we allow negative

values. If there should be no dependency between i and j, setting Li, j = −∞ will

achieve this.

Related to dependencies is the concept of drain. Certain processes, especially in drain
chemical industry, require more power (resp. longer run time at the same power) if

another process was �nished too far in the past. The classical example are materials

that need to be heated and cool down over time. We capture this — in a linear fashion

— in the τi, j input constant for two jobs i and j. When there are k time steps between

the end of i and j, the run time of job j is extended by τi, j · k . Of course, energy does

not drain limitless, e.g., at some point, a material cooling down reaches environmental

temperature. Therefore, τ̂i, j places a limit on the possible run time extension. A similar

concept is ramping. Some processes can not be arbitrarily switched on or o�. We ramping
capture this by a series of ramping jobs that can be prepended to a job j if job i is

�nished too long before j starts. The number of possible ramping jobs before j is Λj .

Parameter δi, j,k determines the number of time steps that can pass between the end

of i and the start of j before ramping job k must be executed before j can start. For

23

Chapter 3 Modeling Framework for Demand Side Flexibility

the ramping jobs, µi,k determines the power demand of the kth ramping job for job i .
Finally, certain objective functions (see below) require a speci�cation of how much

power can be used at time t without incurring any cost, and how much the cost is for

all power exceeding that amount. This is speci�ed by Ft and ct .

Given an input instance speci�ed like this, the model has two types of decision

variables. For job i and time step t , si,t indicates that i starts at time step t . For a job i
with multiple modes,mi,k indicates that job i runs in mode k .

Note that with this speci�cation, we consider only one resource, which we call power.

However, incorporating multiple resources can be easily done by just duplicating

all variables and constraints regarding resources for each additional resource, and

combining the objective functions (see below). For simplicity sake, we do not formally

specify that here.

Objective Functions. Our modeling technique can easily accommodate multiple

objectives, each of which is relevant in a smart grid scheduling context, and which

can of course also be combined.

The �rst one is an overshoot minimization objective. The goal is to buy as little energyovershoot
minimization from the grid as possible, assuming the presence of some “free” but non-steerable

generation, for example by photovoltaics. We thus minimize the di�erence between

self-produced electricity Ft and the power P̂t needed to perform the desired processes.

Using energy from the grid is penalised with a cost ct . The objective function is then

min

∑
t

ct ·
(
max

(
P̂t − Ft , 0

))
. (3.1)

Another objective frequently seen in literature is that of peak shaving. Here, thepeak shaving
maximal power usage is to be minimized. The objective function for peak shaving is

min

(
max

t
P̂t

)
(3.2)

Now that we have introduced the model’s variables and objectives, we present the

constraints. We do this in two blocks. The �rst block consists of the constraints that

provide the basic workings of the model, binding together the decision variables and

resource usage. The second block consists of constraints that model speci�c features

from Section 3.3. The �rst block of constraints is:

24

Optimization Model Section 3.4

Table 3.2: Variables used in the modeling framework, with the input constants at the top, the

decision variables in the middle and the derived variables in the bottom part of the table.

Model Constants (Input)

n Number of jobs

P̃i Base power requirement of job i

T̃i Base run time of job i
Mi Number of di�erent modes for job i

ϕi,m Mode coe�cient for time adjustment of job i in modem
ψi,m Mode coe�cient for power adjustment of job i in modem
Di Deadline of job i
Ri Release time of job i
Li, j Minimum time lag between job i and j, measured in time steps from the end

of i to the start of j
τi, j Runtime extension coe�cient for the separation of jobs i and j
τ̂i, j Limit on separation-caused run time extension for jobs i and j
Λi Maximum number of ramping steps for job i

δi, j,k Number of time steps between the end of job i and the start of job j before

job j must execute ramping step k before executing the actual job

µi,k Power requirement of job j’s kth ramping step

Ft Power available “for free” at time step t
ct Cost of using one unit of energy above Ft at time t

Decision Variables

si,t Binary variable, becomes 1 if and only if job i starts at time step t
mi,k Binary variable, indicating if job i is to be run in mode k

Derived Variables

˜ϕi E�ective time adjustment coe�cient of job i
˜ψi E�ective power adjustment coe�cient of job i
Pi Power requirement of job i in its selected mode

Ti Run time of job i in its selected mode

P̂t Total power requirement at time step t
σi Time step in which job i starts

ηi First time step in which job i is �nished

M Large constant used to switch constraints on an o�

ρi,k Binary variable indicating whether job i must execute its kth ramping step

ωi,t Ramping power of job i at time t

25

Chapter 3 Modeling Framework for Demand Side Flexibility

∀i ∈ {1, . . .n} :

∑
t

si,t = 1 (3.3)

∀i ∈ {1, . . .n} :

∑
j

mi, j = 1 (3.4)

∀i ∈ {1, . . .n} : σi =
∑
t

t · si,t (3.5)

∀i ∈ {1, . . .n} : Pi = ˜ψi · P̃i (3.6)

∀i ∈ {1, . . .n} : ηi = σi +Ti (3.7)

∀i ∈ {1, . . .n} : ηi ≤ Di (3.8)

∀i ∈ {1, . . .n} : σi ≥ Ri (3.9)

∀i, j ∈ {1, . . .n} : σi + Li, j ≤ σj (3.10)

∀i ∈ {1, . . .n} :
˜ψi =

∑
j

mi, jψi, j (3.11)

∀i ∈ {1, . . .n} :
˜ϕi =

∑
j

mi, jϕi, j (3.12)

Equation (3.3) ensures that each job is scheduled once. Similarly, Equation (3.4) ensures

that for every job, exactly one mode is selected. Equation (3.5) binds σi to the start time

of job i by summing over all time instances times the indicator whether the job starts

in this instance. During its execution, each job needs has a power demand of Pi which

depends on the mode the job is running in and its base power P̃i (Equation (3.6)). The

e�ective power adjustment coe�cient
˜ψi for job i is determined in (3.11). In a similar

fashion, the run time is changed by the job’s mode — we defer the exact explanation

of how this works until later. However, the e�ective run time adjustment coe�cient

˜ϕi is determined just as
˜ψi is (3.12).

Each job has to be �nished before its deadline is reached (3.8), with the �nish time

depending on the start time and the actual run time of the job (3.7). Also, a job cannot

start before its release time (3.9).

If a time lag is de�ned between jobs i and j, the start time of the job i and the start

time of job j need to be separated by at least their minimum time lag Li, j (Equation

(3.10)).

We now describe the remaining necessary constraints which require a more detailed

explanation.

Time Extension for Drain and Modes. Recall that T̃i is the base time requirement

for Job i , and ϕi, j (resp. ψi, j) is the power (resp. time) mode coe�cients for the mode

being run in. These coe�cients determine how the power requirement (resp. run time)

changes if mode j is selected, i.e., ifmi, j = 1.

26

Optimization Model Section 3.4

Additionally, the actual run time may depend on several drain factors τa,i . The drain

factors indicate a run time extension of i if job i is not started immediately after job

a, as the energy that drained between the execution of a and i has to be replenished.

However, at some point we may assume that all energy has drained and that i’s run

time does not increase any further because of drain. This limit is imposed by τ̂a,i .
In total, the resulting constraint on the runtime Ti of i is

∀i ∈ {1, . . . ,n} : Ti = ˜ϕi · T̃i +
∑
k

min

(
τk,i (σi − ηk) , τ̂k,i

)
. (3.13)

Here, the sum sums over all jobs k that might precede i . For jobs that do not precede

i , or for which no drain is desired, τk,i should be set to zero, thereby making those

terms irrelevant. Note that this part can never become negative, because k being a

predecessor of i forces i to start only after k has �nished, i.e., σi ≥ ηk .

Of course, the minimum function is not a linear function. However, it can be

linearized using standard techniques.

Ramping. The ramping of job j is modelled via a series of dummy jobs, each of

length 1, describing the steps in the ramping process. Whether the λth ramping job

must be executed is denoted by ρ j,λ , where λ ∈ {1, . . . ,Λj }. Here, Λj is the maximum

number of steps necessary to reach the power input needed for job j to start. At

which ramping step we start depends on the time distance between the end of the last

predecessor job i , i.e., ηi and the start time of the job j that needs ramping, i.e., σj . We

check if we execute ramping step λ by introducing one of the following constraints

for every predecessor i of j:

∀i, j ∈ {1, . . . ,n},∀λ ∈ {1, . . . ,Λj } : ρ j,λ ·M ≥ (σj − ηi − δi, j,λ), (3.14)

where M is a suitably large constant. Then, ρ j,λ must become 1 if the right side is

larger than 0, i. e., if i and j are separated by more than δi, j,λ time steps. The λth

ramping step of job j must be executed λ time steps before the start of job j, because

λ − 1 further ramping steps will follow. With this, the amount of power required for

ramping job j at time step t can be formulated as

∀j ∈ {1, . . . n},∀t : ωj,t =

Λj∑
λ=1

ρ j,λ · sj,t+λ · µ j,λ . (3.15)

Here, ωj,t becomes µ j,λ , i. e., the power for j’s λth ramping step, if and only if j is

started in time step t + λ and ρ j,λ , i.e., the indicator if the λth ramping step must be

executed, is 1.

27

Chapter 3 Modeling Framework for Demand Side Flexibility

Table 3.3: Properties of the four sets of generated instances. Intervals [a,b] indicate numbers

chosen uniformly at random between a and b, inclusively.

Name # Jobs # Dependencies

Dependencies

with Drain

Net Job

Slack

Jobs (Set A)

{50, 100, 150,

200, 250, 300}
[0, 1000] 0 [0, 30]

Dependencies {0, 100, 500,

(Set B)

200

1000, 2000, 3000}
0 [0, 30]

Drain (Set C) 200 1000

{0, 100, 200,

500, 900}
[0, 30]

{1, 25, 50,
Slack (Set D) 200 [0, 10000] 0

75, 100}

Slack with

few Dep. (Set E)

200 200 0

{1, 25, 50,

75, 100}

Total Power Requirement. The total power requirement at time step t is described

as the sum over the power of all running jobs at time step t and the power used of the

jobs currently ramping

∀t : P̂t =
∑
i

(
Pi

∑
t−Ti<t ′≤t

si,t ′

)
+

∑
j

ωj,t (3.16)

Linearization. Some of the constraints described by us are not linear per se. See

for example Equation (3.15), where ρ j,λ and sj,t — both variables, not constants — are

multiplied. However, for two binary variables a and b, such a multiplication can easily

be linearized if the product contributes only positively to the objective function, i.e., if

a solution where the product is 0 is preferred.

Let c be a third binary variable indicating whether the product a · b is 1. Then

it is enough to introduce the constraint c ≥ a + b − 1. We can replace a · b with c
everywhere. If a and b are both 1, then c must be 1. In all other cases, c will be set to 0,

since an optimum solution prefers the product to be 0.

3.5 Experimental Evaluation

We experimentally evaluate the models resulting from our modeling framework by

generating random instances, optimizing the MIPs for 15 minutes and measuring

the MIP gap, a measure for the di�erence between best feasible solution found and

best proven lower bound. We evaluate the framework with peak shaving as objective

28

Experimental Evaluation Section 3.5

function. We chose this objective since it does not need to make any assumptions as

to Ft and ct , which we assume to be highly dependent on the concrete scenario.

We conduct all experiments on a machine with 16 Intel Xeon E5-2670 cores at 2.6

GHz and 64GB of RAM, using Gurobi 6.5 as a solver.
1

We allow Gurobi to use all cores

of the machine.

We generated �ve separate sets of instances. For each of the �ve sets, Table 3.3

shows the number of jobs, number of dependencies between pairs of jobs, number

of dependencies that are associated with a drain, and the (net) slack jobs have in the

instances. The slack of a job is its deadline minus the release time minus the run time slack
of the job. The slack gives an indication of the amount of freedom one has during

scheduling. The net slack compensates for the fact that in the presence of dependencies, net slack
the earliest possible start time of a job does not just depend on the release time, but

also on the start times of its predecessors. Thus, a lower bound for the earliest start

time of a job is the maximum of all its predecessors’ earliest start times plus their

respective run times. The net slack takes this lower bound and the release time into

account.

In Table 3.3, intervals like [a,b] indicate that the value was chosen uniformly at

random between a and b for every instance. A set like {a,b, c} indicates that we

generated instances for each of the values a, b and c . For each possible combination of

values in every row of the table, we generated 30 instances, for a total of 810 instances.

We set the objective for all instances to minimize the peak power requirement. The

power requirement for every job has been drawn from a normal distribution with

mean 5 and standard deviation 2.

In the following, we analyse the MIP gap between best found feasible solution and MIP gap
best lower bound. Formally, let Cbound be the cost of the best lower bound found by

the optimizer and Cfeasible be the cost of the best found feasible solution, then the gap

is de�ned as (Cfeasible −Cbound)/Cfeasible. For instances where no feasible solution was

found, we set the gap to 1.

Figure 3.1c shows the e�ect of the number of dependencies on the gap achieved

after 15 minutes. We can see that for up to 100 dependencies, all instances stay below

a 2% gap. Even for 1000 dependencies, almost all instances can be solved up to a 4%

gap. However, the gap increases superlinearly with the number of dependencies.

In Figure 3.1a, we present the same plot for a varying number of jobs. A counter-

intuitive result is that while the gap �rst increases from 50 to 100 jobs, it decreases

from there on. An explanation for this is the fact that the gap is a relative measure. As

we keep adding jobs (keeping the global deadline and release time �xed), the absolute

value of the optimum solution increases. A �xed (absolute) di�erence between the

best feasible solution and the best lower bound becomes a lower gap as the optimum

1
See https://www.gurobi.com

29

https://www.gurobi.com

Chapter 3 Modeling Framework for Demand Side Flexibility

50 100 150 200 250 300
Jobs

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Ga
p

Number of Jobs vs. Gap

(a) Varying the number of jobs (Set A)

1 25 50 75 100
Net Slack

0.0

0.2

0.4

0.6

0.8

1.0

Ga
p

Net Slack vs. Gap

(b) Varying the amount of slack (Set D)

0 100 500 1000 2000 3000
Dependencies

0.02

0.04

0.06

0.08

0.10

Ga
p

Number of Edges vs. Gap

(c) Varying the number of dependencies

(Set B)

1 25 50 75 100
Net Slack

0.01

0.02

0.03

0.04

0.05

Ga
p

Net Slack vs. Gap with few edges

(d) Varying the amount of slack with few

dependencies (Set E)

0 100 200 500 900
Dependencies with Drain

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Ga
p

Drain vs. Gap

(e) Varying the number of dependencies

with drain (Set C)

Figure 3.1: The e�ect of varying di�erent parameters in instance generation. Red lines

indicate the median, boxes indicate upper and lower quartile. Whiskers show the extend of

the remaining results, with outliers being shown as circles.

30

Experimental Evaluation Section 3.5

0 200 400 600 800
Seconds

0.0

0.1

0.2

0.3

0.4

0.5

Ga
p

Figure 3.2: Convergence speed of the MIP solutions. The black line indicates the median over

all runs. The blue bars indicate the area in which 75% of all runs fall.

solution increases, which manifests here. However, note that even in the worst case,

with 100 jobs, the majority of the instances could be solved to a gap of 5% or below.

Figure 3.1b shows the net slack of all jobs versus the achieved gap. It is visible that

large net slacks strongly increase the computational complexity of the model. Note

that the mean duration of all jobs is 10, i.e., a net slack of 50 says that the net window

of every job is already six times its duration. Furthermore, Figure 3.1d shows results

of the same experiment where we kept the number of dependencies moderate, namely

at 200. The gap again increases with the size of the net slack, however even for a net

slack of 100, the gap never gets larger than 5%. Thus, a large number of dependencies

combined with a lot of slack is what drives complexity here.

Regarding the e�ect of dependencies with drain, Figure 3.1e shows the gap for

di�erent numbers of dependencies with associated drains. As you can see from

Table 3.3, we kept the number of dependencies constant at 1000 and vary the fraction

of dependencies with drain. We can see that drain signi�cantly raises the complexity of

the model, even if just 10% of the dependencies are associated with drain. However, the

complexity does not strictly increase with the number of dependencies with associated

drain: If too many dependencies are incentivized to have jobs placed closely to each

other, the �exibility in the model decreases and results improve slightly, as can be

seen.

We �nally take a look at the speed with which the MIP solver converges to the

optimum solution in Figure 3.2. The black line shows the median of the achieved

gap over all MIP runs at di�erent points in time. The blue bars indicate the upper

31

Chapter 3 Modeling Framework for Demand Side Flexibility

respectively lower quartiles. We can see that within the �rst 200 seconds, the MIP gap

drops to below 10% on average. After 200 seconds further improvement is relatively

slow.

Direct comparison with [Pet+14]. Petersen et al. [Pet+14] also give a MIP for-

mulation of a problem which is a subset of the problem our framework can solve.

They state that their MIP, executed on a standard laptop, was able to solve �ve out

of twenty generated instances before hitting memory limits, and for the �ve solved

instances, average execution time was eight minutes. We tried to generate twenty

instances based on the same parameters as they did, i. e., ten instances each corre-

sponding to their Portfolio(25, 100) and Portfolio(50, 100) settings. In [Pet+14], the

authors de�ne a Portfolio(N ,K) “as a randomly generated portfolio of N local units

with KRun ∈ {2, 3, 4, 5}, P ∈ {1, 2, 3, 4}, and KEnd ∈ {1, 2, . . . ,K}”. A local unit is in

there de�nition a �exible consumer, corresponding to a job in our formulation. Unfor-

tunately, the authors do not state how PDispatch, described by Ft in our formulation, is

selected. For the given portfolio settings, the average power consumption over the

(expected) optimization period is 4.4 respectively 8.8, thus we selected PDispatch = 5 and

PDispatch = 9. This should result in relatively di�cult instances since, in an optimum

solution, jobs must be distributed as uniformly as possible.

We solved these instances using our model on a standard laptop with 12 GB of RAM

and a quad-core CPU running at 2.4 GHz. Gurobi was able to solve all instances to

optimality within less than a second and a peak memory usage of less than 35 MB.

The fast computation suggests that our framework indeed results in fairly tractable

MIP models.

3.6 Discussion

We present a comprehensive modeling framework for demand side �exibility incor-

porating most of the characteristics from Table 3.1. In our framework, we currently

do not include the features multiple runs, down-/uptime and production. All these

features only make sense in a setting where part of the optimization is the selection of

how often to execute a certain job. In such a setting, jobs are usually associated with

a (monetary) pro�t. This setting is orthogonal to a setting where each job must be

executed exactly once. Without a speci�c production target, scheduling all jobs exactly

once seems most �tting for smart grid scheduling. This results in a �xed output for all

possible schedules.

In the future, we are looking to extend the modeling framework and include the

remaining �exibility constraints. Simultaneously, we plan to evaluate the representa-

tion and interdependences of the individual constraints theoretically and with real-life

case studies. In current research, it seems unclear what realistic test instances that

32

Conclusion Section 3.7

cover a lot of possible real-life scenarios, look like. This is a topic for further research

on its own.

Additionally, further research should investigate the optimal degree of �exibility

in production processes. In our model, �exibility has zero marginal costs. However,

providing a particular level of �exibility usually incurs a certain amount of costs and

resources that need to be considered. As generating and providing energy usually

incurs production costs, the unused self-produced energy also needs to be further

considered. Therefore, non-utilization should be penalized in the optimization problem.

A solution approach to this is the direct inclusion of energy storage capacities. Energy

storage can help out by saving the otherwise unused energy for a certain amount

of time. Nevertheless, storage costs will also occur and need to be considered in

the optimization problem. Currently, we are only considering costs that occur for

additional consumption of electricity meaning that we minimize the absolute area

di�erence between production and consumption.

As we have discussed before, not all �exibility aspects are yet included in our

experimental implementation even though we consider them in the mathematical

model. However, we expect the remaining characteristics to be of lower computational

complexity as those that we have already incorporated. Thus, their in�uence on the

optimality gap and runtime should be smaller than the impacts of the characteristics

we already evaluated in Section 3.5. A complete evaluation of our model’s empirical

complexity is subject to further research.

We also point out that, for now, we use Gurobi 6.5’s standard con�gurations to solve

the mixed-integer linear programs resulting from our modeling framework. These

standard con�gurations work adequately for our random instances. However, tuning

these could lead to improved performance. This approach might become useful in

time-critical real-life implementation scenarios.

3.7 Conclusion

In this chapter, we presented and evaluated a modeling framework which allows a uni-

versal representation of demand side �exibility. Thus, we address a gap in the modeling

of �exibility as current research has introduced a variety of models which are suitable

for speci�c problem instances but neglect the characteristics of demand side �exibility

for other applications. After an extensive review of existing literature, we aggregate

a coherent list of demand side �exibility features from research. We then create a

framework to integrate most of these into one consistent model. After introducing the

modeling framework mathematically, it is evaluated using randomly created problem

instances, and the performance is measured. We measure the performance as the

occurring optimality gap and show that our model performs well computationally

while considering a wide range of features. We focus on the minimization of externally

33

Chapter 3 Modeling Framework for Demand Side Flexibility

procured energy and peak shaving. In future work, we will consider the economic

implications of providing and investing in �exibility. Our model advances current

research as it can be universally used to describe �exibility for di�erent applications

and improves the comparability of optimization algorithms.

34

4 Exploring the Benefits of Flexibilization
in Industrial Contexts

We introduce a novel approach to demand side management: Instead of using �exibility

that needs to be de�ned by a domain expert, we identify a small subset of processes of

e. g. an industrial plant that would yield the largest bene�t if they were time-shiftable.

To �nd these processes we propose, implement and evaluate a framework that

takes power usage time series of industrial processes as input and recommends which

processes should be made �exible to optimize for several objectives. The technique

combines and modi�es a motif discovery algorithm with a scheduling algorithm based

on mixed-integer programming.

We show that even with small amounts of newly introduced �exibility, signi�cant

improvements can be achieved, and that the proposed algorithms are feasible for

realistically sized instances. We thoroughly evaluate our approach based on real-world

power demand data from a small electronics factory.

This chapter is based on joint work with Veit Hagenmeyer, Nicole Ludwig and

Dorothea Wagner [Bar+18b].

4.1 Introduction

It has almost become folklore within the energy research community that creating

and exploiting demand side �exibility can and should be a response to the growing

amount of intermittent, non-dispatchable generation in future energy systems based

on renewable energy sources. A body of literature (e. g. [FN16, KR13, Tan14]) looks

into this from di�erent angles, exploring and demonstrating usefulness, applicability

and computational feasibility.

Many of the approaches, especially those employing centralized variants of demand

side management (DSM) resp. demand response (DR), need to solve an optimization

problem that is a particular case of a project scheduling problem and can be formulated

as follows. Given a set of processes, each associated with electrical power demand,

and given speci�c �exibility for each process, run each process at the right time such

that some objective regarding the total power usage is optimized. The objective, the

processes, and the form of the �exibility can take many forms.

However, even though research in this �eld is plentiful, implementations of demand

response in practice, especially centralized DR, are scarce. There are many reasons for

this, not the least important of which is that much of the Smart Grid infrastructure

so far only exists on paper, or that the current electricity market has insu�cient

incentives to provide �exibility.

35

Chapter 4 Exploring the Benefits of Flexibilization in Industrial Contexts

We believe there are other signi�cant roadblocks for centralized demand response.

First, DR often focuses on households, neglecting that shifting demand from industrial

customers would have a stronger impact due to the amount of energy expended. This

focus is mainly happening because contrary to households, opportunity costs for

shifting demand in industry, i. e., changing a production schedule, can be very high,

making most price-based DR schemes infeasible.

Additionally, we have found that operators of industrial plants are most often unable

to specify what the �exibility of their processes is. Designing production processes with

demand �exibility in mind has not been a focus in the past. Neither has analyzing and

documenting the �exibility hidden in existing industrial processes. Thus, confronting

plant operators with the option of DR, we realized that many feel that this is an all or

nothing choice and decide that demand response is just not for them.

Finally, while there are several sets of household consumption data available (such

as the REDD data set by Kolter and Johnson [KJ11]), such data is very sparse in the

industrial context, additionally impeding research in this area.

We hope that we can overcome all of these obstacles with a di�erent approach:

Instead of solving scheduling problems where �exibility must be speci�ed a priori

per process, we suggest taking industrial plants as they are currently operated and

analyzing which processes would yield the most substantial bene�t if they were �exible.

We hope that such an analysis can be a powerful tool for industrial plant managers in

motivating and implementing demand response.

Our Contribution. We propose, implement and evaluate a new framework that

takes power consumption time series of industrial processes as input and indicates

which processes should be made �exible to optimize for several objectives. With this

framework, we want to answer the question: How much �exibility do we need? Thus,

given all the processes we have, how many must be made �exible (and by how much)

to get improvements regarding the energy consumption. To the best of our knowledge,

we are the �rst to propose this approach to demand response. Based on a recently

published set of power consumption time series from an electronics factory, we show

that we can achieve notable improvement even with little newly-created �exibility.

Outline. Before describing the proposed technique, we formally de�ne the termi-

nology and problems used throughout this chapter in Section 4.1.1 and summarize

related work in Section 4.2. Then, we describe our approach and its individual steps

in Section 4.3. We evaluate our approach in Section 4.4 and discuss our results in

Section 4.7, concluding the chapter in Section 4.8.

36

Introduction Section 4.1

4.1.1 Problem Definition

The Flexibilization Project Scheduling Problem (FPSP) is the main problem of

this chapter. Contrary to usual scheduling problems, we do not start with a set of jobs

and ask for a schedule. Instead, we are given an existing schedule on a set of jobs

plus some limitations on the addable �exibility as inputs. We �rst formally de�ne a

schedule:

De�nition 1 (Schedule). A schedule is a set of n triples (ci ,pi ,ui) ∈ N × N × R, schedule
for i ∈ {1, 2, . . .n}. Each triple describes a job in the schedule. We identify the triple job
(ci ,pi ,ui) with job i . For job i , the �eld ci indicates the (current) start time of job i in the start time
schedule, pi indicates the processing time (or duration) of the job, and ui speci�es the processing time
amount of power that job i uses during execution.

Note that for the sake of simplicity, in this de�nition and throughout this chapter,

all jobs have constant power demand during their execution. While this certainly is

a simpli�cation, we argue in sections 4.4.1 and 4.6 why it is probably an acceptable

simpli�cation for many industrial processes, and describe in Section 4.5 how our

approach can easily be adapted to jobs with non-constant power demand, at the

expense of computational complexity.

Next, we de�ne the terms in which we talk about �exibility. Given a schedule as in

De�nition 1, two integers T̂ ∈ N and Ĵ ∈ N are used to limit the amount of �exibility

that may be created in the schedule. Here, Ĵ speci�es how many jobs may be moved

away from their original start times, and T̂ speci�es by how much time steps jobs may

be moved in total.

With this, we can now de�ne the problem examined throughout this chapter:

De�nition 2 (Flexibilization Project Scheduling Problem). Flexibilization
Project

Scheduling
Problem

Given are a schedule as in De�nition 1 and �exibilization limits T̂ and Ĵ .
Find for each job i ∈ {1, 2, . . .n} a new start time si ∈ N such that

• the number of jobs i for which si , ci is at most Ĵ

• the total deviation from the current start times is at most T̂ , i.e.,

n∑
i=1

|ci − si | ≤ T̂

Any S which satis�es the conditions from De�nition 2 is a feasible solution to the

FPSP problem. Slightly abusing our notation, we also call such an S a schedule. While

specifying T̂ and Ĵ of course means that to apply our framework one still has to specify

these limits on �exibility, �exibility does not have to be speci�ed on a per-job basis.

Therefore it becomes easy to explore what improvements we can achieve at the “cost”

37

Chapter 4 Exploring the Benefits of Flexibilization in Industrial Contexts

of what amount of �exibility — as we do in Section 4.4. Also, we outline in Section 4.8

how one can truly get rid of having an amount of �exibility as input parameter if one

can estimate the costs of introducing new �exibility.

Note that so far we have only de�ned what a feasible solution is, not what makes a

solution optimal. In fact, we explore di�erent objective functions, the �rst of which

models peak shaving. To do so, we need the total power usage at a certain point inpeak shaving
time. For a feasible schedule S , let Ut be the amount of power that is used during time

step t , i. e.,

Ut =
∑
{ui | si ≤ t ∧ si + pi > t} .

De�nition 3 (Flexibilization Project Scheduling Problem with Peak Shaving

(FPSP-PS)).FPSP-PS
For an instance of FPSP, let Û be the maximum amount of power used by concurrently

executing jobs throughout S :
Û = max

t
Ut .

The problem is then, �nd the feasible schedule that minimizes Û .

While peak shaving is an objective that is relevant in real-world applications, it

is often combined with available generation; the objective is to reduce the peaks of

power demand which cannot be served by the generation. To model such objectives,

we introduce an amount of generation for each time step: Let Gt ∈ R units of power

be available in time step t . With this, we can de�ne the next possible objective:

De�nition 4 (Flexibilization Project Scheduling Problem with Peak Shaving

and Generation (FPSP-PSG)).FPSP-PSG
Given an instance of FPSP and generation Gt , let Ũ be the maximum amount of power

used by concurrently executing jobs throughout S which cannot bemet by own generation

(the peak residual load)

Ũ = max

t
(max(Ut −Gt , 0)) .

The problem is then, �nd the feasible schedule that minimizes Ũ .

The third and last examined objective looks at overshoot minimization. In this settingovershoot
minimization we try to minimize the total amount of energy that can not be served by available

generation:

De�nition 5. Flexibilization Project Scheduling Problem with Overshoot Mini-

mization (FPSP-OM)FPSP-OM
Given an instance of FPSP and generation Gt , �nd the feasible schedule that minimizes

∞∑
t=0

max(Ut −Gt , 0).

38

Related Work Section 4.2

Note that the mixed-integer programming approach presented in Section 4.3.4 is

able to optimize for all of these objectives. The modeling approach presented is based

on the technique introduced in Chapter 3, where we also show how to adapt to various

objective functions.

4.2 Related Work

The need for more �exibility in energy usage has been well established, e. g. by Taneja

et al. [Tan14]. For an analysis of the possible bene�ts of demand response see for

example Strbac [Str08] or Feuerriegel and Neumann [FN16].

The existing literature on demand response, in general, is vast and spans a signi�-

cant area of applications and problems. For example, Gong et al. [Gon+15] investigate

how DR can be used for households while still preserving their privacy, a profoundly

important question which also results in the mentioned lack of support by industry to

participate in such measures. Additionally, DR has been looked at not only for house-

holds but also for example for data centers e. g. by Klingert et al. [Kli+15]. However, we

found the resulting schemes not to be transferable to industrial customers of the kind

we consider. In contrast to our approach, Zehir et al. [Zeh+17] focus on getting small

customers to participate in demand response, where the machines they can change

are more related to that of households and not of manufacturing customers.

There are studies concerned with how much �exibility can be provided by the

consumers (for example by D’hulst et al. [Dhu+15]), even on a device level (see

e.g. Truong et al. [Tru+16]), and how much this �exibility is worth — for example

by Pudjianto and Strbac [PS17], Feuerriegel and Neumann [FN16] or Ambrosius et

al. [Amb+18]. However, we are not aware of anyone investigating what amount of

demand side �exibility is necessary to improve the energy consumption signi�cantly,

especially not for industrial customers. Furthermore, many papers schedule �exible

demands (for an extensive overview see Chapter 3) without looking into how many of

those demands need to be changed by the scheduler to improve the energy pattern.

Peak minimization is one of the primary goals for many applications. For exam-

ple, Liu et al. [Liu+13] and Zhao et al. [ZLC17] schedule loads to avoid speci�c peak

demands, the �rst for data centers, the latter for electric vehicle charging. In our

formulation, we focus on scheduling non-preemptive but deferrable loads, as do for

example O’Brien and Rajagopal [OR15].

To �nd the patterns in the industrial load time series, we use a motif discovery

technique. There exist other algorithmic techniques to �nd starting processes and

monitor appliances, most prominently non-intrusive load monitoring, pioneered by

Hart [Har92], advanced further for example by e. g. Ardakanian et al. [Ard+17] or

Rollins and Banerjee [RB14]. However, these methods are not applicable in our case,

39

Chapter 4 Exploring the Benefits of Flexibilization in Industrial Contexts

mainly due to the lack of labels in our data and thus the need to work without

supervision.

Our approach also touches the �eld of project scheduling. Research in this area is

vast, many variations of problem settings have been explored. For an extensive survey,

see Węglarz [Węg99].

4.3 The Framework

In this section, we describe all steps of our proposed framework in the order in which

we apply them. We start by describing the input data that we use for evaluation in

Section 4.3.1. We then present a motif discovery algorithm which we use to detect the

individual industrial processes from the usage data in Section 4.3.2. Not strictly part

of our framework, but necessary for our evaluation is the generation of synthetic test

data. We do this so that we can evaluate our approach on more than one data set. We

explain the generation of synthetic data in Section 4.3.3. On the discovered processes

(resp. our synthetic data), we run a model-based scheduling algorithm, which we

present in Section 4.3.4.

For the sake of clarity, we introduce some terminology �rst. The initial data is a

set of electrical consumption time series from machines, one time series per machine.

We assume that a machine can either be running a process or be idle. The part of a

machine’s time series where a process is running is denoted a (time series) sequence. If

several such sequences are similar, we assume they describe the same process. In this

case, we say they are occurrences of the same motif (we explain this in more detail in

Section 4.3.2). The mean motifs are then used to generate synthetic test data, which

are sets of instances, each consisting of jobs.

4.3.1 Data

Our input data is the HIPE data set published recently by Bischof et al. [Bis+18],

which is gathered at a small-scale electronics factory operated by the Institute for

Data Processing and Electronics
1

at KIT. It is a set of time series of the apparent power

in kVA of nine machines, which range from soldering furnaces to pick-and-place

machines. The data was gathered over almost a year, from December 2016 to October

2017, with sub-minute resolution. See Section A.1 on how to get access to the raw

data as well as the instances we create from the data set, as well as a more in-depth

description of the raw data.

Some of the machines are frequently running in standby mode. Consequently, their

power is above zero even while no process is running. To ease the analysis later

and only consider the running processes without the standby times, we distinguish

1
https://www.ipe.kit.edu/english/index.php

40

The Framework Section 4.3

between an active state and a passive state of those machines. The active state means

the machine is running a process, while the passive state means the machine is either

o� or in a standby mode. We determine the two states for each machine with the help

of a k-means clustering algorithm, with which we cluster the power demands of each

machine individually. Setting k = 2 leaves us with a cluster for each state. As we are

only interested in the active state of the machine, we set the power demand to zero

for all points in the passive cluster.

The points in time where a series goes from zero to non-zero power demand are

the start points of a sequence. The sequence ends when the power demand goes back

to zero, at its end point. To be able to compare sequences in a meaningful way later,

we normalize the lengths of all sequences on a per-machine basis. For each machine,

we determine the 80% quantile of the lengths of its sequences. We scale all sequences

of this machine to this length for our motif discovery. We chose 80% because, on the

one hand, stretching sequences comes with less data loss than compressing. On the

other hand, taking the longest sequence would increase the impact of outliers.

4.3.2 Motif Discovery

The process with which we generate the instances that we test our approach on in

Section 4.3.3 assumes as input a set of discovered patterns in the power demand time

series described in Section 4.3.1. Such a frequently reoccurring pattern is also named a

motif. The sequences that are associated with a certain motif are called the occurrences motif
occurrence

of the motif.

We do not go into detail here on how the motif discovery employed by us works.

We use the approach suggested by Ludwig et al. [Lud+17] and refer the reader to that

paper for a detailed description.

Figure 4.1 shows a discovered motif with all its occurrences in gray lines. The

colored lines represent the mean, 20% quantile and 80% quantile of all the occurrences.

These lines can give a feeling for how a process might look like for this machine. We

show all discovered motifs in Section A.3.

4.3.3 Generation of Synthetic Instances

To evaluate the feasibility and usefulness of our proposed approach, we need many

instances of the FPSP problem which emulate real-world processes. Therefore, we

generate arti�cial instances for the FPSP problem from the motifs discovered as de-

scribed in Section 4.3.2. In our generated instances, the start times, job durations and

power requirements are statistically derived from the discovered motifs. These charac-

teristics are key factors with regards to peak power demands during a schedule. Since

we preserve these characteristics of the discovered motifs, we expect our generated

instances to adequately resemble reality.

41

Chapter 4 Exploring the Benefits of Flexibilization in Industrial Contexts

Figure 4.1: The discovered motif A. Each gray curve shows one occurrence, with the length

of all occurrences being normalized to 1. Their shared common features, roughly represented

by the mean and upper and lower quantiles, constitutes the motif.

To this end, we describe every motif by three normal distributions: One energy

distribution, one start time distribution, and one duration distribution. Each of these

distributions is determined by �tting a normal distribution to the lengths, start times

and energy consumptions of the respective motif’s occurrences. The start time distri-

bution is actually a mixture of normal distributions: We assume that the same process

might have several times within a day at which it usually starts. To factor this in, we

cluster the start times of every motif’s occurrences (using a�nity propagation) and

generate a normal distribution for every cluster. We then create a mixture distribution

for that motif’s start times, weighting each normal distribution by the size of its cluster.

However, for most motifs, only a single cluster was found.

We generate instances (i. e., sets of jobs) with a �xed number of jobs by repeatedly

randomly selecting a motif (weighted by the number of the motif’s occurrences)

and then generating a job for this motif. For each job, we generate a duration by

randomly drawing from the respective motif’s length distribution. We discard any

length of less than one time step. Similarly, we determine a start time for this job

by randomly drawing from the respective motif’s start time distribution. Finally, we

randomly generate an energy consumption for the job by drawing from the motif’s

energy distribution. The job’s power demand is set as energy consumption divided by

duration.

Since drawing values from normal distributions may yield extreme results in few

cases, which nonetheless are su�cient to substantially skew the complexity and results

42

The Framework Section 4.3

of the scheduling problem, we discard any values that deviate from the mean by more

than three times the standard deviation.

4.3.4 Scheduling

We now describe a mixed integer program (MIP) that models and optimizes the FPSP

problem. We base our MIP on the modeling technique from Chapter 3, which is

intended for classic smart grid scheduling problems, i. e., assumes jobs given with

�xed �exibility, expressed in terms of earliest starts, deadlines, etc. The approach is

able to model many real-world processes’ features encountered in literature, such as

ramping, energy drain or interdependent jobs. We only give a very rough overview

over the most important parts of the technique, and then describe how to extend it to

cope with the FPSP problem.

The MIP technique in Chapter 3 is based on a discrete-time formulation for the

Resource-Constrained Project Scheduling Problem. At the core of the model, a

binary variable is created for every job and every time step at which this job could

start. For every job, exactly one of its start indicator variables must be one, �xing the

start time of the respective job. The start time variable of a job i is σi , and its �nishing

time is ηi . Variables for the power usage at every time step can be built using the start

indicator variables.

The foundation for our modi�cation of this technique are window extensions. These window
extensionare a way of expressing the current start times ci and the �exibilization limits from

FPSP in terms of a “classic” project scheduling problem, which works with release

times and deadlines instead.

Instead of every job having a desired start time ci , we assume every job i to have a

release time ri (i. e., an earliest start time) and a deadline di (i. e., a time when the job

must be �nished).

We transform an FPSP problem by �rst setting ri = ci and di = ci + pi for all jobs

i . This way, we get a problem that we can immediately plug into the MIP technique

from Chapter 3, but in which every job i is forced to be started at its current start

time ci , because we have made its window (the time between release and deadline) window
small enough. In a second step, we now extend the MIP to allow for some jobs to be

executed outside their window, i. e., to extend their window. This window extension is

tailored such that it honors T̂ and Ĵ of the FPSP instance.

In the MIP framework, the jobs’ windows are enforced with the simple constraints
2

σi ≥ ri ∀i
ηi≤ di ∀i .

2
Note that in Chapter 3, deadline and release are denoted as Di and Ri instead of di and ri .

43

Chapter 4 Exploring the Benefits of Flexibilization in Industrial Contexts

We introduce two new variables per job i , namely
←−xi and

−→xi , the left window extension

and right window extension of job i , respectively. We then change the aforementioned

constraints to

σi ≥ ri −
←−xi ∀i (4.1)

ηi ≤ di +
−→xi ∀i . (4.2)

The additional constraints to uphold T̂ are simple

←−xi ≥ 0 ∧
−→xi ≥ 0 ∀i, (4.3)

n∑
i=1

(
←−xi +
−→xi

)
≤ T̂ . (4.4)

To also uphold the job move limit Ĵ , we need to introduce a binary variable indicating

that a job was not moved. We will call this variable c̃i . We force c̃i to become zero if

job i was moved with this constraint

c̃i ∈ {0, 1} ∀i, (4.5)

c̃i ≤ 1 −

←−xi +
−→xi

T̂
∀i . (4.6)

With this, it is easy to limit the number of moved jobs

n∑
i=1

c̃i ≥ n − Ĵ . (4.7)

Note that with constraint 4.6, we get T̂ as a coe�cient in the constraint matrix,

potentially giving us constraint coe�cients of greatly varying magnitude. This can

cause problems for the numeric stability of the resulting MIP model, as we further

discuss in Section 4.4.4.

Modeling further Constraints

Real-world scenarios most likely require more constraints to be placed on jobs than

what we model in this chapter. However, since the MIP framework from Chapter 3

is very �exible, many additional constraints are easy to include. As an example, the

MIP framework handles dependencies between jobs (in the form of time lags), energy

drain for postponed jobs, and hard release times and deadlines.

44

Evaluation Section 4.4

Modeling individual Move Costs

In realistic scenarios, moving some jobs in time might be way more e�ort than moving

other jobs. The model can account for this with a slight modi�cation: We introduce a

weighting factor wi ∈ R for every job i . We then modify Constraint 4.4 to:

n∑
i=1

wi

(
←−xi +
−→xi

)
≤ T̂ (4.8)

This way, moving some jobs counts stronger towards the T̂ limit than others.

Modeling Fluctuating Power Demands

As noted in Section 4.3.3, all jobs are assumed to have constant power demand. How-

ever, the MIP used technique can approximate jobs with non-constant power demand.

This approximation is accomplished by using the feature of time lags mentioned

above, i.e., constraints on the order in which jobs are scheduled. We defer a detailed

description of this technique to Section 4.5.

4.4 Evaluation

Having introduced our framework and the data with which we work, we now evaluate

our approach. We start with describing the motifs we �nd, and the instance sets

generated, before assessing each of our problem sets individually.

4.4.1 Discovered Motifs

Given the nine machines, we �nd a total of 15 motifs in our time series data. The

resulting motifs for each machine can be found in Figure A.8 in the appendix. We have

also included an overview over our parameters used in Table A.1 in the appendix. As

we can see there, most of the motifs are block-shaped. This fact gives us reason to

believe that many processes can be adequately approximated by our assumption of

constant power demand. For an in-depth discussion of this assumption see Section 4.6.

The parameters for the motif discovery algorithm in this chapter are tailored to our

speci�c problem at hand. For example, we use a relatively small alphabet size for

most machines as their variations are small. We also choose all parameters in such a

way that the algorithm can classify most sequences without assigning all of them to a

single motif. All sequences which are not classi�ed as belonging to one of the motifs

are classi�ed as noise and excluded from further analysis. In future work, we might

want to do an extensive evaluation of our parameter choices. However, we expect the

settings we have chosen to be su�ciently useful for our problems at hand.

45

Chapter 4 Exploring the Benefits of Flexibilization in Industrial Contexts

Table 4.1: Statistics of T̂ values for all possible values of Θ.

T̂ (hours)

Θ Mean Std. Dev.

0.005 3.6 0.20

0.01 7.2 0.39

0.02 14.3 0.77

0.03 21.5 1.16

0.04 28.7 1.54

4.4.2 Instance Sets

We generate several sets of instances from the data as described in sections 4.3.1

through 4.3.3, resembling the input data from Section 4.3.1 to varying degrees. We pub-

lish all the instance sets together with a description of the data format, see Section A.1

for how to obtain them.

Set PS-Nonuniform. This set is the �rst set of instances with which we evaluate

FPSP-PS. We proceed like described in Section 4.3.3: Job lengths, job power demands

and job start times are generated from the normal distributions �tted to the discovered

motifs. Since in realistic scenarios, the optimization horizon likely is more than one

day, we generate instances that span �ve days. The start times of our discovered motifs

are times within a day. Thus, for every job, we not only pick a start time from the

motif’s start time distribution but also pick uniformly at random at which of the �ve

days the job starts. One time step corresponds to �ve minutes. We generate instances

with 150 jobs each.

Regarding the possible choices for T̂ , the amount of total job movement allowed,

it seems reasonable to specify T̂ relative to the instance size. We therefore introduce

Θ and set T̂ = Θ ·
∑

i pi . Here, Θ speci�es the fraction of cumulative duration that

jobs may be moved. We test all of Θ ∈ {0.005, 0.01, 0.02, 0.03, 0.04}. Table 4.1 shows

statistics about the values that result for T̂ for the various values for Θ. We see that

the values for T̂ range from about 3.5 hours to about 30 hours.

For Ĵ , the number of jobs allowed to be moved, we investigate all of Ĵ ∈ {3, 6, 9},
for a total of 15 di�erent �exibilization limits. We generate 30 sets of 150 jobs each,

and pair them with every �exibilization limit from above, leading to a total of 450

instances.

Set PS-Uniform. As we see in our evaluation (see Section 4.4.4), the heterogeneity

in power demand between the generated jobs (arising from heterogeneous power

46

Evaluation Section 4.4

demand in the discovered motifs) has a signi�cant in�uence on the computational

feasibility and the possible optimization bene�ts of the instances. We do not wish to

bias our conclusions on the basis of this phenomenon, which may not occur in other

workloads. Hence, we generate the PS-Uniform instance set in which we use a single,

�xed normal distribution for all jobs’ power demands (with mean 30 and standard

deviation 10). Aside from this, we proceed as for the PS-Nonuniform set.

Set PSG. In the PSG set, we again explore peak shaving, but with �uctuating gener-

ation. This set corresponds to a setting where e. g. solar generation is available and

one tries to minimize the peak residual load, which corresponds to FPSP-PSG.

We use a solar generation curve for one day derived from total solar generation data

for Germany, Austria, and Luxembourg with quarter-hourly time resolution, which

was retrieved from ENTSO-E.
3

For every quarter hour, we average the production

from all summer days in the year 2016. In our instances, we set available generation

(i. e., Gt) on all �ve days based on this curve, scaling the curve such that in total, 20%

of the total energy demand in each instance is provided via solar energy. Aside from

that, we generate instances as described for the PS-Nonuniform set.

Set OM. With the OM set, we evaluate an overshoot minimization objective, i. e.,

the FPSP-OM problem.

For the available generation, we assume that we can meet 65% of the total energy

requirement in each instance by own generation. This number results from our

calculations of the energy consumption and production in the summer month of BASF

based on Hagenmeyer et al. [HLH14]. Thus, we assume this to be a realistic �gure

for a large-scale chemical plant. As BASF’s power plants are steam-controlled, the

generation in the winter months is so high that they can sell excess energy. However,

during the summer months, the opposite is true, and they have to buy energy from

the grid, which is more expensive. We assume the generation to be a �at curve in

our calculations. For a steam-controlled power plant and a time horizon of �ve days,

this is a realistic assumption since steam demand usually �uctuates relatively little.

Formally, we set

Gt =

∑
i (pi · ui) · 0.65

5 · 24 · 60/5
∀t .

In this calculation, the denominator comes from the number of �ve-minute intervals

in the �ve-day scheduling horizon. For this instance set, we use the objective from

FPSP-OM, but proceed as for the PS-Nonuniform set otherwise.

3
Via Open Power Systems Data:

https://data.open-power-system-data.org/time_series/

47

https://data.open-power-system-data.org/time_series/

Chapter 4 Exploring the Benefits of Flexibilization in Industrial Contexts

Figure 4.2: Relative reduction in peak demand for the PS-Nonuniform set, one point per

instance. The columns are the di�erent settings for Ĵ and Θ. The Y-axis indicates the change in

peak demand after optimization. Color indicates the remaining MIP gap when the optimization

was stopped. Results are summarized in Table A.5.

4.4.3 Evaluation Environment

For all instances, we build the MIP models according to Section 4.3.4. We optimize

every model using Gurobi 7.0. We also evaluated optimizing using CPLEX 12.8, but

we achieve slightly better results using Gurobi for our models. We use a system with

dual AMD EPYC 7601 CPUs (each having 64 physical CPU cores) with 512 GB of RAM.

We optimize every model for 45 minutes, allowing for 20 threads per solver, running 6

solvers in parallel.

MIP Gap. In the following, we report the MIP gaps after optimization together withMIP gap
the solution quality. The MIP gap is the relative di�erence between the best feasible

solution found and the best lower bound that the solver was able to prove, normalized

by the best feasible solution. A large MIP gap is an indicator that further optimization

could potentially �nd better solutions. Please note that we optimize with a focus on

�nding high-quality solutions.
4

Thus, we could have further reduced MIP gaps at the

cost of solution quality. We performed parameter tuning via Gurobi’s auto-tuning tool.

However, the default settings produced the best results for us.

48

Evaluation Section 4.4

4.4.4 Evaluation of FPSP-PS and FPSP-PSG

We start by looking at the sets that represent peak shaving objectives. Figure 4.2

summarizes our results for the PS-Nonuniform set. Every dot represents one instance.

Every column of dots represents one combination of Ĵ and Θ. The y-coordinate of

the dot indicates the respective instance’s peak demand after optimization divided

by the peak demand before optimization, which we de�ne as relative peak demand. relative peak
demandWe use the dots’ colors to indicate the MIP gap achieved for the respective instance,

where darker colors indicate larger MIP gaps, i. e., worse optimization, and the lightest

color indicates that the instance was solved to optimality. Table A.5 in the appendix

reports numerical results. In Figure 4.2 we see that in the most extreme cases, peak

demand is reduced by more than 60%. We also see that the improvement is mostly

distributed evenly between 0% and about 40%, and that increasing Ĵ or Θ does not

result in signi�cant improvements. Figures A.4b and A.4a (in the appendix) give an

insight into how the peak demand for every instance changed when increasing Θ or Ĵ ,
respectively. We �nd that increasing Θ yields larger peak reductions than increasing Ĵ ,
and that improvements gradually diminish with larger values for Θ (resp. Ĵ). However,

the optimization gets harder with increasing Θ. Since the reported MIP gaps after

optimization were large for many instances for Θ ∈ {0.03, 0.04}, results may improve

for those parameters if one optimizes the instances further. Figure A.1 (in the appendix)

shows the MIP gaps of every instance.

We perform a statistical signi�cance test (Wilcoxon’s signed-rank test
5
) on our

�ndings. For every consecutive pair of Ĵ (resp. Θ) values, while keeping the Θ (resp. Ĵ)
value �xed, we compute the p-value, which indicates how likely it is that the change

in improvements is random happenstance instead of an e�ect of altering Ĵ (resp. Θ).

We report all values in Table 4.2.

We want to assume signi�cance with 95% con�dence, i. e., say that a change is

signi�cant if the p-value is below 0.05. However, throughout the whole of this chapter,

we perform a total of 88 such tests. With an error probability of 5%, we thus expect

erroneously reporting signi�cance for four tests. To compensate for this, one can

apply a Bonferroni correction, which essentially means assuming signi�cance only

when the p-value is below 0.05/88 ≈ 0.00057.

We see that changing Θ from 0.02 to 0.03 and 0.04 does probably not result in

signi�cant improvements for the PS-Nonuniform set. This lack of improvement might

be because the optimization problem becomes too hard, but could also be because we

already achieve optimal results for many instances with Θ = 0.02 (see below). Aside

from that, the only non-signi�cant change is changing Ĵ from 6 to 9 at Θ = 0.005 and

4
We set the MIPFocus parameter to 1 for Gurobi.

5
Because we have many ties in our data, the way such ties are handled is important in our case. We

use the approach suggested by Pratt [Pra59].

49

Chapter 4 Exploring the Benefits of Flexibilization in Industrial Contexts

Figure 4.3: Change of the di�erence between the peak demand and the demand of the tallest

job after optimization in the PS-Nonuniform set. The y value is determined by taking the

di�erence between peak demand and demand of the tallest job after optimization, and dividing

it by the same value before optimization.

Θ = 0.04, which is like because the little possible movement in time can already be

optimally distributed over six jobs, resp. because the instances got too hard.

The very uniform distribution of improvements between 0% and 40% poses the

question for validity, hence we looked into characteristics of the instances that allow

for an unusually large or small improvement. We discovered that instances which

allow for almost no improvement always contain jobs with very high power demands

compared to all other jobs’ power demands, i. e., substantial heterogeneity in power

demands. This makes sense, since the job with the largest power demand (which we

call the tallest job) is a lower bound for the overall peak power demand. The margintallest job
for optimization is at most the di�erence between the overall peak power demand and

the demand of the tallest job.

We therefore also evaluate how well our optimization performs within this margin,

i. e., how the di�erence between peak demand and demand of the tallest job changes,

which we de�ne as the improvement against the tallest job. Figure 4.3 shows the results.

A value of 0 indicates that after optimization, the overall peak power demand equals

the demand of the tallest job. Figure 4.3 shows that for the majority of instances, we

are in fact able to achieve this optimum. For all other instances, we improve by at least

20% within the margin between tallest job and original peak demand.

Since the peak demand being dominated by single jobs seems like a peculiar property

of our instances, we create the PS-Uniform set, where we compensate for this charac-

teristic. Regarding the results for the PS-Uniform set, shown in Figure 4.5 (numerical

50

Evaluation Section 4.4

Figure 4.4: Change of the di�erence between the peak demand and the demand of the tallest

job after optimization in the PS-Uniform set. They value is determined by taking the di�erence

between peak demand and demand of the tallest job after optimization, and dividing it by the

same value before optimization.

Table 4.2: p-Values for the change of one parameter in the PS-Nonuniform set. Values high-

lighted in green indicate that changing one of Ĵ and Θ, while keeping the other one constant,

results in a statistically signi�cant change in improvements. Values in blue are signi�cant only

before Bonferroni correction.

3 → 6 → 9

0.005 < 10
−4

0.00089

↓ < 10
−4 < 10

−5 < 10
−5

0.01 < 10
−4

0.00051

↓ < 10
−4 < 10

−4 < 10
−5

0.02 < 10
−4

0.00039

↓ 0.0018 0.014 0.0032

0.03 0.00029 0.00014

↓ 0.012 0.047 0.035

0.04 < 10
−4

0.0018

51

Chapter 4 Exploring the Benefits of Flexibilization in Industrial Contexts

Figure 4.5: Relative reduction in peak demand for the PS-Uniform set, one point per instance.

Columns are the di�erent settings for Ĵ and Θ. The Y axis indicates the change in peak demand

after optimization. Color indicates how well the instance could be optimized. Results are

summarized in Table A.6.

results in Table A.6 in the appendix), we see that even with power demands being

drawn from a single distribution, peak demand reductions of 5% to 30% are realistic.

We also see that solving these instances is a lot harder than the instances from the

PS-Nonuniform set. We report the MIP gaps in Figure 4.6. Here, an interesting trend

can be seen: While almost all instances for Θ ≤ 0.02 could be optimized to within

20% gap, often to optimality, the MIP gaps for Θ ≥ 0.03 are mostly above 60%. Thus,

it seems like the computational complexity grows rapidly with T̂ — this is certainly

because of the larger solution space, but might also be exacerbated by the numerical

stability issues with constraint (4.6) mentioned in Section 4.3.4.

The results for the PS-Uniform set are more tightly clustered, which makes sense

since the instances are more similar to each other. For this set, we also evaluate how

well we optimize within the margin between overall peak power demand and demand

of the tallest job, which we report in Figure 4.4. Since in PS-Uniform, the peak power

demand is not dominated by single jobs anymore, this now correlates closely with

the absolute improvement. We again perform signi�cance analysis as for the PS-

Nonuniform set, the results of which we report in Table A.2 (in the appendix). We can

see that some of the changes that were not signi�cant for PS-Nonuniform, especially

increasing Θ, have now become signi�cant. This change supports the assumption

that the non-signi�cance for the PS-Nonuniform set in these cases is because optimal

values have already been achieved for Θ = 0.02.

52

Evaluation Section 4.4

Figure 4.6: MIP gaps for the various settings of Ĵ and Θ in the PS-Uniform instance set. Every

dot corresponds to one instance. Colors are used to distinguish the columns.

Figure 4.7: Relative reduction in peak demand for the PSG set, one point per instance. The

columns are the di�erent settings for Ĵ and Θ. The Y axis indicates the change in peak demand

after optimization. Color indicates the remaining MIP gap when the optimization was stopped.

Results are summarized in Table A.7.

53

Chapter 4 Exploring the Benefits of Flexibilization in Industrial Contexts

Figure 4.8: Results for set OM, one point per instance. The columns are the di�erent settings

for Ĵ and Θ. The Y axis indicates the change in overshoot after optimization. Color indicates

how well the instance could be optimized. Results are summarized in Table A.8. For better

readability we removed one outlier at Θ = 0.01, Ĵ = 3 with a value of ca. 0.5.

The �nal instance set about peak shaving is the PSG set, in which we assume

solar generation. We report the improvements in Figure 4.7 and numerical results

as well as the e�ect of changing both parameters in Table A.7 and Figure A.6 (both

in the appendix). We see that the distribution of improvements is similar to the PS-

Nonuniform set. We can assume that tall jobs again have a large impact in this instance

set. However, the absolute values regarding improvement are much better than for

PS-Nonuniform: In most extreme cases, we are able to reduce the residual peaks by

almost 80%. Most improvements are evenly distributed between 5% and 50%. This

seems plausible since in the PSG set, (residual) peak reduction can not only be achieved

by avoiding concurrent execution of jobs, but also by moving jobs towards the peaks

of the solar generation curve.

We report MIP gaps in Figure A.2 in the appendix, which are not worse than for

the PS-Nonuniform set. Signi�cance values are reported in Table A.3. We see that

almost all changes in parameter choice lead to signi�cant improvements. Overall, our

approach seems to be able to exploit the bene�ts of a given generation curve without

increasing the computational complexity.

4.4.5 Evaluation of FPSP-OM

We evaluate the overshoot minimization objective from FPSP-OM with the OM instance

set, the results of which we report in Figure 4.8 and Table A.8 (in the appendix). We

see strong clustering of the results, indicating that with, e. g., Θ = 0.02, one can expect

54

Modeling Fluctuating Demand via Job Chains Section 4.5

the amount of energy to overshoot generation, i. e., the amount of energy that must

be bought from the grid, to decrease between 6% and 12%. For FPSP-OM, apparently T̂
plays a crucial role, while Ĵ yields only minor improvements. These observations can

be seen from �gures A.7a and A.7b. Computational complexity increases slightly with

decreasing Ĵ . However, the reported MIP gaps (see Figure A.3 in the appendix) are

drastically smaller than for our peak shaving sets. We solve all instances to at most

4% MIP gap, and in fact, solve most of them to optimality. We again do a signi�cance

analysis, reported in Table A.4. Here, we see that almost all parameter changes result

in signi�cant improvements.

4.5 Modeling Fluctuating Demand via Job Chains

In this section, we give some details on how the MIP model presented in Section 4.3.4

can be extended to better approximate real-world processes. The MIP modeling

technique from Chapter 3, which we build upon in this chapter, allows to specify what

is called minimum time lags between two jobs i and j . This time lag Li, j determines the

number of time steps that must pass between the start of i and the start of j . Together

with the start time variable σi for every job i , this results in constraints of the form

σj ≥ σi +Ti, j ∀ i, j .

An interesting aspect is that the Ti, j may be negative. Using this, we can form �xed

chains of jobs. Say we have three jobs 1, 2 and 3, which all have processing time (pi)
of 1. If we set T1,2 = 1, T2,3 = 1 and T3,1 = −2, it must hold that

σ2 ≥ σ1 + 1,

σ3 ≥ σ2 + 1,

σ1 ≥ σ3 − 2.

Which results in

σ2 = σ1 + 1,

σ3 = σ2 + 1.

We can now assign di�erent power demands to each of the three jobs. Such a

situation is sketched in Figure 4.9, where the three rectangles represent the three jobs:

The width of each rectangle is the job’s duration and the height of the rectangle is the

job’s power demand. We see that the blue curve, which might represent the power

55

Chapter 4 Exploring the Benefits of Flexibilization in Industrial Contexts

1 2 3

P
ow

er

Time

Figure 4.9: A �xed chain of three jobs 1, 2 and 3, which are used to approximate a job that

has the blue demand curve.

demand curve of some industrial process, can be approximated more closely by this

chain of jobs than if we only used one job.

When using this approach, one must pay attention to correctly encode the T̂ / Ĵ
limits in the instance. In Section 4.3.4, we �x every job at its start time (by setting

release and deadline correctly). When using job chains, only one of the jobs of each

chain must be �xed like this. Otherwise, moving a chain of k jobs by t time steps

would count as k jobs regarding Ĵ and would contribute k · t units to T̂ . However,

�xing only one job’s window also �xes all other jobs in the chain.

It is important to note that this approach usually leads to a signi�cant increase in

the computational complexity of the resulting model. Tweaking the model such that

this technique becomes feasible for large instances is beyond the scope of this chapter.

4.6 Motif Analysis

We now analyze the discovered motifs further, especially with regard to the question

whether jobs with constant power demand are a reasonable approximation of the

motifs, and if not, how much better the approximation becomes when we allow to

split the jobs into multiple blocks as outlined in Section 4.5. Note that all discovered

motifs are presented in Figure A.8 in the appendix.

The occurrences of motifs correspond to stepwise functions: Every point in the

occurrence’s power demand time series results in one step in its power demand function.

Let o be an occurrence. We then call the (stepwise) function mapping a point in time to

the power demand of the occurrence at that time Po : [0, 1] → R (note that occurrences

are normalized, thus a point in time is in [0, 1]). The main question is how well we can

approximate these functions with other stepwise functions of low complexity, i. e., with

few steps. Note that a job with a constant power demand corresponds to a stepwise

function with exactly one step, a chain of two jobs corresponds to a stepwise function

with up to two steps, and so on. Let P̃o,k : [0, 1] → R be such a function with at most

k steps, which tries to approximate Po .

56

Motif Analysis Section 4.6

Figure 4.10: The di�erence between all occurrences’ Po an and their respective optimal P̃o,1

We need some notion of the di�erence between Po and P̃o,k . We suggest the following

metric:

∆
(
Po , P̃o,k

)
=

1

No

∫
1

0

(
Po(t) − P̃o,k (t)

)
2

dt .

Here, No is a normalization factor to make di�erent motifs comparable, calculated

as No =
∫

1

0
Po(t)

2

dt . We can compute the value of the integral without actually

integrating, since both functions are discrete in t . This metric penalizes deviations of

P̃o,k from Po with a quadratic term. We assume a deviation that is large in magnitude

but short in time to be worse than a deviation which is small in magnitude but long in

time, because deviations of large magnitude might hide exactly the peaks in power

demand that we are interested in reducing.

To analyze how block-shaped our motifs really are, we explore di�erent values for

k , i.e., the number of blocks to decompose the occurrences into. For each k and each

occurrence, we �t
6

a stepwise function P̃o,k to the Po of the respective occurrence o.

Our �rst attempt is k = 1, i. e., a step function with exactly one step, representing

jobs with constant power demand. We see the value of ∆(Po , P̃o,1) in Figure 4.10. The

x axis groups the occurrences by their motif. We sort motifs by how well they are

approximable for k = 1.

We cannot say what values for ∆(Po , P̃o,k) are good or bad: The question of what is

an acceptable approximation must be answered by the person using our framework.

However, we can clearly see that nine of our �fteen discovered motifs are a lot better

approximated by a job with constant power demand than the remaining six. This

seems intuitively correct when looking at the motifs in Figure A.8.

6
Using a black-box SLSQP optimizer.

57

Chapter 4 Exploring the Benefits of Flexibilization in Industrial Contexts

We can also see how ∆(Po , P̃o,k) changes when we go from k = 1 to k = 2, which is

shown in Figure 4.11a. We see that the change is substantial for the six motifs that

were not well approximated before. Especially motifs L, N and O seem to pro�t from a

two-step function. When looking at these motifs in �gures A.8l, A.8n and A.8o, that

seems plausible.

We see a similar e�ect when going to k = 5 (see Figure 4.11b) and k = 10 (see

Figure 4.11c): The ∆(Po , P̃o,k) values shrink gradually for the six motifs which are not

very block-shaped, although the improvement is less than for going from k = 1 to

k = 2.

We can thus conclude that the technique proposed in Section 4.5 has bene�ts: Being

able to approximate the motifs with stepwise functions of more than one step most

likely brings the results of the optimization closer to reality. Especially allowing for two

jobs instead of one might be a worthwhile option. However, we can also conclude that

a constant function is already a good approximation for the majority of the discovered

motifs, and is not completely outlandish for the rest of the motifs either.

4.7 Discussion

For all examined variations of the FPSP problems, we can show that with a relatively

small amount of �exibility, signi�cant improvements in the target metric can be

achieved. Since all our test data is founded on real energy consumption data obtained

from a factory, we assume our results to apply to real-world scenarios. However,

real industrial processes come with more constraints than we were able to respect

within the scope of the present chapter. Since our optimization is based on an MIP

framework (which supports additional constraints such as process dependencies etc.),

many additional constraints should be straightforward to model.

We discovered that the possible improvements depend a lot on the heterogeneity

of the process’ power demands. However, even for the heterogeneous instance sets

derived from our real-world data, possible improvements were promising.

For the problem variants that assume available generation (FPSP-PSG and FPSP-OM),

we need to choose the amount of generation. While we could obtain a solar generation

curve from real-world data, we need to �x the total amount of energy available via

generation somewhat arbitrarily. However, we have no reason to believe that our

approach works signi�cantly better or worse if we choose this amount di�erently. We

were able to show that our approach is in fact suitable to reduce the peak residual

demand as well as the amount of energy that must be bought from the grid.

Another discrepancy between our test instances and real-world processes is the

fact that we assume the power demand of each process to be constant over time.

However, we have argued in sections 4.4.1 and 4.6 why this is probably a reasonably

close approximation of the motifs we discovered, which is why we believe that we can

58

Discussion Section 4.7

(a) k = 2

(b) k = 5

(c) k = 10

Figure 4.11: The di�erence between all occurrences’ Po and and their respective optimal P̃o,k

59

Chapter 4 Exploring the Benefits of Flexibilization in Industrial Contexts

even use constant-demand jobs as an approximation for many real industrial processes.

Furthermore, we have shown in Section 4.5 how to get around this limitation.

4.7.1 Optimization Aspects

Regarding the computational complexity of optimizing the MIPs of our approach, we

can see that the most important parameter (besides the instance size) is T̂ . This is

likely because for a large T̂ , the MIP formulation needs to create many start-indication

variables (si (t) in the original framework), quickly increasing the size of the underlying

MIP model. Also, the numerical stability of the model probably su�ers from large T̂
values, as noted in Section 4.3.4. We also discover that substantial heterogeneity of

power demands, while decreasing possible peak improvements, is bene�cial for the

complexity of the optimization problem.

Given all that, most of the time we can optimize instances of realistic sizes, spanning

a whole working week with �ve-minute resolution, within 45 minutes to acceptable

MIP gaps. We therefore think that our approach can not just be bene�cial in reality,

but can also be applied to realistically sized problems.

4.8 Conclusion & Outlook

We have shown a technique that can be used to guide �exibilization e�orts in industrial

processes. Our technique starts with consumption data obtained from the current

operation of an industrial plant, and it ends with an indication which processes would

be most bene�cial if they were more �exible. We have shown that our technique can

lead to signi�cant improvements and should be applicable in real-world industrial

processes.

We started this work promising to provide a tool that can suggest how much

�exibility should be created in a plant’s processes to achieve a certain level of power

demand optimization. Our results indicate that there is most likely no need to �exibilize

all processes. Starting with only a few small changes in the operation of the machines

can already improve the energy consumption. This comparatively little necessary

e�ort gives us hope that more �exibility in industrial processes is achievable and not a

daunting prospect for any process manager. On the other hand, future work is needed

to verify that our motif discovery technique really detects realistic workloads. For

that, cooperation with domain experts is necessary.

In the future, we can think of several extensions of our approach. While we currently

require �xed limits to be set for the amount of new �exibility to create (in terms of T̂
and Ĵ), it would be straightforward to allow for a weighting between improvement

in peak demand (or overshoot) and the required new �exibility by making T̂ and

Ĵ variables and including them in the objective function. However, this requires a

reasonable estimate of the (�nancial) costs of adding �exibility to processes compared

60

Conclusion & Outlook Section 4.8

to the costs associated with peak demand or overshoot. Also, it would be easy to price

the �exibilization on a per-job basis in the objective, to account for some processes to

be more costly to make �exible than others.

From an algorithmic perspective, one should look into �nding e�cient heuristics

for optimizing problems of the FPSP family, to enable the application of our approach

to large-scale industrial processes. Also, incorporating uncertainties into the model

should be a future step that would be bene�cial for practical relevance.

61

5 An Order-Based Model for the
Resource Acquirement Cost Problem

In this chapter, we present a novel modeling technique for project scheduling problems

arising in the context of smart grids. The modeling technique takes on the same

problem as the technique presented in Chapter 3. In this chapter, we set a strong focus

on the optimization performance of the resulting models. We perform an extensive

experimental evaluation to con�rm that the new modeling technique does in fact lead

to a performance gain.

5.1 Introduction

In chapters 3 and 4, we presented two mixed-integer linear programs that optimize

schedules of time-�exible electrical loads — in a classical Time-Constrained Project

Scheduling Problem (TCPSP) setting in Chapter 3, and in a setting with a global

constraint on �exibility in Chapter 4.

Both modeling techniques have in common that they are based on a discrete-time

mixed integer linear program, based on the original idea by Pritsker et al. [PWW69].

Time is discretized into a number of time steps, and variables are introduced for each of

these time steps. These variables indicate whether each job starts at a certain time step.

The binary variables are then used to determine the demand at each time step for each

resource. This approach has two obvious disadvantages: First, modeling continuous

time is impossible. Instead, the user of the models has to decide on a smallest time

scale that the model can represent, i.e., a time resolution. Second, the model’s size

grows with the number of time steps. Thus the user might have to decide on a coarser

than desirable time resolution to still be able to optimize the resulting models within

reasonable run time.

There also are scheduling models that work without time discretization. Artigues

et al. [AMR03] propose what they call a �ow-based formulation for the Resource-

Constrained Project Scheduling Problem, but which should be adaptable to the

TCPSP. The idea of the model is that jobs can, once they �nish, pass on the resources

they used to later jobs. Koné et al. [Kon+11] build two variants of an event-based

model, which use a start and stop event per job. They compare their model to the

�ow-based model and the discrete-time model by Pritsker et al. [PWW69]. They come

to the conclusion that their event-based model is superior to both the �ow-based and

the discrete-time model.

63

Chapter 5 An Order-Based Model for the Resource Acquirement Cost Problem

In general, the problems tackled by these models belong to the area of project

scheduling problems. The �eld of project scheduling research is vast — for a good

overview, we refer the reader to Węglarz [Węg99].

Our Contribution. In this chapter, we present a novel approach. The modeling

technique we present here is applicable to optimize for peak shaving, and allows

for most of the features representable by the model presented in Chapter 3 — see

Section 5.3.2. However, it does require neither variables that are associated with time

steps nor event variables. Instead, the core of the model is build by variables indicating

the relative order of job pairs.

Together with a formal description of our novel approach, we present an in-depth

experimental evaluation of the new model, comparing it against the discrete-time and

event-based approach. Our evaluation demonstrates that our modeling technique is

superior to the event-based technique, and that our technique should be preferred

over the discrete-time approach for instances with a �ne time resolution.

Overview. After de�ning required notation and the problem under study in Sec-

tion 5.2, we present in Section 5.3 the new order-based modeling technique, our main

contribution. In Section 5.4, we introduce an adaption of the event-based model by

Koné et al. [Kon+11] (which is intended for the RCPSP) to the TCPSP. This event-based

model serves (together with the discrete-time model from Chapter 3) as a competitor

model. We provide an experimental evaluation of the three modeling techniques in

Section 5.5.

5.2 Preliminaries

We start by formally stating the problem under examination during this chapter

and introducing some necessary notation. The problem is a form of the Resource

Acqirement Cost Problem (RACP) introduced in Chapter 2, Section 2.1.2. We are

given a problem instance as set of m resources R = {1, 2, . . . ,m} and a set of n jobsresource
job J = {1, 2, . . . ,n}. To weight the resources against each other in the objective function,

we are given a weight vector w ∈ Rm , where wi indicates the weight of resource i .
Each job j is associated with a processing time pj , which speci�es how long the jobprocessing time
must be run without interruption, a release time r j and a deadline dj . Each job has arelease time

deadline resource usage vector uj ∈ R
m

, where uj,i indicates the amount of resource i that job

usage j needs while executing.

Dependencies between jobs are given as a partial function from job pairs to timetime lag
lags between those jobs: L : J × J 7→ N.

The objective is to assign start times S j ∈ R for every j ∈ J such that:

• release times and deadlines are upheld: ∀j : S j ≥ r j ∧ S j + pj ≤ dj ,

64

The Order-Based Model Section 5.3

• time lags are upheld: {i, j} ∈ L⇒ Si + L(i, j) ≤ S j ,

• we achieve peak shaving: Let Ui,t be the amount of resource i that is used at peak shaving
time point t , then maxt

(∑
i ∈R wiUi,t

)
is minimized among all possible choices

for the start times S .

Given such an instance, we de�ne the ply of a job j , denoted as Π(j), as the number of ply
other jobs the windows of which overlap with the window of j, i.e.:

Π(j) = |{a ∈ J : ra < dj ∧ da > r j }|

5.3 The Order-Based Model

In this section, we present our main contribution: a new, order-based modeling

technique for RACP instances. The idea behind the technique starts with the insight

that if all jobs have constant resource demand, the peak demand for each resource

must occur at the start of a job, since resource usage only increases when a job starts.

Thus, we do not as in the discrete-time model have variables capturing resource usage

at every time step, or as in the event-based model variables capturing the usage at

every event, but a set of variables capturing the resource usage at the start of each job.

The order-based model has for each pair of jobs a,b a set of variables that expresses

whether job a is running when job b starts. This way, the resource usage during the

start of b can be easily expressed.

To check whether a runs when b starts, we only need to distinguish three cases:

• a starts after the start of b or

• a starts before (or at the same time as) b, and

– a �nishes before b starts or

– a does not �nish before b starts.

Only in the last case does a run when b starts. The model is based on creating binary

variables that capture the above relationship: The variable Da,b (D for “distinct”)

becomes 1 only if b starts after a is �nished, i.e., if Sa + pa ≤ Sb . The variable Oa,b (O
for “order”) must be 1 if a starts before (or at the same time as) b, i.e., if Sa ≤ Sb . Note

that the indices always indicate the intended order: {O,D}x,y always means “�rst x ,

then y”. Also note that we speci�ed the necessary variable assignments only to one

side — for example, the variable assignment for Oa,b is unspeci�ed if a does not start

before b. However, this does not invalidate the correctness of our model, as we will

see further below.

With these variables, job y is active during the start of x if and only if Oy,x = 1 (i.e.,

it has been started) and Dy,x = 0 (i.e., it has not �nished yet), thus, if Oy,x − Dy,x = 1.

65

Chapter 5 An Order-Based Model for the Resource Acquirement Cost Problem

Note that the reverse, namely Dy,x = 1 and Oy,x = 0 can never happen. Thus, we can

express the amount of a resource ρ ∈ R being used at the start ob job j as:

uj,ρ +
∑
k ∈J

(Ok, j − Dk, j) · uk,ρ

5.3.1 Full Description

After the high-level description of the order-based modeling technique, we now for-

malize the approach. For a S-RACP instance as de�ned in Section 5.2, the variables

are:

∀j ∈ J : S j ∈ R (5.1)

∀a,b ∈ J : Da,b ∈ {0, 1} (5.2)

∀a,b ∈ J : Oa,b ∈ {0, 1} (5.3)

∀j ∈ J ,∀ρ ∈ R : Uρ, j ∈ R (5.4)

Û ∈ R (5.5)

The variables S j hold the start times for all jobs j. As explained above, Da,b encodes

whether job a ends before job b starts, and Oa,b indicates that a starts before (or at the

same time as) b starts. For each resource ρ and each job j, variable Uρ, j captures the

amount of resource ρ that is used in the moment that job j starts. Finally, Û captures

the maximal (weighted) total resource usage. The constraints on these variables are:

∀a,b ∈ J : Da,b −
Sb − (Sa + pa)

M
≤ 1 (5.6)

∀a,b ∈ J : Oa,b −
Sb − Sa

M
> 0 (5.7)

∀j ∈ J ,∀ρ ∈ R : uj,ρ +
∑
k ∈J

(Ok, j − Dk, j) · uk,i ≤ Ui, j (5.8)

∀j ∈ J :

∑
i ∈R

Ui, j ·w j ≤ Û (5.9)

∀j ∈ J : S j ≥ r j (5.10)

∀j ∈ J : S j + pj ≤ dj (5.11)

∀(a,b) ∈ L : Sa + L(a,b) ≤ Sb (5.12)

The objective is to minimize Û .

Constraint (5.6) forces Da,b to become 0 if b does not start after a ends. Note that

(Sb − (Sa + pa))/M must always be in [−1, 1] for an appropriately chosen M , and will

66

The Order-Based Model Section 5.3

be non-negative only if b starts after a ends. This is a requirement for Da,b being 1.

On the other hand, Constraint (5.7) forces Oa,b to become 1 if a starts before (or at

the same time) as b starts. Note that Sa − Sb becomes negative (resp. zero) if a starts

before (resp. at the same time as) b, thus Oa,b must be set to 1 in this case.

Constraint (5.8) uses O and D to compute the usage of a resource i at the start of

job j. Aside from uj,i , we must add the usage of all jobs k that overlap the start of j.
A job k overlaps the start of job j if and only if Ok, j = 1 and Dk, j = 0, i.e., if k starts

before or at the same time as j, but j does not start after k has �nished. Constraint

(5.9) again builds the maximum weighted usage.

Finally, constraints (5.10), (5.11) and (5.12) enforce release times, deadlines and time

lags in a straightforward way.

It might seem strange that we enforce the value of Da,b to be 0 only for the case

that b does not start after a ends — if b does start after a ends, Da,b can be either 1 or

0. Similarly, we have such a “one-sided” constraint for Oa,b . Note however that a job a
only contributes to the demand at start of job b if Oa,b = 1 and Da,b = 0. Thus, this is

the case we need to enforce using constraints. The other case — i.e., that not Oa,b = 1

and Da,b = 0 in case that job a does not execute during the start of job b — will be

preferred by the optimization.

5.3.2 Viable Model Features

In Section 3.3 of Chapter 3, we introduced a list of features that can be modelled by the

MIP framework presented in that chapter. In this section, we give a short overview

over which of those features can still be implemented with our new model. First, a list

of the features mentioned in Chapter 3 is directly modelled in the model presented

in Section 5.3.1: Earliest start times, deadlines and interdependent jobs (i.e., time lags

between jobs) are directly a part of the model. Also, multiple resources can be speci�ed.

As with the discrete-time model, base loads can be modelled by introducing jobs j for

which dj − r j = pj , i.e., which are �xed to one point in time.

If one wishes to model di�erent modes or drain, the technique used in the discrete-

time model is to introduce a variable for the processing time of each job instead of

treating the processing time as a constant (see Section 3.4 of Chapter 3). Note that

in the order-based model, we never multiply any pi with a variable. Thus, making

pi a variable (called Ti in the discrete-time model from Chapter 3) does not impede

the linearity of the model. We can therefore incorporate multi-mode jobs and drain

in the same way as in the discrete-time model. Similarly, ramping is modelled in the

discrete-time model by a series of dummy jobs that are switched on or o� depending on

whether ramping is necessary. This part can be directly taken over into the order-based

model.

67

Chapter 5 An Order-Based Model for the Resource Acquirement Cost Problem

5.3.3 Model Size

The Oa,b and Da,b variables dominate the number of variables with each n2
variables.

The number of constraints is also in O(n2), dominated by the constraints (5.7), (5.6)

and (5.8). In particular, each Oa,d and Da,d appear in exactly one constraint of each

(5.6), (5.7) and (5.8).

While the above model is correct, it introduces many unnecessary variables. We

actually only need Da,b and Oa,b variables for jobs the windows of which do overlap

and between which there is no de�ned minimum time lag. This automatically also

reduces the number of constraints of type (5.8), since they only exists for a,b ∈ J for

which Oa,d and Da,d exist.

After this reduction, the total number of Oa,b (resp. Da,b) variables is

∑
j ∈J Π(j),

which in turn reduces the number of constraints of types (5.6), (5.7) and (5.8) also to∑
j ∈J Π(j) each.

Aside from the number of variables and constraints, the number of nonzero coe�-

cient matrix entries is an important metric. Each {O,D}a,b participates in exactly one

constraint of types (5.6), (5.7) and (5.8), respectively, for a total of O(n · Π) nonzeros.

Similarly, each Sa variable participates in at most 2Π constraints of type (5.7) and (5.6)

each, again for a total of O(n · Π) nonzeros.

So far, we have not yet considered time lags in this analysis. Every de�ned time lag

contributes one more constraint of type (5.12), which adds two nonzero coe�cient

matrix entries.

5.4 Competitor Model: Event-Based Model

In this section, we present an adaption of a known modeling technique that we use to

compare our new approach to. Koné et al. [Kon+11] have shown this technique to be

superior to discrete-time and �ow-based models. The event-based model outlined in

this section is a straightforward adaption of the event-based formulation from Koné

et al. [Kon+11] — intended for the Resource-Constrained Project Scheduling

Problem — to the Resource Acqirement Cost Problem. In its original form for

the RCPSP, bounds are placed on the resource usages. To adapt to the TCPSP, those

usages are now incorporated into the objective function. After that, we only have to

add constraints to enforce hard deadlines on jobs.

The idea behind the event-based model is to consider every job start and every job

end as an event. With n jobs, that yields 2n events. For every job j, we introduce 2n
binary variables sj,k , indicating whether job j starts at event k , and 2n binary variables

ej,k , indicating whether job j ends at event k . We require jobs to end at an event that

is later than their start event, and allow just one job start or job end to be assigned to

each event. The resource usage at each event can then be computed from the resource

68

Competitor Model: Event-Based Model Section 5.4

usage at the previous event plus the usage of the job starting at this event resp. minus

the usage of the job ending at the event.

Finally, we need to express events’ times to enforce deadlines. For every event k ,

we introduce a variable Tk that holds the point in time at which event k happens. To

express events’ times, it is su�cient to, for every job j, force the time between its

start-event and its end-event to be exactly pj , i.e., the jobs duration.

In total, the variables are:

∀j ∈ J ,∀k ∈ {1, . . . 2n} : sj,k ∈ {0, 1} (5.13)

∀j ∈ J ,∀k ∈ {1, . . . 2n} : ej,k ∈ {0, 1} (5.14)

∀k ∈ {1, . . . , 2n} : Tk ∈ R (5.15)

∀k ∈ {1, . . . , 2n},∀ρ ∈ R : Uρ,k ∈ R
+

(5.16)

∀ρ ∈ R : Ũρ ∈ R
+

(5.17)

Û ∈ R (5.18)

Here, the sj,k are the variables associating the start of job j with event k . Conversely,

ej,k assign the ends. The Tk variables denote the time point at which event k happens.

For resource ρ, the variableUρ,k captures the resource usage at event k . The maximum

usage is captured in Ũρ . Finally, the total weighted resource usage is combined in Û .

Set dmax = maxj dj . Then, the constraints are:

∀j ∈ J :

∑
k

sj,k = 1 (5.19)

∀j ∈ J :

∑
k

ej,k = 1 (5.20)

∀k ∈ [2, 2n],∀ρ ∈ R : Uρ,k−1 +
∑
j ∈J

sj,k · uj,ρ

−
∑
j ∈J

ej,k · uj,ρ ≤ Uρ,k (5.21)

∀ρ ∈ R :

∑
j ∈J

sj,1 · uj,ρ ≤ Uρ,1 (5.22)

∀ρ ∈ R,∀k ∈ [1, 2n] : Uρ,k ≤ Ũρ (5.23)

69

Chapter 5 An Order-Based Model for the Resource Acquirement Cost Problem

∑
ρ ∈R

Ũρ ·wρ ≤ Û (5.24)

∀a ∈ [1, 2n),b ∈ (a, 2n] : Ta ≤ Tb (5.25)

∀a,b ∈ [1, 2n],a < b, j ∈ J : Ta + ((sj,a + ej,b − 1) · pj) ≤ Tb (5.26)

∀a,b ∈ [1, 2n],a < b, (i, j) ∈ L : Ta + ((si,a + sj,b − 1) · La,b) ≤ Tb (5.27)

∀j ∈ J ,k ∈ [1, 2n] : Tk + ((1 − sj,k) · r j) ≥ r j (5.28)

∀j ∈ J ,k ∈ [1, 2n] : Tk − ((1 − ej,k) · (dmax − dj)) ≤ dj (5.29)

The objective to be minimized is Û .

Constraints (5.19) and (5.20) ensure that every job is assigned exactly one event

where it starts and one event where it ends. Constraint (5.21) computes the resource

usage at an event k for resource j. This usage consists of the usage for resource j at

eventk−1 plus anything that starts atk minus anything that ends atk . Constraint (5.22)

handles the special case of the �rst event. Constraint (5.23) determines the maximum

amount required of each resource, while constraint (5.24) builds the maximum weighted

usage, thus the objective to be minimized.

Constraint (5.25) enforces the times associated with the events to be ordered. Con-

straint (5.26) computes (a lower bound on) the times at which an event k happens: If a

job j starts at event a and ends at event b, then the di�erence between Ta and Tb must

be at least pj . Note that sj,a + ej,b − 1 becoming negative is not a problem, since for

a < b, Ta ≤ Tb must hold anyways. Similarly, Constraint (5.27) places a lower bound

on the time that must elapse between two events associated with the starts of jobs

between which a minimum time lag was speci�ed.

Finally, constraints (5.28) and (5.29) use the computed event times to enforce release

times and deadlines. These must be introduced for every pair of job and event and

switched on and o� with a big-M switch.

A note on the order of events: If multiple jobs start and end at the same time, this

will result in multiple events being assigned the same time. In this case, the constraint

(5.25) makes no statement as to the order in which job starts and ends should appear.

For example, event k could be assigned as the end of job a, event k + 1 as the start of

job b, event k + 2 as the start of job c , and event k + 3 as the end of job d . Now, the

computed demand at event k + 1 does include the demands of jobs b and d , although

d has already �nished, and although c should be started at this time. This is not a

problem: First, no job’s demand will be missed, since we only care for the maximum

demand of each resource (see constraint (5.23)). The last event at each time step will

include the resource demand of all jobs started at that time step. Also, since that

maximum shall be minimized, an optimum solution will always end all jobs at events

before the event that contributes to the maximum usage. Similarly, it is not necessary

to constrain the number of job starts and ends that are assigned to each event. The

70

Experimental Evaluation Section 5.5

usage at the event will be valid even if multiple starts and ends are assigned to the

same event.

5.4.1 Reducing Variable Count

Similar to the way we reduced the order-based formulation’s size in Section 5.3.3, we

can also reduce the size of the event-based models. If we know for a job j that at

least k other jobs must be �nished before j can start (either because of jobs’ windows

or because of dependencies), we do not need to introduce sj,l or ej,l variables for

l < 2k , since at least 2k events before the start-event of j must be covered by other

jobs starting and �nishing before j . The reverse is also true: For jobs certainly starting

after j has �nished, we can similarly reduce the variables for j.

5.4.2 Model Size

In the basic form without the size reduction from Section 5.4.1, the number of variables

is dominated by 2n2
variables from either (5.13) and (5.14), thus 4n2

binary variables.

With the modi�cation from Section 5.4.1, the number of either (5.13) and (5.14) variables

for job j is bounded by its ply Π(j), for a total of 2

∑
j ∈J Π(j). This follows from the fact

that the jobs not overlapping j’s window, i.e. which are not counted for Π(j), must be

�nished before j starts resp. start after j �nishes. In the presence of lags, the number

is potentially reduced further.

The number of constraints is worse: Constraint (5.26) yields Θ(n3) constraints for

the non-reduced variant, and

∑
j ∈J Π(j)

2

in the reduced form. Constraint (5.27) occurs

Θ(n2 · dom(L)) ∈ O(n4) times, where dom(L) is the domain of the partial function

L. Thus, while dependencies between jobs might reduce the number of sj,k and ej,k
variables, they drastically increase the number of constraints.

5.5 Experimental Evaluation

The bene�t of the model presented in this chapter lies in an improved optimization

performance. While the analysis of the model size presented in sections 5.4.2 and 5.3.3

already indicates that our modeling technique results in smaller models than what

the event-based model can achieve, we now present an experimental evaluation of

the di�erent modeling techniques to substantiate the claim that our models are more

e�cient.

We evaluate three modeling techniques: The new order-based technique from

Section 5.3, the event-based technique from Section 5.4, and the discrete-time technique

from Chapter 3. We use two di�erent instance sets for our evaluation. Since we

assume the order-based approach to outperform the discrete-time model on instances

with a �ne time resolution, we generate a set of instances with comparatively �ne

71

Chapter 5 An Order-Based Model for the Resource Acquirement Cost Problem

resolution, called instance set A. In this set, we generate instances with scheduling

horizons picked uniformly at random between three and seven days, in one-minute

time resolution. The duration of the jobs to be scheduled is picked from a normal

distribution with a mean of eight hours and a standard deviation of two hours, and their

slack (i.e., the window size minus the duration) is picked from a normal distribution

with mean 12 hours and a standard deviation of �ve hours. We also draw for every

instance an average ply from a uniform distribution between 10 and 30. For every

instance, we then keep generating jobs until this chosen average ply p is achieved, i.e.,

until the sum of the window sizes of all generated jobs is at least p times the scheduling

horizon. We generate a total of 200 instances like this.

Additionally, we apply all three models to the benchmark instances presented in

Chapter 6, which we call instance set B throughout this section.

All experiments were conducted by �rst building the respective models, then opti-

mizing the models using Gurobi 7.0.2. The machines used are equipped with 64 GBs

of memory and two Intel
®

Xeon
®

E5-2670 CPUs, each having eight cores running at

2.6 GHz. Gurobi was allowed to use 15 parallel threads, and we used 15 minutes as

time limit.

5.5.1 Optimization Performance

We �rst look at the achieved optimization performance. Figure 5.1 shows the quality

that the two competitor MIPs computed on all instances of setA relative to the quality

computed on the same instances by the order-based MIP. For the discrete-time MIP,

we see that with one exceptions, the order-based MIP computes better solutions. For

instances with few jobs, the advantage goes up to a factor of two, for instances with

more jobs, that advantage decreases. On most instances, the order-based MIP has an

advantage of between 10% and 50%. The order-based MIP out-competes the event-

based MIP on all instances, by about between 20% an 100% on most instances. For

many instances, the event-based MIP does not even �nd feasible solutions. We also see

that the advantage of the order-based MIP does not decrease with increasing number

of jobs.

For set B, we only plot relative results for the discrete-time MIP, since the event-

based MIP was not able to solve even a single instance. The results for the discrete-time

MIP are shown in Figure 5.2. We see that for instances with more instances but less

�ne time resolution, the discrete-time MIP fares better than the order-based approach.

The order-based MIP still produces feasible solutions in the given time consistently for

up to 2000 jobs, and does not work anymore past approximately 3000 jobs. As long as

the order-based MIP still produces solutions, the discrete-time MIP’s peak demand is

pretty evenly distributed between half the peak demand and the same peak demand as

for the order-based models. Again, the discrete-time model produces feasible solutions

for all instances.

72

Experimental Evaluation Section 5.5

(a) Discrete-Time MIP (b) Event-Based MIP

Figure 5.1: The objective value achieved by the competitor MIPs (“DT”: Discrete-Time, “EB”:

Event-Based) for each instance in instance set A, one dot per instance. On the y axis is the

quality achieved by the competitor MIP normalized by the quality achieved by the order-based

MIP on the same instance. Instances are sorted by job count on the x axis. The upper band

contains a dot for every instance that the competitor MIP found no feasible solution for.

Figure 5.2: The objective value achieved by the discrete-time MIP for each instance in instance

set B, one dot per instance. On the y axis is the quality achieved by the discrete-time MIP

normalized by the quality achieved by the order-based MIP on the same instance. Instances

are sorted by job count on the x axis. An y-value of 0 indicates that the order-based MIP did

not �nd a feasible solution.

73

Chapter 5 An Order-Based Model for the Resource Acquirement Cost Problem

5.5.2 Empirical Model Sizes

Further insight into the performance that can be expected for optimizing the created

MIP models can be gained by looking at the size of the models. We again start by

analyzing the instances in set A. Figure 5.3a shows the number of variables in the

models for all three modeling techniques, again ordered by job count on the x axis.

Even though one can see the slight curve of the quadratic increase for the event-based

and order-based models, the (linearly growing) number of variables in the discrete-

time model is still considerably higher for these instances. A similar picture arises

when looking at the number of nonzero entries in the coe�cient matrix, displayed

in Figure 5.3c, although here the advantage of the order-based approach becomes

more apparent. Looking at the number of constraints in Figure 5.3b, the reason for the

larger number of nonzeroes with the event-based models becomes apparent: With its

cubically increasing number of constraints, the event-based approach dwarfs both the

discrete-time and the the order-based approach in terms of constraints.

Closely related to model sizes is the question of model construction time, i. e., the

time it takes to construct the respective models before any optimization can start.

Figure 5.4 presents the times it takes to build all the models discussed in this section. We

see that while the order-based models stays below �ve seconds, both the discrete-time

and the event-based models su�er from the large number of variables resp. constraints.

For the instances in set B, the �rst interesting phenomenon is that the event-based

approach is not able to compute any solution for any instance. The reason for this

can easily be seen from the numbers of generated constraints and nonzero matrix

entries, shown in �gures 5.5b and 5.5c, respectively. The cubic growth in the number

of constraints rapidly overtakes the other two models. The fact that there are no more

points plotted for the event-based models past approximately 500 jobs is explained by

the fact that after this point, model generation did exhaust the machine’s memory. It is

interesting to see that the number of nonzero matrix entries for the order-based model

does in fact not exceed that of the discrete-time model that much even for instances

with a large number of jobs. However, the number of variables (shown in Figure 5.5a)

and constraints does. Thus, the coe�cient matrix is a lot denser for the discrete-time

models.

5.6 Conclusion

We have presented a novel modeling technique for Time-Constrained Project

Scheduling Problem family. The technique is based on capturing the temporal

relation between pairs of jobs, and is thus not a�ected by the chosen time resolution.

In a theoretic analysis of the model sizes of our technique, we have shown that

the produced models are smaller than those produced by an event-based approach

from literature. Dependent on the number of jobs in an instance and the chosen

74

Conclusion Section 5.6

(a) Number of variables

(b) Number of constraints

(c) Number of nonzero coe�cient matrix entries

Figure 5.3: Comparison of the model sizes by the three di�erent techniques for the instances

in set A. Every dot corresponds to one model, ordered by the number of jobs on the x axis.

75

Chapter 5 An Order-Based Model for the Resource Acquirement Cost Problem

Figure 5.4: Comparison of the time (in seconds) it takes to construct the respective models

for each instance in set A. Every dot corresponds to one model, ordered by the number of

jobs on the x axis.

time resolution, our models are also smaller than a di�erent discrete-time approach

from literature. An experimental evaluation corroborates these �ndings on a set of

benchmark instances. Our experimental evaluation also shows that for certain sets

of instances, our technique produces models that are signi�cantly easier to optimize

than the models produced by the two competitor techniques. However, our evaluation

also shows that if time resolution is low and the number of jobs is large, one should

chose the discrete-time modeling technique.

In conclusion, we think that the order-based approach can be a well-�tting tool to

optimize project scheduling problems with high time resolution. This would be even

more the case if one could incorporate more of the modeling features presented in

Chapter 3 into the new technique in the future.

76

Conclusion Section 5.6

(a) Number of variables

(b) Number of constraints

(c) Number of nonzero coe�cient matrix entries

Figure 5.5: Comparison of the model sizes by the three di�erent techniques for the instances

in set B. Every dot corresponds to one model, ordered by the number of jobs on the x axis.

77

6 Industrial Demand Side Flexibility:
A Benchmark Data Set

To cope with the new demands of an electrical grid based on mostly renewable energy,

more �exibility on the demand side is needed. To test new demand response strategies,

energy consumption data sets which come with some information about the inherent

�exibility of the processes are needed. However, such data sets — especially related to

industrial customers — are often commercially sensitive and thus not published.

In the present chapter, we introduce a new benchmark data set containing scheduling

scenarios of industrial processes with �exibility information. The instances are based

on a real-world data set of a small scale industrial facility, from which we extract process

characteristics using a novel motif discovery technique. Based on these characteristics,

we generate a set of benchmark instances. We provide an in-depth analysis of the

benchmark data set and show that it is suitable to evaluate smart-grid scheduling

techniques.

This chapter is based on joint work with Nicole Ludwig, Dorothea Wagner and Veit

Hagenmeyer [Lud+19b].

6.1 Introduction

Societies around the globe aim for future electricity grids which rely mostly on renew-

able energy sources (RES). Unfortunately, the intermittent nature of the RES and the

fact that they cannot be controlled makes integrating them into today’s grid di�cult.

One di�culty is that there is often a mismatch between the supply from RES and the

actual power demand. While increasing transmission and storage capacities is one

option to ease the integration, another one is generally referred to as demand side

management (DSM). DSM includes all measures which aim at changing behaviour

in the energy usage by demand side actors. DSM has been discussed extensively in

the literature, for example by Finn and Fitzpatrick [FF14] or Boogen et al. [BDF17].

The sub-�eld of DSM which focuses on real-time changes in energy consumption is

termed demand response (DR). An important assumption underlying all DR approaches

is that the consumers have some kind of temporal or operational �exibility. Thus,

they can either change when they use energy (temporal �exibility), or how they use

energy (operational �exibility).

Information about the �exibility of individual consumers, especially industrial ones,

is not readily available. This leads to di�culties in testing new strategies and ideas

for DR or comparing di�erent strategies with each other. To test di�erent algorithms

and frameworks, one can use data from or resembling smart meters (see for example

79

Chapter 6 Industrial Demand Side Flexibility: A Benchmark Data Set

Gottwalt et al. [Got+11]) or grid data (see Logenthiran et al. [LSS12]). However, most

authors either do not publish the data their analysis is based on or synthesize the whole

data set. The synthetic data can range from being entirely made up (as for example in

the case of Petersen et al. [Pet+14]), being modelled with speci�c appliances in mind

(see for example Li et al. [Li+12]) or being generated based on data but without using

algorithms to extract information from this data, as for example Yaw et al. [Yaw+14]

do. Benchmark data sets play an essential role in making research comparable and

more accessible. For general project scheduling, for example, there exists the PSPLIB

benchmark data set by Kolisch and Sprecher [KS97], which the related literature uses

heavily. However, this benchmark data set is not rooted in real-world data, as it

relates to general project scheduling problems without any speci�c application in

mind. Speci�cally for resource-constrained project scheduling, Kolisch et al. [KSS99]

have published a data set. Again, the data set is not derived from real-world data.

Moreover, no such benchmark data set exists for demand side �exibility in industrial

processes.

Recently, the HIPE data set, a real-world data set with smart meter measurements

from industrial machines, has been published by Bischof et al. [Bis+18]. This data set

contains power demand time series from a set of machines in a small-scale electronics

factory. However, the data set consists only of a relatively small amount of machines

and there is no readily available information about their �exibility. Hence, in the

present chapter, we extract process characteristics from the real-world data set of

industrial machines, generate more process instances based on this information and

infer �exibility attributes. More speci�cally, we use a novel algorithm based on motif

discovery to �nd regular process patterns in each machine and extract information on

when each process starts throughout the day as well as how many di�erent processes

can be identi�ed in each machine. Based on this information we generate instances

that model real-world scenarios with available demand side �exibility. To the best of

our knowledge, we are the �rst to create such arti�cial instances based on pattern

recognition through motif discovery. We evaluate the found patterns and show that the

data can be used to evaluate performance-critical scheduling algorithms on workloads

that resemble real-world scenarios.

The remainder of the chapter is structured as follows. We start with a short intro-

duction to a scheduling problem which we use to evaluate the data set in Section 6.2. In

Section 6.3 we outline the methodology to extract the process pattern from the power

demand time series. We then describe how we generate benchmark instances based

on this information in Section 6.4. Section 6.5.1 goes into detail about the origin of the

time series data as well as the exact parameters chosen to generate our benchmark data

set. It also explains how to obtain our data set. After that, we describe the respective

processes found (Section 6.6), and evaluate their behaviour in scheduling algorithms

(Section 6.7).

80

Preliminaries Section 6.2

6.2 Preliminaries

The main contribution of the data set described in Section 6.5 is a set of real-world-data

based benchmark instances for certain scheduling problems. The problem at hand

arises in smart grids when �exible electrical demands can be moved in time to optimize

various objectives. In this section, we introduce such a scheduling problem, which we

also use in Section 6.7.2 to evaluate the suitability of the benchmark instances. Addi-

tionally, we show in Section 6.2.2 how the assumptions of the problem in Section 6.2.1

can be relaxed.

6.2.1 Single-Resource Project Scheduling

In a �rst step, we de�ne the problem under the assumption that all processes have

constant power demand during their execution. In Section 6.2.2 we describe how the

de�ned problem can be used to optimize scenarios where processes’ power demand

changes over time without the need for a more elaborate model.

In the scheduling problem, every time-movable process constitutes one job. Let ji be job
a job. Then, ji has a processing time pi , i. e., a duration for which it must be executed processing time
without interruption. The job also has a release time ri , which is the earliest time release time
during which the job can execute, and a deadline di , which is the earliest time at which deadline
the job must be �nished. Finally, every job has a usage ui , which is the (constant) usage
amount of power required by ji during its execution.

Given a set of n such jobs J = {j1, j2, . . . jn}, a problem instance also has an edge-

weighted directed acyclic graphG = (J ,D,w) on J , with edge set D ⊂ J × J and weight

functionw : D → Z. The edge set D de�nes dependencies between two jobs, while the dependency
weight function indicates the necessary time lag between the two jobs. If (ja , jb) ∈ D, time lag
then jb can start at the earliest w((ja , jb)) time steps after ja has started.

Based on these de�nitions, we now de�ne the problem used throughout this chapter,

which models a peak shaving scenario.

Problem 1 (Single-Resource Acqirement Cost Problem (S-RACP)). Given J and S-RACP
G as de�ned above, the Single-Resource Acquirement Cost Problem is to �nd a start

time for each job such that the peak demand of the resulting schedule is minimized.

6.2.2 Non-Constant Power Demands

The problem de�ned in Section 6.2.1 assumes power demands to be constant over time.

This assumption might be an especially unrealistic and simplifying one. Therefore, we

describe in this section how the model from Section 6.2.1 can be used to model jobs

with �uctuating power demand.

We assume the power demand function of a process to be a stepwise function. To

model a stepwise power demand function for a process, we perform a block decomposi- block
decomposition

81

Chapter 6 Industrial Demand Side Flexibility: A Benchmark Data Set

b1

b2
b3

Figure 6.1: Decomposition of a stepwise power demand function into blocks. The fat black

line is the original demand function with 11 steps. The three blocks b1, b2 and b3 approximate

this function.

tion, which is illustrated in Figure 6.1. For a perfect representation of a stepwise power

demand function with k steps, we decompose the respective process into k blocks.

From the perspective of the scheduling problem, each of the blocks is an individual

job. However, we will use the term block for a job with constant power demand that isblock
part of a decomposition of a process with non-constant power demand. It is easy to

see that the k blocks of a process, when executed consecutively, behave like a single

job with the appropriate stepwise power demand function.

Thus, we must make sure that the blocks are executed consecutively and without any

pauses between them. To this end, we use the dependencies introduced in Section 6.2.1.

Let b1,b2, . . .bk be the k blocks that we decomposed a process into. Then, for every

i ∈ {1, . . .k − 1}, we add (bi ,bi+1) to D, with a weight w((bi ,bi+1)) = pi . With this, no

block can start before its predecessor has �nished (but immediately after). Finally, we

add (bk ,b1) to D withw((b1,bk)) = −1 ·
∑k−1

i=1
pi . This negative lag forces the last block

to start at the latest

∑k−1

i=1
pi time steps after b1 started. Combined, these dependencies

cause the chain of b1,b2, . . .bk to be executed concurrently.

When modeling a real-world process (with a stepwise power demand function)

in this way, the obvious k to choose is the number of steps in the respective power

demand function. As mentioned before, this would result in a perfect representation of

the original stepwise power demand function. However, one can also choose a smaller

number. If one chooses k smaller, the series of blocks can not re�ect the original

process’ power demand function perfectly, but only approximate it. In Section 6.7, we

take a closer look at how well this approximation works with a low value for k , as

well as how the value k in�uences the complexity of S-RACP instances.

6.3 Finding Process Pa�erns

The benchmark instance generation process in Section 6.4 takes as inputmotifs detectedmotif
in the power demand time series. A motif is a (frequently reoccurring) pattern in the

power demand curve. Since the detected motifs correspond to patterns in the time

series, certain sequences in the power demand time series can be associated with a

82

Generating S-RACP Instances Section 6.4

motif. We assume that every point in the time series belongs to at most one motif,

i.e., that motifs do not overlap. We call the sequences associated with a motif the

occurrences of that motif. occurrence
We do not go into detail here how the motif discovery is done. It is a typical

unsupervised learning problem to �nd patterns in time series. The most popular

methods for �nding these patterns include di�erent forms of clustering. The motif

discovery technique used by us is a variation of the motif discovery algorithm by Chiu

et al. [CKL03]. For details on the motif discovery technique, we refer the reader to the

work by Ludwig et al. [Lud+17], which explains the approach in detail.

For this chapter, we just assume to be given a set of motifs and their respective

occurrences. As �nal step in the pattern �nding process, we determine block decompo-

sitions for each detected occurrence, as necessary for the process to represent jobs with

non-constant power demand introduced in Section 6.2.2. In Section 6.7, we specify a

measure for what we consider a good block decomposition of an occurrence. For each

occurrence, and each k , i. e., each number of blocks the occurrence is to be decomposed

into, we use a sequential least-squares programming solver to �nd a decomposition

into k blocks that optimizes the measure from Section 6.7. The block decompositions

of all occurrences are part of the data set we release, see Section 6.5 for how to obtain

them.

6.4 Generating S-RACP Instances

After detecting motifs, their occurrences and their block decompositions, we generate

jobs that together form instances of the Single-Resource Acqirement Cost Prob-

lem (see Section 6.2.1). Several parameters in�uence the generation. First, the instance

size speci�es the number of jobs per instance. Also, a time horizon must be given, i.e.,

the latest deadline of any job, assuming that the earliest release time is 0. For the

individual jobs, we �rst must specify the block count, i. e., into how many blocks every

process should be decomposed. Also, we must specify how much �exibility we assume

to be part of the instance, which is done in terms of a window growth mean, a window

growth standard deviation and a window base factor.

Instance generation works by creating a set of job generators, one for each motif and

each block count k , and then generating jobs from these generators up to the desired

instance size. The idea behind the job generators is to �t random distributions to the

respective motif’s occurrences. When generating a job that should be divided into k
blocks, we start with the respective motifs’ occurrences that have been decomposed

into k blocks as per Section 6.3. For each block, we obtain its length and total energy

consumption, for a total of 2k values for each of the motif’s occurrences. To these val-

ues, we �t a 2k-variate Gaussian Mixture Model (GMM). We choose Gaussian Mixture

Models because they are universal density approximators, as shown by e.g. Plataniotis

83

Chapter 6 Industrial Demand Side Flexibility: A Benchmark Data Set

and Hatzinakos [PH00], meaning they can approximate any given probability density

with arbitrary precision (under the condition that the GMM has enough components).

Since we do not want to make any assumptions about the underlying distribution of the

duration and energy values, GMMs seem appropriate. Drawing from this distribution

results in the shape of a new job: For each of the job’s blocks, we get a duration and

an energy consumption, from which we determine the power demand.

To determine a release time and a deadline, we �rst �t a distribution to the start times

of the motif’s occurrences. However, the start times do empirically not �t a (mixed)

normal distribution well. Thus, we instead use a mixture of uniform distributions.

To do so, we �rst cluster the start times using the DBSCAN algorithm by Ester et

al. [Est+96] to account for the assumption that there might be multiple separate time

spans throughout a day during which the respective process is usually started. Then,

we determine the 0.1 and 0.9 quantile of each determined cluster to account for outliers.

These form the lower and upper limit of one uniform distribution each. We weight

each uniform distribution by the number of occurrences assigned to the respective

cluster. Randomly selecting one such uniform distribution by their weight and then

drawing from that distribution yields a preliminary start time s .

However, we need a release time r and and a deadline d (together forming the

window of the job). We obtain them by determining a window size w and then setting

r = s −(w/2) and d = s +p+ (w/2) (with p being the processing time, see Section 6.2.1).

We determine w in two components, the window base wb and the window growthwindow base
window growth wд . The window base is meant to re�ect the �exibility we see in the real-world data.

However, the factory we retrieved the real-world data from was so far not managed

with demand response in mind, thus we assume that more �exibility could be created

if operations were changed to facilitate DR, which is why we add the window growth

component.

The window basewb is determined by the span of the uniform distribution we drew

the start time from multiplied by the window base factor. We assume that the more

�exible a process is, the larger the spans of its uniform start-time distributions will be.

The window growth is determined by drawing from a normal distribution with the

speci�ed window growth mean and window growth standard distribution.

To generate an instance with n jobs, we n times perform a weighted selection on

the set of job generators. We weight the generators by the number of occurrences

in the respective motif. Each time, we generate one job using the selected generator.

For each job generated in this way, the release times and deadlines produced by the

job generator are based on time-of-day. Therefore we �nally move each generated

job to a random day within the time horizon. Note that although the S-RACP as

de�ned in Section 6.2.1 allows for dependencies between jobs, we only use these

dependencies for the block decomposition as described in Section 6.2.2. The real-world

data we obtained (see Section 6.5.1) does not contain any satisfactory information

84

The Benchmark Data Set Section 6.5

about dependencies between processes (see Section 6.6), thus we do not incorporate

these into the generated instance sets.

6.4.1 Grouped Generation

To evaluate the e�ect of k , i. e., the number of blocks into which jobs are decomposed,

we generate groups of instances that di�er only in the value of k . We do this by �rst

generating an instance with k = 1. Then, to generate an instance with k = 2, we

iterate over all jobs in the k = 1 instance. For each such job, we generate a k = 2 job

from the same motif, scale the job so that the total duration and energy consumption

is the same as for the k = 1 job, and set the same window. We proceed in the same

way for all values for k .

6.5 The Benchmark Data Set

Based on the process to generate instances as described in Section 6.4, we now describe

the real-world data in which the instance sets are based, the concrete instance sets

we generated and explain how to obtain these instance sets and the accompanying

auxiliary data.

6.5.1 Data Origin

Real-world data forms the basis for our generated instances. This real-world data

comes from a data set of smart meter measurements in a small scale electronics factory

and is called HIPE (see Bischof et al. [Bis+18]). In the present chapter, we use a subset

in machines and superset in time of the originally published HIPE data set. The

instances are generated based on 6 machines: a chip press, a high temperature oven,

a screen printer, a soldering oven, a vacuum oven and a washing machine. We only

use this subset of machines since for each of the other machines, the data quality

for the selected time range (see below) was questionable for various reasons. All of

the machines have been equipped with smart meters which record several quantities

such as voltages, currents, frequencies etc. at a frequency of 50Hz. Out of a large

number of measured quantities we only consider the measured active power. The �rst

measurement we use is the from 31.12.2016 10:00 pm, while the last measurement is

from 31.12.2018 10:59 pm. We thus use two full years of data. We down-sample the

data to one minute resolution, where the one minute values are the mean values from

the original 50Hz measurements during that minute. Due to some problems during

the recording of the measurements, not all machines have data for all minutes in the

considered time period. For the machines with a complete set of power values we

consider a total of 1,051,260 minutes. For more information on the origin of the data

and the machines we refer the interested reader to Bischof et al. [Bis+18].

85

Chapter 6 Industrial Demand Side Flexibility: A Benchmark Data Set

Table 6.1: Generated instance sets parameters. Three values (a,b, c) in a cell indicate that a

range of parameters was chosen: from minimum a to maximum b (inclusive), with steps of

size c .

Parameter Name Chosen Values

Job Count (200, 500, 15)

Window Growth Mean (50, 200, 50)

Window Growth Std.Dev. 20

Window Base Factor (0.05, 0.15, 0.05)

Time Horizon 5 days

Time Resolution 1 minute

Block Count {1, 2, 3, 4, 5, 7, 10}

6.5.2 Data Set Parameters and Publication

The instance generation process from Section 6.4 requires several parameters to be

set. Table 6.1 list the parameters we choose for the instance set we generate. If a table

cell contains three values like (a,b, c), that means we choose all values from a to b
(inclusive) in increments of c . Between all parameters where we choose more than one

value, we take the Cartesian product to obtain the �nal parameter space. The chosen

parameter space results in a total of 1764 instances.

We publish the instance set generated as above together with some auxiliary data

as a separate data publication [Lud+19a] accessible at

https://publikationen.bibliothek.kit.edu/1000094324

The data archive itself contains a detailed description of its contents and the �le

formats. The instance �le format is suitable to be used with the TCPSPSuite software

package,
1

which is what we used for all optimizations performed during the evaluation.

The auxiliary data includes a description of the motifs discovered (as described in

Section 6.3) as well as for every instance the best solution we computed during our

evaluation. These solutions can be used as a baseline for benchmarks.

6.6 Evaluation: Characteristics of the Pa�erns

In Section 6.3 we have outlined how to extract the patterns from the machine time

series before we generate a bigger set of instances. In this section, we want to brie�y

characterize the patterns we have found using the method described above on the HIPE

data set. Table 6.2 summarises how many sequences and patterns were found for each

1https://github.com/kit-algo/TCPSPSuite

86

https://publikationen.bibliothek.kit.edu/1000094324
https://github.com/kit-algo/TCPSPSuite

Evaluation: Characteristics of the Pa�erns Section 6.6

Table 6.2: Characteristics of the individual machines and the patterns found in the sequences.

Where Ē is the average energy needed in a sequence per machine and n̄ is the average length

of a sequence per machine.

Machine Sequences Pattern Ē(kW) n̄(min)

High Temperature Oven 226 7 1.13 74.50

Screen Printer 173 1 0.32 285.51

Soldering Oven 206 4 1.89 146.32

Vacuum Oven 572 7 0.41 12.57

Washing Machine 66 4 1.95 188.47

Chip Press 51 2 1.09 433.63

machine as well as the average energy and time they needed. Dependencies among

machines often are an argument against any �exibility in operation. We thus want to

gather some information from the real machines that help us to determine whether

they are dependent on each other. For this purpose, we examine the correlation

between the start and end times of all machines, which could indicate a temporal

dependency.

As can be seen in Figure 6.2, the these correlations are all relatively low. There-

fore, we assume that either all intermediary products of the machines can be stored

e�ciently in between operating dependent machines, or that the machines do not

depend on each other much. Either way, we assume we can ignore dependencies for

the moment, as already mentioned in Section 6.4.

We go on to check for other correlations between the operation of the machines and

other factors. As shown in Table 6.3, most machines show a correlation between the

start time of a process and the length of the process, with shorter processes starting

later in the day than longer processes. The main reason for this seems to be the fact

that working hours are roughly between 6 am and 6 pm. Thus, any machine or process

Table 6.3: Pearson correlation between the length of the processes and the time they are

started for all machines. Three asterisks indicate p < 0.01.

Machine ρ

Vacuum oven -0.01

Washing machine -0.15

Chip press -0.42
∗∗∗

High temperature oven -0.17
∗∗∗

Screen printer -0.48
∗∗∗

Soldering oven -0.39
∗∗∗

87

Chapter 6 Industrial Demand Side Flexibility: A Benchmark Data Set

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1Vac
uu

m
Ove

n

W
as

hin
gM

ac
hin

e

Chip
Pre

ss

High
Te

m
pe

ra
tu

re
Ove

n

Scr
ee

nP
rin

te
r

Sold
er

ing
Ove

n

VacuumOven

WashingMachine

ChipPress

HighTemperatureOven

ScreenPrinter

SolderingOven

Figure 6.2: Pearson correlation between the end times (in minutes after midnight) and start

times (in minutes after midnight) among all processes.

which needs supervision or needs to have ended before the workers go home is not

started late in the day.

The dependency on working hours seems to also be relevant during the lunch break.

As we can see in Figure 6.3 there is a signi�cant drop in starting times of processes

during noon. In total, most processes get started during the peaks occurring before

and after the lunch break. Most machines exhibit the pattern seen in Figure 6.3a, with

the exception of the screen printer which is more often started before noon.

Overall, the starting times are spread over the whole working day and there seems

to be only little time restriction on the processes other than when the workers have a

break or go home.

6.7 Evaluation: Block Decomposition Granularity

Since the data has one-minute time resolution, the power demand curve for every

occurrence detected in Section 6.3 is a stepwise function, with one step per minute.

However, for many algorithmic approaches, for example scheduling algorithms, the

run-time complexity increases signi�cantly if the demand functions have too many

steps. Many approaches even can not deal with non-constant demand, i.e., require a

demand function with exactly one step.

For this reason, in Section 6.4 we generate jobs with varying, but low numbers

of steps in their power demand function. We also call the number of steps in the

demand function the number of blocks that we decompose a job into. In this section,

88

Evaluation: Block Decomposition Granularity Section 6.7

0.00

0.03

0.06

0.09
5:

00
7:

00
9:

00
11

:0
0

13
:0

0
15

:0
0

17
:0

0
19

:0
0

21
:0

0
23

:0
0

(a) Hours during which all machines are

started.

0.00

0.05

0.10

0.15

0.20

5:
00

7:
00

9:
00

11
:0

0
13

:0
0

15
:0

0
17

:0
0

19
:0

0
21

:0
0

23
:0

0

(b) Hours during which the screen printer

is started.

Figure 6.3: Density of processes started during each hour of a day for all machines Figure 6.3a

and the most unusual start time distribution found for the screen printer Figure 6.3b.

we analyze the e�ects that the number of blocks of a job has. In Section 6.7.1, we

evaluate how closely we can approximate the original power demand functions with

various numbers of blocks. In Section 6.7.2, we look at the increase in optimization

complexity that comes with a rising number of blocks, using a mixed-integer program

for the S-RACP as an example. Finally, in Section 6.7.3, we look at how well solutions

for instances with low k values can be transferred to the same instances with high k
values.

6.7.1 Approximation of the Original Power Demand Curve

In Section 6.2.2 we describe a block decomposition that allows to approximate the

(stepwise) power demand curve of some original process with a varying number of

steps (resp. blocks).

In this section, we analyze how close a given power demand curve with a low

number of steps can be to the original curve it tries to approximate. As original curves,

we take the occurrences discovered during motif discovery. First, we need a distance

measure between two stepwise functions. Given the stepwise demand function of an

occurrence o as Po , and a stepwise demand function with k steps P̃o,k that approximates

Po , we use the measure

∆
(
Po , P̃o,k

)
=

1

No

∫ ∞

0

(
Po(t) − P̃o,k (t)

)
2

dt . (6.1)

Here, No is a normalization factor determined as No =
∫ ∞

0
Po(t) dt , i.e., the total energy

of the original occurrence. Intuitively, the distance between two stepwise functions

should correlate with the area between the two curves. However, we assume that —

89

Chapter 6 Industrial Demand Side Flexibility: A Benchmark Data Set

Figure 6.4: ∆ measures for each occurrence, ordered by motif (on the x axis), for k = 1.

especially for peak shaving applications — a large deviation over a short time is worse

than a small deviation over a longer time, which is why we square the di�erence inside

the integral.

We now investigate how well the detected occurrences can be approximated with a

low number of steps (resp. blocks) according to this measure. Note that this is very

di�erent from generating jobs as described in Section 6.4 and then computing (6.1) for

each job. A job is never generated from a single occurrence, and therefore does not

approximate any single occurrence’s power demand function. Instead, for a given k ,

we compute for every occurrence of every motif a block decomposition that minimizes

(6.1). If ∆(Po , P̃o,k) becomes small for a given occurrence o and its optimal k-block

approximation P̃o,k , that means that occurrence o can be approximated well using

only k blocks.

Figures 6.4, 6.5 and 6.6 show the ∆ values for k in {1, 5, 10} and every occurrence.

Larger plots, as well as plots for all k in 1 to 10 plus 15 and 20, can be found in the

appendix in Section B.1. In the plots, every dot is one occurrence, which are arranged

into columns by their motif. We see that there are some motifs the occurrences of

which can be well approximated with only one block. However, for many motifs, one

block is not enough for a good approximation. On the other hand, we can also see

that the bene�t of using more than 5 blocks is small.

Figure 6.7 shows a line plot of the change in ∆ for changing values of k (on the

x axis). Here, for every occurrence o, and every k ∈ {1, . . . 10}, we set the y value

to ∆(Po , P̃o,k) − ∆(Po , P̃o,20), giving an insight into how much one can improve the

approximation for that occurrence when changing k from its respective value to 20.

Here, we again see that from k = 1 to k = 5, there is a sharp drop in ∆ values, with

the curve being rather �at afterwards. Thus, we can conclude that for the processes

we mined from the time series data, a block decomposition into 5 blocks might be a

good compromise between accuracy and instance complexity.

90

Evaluation: Block Decomposition Granularity Section 6.7

Figure 6.5: ∆ measures for each occurrence, ordered by motif (on the x axis), for k = 5.

Figure 6.6: ∆ measures for each occurrence, ordered by motif (on the x axis), for k = 10.

91

Chapter 6 Industrial Demand Side Flexibility: A Benchmark Data Set

Figure 6.7: ∆(Po , P̃o,k) − ∆(Po , P̃o,20) for all occurrences, with k being on the horizontal axis.

The solid blue line indicates the mean, and all lines for all occurrences fall within the green

shaded area.

6.7.2 Scheduling Complexity

When choosing the number of blocks to decompose jobs into, one important consider-

ation is the time complexity of the optimization problem one intends to solve. In this

section we explore how the complexity of optimizing S-RACP using a mixed-integer

program changes with changing block decomposition.

To this end, we use the MIP formulation introduced in Chapter 3, which supports

all necessary features for the block decomposition as described in Section 6.2.2 (such

as dependencies which negative time lags). We optimize every instance for 30 minutes

using Gurobi 7.0 with 16 threads on a machine with 16 Intel
®

Xeon
®

E5-2670 CPUs

and 64 GBs of RAM. All resulting models �t into the available RAM. Figure 6.8 shows

how complexity changes with increasing number of blocks in the instance. Every dot

is one optimized instance. The y axis indicates the MIP gap achieved after 30 minutes,

the x axis reports the number of blocks in the instance. The color of a dot indicates

how many blocks every job in the respective instance has been decomposed into.

We see that for the instances with one block per job, the solver usually achieves

a MIP gap of at most 5%. With two blocks per job, the achieved MIP gaps already

increase signi�cantly. For most instances, they go up to around 10%, however there

is a sizeable fraction of instances that can only be optimized to around 40% MIP gap.

Going to three blocks per job again worsens MIP gaps, however there seems to be no

drastic further deterioration for four and �ve blocks per job. For seven and ten blocks

per job, most instances can still be optimized to below 40% MIP gap, however we now

have some instances with a MIP gap of 100%, i. e., for which the solver could not �nd

any feasible solution.

92

Evaluation: Block Decomposition Granularity Section 6.7

(a
)k
≤

4
(b

)k
≥

5

Fi
gu

re
6.

8:
M

I
P

g
a
p

s
a
c
h

i
e
v
e
d

a
f
t
e
r

3
0

m
i
n

u
t
e
s

o
f

o
p

t
i
m

i
z
a
t
i
o

n
v
e
r
s
u

s
n

u
m

b
e
r

o
f

b
l
o

c
k

s
i
n

t
h

e
i
n

s
t
a
n

c
e
.

E
v
e
r
y

d
o

t
r
e
p

r
e
s
e
n

t
s

o
n

e
i
n

s
t
a
n

c
e
.

C
o

l
o

r
d

e
n

o
t
e
s

t
h

e
n

u
m

b
e
r

o
f

b
l
o

c
k

s
e
a
c
h

j
o

b
i
s

d
e
c
o

m
p

o
s
e
d

i
n

t
o
.

F
o

r
r
e
a
d

a
b
i
l
i
t
y

r
e
a
s
o

n
s

s
p

l
i
t

i
n

t
o

b
l
o

c
k

d
e
c
o

m
p

o
s
i
t
i
o

n
s

w
i
t
h

l
e
s
s

t
h

a
n

5

b
l
o

c
k

s
(
a
)

a
n

d
a
t

l
e
a
s
t

5
b
l
o

c
k

s
(
b
)
.

W
h

e
r
e

t
h

e
g

a
p

i
s

1
.0

,
t
h

e
s
o

l
v
e
r

d
i
d

n
o

t
�

n
d

a
n

y
f
e
a
s
i
b
l
e

s
o

l
u

t
i
o

n
w

i
t
h

i
n

3
0

m
i
n

u
t
e
s
.

93

Chapter 6 Industrial Demand Side Flexibility: A Benchmark Data Set

These results indicate that if one is to choose at least three blocks per job, one

might as well go with a �ner decomposition, since it does not increase computational

complexity signi�cantly. However, it is already questionable whether expected MIP

gaps around 40% are still acceptable. If not, one is restricted to coarser block decompo-

sitions, or one needs to invest more computational power or �nd more performant

models.

6.7.3 �ality of Schedules with Few Blocks

Regarding the decision of how many blocks to decompose jobs into, an obvious

question is how well a solution for a low-block decomposition translates to a high-

block decomposition of the same jobs. If the solutions translate well, one does not

gain much by choosing a higher number of blocks, and since the number of blocks

increases computational complexity (see Section 6.7.2), it would be advisable to chose

a low number of blocks.

As described in Section 6.4.1, we generated instances that are suitable to evaluate

this question: We generated groups of instances, within which the same processes

are decomposed into varying numbers of blocks. The maximum number of blocks we

decomposed each job into is 10. We evaluate the quality of a low-block solution as

follows: For each job in the low-block instance, determine its computed start time.

Then, set that start time as the start time of the corresponding job in the high-block

(with k = 10) instance. Doing this for all jobs in an instance leads to a new solution for

the k = 10 instance. We determine the factor between the quality of the so constructed

solution and the best solution computed for the k = 10 instance.

Figure 6.9 shows the results of this evaluation. Every dot is one instance. The x axis

depicts the number of blocks that the jobs in the instances in the respective column

were decomposed into. The y axis shows the quality of the solution transferred from

k = {1, 2, 3, 4, 5, 7} divided by the quality directly computed on the respective k = 10

instance. We see a downward trend. While for many k = 1 instances, the transfer

results in a deterioration by up to 40%, for k = 7, the deterioration is mostly limited

to 20%. There are some instances where the transferred solution is better than the

solution computed on the k = 10 instance — this is likely because the k = 10 instance

was harder to solve and could not be well optimized within the time limit.

Because of these mixed results, we conclude that the approach of transferring a

solution from one block decomposition to another itself has a stronger in�uence on

the result than the number of blocks. Therefore, it must be decided on a case-by-case

basis whether this approach is valid in practice.

94

Conclusion Section 6.8

Figure 6.9: Every dot depicts an instance with k as per the x axis. The value on the y axis is

the relation between the solution obtained by transferring the best solution of the respective

instance to the corresponding instance with k = 10, and the best solution computed for the

corresponding k = 10 instance.

6.8 Conclusion

We presented a new benchmark data set of industrial demand side �exibility scheduling

scenarios. The data set is based on real-world smart meter information from a small

industrial facility and has been up-sampled to address large scale problems. The

instances in the data set vary in terms of their size, the assumed amount of �exibility

and the complexity of their processes’ power demand functions, such that the data

set covers a wide range of conceivable scheduling problems. We evaluated how the

precision of the approximation of the found patterns with di�erent blocks in�uences

the scheduling performance and �nd that the complexity does not increase much as

the job is split in more than three blocks. Additionally, there is no straightforward

answer to the question how good a schedule with few blocks is compared to a schedule

with more blocks per job. One should decide the used block count on a case-by-case

basis, based on the need for accuracy weighted against the need for performance.

Please note that it is in no way necessary that all jobs are decomposed into the same

number of blocks.

Overall, we believe that the benchmark data set can be used to evaluate scheduling

techniques dealing with demand response. The instances are complex enough to

95

Chapter 6 Industrial Demand Side Flexibility: A Benchmark Data Set

provide a challenge, yet because of the large parameter space diverse enough to point

out strengths and weaknesses in the algorithms to be evaluated. Our evaluation has

shown that the block decomposition we perform is to a certain extend suitable to

re�ect the original power demand curves, thus we may assume that our instances

resemble real-world scenarios.

In the future, it would be interesting to enrich the data set with additional con-

straints from real-world scenarios, such as dependencies between processes, storage

constraints, and others.

96

Part II

Heuristics

7 Exploiting Flexibility
in Smart Grids at Scale

Large parts of energy systems all over the world are undergoing drastic changes at

the moment. Two of these changes are the increasing share of intermittent generation

technologies and the advent of the smart grid. A possible application of smart grids is

demand response, i.e., the ability to in�uence and control power demand to match it

with �uctuating generation.

We present a heuristic approach to coordinate large amounts of time-�exible loads

in a smart grid with the aim of peak shaving with a focus on algorithmic e�ciency. A

practical evaluation shows that our approach scales to large instances and produces

results that come close to optimality.

This chapter is based on joint work with Dorothea Wagner [BW18].

7.1 Introduction

The electrical energy system of the future will be based on a smart grid, i.e., the

con�uence of communications and power transmission technology. An anticipated

feature of smart grids is demand response (DR), which is de�ned as “changes in electric

usage by end-use customers from their normal consumption patterns [. . .] to induce

lower electricity use at times of high wholesale market prices or when system reliability

is jeopardized” by the U.S. Department of Energy [US 06]. Demand response can be

facilitated by various means, such as time-of-use pricing, dynamic tari�s with price

signals, or centralized demand response. In the latter case, a central authority controls

devices connected to the smart grid. These devices allow to control their load, for

example by shifting it to a di�erent time, modifying the shape of the load curve, or

shedding the load altogether. An extensive survey regarding the possibilities of smart

grids and demand response is given by Siano [Sia14].

Throughout this chapter, we deal with centralized demand response (also called

direct load control) and load shifting, i.e., the shifting of the unmodi�ed load curve

of devices to a more desirable time. While this might technically be possible in the

foreseeable future, the owners of the devices might not want to relinquish control

over their devices. This can be addressed with (�nancial) incentives for allowing such

control; however, these considerations are beyond the scope of this chapter.

Desirable and undesirable times for electrical loads can be the result of a high level of

renewable generation in the electrical system. In contrast to conventional generation

such as coal, gas or nuclear power, solar and wind power cannot be dispatched, i.e.,

the generation cannot be controlled to match a �uctuating demand. It can therefore

99

Chapter 7 Exploiting Flexibility in Smart Grids at Scale

be desirable to shift loads away from times of high demand or low solar and wind

availability.

From this arises the objective of peak shaving, where the goal is to minimize the

maximum power requirement that exceeds the renewable generation. Intuitively, this

peak corresponds to the maximum capacity of the conventional generation that needs

to be activated to satisfy all demand. Hence, demand response for peak shaving can

reduce the necessary installed conventional capacity, as for example Zibelman and

Krapels [ZK08] show. Earle et al. [EKM09] also come to this result, but also argue that

the positive e�ect is diminished if the demand response is uncertain, e. g. because it is

based on price signals and relies on customers acting on these signals. With direct

load control, such uncertainties can be avoided.

7.1.1 Related Work

Topics revolving around the smart grid are currently very active throughout the energy

community. Fang et al. [Fan+11] give an overview over the developments in the �eld

of smart grids. Approaches to exploit the �exibility o�ered by smart devices can be

loosely separated into two groups, one considering �exibility in household contexts,

one considering industry contexts. In the �rst group, Allerding et al. [AMS14] present

an evolutionary algorithm aimed at scheduling devices within a smart building that is

equipped with generation. Li et al. [Li+12] present a mixed-integer linear programming

approach to schedule household appliances. Pedrasa et al. [PSM10] use particle swarm

optimization to schedule electrical loads in households, where some loads can be shed.

In the context of industry, Ashok [Ash06] looks at steel plants and argues that these

have a large potential for saving money by using their �exibility. Mitra et al. [Mit+12]

consider continuous energy intensive processes and state a Mixed-Integer Program

(MIP) to optimize these under �uctuating energy prices.

Some work has also gone into abstracting and unifying both household and industry

contexts: Petersen et al. [Pet+14] develop a taxonomy of �exible electrical loads.

Gottwalt et al. [Got+16] describe how to select a portfolio of �exible electric loads to

achieve maximum utility.

Besides the energy community, the task of scheduling �exible electric demands

touches two �elds of research: in operations research, the Time-Constrained Project

Scheduling Problem (TCPSP) is well known, which contains our problem as a special

case. Guldemond et al. [Gul+08] give an overview over work related to the TCPSP

and propose a solution technique in which jobs may miss their deadline (or need to

be completed in “overtime”). The �rst MIP formulation for the problem is given by

Deckro and Hebert [DH89].

The second �eld touched is the computer science �eld of machine scheduling. Here,

the problem of minimizing the number of machines to schedule a set of jobs is similar

to our problem. Cieliebak et al. [Cie+04] �rst introduce this idea, show its hardness

100

Problem Formulation Section 7.2

and present e�cient algorithms for special cases. Chuzhoy et al. [Chu+04] present

an approximation algorithm to this problem. In machine scheduling problems, jobs

usually only take one machine simultaneously. When applying machine scheduling

approaches to smart grid scheduling, machines correspond to the power requirement

of a job; thus, these approaches only directly apply to smart grid scheduling scenarios

where all electrical loads have the same power requirement.

7.1.2 Contribution and Outline

We present an iterative heuristic that minimizes electricity usage peaks using load shift-

ing of directly controllable loads in smart grids — the Resource Utilization Scheduling Resource
Utilization
Scheduling

Heuristic

Heuristic (RUSH).

Bene�ts from using �exibility in smart grids increase with the number of controlled

loads. Thus, being able to optimize �exible devices at large scales is crucial. Most of

prior research focuses on modeling sophisticated constraints or optimization criteria,

but neglects algorithmic e�ciency. Also, many approaches are based on metaheuristics

which are not �ne-tuned to the problem at hand. Our presented approach is focused

on speed of computation even for very large instances. According to the principle of

algorithm engineering, we intend to increase the model complexity in future research

while trying to maintain algorithmic e�ciency.

Section 7.2 formalizes the problem under study. In Section 7.3, we describe the

details of the RUSH heuristic in detail. Section 7.4 presents an experimental evaluation

of RUSH, analyzing its performance and comparing result quality to results obtained

via a mixed-integer linear program. In Section 7.5, we conclude our work and outline

what further steps we are going to take with this research.

7.2 Problem Formulation

We de�ne an instance of our problem as a set of (electrical) loads with release times,

deadlines, execution times and power requirements. These loads can represent for

example individual cycles of devices such as refrigerators or A/C units, runs of one-o�

devices such as ovens, or batches in industrial processes.

Formally, let n be the number of loads. Then, each load j ∈ {1, . . .n} is described by

a tuple

(r j ,dj ,pj ,uj) ∈ N
3 ×R

where r j (the release time) is the �rst time step in which j may be executed, dj (the release time
deadline) is the �rst time step in which j must be �nished, pj (the duration or processing deadline

processing timetime) is the number of time steps j must be active consecutively and uj (the usage)

usageis the amount of power required by j during its execution. Note that we model time

101

Chapter 7 Exploiting Flexibility in Smart Grids at Scale

steps as discrete, while power is continuous. Given all loads, we de�ne a global release

time R = mini {ri } and a global deadline D = maxi {di }.

The objective is to �nd an assignment s ∈ Nn
of start times that minimizes the peak

power requirement over all time steps. For such an assignment to be feasible, it must

hold for every load j that sj ≥ r j and sj + pi ≤ di . We will call a feasible assignment a

schedule.schedule
Note that this model aims to minimize the peak demand. However, as stated in the

introduction, one is usually interested in minimizing the peak amount of power that

exceeds renewable generation, the so-called residual load. In our model, this can easilyresidual load
be achieved by introducing a set of immovable (by virtue of deadlines and release

times) jobs that represent the di�erence between the amount of renewable generation

available during the respective time interval and the maximum renewable generation.

7.3 Resource Utilization Scheduling Heuristic

In this section, we describe how RUSH works, starting with a high level overview.

Given a problem instance as de�ned in Section 7.2 and a feasible schedule to the

problem (i.e., a start-time assignment s ∈ Nn
), we de�ne its demand pro�le as ademand profile

sequence of intervals, each of which marks a time span in which the schedule requires

roughly the same amount of power.

Formally, let Us (t) be the power requirement at time step t induced by schedule s .
To group time steps with roughly the same power requirement together, we de�ne a

set of power levels. Let λ be a parameter specifying the size of each power level. We

then say that during time step t , the schedule s executes in power level l if and only if

lλ ≤ Us (t) < (l + 1)λ.

For a given schedule, pro�le P = (I,L) consists of a sequence of intervals I and

a function L : I → R+. Here, I is a sequence of consecutive, disjunct, right-open

intervals spanning the whole scheduling horizon, i.e., ∪iIi = [R,D], ∩iIi = ∅ and

sup(Ii) = min(Ii+1). Correspondingly, for Ii ∈ I, L(Ii) states the power level that

the schedule is in during Ii .

The working principle of RUSH is to �rst generate a feasible schedule by scheduling

every load at its release time, and then repeatedly pick a load j , determine the highest

power level during the scheduled execution of j (let this be
ˆl) and then move j so that

the total time the schedule executes in power level
ˆl is minimized while not increasing

the time executed in any level above
ˆl .

For such an iterative approach it is desirable to have the individual iterations execute

as e�ciently as possible, so that the algorithm arrives at a satisfactory solution as

quickly as possible. Because of this, most computations performed by RUSH can be

implemented as a set of simple operations on sets of intervals. Abusing notation a bit,

we treat I as a function which is the inverse of L: Let I(l) = {Ii : L(Ii) = l} be the

102

Resource Utilization Scheduling Heuristic Section 7.3

0

1

2

3

4

5
P

t1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Base
Target

Forbidden

j

L
ev

el

Figure 7.1: Example setting before moving load j. The green rectangle corresponds to the

length and power requirement of j . On the top, the release and deadline of j are shown together

with j . Below is a graphical depiction of a possible pro�le, its discretization into levels, and j’s
contribution to it. Base level, target and forbidden sets are indicated below.

0

1

2

3

4

5
P

t1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

L
ev

el

j

Figure 7.2: Example setting after moving load j.

set of intervals in the pro�le where the schedule is in level l . Also, for a �xed load j,
let P j = (I j ,L j) be the pro�le derived from P by removing load j.

For a �xed load j, de�ne the base level (denoted l∗) of load j as the maximum level

in P j
during the scheduled execution in j. Consider Figure 7.1. Here, the maximum

power demand below the highlighted load j is in level 3. Thus, l∗ = 3 in this example.

Intuitively, executing j during any of I j (l∗), i.e., the times in which the schedule

without j executes in the base level, results in power consumption roughly equal to the

old maximum power consumption during the execution of j . Thus, we try to minimize

the amount of j we schedule during I j (l∗). We also forbid scheduling any of j during

any I j (l∗ + k) for any k > 0, i.e., no part of j may be scheduled on top of a level that

is higher than the base level. This leaves Tj = ∪i ∈{0, ...l ∗−1}I
j (i) as the desirable area

to schedule j in, called the target. In the example of Figure 7.1, the target is everything

in level 2 and below (after j has been removed), i.e., Tj = {[0, 1), [6, 17)}. We further

103

Chapter 7 Exploiting Flexibility in Smart Grids at Scale

de�ne a set of forbidden intervals, in which j may not be started. We do so by taking

all intervals of levels above l∗ in I j and extending these intervals by pj − 1 to the left:

Fj =

{
[max(0,a − (pj − 1)),b) : [a,b) ∈

⋃
i>l ∗
I j (i)

}
In the example of Figure 7.1, the only time the pro�le (after removal of j) is in a level

above l∗ = 3 is in [17, 19). Since j has length 12, that results in Fj = {[6, 19)}. It is

easy to see that starting j during any of these intervals would cause a part of j to be

scheduled during a higher power usage than before.

Observing that dj − pj + 1 is the latest time step at which we can start j without

missing its deadline, we now combine everything. We want to �nd a start point in

[r j ,dj − pj + 1) \ Fj that maximizes j’s overlap with T . We can show that to �nd this

optimum position, it is su�cient to check the borders of the intervals in [r j ,dj) \ Fj
plus all time steps t for which j would be right-aligned in an interval in Tj ∩ [r j ,dj),
i.e., the set of candidates for start positions is

Cj = {x : [x , ·) ∈ ([r j ,dj − pj + 1) \ Fj)}

∪ {x : [·,x) ∈ ([r j ,dj − pj + 1) \ Fj)}

∪ {max(x − pj , 0) : [·,x) ∈ T ∩ [r j ,dj)}

For each ŝ ∈ Cj , we check the size of [ŝ, ŝ + pj) ∩ Tj and select the start point with the

largest overlap.

Putting everything together, one iteration of RUSH works in these �ve steps:

1. Randomly select a load j ∈ {1, . . .n}

2. Remove j from the current schedule

3. Compute I j ,L j ,Tj ,Fj and Cj as above

4. In Cj , �nd the start candidate that results in the largest overlap with Tj

5. Re-insert j into the schedule at this point

In the example in Figure 7.1, the set of candidates is {0} ∪ {5} ∪ {5} as per the above

formula. Indeed, setting sj = 5 results in the largest overlap of j with the target of

{[0, 1), [6, 17)}. Moving j to start at time step 5 results in j being executed for only one

time step inside level 4, as seen in Figure 7.2 instead of �ve time steps in Figure 7.1.

104

Experimental Evaluation Section 7.4

E�icient Implementation. The sets computed in Step 3 above can all be computed

via e�cient set operations from L and I. More precisely, for Tj (resp. Fj), we need

unions in the style of ∪i≥kI(i) (resp. ∪i≤kI(i)) for some value k . To facilitate e�cient

access to these unions, we store each of them directly. However, since in our case

∪i≥kI(i) = [R,D) \ ∪i≤k−1I(i), it su�ces to store ∪i≤k−1I(i) for all possible levels k .

We do so using Boost’s ICL data structures.
1

7.4 Experimental Evaluation

We evaluate RUSH experimentally by using it to schedule a set of instances of the

problem introduced in Section 7.2. Runs of RUSH were conducted on a machine with

four Intel Xeon E5-1630 cores at 3.7 GHz (of which only one was used) and 128 GB of

RAM, the baseline mixed-integer linear program (MIP) was run on a machine with 16

Intel Xeon E5-2670 cores at 2.6 GHz and 64GB of RAM, using Gurobi 6.5 as a solver.

We generated two groups of instances: One set of medium-sized instances and a set

of very large instances. For the medium instances, the baseline MIP yields acceptable

lower bounds within reasonable time, allowing us to compare the solution quality

obtained by RUSH to a lower bound. On the set of large instances, we demonstrate

the scalability of RUSH.

For the set of medium-sized instances, the number of loads per instance was drawn

uniformly at random from the range [100, 400]. For the large instances, we generated

10000 loads per instance.

The duration of all loads was also randomly drawn, from a normal distribution with

a mean of 30, a standard deviation of 20, and a minimum value of 1. For each load, we

assigned the release time uniformly at random between 0 and 200 (0 and 2000 for the

large instances), and the slack, that is the di�erence between deadline minus release

time and execution time, i.e., the amount of �exibility of a load, uniformly between 0

and 200 (0 and 2000 for large instances).

Finding randomly generated instances which adequately represent real smart grid

scheduling problems is not easy, and has been done in various ways throughout liter-

ature. Petersen et al. [Pet+14] randomly chose all loads lengths from {2, 3, 4, 5}, all

power requirements from {1, 2, 3, 4} and the deadline for each load from {1, . . . 100}

while all loads are released at t = 1. Li et al. [Li+12] explicitly model four household

appliances: kettles, toasters, ovens and refrigerators. Each has a unique power con-

sumption and pattern of release, deadline and duration. Yaw et al. [Yaw+14] also model

individual household appliances, however they base their models on consumption

pro�les obtained from the REDD data set [KJ11]. We intentionally chose to generate

our instances randomly and not by explicit modeling, since we think that a small

number of household appliances alone are not su�cient to represent the various

1
http://www.boost.org/doc/libs/1_64_0/libs/icl/doc/html/index.html

105

Chapter 7 Exploiting Flexibility in Smart Grids at Scale

20 40 60 80 100 120
Seconds

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Re
la

tiv
e

Qu
al

ity

(a) Large Instances

2 4 6 8 10 12
Seconds

1.00

1.01

1.02

1.03

1.04

Re
la

tiv
e

Qu
al

ity

(b) Medium Instances

Figure 7.3: Convergence speed of RUSH 〈4000〉. Measurements were taken every second. All

measurements fall within the blue area. The black line indicates the median value at every

point in time. All results are normalized by the optimum value RUSH 〈4000〉 computes on the

respective instance.

demands in the electrical system. By picking values from a continuous distribution

instead of a �xed set we tried to have as much diversity among the loads as possible.

On each of these instances, we ran the baseline MIP for a maximum of 1200 seconds.

For most instances, an optimal solution could not be found in this time. However,

from the MIP runs we obtain lower bounds on the optimal solution quality as well as

non-optimal feasible solutions. The MIP used to compute a baseline is the formulation

presented in Chapter 3. The basic idea is to introduce a matrix of n × (D − R) binary

variables x jt , where x jt = 1 if and only if load j starts in time step t .

7.4.1 Results

It is easy to see that the quality achieved by RUSH depends on the number of levels

that RUSH discretizes the power requirement into. We ran RUSH on all instances with

20, 40, 60, 200, 1000 and 4000 levels each. We denote RUSH with k power levels as

RUSH〈k〉.

We �rst examine the speed with which RUSH converges against a solution. The

individual iterations become more expensive the �ner the power consumption is

discretized, i.e., the more power levels RUSH uses. Thus, we mainly look at the speed

of RUSH〈4000〉, the largest number of levels we evaluate.

Figure 7.3 shows for every of the runs of RUSH〈4000〉 on each instance of medium

resp. large size how close each computation got to the �nal result after what time. Note

that a y-value of 1.0 in this case does not indicate the global optimum of the respective

106

Experimental Evaluation Section 7.4

8 10 12 14
Gap in Percent

0

10

20

30

In
st

an
ce

s

Figure 7.4: Histogram of the MIP gaps achieved by the MIP solver.

0 10 20
Percentage

0

20

40

In
st

an
ce

s

(a) RUSH〈20〉

0 10 20
Percentage

0

20

40
In

st
an

ce
s

(b) RUSH〈40〉

0 10 20
Percentage

0

20

40

In
st

an
ce

s

(c) RUSH〈60〉

0 10 20
Percentage

0

20

40

In
st

an
ce

s

(d) RUSH〈200〉

0 10 20
Percentage

0

20

40

In
st

an
ce

s

(e) RUSH〈1000〉

0 10 20
Percentage

0

20

40

In
st

an
ce

s

(f) RUSH〈4000〉

Figure 7.5: Relative quality of variations of RUSH compared to the baseline derived from the

MIP.

107

Chapter 7 Exploiting Flexibility in Smart Grids at Scale

Table 7.1: Median, upper quartile and maximum values for the quality gap achieved by the

RUSH variants.

Algorithm Median 0.75-quantile Max

RUSH〈20〉 13.5 15.3 23.7

RUSH〈40〉 10.5 12.1 17.5

RUSH〈60〉 9.1 10.4 16.6

RUSH〈200〉 7.4 9.4 17.2

RUSH〈1000〉 7.4 9.4 17.5

RUSH〈4000〉 7.6 9.4 18.5

instance, but rather the optimal value that RUSH achieved. Measurements were taken

every second. While on medium instances, the near-optimum value is achieved after

ten seconds for all runs, it takes about 100 seconds on the large instances. On medium

instances, the median solution is near-optimal after two seconds already.

We now take a look at the quality of the computed solutions. The MIP is not

suited to solve a signi�cant number of medium-sized instances to optimality within

reasonable time. Therefore, we take the average between lower bound and quality of

the best feasible solution found by the MIP as baseline. Since the MIP does not compute

anything useful on the large instances, the quality comparison is only done on the

medium instances. Figure 7.4 shows a histogram of the gaps that the MIP achieved on

the medium instances after 1200 seconds, i.e., the ratio between best feasible solution

found and best lower bound.

Figure 7.5 show histograms of the gap between the baseline and the solutions

achieved by RUSH with the various levels. Table 7.1 reports median, upper quartile

and maximum values. It can be seen that going from 20 to 200 levels, the average

solution quality improves signi�cantly, even though the worst case is not improved by

much after 40 levels. From 200 levels upwards, result quality does not improve much

anymore. In fact, solution quality does even deteriorate marginally when going from

1000 to 4000 levels. This could be explained by the fact that in RUSH〈4000〉, individual

iterations are more expensive and therefore less iterations can be computed within

the given time limit.

7.5 Conclusion and Future Work

We have presented RUSH, an iterative heuristic to exploit �exibility in smart grids on

a large scale. We have shown that RUSH yields results with good quality in short time.

Still, this approach is research in progress.

108

Conclusion and Future Work Section 7.5

There are several directions that seem promising. First, RUSH can be improved

to yield even better results. Second, RUSH can be extended to be applicable to more

complex models. Finally, a more thorough evaluation of RUSH, and a direct comparison

against prior algorithmic approaches should be done.

To improve RUSH, we intend to �nd a smarter way of (randomly) selecting the

load to be moved in each iteration. Also, we did not yet pay any attention to the

solution RUSH starts with. Using a simple list scheduling heuristic instead of initially

scheduling every load at its release time might lead to faster convergence.

In terms of extending RUSH, the �rst thing that comes to mind is adding dependen-

cies between loads, i.e., allowing loads to only start after some predecessors �nished.

What needs to be done is to limit the feasible range of start candidates in Step 4 of

the algorithm presented in Section 7.3. Regarding the evaluation, while we show

that RUSH arrives at good solutions in very short time, solution quality and perfor-

mance should be directly compared to competing algorithmic solutions such as the

GRASP-based metaheuristic by Petersen et al. [Pet+14] or the PDM heuristic by Yaw

et al. [Yaw+14].

Finally, since our heuristic works iteratively, a technique like simulated annealing

to climb out of local optima seems applicable: After every iteration, one can decide to

accept the modi�ed solution or go back to the previous solution. A scheme in which

this decision is driven by some cool down factor as in simulated annealing might be

bene�cial.

109

8 Shaving Peaks by
Augmenting the Dependency Graph

Demand response (DR) is an important building block for future energy systems, since

it mitigates the non-dispatchable, �uctuating power generation of renewables. For

centralized DR to be implemented on a large scale, considerable amounts of electrical

demands must be scheduled rapidly with high time resolution. To this end, we present

the Scheduling With Augmented Graphs (SWAG) heuristic. SWAG uses simple,

e�cient graph operations on a job dependency graph to optimize schedules with a

peak shaving objective. The graph-based approach makes it independent of the time

resolution and incorporates job dependencies in a natural way. In a detailed evaluation

of the algorithm, SWAG is compared to optimal solutions computed by a mixed-integer

program. A comparison of SWAG to another state-of-the-art heuristic on a set of

instances based on real-word consumption data demonstrates that SWAG outperforms

this competitor, in particular on hard instances.

This chapter is based on joint work with Dorothea Wagner [BW19d].

8.1 Introduction

In large parts of the world, the electrical energy system is changing towards larger

shares of renewable generation. While this is highly desirable, it presents the main-

tainers of these systems with a new challenge: In the past, power generation could

be controlled and be made to match the power demand. Renewable power plants

can often not be controlled, �uctuate in generation and one must rely on uncertain

forecasts for wind and solar irradiation. There exist multiple strategies to still ensure

that generation matches demand, most notably energy storage, the expansion of the

transmission network and demand response (DR). Demand response is a general term

for techniques which in�uence the power demand at certain times to better match

what is generated. The U.S. Department of Energy [US 06] de�nes DR as “changes in

electric usage by end-use customers from their normal consumption patterns [. . .] to

induce lower electricity use at times of high wholesale market prices or when system

reliability is jeopardized.”

One way to categorize DR strategies is by how the customer is motivated to par-

ticipate, i.e., by the reward structure. Usual strategies include time-of-use tari�s or

�exibility auctions (see Siano [Sia14]). Another important dimension of DR techniques

is how the �exibility provided by the consumers is coordinated and controlled. One can

di�erentiate between indirect control (e.g. via time-of-use tari�s), decentralized control

(e.g. using decentralized algorithms), or direct load control, in which a central entity

111

Chapter 8 Shaving Peaks by Augmenting the Dependency Graph

controls a set of �exible electrical demands. This direct load control is the scenario we

focus on, without regard for how consumers are rewarded in this setting. We assume

that the electrical demands can be separated into discrete processes (or jobs), and that

these processes can be moved in time by the central controller. In this work, we do

not consider the possibilities that the demand of processes can be changed in their

shape or magnitude, or that certain processes could be shed altogether.

In an energy system with a high share of renewable generation, peak demand must

often be accommodated by rapidly responding, dispatchable conventional power plants

such as gas turbines, or large battery storage. Also, the transmission and distribution

networks must be dimensioned for peak demand. To reduce the costs for building

these networks and having this energy storage or generation capacity available, peak

shaving, i.e., reducing the maximal power demand as much as possible, is an important

optimization criterion. To achieve peak shaving, scheduling algorithms are necessary

which are able to schedule large amounts of loads quickly. Speed is essential for these

scheduling applications — not only because trading at energy exchanges happens at a

high pace, but also because it will be necessary to rapidly respond to changes in the

scheduling scenario as generation �uctuates unexpectedly or the set of processes that

need to be scheduled changes. Also, especially in scenarios re�ecting the processes of

large industrial plants, one has to expect and cope with large problem instances.

8.1.1 Our Contribution

We present the Scheduling With Augmented Graphs (SWAG) heuristic, a graph-SWAG
based scheduling algorithm for �exible electrical demands focused on industrial set-

tings. The algorithm is based on a job-dependency graph, which captures �nish-start

dependencies between the processes to be scheduled. This approach results in a much

smaller solution space than algorithms that directly work with start times have to

cope with. Also, this representation makes it possible to schedule with arbitrary time

resolution without impacting e�cient computation.

We provide an in-depth evaluation of our algorithm on instances that are based on

real-world consumption data. We demonstrate the utility of the algorithm on large

instances and compare it to a state-of-the-art algorithm by Petersen et al. [Pet+14] as

well as a mixed-integer program. We publish everything we implemented, including

the comparison algorithm as well as the mixed-integer program, and our test instance

set.

8.1.2 Related Work

The �eld of demand response has received much attention lately. Among the numerous

reviews of the �eld, a general survey is provided by Siano [Sia14], while Vardakas et

al. [VZV15] provide a survey with focus on the methodology for implementing DR. A

112

Preliminaries Section 8.2

survey with a stronger focus on the modeling of DR problems is provided by Deng et

al. [Den+15]. A review by Good et al. [GEM17] examines the challenges and enablers

that DR faces.

Scheduling problems aside from the smart grid have been looked into intensively

both by the computer science and the operations research community. The �eld of

computer science mostly focuses on machine scheduling, where discrete processes

must be assigned to machines. This �avor of scheduling sometimes comes in the form

of real-time scheduling. A review is given by Chen et al. [CPW98]. There are machine

minimization problems with the objective of scheduling a set of jobs on a minimum

number of machines. These are e�ectively a special case of the problem we consider,

namely the case where all jobs would have unit power demand. Such a problem is

�rst considered by Cieliebak et al. [Cie+04], who show its APX-hardness and also

give approximation algorithms for two special cases. Approximation algorithms for

further special cases are given by Yu and Zhang [YZ09].

The problem considered in this chapter is a special case of what in the operations

research community is known as the Resource Acqirement Cost Problem (RACP),

itself a special case of the Time-Constrained Project Scheduling Problem (TCPSP).

An overview over various project scheduling problems is provided by Węglarz [Węg99].

The RACP has �rst been tackled by Möhring [Möh84] and Demeulemeester [Dem95].

Recently, Guldemond et al. [Gul+08] use an ILP to solve a variant of RACP, while

Ranjbar [Ran13] uses a metaheuristic based on path relinking.

There also is a considerable amount of work on scheduling with special regards to

the smart grid. In Chapter 3, we provide an overview over various approaches based on

mathematical programming. One of the earliest works is by Hsu and Su [HS91], who

use a dynamic programming approach. While this technique yields optimal results, it

does not scale to large instances. For large instances, Petersen et al. [Pet+14] use a

metaheuristic to solve a problem similar to the one considered in this work. Yaw et

al. [Yaw+14] give two simple combinatoric algorithms for peak demand scheduling

problems with certain constraints. Logenthiran et al. [LSS12] use an evolutionary

algorithm to schedule large amounts of loads in a simulated scenario.

8.2 Preliminaries

This section formalizes the considered problem and introduces notation used through-

out the chapter.

8.2.1 The Problem

The problem under study in this chapter is the Single-Resource Acqirement Cost

Problem (S-RACP), which is a special case of the Resource Acqirement Cost

Problem (RACP).

113

Chapter 8 Shaving Peaks by Augmenting the Dependency Graph

release time ri deadline di

processing time pi

power usage ui}

}

Time

Figure 8.1: A graphical representation of a job in an S-RACP instance. With the release time,

deadline and processing time as given, the box can be moved within the two whiskers, while

the box’s height represents the job’s power demand.

An instance of S-RACP consists of a set J of jobs and a directed dependency graph G,job

dependency
graph

the latter of which captures �nish-start dependencies between the jobs to be scheduled.

We assume n to be the number of jobs, i.e., n = |J |. In the job set J = {j1, j2, . . . jn},
each job ji is a four-tuple: ji = (ri ,di ,pi ,ui) ∈ N×N×N×R. For job ji , the release timerelease time
ri states the earliest time at which ji can be executed. In turn, di states the deadline,deadline
i.e., the time at which ji must be �nished. The processing time pi indicates how long jiprocessing time
must be executed without interruption. Finally, ui speci�es the usage of ji , i.e., howusage
much power (the single resource of the project scheduling problem) ji requires. Such

a job is depicted in Figure 8.1. For the dependency graph G = (V ,E) we set V = J , i.e.,

we treat the jobs J as vertices. The edge-set E of G speci�es dependencies between

jobs: An edge (ja , jb) ∈ E indicates that jb can start only after ja has �nished.

Given such an instance, a schedule S is a set of start times, one for each job: S =schedule
(s1, s2, . . . sn) ∈ N

n
. Such a schedule is feasible if:

• Every job respects its limits, i.e., for all i ∈ {1, . . .n}, it holds that si ≥ ri and

si + pi ≤ di ,

• and dependencies are respected, i.e., if (ja , jb) ∈ E, then sa + pa ≤ sb .

For a (feasible) schedule, the demand at a point in time t is the sum of the power

demands of all jobs active during t . The peak demand is then the maximum over

all demands. A feasible schedule is an optimal schedule, if there is no other feasible

schedule with less peak demand. Formally, we state the S-RACP as follows:

Problem 2 (Single-Resource Acqirement Cost Problem (S-RACP)).S-RACP
Given a problem instance as J and G as de�ned above, �nd the feasible schedule S∗ with
the minimal peak demand.

The S-RACP problem as de�ned above can be classi�ed in the classi�cation scheme

by Herroelen et al. [HDD99] as 1|cpm, ρ j ,δ j |av .

114

Scheduling With Augmented Graphs Section 8.3

8.2.2 Notation

We now introduce some notation used throughout this chapter. First, we need a special

kind of schedules.

Given an S-RACP instance (as J and G), we can de�ne the left-shifted schedule that le�-shi�ed
corresponds to G as the schedule in which every job starts as early as possible.

De�nition 6 (Left-Shifted Schedule).
A schedule S = (s1, . . . sn) is a left-shifted schedule for the Single-Resource Acquire-
ment Cost Problem instance determined by J and G if for every ji ∈ J :

si = max ({sk + pk : (jk , ji) ∈ E} ∪ {ri })

Note that such a schedule can be computed from G by a simple topological sort

of G, which is equivalent to the well-known critical-path method (e.g., see [BK12],

Chapter 3).

Optimality. The algorithm we present works by gradually inserting edges into G.

The schedule computed is a left-shifted schedule of the modi�ed graph. Thus, the

solution computed by SWAG must always be a left-shifted schedule. It is therefore

interesting to show that for every S-RACP instance with G as dependency graph, there

exists a supergraph G of G (i.e., G = (J ,E ′) with E ′ ⊇ E), such that the left-shifted

schedule for G is an optimal schedule for the S-RACP instance.

Lemma 8.1 (Preservation of Optimality). Let J and G = (J ,E) be an instance of

S-RACP. Then there exists an optimal schedule that is a left-shifted schedule for some

dependency graph G = (J ,E ′) with E ⊇ E ′.

Proof. Let S∗ be an optimal schedule. Create G = (J ,E ′) such that (ja , jb) ∈ E
′

if and

only if job ja ends before jb starts, i.e., E ′ = {(ja , jb) : S∗a + pa ≤ S∗b }. Since S∗ is a

feasible schedule, this graph respects the dependencies in G, i.e., it holds that E ′ ⊇ E.

Now, let S ′ be the left-shifted schedule for G. The peak demand of S ′ can not be

lower than for S∗ by assumption of optimality. Assume that the peak demand of S ′ is

larger than that of S∗. Then there must be at least one pair of jobs jc and jd executing

concurrently in S ′ but not in S∗. However, if jc and jd do not execute concurrently

in S∗, there is by construction an edge between them in G, and they cannot execute

concurrently in S ′. �

8.3 Scheduling With Augmented Graphs

In this section, we describe the SWAG algorithm using pseudocode to illustrate. How-

ever, the description often omits implementation details, especially ways of imple-

menting the described methods in an e�cient way. We also publish our actual C++

115

Chapter 8 Shaving Peaks by Augmenting the Dependency Graph

implementation of SWAG, along with the competitor algorithms used in the evaluation.

See Section 8.5 on how to obtain our implementation. To simplify the description of

the algorithm, we assume the initial dependency graph G to be empty in the following.

The algorithm modi�es the edges ofG at various places. If the input instance does have

dependencies (i.e., if G is not empty), one only has to make sure never to delete any

of the edges of G. The SWAG algorithm has several parameters (see Section 8.5.2 for

how to choose them). Throughout this chapter, we always typeset SWAG’s parameters

underlined. See Table 8.2 for a full list of parameters.

During its execution, the SWAG algorithm holds and modi�es a dependency graph

G. From this graph results at every point during the execution a left-shifted schedule

as de�ned in De�nition 6. The start time of a job according to this left-shifted schedule

is referred to simply as the start of a job. Also from the graph results for each job a

latest �nish time, i.e., latest the time the job may be executing such that no job misses

its deadline. In the left-shifted schedule corresponding toG , there is some time interval

such that the cumulative demand of all jobs executing during that interval is maximal,

i.e., there is no other interval with a larger cumulative demand.
1

We call this interval

the peak range, and the power demand during this interval the peak demand.

The algorithm follows the well-known (e.g., see [Kol96]) pattern of working on a

representation for a schedule, and then applying a schedule generation scheme to create

a schedule from the representation. We use the graph G = (J ,E ′) as representation.

Then, we use the generation of a left-shifted schedule as described in Section 8.2.2

as schedule generation scheme. The main work lies in creating G such that the peak

demand is minimized. To this end, our algorithm starts with G = G and iteratively

adds edges to G, i.e., augments the graph.

In the following, we �rst give a high-level overview over SWAG in Section 8.3.1,

hiding much of the detail. We then present in sections 8.3.2 and 8.3.3 more detailed

descriptions of several aspects as well as some insights into how to make the algorithm

more e�cient.

8.3.1 Algorithm Details

We start the explanation of SWAG by giving a big picture overview, which is outlined

in Algorithm 1. The SWAG algorithm works in iterations, which corresponds to the

loop from line 2 to line 17. At the start of every iteration, S , the left-shifted schedule

that corresponds to the current dependency graph G, is computed (line 3). Together

with S , the earliest possible starts for every job admitted by G (variable start), and

thereby the start times of every job in the left-shifted schedule S , are computed. Also

computed is latestFinish, the latest possible �nishing time for every job, i.e., for every

job the latest point in time during which it can still execute without any job missing its

1
If there are multiple intervals with maximal power demand, one may choose one arbitrarily.

However, since the power demands are real numbers, this is highly unlikely.

116

Scheduling With Augmented Graphs Section 8.3

deadline. From these values, the algorithm then determines the peak range in the form

of peakBegin and peakEnd, and the jobs executing during peak demand (lines 4–5).

Algorithm 1: The SWAG Algorithm

Input: G : Dependency Graph

1 oriдinalG ← G;

2 while time limit not reached do
3 S, start , latestFinish ← leftShiftedSchedule(G);

4 peakBeдin,peakEnd ← determinePeakRange(S);

5 peak Jobs ← {j ∈ J | sj < peakEnd ∧ sj + pj > peakBeдin}
6 candidateEdдes ← {(u,v) |
7 u,v ∈ peak Jobs ∧
8 start[u] + pu > start[v] ∧
9 start[u] + pu + pv ≤ latestFinish[v]};

10 if |candidateEdдes | = 0 then
// The algorithm is blocked

11 newCandidateEdдe ← unblockByDeletion(peak Jobs);

12 if (deletionsSinceLastReset > deletionsBeforeReset)

13 or (newCandidateEdдe = Null) then
14 G ← oriдinalG; // Reset

15 else
16 e ← randomSelection(candidateEdдes);

17 G.insert(e);

At the core of every iteration, the algorithm now needs to determine which edge

to insert to extend a feasible schedule. We call the possible edges to be inserted edge

candidates. Inserting an edge candidate (ju , jv) is useful for reducing the current peak

demand if ju and jv execute concurrently within the current peak range (see lines 7, 8).

Inserting such an edge candidate would separate two jobs that currently contribute to

the peak demand. Among these useful edge candidates, an edge candidate (ju , jv) is

feasible if inserting (ju , jv) into G would make the left-shifted schedule of G a feasible

schedule, which is the case exactly if the duration of ju plus the duration of jv is not

greater than the time between the latest possible �nishing time for jv and the earliest

possible start time for ju (line 9). We only ever insert feasible edge candidates, thereby

making sure that the left-shifted schedule of G always stays feasible.

If at least one feasible edge candidate exists, the algorithm picks one at random,

inserts it and starts the next iteration. Note that we explored various strategies of

weighting this random selection, however empirically, picking one of the feasible

edge candidates uniformly gave the best results. If no feasible edge candidate exists,

we say the algorithm is blocked. This happens because edges inserted earlier cause

117

Chapter 8 Shaving Peaks by Augmenting the Dependency Graph

every useful edge candidate to become infeasible. Therefore, at least some of the

edges inserted earlier must be removed again. For this, there are two possibilities: The

algorithm can either reset G back to G (i.e., delete all inserted edges, lines 13–14), or

selectively �nd a small set of edges the deletion of which makes at least one useful

edge candidate feasible (line 11).

Algorithm 2: Pseudocode for the UnblockByDeletion function.

Input: peak Jobs : Set of jobs participating in peak demand

Output: (s, t) : Edge to delete

1 Function unblockByDeletion(peak Jobs)
2 for i ∈ {1, . . . , deletionTrials} do
3 s, t ←randomSelection(peak Jobs);

4 overlap ← duration[s] + duration[t] − (latestFinish[t] − start[s]);
5 delForwardSet ,deleteForwardMovement ←
6 findDeletionEdgesForward(t ,overlap);

7 delBackwardSet ,deleteBackwardMovement ←
8 findDeletionEdgesBackward(s,overlap);

9 if deleteForwardMovement + deleteBackwardMovement ≥ overlap
then

10 G.delete(delForwardSet ,delBackwardSet);

11 return (s, t);
12 return Null ;

8.3.2 Selecting Edges for Deletion

When the algorithm is blocked, it has run into a local minimum and must perturb the

current solution to climb out of the minimum. Before just restarting the algorithm,

the heuristic tries to �nd a small set of edges to delete to unblock the current situation.

Note that we stated earlier that we assume the initial graph G to be empty to simplify

the description of the algorithm. In fact, this step is the only step where one must pay

attention not to delete edges of G when �nding edges to be deleted.

SWAG does not just delete edges at random, but tries to �nd edges the deletion of

which likely unblocks the algorithm. The procedure to �nd such edges is outlined as

Algorithm 2.

The search for edges to be deleted works by iterating over the (infeasible) edge

candidates, i.e., edges that we would like to insert, but for which can not do so without

missing a deadline. The algorithm iteratively tries to make edge candidates between

two jobs in the peakJobs set feasible. The process to make an edge candidate (ja , jb)
feasible is a two-step process: First, it is determined by how much deadlines would

118

Scheduling With Augmented Graphs Section 8.3

be missed if (ja , jb) would be inserted into G. This is the overlap computed in line 4.

Note that since s and t are part of the peakJobs set and we did not �nd a feasible edge

candidate, the duration of both jobs must be greater than the time between the latest

possible �nishing time for t and the earliest possible start time for s — otherwise,

(js , jt) would be a feasible edge candidate. Thus overlap is always positive.

When selecting a set of edges to be deleted, the algorithm must ensure that deleting

the edges allows to move ja enough to the left and jb enough to the right, such that

the sum of both movements is at least overlap. If we delete such a set of edges, the

edge candidate (ja , jb) becomes feasible and we can insert (ja , jb), thereby separating

two jobs in the peakJobs set and completing an iteration of SWAG.

In line 6, the search for a set edges that can be deleted s.t. ja can be moved to the

left for up to overlap steps starts. The analog search is done for jb in line 8. If this �nds

two edge sets such that the total possible movement is at least overlap, the edges are

deleted and there is a new feasible useful edge candidate (ja , jb) (see lines 9–11). If not,

the algorithm tries to make a di�erent edge candidate feasible, for up to deletionTrials

trials.

The searches in lines 6 and 8 are equivalent, so we only describe �ndDeletionEdges-

Forward, outlined in Algorithm 3. The search is a depth-limited breadth-�rst search

on the edges of the graph. The search progresses iteratively, and at every time holds a

queue of edges that are to be deleted. We start with all outgoing edges of jb . In every

step, we remove the �rst edge from the queue, say that edge is (jx , jy). We then insert

all outgoing edges of jy into the queue, and therefore the set of edges to be deleted.

This way, the set of edges to be deleted progressively grows in size and distance from

jb . After every such replacement, we evaluate the quality of the current set of edges to

be deleted. The quality decreases the more edges the set contains, and if the resulting

possible movement of jb is less than overlap.

8.3.3 Optimizations

The heuristic as described so far is functional, but can bene�t from optimizations in

various places. We now describe three optimizations we implemented and evaluated.

For an insight into the e�ects these optimizations have, see Section 8.5.3.

Deferred Propagation. In Algorithm 1, at the beginning of each iteration (in lines 3

and 4), up-to-date values for the starts and latest �nishes of all jobs are needed, and

from this the peak demand is computed. See below for how to e�ciently compute the

peak demand. Here, we explain how to e�ciently retrieve starts and latest �nishes.

Instead of recomputing them at the start of every iteration, it is possible to maintain the

current start and latest �nish value for all jobs and update them as needed. Whenever

an edge (ja , jb) is inserted into G, such an update becomes necessary.

119

Chapter 8 Shaving Peaks by Augmenting the Dependency Graph

Algorithm 3: Pseudocode for the FindDeletionEdgesForward function.

Input: start Job : Job from which on to search for edges to be deleted

Input: overlap : Amount by which start Job should be moved to the left

Output: bestSolution : Best found set of edges to delete

Output: bestMovement : How much movement of start Job the deletion of the

edge set enables

1 Function findDeletionEdgesForward(start Job,overlap)
/* Entries are pairs of an edge and a depth. The initial

entry ((⊥, start Job), 0) is not a real edge, but is needed
to start the loop below with startJob. */

2 edдesToDelete ← makeList(((⊥, start Job), 0));
3 bestQuality ←∞;

4 while edдesToDelete .notEmpty() do
5 e,depth ← edдesToDelete .popFront();

6 (v,w) ← e;

7 if depth ≤ deletionMaxDepth then
/* One step in the edge BFS: Replace (v,w) with

outgoing edges of w. */
8 for f ∈ w .outдoinдEdдes do
9 edдesToDelete .pushBack((f ,depth + 1));

/* Pretend to remove edges to determine new latest
finishes */

10 G.removeEdges(edдesToDelete);

11 newLF ←computeLatestFinish (start Job);

12 G.insertEdges(edдesToDelete);

13 movement ← newLF − latestFinish[start Job];
14 quality ← |edдesToDelete | +

(undermovePenalty · max(0,overlap −movement));

15 if quality < bestQuality then
16 bestSolution ←markedEdдes;
17 bestQuality ← quality;

18 return bestSolution,bestMovement ;

120

Scheduling With Augmented Graphs Section 8.3

The update is done by propagating new starts throughout G, starting in jb , and

propagating new latest �nishes throughout the reverse graph of G starting in ja .

However, especially for large, dense graphs, doing this propagation after every inserted

edge is expensive.

Assuming that the current peak range does not change after an edge has been

inserted (i.e., we need to insert more edges to remove the current peak), the next

selected edge will be between two jobs overlapping the current peak range. Thus, in

this case it is su�cient to only propagate starts and latest �nishes to jobs overlapping

the current peak range. Since these jobs are close to ja and jb inG , this is an inexpensive

operation. We say we defer the full propagation. The algorithm records at which jobs

the propagation stopped, and continues the propagation as necessary.

Deferred propagation might cause the computation of the peak range at the be-

ginning of the an iteration to be incorrect — the peak could have moved to some

other place in the schedule, which is not detected because changes in starts have not

been propagated to the jobs that are involved in the new peak. To mitigate this, the

algorithm must do a full propagation every couple of iterations, which is determined

via the parameter completePropagationAfter.

Determining the peak demand. In Algorithm 1, at the beginning of each iteration

(in line 4), the peak value and peak range is determined from the job starts. The trivial

way of doing this would involve sorting all jobs by their start times, and then iterating

this list, keeping track of how much demand is active at which point. Doing this would

require O(n logn) time for the sorting step, which is too expensive.

Instead of recomputing peak demand and range each time it is required, we use a

dynamic segment tree as described by van Kreveld and Overmars [KO93] to e�ciently

maintain these values. For each job, we insert a segment with the length of the job’s

duration into the segment tree, with the start point corresponding to the job’s start

time. Whenever we update a job’s start time (see above), we also update the segment

in the dynamic segment tree, which can be done in O(logn) time. In [KO93], segments

in the segment tree are associated with some kind of segment ID, with the e�ect that

one can query which segments are active at a certain point. SWAG does not need

this functionality, but needs to e�ciently determine cumulative demands at certain

points. Thus, we instead associate every segment in the tree with the power demand

of the corresponding job. This way, the dynamic segment tree allows us to retrieve

the cumulative power demand at a speci�c point in time in O(logn) time. With some

additional annotations of the tree’s vertices, we can even retrieve the peak range and

the peak value in O(1) time.

Batched Edge-Candidate Generation. In Algorithm 1, line 6, we determine all

feasible edge candidates between two jobs executing during the peak range. For large

121

Chapter 8 Shaving Peaks by Augmenting the Dependency Graph

instances, this set can become very large, thus expensive to compute. We therefore

apply two optimizations: First, we only recompute the set of feasible edge candidates

when necessary, i.e., when the peak range changes. Second, we do not compute the

whole set at once. Usually, it will be su�cient to insert few edges to remove the current

peak and shift the peak range somewhere else. Therefore, we �rst only generate a small

batch of feasible edge candidates, generating more on demand when the generated

candidates are depleted and the peak range has not shifted.

8.4 Competitor Algorithm: GRASP

We implemented the scheduling heuristic by Petersen et al. [Pet+14] to compare SWAG

to. The algorithm described in that work is a combination of a metaheuristic called

greedy randomized adaptive search procedure (GRASP) and a simple local search in the

form of a hill climber. For simplicity reasons, we refer to the combination of both

algorithms as GRASP in this chapter.

The authors present and evaluate multiple variants of their algorithm. We imple-

mented and evaluated all variants, most notably the sorted and random variants of

the GRASP step, as well as the uniform and the weighted variants of the hill climber.

An in-depth discussion on how we chose which parameters and why is given in

Section 8.5.2.

The GRASP algorithm cannot originally cope with release times and dependencies.

However, both constraints are straightforward to add. GRASP works by iteratively

trying to place jobs at a di�erent time within the time window the respective job is

allowed to run in. To incorporate dependencies and release times, one must only make

sure to correctly constrain this window by the release time and possible predecessor

or successor jobs. Also, in their work, Petersen et al. use GRASP to optimize for a

slightly di�erent objective. However, since GRASP is a metaheuristic, the objective

can be switched without any changes to the actual algorithm.

We performed tuning on the GRASP algorithm as described in Section 8.5.2, and

found several surprising insights. First, we consistently got better results when using

the random variant instead of the sorted variant, which stands in contrast to what the

original GRASP authors found (see Table IV in [Pet+14]). This could be explained by

the fact that our instances are larger than the test instances in [Pet+14], thus sorting

consumes more time in our case. For the random GRASP variant, the uniform hill

climber consistently outperformed the weighted variant in our tests, while the results

in [Pet+14] seem to favor the weighted variant. The optimal parameters determined by

our tuning are shown in Table 8.1. Consistent with the �ndings in [Pet+14] is that the

smallest possible values are chosen form and l , while rather high values are chosen

122

Evaluation Section 8.5

Table 8.1: Chosen parameters for GRASP. Corresponds to Table IV in [Pet+14].

Parameter Value

m 1

l 1

n 200

Hill Climber Iterations 10

Hill Climber Type uniform

GRASP Type random

for the number of hill climber iterations.
2

This means that e�ectively, the hill climber

does the main part of the algorithm’s work.

To make the comparison between SWAG and GRASP as fair as possible, we imple-

mented all parts that need access to (peak) demands once as a simple array-based

approach, of which we assume that the authors of [Pet+14] use it, and once using

the dynamic segment tree that we also use for our SWAG implementation. During

our tuning, the dynamic-segment-tree based approach consistently outperformed the

array-based variant, thus we used it for the evaluation.

8.5 Evaluation

We performed three kinds of evaluation of the SWAG algorithm: First, we compared the

solutions computed by SWAG to near-optimal solutions computed by a mixed-integer

program (MIP) on small instances, on which MIPs are still a feasible solution technique.

Then, we investigated the in�uence that various SWAG parameters and properties of

the instances have on the computed solution quality. Finally, we compared SWAG to

the GRASP algorithm by Petersen et al. [Pet+14].

All experiments have been executed on machines with Intel
®

Xeon
®

E5-2670 CPUs

with 16 cores and 64 GBs of RAM. The MIPs were solved by Gurobi 7.0.2, running one

solver with 16 threads for 30 minutes. For the SWAG and GRASP heuristics, we always

ran 15 experiments in parallel and used a time limit of 5 seconds for all experiments.

Code and Data Publication. All our code, including the implementations of SWAG,

GRASP and the mixed-integer linear program, as well as all test instances are publicly

available as a separate data publication [BW19a]. While that publication contains a

snapshot of the code used for this publication, a more recent version of the optimization

software can be found at

2
In [Pet+14], the authors use a time limit instead of an iteration limit for the hill climber. We used

an iteration limit for �ner control.

123

Chapter 8 Shaving Peaks by Augmenting the Dependency Graph

https://github.com/kit-algo/TCPSPSuite/.

8.5.1 Instance Sets

We used a total of three sets of instances to evaluate SWAG: A set of small instances,

called Ismall, to compare SWAG to the MIP, since the MIP is not able to cope with

larger instances. Second, a set of large instances, called Ilarge to compare SWAG

to GRASP. Optimization complexity for an Single-Resource Acqirement Cost

Problem instance is not only driven by the number of jobs, but also by the jobs’

window sizes, since the size of the solution space increases with more possibilities to

place a job. Therefore, we generated a third set of instances with larger window sizes,

called Iwindow.

All sets were generated based on the HIPE data set by Bischof et al. [Bis+18], which

was obtained from a small-scale electronics factory at the Institute for Data Processing

and Electronics at the Karlsruhe Institute of Technology. A detailed description of

that data set can be found in [Bis+18]. From this factory data, we got power demand

time-series from six machines, with sub-minute resolution. The machines are a chip

press, a screen printer, a vacuum oven, a high temperature oven, a soldering machine

and a chip washing machine.

In a �rst step, we detected patterns (which we call processes) in this data using

a technique adapted from Ludwig et al. [Lud+17]. The technique is very similar to

the technique described by Ludwig et al. [Lud+19b] for their benchmark data set

generation. This pattern recognition subdivides every time series into sequences. Each

sequence is a consecutive series of points in the time series and belongs to exactly

one process. The sequences belonging to a process are the occurrences of a process. In

total, we detected 16 di�erent processes in the input data.

From these detected patterns, a representation is built for each process based on

probability distributions. Each occurrence of a process is characterized by three pa-

rameters: The duration of the occurrence, the energy consumed during the occurrence

and the time of day that the occurrence started at. Thus, the set of occurrences of a

process results in a set of three-dimensional points.

Initial experiments revealed that for the duration and the consumed energy, a normal

distribution is a good �t. Therefore, for each process, a bivariate Gaussian Mixture

Model (GMM) was �t to the duration and energy components of the process’ point

set. We used a mixture model since we assume that the same process can be run in

di�erent modes, which would be captured by the mixture model having more than

one component. The start time is not represented well by a normal distribution. We

still assume that there might be several points of time in a day around which a process

is usually started. Therefore, the start times of a process were �rst clustered using the

124

https://github.com/kit-algo/TCPSPSuite/

Evaluation Section 8.5

DBSCAN
3

algorithm [Est+96]. Then, the 0.1 and 0.9 quantile of every cluster were

determined and taken as the lower respective upper limit of a uniform distribution.

This results in one uniform distribution per cluster. The uniform distributions were

weighted by the number of points in the respective cluster.

To generate a job as de�ned in Section 8.2.1, release time, deadline, duration and

power demand are necessary. First, select one of the detected processes by a weighted

selection, with weights being the number of occurrences of each process. Then, draw

one sample of duration and energy from the corresponding GMM. The duration be-

comes the duration of the new job, the power demand is determined by the drawn

energy divided by the duration. To draw a start time, �rst select one of the uniform

start-time distributions of the selected process by their weight, then draw from that

distribution. Finally, the deadline must be determined, which is equivalent to deter-

mining the window size. We assume that there is a certain �exibility immanent to the

process we have created the job from. We assume that this �exibility is correlated with

the di�erence between the maximum and minimum of the uniform distribution that

we drew the start time from, therefore this di�erence becomes the �rst component of

the window size. Additionally, we suppose that there is additional �exibility, which

can not be seen from the data at hand, since in the past, no e�ort has been made to

shift the processes in time. Therefore, draw a second component of the window from

a normal distribution the parameters of which must be set. We call this amount the

window growth, and the �nal window size is the sum of the span of the start-time

normal distribution and the window growth.

With this approach, we generated the following three sets:

Large Instance Set. For the large instance set Ilarge, we did everything as described

above, and generated between 500 and 1500 jobs per instance, for a total of 300 jobs.

For the window growth distribution, we used a mean value of 100 minutes and a

standard deviation of 20 minutes. All instances have a time horizon of �ve days, in

one minute resolution.

Small Instance Set. For the small instance set Ismall, we did everything as for Ilarge,

only that we limited the number of jobs to between 50 and 150, and set the time

horizon to 3 days. We generated a total of 200 instances.

Window Instance Set. The window instance set Iwindow is used to evaluate the

e�ect that larger window sizes have on the performance of SWAG. To this end, we

generated an instance set equal to Ilarge, with the only exception that we used a mean

value of 500 minutes for the window growth parameter.

3
With ϵ such that occurrences starting 30 minutes from each other are considered to be close, and a

minimum number of 5 points per dense region.

125

Chapter 8 Shaving Peaks by Augmenting the Dependency Graph

8.5.2 Parameter Tuning

Both the SWAG and the GRASP algorithm need to be parameterized. To have a fair

comparison, we determined both parameter sets using the same technique, which we

outline in this section. A systematic technique is necessary since both algorithms

have a parameter space which is far too large to select satisfying parameters by just

eyeballing results. We describe the technique we use in an abstract way, uncoupled

from the actual algorithms we tune.

Let P = {ρ1, ρ2, . . . ρk }, ρi ∈ R be a set of (numeric) parameters for some algorithm.

We start by computing a grid search on P . For every ρi , we select a set of li possible

values Γi = {γi,1,γi,2, . . .γi,li }. The Γi are chosen somewhat arbitrary — however, we

try mostly regularly spaced values in a range we consider reasonable, and add some

more extreme values on both ends of the range to check whether our reasoning was

wrong. The idea is that if the optimal value for a ρi falls outside of the range of values

in Γi , one of the two extreme values at its ends should be chosen. In this case, we

repeat the tuning with an adjusted Γi . All the Γi form a set of possible con�gurations

C = Γ1 × Γ2 × Γ3 . . . Γk . We run the algorithm to be tuned with every con�guration in

C on each of the instances in the respective instance set.

From the set of results of this grid search, we must now select a good con�guration. A

good con�guration is one that not only produces good results, but which is also similar

to other con�gurations that produce good results. If a con�guration produces good

solutions, but all similar con�gurations don’t, then it is highly likely that either this is

a measurement error, e.g, because of random noise, or that this con�guration over-�ts

the instance set. Therefore, we score con�gurations in a two-step process. First, we

compute for every con�guration a preliminary score solely based on the performance

of that con�guration, and then adjust this score by the scores of similar con�gurations

to create the �nal score. We start by normalizing all solution qualities to the best

solution quality computed on the respective instance. Then, for every con�guration,

we add up the normalized qualities for all instances. Thus, a con�guration giving the

best solution for all instances, in a set of k instances, would get a preliminary score of

k . A con�guration that consistently always is worse than the optimum by a factor of

2 would get a preliminary score of 2k .

To de�ne the distance of two con�gurations, we use the L1 distance, also knows as

Manhattan distance. Let P and Q be two con�gurations, then dist(P ,Q) =
∑

i |Pi −Qi |.

The in�uence of a neighboring solution decreases quadratically with distance, and we

set the total weight of the neighboring solutions in a con�guration’s �nal score to 0.3,

thus

�nal(P) = 0.7 · preliminary(P) + 0.3
∑

Q ∈C,Q,P

preliminary(Q)

dist(P ,Q)2
N

with N being a normalization factor of N =
∑

Q ∈C,Q,P dist(P ,Q)2. We �nally select

the con�guration with the smallest �nal score.

126

Evaluation Section 8.5

Table 8.2: Chosen parameters for SWAG. We use separate parameter sets for the set of small

instances and the sets of large instances.

Value for set(s)

Parameter Ismall Ilarge, Iwindow

deletionTrials 300 400

completePropagationAfter 0 0

deletionsBeforeReset 150 300

deletionMaxDepth 0 1

batchsize 7 6

undermovePenalty 5 10

The results of tuning SWAG can be found in Table 8.2. Note that we use separate

sets of parameters for small and large instances. The tuned parameters of GRASP can

be found in Table 8.1. Since we use GRASP only on the large instances, there is only

one set of parameters here.

8.5.3 SWAG analysis

This section presents a �rst analysis of SWAG, starting by comparing results for the

Ismall instance set computed by SWAG to results computed using a mixed-integer linear

program (MIP) adapted from Chapter 3. The MIP was optimized for 1800 seconds

using 16 parallel threads, while SWAG was executed for 5 seconds in a single thread.

The MIP found optimal solutions for 97 of the 200 instances, and closed the MIP gap to

within 5% for 178 instances. While these numbers look good, increasing the amount

of time spent on MIP optimization does not allow us to optimize signi�cantly larger

instances using the MIP, since the major limiting factor for optimizing larger instances

using the MIP is memory consumption.

Figure 8.2 shows a dot for every instances in Ismall, where the x coordinate speci�es

the number of jobs in the instance, and the y coordinate speci�es the peak value of

the SWAG solution divided by the peak value of the MIP’s solution.

We see that on Ismall, SWAG computed the optimal solution within 5 seconds on

many instances, especially on the smaller ones. In total, 99 instances were solved

to optimality by SWAG. Of the 100 instances with less that 100 jobs, 63 were solved

to optimality. As the instances grow in size, more instances could not be solved to

optimality anymore by SWAG, with the factor between the MIP solution and the SWAG

solution reaching 24% in the worst case.

127

Chapter 8 Shaving Peaks by Augmenting the Dependency Graph

Figure 8.2: Quality computed by SWAG

compared to MIP solution on Ismall, ordered

by number of jobs in the instance.

Figure 8.3: Convergence speed of SWAG.

The y axis indicates the quality of the best

found solution at a certain point in time rel-

ative to the best solution found after 10 sec-

onds. The blue line is the median over all

instances, the shaded area indicates the 0.1 /

0.9 quantiles.

Parameter Impact

We now investigate how the change of various parameters impacts the performance

of SWAG. This analysis is done on the Ilarge instance set. Note that the time resolution

of the instance does not a�ect the SWAG performance, as SWAG is purely based on

dependencies, this is why we do not evaluate it. Many other approaches, such as the

(discrete-time) MIP approach, is in�uenced by time resolution.

Looking at the — according to the tuning — optimal choice for the parameter

completePropagationAfter (see Table 8.2 and Section 8.3.3), deferred propagation is

turned o� in the optimal parameter set. Thus, we conclude that the disadvantage of

not having the correct peak range at every point in time outweighs the advantage of

not having to update all starts and latest �nishes every time.

Similarly, the choice for deletionMaxDepth (see Algorithm 3) limits the depth of

the edge breadth-�rst-search used to search for edges to be deleted to 1 on the large

instances, which makes the BFS very shallow. On small instances, it is even set to 0. It

stands to reason that always setting the parameter to 0, which would result in simply

always picking the incoming (resp. outgoing) edges of s (resp. t) in Algorithm 2 would

not impair quality too much.

To summarize these two �ndings, we can conclude that often, simplicity and not

doing too much work seems to be a decisive advantage.

128

Evaluation Section 8.5

Figure 8.4: Fraction of run time spent on

�nding feasible edge candidates

Figure 8.5: Histogram of the relative score

of GRASP compared to SWAG on Ilarge.

Convergence Speed

We look into how fast the solutions found by SWAG converge. We performed this

analysis on the Ilarge instance set, using a maximum run time of 10 seconds. Every 0.1

seconds, we sampled the currently found best solution. After the run was completed,

we normalized the solution qualities of all samples taken during that run by the �nal

solution quality of the respective run, i.e., a value of 1.1 would indicate a solution that

is 10% worse than the solution found after 10 seconds.

Figure 8.3 shows the results. The blue line indicates the median value over all

instances, while the shaded bands indicate the 0.9 and 0.1 quantiles, i.e., only 10%

of the runs fall above or below the blue band. We can see that already with the �rst

samples after 0.1 seconds, we were usually reasonably close to the �nal solution, to

within about 8% in the median. After 2 seconds, we can expect to be within 2% of the

�nal solution, after 4 seconds within 1%. Thus, the choice of using 5 seconds as run

time for all other experiments seems justi�ed.

Complexity of Algorithm Parts. We now present a deeper insight into where the

SWAG algorithm spends the majority of its time. Figure 8.4 shows the fraction of the

total run time that SWAG spent on �nding feasible edge candidates by instance size,

roughly corresponding to lines 6 to 9 in Algorithm 1. We see that this is the most

expensive step, needing up to 60% of the total run time. We also see that the necessary

time increased with instance size. This is not surprising, since the size of the peakJobs

set generally increases with the number of jobs, and the number of edges that must be

checked for feasibility is quadratic in the size of this set.

129

Chapter 8 Shaving Peaks by Augmenting the Dependency Graph

Figure 8.6: Comparison between SWAG and

GRASP by job count, on Ilarge. Every dot is

one instance. The y coordinate corresponds

to the solution computed by GRASP divided

by the solution computed by SWAG.

Figure 8.7: Comparison between SWAG and

GRASP by job count, on Iwindow. Every dot is

one instance. The y coordinate corresponds

to the solution computed by GRASP divided

by the solution computed by SWAG.

8.5.4 Comparison SWAG vs. GRASP

We now present how SWAG compares to GRASP on the instance set Ilarge with pa-

rameters chosen as shown in tables 8.1 and 8.2. Figure 8.5 shows a histogram of the

solution qualities computed by GRASP relative to the respective solution computed by

SWAG. The value on the x axis states by which factor the peak demand computed by

GRASP is worse than the peak demand computed by SWAG, the y axis just counts the

instances. We see that there are some instances in which GRASP performed slightly

better than SWAG, in the best case by about 18%. For 268 of 300 instances, SWAG

outperformed GRASP, by a factor of up to 3. Figure 8.6 shows the results by number

of jobs in the instance. We can see that with increasing instance size, the advantage of

SWAG over GRASP grows rapidly. SWAG computed better results than GRASP on all

instances with more than 670 jobs.

Besides instance size, the complexity of Single-Resource Acqirement Cost

Problem is mainly driven by the window sizes of the jobs, as larger windows increase

the solution space. We examined the behavior of SWAG on instances with larger

window sizes on the instance set Iwindow, see Section 8.5.1 on how we enlarged the jobs’

windows. The performance of SWAG compared to GRASP is depicted in Figure 8.7.

Here, we see that starting at an instance size of around 600, the advantage of SWAG

over GRASP grows drastically, up to a factor of almost 20 for the largest instances.

Comparing Figure 8.6 and Figure 8.7, SWAG’s better scalability in terms of instance

size seems to be reinforced by instances with larger window sizes.

130

Conclusion Section 8.6

8.6 Conclusion

In this chapter we have presented SWAG, a heuristic to schedule large amounts of time-

�exible loads in a smart grid. SWAG uses a graph-based representation, which makes

it independent of the time resolution and allows to incorporate process dependencies.

We evaluated SWAG on benchmark instances derived from real-world energy time

series, showing SWAG to be very e�cient in this use case. Our evaluation also shows

that SWAG outperforms GRASP on this energy-related data set, especially on larger

instances and instances with large window sizes. On small instances, SWAG could

demonstrate its e�ectiveness by solving a large portion of the instances to optimality.

We could also demonstrate that the solutions found by SWAG converge within few

seconds.

In the future, it would be interesting to apply SWAG to more general scheduling

scenarios, such as settings in which processes’ power demand changes over time. Also,

we have seen that the two main factors determining the complexity of an Single-

Resource Acqirement Cost Problem instance are the instance size and the jobs’

window sizes. Therefore, further research into what realistic scheduling scenarios in a

smart grid would look like — especially in terms of window sizes — is necessary. Also,

we determined that SWAG spends large parts of the work in determining feasible edge

candidates. Finding a more e�cient way of doing this would further increase SWAG’s

e�ciency.

In conclusion, we believe that SWAG can be used as a building block of a future

energy system, helping to schedule loads and shaving peaks.

131

Part III

Algorithmic Foundations

9 E�iciently Finding Peaks Using
Dynamic Segment Trees

In this chapter, we introduce zipping segment trees, a special form of dynamic segment

trees, which can be used to e�ciently determine the location and magnitude of demand

peaks in schedules. We utilize the recently introduced zip tree data structure. This

task is closely related to that of performing a stabbing query.

Stabbing queries in sets of intervals are usually answered using segment trees.

A dynamic variant of segment trees has been presented by van Kreveld and Over-

mars [KO93], which uses red-black trees to do rebalancing operations. This chapter

presents zipping segment trees — dynamic segment trees based on zip trees, which

were recently introduced by Tarjan et al. [TLT19]. To facilitate zipping segment trees,

we show how to uphold certain segment tree properties during the operations of a

zip tree. We present an in-depth experimental evaluation and comparison of dynamic

segment trees based on red-black trees, weight-balanced trees and several variants

of the novel zipping segment trees. Our results indicate that zipping segment trees

perform better than rotation-based alternatives.

This chapter is based on joint work with Dorothea Wagner [BW20b].

9.1 Introduction

A common task in computational geometry, but also many other �elds of application,

is the storage and e�cient retrieval of segments (or more abstract: intervals). In this

thesis, we require such a data structure for the heuristics presented in chapters 7 and 8,

where we use it to localize the demand peak in a given schedule. The question of

which data structure to use is usually guided by the nature of the retrieval operations,

and whether the data structure must by dynamic, i.e., support updates.

For scheduling algorithms, the concrete task is to determine all jobs that run at a

speci�ed time t , which amounts to a classic so-called stabbing query in an interval stabbing query
storing data structure. Such a stabbing query can be formulated as follows: Given a

set of intervals on R and a query point x ∈ R, report all intervals that contain x .

For the static case, a segment tree is the data structure of choice for this task. It segment tree
supports stabbing queries in O(logn) time (with n being the number of intervals).

Segment trees were originally introduced by Bentley [Ben77]. While the classic

segment tree is a static data structure, i.e., is built once and would have to be rebuilt

from scratch to change the contained intervals, van Kreveld and Overmars present a

dynamic version [KO93], the so-called dynamic segment tree (DST). dynamic
segment tree

135

Chapter 9 E�iciently Finding Peaks Using Dynamic Segment Trees

Dynamic segment trees are applied in many �elds. Solving problems from compu-

tational geometry certainly is the most frequent application, for example for route

planning based on geometry [EJW05] or labeling rotating maps [GNR16]. However,

DSTs are also useful in other �elds, for example internet routing [CL07].

To apply the dynamic segment tree to scheduling problems, we treat a job in a

schedule as an interval between its starting and �nishing point, and associate the

intervals with a weight, i.e., the (in the simplest case single-resource) demand of the

corresponding job. We store these intervals in a dynamic segment tree that we extend

with an additional annotation at every node. This annotation allows us to determine

the peak demand as well as the time interval during which the peak demand occurs in

O(1).

In this chapter, we present an adaption of dynamic segment trees, so-called zippingzipping segment
trees segment trees. Our main contribution is replacing the usual red-black-tree base of

dynamic segment trees with zip trees, a novel form of balancing binary search trees

introduced recently by Tarjan et al. [TLT19]. On a conceptual level, basing dynamic

segment trees on zip trees yields an elegant and simple variant of dynamic segment

trees. Only few additions to the zip tree’s two rebalancing methods are necessary.

On a practical level, we can show that zipping segment trees outperform dynamic

segment trees based on red-black or weigh-balanced trees in our experimental setting.

We start this chapter by sketching some necessary concepts in Section 9.2. We

then outline the operations of dynamic segment trees in Section 9.3. In Section 9.4 we

introduce zipping segment trees, our main contribution. We experimentally compare

traditional dynamic segment trees to our new zipping segment trees in Section 9.5.

9.2 Preliminaries

In this chapter we discuss data structures built upon balanced binary search trees. In

this section we introduce the terminology necessary to formally specify these data

structures.

A (rooted) binary tree is a connected graph consisting of nodes and edges, where onebinary tree
node is chosen as root. Every node except the root has one incoming edge, connectingroot
the node to its parent. Every node has up to two outgoing edges, connecting it to upparent
to two children. Nodes without any outgoing edges are called leaves. A tree does notchildren

leaf contain any cycles, thus for two nodes a, b, the path between a and b exists (because

of connectedness) and is unique. We call the length of the unique path from the root to

a node a the depth of a. For two nodes a, b, we de�ne the lowest common ancestor of adepth

lowest common
ancestor

and b, written as LCA(a,b), to be the node on the path from a to b with the smallest

depth.

A tree is ordered if we label one of its outgoing edges to be left and the other oneordered tree
to be right. For ordered trees, we use the notation L(v) to refer to the left child of v

136

Preliminaries Section 9.2

and R(v) to refer to the right child of v . If one of the children is missing, we write that

L(v) = ⊥ resp. R(v) = ⊥. We sometimes also need to explicitly reference the outgoing

edges instead of the children, especially when edges are annotated. We denote the left

outgoing edge of v as ®L(v) and the right outgoing edge of v as ®R(v). An ordered tree

induces a tree order on the nodes. In this order, we say a node a comes before node b tree order
if and only if the path from LCA(a,b) to a starts with (LCA(a,b),L(LCA(a,b)), . . .) or
the path from LCA(a,b) to b starts with (LCA(a,b),R(LCA(a,b)), . . .).

If the nodes of an ordered binary tree are associated with ordered values, for example

values from R, the tree can form a search tree. We call the associated value of a node v search tree
its key. An ordered binary tree is a search tree if it has the property that the left child key
(if present) of any node v always has a smaller-or-equal key as v , and the right child

always has a key larger than that of v . This is equivalent to the order of the nodes

in terms of keys being the same as the tree order of the nodes. In such a search tree,

every possible key value, even values that are not associated with any node in the

tree, has a search path. This path is constructed by starting with the root, and then search path
repeatedly descending to the left if the search key is smaller-or-equal than the current

node’s key, or right otherwise.

A common operation used in rebalancing search trees without changing the node

order is a node rotation. Figure 9.2 displays a counter-clockwise rotation around node rotation
a. After the rotation, the former right child of a, node c , is a’s new parent, and the

former left child of c (if any) is the new right child of a.

A concept we need for zip trees are the two spines of a (sub-) tree. We also talk spine
about the spines of a node, by which we mean the spines of the tree rooted in the

respective node. The left spine of a subtree is the path from the tree’s root to the

previous (compared to the root, in tree order) node. Note that if the root (call it v)

does is not the overall smallest node, the left spine exits the root left, and then always

follows the right child, i.e., it looks like (v,L(v),R(L(v)),R(R(L(v))), . . .). Conversely,

the right spine is the path from the root node to the next node compared to the root

node. Note that this de�nition di�ers from the de�nition of a spine by Tarjan et

al. [TLT19].

9.2.1 Union-Copy Data Structure

Dynamic segment trees in general carry annotations of sets of intervals at their vertices

or edges. These set annotations must be stored and updated somehow. To achieve the

run time guarantees in [KO93], van Kreveld and Overmars introduce the union-copy union-copy
data structure to manage such sets.

Sketching this data structure would be out of scope for this chapter. It is constructed

by intricately nesting two di�erent types of union-�nd data structures: a textbook

union-�nd data structure using union-by-rank and path compression (see for example

Seidel and Sharir [SS05]) and the UF (i) data structure by La Poutré [La 90].

137

Chapter 9 E�iciently Finding Peaks Using Dynamic Segment Trees

For this chapter, we just assume this union-copy data structure to manage sets of

items. It o�ers the following operations
1
:

createSet() Creates a new empty set in O(1).

deleteSet() Deletes a set in O(1+k · FN (n)), where k is the number of elements in the

set, and F (n) is the time the �nd operation takes in one of the chosen union-�nd

structures.

copySet(A) Creates a new set that is a copy of A in O(1).

unionSets(A,B) Creates a new set that contains all items that are in A or B, for two

disjunct sets A and B, in O(1).

createItem(X) Creates a new set containing only the (new) item X in O(1).

deleteItem(X) Deletes item X from all sets in O(1 + k), where k is the number of

sets X is in.

9.3 Dynamic Segment Trees

This section recapitulates the workings of dynamic segment trees as presented by

van Kreveld and Overmars [KO93] and outlines some extensions. Before we describe

the dynamic segment tree, we shortly describe a classic static segment tree and the

segment tree property. For a more thorough description, see de Berg et al. [Ber+08,segment tree
property page 10.2]. Segment trees store a set I of n intervals. Let x1,x2, . . . x2n be the ordered

sequence of interval end points in I. For the sake of clarity and ease of presentation,

we assume that all interval borders are distinct, i.e., xi > xi+1. We also assume all

intervals to be closed. See Section 9.3.2 for the straightforward way of dealing with

equal interval borders as well as arbitrary combinations of open and closed interval

borders.

In the �rst step, we forget whether an xi is a start or an end of an interval. The

intervals

(−∞,x1), [x1,x1], (x1,x2), [x2,x2], . . . (x2n−1,x2n), [x2n ,x2n], (x2n ,∞)

are called the elementary intervals of I. To create a segment tree, we create a leafelementary
intervals node for every elementary interval. On top of these leaves, we create a binary tree.

The exact method of creating the binary tree is not important, but it should adhere to

some balancing guarantee to provide asymptotically logarithmic depths of all leaves.

1
The data structure presented by van Kreveld and Overmars provides more operations, but the ones

mentioned here are su�cient for this chapter.

138

Dynamic Segment Trees Section 9.3

x1

x2

x3

x4

x5

x6

A

B

C

B B
B

Figure 9.1: A segment tree (top) for three intervals (bottom). The middle shows the elementary

intervals. Note that the green intervals do actually contain just one point and are only drawn

fat so that they can be seen. The nodes marked with B are the nodes that carry the annotation

for interval B.

Such a segment tree is outlined in Figure 9.1. The lower box indicates the three

stored intervals and their end points x1, . . . x6. The middle box contains a visualization

of the elementary intervals, where the green intervals are the [xi ,xi] intervals (note

that while of course they should have no area, we have drawn them “fat” to make

them visible) while the blue intervals are the (xi ,xi+1) intervals. The top box contains

the resulting segment tree, with the square nodes being the leaf nodes corresponding

to the elementary intervals, and the circular nodes being the inner nodes.

We associate each inner node v with the union of all the intervals corresponding to

the leaves in the subtree below v . In Figure 9.1, that means that the larger red inner

node is associated with the intervals [x2,x3), i. e., the union of [x2,x2] and (x2,x3),

which are the two leaves beneath it.

Recall that a segment tree should support fast stabbing queries, i.e., for any query

point q, should report which intervals contain q. To this end, we annotate the nodes

of the tree with sets of intervals. For any interval I , we annotate I at every node v
such that the associated interval of v is completely contained in I , but the associated

interval of v’s parent is not. In Figure 9.1, the annotations for B are shown. For

example, consider the larger green node. Again, its associated interval is [x2,x3),

which is completely contained in B = [x2,x4]. However, its parent is associated with

[x1,x3), which is not contained in B. Thus, the large red node is annotated with B.

A segment tree constructed in such a way is semi-dynamic. Segments cannot be

removed, and new segments can be inserted only if their end points are already end

points of intervals in I . To provide a fully dynamic data structure with the same

properties, van Kreveld and Overmars present the dynamic segment tree [KO93]. It

relaxes the property that intervals are always annotated on the topmost nodes the

139

Chapter 9 E�iciently Finding Peaks Using Dynamic Segment Trees

associated intervals of which are still completely contained in the respective interval.

Instead, they propose the weak segment tree property: For any point q and any intervalweak segment
tree property I that contains q, the search path

2
of q in the segment tree contains exactly one node

that is annotated with I . For any q and any interval J that does not contain q, no node

on the search path of q is annotated with J . Thus, collecting all annotations along the

search path of q yields the wanted result, all intervals that contain q. It is easy to see

that this property is true for segment trees: For any interval I that contains q, some

node on the search path for q must be the �rst node the associated interval of which

does not fully contain q. This node contains an annotation for I .
Dynamic segment trees also remove the distinction between leaf nodes and inner

nodes. In a dynamic segment tree, every node represents an interval border. To insert

a new interval, we insert two nodes representing its borders into the tree, adding

annotations as necessary. To delete an interval, we remove its associated nodes. If

the dynamic segment tree is based on a classic red-black tree, both operations might

require rotations to rebalance the tree. If annotations were not to be �xed after a

rotation, such a rotation could cause the weak segment tree property to be violated.

Also, the nodes removed when deleting an interval might have carried annotations,

which also potentially violates the weak segment tree property.

We must thus �x the weak segment tree property during rotations. We must also

make sure that any deleted node does not carry any annotations, and we must specify

how we add annotations when inserting new intervals.

9.3.1 Red-Black Tree Operations

In this subsection, we provide details on how annotations can be repaired after red-

black trees (or other rotation-based balancing binary search trees) have been rebal-

anced.

Since this simpli�es notation, we change the notation of annotations: We assume

not nodes to be annotated, but edges. Recall from Section 9.2 that we denote the left

(resp. right) outgoing edge of a node v as ®L(v) (resp. ®R(v)). For an edge e , we denote

its annotated set of intervals as S(e). We also assume every node, even leaves, to

have two outgoing (potentially annotated) edges — if a node v has no left (resp. right)

child, we write L(v) = ⊥ (resp. R(v) = ⊥). Transforming a node-annotation into an

edge-annotation is trivial: The annotation of every node becomes the annotation of

its incoming edge, except for the root node, which has no incoming edge. For the root

node, its annotation is added to the annotations of both its outgoing edges.

Of the operations necessary for a dynamic segment tree, the problem of adding

annotations after inserting a new interval is the easiest: Since the way of assigning

annotations in static (or semi-dynamic) segment trees does ful�ll the weak segment

2
Recall the de�nition from Section 9.2.

140

Dynamic Segment Trees Section 9.3

b

a

c

a

c

b

1 2 3 4 1 2

3

4

Figure 9.2: A counter-clockwise rotation around node a.

tree property, we just use this method: When inserting an interval I , we annotate

it at every node v (resp. its incoming edge) such that the associated interval of v is

completely contained in I , and the associated interval of v’s parent is not contained

in I . Algorithmically, this is easy to do. Let l and u be the two nodes associated with

the lower resp. upper border of I . Let l = v<
0
,v<

1
,v<

2
, . . . , v̂,v>

1
,v>

2
, . . .v>

k ,u = v
>
k+1

be the unique path from l to u, and let v̂ be the node on this path with the least depth

in the tree. Then, the node v̂ is the lowest common ancestor of l and u in the tree,

and the �rst node in which the search paths for l and u di�er. The v<
i nodes are the

nodes that are only on the search path for l , and the v>
i nodes are the nodes that are

only on the search path for u. Note that this path may degenerate if e.g. LCA(l ,u) = l
— in this case, v̂ = l and there are no v<

i . This does not impact the correctness. We

now annotate I on the right outgoing edge of every v<
i , if R(v<

i) < {v
<
i+1
, v̂}, i.e., if this

is not an edge of the path between l and u. Symmetrically, we annotate I on the left

outgoing edge of every v>
i if L(v>

i) , v
>
i+1

. This yields exactly the desired annotation.

For rotations, again see Figure 9.2. We only explain counter-clockwise rotation

around a — clockwise rotations works symmetrically. To ensure that the weak segment

tree property still holds after the rotation, we must make sure that all search paths

coming from the top and exiting the nodes a, b and c to the bottom have seen the same

annotations after the rotation as they would have seen before. To achieve this, we push

the annotations of ®R(a) down to ®R(c) and ®L(c) and clear the annotation at ®R(a). For an

edge e , if the annotation before the push-down operation is S(e), let the annotation

after the push-down operation be S ′(e). Thus, we set S ′
(
®L(c)

)
= S

(
®L(c)

)
∪ S

(
®R(a)

)
,

S ′
(
®R(c)

)
= S

(
®R(c)

)
∪ S

(
®R(a)

)
and S ′

(
®R(a)

)
= ∅. For all other edges, we set S ′(e) = S(e).

The required operations, namely set union, set duplication and creation of an empty set,

are e�cient in the union-copy data structure. Let furthermore S ′′(e) be the annotated

set of an edge after the rotation has been performed. The only edges modi�ed during

the rotation are ®R(a) and ®L(c). We set S ′′
(
®R(a)

)
= S ′

(
®L(c)

)
and S ′′

(
®L(c)

)
= S ′

(
®R(a)

)
,

i.e., we swap the annotations of the two changed edges. For all other edges e , we set

S ′′(e) = S ′(e).

We can now look at which search paths see which annotations before and after

rotation. A search path exiting to 1 picks up S
(
®L(a)

)
∪ S

(
®L(b)

)
before rotation and

S ′′
(
®L(c)

)
∪S ′′

(
®L(a)

)
∪S ′′

(
®L(b)

)
= ∅∪S

(
®L(a)

)
∪S

(
®L(b)

)
after. Similar for 2 : S

(
®L(a)

)
∪

141

Chapter 9 E�iciently Finding Peaks Using Dynamic Segment Trees

S
(
®R(b)

)
becomes S ′′

(
®L(c)

)
∪S ′′

(
®L(a)

)
∪S ′′

(
®R(b)

)
= ∅∪S

(
®L(a)

)
∪S

(
®R(b)

)
. A path to 3

picks up S
(
®R(a)

)
∪ S

(
®L(c)

)
before and S ′′

(
®L(c)

)
∪ S ′′

(
®R(a)

)
= ∅ ∪ (S

(
®R(a)

)
∪ S

(
®L(c)

)
)

after. Finally, a path to 4 picks up S
(
®R(a)

)
∪ S

(
®R(c)

)
before rotation and S ′′

(
®R(c)

)
=

S
(
®R(a)

)
∪ S

(
®R(c)

)
after. This concludes the proof that after rotation, all search paths

still see the same annotations as before.

Deletion from a dynamic segment tree is handled elegantly by the union-copy data

structure, by o�ering an operation that deletes an element from all sets. We start by

using this operation to remove the deleted interval from all annotations at all edges.

Then, we perform a normal red-black deletion operation on the two associated nodes.

Red-black trees delete nodes as a sequence of up to three operations: First, if the node

(call it v) to be deleted has two children, it is swapped with the next node in tree order.

Call that nodew . Note that before the swap,w cannot have had a left child. Otherwise,

there would have been a node smaller than w in the right subtree of v , and that node

would have been the successor of v in tree order. If after a potential swap, v has no

children, it is just deleted. If it has one child, it is replaced by this child.

Fixing the annotations when deleting a leaf v is easy in this case. The node v
represents an endpoint of an interval the annotations of which we have already all

removed. It must hold that S
(
®L(v)

)
= S

(
®R(v)

)
, since the decision whether a search

path ends left or right of v does not change the intervals it ends in anymore. We

can therefore just promote one of these two annotations onto the edge from v’s

parent to v and delete v . A similar argument holds for the case that v has exactly

one child (say R(v)) and is replaced by this child. Again, the decision at v does not

distinguish between di�erent sets of intervals anymore. In this case though, some of

the annotations present in S
(
®L(v)

)
might have been pushed down into the subtree

rooted in R(v). Thus, we promote S
(
®R(v)

)
to the edge from v’s parent to v .

9.3.2 General Interval Borders

So far, we made two assumptions as to the nature of the intervals’ borders: we did

assume a total ordering on the keys of the nodes, i.e., no segment border may appear

in two segments, and we assumed all intervals to be right-open. We now brie�y show

how to lift this restriction.

The important aspect is that a query path must see the nodes representing interval

borders on the correct side. As an example, consider two intervals I1 = [a,b) and

I2 = [b, c]. A query for the value b should return I2 but not I1. Thus, the node

representing “b)” must lie to the left of the resulting search path, such that the query

path does not end at a leaf between the nodes representing “[a” and “b)”. That way,

the annotation for I1 will not be picked up. Conversely, the node representing “[b”

must lie to the left of the query path, such that the query path ends in a leaf between

the nodes representing “[b” and “c]”.

142

Zipping Segment Trees Section 9.4

A

C

B

D

E

6 5

4

3

2

1

(a) Before unzipping

A

B

D

Larger

E

C

Smaller

3

1

5

4

2

(b) Unzipped parts

A

B

D

C

E

3

1

2

4

5

6

(c) After reassembly

Figure 9.3: Illustration of the process of unzipping a path in zip trees. Nodes’ names are

simultaneously their ranks. Node keys are not shown.

This dictates the ordering of nodes with the same numeric key k : First come the

open upper borders, then the closed lower borders, then the closed upper borders,

and �nally the open lower borders. When querying for a value k , we descend left on

nodes representing “k]” and “(k”, and descend right on nodes representing “[k” and

“k)”. That way, a search path for k will end at a leaf after all closed lower borders and

open upper borders, but before all closed upper borders and open lower borders. This

yields the desired behavior.

9.4 Zipping Segment Trees

In Section 9.3 we have described a variant of the dynamic segment trees introduced

by van Kreveld and Overmars [KO93]. These are built on top of a balancing binary

search tree, for which van Kreveld and Overmars suggested using red-black trees.

The presented technique is able to uphold the weak segment tree property during the

operations necessary for red-black trees: node rotations, node swaps, leaf deletion and

deletion of vertices of degree one. However, these are comparatively many operations

that must be adapted to dynamic segment trees. Also, each repair of the weak segment

tree property in each of these operations incurs a run time cost.

Thus it stands to reason to look at di�erent underlying trees which either reduce

the number of necessary balancing operations. One such data structure are zip trees zip tree
introduced by Tarjan et al. [TLT19]. Instead of inserting nodes at the bottom of the

tree and then rotating the tree as necessary to achieve balance, these trees determine

the height of the node to be inserted before inserting it in a randomized fashion by

drawing a rank. The zip tree then forms a treap, a combination of a search tree and rank
treapa heap: While the key of L(v) (resp. R(v)) must always be smaller or equal (resp.

larger) to the key of v , the ranks of both L(v) and R(v) must also be smaller or equal

to the rank of v . Thus, any search path always sees nodes’ ranks in a monotonically

143

Chapter 9 E�iciently Finding Peaks Using Dynamic Segment Trees

decreasing sequence. The ranks are chosen randomly in such a way that we expect the

result to be a balanced tree. In a balanced binary tree, half of the nodes will be leaves.

Thus, we assign rank 0 with probability 1/2. A fourth of the nodes in a balanced binary

tree are in the second-to-bottom layer, thus we assign rank 1 with probability 1/4. In

general, we assign rank k with probability (1/2)k+1

, i.e., the ranks follow a geometric

distribution with mean 1. With this, Tarjan et al. show that the expected length of

search paths is in O(logn), thus the tree is expected to be balanced.

Zip trees do not insert nodes at the bottom or swap nodes down into a leaf before

deletion. If nodes are to be inserted into or removed from the middle of a tree, other

operations than rotations are necessary. For zip trees, these operations are zippingzipping
and unzipping. In the remainder of this section, we examine these two operations ofunzipping
zip trees separately and explain how to adapt them to preserve the weak segment tree

property. For a more thorough description of the zip tree procedures, we refer the

reader to [TLT19].

9.4.1 Insertion and Unzipping

Figure 9.3 illustrates the unzipping operation that is used when inserting a node. Note

that we use the numbers 1 through 6 as nodes’ names as well as their ranks in this

example. The triangles labeled A through E represent further subtrees. The node to be

inserted is 6 , the fat blue path is its search path (i.e., its key is smaller than the keys

of 5 , 4 and 2 , but larger than the keys of 3 and 1). Since 6 has the largest rank

in this example, the new node needs to become the new root. To this end, we unzip

the search path, splitting it into the parts that are — in terms of nodes’ keys — larger

than 6 and parts that are smaller than 6 . In other words: We group the nodes on the

search path by whether we exited them to the left (a larger node) or to the right (a

smaller node). Algorithm 4, when ignoring the highlighted parts, provides pseudocode

for the unzipping operation.

We remove all edges on the search path (Step 1 in Algorithm 4). The result is

depicted in the two gray boxes in Figure 9.3b: several disconnected parts that are

either larger or smaller than the newly inserted node. Taking the new node 6 as the

new root, we now reassemble these parts below it. The smaller parts go into the left

subtree of 6 , stringed together as each others’ right children (Step 3 in Algorithm 4).

Note that all nodes in the “smaller” set must have an empty right subtree, because that

is where the original search path exited them — just as nodes in the “larger” set have

empty left subtrees. The larger parts go into the right subtree of 6 , stringed together

as each others’ left children. This concludes the unzipping operation, yielding the

result shown in Figure 9.3c. With careful implementation, the whole operation can be

performed during a single traversal of the search path.

144

Zipping Segment Trees Section 9.4

To insert a segment into a dynamic segment tree, we need to do two things: First, we

must correctly update annotations whenever a segment is inserted. Second, we must

ensure that the tree’s unzipping operation preserves the weak segment tree property.

We will not go into detail on how to achieve step one. In fact, we add new segments

in basically the same fashion as red-black-tree based DSTs do. We �rst insert the two

nodes representing the segment’s start and end. Take the path between the two new

nodes. The nodes on this path are the nodes at which a static segment tree would

carry the annotation of the new segment. Thus, annotating these nodes (resp. the

appropriate edges) repairs the weak segment tree property for the new segment.

In the remainder of this section, we explain how to adapt the unzipping operations

of zip trees to repair the weak segment property. Let the annotation of an edge e before

unzipping be S(e), and let the annotation after unzipping be S ′(e). As an example

how to �x the annotations after unzipping, consider in Figure 9.3 a search path that

descends into subtree D before unzipping. It picks up the annotations on the unzipped

path from 5 up to 2 , i.e., S
(
®L(5)

)
, S

(
®L(4)

)
, S

(
®R(3)

)
, and on the edge going into D,

i.e., S
(
®R(2)

)
. After unzipping, it picks up the annotations on all edges that we newly

inserted on the path from 6 to 2 plus S ′
(
®R(2)

)
. We set the annotations on all newly

inserted edges to ∅ after unzipping. Thus, we need to add the annotations before

unzipping, i.e., S
(
®L(5)

)
∪ S

(
®L(4)

)
∪ S

(
®R(3)

)
, to the edge going into D. We therefore set

S ′
(
®R(2)

)
= S

(
®R(2)

)
∪ S

(
®L(5)

)
∪ S

(
®L(4)

)
∪ S

(
®R(3)

)
after unzipping.

In Algorithm 4, the blue highlighted parts are responsible for repairing the anno-

tations. While descending the search path to be unzipped, we incrementally collect

all annotations we see on this search path (line 10), and at every visited node add

the previously collected annotations to the other edge (line 9), i. e., the edge that is

not on the search path. By setting the annotations of all newly created edges to the

empty set (lines 23 and 26), we make sure that after reassembly, every search path

descending into one of the subtrees attached to the reassembled parts picks up the

same annotations on the edge into that subtree as it would have picked up on the path

before disassembly.

9.4.2 Deletion and Zipping

Deleting segments again is a two-staged challenge: We need to remove the deleted

segment from all annotations, and must make sure that the zipping operation employed

for node deletion in zip trees upholds the weak segment tree property. Removing

a segment from all annotations is trivial when using the union-copy data structure

outlined in Section 9.2.1: The deleteItem() method does exactly this.

We now outline the zipping procedure and how it can be amended to repair the weak

segment tree property. Zipping two paths in the tree works in reverse to unzipping.

Pseudocode is given in Algorithm 5. Again, the pseudocode without the highlighted

parts is the pseudocode for plain zipping, independent of any dynamic segment tree.

145

Chapter 9 E�iciently Finding Peaks Using Dynamic Segment Trees

Algorithm 4: Unzipping routine. This inserts new into the tree at the position

currently occupied by v by �rst disassembling the search path below v , and

then reassembling the di�erent parts as left and right spines below new . The

highlighted parts are used to repair the dynamic segment tree’s annotations.

Note that in an e�cient implementation, one would interleave all four steps.

Input: new : Node to be inserted

Input: v : Node to be replaced by new
1 cur ← v ;

2 oldParent ← P(v);
3 smaller ← newList(); larдer ← newList();

4 collected ← createSet();

/* Step 1: Remove edges along search path. */
5 while cur , ⊥ do
6 if new < cur then
7 larдer .append(cur);

8 next ← L(cur);

9 S(®R(cur)) ← unionSets((S(®R(cur)), collected);

10 collected ← unionSets(collected, S(®L(cur)));

11 next ← L(cur);
12 L(cur) ← ⊥;

13 cur ← next ;

14 else
/* Omitted, symmetric to the case new < cur. */

/* Step 2: Insert new. */
15 if L(oldParent) = v then
16 L(oldParent) ← new ;

17 else
18 R(oldParent) ← new ;

/* Step 3: Reassemble left spine from smaller parts. */
19 parent ← new ;

20 for n ∈ smaller do
21 if parent = new then
22 L(parent) ← n;

23 deleteSet(S(®L(parent))); S(®L(parent)) ← createSet();

24 else
25 R(parent) ← n;

26 deleteSet(S(®R(parent))); S(®R(parent)) ← createSet();

/* Step 4: Reassemble right spine. This is symmetric to
the left spine and thus omitted. */

146

Zipping Segment Trees Section 9.4

Assume that in the situation Figure 9.3c, we want to remove 6 , thus we want to arrive

at the situation in Figure 9.3a. The zipping operation consist of walking down the left

spine (consisting of 3 and 1 in the example) and the right spine (consisting of 5 ,

4 and 2 in the example) simultaneously and zipping both into a single path. This is

done by the loop in line 7. At every point during the walk, we have a current node

on both spines, call it the current left node l and the current right node r . Also, there

is a current parent p, which is the bottom of the new zipped path being built. In the

beginning, the current parent is the parent of the node being removed.
3

In each step,

we select the current node with the smaller rank, breaking ties arbitrarily (line 8).

Without loss of generality, assume the current right node is chosen (the branch starting

in line 20). We attach the chosen node to the bottom of the zipped path (p), and then r
itself becomes p. Also, we walk further down on the right spine.

Note that the choice whether to attach left or right to the bottom of the zipped path

(made via attachRiдht in Algorithm 5) is made in such a way that the position in which

we attach previously was part of one of the two spines being zipped. For example, if

p came from the right spine, we attach left to it. However, before zipping, ®L(p) was

part of the right spine. This method of attaching nodes always upholds the search

tree property: When we make a node from the right spine the new parent (line 29),

we know that the new p is currently the largest remaining nodes on the spines. We

always attach left to that node (line 31). Since all other nodes on the spine are smaller

than p, this is valid. The same argument holds for a node from the left spine.

We now explain how the edge annotations can be repaired during zipping so that

the weak segment tree property is upheld. For this argument, assume that for an

edge e , S(e) is the annotation of e before zipping, and S ′(e) is the annotation of e after

zipping. Again, we argue via the subtrees that search paths can descend into. A search

path descending into a subtree on the right of a node on the right spine, e.g., subtree B
attached to 4 in Figure 9.3c, will — before zipping — always pick up the annotation

on the right edge of the node being removed plus all annotations on the spine up

to the respective node, e.g., S
(
®R(6)

)
∪ S

(
®L(5)

)
, before descending into the respective

subtree (B in the example). To preserve these picked up annotations, we again push

them down onto the edge that actually leads away from the spine into the respective

subtree.

Formally, during zipping, we keep two sets of annotations, one for the left and one

for the right spine each. In Algorithm 5, these are collectedl and collectedr , respectively.

Let n be the node to be removed. Initially, we set collectedl = S
(
®L(n)

)
and collectedr =

S
(
®R(n)

)
. Then, whenever we pick a node c from the left (resp. right) spine as new

parent, we set S ′
(
®L(c)

)
= S

(
®L(c)

)
∪ collectedl (resp. S ′

(
®R(c)

)
= S

(
®R(c)

)
∪ collectedr).

This pushes down everything we have collected so far onto the edge leading away

3
If the root is being removed, pretend there is a pseudonode above the root.

147

Chapter 9 E�iciently Finding Peaks Using Dynamic Segment Trees

Algorithm 5: Zipping routine. This removes v from the tree, zipping the left

and right spines of v . The highlighted parts are used to repair the dynamic

segment tree’s annotations.

Input: n: Node to be removed

1 l ← L(n); // Current node descending v’s left spine
2 r ← R(n); // Current node descending v’s right spine
3 p ← P(n); // Bottom of the partially zipped path
4 attachRiдht ← R(P(n)) = v ;

5 collectedl ← copySet(S(®L(n)));

6 collectedr ← copySet(S(®R(n)));

7 while l , ⊥ ∨ r , ⊥ do
8 if (l , ⊥) ∧ ((r = ⊥) ∨ (rank(l) > rank(r))) then
9 if attachRight then
10 R(p) ← l ;

11 deleteSet(S(®R(p))); S(®R(p)) ← createSet();

12 else
13 L(p) ← l ;

14 deleteSet(S(®L(p))); S(®L(p)) ← createSet();

15 S(®L(l)) ← unionSets(S(®L(l)), collectedl);

16 collectedl ← unionSets(collectedl , S(®R(l));

17 p ← l ;
18 l ← R(l);
19 attachRiдht ← true;

20 else
21 if attachRight then
22 R(p) ← r ;

23 deleteSet(S(®R(p))); S(®R(p)) ← createSet();

24 else
25 L(p) ← r ;

26 deleteSet(S(®L(p))); S(®L(p)) ← createSet();

27 S(®R(r)) ← unionSets(S(®R(r)), collectedr);

28 collectedr ← unionSets(collectedr , S(®L(r));

29 p ← r ;

30 r ← L(r);
31 attachRiдht ← false;

148

Zipping Segment Trees Section 9.4

from the spine at c . Then, we set collectedl = collectedl ∪ S
(
®R(c)

)
and S ′

(
®R(c)

)
= ∅

(resp. collectedr = collectedr ∪ S
(
®L(c)

)
and S ′

(
®L(c)

)
= ∅).

This concludes the techniques necessary to use zip trees as a basis for dynamic

segment trees, yielding zipping segment trees.

9.4.3 Numeric Annotations

Many applications of segment-storing data structures deal with weighted segments,

i.e., each segment is associated with a number (or a vector of numbers). In such

scenarios, one is often only interested in determining the aggregated weight of the

segments overlapping at a certain point instead of the actual set of segments.

In a peak-demand scheduling heuristic such as the one presented in Chapter 8, the

vector associated with every interval corresponds to the respective job’s resource

usage across the di�erent resource types. If the dynamic segment tree holds intervals

corresponding to a schedule, the aggregate value at a point in the tree then corresponds

to the total demand in the schedule at that point.

This question can be answered without the need for a complicated union-copy

data structure. In this case, we annotate each edge with a real number resp. with a

vector. Instead of adding the actual segments to the S(·) sets at edges, we just add

the associated weight of the segment. The copy operation is a simple duplication of a

vector, a union is achieved by vector addition.

Deletion becomes a bit more complicated in this setting. Previously, we have

exploited the convenient operation of deleting an item from all sets o�ered by the

union-copy data structure. Now, say an interval associated with a weight vector

d ∈ Rk
is deleted from the dynamic segment tree, and the segment is represented

by the two nodes a and b. If we had just inserted the interval (and therefore a and

b), we would now add d to the annotations on a certain set of edges (see above for

a description of the insertion process). When deleting an interval, we annotate the

same set of edges with −1 · d . This exactly cancels out the annotations made when the

interval was inserted.

9.4.4 Complexity

Zip trees are randomized data structures, therefore all bounds on run times are expected

bounds. In [TLT19, Theorem 4], Tarjan et al. claim that the expected number of pointers

changed during a zip or unzip is inO(1). However, they actually even show the stronger

claim that the number of nodes on the zipped (or unzipped) paths is in O(1).4 Observe

that the loops in lines 5 and 20 of Algorithm 4 as well as line 7 of Algorithm 5 are

executed at most once per node on the unzipping (resp. zipping) path. Inside each

4
Note that nodes on these paths might not be changed — thus, the number of changed pointers could

well be in O(1) and the paths still be of non-constant length.

149

Chapter 9 E�iciently Finding Peaks Using Dynamic Segment Trees

of the loops, a constant number of calls are made to each of the copySet, createSet,

deleteSet and unionSets operations. Thus, the rebalancing operations incur expected

constant e�ort plus a constant number of calls to the union-copy data structure.

When inserting a new segment, we add it to the sets annotated at every vertex along

the path between the two nodes representing the segment borders. Since the depth of

every node is expected logarithmic in n, this incurs expected ln(n) calls to unionSets.

The deletion of a segment from all annotations costs exactly one call to deleteItem.

All operations but deleteSet and deleteItem are in O(1) if the union-copy data struc-

ture is appropriately built. The analysis for the two deletion functions is more com-

plicated and involves amortization. The rough idea here is that every non-deletion

operation can increase the size of the union-copy’s internal representation only by

a limited amount. On the other hand, the two deletion operations each decrease the

representation size proportionally to their run time.

The red-black-tree-based DSTs by van Kreveld and Overmars [KO93] also need

Ω(lnn) calls to copySet during the insertion operation, and at least a constant number

of calls during tree rebalancing and deletion. Therefore, for every operation on zipping

segment trees, the (expected) number of calls to the union-copy data structure’s func-

tions is no larger than the number of calls in the red-black-tree-based implementation

and we achieve the same (but only expected) run time guarantees, which are O(logn)
for insertion, O(logn ·a(i,n)) for deletion

5
and O(logn+k) for stabbing queries, where

k is the number of reported segments.

9.4.5 Generating Ranks

Nodes’ ranks play a major role in the rebalancing operations of zip trees. In Section 9.4

we already motivated why nodes’ ranks should follow a geometric distribution with

mean 1; it is the distribution of the node depths in a perfectly balanced tree.

A practical implementation needs to somehow generate these values. The obvious

implementation would be to somehow generate a (pseudo-) random number and

determine the position of the �rst 1 in its binary representation. The rank generated

in this way is then stored at the respective node.

However, storing the rank at the node can be avoided if the rank is generated in a

reproducible fashion. Tarjan et al. [TLT18] already point out that one can “compute it

as a pseudo-random function of the node (or of its key) each time it is needed.” In fact,

the idea already appeared earlier in the work by Seidel and Aragon [SA96] on treaps.

They suggest evaluating a degree 7 polynomial with randomly chosen coe�cients at

the (numerical representation of) the node’s key. However, the 8-wise independence

of the random variables generated by this technique is not su�cient to uphold the

theoretical guarantees given by Tarjan et al. [TLT18].

5
With a(i,n) being the row-inverse of the Ackermann function, for some constant i .

150

Experimental Evaluation of Dynamic Segment Trees Bases Section 9.5

However, without any theoretical guarantees, a simpler method for reproducible

ranks can be achieved by employing simple hashing algorithms. Note that even

if applying universal hashing, we do not get a guarantee regarding the probability

distribution for the values of individual bits of the hash values. However, in practice,

we expect it to yield results similar to true randomness. As a fast hashing method, we

suggest using the 2/m-almost-universal multiply-shift method from Dietzfelbinger et

al. [Die+97]. Since we are interested in generating an entire machine word in which

we then search for the �rst bit set to 1, we can skip the “shift” part, and the whole

process collapses into a simple multiplication.

9.5 Experimental Evaluation of Dynamic Segment Trees
Bases

In this section, we experimentally evaluate zipping segment trees as well as dynamic

segment trees based on two of the most prominent rotation-based balanced binary

search trees: red-black trees and weight-balanced trees. Weight-balanced trees require

a parametrization of their rebalancing operation. In Chapter 10, we perform an in-

depth engineering of weight-balanced trees. For this analysis of dynamic segment

trees, we pick only the two most promising variants of weight-balanced trees: top-

down weight-balanced trees with 〈∆, Γ〉 = 〈3, 2〉 and top-down weight-balanced trees

with 〈∆, Γ〉 = 〈2, 3/2〉.

Note that since we are only interested in the performance e�ects of the trees un-

derlying the DST, and not in the performance of an implementation of the complex

union-copy data structure, we have implemented the simpli�ed variant of DSTs out-

lined in Section 9.4.3. Evaluating the performance of the union-copy data structure is

out of scope of this work.

For the zip trees, we choose a total of three variants, based on the choices explained in

Section 9.4.5: The �rst variant, denoted Hashing, generates nodes’ ranks by applying

the fast hashing scheme by Dietzfelbinger et al. [Die+97] to the nodes’ memory

addresses. In this variant, node ranks are not stored at the nodes but rather re-

computed on the �y whenever they are needed. The second variant, denoted Hashing,

Store also generates nodes’ ranks from the same hashing scheme, but stores ranks at

the nodes, increasing node sizes but removing the necessity of recomputing hashes.

The last variant, denoted Random, Store generates nodes’ ranks by a pseudo-random

process independent of the nodes and stores the ranks at the nodes.

We �rst individually benchmark the two operations of inserting (resp. removing)

a segment to (resp. from) the dynamic segment tree. Our benchmark works by �rst

creating a base dynamic segment tree of a certain size, then inserting new segments

(resp. removing segments) into that tree. The number of new (resp. removed) segments

is chosen to be the minimum of 10
5

and 5% of the base tree size. Segment borders are

151

Chapter 9 E�iciently Finding Peaks Using Dynamic Segment Trees

0 500 1000 1500
Tree Size (×104)

0.5

1.0

1.5

2.0

2.5

3.0
Ti

m
e

(
s)

Delete

Red-Black

Weight-Balanced 3, 2
Zip (Hashing, Store)

Weight-Balanced 2, 3/2
Zip (Hashing)

Zip (Random, Store)

0 500 1000 1500
Tree Size (×104)

0

1

2

3

4

5

6

Ti
m

e
(

s)

Insert

(a) Timings for inserting a segment.

0 500 1000 1500
Tree Size (×104)

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m

e
(

s)

Delete

(b) Timings for deleting a segment.

0 500 1000 1500
Tree Size (×104)

2

4

6

8

Ti
m

e
(

s)

Move

(c) Timings for moving a segment.

Figure 9.4: Benchmark times for dynamic segment trees based on di�erent balancing binary

search trees. The y axis indicates the measured time per operation, while the x axis indicates

the size of the tree that the operation is performed on. The lines indicate mean values. The

standard deviation is all cases too small to be visible.

152

Experimental Evaluation of Dynamic Segment Trees Bases Section 9.5

chosen by drawing twice from a uniform distribution. All segments are associated

with a real-valued value, as explained in Section 9.4.3. We conduct our experiments on

a machine equipped with 128 GB of RAM and an Intel
®

Xeon
®

E5-1630 CPU, which

has 10 MB of level 3 cache. We compile using GCC 8.1, at optimization level “-O3

-�ast-math”. We do not run experiments concurrently. To account for randomness

e�ects, each experiment is repeated for 15 di�erent seed values, and repeated �ve

times for each seed value to account for measurement noise.

Figure 9.4a displays the results for the insert operation. We see that the red-black

tree performs best for this operation, about a 30% faster (≈ 2.5µs per operation at

1.5 · 10
7

nodes) than the fastest zip tree variant, which is the variant using random

rank selection (≈ 3.5µs per operation).

The two weight-balanced trees lie between the red-black tree and the randomness-

based zip tree. Both hashing-based zip trees are considerably slower than all other

trees.

For the deletion operation, shown in Figure 9.4b, the randomness-based zip tree is

signi�cantly faster than the next best competitor, the red-black tree. Again, the weight-

balanced trees are slightly slower than the red-black tree, and the hashing-based zip

trees fare the worst.

Since (randomness-based) zip trees are the fastest choice for deletion and red-black

trees are the fastest for insertion, benchmarking the combination of both is obvious.

Also, using an dynamic segment tree makes no sense if only the insertion operation is

needed. Thus, we next benchmark a move operation, which consists of �rst removing

a segment from the tree, changing its borders, and re-inserting it. The results are

shown in Figure 9.4c. We see that the randomness-based zipping segment tree is the

best-performing dynamic segment tree for trees with at least 2.5 · 10
6

segments.

The obvious measurement to explore why di�erent trees perform di�erently is the

trees’ balance, i.e., the average depth of a node in the respective trees. We conduct this

experiment as follows: For each of the trees under study, we create trees of various

sizes with randomly generated segments. In a tree generated in such a way, we only

see the e�ects of the insert operation, and not the delete operation. Thus, we continue

by moving each segment once by removing it �rst, changing its interval borders and

re-inserting it. This way, the e�ect of the delete operation on the tree balance is also

accounted for. Since the weight-balanced trees were not competitive in our run time

measurements, we perform this experiment only for the red-black and zip trees. We

create each tree for 30 di�erent seeds to account for randomness e�ects.

The somewhat surprising results can be found in Figure 9.5. We can see that

zipping segment trees, whether based on randomness or hashing, are considerably less

balanced than red-black-based DSTs. Also, whether ranks are generated from hashing

or randomness does not impact balance.

153

Chapter 9 E�iciently Finding Peaks Using Dynamic Segment Trees

0 250 500 750 1000 1250 1500
Tree Size

10

15

20

25

30

Av
er

ag
e

N
od

e
D

ep
th

Red-Black
Zip (Hashing)
Zip (Random)

Figure 9.5: Average depths of the nodes in DSTs based on red-black trees and zip trees. The x
axis speci�es the number of inserted segments. Shaded areas indicate the standard deviation.

Concluding the evaluation, we gain several insights. First, deletions in zipping

segment trees are so much faster than for red-black-based DSTs that they more than

make up for the slower insertion, and the fastest choice for moving segments are

zipping segment trees with ranks generated randomly. Second, we see that this speed

does not come from a better balance, but in spite of a worse balance. The speedup

must therefore come from more e�cient rebalancing operations. Third, and most

surprising, the question of how ranks are generated does not in�uence tree balance,

but has a signi�cant impact on the performance of deletion and insertion. However,

the hash function we chosen is very fast. Also, during deletion, no ranks should be (re-)

generated for the variant that stores the ranks at the nodes. Thus, the performance

di�erence can not be explained by the slowness of the hash function. Generating

ranks with our chosen hash function must therefore introduce some disadvantageous

structure into the tree that does not impact the average node depth.

Code Publication. We publish our C++17 implementation of all evaluated tree

variants, including all code to replicate our benchmarks, at

https://github.com/tinloaf/ygg.

Note that this data structure library is still work in progress and might change after

the publication of this work. The exact version used to produce the benchmarks shown

in this chapter can be accessed at

https://github.com/tinloaf/ygg/releases/tag/version_sea2020.

154

https://github.com/tinloaf/ygg
https://github.com/tinloaf/ygg/releases/tag/version_sea2020

Conclusion Section 9.6

9.6 Conclusion

We have presented zipping segment trees — a variation of dynamic segment trees,

based on zip trees. The technique to maintain the necessary annotations for dynamic

segment trees is comparatively simple, requiring only very little modi�cation of zip

trees’ routines. In our experimental evaluation, we were able to show that zipping

segment trees perform well in practice, and outperform red-black-tree or weight-

balanced-tree based DSTs with regards to tree modi�cations.

However, we were not yet able to discover exactly why generating ranks from

a (very simple) hash function does negatively impact performance. Exploring the

adverse e�ects of this hash function and possibly �nding a di�erent hash function

that avoids these e�ects remains future work. Another compelling future experiment

would be to evaluate the performance when combined with the actual union-copy

data structure by van Kreveld and Overmars.

All things considered, their relatively simple implementation and the superior

performance when modifying segments makes zipping segment trees a good alternative

to classical dynamic segment trees built upon rotation-based balancing binary trees.

155

10 Engineering Top-Down
Weight-Balanced Trees

Weight-balanced trees are a popular form of self-balancing binary search trees. Their

popularity is due to desirable guarantees, for example regarding the required work to

balance annotated trees.

While usual weight-balanced trees perform their balancing operations in a bottom-

up fashion after a modi�cation to the tree is completed, there exists a top-down variant

which performs these balancing operations during descend. This variant has so far

received only little attention. We provide an in-depth analysis and engineering of these

top-down weight-balanced trees, demonstrating their superior performance. We also

gaining insights into how the balancing parameters necessary for a weight-balanced

tree should be chosen — with the surprising observation that it is often bene�cial to

choose parameters which are not feasible in the sense of the correctness proofs for

the rebalancing algorithm.

This chapter is based on joint work with Dorothea Wagner [BW20a].

10.1 Introduction

Weight-balanced trees (WBTs), originally introduced as binary search trees of bounded

balance or BB[α]-trees by Nievergelt and Reingold [NR73], later gained more attention

through the seminal work by Knuth [Knu98], which also coined the name weight-

balanced trees that is better known today. WBTs are balancing binary search trees. As

many other �avours of balancing binary search trees, they employ rotations to correct

imbalances caused by modi�cations to the tree. The specialty of weight-balanced trees

is that the balancing is done based on the weight of subtrees, which is the number of

nodes in the respective subtree.

This entails some interesting properties, such as the fact that it can be shown that

rotations around heavy nodes, i. e., nodes that are roots of subtrees of a large weight,

occur only rarely (see Mehlhorn [Meh84a]). Using this analysis, weight-balanced trees

can serve as basis for augmented binary search trees, i. e., trees that carry additional

annotations at every node. Usually, e.g. in the case of dynamic segment trees, these

annotations depend on a node’s children, thus the annotation must be repaired if the

children are changed. If the e�ort to repair the annotation at a node after rotation

correlates with the weight of the subtree rooted in that node, weight-balanced trees

can be used to show amortized bounds on the necessary work. Annotated trees that

require this property are often used in computational geometry, examples include Kurt

Mehlhorn’s Segment Trees ([Meh84b, Section VIII.5.1.3]) or Interval Trees ([Meh84b,

157

Chapter 10 Engineering Top-Down Weight-Balanced Trees

Section VIII.5.1.1]). Also, the weight annotation that every node in a weight-balanced

tree carries can be used to e�ciently implement order statistic trees (Cormen et

al. [Cor+09, Chapter 15.1]).

These advantages of weight-balanced trees have led to them receiving ample atten-

tion throughout the literature. Adams [Ada93] gives a functional implementation of

weight-balanced trees and claims they perform as well as red-black trees, however

does not provide a practical evaluation. With weight-balanced trees, a set of balancing

parameters (see Section 10.2.1) play a crucial role. While Nievergelt and Reingold intro-

duced the technique and conjectured its correctness, the balancing technique does not

work for the whole range of balance parameters they state in their paper. Later, Blum

and Mehlhorn [BM80] not only point out this incorrectness, but also give a rigorous

proof for a smaller space of the balancing parameters. Hirai and Yamamoto [HY11]

use a computer-assisted proof system to discover the whole space of feasible balancing

parameters. Cho and Sahni [CS00] present a variation of weight-balanced trees, which

rotates subtrees even if they are not out of balance if the rotation reduces path lengths,

thus reducing the expected average node depths within the tree. Roura presents two

variations, one that uses logarithmic subtree sizes for balancing [Rou01] and one that

uses the inverse of the Fibonacci function for balancing [Rou13].

This work focuses on analyzing the advantages of two variations in the weight-

balanced trees: �rst, using a top-down balancing scheme, i. e., repairing the balance

constraint while descending the tree for an insertion (resp. removal), instead of having

a second bottom-up pass over the traversed tree path. Second, the e�ect that the

choice of balancing parameters (especially “infeasible” parameters) has. The idea

of top-down rebalancing has also been explored for other types of balanced binary

search trees, such as red-black trees (Tarjan [Tar85]) or weak AVL trees (Haeupler et

al. [HST15]). Rebalancing weight-balanced trees from the top down has an interesting

history: While the original proposal (although incorrect, as Blum and Mehlhorn have

shown) by Nievergelt and Reingold was already a top-down algorithm, the supplied

proof by Blum and Mehlhorn only works for a bottom-up rebalancing. Later, Lai

and Wood [LW93] have provided a top-down rebalancing algorithm and shown its

correctness. This is the foundation for our contribution. However, the top-down

variant of weight-balanced trees has received little attention so far. To our knowledge,

no empirical analysis of top-down weight-balanced trees has been done yet.

Our Contribution. In this chapter, we provide a comprehensive experimental evalu-

ation of top-down as well as bottom-up weight-balanced trees and the possible choices

for the balancing parameters, resulting in recommendations when to use which tree

variant based on the expected usage pattern. We gain the insight that top-down

weight-balanced trees should be preferred over bottom-up weight-balanced trees, and

most of the time they can compete with the performance of red-black trees. Moreover,

158

Top-Down Weight-Balanced Trees Section 10.2

we gain the surprising insight that regarding the choice of balancing parameters, it

often is bene�cial to chose parameters that violate the theoretical guarantees in favor

of a better empirical balance. We also publish thoroughly engineered implementations

of all evaluated trees.

10.2 Top-Down Weight-Balanced Trees

In this section, we describe the top-down balancing approach for weight-balanced

trees. We start by introducing notation and recapitulating the workings of bottom-up

weight-balanced trees in Section 10.2.1.

10.2.1 Weight-Balanced Trees weight-
balanced

tree
We denote a tree T with node set V and edge set E as T = (V ,E). Every node v can

have a left (resp. right) child, which we denote by L(v) (resp. R(v)), and say L(v) = ⊥
(resp. R(v) = ⊥) if v has no left (resp. right) child. Additionally, in a weight-balanced

tree, each node has an associated weight. Note that di�erent notions as to what the weight
weight of a node is are found throughout the literature. For us, the weight ofv , denoted

as |v |, is the number of nodes in the subtree rooted in v plus one.
1

Thus, a leaf has

weight 2. Also, since in the case L(v) = ⊥ the left subtree has zero nodes, it results

that |L(v)| = 1.

The balance criterion for weight-balanced trees limits the relative di�erence between balance
criterionthe weight of the left subtree and the right subtree at every node. The balance crite-

rion and the balancing mechanism use two balancing parameters, 〈∆, Γ〉.2 Balance is balancing
parameterachieved at node v if both

|L(v)| · ∆ ≥ |R(v)| and (10.1)

|R(v)| · ∆ ≥ |L(v)|. (10.2)

Note that the Γ parameter is not directly relevant for the balance criterion. If the

balance criterion is violated during a modi�cation of the tree, the Γ parameter is used

to determine the correct balancing procedure. In [BM80], Blum and Mehlhorn show

that if 〈∆, Γ〉 are chosen in a particular way, and rotations are applied as described

in [NR73], this balance criterion is an invariant of the data structure at every node.

The proof is technical and tedious, so we do not summarize it here.

Insertion and Deletion in Bo�om-Up Weight-Balanced Trees. The �rst pass

for insertion and deletion in bottom-up weight-balanced trees is performed as with bo�om-up

1
Note that this corresponds to the number of ⊥ entries in the subtree rooted in v .

2
We are using the notation from Hirai and Yamamoto [HY11].

159

Chapter 10 Engineering Top-Down Weight-Balanced Trees

Original

v
l

r

rl rr

rll rlr

Double RotationSingle Rotation

v

l

r

rl
rr

rll rlr

v

l

r

rl

rrrll rlr

Figure 10.1: The result of a single left rotation around v and a double rotation, �rst right

around r , then left around v . Note that the node names di�er from the notation in text to

provide consistent labels before and after rotation. Also, the notation is reversed from the

function notation to yield more natural node names. For example, rll corresponds to L(L(R(v))).
Triangles indicate (possibly empty) subtrees that have been omitted.

unbalanced binary search trees. For an insertion, follow the search path for the new

node until you walk out of a leaf. This is the position where to insert the new node.

For a deletion of v , if v is a leaf, just delete it. If it has only one child, replace v by

its only child, splicing the node out of the tree. Otherwise, �nd the largest node in

L(v) (resp. the smallest node in R(v)), and swap v with that node. Now, v has at most

one child and we can proceed as above. The insertion procedure is also shown in

Algorithm 6.

During the above, we do not pay attention to any balance criterion. Thus, after

insertion and deletion, the balance might be violated at several nodes on the path from

the tree’s root to the position of insertion or deletion. In bottom-up weight-balanced

trees, we repair the tree by traversing that path back up, repairing imbalances using

single rotations and double rotations as necessary.

Rebalancing Operation. Whenever the balance criterion at a node v is violated, a

single or double rotation as depicted in Figure 10.1 is performed to reestablish balance.rotation
Since the process is symmetric for the right and left subtrees, we only discuss the case

that the right subtree has become too heavy (because of an insertion into R(v) or a

deletion from L(v)).

Given a 〈∆, Γ〉 pair as de�ned above, the �rst decision at v is whether to perform

a rotation at all. A rotation is performed if (in the case of a possible right-overhang)

|L(v)| · ∆ < |R(v)|. A left rotation around v will certainly reduce the weight of v’s

right subtree, essentially removing R(v) and the subtree rooted in R(R(v)) from below

v . However if L(R(v)) is too heavy, after the rotation, the balance at the old R(v) could

be violated. Thus, if |L(R(v))| > |R(R(v))| · Γ, we perform a double rotation as shown

160

Top-Down Weight-Balanced Trees Section 10.2

in Figure 10.1.
3

This procedure has been shown to always reestablish balance at all

involved nodes by Blum and Mehlhorn if 〈∆, Γ〉 is chosen appropriately.

Balancing Parameter Space. When talking about the balancing parameters 〈∆, Γ〉,
we often call them feasible or infeasible. A parameter set 〈∆, Γ〉 is feasible (for bottom-

up rebalancing resp. top-down rebalancing) if the respective balancing algorithm has

been shown to be correct for 〈∆, Γ〉, i. e., if it is guaranteed that all nodes satisfy (10.1)

and (10.2) after rebalancing. Otherwise, the parameter set is called infeasible. Note

that an infeasible parameter set still yields a valid binary search tree.

Regarding the feasible values for 〈∆, Γ〉, the �rst thing to note is that the two

correctness proofs from Blum and Mehlhorn as well as Lai and Wood [LW93] use

a di�erent notation than 〈∆, Γ〉. In these proofs, the balancing factor is α , and the

balancing criterion is

α ≤
|L(v)|

|L(v)| + |R(v)|
≤ (1 − α)

Looking at only one side of both types of balance constraints (the other side is symmet-

ric), from |L(v)|/(|L(v)| + |R(v)|) ≥ α and ∆|L(v)| ≥ |R(v)|, we get that ∆ = (1 − α)/α .

In fact, using the upper bound on α given by Blum and Mehlhorn, α ≤ 1 −
√

2/2, this

leads to ∆ ≥ 1 +
√

2. Note that the larger the value for α (and the smaller the value for

∆), the better we expect the tree to be balanced, i. e., we expect the smallest average

node depths for these values. For their correctness proofs, both Blum and Mehlhorn

as well as Lai and Wood �x the second balance parameter (the parameter deciding

whether to use single or double rotation, call it γ) to γ = 1/(2 − α). Again, taking the

two di�erent forms of constraints for a double rotation, namely |L(v)| > Γ |R(v)| and

|L(v)|/(|L(v)| + |R(v)|) > γ , it follows that Γ = γ/(1 − γ) and therefore Γ = 1/(1 − α).
With this, for α = 1 −

√
2/2, it follows that Γ =

√
2, and with that the most common

(and maximally balanced) choice for 〈∆, Γ〉 = 〈1 +
√

2,
√

2〉.

However, Hirai and Yamamoto [HY11] have shown that in the bottom-up balancing

case, the feasible space for 〈∆, Γ〉 is in fact a nonempty polytope, i. e., the linear

dependency between ∆ and Γ (resp. α and γ) is not necessary. The only integral choice

for 〈∆, Γ〉 within the polytope is 〈3, 2〉. Integral values for 〈∆, Γ〉 are interesting since

(as Roura [Rou01] shows), using �oating point arithmetic, or even worse, computing
√

2 during balancing, is a major factor slowing down weight-balanced trees. Note

that with the relationship between ∆ and Γ (resp. α and γ) established by Blum and

Mehlhorn, the Γ value for ∆ = 3 would have been Γ = 4/3.

The correctness proof for top-down balancing from Lai and Wood holds only for

α ≤ 1/4, meaning that we expect the best balanced top-down weight-balanced trees

3
Note that the node names in the �gure di�er from the node names in text to allow for consistent

names before and after rotation.

161

Chapter 10 Engineering Top-Down Weight-Balanced Trees

for α = 1/4, which translates to 〈∆, Γ〉 = 〈3, 4/3〉. Note that even though this means

that ∆ = 3 is feasible for top-down balancing, the aforementioned 〈3, 2〉 possibly is not

a feasible choice in the top-down case, since it is unclear how the feasible polytope

looks like.

10.2.2 From Bo�om-Up to Top-Downtop-down

Weight-balanced trees as described above perform two full traversals of the path from

the tree’s root to a leaf (resp. to-be-deleted node) for each insertion and deletion: One

traversal down to perform the deletion or insertion, and one traversal up to check for

and repair the balance. However, whenever we know that we will de�nitely delete

a node (e.g., because we know that the value to be deleted is in the set represented

by the tree), or that we will de�nitely insert a node (e.g., because we allow multiple

nodes with the same value to be inserted), it is possible to perform necessary repair

operations on the �rst traversal towards the leaves.

Algorithm 6 shows pseudocode for such an insertion. Note that while Insert
descends the tree towards the insertion position for n, RepairDuringInsertion
is called at every node, performing rotations as if n was already inserted into the

appropriate subtree, but without that subtree being rebalanced before. The pseudocode

omits some technical details, such as correctly adjusting the weights of the nodes that

become ancestors of v because of a rotation, and correctly descending in case of a

rotation. Consider as an example for a more complicated procedure the case that n > v ,

n > R(v), that the insertion causes |R(v)| > |L(v)| ·∆ and that |L(R(v))| > |R(R(v))| · Γ.

Then, RepairDuringInsertion calls a double rotation (see Figure 10.1), after which

n should of course still be inserted below the old R(R(v)) (rr in Figure 10.1). However,

that node is not a descendant of v anymore.

Note that this approach does not lead to the same trees as the bottom-up approach. In

the bottom-up approach, during rebalancing at node v , balance is already established

at L(v), R(v) and all nodes below. In the top-down approach, this balance can be

violated by up to one node. For the top-down procedure, Lai and Wood show that even

though the lower nodes cannot yet be assumed to be balanced, the above procedure

balances all involved nodes, if 〈∆, Γ〉 is chosen appropriately.

The approach outlined here assumes that every insertion and removal always

changes the tree. This is not necessarily the case, as a removal of a value that is not in

the tree will fail, and so will insertion if the tree is used to implement a set (instead of a

multiset) and the value is already in the tree. The case that the tree is not modi�ed can

naively be accommodated by having a second pass over the modi�ed path in that case.

Obviously, with this naive solution, top-down rebalancing is only a useful approach

if the number of modifying insertions and removals is way higher than the number

of non-modifying ones. However, careful analysis by Lai and Wood [LW93] shows

that for a correct choice of rebalancing parameters, top-down rebalancing keeps the

162

Evaluation Section 10.3

Algorithm 6: Top-down insertion of a node n.

1 Function RepairDuringInsertion (n, v):
2 if n ≤ v then
3 if |L(v)| + 1 > |R(v)| · ∆ then /* +1 b/c we insert into left

subtree */
4 if (n ≤ L(v) and |R(L(v))| > (|L(L(v))| + 1) · Γ) or
5 (n > L(v) and |R(L(v))| + 1 > |L(L(v))| · Γ)) then
6 doubleRotation(v);

7 else
8 singleRotation(v);

9 else
/* Omitted, symmetric to the case n ≤ v */

10 Function Insert (n):
11 v ← root ;
12 while true do
13 |v | ← |v | + 1;

14 RepairDuringInsertion (n, v);

15 if n ≤ v then
16 if L(v) = ⊥ then
17 L(v) ← n;

18 return;

19 else
20 v ← L(v);

21 else
/* Omitted, symmetric to the case n ≤ v */

balancing criterion intact even if the algorithm aborts the operation during descend,

either because a key to be deleted is not in the tree or because a key to be inserted is

already in the tree.
4

10.3 Evaluation

We now provide an in-depth experimental evaluation of the various �avours of weight-

balanced trees. This evaluation encompasses multiple parts: First, we measure the time

that operations such as inserting into and removing from the trees take in Section 10.3.1.

Since the time necessary to search for a vertex in a tree is only dependent on the

depth of the respective node, and measuring the average node depth is less noisy than

4
Lai and Wood call this a redundant operation.

163

Chapter 10 Engineering Top-Down Weight-Balanced Trees

measuring the time a search takes, we use this measure instead of measuring search

timings in Section 10.3.2. Also in that section we look at how much the balancing

criterion is violated when one chooses balancing parameters outside the feasible space.

All these analyses are done for di�erent kinds of test data, resembling a broad spectrum

of use cases. To study the various rebalancing schemes in even more realistic scenarios,

we use sequences of tree operations captured during the execution of an optimization

algorithm utilizing a balancing search tree in Section 10.3.3. Finally, we take a look at

the total number and weight of rotated nodes in Section 10.3.4.

We implemented all trees in C++, our implementation including all the benchmark-

ing code can be found at:

https://github.com/tinloaf/ygg/releases/tag/version_thesis

Additionally, we publish all raw results obtained from our experiments as a separate

data publication [BW19b]. See Section C.1 in the appendix for further details.

All measurements are taken on a machine with 192 GBs of DDR4 memory and two

eight-core Intel
®

Xeon
®

Gold 6144 CPUs, which have 32 KB of L1 data cache per core,

1 MB of L2 cache per core and a total of 25 MB of L3 cache per CPU. However, we did

not run multiple benchmarks concurrently. The size of our trees’ nodes is 40 bytes. In

the following experiments, the largest tested trees usually have size ≈ 4 × 10
6
, which

leads to a memory footprint of around 150 MB, well above L3 cache sizes. We therefore

expect to see the e�ects of caching for the larger tested trees, and little to no caching

e�ects for trees of at most 6 × 10
5 ≈ 25 MB/40 B nodes.

In the following evaluation, we compare the following balanced binary search

trees: First, a (bottom-up) red-black tree as baseline, denoted red-black. Second, the

basic version of a weight-balanced tree, with bottom-up balancing, denoted bottom-

up. Third, the top-down weight-balanced tree, denoted top-down. For the top-down

weight-balanced trees, we evaluate di�erent choices for the balancing parameters

〈∆, Γ〉: First, the choices listed and explained in Section 10.2.1: 〈1+
√

2,
√

2〉 (the original

parameter set given by Blum and Mehlhorn [BM80]), 〈3, 2〉 (the integral parameters

suggested by Hirai and Yamamoto [HY11]) and 〈3, 4/3〉 (the parameters from the

top-down correctness proofs by Lai and Wood [LW93]). Note that even though the

�rst two are not feasible in the sense of the top-down correctness proof by Lai and

Wood, we still use them for the top-down balancing technique. Similarly, we try the

additional choice of 〈2, 3/2〉. Even though ∆ = 2 is not a feasible choice for top-down

or bottom-up balancing, we want to evaluate how this smaller ∆ value (which we

expect to lead to a better balance) performs in practice. For an even more extreme

example, we also evaluate 〈3/2, 5/4〉.

164

https://github.com/tinloaf/ygg/releases/tag/version_thesis

Evaluation Section 10.3

10.3.1 Timing Operations

We �rst benchmark the two basic operations insertion and deletion. Our aim is

to measure the time these operations take on trees of various sizes for di�erent

distributions of nodes’ keys. Speci�cally, for each benchmark we �rst create a random

tree of a certain base size (the base tree), and then remove �ve percent of the nodes resp.

insert �ve percent new nodes. For all benchmarks, we employ four di�erent methods

to generate nodes’ keys: First in the uniform case, we generate keys uniformly at

random. Second, we assume that the search tree may be used to index data that

pertains to physical or social sciences. In this case, Zipf’s Law (see [Pow98]) states

that this data, e. g. text corpora, often follow a Zipf distribution. We accommodate

this fact with the zipf case, in which nodes’ keys are picked using a Zipf distribution.

Third, it seems prudent to study cases with a heavy concentration of the keys in one

or two areas of the key space. For this, we use the skewed distribution suggested by

Mäkinen [Mäk87] in his analysis of top-down splay trees. In this distribution, every

third value is drawn from a uniform distribution over the whole key space, and the

other two thirds are drawn from two uniform distributions each spanning only 10%

of the key space. Finally, an obvious benchmark case for balancing search trees is

partially pre-sorted data. In the pre-sorted case, we �rst take a sequence of sorted

numbers, and then randomly permute half of them. For the deletion benchmark, the

node to be deleted is picked uniformly at random in each case.

Note that we do not discuss each plot individually in this section, but only those

from which interesting insights can be drawn. The plots that are not mentioned in the

text can be found in Appendix C.2.

To account for randomness e�ects and measurement noise, we run each experiment

for each base tree size on 10 di�erent base trees, and in turn repeat the experiment

itself on each base tree until the experiment ran for at least one second on each base

tree.

Figure 10.2a shows the time (averaged over all the iterations explained above) it

takes to insert 5% new nodes into the seven di�erent trees of various base sizes, for

the uniform case. We �rst see that the bottom-up variant (with 〈1+
√

2,
√

2〉) is about

30% (resp. 0.2µs) slower than the corresponding top-down variant. We then see that

the red-black tree and the 〈2, 3/2〉, 〈3, 4/3〉 and the top-down 〈1 +
√

2,
√

2〉 variants

all show almost the same performance. Interestingly, the variant with the tightest

balancing parameter, 〈3/2, 5/4〉 performs as bad as the bottom-up variant. Note that

in this (and all following) plots, shaded areas indicate standard deviation. Where no

shaded area is visible, the standard deviation is too small to be visible.

When performing the same experiment with node keys chosen from a Zipf distri-

bution (shown in Figure 10.2b), results look very di�erent: Here, the two strongly

balanced variants (〈2, 3/2〉 and 〈3/2, 5/4〉) outclass all other variants. Also, all but

the top-down variant outclass the red-black tree, with a factor of 3 between the best

165

Chapter 10 Engineering Top-Down Weight-Balanced Trees

0 100 200 300 400
Tree Size (×104)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ti
m

e
(

s)

Insert / Uniform

(a) Nodes’ keys chosen from a

uniform distribution.

0 100 200 300 400
Tree Size (×104)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Ti
m

e
(

s)

Insert / Zipf

1 + 2, 2
bottom-up

2, 3/2
3, 4/3

red-black

1 + 2, 2
top-down

3, 2
3/2, 5/4

(b) Nodes’ keys chosen from a Zipf distribution.

Figure 10.2: Times to insert 5% new nodes into trees of various sizes. The x axis speci�es the

size of the base tree. The y axis reports the time needed for a single insertion in microseconds.

Shaded areas indicate standard deviation.

balanced weight-balanced tree and the red-black tree. Results for the skewed dis-

tribution (shown in Figure C.1a in Appendix C.2) are less pronounced, but similar.

For the pre-sorted case, the results are very similar to the uniform case and can

be found in Figure C.1b in Appendix C.2. Note that in absolute terms, insertion on

Zipf-distributed trees is a lot faster than for example on the uniformly distributed ones.

This can be explained with caching: In a Zipf-distributed tree, which is heavily skewed

towards small keys, most operations access only very few search paths, namely the

search paths to the nodes with small keys. Holding the nodes on these search paths in

cache allows the tree to perform most work directly in cache.

Since we implemented all mentioned trees ourselves, the question of how e�cient

our implementations are as a whole comes to mind. For the insertion benchmark,

we added the C++ STL’s std::multiset5
and Boost’s intrusive::multiset to

the comparison. The plot can be found in Appendix C.2, Figure C.3. As can be seen,

all our trees perform slightly better than std::multiset, but slightly worse than

boost::intrusive::multiset. We may therefore assume that our implementa-

tions are properly optimized.

Next, we look at the deletion operation. Figure 10.3a shows the uniform case. We

see that the 〈2, 3/2〉 variant has a slight advantage over the red-black tree and all other

variants. For deletion, the pre-sorted case (shown in Figure 10.3b) is especially

interesting: Here, all weight-balanced trees, but especially the 〈3, 2〉 variant, clearly

5
STL bundled with GCC 8.1, which implements std::multiset as a red-black tree.

166

Evaluation Section 10.3

0 100 200 300 400
Tree Size (×104)

0.0

0.2

0.4

0.6

0.8

Ti
m

e
(

s)

Delete / Uniform

(a) Node keys generated from a

uniform distribution.

0 100 200 300 400
Tree Size (×104)

0.0

0.2

0.4

0.6

0.8

Ti
m

e
(

s)

Delete / Pre-Sorted

1 + 2, 2
bottom-up

2, 3/2
3, 4/3

red-black

1 + 2, 2
top-down

3, 2
3/2, 5/4

(b) Node keys generated in the pre-sorted fashion.

Figure 10.3: Times to delete 5% nodes from trees of various sizes. The x axis speci�es the

size of the base tree. The y axis reports the time needed for a single deletion in microseconds.

Shaded areas indicate standard deviation.

Table 10.1: Summary of the benchmark �ndings, specifying which weight-balanced tree

variant was the best for each of our benchmark cases. Where two variants could virtually not

be distinguished, we specify both. A checkmark signi�es that in this case, the best weight-

balanced tree outperformed the red-black tree, a cross the opposite.

Deletion Insertion

uniform 〈2, 3/2〉 X 〈3, 4/3〉/〈2, 3/2〉 X
skewed 〈3, 4/3〉 × 〈3, 4/3〉/〈2, 3/2〉 ×

zipf 〈3, 2〉 × 〈3/2, 5/4〉 X
pre-sorted 〈3, 4/3〉 X 〈3, 4/3〉/〈2, 3/2〉 X

167

Chapter 10 Engineering Top-Down Weight-Balanced Trees

10 15 20 25
Tree Size (×105)

18.0

18.5

19.0

19.5

20.0

20.5

Av
er

ag
e

No
de

 D
ep

th

(a) Node keys generated from a

uniform distribution.

10 15 20 25
Tree Size (×105)

18

19

20

21

22

23

Av
er

ag
e

N
od

e
D

ep
th

red-black
1 + 2, 2

top-down
3, 4/3
3/2, 5/4
1 + 2, 2

bottom-up
3, 2
2, 3/2

(b) Node keys generated from a Zipf distribution.

Figure 10.4: Average node depth for various trees. The x axis speci�es the size of the tree,

the y axis the average node depth. All nodes in every tree were randomly generated, removed

once, had their key changed, and were reinserted. The solid lines indicate average values, the

shaded areas the standard deviation.

outperform the red-black tree. On the other side of the spectrum, for the skewed
and zipf cases (shown in Appendix C.2, Figure C.2), the red-black tree has a slight

advantage over the weight-balanced trees.

Our benchmark �ndings are summarized in Table 10.1. From the results, we can

deduce that one should always use the top-down variant, and should never use 〈1 +
√

2,
√

2〉 as balancing parameter. Whether ∆ = 2 or ∆ = 3 is the wiser choice depends

on the expected usage pattern. We can also see that the race between red-black trees

and weight-balanced trees is a toss-up: While weight-balanced trees seem to be ahead

in the uniform and pre-sorted cases, red-black trees exhibit better performance in

the skewed and zipf cases.

10.3.2 Tree Balance

Aside from insertion and deletion times, an interesting metric is the average depth

of a node. The average depth determines the expected length of the search path for

that node, which not only in�uences insertion and removal speeds, but even more

strongly the search performance. In fact, we do not benchmark runtimes for searches

within the trees, since the average depth of the nodes should be the only in�uencing

parameter, with everything else being measurement noise. To analyze the average

node depth, we again create random trees of various sizes. Since just creating a tree

does not involve the remove operation, and we also want to evaluate the e�ects of

168

Evaluation Section 10.3

0 2 4 6 8 10
Operation Count (×105)

0

500

1000

1500

2000

2500

3000

3500

N
um

be
r

of
 u

nb
al

an
ce

d
no

de
s

1 + 2, 2
3, 2

2, 3/2

Figure 10.5: Number of unbalanced nodes on the y axis versus number of remove / insert

operations on random trees of size 10
6

on the x axis. The solid line reports the mean value,

the shaded area indicates the standard deviation.

this operation, we iterate over all nodes after creating the tree, and �rst remove each

node from the tree, change its key, and then reinsert it. After this, we compute the

average depth of all nodes. Figure 10.4a shows the results for keys being drawn from

a uniform distribution.

We see that red-black trees and weight-balanced trees using 〈1+
√

2,
√

2〉 as balance

parameters are virtually equally well balanced. The weight-balanced tree using 〈2, 2/3〉

has a slight advantage over them — as we expected, since ∆ = 2 enforces a stricter

balance than ∆ = 1 +
√

2. However, the 〈3/2, 5/4〉 variant is the worst in terms of

balance, even though it is using the smallest ∆. This suggests that choosing parameters

that are too far outside of the space of feasible choices for 〈∆, Γ〉, the balancing criterion

is violated too badly for the smaller ∆ to make up for it.

Using a Zipf distribution instead of a uniform distribution for the nodes’ keys

(shown in Figure 10.4b) reveals that while the various weight-balanced trees are almost

una�ected by the heavily skewed distribution, the red-black tree handles it a lot worse,

with more than 10% di�erence between the best weight-balanced tree and the red-black

tree. Interestingly, the skewed case, shown in Figure C.4 in Appendix C.2, shows

results very similar to the uniform case.

The fact that in Figure 10.4, the values for the top-down weight-balanced tree with

〈1 +
√

2,
√

2〉 do not di�er much from the bottom-up weight-balanced tree with the

same balancing parameters (which are infeasible for a top-down balancing approach),

and that the (infeasible) parameter pair 〈2, 3/2〉 outperforms all other trees, hint at the

169

Chapter 10 Engineering Top-Down Weight-Balanced Trees

3, 2 2, 3/2 3, 4/3 1 + 2, 2
Tree Variant

0.650

0.675

0.700

0.725

0.750

0.775

0.800

0.825

Ti
m

e
(n

or
m

al
ize

d)

Figure 10.6: Times elapsed during the execution of each captured sequence, normalized to the

time it took the bottom-up weight balanced tree with 〈1 +
√

2,
√

2〉. Every dot is one sequence.

fact that even infeasible balancing parameters for a top-down balancing approach may

produce little to no balance violations in practice. We examine this claim by continually

counting the number of nodes at which balance is violated while repeatedly removing

and re-inserting (with a changed value) random nodes from resp. into a random tree.

Figure 10.5 shows the results for a tree of size 10
6
. We repeat the experiment with 10

di�erent seeds, the line indicates the mean, the shaded areas indicate the standard

deviation. We see that for all three
6

evaluated variants, the number of nodes at which

balance is violated stabilizes after approximately 4 × 10
5

removals and insertions.
7

We

also see that even for the worst of the parameter choices, 〈2, 3/2〉, only about 0.35%

of all nodes are unbalanced after 10
6

operations. This behavior can be explained by

the fact that unbalanced nodes will likely be rebalanced by the next operation that

passes over them. Thus, we also expect the unbalanced nodes to have large depths,

since nodes close to the root are passed over very frequently.

10.3.3 Real-Life Sequences

After the experiments on randomly generated data, we �nally take a look at tree

operations generated from an algorithm that heavily relies on balancing binary trees.

To this end, we instrumented the SWAG algorithm presented in Chapter 8. This is a

scheduling algorithm that in its innermost loop uses a dynamic segment tree, which is

built on top of a balancing binary search tree. Note that the algorithm only deletes

from and inserts into the tree and never performs any searches.
8

We collected a total

of 514 sequences of tree operations. To benchmark our weight-balanced trees, we

6
We excluded 〈3/2, 5/4〉 here, since it breaks the balancing so badly that it distorts the plot.

7
One removal and one insertion count as one operation.

8
While this might seem useless, the information needed by the scheduling algorithm is computed in

an annotation at the root of the tree.

170

Evaluation Section 10.3

2000 4000 6000 8000 10000
Operation Count

0

2000

4000

6000

8000

10000

Ro
ta

tio
n

Co
un

t

(a) Total number of of performed

rotations (on the y axis) after a

number of operations (on the x axis).

2000 4000 6000 8000 10000
Operation Count

0

10000

20000

30000

40000

To
ta

l R
ot

at
io

n
W

ei
gh

t red-black

1 + 2, 2
bottom-up

1 + 2, 2
top-down
3, 2
2, 3/2
3, 4/3

(b) Total node weight of rotated nodes (on the y axis)

after a number of operations (on the x axis).

Figure 10.7: Rotation count and rotated node weight for several kinds of trees of size 10
6

after

various numbers of operations. Solid lines report the mean value, while shaded areas indicate

the standard deviation.

replay each sequence ten times for every weight-balanced tree variant. Figure 10.6

shows the results, where every dot is the time (averaged over the ten iterations) it

took the tree indicated by the x axis to execute one sequence, normalized to the time

it took the bottom-up 〈1 +
√

2,
√

2〉 variant to execute the same sequence. We see

that in this speci�c use case, the 〈3, 2〉 variant suggested by Hirai and Yamamoto (for

the bottom-up variant) performs the best, being about 30% faster than the bottom-up

variant — again, we see the best results for a parameter choice that is infeasible for

top-down rebalancing. The top-down feasible variant 〈3, 4/3〉 performs slightly worse.

But even the worst variant, 〈1+
√

2,
√

2〉 still is more than 23% faster than the bottom-up

variant. Note that we have excluded the 〈3/2, 5/4〉 variant here. It has its mean at

approximately 1.15 and would distort the plot.

10.3.4 Rotated Node Weight

For the �nal evaluation step, we consider that weight-balanced trees are often chosen

because the total weight of the nodes rotated around can be theoretically bounded.

This is useful if rotations around larger nodes are expensive, for example because

of annotations that need to be repaired. We explore their behavior in this regard by

creating random trees of size 10
6
, performing a number of operations (where every

operation consists of one node removal and reinsertion with changed key) on them

and counting how many rotations occurred, and what the total weight of the rotated

nodes is. Figure 10.7a shows how the number of rotations increases with increasing

171

Chapter 10 Engineering Top-Down Weight-Balanced Trees

number of operations, Figure 10.7b shows the same for the total weight of the rotated

nodes. Note that we excluded the 〈3/2, 5/4〉 variant here, since ∆ = 3/2 is such a

strong balancing requirement that the number of rotations is about 20 times larger

than for all the other variants, thus including it would have distorted the plot. The

most striking point is that both numbers are signi�cantly smaller for the variants

with ∆ = 3, usually roughly half the number of rotations (resp. total rotation weight)

than for the other variants or the red-black tree. The less strict balancing requirement

apparently drastically reduces the number of necessary rotations. Whether one uses

top-down or bottom-up balancing does not seem to make a serious di�erence.

It is also notable that the red-black tree, although not possessing a similar theoretical

guarantee, does not perform signi�cantly worse in terms of rotation count or weight

than the weight-balanced trees with ∆ < 3, although its total rotation weight has a

much larger standard deviation. Consistent with the �nding for ∆ = 3, the weight-

balanced tree with ∆ = 2 performs the worst in terms of rotations.

10.4 Conclusion

In the chapter on hand, we evaluated and engineered top-down weight-balanced

trees. A rigorous evaluation has shown that using a top-down balancing approach

instead of a bottom-up approach in fact leads to a signi�cant performance increase,

if one chooses the correct balancing parameters. The correct choice of balancing

parameters can even make weight-balanced trees more performant than red-black

trees, which is surprising considering the fact that red-black trees are used widely,

while weight-balanced trees have received little attention in practice. However, the

balancing parameters should be chosen with the intended use for the weight-balanced

tree in mind. If little modi�cation and a lot of searches are expected, we recommend

using 〈2, 3/2〉 because of its superior average node depth. Even stronger balanced

choices such as 〈3/2, 5/4〉 do not look advisable. One should also consider the expected

distribution of nodes’ keys. For strongly skewed distributions, as for example the

zipf case, smaller ∆ values such as 〈2, 3/2〉 tend to be advantageous. Also, for these

distributions, weight-balanced trees should be chosen over red-black trees, as our

analysis of average node depth has shown.

In case that the weight-balanced tree is annotated and rotations, especially around

large nodes, are costly, using 〈3, 2〉 or even larger ∆ values is likely to be the best of the

evaluated choice. In fact, our benchmark of insert and deletion suggests that 〈3, 2〉 and

〈3, 4/3〉 are overall fairly performant choices, even if their average path lengths might

be slightly inferior. It never seems to be a good choice to use the classic 〈1 +
√

2,
√

2〉

variant. Summarizing these recommendations, it is surprising that empirically, many

times the best choice for balancing parameters are parameters for which the theoretical

guarantees do not hold, especially in the top-down rebalancing case. Of course, these

172

Conclusion Section 10.4

parameters are only a viable choice if one does not have to worry about arti�cially

crafted adversarial instances.

In the future, it would be interesting to determine the space of feasible balancing

parameters for top-down weight-balanced trees similar to how Hirai and Yamamoto

have done for bottom-up weight-balanced trees.

173

11 TCPSP is Fixed-Parameter Tractable
in a Local Measure

Most project scheduling problems that occur in the real world are NP-hard. One

way of coping with NP-hardness is to isolate aspects of the problem which are the

main contributors to the complexity of the problem. Finding such a parameter can

be a valuable tool in classifying the instances of the problem which might still be

optimizable with reasonable e�ort.

In this chapter, we present such a parameter for the Time-Constrained Project

Scheduling Problem. We present a simple enumerative exponential-time algorithm

and show that if a certain parameter, which captures a measure of local complexity, is

bounded, the algorithm solves the problem in pseudo-polynomial time.

11.1 Introduction

Project scheduling problems of various �avors play an important role in optimization

of industrial processes. Project scheduling methods can also be used to optimize

schedules of �exible electrical loads in smart grids and facilitate demand response,

as we show extensively in Part I of this thesis. For smart grid scheduling, variants

of the Time-Constrained Project Scheduling Problem (TCPSP) are of special

interest. In this chapter, we present an analysis of the complexity of TCPSP based on

a simple enumerative exponential-time algorithm. The analysis yields that if a certain

parameter of the input instance is limited, optimization of that instance is possible in

polynomial time.

This statement closely corresponds to one possible de�nition of the concept of

�xed-parameter tractability. Intuitively, a problem being �xed-parameter tractable

means that the instances of the problem have a certain parameter, and that the value

of that parameter dominates the run time complexity.

In our case, the parameter is a measure of the complexity of the instance at every

point in time — a local complexity, in a manner of speaking. Thus, the analysis allows

us to draw the conclusion: The complexity of TCPSP is dominated by the maximal

local complexity, not by the instance size itself. This result indicates that even very

large instances with thousands of jobs might be solvable if one can manage to limit

local complexity.

For a general overview over project scheduling techniques, we refer the reader

to the survey by Węglarz [Węg99], which gives a comprehensive overview over

applications and optimization techniques. Regarding �xed parameter tractability of

175

Chapter 11 TCPSP is Fixed-Parameter Tractable in a Local Measure

the problem, Yaw and Mumey [YM17] present a similar result based on a branch-

and-bound algorithm. However, not only is our presented algorithm (and subsequent

analysis) simpler, but it is also able to deal with dependencies between jobs. For

machine scheduling models, Mnich and Wiese [MW15] present a list of �xed-parameter

tractability results.

Overview. We start this chapter by introducing necessary notation and concepts in

Section 11.2. Section 11.3 introduces local con�gurations, which are the key concept

that the exact algorithm from Section 11.4 builds upon. In Section 11.5, we analyze the

complexity of this algorithm and show that it is in fact �xed-parameter tractable.

11.2 Preliminaries

In this section, we introduce several concepts necessary for the analysis of TCPSP,

as well as the formal de�nition of the problem we concern ourselves with. For basic

notation surrounding computational complexity, we refer the reader to the de�nitive

book by Garey and Johnson [GJ79].

11.2.1 Pseudo Fixed-Parameter-Tractability

The main contribution of this chapter is placing an upper bound on the run time

complexity of optimizing TCPSP instances in terms of a parameter of the instances.

For this, we need the concepts of �xed-parameter tractability and pseudo-polynomiality,

which we combine to pseudo �xed-parameter-tractability.

A problem is said to be �xed-parameter tractable in a parameter k , if the time neededfixed-parameter
tractable to solve instance I (which includes some parameter k) can be upper-bounded by a

function of the form f (k)·O(poly(|I |)). Here, f can be any arbitrary function, especially

an exponential function, while poly can be any polynomial function. Note that this

means that the run time is polynomial in the instance size.

Another concept commonly used to specify run time complexities is that of pseudo-

polynomiality. One usually talks of a problem being “polynomial” (or being in P), if

instances I of the problem can be solved (on a deterministic Turing machine) in a time

bounded in O(poly(|I |)). Here |I | means the length of the encoded instance written

on the Turing machine’s tape. While the exact alphabet used to encode the instance

(or the coding scheme) is not important, there is one crucial catch: Does the alphabet

have more than one element? An alphabet with at least two elements allows one to

encode a number n in at most log
2
(n) digits, while an alphabet of size 1 enforces a

coding length of n. With this in mind, a problem is said to be pseudo-polynomial if thepseudo-
polynomial run time to optimize an instance I can be bounded by O(poly(|I |1)), where |I |1 means

the length of a unary encoding of I . We combine these two concepts to form pseudo

�xed-parameter-tractability:

176

Preliminaries Section 11.3

pseudo fixed-
parameter-

tractable

De�nition 7 (Pseudo Fixed-Parameter-Tractability). We say a problem is pseudo �xed-

parameter-tractable with respect to a parameter k if any instance I (with parameter k)
of the problem can be solved in running time bounded by f (k) · O(poly(|I |1)).

11.2.2 Problem Definition

This work considers project scheduling problems that are variants of the common Time-

Constrained Project Scheduling Problem (TCPSP). Since the machine scheduling

problem known as Scheduling with Release Times and Deadlines on a Minimum

Number of Machines (SRDM) is a special case of TCPSP, and in fact our variations

of the TCPSP are compatible with SRDM, our results are also applicable to SRDM. We

now formally de�ne the problems and notation that we use throughout this chapter.

An instance of TCPSP consists of a set J of jobs. We assumen to be the number of jobs, instance
jobsi.e., n = |J |. Also, we assume k resources to be given. In the job set J = {j1, j2, . . . jn},

each job ji is a four-tuple: ji = (ri ,di ,pi ,ui) ∈ N × N × N ×R
k

. For job ji , ri states the

release time of ji , i.e., the earliest time at which ji can be executed. In turn, di states the release time
deadline, i.e., the time at which ji must be �nished. The processing time pi indicates deadline

processing timehow long ji must be executed without interruption. Finally, ui speci�es the usage of

usageji , i.e., how much resources ji requires. For job i , ui,k speci�es the usage of resource k .

Dependencies between jobs are captured in a lag (partial) function L : N2 7→ N0. For lag
two jobs i, j , an entry L(i, j) speci�es the minimal amount of time that must pass after

the start of i before j can start. If (i, j) < L, then there is no such dependency between

i and j.

The objective is to assign start times to every job j that respect r j and dj and

any potential L(·, j) resp. L(j, ·). We call such a set of start times a schedule. More schedule
formally, a schedule is a function S : {1, . . .n} → N0, where S(j) is the start time of

job j. A schedule S is feasible if and only if for all j, S(j) ≥ r j , S(j) ≤ dj − pj and

S(j) ≥ S(i) + L(i, j) for all (i, j) ∈ L. The set of all feasible schedules is denoted as S.

Finally, an objective function Obj : S → R is given, assigning a cost to any feasible

schedule. The objective is to determine start times that minimize Obj(S). We do

not allow arbitrary objective functions. We defer the formal speci�cation of the

requirements for valid objective functions to Section 11.3.2, since more concepts

need to be established �rst. On a high level, we require our objective function to be

computable by iterating the schedule from left to right, with only a constant amount

of memory. In Section 11.6, we show how two popular objective functions can be

integrated into our approach.

In [HDD99], Herroelen et al. propose a classi�cation scheme for project scheduling

problems. If the objective function is chosen to re�ect peak shaving, the character-

ization for the problem de�ned here according to that scheme is va |min, ρ j ,δ j |av .

177

Chapter 11 TCPSP is Fixed-Parameter Tractable in a Local Measure

However, many di�erent variants can also be optimized by the presented approach.

See Section 11.6 for details on how other objective functions can be optimized.

11.3 Local Configurations

After introducing the necessary concepts, we now introduce local con�gurations, whichlocal
configurations are the foundation of this work.

Intuitively, a local con�guration at time t speci�es for each job that could potentially

be executing at time t whether it has already �nished, or else whether and when it

was started. We will use it in Algorithm 8 to construct a schedule by iterating over all

time points. The idea is that given a local con�guration at time t , one can determine

how the future of the schedule can look like. To do that, we need to know the start

time of a job j in the local con�guration at t under several circumstances:

• If j is running during time t , we must know when it stops running.

• If j has a dependee k with time lag l (i.e., L(j,k) = l), and t − sj < l , we need to

know that we cannot start k yet.

Under all other circumstances, we just need to know whether j has already completed

(and all its dependees can be started already), or whether it has not been started yet.

We de�ne our local con�guration to re�ect this information. We de�ne a job j’s maxmax lag
lag L̂(j) = max{l | ∃k ∈ J : L(j,k) = l} ∪ {0} as the maximum over all its outgoing

lags.

Then, given an instance of TCPSP and a schedule S we de�ne the local con�guration

at time step t , written LCS (t), as

LCS (t) = { (i, S(i)) : S(i) ≤ t ∧ t − S(i) < max{pi , L̂(i)}} (11.1)

∪ { (i, †) : S(i) ≤ t ∧ t − S(i) ≥ max{pi , L̂(i)}} (11.2)

In this de�nition, (11.1) causes (j, S(j)) to be part of the local con�guration for all jobs

j that were already started (S(j) ≤ t), and that are either not yet �nished (t − S(j) < pj)
or that have dependees that can not be started yet because of them (t − S(j) < L̂(j)).
For other already started jobs j, (11.2) captures the fact that job j is already �nished

(and all dependees can be started) as (j, †).
Building upon this, we de�ne the local con�guration set at a time step t , the set oflocal

configuration
set

all local con�gurations for all valid schedules. The local con�guration set at time step

t is the set of all feasible local con�gurations at time step t , i.e.

LCS(t) = {LCS (t) : S ∈ S}

We call its size the local con�guration set size at t , denoted as LCSS(t) = | LCS(t)|.local
configuration
set size

178

Local Configurations Section 11.3

We now determine an upper bound on LCSS(t). Given a job j, which (j, ·) pairs can

appear in LCS(t)? Certainly, this set is at most {(j, †), (j, t −max{pj , L̂(j)} + 1), (j, t −
max{pj , L̂(j)} + 2), . . . (j, t)}, which is of size max{pj , L̂(j)}. If j was started more than

max{pj , L̂(j)} time steps ago, its exact start time is irrelevant and it would be recorded

as (j, †). The product of the sizes of the possible entries for all jobs yields an upper

bound on LCSS(t):

LCSS(t) ≤
n∏
j=1

(
max

{
pj , L̂(j)

})
However, at point t , usually only a subset of jobs is relevant at all. For example

any job j with r j > t cannot have any entry in LCS (t). Similarly, any job j with

dj − pj + max{pj , L̂(j)} ≤ t can only appear as (j, †) in LCS (t). Such a job j has not

only inevitably stopped running at t (because of dj − pj + pj = dj ≤ t), but also all of

its dependees can be started (because of dj −pj + L̂(j) ≤ t ; note that dj −pj is the latest

possible start time of j). This means that the information about when j was started is

irrelevant for the further schedule. Since these jobs contribute only a 1 to the product,

we may discard them. We call the right-open interval [r j ,dj − pj +max{pj , L̂(j)}) the

extended window of job j. To place an upper bound on LCSS(t), it su�ces to consider extended
windowjobs which have t in their extended window because of the arguments laid out above.

This allows us to reformulate the upper bound on LCSS(t):

LCSS(t) ≤
∏

i ∈{j ∈J |r j ≤t<dj−pj+max{pj , L̂(j)}}

max

{
pi , L̂(i)

}
We call the maximum LCSS(t) themaximum local con�guration set size, denoted as maximum local

configuration
set size

MLCSS = maxt LCSS(t). This MLCSS captures the maximum local complexity of an

instance. It is the parameter in which we show the �xed-parameter tractability of

TCPSP.

Formally, we state as the main result of this chapter:

Theorem 11.1 (TCPSP is Pseudo-FPT). Given an instance I of TCPSP, an optimal

schedule can be computed in

MLCSS
2 ·O(|I|2

1
)

time, where |I |1 represents the length of an unary encoding of I.

11.3.1 Configuration Continuation

Working towards an algorithm to solve TCPSP, we now present a way of determining

how a given local con�guration can be completed to a feasible schedule.

179

Chapter 11 TCPSP is Fixed-Parameter Tractable in a Local Measure

Given a local con�guration la at t and a local con�guration lb at t + 1, we say that

la can be continued to lb if and only if there is a schedule S such that LCS (t) = la and

LCS (t + 1) = lb . Intuitively, this means that la can be a predecessor of lb in a valid

schedule. Instead of enumerating all possible schedules to check whether a given lb is

a continuation of la , we can check this e�ciently. We must check three things:

• Jobs the start time of which becomes irrelevant at time t+1 are correctly marked:

For every (j, tj) in la with tj +max{pj , L̂(j)} = t + 1, lb must contain (j, †),

• all other items in la are also in lb ,

• jobs that need to start are started: For every i such that there is no (i, ·) in la ,

and for which di − pi = t + 1, the item (i, t + 1) must be in lb .

We call the set of continuations of a local con�guration la its Successor Local Con-successor local
configuration
set

�guration Set, written as SLCS(la).
We can use the characterization above to easily compute the successor local con�g-

uration set SLCS(l) for a local con�guration l , as shown in Algorithm 7. Starting with

an old local con�guration l at time t , lines 1 to 7 mark the jobs from l the start time of

which becomes irrelevant at t + 1 as such. Lines 8 to 9 handle jobs that are not started

in l and for which t + 1 is the latest possible start time. Line 10 generates the set of

jobs that could potentially start at t + 1, and lines 11 to 12 create all possible subsets of

these.

11.3.2 Extensible Cost Functions

The algorithm presented in this chapter is able to solve several variants of the the

TCPSP problem de�ned in Section 11.2.2. Which objective is optimized for for is

determined by choosing the right objective function, of which we show examples in

Section 11.6.

During the execution of the algorithm, we replace the chosen objective function with

a modi�ed objective function, which we call an extensible cost function. Section 11.6extensible cost
function shows examples for such functions as well.

Note that we call it extensible cost function, not extensible objective function. In

our terminology, costs do not only contain the objective value, but might also contain

some auxiliary data needed for future computations. Intuitively, the extensible cost

function should compute the objective value of a schedule if it is iteratively applied to

all the local con�gurations of the schedule, left to right. At every local con�guration,

it is only allowed to utilize a �xed amount of information (the auxiliary data) from its

earlier runs.

To formally de�ne extensible cost functions, we need the concept of a scheduleschedule prefix
pre�x. Given a schedule, we can look at the schedule only up to a certain point and

180

Local Configurations Section 11.3

Algorithm 7: Compute the Successor Local Con�guration Set for a local

con�guration l .

Input: t : previous time step

Input: l : Local con�guration at t
Output: The successor local con�guration set of l

1 Result ← ∅;
2 l ′← ∅;
3 for (i, ti) ∈ l do

// Mark irrelevant jobs as irrelevant

4 if ti = t −max

{
pi , L̂(i)

}
then

5 l ′← l ′ ∪ {(i, †)};
6 else
7 l ′← l ′ ∪ {(i, ti)};

/* Start unstarted jobs for which this is the last possible
start time */

8 for i ∈ {j ∈ J | dj − pj = t + 1 ∧ (j, ·) < l} do
9 l ′← l ′ ∪ {(i, t + 1)};

10 StartCandidates ← {j ∈ J | r j ≤ t + 1 ∧ (j, ·) < l ′};
11 for c ∈ {C | C ⊆ StartCandidates} do
12 Result ← Result ∪ {l ′ ∪ {(i, t + 1) | i ∈ c}};

forget anything happening after that point. Formally, let S be a schedule and S[t] the

schedule pre�x of S up to time point t . Then:

S[t] : {i | S(i) ≤ t} → N0

S[t](i) = S(i)

Note that S[t] is most likely not a valid schedule, since it does not assign a start time

to every job.

Formally, an extensible cost function is a function

c :

{
S[t] | S ∈ S, t ∈

{
min

i
ri , . . .max

i
di

}}
×Q → R ×Q

where Q is the set of all possible auxiliary information it can carry over. The �rst set is

the set of all possible schedule pre�xes of all feasible schedules. We denote the second

component of c(·, ·) as c(·, ·)
2
. We treat the �rst component (denoted c(·, ·)

1
) of the

output as a preliminary objective value. We require c to be de�ned in such a way that

for a schedule S and a latest deadline D = maxi di ,

c(S[D], c(S[D − 1], c(S[D − 2], . . .)2)2)1

181

Chapter 11 TCPSP is Fixed-Parameter Tractable in a Local Measure

results in the objective value of S .

Intuitively, a cost function being extensible means that it can be used to compute

the objective value of a schedule by looking at the schedule one time step (and local

con�guration at that time step) at a time. We also require an extensible cost function to

be computable with time complexity O(n). Note that this also means that the output,

which includes a representation of the elements of Q , must be bounded by O(n). Thus,

Q cannot be arbitrarily large.

11.4 An Exact Algorithm

We assume to be given an instance of TCPSP as de�ned in Section 11.2.2 with an

objective function that can be expressed as an extensible cost function. We present an

algorithm that iterates all time steps and, for each time step t , computes preliminary

costs (using the extensible cost function) for each possible local con�guration in LCS(t).
Let D be the global deadline of the instance, i.e., D = maxi (di).

The algorithm (shown as pseudocode in Algorithm 8) builds a tableT of dimensions

D ×MLCSS. We denote by T [a][b] the entry in row a, column b. We assume the rows

to be indexed by the integers {1, . . . ,D. Abusing notation, we assume the columns of

T [a] to be indexed by local con�gurations. Of course, the feasible local con�gurations

for time steps a and b di�er, thus this is not a “real” index. However, we know that

there are at most MLCSS local con�gurations at every time step. We assume these to

be somehow mapped to the set of integers {1, . . .MLCSS}, thus resulting in a “valid”

table index.

The algorithm works by iterating over all time steps in the loop started in line 2. For

each time step t , it enumerates all local con�gurations at t −1 in line 3, generating each

successor local con�guration set in line 4. This yields all possible local con�gurations

at time t . Note that the same local con�guration at t can be generated in multiple

successor local con�guration sets for di�erent local con�gurations at time t − 1. Thus,

we must for each generated local con�guration (line 5) not only compute its preliminary

cost (line 6), but also check whether this is the best value we have so far seen for this

speci�c local con�guration (lines 7–8).

After the algorithm has �nished, we can easily determine the objective value of an

optimum solution by extending the table built in Algorithm 8 by one more time step.

In this time step D + 1, all jobs will have �nished (or the input instance is infeasible).

Thus,T [D + 1] will have exactly one local con�guration, namely {(i, †) : i ∈ {1, . . .n}}.
The value of that entry is the optimal solution quality of the input instance.

11.4.1 Schedule Reconstruction

To actually reconstruct the schedule, we need only to modify what we store in T [t][·]:
Instead of only storing the optimal partial costs, we also store which local con�guration

182

Complexity Section 11.5

Algorithm 8: An exponential-time algorithm to solve the TCPSP

Input: An instance of TCPSP

Input: c: An extensible cost function

1 Enumerate LCS(1) and compute costs for each schedule pre�x in LCS(1);

2 for t ← 2 to D do
3 for l ∈ LCS(t − 1) do
4 SuccessorSet ← computeSLCS(l , t);
5 for l ′ ∈ SuccessorSet do
6 cost ← c(l ′,T [t − 1][l]);
7 if l ′ < T [t] or cost1 < T [t][l ′] then
8 T [t][l ′] = c;

in T [t − 1] was continued to achieve this value. Using this information, we can later

trace back a path from T [D + 1] to T [1] during which we will see each job together

with its start time at least once.

11.5 Complexity

We �rst analyze the complexity of Algorithm 7, which is being used in the TCPSP

Solver (Algorithm 8). The loop in lines 3–7 is executed at most n times, and takes O(1)

time per iteration. Similarly, the loop in lines 8–9 can be executed in O(n) time. The

set of jobs not started yet in line 10 can also be computed in O(n) time. Interesting is

the question how often the loop in line 11 executes. We know that in the end, every

element in Result is a member of LCS(t + 1). We also know that every iteration of the

loop adds exactly one element to Result , and that the size of LCS(t + 1) is bounded by

MLCSS. Thus, the loop can be executed at most MLCSS times. The actual generation

of an element of Result in line 12 can be done in O(n) time. Thus, the loop in line 11

takes a total of MLCSS · O(n) time, which also dominates the run time of Algorithm 7.

We now analyze the complexity of Algorithm 8. Since our objective function is re-

quired to be an extensible cost function, and we may assume extensible cost functions to

have time complexity O(n) as per Section 11.3.2, lines 6 to 8 have time complexity O(n).
Since the size of the successor set is bounded by MLCSS, the loop in line 5 requires time

in MLCSS · O(n). The same holds for line 4. Since the size of LCS(t −1) is also bounded

by MLCSS, we know that the loop in line 3 requires a total time in MLCSS
2 · O(n).

Finally, the outer loop in line 2 executes once for every time step, leading to a total

time complexity of MLCSS
2 · O(nD). Note that D is not a size parameter of the input

instance, but rather an input value — thus, O(nD) is not polynomial in the size of the

input, and thus MLCSS
2 · O(nD) does not ful�ll the requirement for �xed-parameter

tractability as de�ned in Section 11.2.1. However, the concept of pseudo-polynomiality

183

Chapter 11 TCPSP is Fixed-Parameter Tractable in a Local Measure

as de�ned in in the same section relates the run time complexity to the length of an

unary encoding of the instance, |I |1, and clearly O(nD) ⊆ O(n · |I1 |) ⊆ O(|I|
2

1
). Thus

we arrive at the time complexity from Theorem 11.1: MLCSS
2 ·O(|I|2

1
). With this,

upper-bounding MLCSS by a constant value makes Algorithm 8 pseudo-polynomial.

We have therefore shown that Algorithm 8 is pseudo �xed-parameter-tractable in the

parameter MLCSS.

11.6 Objective Functions

We have shown that the algorithm in Section 11.4 solves the Time-Constrained

Project Scheduling Problem with any objective function that can be expressed in

terms of an extensible cost function. We now �rst show how to express classical peak

shaving and resource leveling problems as such an extensible cost function.

An extensible objective function receives two inputs: A local con�guration l at t ,
and the second component of the result of the extensible cost function on the local

con�guration that was the predecessor of l — see Section 11.3.2 for a formal de�nition.

It must produce the partial costs for l .

Peak Shaving. In a peak shaving setting (which in literature is also known as the

Resource Acqirement Cost Problem), the objective is to minimize the maximum

resource usage for each resource. Since we are not considering multiobjective op-

timization here, some weighting factor is given for every resource to combine the

maximum usages for all resources into a single objective. Let wρ be the weight factor

for resource ρ, and let R(S, ρ, t) be the usage of resource ρ at time t in schedule S , then

a peak shaving objective can look like

Obj(S) =
∑

ρ ∈{1, ...k }

wρ ·max

t
(R(S, ρ, t))

The extensible cost function suggested to optimize for this objective does return

as auxiliary data the maximum value seen for every of the k resources up to the

current point. Thus, Q = Rk
is the set of possible auxiliary information. Note that

in Section 11.3.2, we stated that Q’s size must be bounded in a certain way, which

obviously is not the case here. However, only a distinct set of values, of size 2
n

, can be

taken for the demand of each resource, because each job can either contribute or not.

This is su�cient to �nd a small enough representation for the values of Q . We treat

an element of this Q as a vector and for q ∈ Q denote by q[i] the i’th element of the

vector.

To formally de�ne the extensible cost function, we need a function that computes

the resource usages for a local con�guration. Let l be a local con�guration at time t ,

184

Objective Functions Section 11.6

then U (l , t)ρ computes the usage of resource ρ at time t in a schedule corresponding

to l :

U (l , t)ρ =
∑

i ∈{j | (j,tj) ∈ l
∧ tj , †
∧ tj+pj>t }

ui,ρ

The sum sums over all jobs that are executing during l , i.e., that have an entry in l but

are not yet �nished. With this, the extensible cost function to achieve peak shaving is:

c(l ,q) =

(
max

(
q1,

k∑
ρ=1

wρ ·max

(
q2[ρ],U (l , t)ρ

))
,


max (q2[1],U (l , t)1)
max (q2[2],U (l , t)2)

...

max (q2[k],U (l , t)k)


ª®®®®®¬

The �rst component is the maximum of the previous preliminary cost and the weighted

sum over all so-far seen resource demand maxima. The second component is the

updated vector of so-far seen resource demand maxima.

Resource Leveling. In a resource leveling problem, the objective function aims to

minimize at every time step and for every resource the deviation of the usage of the

respective resource from a prede�ned desired value. If only positive deviations are to

be minimized, the desired value can be interpreted as an amount of a resource that is

available for free at every time step, while all usage above that level must be paid for.

Problems where positive as well as negative deviations are to be minimized arise for

example in settings where machines must be always run close to a certain operating

point for technical reasons.

Again, since we do not consider multiobjective optimization, we assume a weight

factor wρ to be given for every resource ρ. If A(ρ, t) is the desired usage for resource

ρ at time step t , the objective can be written as

Obj(S) =
k∑
ρ=1

D∑
t=1

wρ · |R(S, ρ, t) −A(ρ, t)|

In this case, the only value needed from time step t−1 to compute the preliminary costs

at t are the preliminary costs itself, no auxiliary information is needed. We therefore

185

Chapter 11 TCPSP is Fixed-Parameter Tractable in a Local Measure

formally set Q = {⊥}, in which we treat ⊥ as a dummy element. This extensible cost

function is signi�cantly easier:

c(l ,q) =

(
q1 +

k∑
ρ=1

wρ · |U (l)ρ −Aρ | , ⊥

)

11.7 Conclusion

In the present chapter we have presented an analysis of the complexity of the Time-

Constrained Project Scheduling Problem. Using an exponential-time algorithm

that optimizes TCPSP in various �avors, e.g., the Resource Acqirement Cost

Problem or the Resource Leveling Problem, we have shown these problems to be

pseudo �xed-parameter-tractable in a parameter that measures local complexity. The

result indicates that optimization even of large instances might be feasible if one is

able to bound local complexity.

It is conceivable that the presented algorithm can be adapted to form a heuristic

by generating only a subset of the possible local con�gurations at every time step.

It would be interesting to see if this yields a useful algorithm. Another interesting

question touching practical applicability is whether real-world instances, for example

from smart grid scheduling problems as introduced in Part I, have high or low local

complexity.

186

12 Conclusion

In this thesis, we investigated ways to exploit demand side �exibility in electrical

grids with a strong focus on centralized demand response. As outlined in Chapter 1,

demand response can be an important puzzle piece in the endeavor to ensure uninter-

rupted service and e�cient use of generation assets in changing energy systems. We

concentrated our research on algorithmic approaches to facilitate demand response.

Summary. In Part I, we focused on modeling demand side �exibility and performing

optimization based on these models. We started by presenting a comprehensive

modeling framework in Chapter 3, which uni�es several models from literature and

we practically evaluated the complexity of optimizing the resulting models. Taking

it one step further, our interaction with the energy community lead us to believe

that models requiring the speci�cation of �exibility on a per-job basis are not very

applicable in practice, since that information is not readily available even to operators

of industrial plants. Therefore, we presented a new modeling technique in Chapter 4.

The new modeling technique needs only a global limit on �exibility, and its result can

be interpreted as a recommendation as to which processes might bene�t the most from

�exibilization. The mixed-integer linear models used throughout this part are only

useful if they can be solved in a reasonable amount of time. Thus, we reworked parts

of our models to make them more e�cient in Chapter 5. We presented and evaluated a

new order-based modeling technique. Comparison to two existing techniques showed

the order-based approach to be superior. We complemented this �rst part in Section 6

by presenting a data set of benchmark scheduling instances derived from real-world

production data, which can be used to evaluate scheduling approaches.

Since solving mixed-integer linear programs — or any other NP-hard problem —

is feasible only up to a size which does not cover realistic instance sizes of e.g. large

industrial plants, heuristics must be developed to cope with larger instances. In Part II,

we presented two such heuristics. The �rst heuristic, RUSH, presented in Chapter 7,

deals with a relatively simple model. The heuristic is aimed at �nding good solutions

fast by employing a rapid iterative improvement process. In Chapter 8, the second

heuristic, SWAG, uses a more elaborate approach of interpreting the problem as a

graph problem, using graph augmentation as the scheduling mechanism. We evaluated

both heuristics, both against mixed-integer linear programs and competitor heuristics.

The results show that both heuristics are feasible approaches to large-scale scheduling

instances, and that SWAG outperforms a competitor heuristic on instances derived

from real-world data.

187

Chapter 12 Conclusion

In Part III, we examined algorithmic foundations of scheduling, especially peak

shaving. An algorithm can only be as fast as the basic operations it uses. Peak shaving

heuristics such as SWAG commonly require quickly �nding the peak demand in a

current schedule. In Chapter 9, we presented a variant of dynamic segment trees

that allow for very e�cient lookup of the peak in a schedule. We engineered the

dynamic segment trees by replacing the underlying red-black tree with a zip tree

or a weight-balanced tree. The weight-balanced trees used can in turn pro�t from

further engineering, which we presented in Chapter 10. We conducted an in-depth

evaluation of top-down rebalancing strategies with various rebalancing parameters,

and uncovered that parameter choices that are not advisable from a theoretic standpoint

do in many cases exhibit the best performance in practice. Additionally, we presented

a complexity analysis of the Time-Constrained Project Scheduling Problem by

means of an exponential-time enumerative algorithm. The analysis shows that TCPSP

becomes pseudo-polynomial if a certain local measure of complexity is bounded,

making the problem pseudo-�xed-parameter-tractable.

Conclusion. The aim of this thesis was to provide insights into how the scheduling

problems behind demand response can be facilitated to aid the Energiewende, and to

investigate the algorithmic challenges presenting themselves in this endeavor. The

scheduling approaches we presented in chapters 3, 4, 5, 7 and 8 each solve a variant

(or several variants) of the problems associated with demand response. We have

thoroughly evaluated each, in most cases based on data derived from real-world

applications, and shown them each to be a well-suited technique in at least some cases.

The additional algorithmic results presented in Part III can hopefully aid the algorithm

engineering community in building faster algorithms for a multitude of problems.

Summarizing this, it seems fair to say this thesis lives up to its original goals.

Outlook. One aspect that makes smart grid scheduling an exciting subject is that

the well-researched �eld of scheduling algorithms meets the emerging very active,

sometimes even chaotic, �eld of energy informatics. Thus, going forward will require

a lot of work consolidating and summarizing the many papers in the �eld of energy

informatics and bringing them together with the known results from scheduling. A

more precise mathematical modeling of demand response potentials appearing in real-

world applications would be particularly helpful. This brings us to another important

point: �eld studies of demand response in real industrial contexts would be very

helpful to validate the work being done. Ultimately, bridging the gap between the

many clever algorithms being written on paper and real electricity consumers actually

participating in demand response — preferably many and large ones — may well be

the most important, but also the most demanding challenge.

188

12Bibliography

[AB00] Sankar Ashok and Rangan Banerjee. Load-management applications
for the industrial sector. Applied Energy 66:2 (2000), pages 105–111.

doi: 10.1016/s0306-2619(99)00125-7.

Cited on pages 6, 20, 21.

[Ada93] Stephen Adams. Functional Pearls E�cient sets — a balancing act.
en. Journal of Functional Programming 3:4 (1993), pages 553–561. doi:

10.1017/S0956796800000885. (Visited on 08/16/2019).

Cited on page 158.

[Ali+15] Mahnoosh Alizadeh, Anna Scaglione, Andy Applebaum, George Kesidis,

and Karl Levitt. Reduced-Order Load Models for Large Populations
of Flexible Appliances. IEEE Transactions on Power Systems 30:4 (2015),

pages 1758–1774. doi: 10.1109/tpwrs.2014.2354345.

Cited on page 19.

[All+12] Florian Allerding, Marc Premm, Pradyumn Kumar Shukla, and Hart-

mut Schmeck. Electrical load management in smart homes using
evolutionary algorithms. In Proceedings of the 9th European Confer-

ence on Evolutionary Computation in Combinatorial Optimization (Evo-

COP’12). Springer, 2012, pages 99–110. doi: 10.1007/978-3-642-
29124-1_9.

Cited on pages 6, 19, 21.

[Amb+18] Mirjam Ambrosius, Veronika Grimm, Christian Sölch, and Gregor Zöttl.

Investment incentives for �exible demand options under di�er-
ent market designs. Energy Policy 118 (2018), pages 372–389. doi: 10.
1016/j.enpol.2018.01.059.

Cited on page 39.

[AMR03] Christian Artigues, Philippe Michelon, and Stéphane Reusser. Insertion
techniques for static and dynamic resource-constrained project
scheduling. European Journal of Operational Research 149 (2 2003),

pages 249–267. doi: 10.1016/S0377-2217(02)00758-0.

Cited on pages 5, 63.

189

https://doi.org/10.1016/s0306-2619(99)00125-7
https://doi.org/10.1017/S0956796800000885
https://doi.org/10.1109/tpwrs.2014.2354345
https://doi.org/10.1007/978-3-642-29124-1_9
https://doi.org/10.1007/978-3-642-29124-1_9
https://doi.org/10.1016/j.enpol.2018.01.059
https://doi.org/10.1016/j.enpol.2018.01.059
https://doi.org/10.1016/S0377-2217(02)00758-0

[AMS14] Florian Allerding, Ingo Mauser, and Hartmut Schmeck. Customizable
energy management in smart buildings using evolutionary algo-
rithms. In Proceedings of the 5th European Conference on the Applica-

tions of Evolutionary Computation (EvoApplications’14). Springer, 2014,

pages 153–164. doi: 10.1007/978-3-662-45523-4_13.

Cited on page 100.

[Ard+17] Omid Ardakanian, Ye Yuan, Roel Dobbe, Alexandra von Meier, Steven

Low, and Claire Tomlin. Event detection and localization in distribu-
tion grids with phasormeasurement units. In Proceedings of the 15th

IEEE Power & Energy Society General Meeting (PESGM’17). IEEE, 2017,

pages 1–5. doi: 10.1109/pesgm.2017.8273895.

Cited on page 39.

[Ash06] Sankar Ashok. Peak-load management in steel plants. Applied En-

ergy 83:5 (2006), pages 413–424. doi: 10.1016/j.apenergy.2005.05.
002.

Cited on pages 6, 20, 21, 100.

[Ass17] Solar Energy Industries Association. SolarMarket Insight Report 2017
Year in Review. 2017. url: https://www.seia.org/research-re
sources/solar-market-insight-report-2017-year-review
(visited on 02/17/2020).

Cited on page 2.

[Bal07] Francisco Ballestín. A genetic algorithm for the resource renting
problem with minimum and maximum time lags. In Proceedings

of the 4th European Conference on Evolutionary Computation in Com-

binatorial Optimization (EvoCOP’07). Springer, 2007, pages 25–35. doi:

10.1007/978-3-540-71615-0_3.

Cited on page 5.

[Bar+15] Antimo Barbato, Antonio Capone, Lin Chen, Fabio Martignon, and Ste-

fano Paris. Adistributed demand-sidemanagement framework for
the smart grid. Computer Communications 57 (2015), pages 13–24. doi:

10.1016/j.comcom.2014.11.001.

Cited on page 4.

[Bar+18a] Lukas Barth, Veit Hagenmeyer, Nicole Ludwig, and Dorothea Wagner.

Dataset accompanying "Howmuch demand side �exibility do we
need? - Analyzing where to exploit �exibility in industrial pro-
cesses". KITOpen Repository. 2018. doi: 10.5445/IR/1000082194.

Cited on page 215.

190

https://doi.org/10.1007/978-3-662-45523-4_13
https://doi.org/10.1109/pesgm.2017.8273895
https://doi.org/10.1016/j.apenergy.2005.05.002
https://doi.org/10.1016/j.apenergy.2005.05.002
https://www.seia.org/research-resources/solar-market-insight-report-2017-year-review
https://www.seia.org/research-resources/solar-market-insight-report-2017-year-review
https://doi.org/10.1007/978-3-540-71615-0_3
https://doi.org/10.1016/j.comcom.2014.11.001
https://doi.org/10.5445/IR/1000082194

[Bar+18b] Lukas Barth, Veit Hagenmeyer, Nicole Ludwig, and Dorothea Wagner.

How much demand side �exibility do we need? In Proceedings of

the 9th International Conference on Future Energy Systems (e-Energy’18).

ACM, 2018, pages 43–62. doi: 10.1145/3208903.3208909.

Cited on page 35.

[Bar+18c] Lukas Barth, Nicole Ludwig, Esther Mengelkamp, and Philipp Staudt. A
comprehensive modelling framework for demand side �exibility
in smart grids. In Computer Science — Research and Development. Vol-

ume 33. 1-2. Springer, 2018, pages 13–23. doi: 10.1007/s00450-017-
0343-x.

Cited on page 17.

[BDF17] Nina Boogen, Souvik Datta, and Massimo Filippini. Demand-side
management by electric utilities in Switzerland: Analyzing its
impact on residential electricity demand. Energy Economics 64

(2017), pages 402–414. doi: 10.1016/j.eneco.2017.04.006.

Cited on page 79.

[Ben77] Jon Louis Bentley. Algorithms for Klee’s rectangle problems. Tech.

rep. Unpublished notes. Department of Computer Science, Carnegie-

Mellon University, 1977.

Cited on page 135.

[Ber+08] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars.

Computational Geometry: Algorithms and Applications. Springer,

2008. isbn: 978-3-540-77973-5. doi: 10.1007/978-3-540-77974-2.

Cited on page 138.

[Bis+18] Simon Bischof, Holger Trittenbach, Michael Vollmer, Dominik Werle,

Thomas Blank, and Klemens Böhm. HIPE: An Energy-Status-Data
Set from Industrial Production. In Proceedings of the 9th International

Conference on Future Energy Systems (e-Energy’18). e-Energy ’18. Karls-

ruhe, Germany: ACM, 2018, pages 599–603. doi: 10.1145/3208903.
3210278.

Cited on pages 40, 80, 85, 124, 215.

[BK12] Peter Brucker and Sigrid Knust. Complex Scheduling. Second edition.

Springer, 2012. isbn: 978-3-642-23928-1. doi: 10.1007/978-3-642-
23929-8.

Cited on pages vii, 5, 12, 115.

[BKF15] Zdenek Bradac, Vaclav Kaczmarczyk, and Petr Fiedler. Optimal schedul-
ing of domestic appliances via MILP. Energies 8:1 (2015), pages 217–

232. doi: 10.3390/en8010217.

Cited on page 6.

191

https://doi.org/10.1145/3208903.3208909
https://doi.org/10.1007/s00450-017-0343-x
https://doi.org/10.1007/s00450-017-0343-x
https://doi.org/10.1016/j.eneco.2017.04.006
https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1145/3208903.3210278
https://doi.org/10.1145/3208903.3210278
https://doi.org/10.1007/978-3-642-23929-8
https://doi.org/10.1007/978-3-642-23929-8
https://doi.org/10.3390/en8010217

[BM80] Norbert Blum and Kurt Mehlhorn. On the Average Number of Re-
balancing Operations in Weight-Balanced Trees. Theoretical Com-

puter Science 11 (1980), pages 303–320. doi: 10.1016/0304-3975(80)
90018-3.

Cited on pages 158, 159, 164.

[Bun19] Bundesnetzagentur. Bericht über die Mindesterzeugung 2019. Oct. 7, 2019.

url: https://www.bundesnetzagentur.de/DE/Sachgebiete/El
ektrizitaetundGas/Unternehmen_Institutionen/Versorgun
gssicherheit/Erzeugungskapazitaeten/Mindesterzeugung/
Mindesterzeugung_node.html (visited on 02/17/2020).

Cited on page 3.

[BW18] Lukas Barth and Dorothea Wagner. Exploiting �exibility in smart
grids at scale. In Computer Science — Research and Development. Vol-

ume 33. 1-2. Springer, 2018, pages 185–191. doi: 10.1007/s00450-
017-0357-4.

Cited on page 99.

[BW19a] Lukas Barth and Dorothea Wagner. Dataset accompanying "Shaving
Peaks by Augmenting the Dependency Graph". KITOpen Reposi-

tory. 2019. doi: 10.5445/IR/1000094106.

Cited on page 123.

[BW19b] Lukas Barth and Dorothea Wagner. Dataset accompanying “Engineer-
ing Top-Down Weight-Balanced Trees”. KITOpen Repository. 2019.

doi: 10.5445/IR/1000098852.

Cited on page 164.

[BW19c] Lukas Barth and Dorothea Wagner. Dataset accompanying “Engineer-
ing Top-Down Weight-Balanced Trees”. KITOpen Repository. 2019.

doi: 10.5445/IR/1000098852.

Cited on page 233.

[BW19d] Lukas Barth and Dorothea Wagner. Shaving Peaks byAugmenting the
Dependency Graph. In Proceedings of the 10th ACM International Con-

ference on Future Energy Systems (e-Energy’19). ACM, 2019, pages 181–

191. doi: 10.1145/3307772.3328298.

Cited on page 111.

[BW20a] Lukas Barth and Dorothea Wagner. Engineering Top-Down Weight-
Balanced Trees. In Proceedings of the 22nd Workshop on Algorithm En-

gineering and Experiments (ALENEX’20). SIAM, 2020, pages 161–174. doi:

10.1137/1.9781611976007.13.

Cited on page 157.

192

https://doi.org/10.1016/0304-3975(80)90018-3
https://doi.org/10.1016/0304-3975(80)90018-3
https://www.bundesnetzagentur.de/DE/Sachgebiete/ElektrizitaetundGas/Unternehmen_Institutionen/Versorgungssicherheit/Erzeugungskapazitaeten/Mindesterzeugung/Mindesterzeugung_node.html
https://www.bundesnetzagentur.de/DE/Sachgebiete/ElektrizitaetundGas/Unternehmen_Institutionen/Versorgungssicherheit/Erzeugungskapazitaeten/Mindesterzeugung/Mindesterzeugung_node.html
https://www.bundesnetzagentur.de/DE/Sachgebiete/ElektrizitaetundGas/Unternehmen_Institutionen/Versorgungssicherheit/Erzeugungskapazitaeten/Mindesterzeugung/Mindesterzeugung_node.html
https://www.bundesnetzagentur.de/DE/Sachgebiete/ElektrizitaetundGas/Unternehmen_Institutionen/Versorgungssicherheit/Erzeugungskapazitaeten/Mindesterzeugung/Mindesterzeugung_node.html
https://doi.org/10.1007/s00450-017-0357-4
https://doi.org/10.1007/s00450-017-0357-4
https://doi.org/10.5445/IR/1000094106
https://doi.org/10.5445/IR/1000098852
https://doi.org/10.5445/IR/1000098852
https://doi.org/10.1145/3307772.3328298
https://doi.org/10.1137/1.9781611976007.13

[BW20b] Lukas Barth and Dorothea Wagner. Zipping Segment Trees. In Pro-

ceedings of the 18th International Symposium on Experimental Algorithms

(SEA’20). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:

10.4230/LIPIcs.SEA.2020.25.

Cited on page 135.

[Chu+04] Julia Chuzhoy, Sudipto Guha, Sanjeev Khanna, and Joseph Se� Naor. Ma-
chine minimization for scheduling jobs with interval constraints.
In Proceedings of the 45th Annual IEEE Symposium on Foundations of Com-

puter Science (FOCS’04). IEEE, 2004, pages 81–90. doi: 10.1109/focs.
2004.38.

Cited on page 101.

[Cie+04] Mark Cieliebak, Thomas Erlebach, Fabian Hennecke, Birgitta Weber, and

Peter Widmayer. Scheduling with release times and deadlines on a
minimumnumber ofmachines. In Proceedings of the 3rd International

Conference on Theoretical Computer Science (TCS’04). Ed. by Jean-Jacques

Levy, Ernst W. Mayr, and John C. Mitchell. Kluwer Academic Publishers,

2004, pages 209–222. doi: 10.1007/1-4020-8141-3_18.

Cited on pages 12, 100, 113.

[CKL03] Bill Chiu, Eamonn Keogh, and Stefano Lonardi. Probabilistic discov-
ery of time series motifs. In Proceedings of the 9th ACM SIGKDD in-

ternational conference on Knowledge discovery and data mining (KDD’03).

ACM, 2003, pages 493–498. doi: 10.1145/956750.956808.

Cited on page 83.

[CL07] Yeim-Kuan Chang and Yung-Chieh Lin. Dynamic segment trees
for ranges and pre�xes. IEEE Transactions on Computers 56 (6 2007),

pages 769–784. doi: 10.1109/TC.2007.1037.

Cited on page 136.

[CMB02] Pedro M. Castro, Henrique Matos, and Ana P.F.D. Barbosa-Povoa. Dy-
namic modelling and scheduling of an industrial batch system.

Computers & Chemical Engineering 26:4-5 (2002), pages 671–686. doi:

10.1016/s0098-1354(01)00792-x.

Cited on page 21.

[Cor+09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cli�ord

Stein. Introduction to algorithms. MIT Press, 2009. isbn: 978-0-262-

53305-8.

Cited on pages 11, 158.

193

https://doi.org/10.4230/LIPIcs.SEA.2020.25
https://doi.org/10.1109/focs.2004.38
https://doi.org/10.1109/focs.2004.38
https://doi.org/10.1007/1-4020-8141-3_18
https://doi.org/10.1145/956750.956808
https://doi.org/10.1109/TC.2007.1037
https://doi.org/10.1016/s0098-1354(01)00792-x

[CPW98] Bo Chen, Chris N. Potts, and Gerhard J. Woeginger. A Review of Ma-
chine Scheduling: Complexity, Algorithms and Approximability.

In. Handbook of Combinatorial Optimization. Ed. by Panos M. Pardalos

Ding-Zhu Du. Springer, 1998, pages 1493–1641. isbn: 978-1-4613-7987-4.

doi: 10.1007/978-1-4613-0303-9_25.

Cited on page 113.

[CS00] Seonghun Cho and Sartaj Sahni. A new weight balanced binary
search tree. International Journal of Foundations of Computer Science

11:3 (2000), pages 485–513. doi: 10.1142/S0129054100000296.

Cited on page 158.

[Dem95] Erik Demeulemeester. Minimizing resource availability costs in
time-limited project networks. Management Science 41:10 (1995),

pages 1590–1598. doi: 10.1287/mnsc.41.10.1590.

Cited on page 113.

[Den+15] Ruilong Deng, Zaiyue Yang, Mo-Yuen Chow, and Jiming Chen. A sur-
vey on demand response in smart grids: Mathematical models
and approaches. IEEE Transactions on Industrial Informatics 11:3 (2015),

pages 570–582. doi: 10.1109/tii.2015.2414719.

Cited on pages 4, 113.

[den19] Deutsche Energie-Agentur GmbH (dena). Energy Transition Trends
2019. 2019. url: https://www.dena.de/fileadmin/dena/D
okumente/Themen_und_Projekte/Internationales/China/
CREO/Energy_transition_trends_2019_engl.pdf (visited on

01/13/2020).

Cited on page 1.

[DH02] Erik L. Demeulemeester and Willy S. Herroelen. Project scheduling: A
Research Handbook. Ed. by Camille C. Price. Volume 49. International

Series in Operations Research & Management Science. Kluwer Academic

Publishers, 2002. isbn: 978-1-4020-7051-8. doi: 10.1007/b101924.

Cited on page 5.

[DH89] Richard F. Deckro and John E. Hebert. Resource constrained project
crashing. Omega 17:1 (1989), pages 69–79. doi: 10 . 1016 / 0305 -
0483(89)90022-4.

Cited on page 100.

194

https://doi.org/10.1007/978-1-4613-0303-9_25
https://doi.org/10.1142/S0129054100000296
https://doi.org/10.1287/mnsc.41.10.1590
https://doi.org/10.1109/tii.2015.2414719
https://www.dena.de/fileadmin/dena/Dokumente/Themen_und_Projekte/Internationales/China/CREO/Energy_transition_trends_2019_engl.pdf
https://www.dena.de/fileadmin/dena/Dokumente/Themen_und_Projekte/Internationales/China/CREO/Energy_transition_trends_2019_engl.pdf
https://www.dena.de/fileadmin/dena/Dokumente/Themen_und_Projekte/Internationales/China/CREO/Energy_transition_trends_2019_engl.pdf
https://doi.org/10.1007/b101924
https://doi.org/10.1016/0305-0483(89)90022-4
https://doi.org/10.1016/0305-0483(89)90022-4

[Dhu+15] Reinhilde D’hulst, Wouter Labeeuw, Bart Beusen, Sven Claessens, Geert

Deconinck, and Koen Vanthournout. Demand response �exibility and
�exibility potential of residential smart appliances: Experiences
from large pilot test in Belgium. Applied Energy 155 (2015), pages 79–

90. doi: 10.1016/j.apenergy.2015.05.101.

Cited on page 39.

[Die+97] Martin Dietzfelbinger, Torben Hagerup, Jyrki Katajainen, and Martti

Penttonen. A reliable randomized algorithm for the closest-pair
problem. Journal of Algorithms 25:1 (1997), pages 19–51. doi: 10.1006/
jagm.1997.0873.

Cited on page 151.

[Die17] Reinhard Diestel. Graph theory. Fifth edition. Volume 173. Graduate

Texts in Mathematics. Springer, 2017. isbn: 978-3-662-53622-3. doi: 10.
1007/978-3-662-53622-3.

Cited on page 11.

[DL12] Pengwei Du and Ning Lu. Appliance commitment for household
load scheduling. In Proceedings of the 11th Transmission and Distribu-

tion Conference and Exposition (PES T&D’12). IEEE, 2012. doi: 10.1109/
tdc.2012.6281462.

Cited on page 19.

[Dür+16] Christoph Dürr, Sigrid Knust, Damien Prot, Rob van Stee, and Óskar C.

Vásquez. The scheduling zoo. 2016. url: http://schedulingzoo.
lip6.fr/ (visited on 10/01/2019).

Cited on page 12.

[Eis11] Moustafa Mohammed Eissa. Demand side management program
evaluation based on industrial and commercial �eld data. Energy

Policy 39:10 (2011), pages 5961–5969. doi: 10.1016/j.enpol.2011.
06.057.

Cited on page 6.

[EJW05] Stefan Edelkamp, Shahid Jabbar, and Thomas Willhalm. Geometric
travel planning. IEEE Transactions on Intelligent Transportation Systems

6:1 (2005), pages 5–16. doi: 10.1109/TITS.2004.838182.

Cited on page 136.

[EKM09] Robert Earle, Edward P. Kahn, and Edo Macan. Measuring the capac-
ity impacts of demand response. The Electricity Journal 22:6 (2009),

pages 47–58. doi: 10.1016/j.tej.2009.05.014.

Cited on page 100.

195

https://doi.org/10.1016/j.apenergy.2015.05.101
https://doi.org/10.1006/jagm.1997.0873
https://doi.org/10.1006/jagm.1997.0873
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1109/tdc.2012.6281462
https://doi.org/10.1109/tdc.2012.6281462
http://schedulingzoo.lip6.fr/
http://schedulingzoo.lip6.fr/
https://doi.org/10.1016/j.enpol.2011.06.057
https://doi.org/10.1016/j.enpol.2011.06.057
https://doi.org/10.1109/TITS.2004.838182
https://doi.org/10.1016/j.tej.2009.05.014

[Est+96] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A
Density-Based Algorithm for Discovering Clusters a Density-
Based Algorithm for Discovering Clusters in Large Spatial
Databases with Noise. In Proceedings of the 2nd International Con-

ference on Knowledge Discovery and Data Mining (KDD’96). KDD’96.

Portland, Oregon: AAAI Press, 1996, pages 226–231.

Cited on pages 84, 125.

[Fan+11] Xi Fang, Satyajayant Misra, Guoliang Xue, and Dejun Yang. Smart grid —
The new and improved power grid: A survey. IEEE Communications

Surveys & Tutorials 14:4 (2011), pages 944–980. doi: 10.1109/surv.
2011.101911.00087.

Cited on page 100.

[Fed19] Federal Ministry for Economic A�airs and Energy. Zeitreihen zur Entwick-

lung der erneuerbaren Energien in Deutschland. Berlin, Germany, 2019.

url: https://www.erneuerbare-energien.de/EE/Navigation/
DE/Service/Erneuerbare_Energien_in_Zahlen/Zeitreihen/
zeitreihen.html.

Cited on page 1.

[Feh+14] Daniel Fehrenbach, Erik Merkel, Russell McKenna, Ute Karl, and Wolf

Fichtner. On the economic potential for electric load management
in the German residential heating sector — An optimising energy
system model approach. Energy 71 (2014), pages 263–276. doi: 10.
1016/j.energy.2014.04.061.

Cited on page 19.

[FF14] Paddy Finn and Colin Fitzpatrick.Demand sidemanagement of indus-
trial electricity consumption: promoting the use of renewable en-
ergy through real-time pricing. Applied Energy 113 (2014), pages 11–

21. doi: 10.1016/j.apenergy.2013.07.003.

Cited on pages 6, 79.

[FHM14] Jirı Fink, Johann L. Hurink, and Albert Molderink. Mathematical mod-
elling of devices and �ows in energy systems. Tech. rep. Technical

report, 2014. url: https://kam.mff.cuni.cz/~fink/publicatio
ns/flow.pdf.

Cited on page 21.

[FN16] Stefan Feuerriegel and Dirk Neumann. Integration Scenarios of De-
mand Response into Electricity Markets: Load Shifting, Financial
Savings and Policy Implications. Energy Policy 96 (2016), pages 231–

240. doi: 10.1016/j.enpol.2016.05.050.

Cited on pages 35, 39.

196

https://doi.org/10.1109/surv.2011.101911.00087
https://doi.org/10.1109/surv.2011.101911.00087
https://www.erneuerbare-energien.de/EE/Navigation/DE/Service/Erneuerbare_Energien_in_Zahlen/Zeitreihen/zeitreihen.html
https://www.erneuerbare-energien.de/EE/Navigation/DE/Service/Erneuerbare_Energien_in_Zahlen/Zeitreihen/zeitreihen.html
https://www.erneuerbare-energien.de/EE/Navigation/DE/Service/Erneuerbare_Energien_in_Zahlen/Zeitreihen/zeitreihen.html
https://doi.org/10.1016/j.energy.2014.04.061
https://doi.org/10.1016/j.energy.2014.04.061
https://doi.org/10.1016/j.apenergy.2013.07.003
https://kam.mff.cuni.cz/~fink/publications/flow.pdf
https://kam.mff.cuni.cz/~fink/publications/flow.pdf
https://doi.org/10.1016/j.enpol.2016.05.050

[GEM17] Nicholas Good, Keith A. Ellis, and Pierluigi Mancarella. Review and
classi�cation of barriers and enablers of demand response in
the smart grid. Renewable and Sustainable Energy Reviews 72 (2017),

pages 57–72. doi: 10.1016/j.rser.2017.01.043.

Cited on page 113.

[GFW16] Johannes Gärttner, Christoph M. Flath, and Christof Weinhardt. Load
Shifting, Interrupting or Both? Customer Portfolio Composition
in Demand Side Management. In Proceedings of the 11th International

Conference on Management Science (CMS’14). Springer, 2016, pages 9–15.

doi: 10.1007/978-3-319-20430-7_2.

Cited on page 20.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.

isbn: 978-0-7167-1044-8.

Cited on page 176.

[GNR16] Andreas Gemsa, Martin Nöllenburg, and Ignaz Rutter. Evaluation of
labeling strategies for rotating maps. Journal of Experimental Algo-

rithmics 21 (1 2016), pages 1–21. doi: 10.1145/2851493.

Cited on page 136.

[Gon+15] Yanmin Gong, Ying Cai, Yuanxiong Guo, and Yuguang Fang. A privacy-
preserving scheme for incentive-based demand response in the
smart grid. IEEE Transactions on Smart Grid 7:3 (2015), pages 1304–1313.

doi: 10.1109/tsg.2015.2412091.

Cited on page 39.

[Got+11] Sebastian Gottwalt, Wolfgang Ketter, Carsten Block, John Collins, and

Christof Weinhardt. Demand side management—A simulation of
household behavior under variable prices. Energy Policy 39:12 (2011),

pages 8163–8174. doi: 10.1016/j.enpol.2011.10.016.

Cited on pages 19, 80.

[Got+16] Sebastian Gottwalt, Johannes Gärttner, Hartmut Schmeck, and Christof

Weinhardt. Modeling and valuation of residential demand �exibil-
ity for renewable energy integration. IEEE Transactions on Smart Grid

8:6 (2016), pages 2565–2574. doi: 10.1109/tsg.2016.2529424.

Cited on pages 19, 21, 100.

197

https://doi.org/10.1016/j.rser.2017.01.043
https://doi.org/10.1007/978-3-319-20430-7_2
https://doi.org/10.1145/2851493
https://doi.org/10.1109/tsg.2015.2412091
https://doi.org/10.1016/j.enpol.2011.10.016
https://doi.org/10.1109/tsg.2016.2529424

[Gra+79] Ronald L. Graham, Eugene L. Lawler, Jan K. Lenstra, and Alexander

H.G. Rinnooy Kan. “Optimization and approximation in deterministic

sequencing and scheduling: a survey.” In Annals of Discrete Mathematics.

Ed. by Peter L. Hammer, Ellis L. Johnson, and Bernhard H. Korte. Volume 5.

Elsevier, 1979, pages 287–326. doi: 10.1016/S0167-5060(08)70356-
X.

Cited on page 12.

[Gul+08] T.A. Guldemond, Johann L. Hurink, Jacob Jan Paulus, and Johannes M.J.

Schutten. Time-constrained project scheduling. Journal of Schedul-

ing 11:2 (2008), pages 137–148. doi: 10.1007/s10951-008-0059-7.

Cited on pages 100, 113.

[Har92] George William Hart. Nonintrusive appliance load monitoring. Pro-

ceedings of the IEEE 80:12 (1992), pages 1870–1891. doi: 10.1109/5.
192069.

Cited on page 39.

[HDD99] Willy Herroelen, Erik Demeulemeester, and Bert De Reyck. “A classi�-

cation scheme for project scheduling.” In Project scheduling. Ed. by Jan

Węglarz. Springer, 1999, pages 1–26. doi: 10.1007/978- 1- 4615-
5533-9_1.

Cited on pages 114, 177.

[He+13] Xian He, Nico Keyaerts, Isabel Azevedo, Leonardo Meeus, Leigh Hancher,

and Jean-Michel Glachant. How to engage consumers in demand re-
sponse: A contract perspective. Utilities Policy 27 (2013), pages 108–

122. doi: 10.1016/j.jup.2013.10.001.

Cited on page 19.

[HL01] Bente Halvorsen and Bodil M. Larsen. The �exibility of household
electricity demand over time. Resource and Energy Economics 23:1

(2001), pages 1–18. doi: 10.1016/s0928-7655(00)00035-x.

Cited on page 19.

[HLH14] Veit Hagenmeyer, Heinz Langner, and Werner Hartwig. “Eine Meth-

ode zur Bewertung der Energieversorgungssicherheit von komplexen

Produktionsstätten.” In VGB-Fachtagung: Dampferzeuger, Wirbelschicht-

feuerungen, Industrie- und Heizkraftwerke. Weimar, 2014.

Cited on page 47.

[HS91] Yuan-Yih Hsu and Chung-Ching Su. Dispatch of direct load control
using dynamic programming. IEEE Transactions on Power Systems 6:3

(1991), pages 1056–1061. doi: 10.1109/59.119246.

Cited on page 113.

198

https://doi.org/10.1016/S0167-5060(08)70356-X
https://doi.org/10.1016/S0167-5060(08)70356-X
https://doi.org/10.1007/s10951-008-0059-7
https://doi.org/10.1109/5.192069
https://doi.org/10.1109/5.192069
https://doi.org/10.1007/978-1-4615-5533-9_1
https://doi.org/10.1007/978-1-4615-5533-9_1
https://doi.org/10.1016/j.jup.2013.10.001
https://doi.org/10.1016/s0928-7655(00)00035-x
https://doi.org/10.1109/59.119246

[HSE16] Haider Tarish Haider, Ong Hang See, and Wilfried Elmenreich. A re-
view of residential demand response of smart grid. Renewable and

Sustainable Energy Reviews 59 (2016), pages 166–178. doi: 10.1016/j.
rser.2016.01.016.

Cited on pages 4, 6.

[HST15] Bernhard Haeupler, Siddhartha Sen, and Robert E. Tarjan. Rank-
Balanced Trees. ACM Transactions on Algorithms 11:4 (2015), pages 1–

26. doi: 10.1145/2689412.

Cited on page 158.

[HY11] Yoichi Hirai and Kazuhiko Yamamoto. Balancing weight-balanced
trees. Journal of Functional Programming 21:3 (2011), pages 287–307. doi:

10.1017/S0956796811000104.

Cited on pages 158, 159, 161, 164.

[ISE20] Fraunhofer ISE. Energy Charts. 2020. url: https://www.energy-
charts.de/power_inst_de.htm (visited on 01/13/2020).

Cited on page 1.

[KJ11] J. Zico Kolter and Matthew J. Johnson. REDD: A public data set for en-
ergy disaggregation research. In Proceedings of the Workshop on Data

Mining Applications in Sustainability (SustKDD’11). 2011.

Cited on pages 36, 105.

[Kli+15] Sonja Klingert, Florian Niedermeier, Corentin Dupont, Giovanni Giu-

liani, Thomas Schulze, and Hermann de Meer. Introducing �exibility
into data centers for smart cities. In Proceedings of the 1st Interna-

tional Conference on Vehicle Technology and Intelligent Transport Systems

(VEHITS’15). Springer, 2015, pages 128–145. doi: 10.1007/978-3-319-
27753-0_7.

Cited on page 39.

[Knu98] Donald E. Knuth. The Art of Computer Programming: Sorting and
Searching. Second edition. Volume 3. Addison-Wesley, 1998. isbn: 978-

0-201-89685-5.

Cited on page 157.

[KO93] Marc J. van Kreveld and Mark H. Overmars.Union-copy structures and
dynamic segment trees. Journal of the ACM 40:3 (1993), pages 635–652.

doi: 10.1145/174130.174140.

Cited on pages 121, 135, 137, 138, 139, 143, 150.

199

https://doi.org/10.1016/j.rser.2016.01.016
https://doi.org/10.1016/j.rser.2016.01.016
https://doi.org/10.1145/2689412
https://doi.org/10.1017/S0956796811000104
https://www.energy-charts.de/power_inst_de.htm
https://www.energy-charts.de/power_inst_de.htm
https://doi.org/10.1007/978-3-319-27753-0_7
https://doi.org/10.1007/978-3-319-27753-0_7
https://doi.org/10.1145/174130.174140

[Kol96] Rainer Kolisch. Serial and parallel resource-constrained project
scheduling methods revisited: Theory and computation. Euro-

pean Journal of Operational Research 90:2 (1996), pages 320–333. doi:

10.1016/0377-2217(95)00357-6.

Cited on page 116.

[Kon+11] Oumar Koné, Christian Artigues, Pierre Lopez, and Marcel Mon-

geau. Event-based MILP models for resource-constrained project
scheduling problems. Computers & Operations Research 38:1 (2011),

pages 3–13. doi: 10.1016/j.cor.2009.12.011.

Cited on pages 5, 63, 64, 68.

[KR13] Jungsuk Kwac and Ram Rajagopal. Demand response targeting using
big data analytics. In Proceedings of the 1st IEEE International Confer-

ence on Big Data (BigData’13). IEEE, 2013, pages 683–690. doi: 10.1109/
bigdata.2013.6691643.

Cited on page 35.

[KS97] Rainer Kolisch and Arno Sprecher. PSPLIB — a project scheduling
problem library. European Journal of Operational Research 96:1 (1997),

pages 205–216. doi: 10.1016/S0377-2217(96)00170-1.

Cited on page 80.

[KSS99] Rainer Kolisch, Christoph Schwindt, and Arno Sprecher. “Benchmark

instances for project scheduling problems.” In Project scheduling. Ed. by

Jan Węglarz. Springer, 1999, pages 197–212. doi: 10.1007/978-1-
4615-5533-9_9.

Cited on page 80.

[La 90] Johannes Antonius La Poutré. New techniques for the union-�nd
problem. In Proceedings of the 1st annual ACM-SIAM symposium on Dis-

crete algorithms (SODA’90). SIAM, 1990, pages 54–63. isbn: 978-0-89871-

251-3.

Cited on page 137.

[Lar+17] Emil Mahler Larsen, Pierre Pinson, Fabian Leimgruber, and Florian Judex.

Demand response evaluation and forecasting — Methods and re-
sults from the EcoGrid EU experiment. Sustainable Energy, Grids and
Networks 10 (2017), pages 75–83. doi: 10.1016/j.segan.2017.03.
001.

Cited on page 4.

200

https://doi.org/10.1016/0377-2217(95)00357-6
https://doi.org/10.1016/j.cor.2009.12.011
https://doi.org/10.1109/bigdata.2013.6691643
https://doi.org/10.1109/bigdata.2013.6691643
https://doi.org/10.1016/S0377-2217(96)00170-1
https://doi.org/10.1007/978-1-4615-5533-9_9
https://doi.org/10.1007/978-1-4615-5533-9_9
https://doi.org/10.1016/j.segan.2017.03.001
https://doi.org/10.1016/j.segan.2017.03.001

[Li+12] Ying Li, Boon Loong Ng, Mark Trayer, and Lingjia Liu. Automated
residential demand response: Algorithmic implications of pricing
models. IEEE Transactions on Smart Grid 3:4 (2012), pages 1712–1721.

doi: 10.1109/TSG.2012.2218262.

Cited on pages 80, 100, 105.

[Liu+13] Zhenhua Liu, Adam Wierman, Yuan Chen, Benjamin Razon, and Niangjun

Chen. Data Center Demand Response: Avoiding the Coincident
Peak via Workload Shifting and Local Generation. In Proceedings

of the 31st International Symposium on Computer Performance, Modeling,

Measurements and Evaluation (Performance’13). Elsevier, 2013. doi: 10.
1016/j.peva.2013.08.014.

Cited on page 39.

[LSS12] Thillainathan Logenthiran, Dipti Srinivasan, and Tan Zong Shun. De-
mand side management in smart grid using heuristic optimiza-
tion. IEEE Transactions on Smart Grid 3:3 (2012), pages 1244–1252. doi:

10.1109/TSG.2012.2195686.

Cited on pages 80, 113.

[Lud+17] Nicole Ludwig, Simon Waczowicz, Ralf Mikut, and Veit Hagenmeyer.Min-
ing Flexibility Patterns in Energy Time - Series from Industrial
Processes. In Proceedings of the 27th Workshop Computational Intelli-

gence. Ed. by Frank Ho�mann, Eyke Hüllermeier, and Ralf Mikut. KIT Sci-

enti�c Publishing, 2017, pages 13–13. doi: 10.5445/KSP/1000074341.

Cited on pages 41, 83, 124.

[Lud+19a] Nicole Ludwig, Lukas Barth, Dorothea Wagner, and Veit Hagen-

meyer. Benchmark Dataset for "Industrial Demand-Side Flex-
ibility: A Benchmark Data Set". KITOpen Repository. 2019. doi:

10.5445/IR/1000094324.

Cited on page 86.

[Lud+19b] Nicole Ludwig, Lukas Barth, Dorothea Wagner, and Veit Hagenmeyer.

Industrial Demand-Side Flexibility: A BenchmarkData Set. In Pro-

ceedings of the 10th ACM International Conference on Future Energy Sys-

tems (e-Energy’19). ACM, 2019, pages 460–473. doi: 10.1145/3307772.
3331021.

Cited on pages 79, 124.

[Luo+98] Zhonghui Luo, Ratnesh Kumar, Joseph Sottile, and Jon C. Yin-

gling. An MILP formulation for load-side demand control.
Electric Machines & Power Systems 26:9 (1998), pages 935–949. doi:

10.1080/07313569808955868.

Cited on page 21.

201

https://doi.org/10.1109/TSG.2012.2218262
https://doi.org/10.1016/j.peva.2013.08.014
https://doi.org/10.1016/j.peva.2013.08.014
https://doi.org/10.1109/TSG.2012.2195686
https://doi.org/10.5445/KSP/1000074341
https://doi.org/10.5445/IR/1000094324
https://doi.org/10.1145/3307772.3331021
https://doi.org/10.1145/3307772.3331021
https://doi.org/10.1080/07313569808955868

[LW93] Tony W. Lai and Derick Wood. A Top-Down Updating Algorithm
for Weight-Balanced Trees. International Journal of Foundations

of Computer Science 4:4 (1993), pages 309–324. doi: 10 . 1142 /
S0129054193000201.

Cited on pages 158, 161, 162, 164.

[Mah+16] Danish Mahmood, Nadeem Javaid, Nabil Alrajeh, Zahoor Khan, Umar

Qasim, Imran Ahmed, and Manzoor Ilahi. Realistic scheduling mech-
anism for smart homes. Energies 9:3 (2016), page 202. doi: 10.3390/
en9030202.

Cited on page 6.

[Mäk87] Erkki Mäkinen. On top-down splaying. BIT Numerical Mathematics

27:3 (1987), pages 330–339. doi: 10.1007/BF01933728.

Cited on page 165.

[Meh84a] Kurt Mehlhorn. Data Structures and Algorithms 1: Sorting and
Searching. Ed. by Juraj Hromkovič and Mogens Nielsen. EATCS

Monographs on Theoretical Computer Science. Springer, 1984. isbn:

978-3-642-69674-9. doi: 10.1007/978-3-642-69672-5.

Cited on page 157.

[Meh84b] Kurt Mehlhorn. Data Structures and Algorithms 3: Multi-
dimensional Searching and Computational Geometry. Ed. by

Juraj Hromkovič and Mogens Nielsen. EATCS Monographs on Theo-

retical Computer Science. Springer, 1984. isbn: 978-3-642-69902-3. doi:

10.1007/978-3-642-69900-9.

Cited on page 157.

[Mer+15] Lennart Merkert, Iiro Harjunkoski, Alf Isaksson, Simo Säynevirta,

Antti Saarela, and Guido Sand. Scheduling and energy — Industrial
challenges and opportunities. Computers & Chemical Engineering 72

(2015), pages 183–198. doi: 10.1016/j.compchemeng.2014.05.024.

Cited on page 6.

[Mit+12] Sumit Mitra, Ignacio E. Grossmann, Jose M. Pinto, and Nikhil Arora. Op-
timal production planning under time-sensitive electricity prices
for continuous power-intensive processes. Computers & Chemical

Engineering 38 (2012), pages 171–184. doi: 10.1016/j.compchemeng.
2011.09.019.

Cited on pages 20, 21, 100.

[Möh84] Rolf H. Möhring. Minimizing costs of resource requirements in
project networks subject to a �xed completion time. Operations

Research 32:1 (1984), pages 89–120. doi: 10.1287/opre.32.1.89.

Cited on pages 13, 113.

202

https://doi.org/10.1142/S0129054193000201
https://doi.org/10.1142/S0129054193000201
https://doi.org/10.3390/en9030202
https://doi.org/10.3390/en9030202
https://doi.org/10.1007/BF01933728
https://doi.org/10.1007/978-3-642-69672-5
https://doi.org/10.1007/978-3-642-69900-9
https://doi.org/10.1016/j.compchemeng.2014.05.024
https://doi.org/10.1016/j.compchemeng.2011.09.019
https://doi.org/10.1016/j.compchemeng.2011.09.019
https://doi.org/10.1287/opre.32.1.89

[MP14] Joon-Yung Moon and Jinwoo Park. Smart production schedulingwith
time-dependent and machine-dependent electricity cost by con-
sidering distributed energy resources and energy storage. Interna-

tional Journal of Production Research 52:13 (2014), pages 3922–3939. doi:

10.1080/00207543.2013.860251.

Cited on pages 20, 21.

[MW15] Matthias Mnich and Andreas Wiese. Scheduling and �xed-parameter
tractability. Mathematical Programming 154:1-2 (2015), pages 533–562.

doi: 10.1007/s10107-014-0830-9.

Cited on page 176.

[NHG17] Seyyed Mostafa Nosratabadi, Rahmat-Allah Hooshmand, and Eskan-

dar Gholipour. A comprehensive review on microgrid and virtual
power plant concepts employed for distributed energy resources
scheduling in power systems. Renewable and Sustainable Energy Re-

views 67 (2017), pages 341–363. doi: 10.1016/j.rser.2016.09.025.

Cited on pages 5, 6.

[NK14] Anulark Naber and Rainer Kolisch. MIP models for resource-
constrained project scheduling with �exible resource pro�les.
European Journal of Operational Research 239:2 (2014), pages 335–348.

doi: 10.1016/j.ejor.2014.05.036.

Cited on page 5.

[NR73] Jürg Nievergelt and Edward M. Reingold. Binary Search Trees of
Bounded Balance. SIAM Journal on Computing 2:1 (1973), pages 33–43.

doi: 10.1137/0202005.

Cited on pages 157, 159.

[OCB07] Alexandre Oudalov, Rachid Cherkaoui, and Antoine Beguin. Sizing and
optimal operation of battery energy storage system for peak shav-
ing application. In Proceedings of the 4th IEEE Power Tech (PowerTech’07).

IEEE, 2007, pages 621–625. doi: 10.1109/pct.2007.4538388.

Cited on pages 20, 21.

[OR15] Gearóid O’Brien and Ram Rajagopal. Scheduling non-preemptive
deferrable loads. IEEE Transactions on Power Systems 31:2 (2015),

pages 835–845. doi: 10.1109/tpwrs.2015.2402198.

Cited on page 39.

[PB11] Moritz Paulus and Frieder Borggrefe. The potential of demand-side
management in energy-intensive industries for electricity mar-
kets in Germany. Applied Energy 88:2 (2011), pages 432–441. doi: 10.
1016/j.apenergy.2010.03.017.

Cited on page 20.

203

https://doi.org/10.1080/00207543.2013.860251
https://doi.org/10.1007/s10107-014-0830-9
https://doi.org/10.1016/j.rser.2016.09.025
https://doi.org/10.1016/j.ejor.2014.05.036
https://doi.org/10.1137/0202005
https://doi.org/10.1109/pct.2007.4538388
https://doi.org/10.1109/tpwrs.2015.2402198
https://doi.org/10.1016/j.apenergy.2010.03.017
https://doi.org/10.1016/j.apenergy.2010.03.017

[PD11] Peter Palensky and Dietmar Dietrich. Demand Side Management:
Demand Response, Intelligent Energy Systems, and Smart Loads.
IEEE Transactions on Industrial Informatics 7:3 (2011), pages 381–388.

doi: 10.1109/tii.2011.2158841.

Cited on page 19.

[Pet+13] Mette K. Petersen, Kristian Edlund, Lars Henrik Hansen, Jan Bendtsen,

and Jakob Stoustrup. A taxonomy for modeling �exibility and a
computationally e�cient algorithm for dispatch in smart grids.
In Proceedings of the 31st American Control Conference (ACC’13). IEEE,

2013, pages 1150–1156. doi: 10.1109/acc.2013.6579991.

Cited on pages 20, 21.

[Pet+14] Mette K. Petersen, Lars H. Hansen, Jan Bendtsen, Kristian Edlund, and

Jakob Stoustrup. Heuristic optimization for the discrete virtual
power plant dispatch problem. IEEE Transactions on Smart Grid 5:6

(2014), pages 2910–2918. doi: 10.1109/TSG.2014.2336261.

Cited on pages ix, 6, 20, 21, 32, 80, 100, 105, 109, 112, 113, 122, 123.

[PH00] Kostantinos N. Plataniotis and Dimitris Hatzinakos. Gaussian mixtures
and their applications to signal processing. In. Advanced signal pro-

cessing handbook: theory and implementation for radar, sonar, andmedical

imaging real time systems. Ed. by Stergios Stergiopoulos. CRC Press, 2000.

3. doi: 10.1201/9781420037395.

Cited on page 84.

[Pon+13] Jose Luis Ponz-Tienda, Víctor Yepes, Eugenio Pellicer, and Joaquin

Moreno-Flores. The resource leveling problem with multiple
resources using an adaptive genetic algorithm. Automation in

Construction 29 (2013), pages 161–172. doi: 10.1016/j.autcon.2012.
10.003.

Cited on page 5.

[Pow98] David M.W. Powers. Applications and explanations of Zipf’s
law. In Proceedings of the 1st Joint Conferences on New Methods in

Language Processing and Computational Natural Language Learning

(NeMLaP3/CoNLL’98). Association for Computational Linguistics, 1998,

pages 151–160. doi: 10.3115/1603899.1603924.

Cited on page 165.

[Pra59] John W. Pratt. Remarks on zeros and ties in the Wilcoxon signed
rank procedures. Journal of the American Statistical Association 54:287

(1959), pages 655–667. doi: 10.1080/01621459.1959.10501526.

Cited on page 49.

204

https://doi.org/10.1109/tii.2011.2158841
https://doi.org/10.1109/acc.2013.6579991
https://doi.org/10.1109/TSG.2014.2336261
https://doi.org/10.1201/9781420037395
https://doi.org/10.1016/j.autcon.2012.10.003
https://doi.org/10.1016/j.autcon.2012.10.003
https://doi.org/10.3115/1603899.1603924
https://doi.org/10.1080/01621459.1959.10501526

[PS17] Danny Pudjianto and Goran Strbac. Assessing the value and impact of
demand side response using whole-system approach. Proceedings

of the Institution of Mechanical Engineers, Part A: Journal of Power and

Energy 231:6 (2017), pages 498–507. doi: 10.1177/0957650917722381.

Cited on pages 4, 39.

[PSM10] Michael Angelo A. Pedrasa, Ted D. Spooner, and Iain F. MacGill. Co-
ordinated scheduling of residential distributed energy resources
to optimize smart home energy services. IEEE Transactions on Smart

Grid 1:2 (2010), pages 134–143. doi: 10.1109/tsg.2010.2053053.

Cited on page 100.

[PWW69] A. Alan B. Pritsker, Lawrence J. Waiters, and Philip M. Wolfe. Multi-
project scheduling with limited resources: A zero-one program-
ming approach. Management Science 16:1 (1969), pages 93–108. doi:

10.1287/mnsc.16.1.93.

Cited on pages 5, 18, 63.

[QGJ14] Faran A. Qureshi, Tomasz T. Gorecki, and Colin N. Jones. Model pre-
dictive control for market-based demand response participation.

IFAC Proceedings Volumes 47:3 (2014), pages 11153–11158. doi: 10.3182/
20140824-6-za-1003.02395.

Cited on page 20.

[Ran13] Mohammad Ranjbar. A path-relinking metaheuristic for the re-
source levelling problem. Journal of the Operational Research Society

64:7 (2013), pages 1071–1078. doi: 10.1057/jors.2012.119.

Cited on pages 5, 113.

[RB14] Sami Rollins and Nilanjan Banerjee. Using rule mining to understand
appliance energy consumption patterns. In Proceedings of the 12th

IEEE International Conference on Pervasive Computing and Communica-

tions (PerCom’14). IEEE, 2014, pages 29–37. doi: 10.1109/percom.
2014.6813940.

Cited on page 39.

[Ren18] Center for Renewable Energy Development. China Renewable Energy

Outlook 2018. Beijing, China, 2018. url: http://boostre.cnrec.
org.cn/index.php/2018/11/27/china-renewable-energy-
outlook-2018/?lang=en (visited on 01/13/2020).

Cited on pages 1, 2.

205

https://doi.org/10.1177/0957650917722381
https://doi.org/10.1109/tsg.2010.2053053
https://doi.org/10.1287/mnsc.16.1.93
https://doi.org/10.3182/20140824-6-za-1003.02395
https://doi.org/10.3182/20140824-6-za-1003.02395
https://doi.org/10.1057/jors.2012.119
https://doi.org/10.1109/percom.2014.6813940
https://doi.org/10.1109/percom.2014.6813940
http://boostre.cnrec.org.cn/index.php/2018/11/27/china-renewable-energy-outlook-2018/?lang=en
http://boostre.cnrec.org.cn/index.php/2018/11/27/china-renewable-energy-outlook-2018/?lang=en
http://boostre.cnrec.org.cn/index.php/2018/11/27/china-renewable-energy-outlook-2018/?lang=en

[Rou01] Salvador Roura. A New Method for Balancing Binary Search Trees.
In Proceedings of the 28th International Colloquium on Automata, Lan-

guages and Programming (ICALP’01). Ed. by Fernando Orejas, Paul G.

Spirakis, and Jan van Leeuwen. Springer, 2001. doi: 10.1007/3-540-
48224-5_39.

Cited on pages 158, 161.

[Rou13] Salvador Roura. Fibonacci BSTs: A new balancing method for bi-
nary search trees. Theoretical Computer Science 482 (2013), pages 48–59.

doi: 10.1016/j.tcs.2012.11.027.

Cited on page 158.

[RZG12] Julia Rieck, Jürgen Zimmermann, and Thorsten Gather. Mixed-
integer linear programming for resource leveling problems.
European Journal of Operational Research 221:1 (2012), pages 27–37. doi:

10.1016/j.ejor.2012.03.003.

Cited on page 5.

[SA96] Raimund Seidel and Cecilia R. Aragon. Randomized search trees. Al-
gorithmica 16:4-5 (1996), pages 464–497. doi: 10.1007/BF01940876.

Cited on page 150.

[Sch12] Ruggero Schleicher-Tappeser. How renewables will change electric-
ity markets in the next �ve years. Energy Policy 48 (2012), pages 64–

75. doi: 10.1016/j.enpol.2012.04.042.

Cited on page 17.

[Sco+13] Paul Scott, Sylvie Thiébaux, Menkes van den Briel, and Pascal van Hen-

tenryck. Residential demand response under uncertainty. In Pro-

ceedings of the 21st International Conference on Principles and Practice

of Constraint Programming (CP’13). Springer, 2013, pages 645–660. doi:

10.1007/978-3-642-40627-0_48.

Cited on page 19.

[SGA14] Ana Soares, Álvaro Gomes, and Carlos Henggeler Antunes. Catego-
rization of residential electricity consumption as a basis for the
assessment of the impacts of demand response actions. Renewable
and Sustainable Energy Reviews 30 (2014), pages 490–503. doi: 10.1016/
j.rser.2013.10.019.

Cited on page 19.

[Sia14] Pierluigi Siano. Demand response and smart grids—A survey. Re-

newable and Sustainable Energy Reviews 30 (2014), pages 461–478. doi:

10.1016/j.rser.2013.10.022.

Cited on pages vii, 4, 99, 111, 112.

206

https://doi.org/10.1007/3-540-48224-5_39
https://doi.org/10.1007/3-540-48224-5_39
https://doi.org/10.1016/j.tcs.2012.11.027
https://doi.org/10.1016/j.ejor.2012.03.003
https://doi.org/10.1007/BF01940876
https://doi.org/10.1016/j.enpol.2012.04.042
https://doi.org/10.1007/978-3-642-40627-0_48
https://doi.org/10.1016/j.rser.2013.10.019
https://doi.org/10.1016/j.rser.2013.10.019
https://doi.org/10.1016/j.rser.2013.10.022

[Sou+11] Kin Cheong Sou, James Weimer, Henrik Sandberg, and Karl Henrik Jo-

hansson. Scheduling smart home appliances using mixed integer
linear programming. In Proceedings of the 50th IEEE Conference on Dec-

sion and Control and European Control Conference (CDC-ECC’11). IEEE,

2011. doi: 10.1109/cdc.2011.6161081.

Cited on pages 19, 21.

[SP96] Gordian Schilling and Constantinos C. Pantelides.A simple continuous-
time process scheduling formulation and a novel solution algo-
rithm. Computers & Chemical Engineering 20 (1996), S1221–S1226. doi:

10.1016/0098-1354(96)00211-6.

Cited on pages 20, 21.

[SS05] Raimund Seidel and Micha Sharir. Top-down analysis of path com-
pression. SIAM Journal on Computing 34:3 (2005), pages 515–525. doi:

10.1137/S0097539703439088.

Cited on page 137.

[Str+14] Philipp Ströhle, Enrico H. Gerding, Mathijs M. de Weerdt, Sebastian

Stein, and Valentin Robu. Online Mechanism Design for Schedul-
ing Non-Preemptive Jobs under Uncertain Supply and Demand.

In Proceedings of the 13th International Conference on Autonomous Agents

and Multi-Agent Systems (AAMAS’14). International Foundation for Au-

tonomous Agents and Multiagent Systems, 2014, pages 437–444. isbn:

978-1-4503-2738-1.

Cited on page 19.

[Str08] Goran Strbac. Demand side management: Bene�ts and challenges.
Energy Policy 36:12 (2008), pages 4419–4426. doi: 10.1016/j.enpol.
2008.09.030.

Cited on pages 4, 17, 19, 39.

[SXZ14] Ditiro Setlhaolo, Xiaohua Xia, and Jiangfeng Zhang. Optimal schedul-
ing of household appliances for demand response. Electric Power

Systems Research 116 (2014), pages 24–28. doi: 10.1016/j.epsr.2014.
04.012.

Cited on page 19.

[Tan14] Jay Taneja. Growth in renewable generation and its e�ect on
demand-sidemanagement. In Proceedings of the 5th IEEE International

Conference on Smart Grid Communications (SmartGridComm’14). IEEE,

2014, pages 614–619. doi: 10.1109/smartgridcomm.2014.7007715.

Cited on pages 35, 39.

207

https://doi.org/10.1109/cdc.2011.6161081
https://doi.org/10.1016/0098-1354(96)00211-6
https://doi.org/10.1137/S0097539703439088
https://doi.org/10.1016/j.enpol.2008.09.030
https://doi.org/10.1016/j.enpol.2008.09.030
https://doi.org/10.1016/j.epsr.2014.04.012
https://doi.org/10.1016/j.epsr.2014.04.012
https://doi.org/10.1109/smartgridcomm.2014.7007715

[Tar85] Robert E. Tarjan. E�cient top-down updating of red-black trees.
Tech. rep. 1985. url: ftp://ftp.cs.princeton.edu/techreports/
1985/006.pdf.

Cited on page 158.

[TLT18] Robert E. Tarjan, Caleb C. Levy, and Stephen Timmel. Zip Trees. CoRR
abs/1806.06726 (2018). arXiv: 1806.06726. url: http://arxiv.org/
abs/1806.06726v4.

Cited on page 150.

[TLT19] Robert E. Tarjan, Caleb C. Levy, and Stephen Timmel. Zip trees. In

Proceedings of the 16th Workshop on Algorithms and Data Structures

(WADS’19). Springer, 2019, pages 566–577. doi: 10.1007/978-3-030-
24766-9_41.

Cited on pages 135, 136, 137, 143, 144, 149.

[Tra06] European Network of Transmission System Operators for Electricity.

Final Report — System Disturbance on 4 November 2006 (2006).

url: https://www.entsoe.eu/fileadmin/user_upload/_libra
ry/publications/ce/otherreports/Final-Report-20070130.
pdf.

Cited on page 2.

[Tru+16] Ngoc Cuong Truong, Tim Baarslag, Sarvapali D. Ramchurn, and

Long Tran-Thanh. Interactive Scheduling of Appliance Usage in
the Home. In Proceedings of the 25th International Joint Conference

on Arti�cial Intelligence (IJCAI’16). AAAI, 2016, pages 869–875. isbn:

978-1-57735-770-4. url: https://dl.acm.org/doi/abs/10.5555/
3060621.3060742.

Cited on page 39.

[US 06] U.S. Department of Energy. Bene�ts of demand response in electric-
ity markets and recommendations for achieving them. 2006. url:

https://www.energy.gov/oe/downloads/benefits-demand-
response-electricity-markets-and-recommendations-achi
eving-them-report (visited on 02/03/2020).

Cited on pages 4, 99, 111.

[VZV15] John S. Vardakas, Nizar Zorba, and Christos V. Verikoukis. A survey
on demand response programs in smart grids: Pricing methods
and optimization algorithms. IEEE Communications Surveys & Tuto-

rials 17:1 (2015), pages 152–178. doi: 10.1109/comst.2014.2341586.

Cited on pages 4, 112.

208

ftp://ftp.cs.princeton.edu/techreports/1985/006.pdf
ftp://ftp.cs.princeton.edu/techreports/1985/006.pdf
http://arxiv.org/abs/1806.06726
http://arxiv.org/abs/1806.06726v4
http://arxiv.org/abs/1806.06726v4
https://doi.org/10.1007/978-3-030-24766-9_41
https://doi.org/10.1007/978-3-030-24766-9_41
https://www.entsoe.eu/fileadmin/user_upload/_library/publications/ce/otherreports/Final-Report-20070130.pdf
https://www.entsoe.eu/fileadmin/user_upload/_library/publications/ce/otherreports/Final-Report-20070130.pdf
https://www.entsoe.eu/fileadmin/user_upload/_library/publications/ce/otherreports/Final-Report-20070130.pdf
https://dl.acm.org/doi/abs/10.5555/3060621.3060742
https://dl.acm.org/doi/abs/10.5555/3060621.3060742
https://www.energy.gov/oe/downloads/benefits-demand-response-electricity-markets-and-recommendations-achieving-them-report
https://www.energy.gov/oe/downloads/benefits-demand-response-electricity-markets-and-recommendations-achieving-them-report
https://www.energy.gov/oe/downloads/benefits-demand-response-electricity-markets-and-recommendations-achieving-them-report
https://doi.org/10.1109/comst.2014.2341586

[Węg99] Jan Węglarz. Project scheduling: Recent models, Algorithms and
Applications. Volume 14. International Series in Operations Research

& Management Science. Kluwer Academic Publishers, 1999. isbn: 978-1-

4613-7529-6. doi: 10.1007/978-1-4615-5533-9.

Cited on pages vii, 5, 12, 40, 64, 113, 175.

[Wei+12] Anke Weidlich, Harald Vogt, Wolfgang Krauss, Patrik Spiess, Marek

Jawurek, Martin Johns, and Stamatis Karnouskos. Decentralized intel-
ligence in energy e�cient power systems. In. Handbook of Networks

in Power Systems I. Ed. by Alexey Sorokin, Ste�en Rebennack, Panos

M. Pardalos, Niko A. Iliadis, and Mario V. F. Pereira. Springer, 2012,

pages 467–486. isbn: 978-3-642-23192-6. doi: 10.1007/978-3-642-
23193-3_18.

Cited on page 17.

[Yaw+14] Sean Yaw, Brendan Mumey, Erin McDonald, and Jennifer Lemke. Peak
demand scheduling in the smart grid. In Proceedings of the 5th IEEE

International Conference on Smart Grid Communications (SmartGrid-

Comm’14). IEEE, 2014, pages 770–775. doi: 10.1109/SmartGridComm.
2014.7007741.

Cited on pages 80, 105, 109, 113.

[YM17] Sean Yaw and Brendan Mumey. Scheduling Non-Preemptible Jobs
to Minimize Peak Demand. Algorithms 10:4 (2017), page 122. doi: 10.
3390/a10040122.

Cited on page 176.

[YZ09] Guosong Yu and Guochuan Zhang. Schedulingwith aminimumnum-
ber of machines. Operations Research Letters 37:2 (2009), pages 97–101.

doi: 10.1016/j.orl.2009.01.008.

Cited on page 113.

[Zeh+17] M. Alparslan Zehir, M.H. Wevers, Alp Batman, Mustafa Bagriyanik, Jo-

hann L. Hurink, Unal Kucuk, Filipe J. Soares, and Aydoğan Ozdemir.

A novel incentive-based retail demand response program for col-
laborative participation of small customers. In Proceedings of the 9th

IEEE Power Tech (PowerTech’17). IEEE, 2017, pages 1–6. doi: 10.1109/
PTC.2017.7981059.

Cited on page 39.

[ZK08] Audrey Zibelman and Edward N. Krapels. Deployment of demand re-
sponse as a real-time resource in organizedmarkets. The Electricity
Journal 21:5 (2008), pages 51–56. doi: 10.1016/j.tej.2008.05.011.

Cited on page 100.

209

https://doi.org/10.1007/978-1-4615-5533-9
https://doi.org/10.1007/978-3-642-23193-3_18
https://doi.org/10.1007/978-3-642-23193-3_18
https://doi.org/10.1109/SmartGridComm.2014.7007741
https://doi.org/10.1109/SmartGridComm.2014.7007741
https://doi.org/10.3390/a10040122
https://doi.org/10.3390/a10040122
https://doi.org/10.1016/j.orl.2009.01.008
https://doi.org/10.1109/PTC.2017.7981059
https://doi.org/10.1109/PTC.2017.7981059
https://doi.org/10.1016/j.tej.2008.05.011

[ZLC17] Shizhen Zhao, Xiaojun Lin, and Minghua Chen. Robust Online
Algorithms for Peak-Minimizing EV Charging Under Multistage
Uncertainty. IEEE Transactions on Automatic Control 62:11 (2017),

pages 5739–5754. doi: 10.1109/tac.2017.2699290.

Cited on page 39.

210

https://doi.org/10.1109/tac.2017.2699290

12Index

balance criterion, 159

balancing parameter, 159

base power requirement, 23

base run time, 23

binary tree, 136

block, 82

block decomposition, 81

children, 136

deadline, 12, 13, 23, 64, 81, 101, 114, 177

demand pro�le, 102

demand response, 4

dependency, 81

dependency graph, 114

depth, 136

drain, 23

duration, 23

dynamic segment tree, 135

elementary intervals, 138

extended window, 179

extensible cost function, 180

�xed-parameter tractable, 176

Flexibilization Project Scheduling Prob-

lem, 37

with Overshoot Minimization, 38

with Peak Shaving, 38

with Peak Shaving and Generation,

38

FPSP, 37

FPSP-OM, 38

FPSP-PS, 38

FPSP-PSG, 38

instance, 177

job, 11, 23, 37, 64, 81, 114

jobs, 177

key, 137

lag, 177

LCS, see local con�guration set

LCSS, see local con�guration set size

leaf, 136

left-shifted, 115

local con�guration set, 178

local con�guration set size, 178

local con�gurations, 178

lowest common ancestor, 136

machine minimization, 12

machine scheduling, 11

max lag, 178

maximum local con�guration set size,

179

MIP gap, 29, 48

MLCSS, see maximum local con�gura-

tion set size

mode, 23

motif, 41, 82

net slack, 29

occurrence, 41, 83

ordered tree, 136

overshoot minimization, 24, 38

parent, 136

peak shaving, 24, 38, 65

ply, 65

211

precedence constraint, 13

preemption, 11

processing time, 11, 13, 37, 64, 81, 101,

114, 177

project scheduling, 12

pseudo �xed-parameter-tractable, 177

pseudo-FPT, see pseudo �xed-

parameter-tractable

pseudo-polynomial, 176

RACP, 13

ramping, 23

rank, 143

RCPSP, 13

relative peak demand, 49

release, 13

release time, 11, 23, 64, 81, 101, 114, 177

residual load, 102

resource, 11, 12, 64

Resource Acquirement Cost Problem,

13

Resource Investment Problem, see

RACP

resource pro�le, 11

Resource Utilization Scheduling Heuris-

tic, 101

Resource-Acquirement Cost Problem,

13

resource-constrained, 12

Resource-Constrained Project Schedul-

ing Problem, 13

RIP, see RACP

root, 136

rotation, 137, 160

RUSH, see Resource Utilization

Scheduling Heuristic

S-RACP, 13, 81, 114

schedule, 11, 37, 102, 114, 177

feasible, 114

left-shifted, 115

schedule pre�x, 180

Scheduling With Augmented Graphs,

112

Scheduling with Release Times and

Deadlines on a Minimum

Number of Machines, 12

search path, 137

search tree, 137

segment tree, 135

segment tree property, 138

Single-Resource Acquirement Cost

Problem, 13, 81, 114

slack, 29

SLCS, see successor local con�guration

set

spine, 137

SRDM, 12

stabbing query, 135

start time, 11, 37

successor local con�guration set, 180

SWAG, 112

tallest job, 50

TCPSP, 13

time lag, 13, 64, 81

time-constrained, 13

Time-Constrained Project Scheduling

Problem, 13

treap, 143

tree order, 137

union-copy, 137

unzipping, 144

usage, 13, 64, 81, 101, 114, 177

WBT, see weight-balanced tree

weak segment tree property, 140

weight, 159

weight-balanced tree, 159

bottom-up, 159

top-down, 162

window, 12, 43

212

window base, 84

window extension, 43

window growth, 84

zip tree, 143

zipping, 144

zipping segment trees, 136

213

A Appendix for: Exploring the Benefits
of Flexibilization in Industrial Contexts

A.1 Data Publication

We publish the instance sets from Section 4.4.2 at

https://publikationen.bibliothek.kit.edu/1000082194

This publication [Bar+18a] contains

• The PS-Nonuniform, PS-Uniform, PSG and OM instance sets,

• The computational results of our optimization,

• and information on how to repeat our experiments.

Additionally, we publish the software that we used for optimization at

https://github.com/kit-algo/TCPSPSuite

Note that the raw data from which we detected our motifs is also published as the

HIPE data set [Bis+18].

215

https://publikationen.bibliothek.kit.edu/1000082194
https://github.com/kit-algo/TCPSPSuite

A.2 Omi�ed Figures and Tables

Table A.1: Parameter choices for the motif discovery algorithm. The alphabet size was varied

between 2 and 10 words, resulting in largely the same results as presented above.

Machine Motifs Alphabet Size Wordlength

AVT 01 A, D 4 505

AVT 02 J, K 4 403

AVT 03 B, M, N 4 267

AVT 04 H 4 433

AVT 05 C 4 543

AVT 06 E 4 406

AVT 08 F, L 4 211

AVT 09 G 4 500

AVT 10 I, O 4 426

Table A.2: p-Values for the change of one parameter in the PS-Uniform set. Values highlighted

in green indicate that changing Ĵ and Θ, while keeping the other one constant, results in a sta-

tistically signi�cant change in improvements. Values in blue are signi�cant before Bonferroni

correction.

3 → 6 → 9

0.005 < 10
−5

0.00089

↓ < 10
−5 < 10

−5 < 10
−5

0.01 < 10
−5 < 10

−5

↓ 0.00025 < 10
−5

0.00033

0.02 < 10
−5

0.00036

↓ 0.0008 0.03 0.041

0.03 < 10
−4

0.086

↓ 0.00011 < 10
−5

0.00022

0.04 0.00033 0.0018

216

Figure A.1: MIP gaps for the various settings of Ĵ and Θ in the PS-Nonuniform instance set.

Every dot corresponds to one instance. Colors are used to distinguish the columns.

Figure A.2: MIP gaps for the various settings of Ĵ and Θ in the PSG instance set. Every dot

corresponds to one instance. Colors are used to distinguish the columns.

217

Table A.3:p-Values for the change of one parameter in the PSG set. Values highlighted in green

indicate that changing Ĵ and Θ, while keeping the other one constant, results in a statistically

signi�cant change in improvements. Values in blue are signi�cant before Bonferroni correction.

3 → 6 → 9

0.005 < 10
−5 < 10

−4

↓ < 10
−5 < 10

−5 < 10
−5

0.01 < 10
−5 < 10

−5

↓ 0.00037 < 10
−4 < 10

−5

0.02 < 10
−5 < 10

−5

↓ 0.00021 0.0051 0.00017

0.03 < 10
−5 < 10

−5

↓ 0.0021 < 10
−5 < 10

−4

0.04 < 10
−5 < 10

−5

Table A.4: p-Values for the change of one parameter in the OM set. Values highlighted in green

indicate that changing Ĵ and Θ, while keeping the other one constant, results in a statistically

signi�cant change in improvements. Values in blue are signi�cant before Bonferroni correction.

3 → 6 → 9

0.005 < 10
−4

0.00045

↓ < 10
−5 < 10

−5 < 10
−5

0.01 0.04 0.059

↓ < 10
−4 < 10

−5 < 10
−5

0.02 < 10
−5

0.00068

↓ < 10
−5 < 10

−5 < 10
−5

0.03 < 10
−4

0.011

↓ < 10
−4 < 10

−5 < 10
−5

0.04 < 10
−5 < 10

−5

218

Figure A.3: MIP gaps for the various settings of Ĵ and Θ in the OM instance set. Every dot

corresponds to one instance. Colors are used to distinguish the columns.

219

Θ
0
.0

0
5

0
.0

1
0
.0

2
0
.0

3
0
.0

4

Ĵ
3

6
9

3
6

9
3

6
9

3
6

9
3

6
9

M
i
n

0
.5

7
0
.5

4
0
.5

7
0
.5

6
0
.5

0
.4

9
0
.5

2
0
.4

4
0
.4

1
0
.5

2
0
.4

4
0
.3

8
0
.5

2
0
.4

4
0
.3

8

M
a
x

0
.9

9
0
.9

9
0
.9

9
0
.9

9
0
.9

9
0
.9

9
0
.9

9
0
.9

9
0
.9

9
0
.9

9
0
.9

9
0
.9

9
0
.9

9
0
.9

9
0
.9

9

M
e
a
n

0
.8

4
0
.8

3
0
.8

3
0
.8

1
0
.7

8
0
.7

8
0
.8

0
.7

7
0
.7

6
0
.8

0
.7

7
0
.7

5
0
.8

0
.7

7
0
.7

5

M
e
d

i
a
n

0
.8

6
0
.8

1
0
.8

1
0
.8

3
0
.7

5
0
.7

5
0
.8

3
0
.7

4
0
.7

2
0
.8

3
0
.7

4
0
.7

2
0
.8

3
0
.7

4
0
.7

2

S
t
d

.
D

e
v
.

0
.1

1
0
.1

2
0
.1

2
0
.1

3
0
.1

5
0
.1

5
0
.1

4
0
.1

6
0
.1

7
0
.1

4
0
.1

6
0
.1

7
0
.1

4
0
.1

6
0
.1

7

Ta
bl

e
A

.5
:S

t
a
t
i
s
t
i
c
s

o
f

t
h

e
c
h

a
n

g
e

i
n

p
e
a
k

d
e
m

a
n

d
a
f
t
e
r

o
p

t
i
m

i
z
a
t
i
o

n
i
n

t
h

e
P

S
-
N

o
n

u
n

i
f
o

r
m

s
e
t
.

Θ
0
.0

0
5

0
.0

1
0
.0

2
0
.0

3
0
.0

4

Ĵ
3

6
9

3
6

9
3

6
9

3
6

9
3

6
9

M
i
n

0
.8

4
0
.8

0
.8

0
.8

3
0
.7

7
0
.7

5
0
.8

1
0
.7

3
0
.7

0
.8

0
.7

2
0
.7

0
.8

0
.7

1
0
.6

9

M
a
x

0
.9

8
0
.9

3
0
.9

3
0
.9

8
0
.9

2
0
.9

1
0
.9

8
0
.9

2
1
.0

1
.0

1
.0

1
.0

1
.0

1
.0

1
.0

M
e
a
n

0
.9

0
.8

8
0
.8

8
0
.8

9
0
.8

4
0
.8

3
0
.8

8
0
.8

1
0
.7

9
0
.9

3
0
.8

8
0
.8

8
0
.9

8
0
.9

8
0
.9

7

M
e
d

i
a
n

0
.9

1
0
.8

7
0
.8

7
0
.8

8
0
.8

4
0
.8

3
0
.8

8
0
.8

1
0
.7

8
0
.9

2
0
.8

4
0
.9

3
1
.0

1
.0

1
.0

S
t
d

.
D

e
v
.

0
.0

3
2

0
.0

3
6

0
.0

3
6

0
.0

3
5

0
.0

4
2

0
.0

4
3

0
.0

4
0
.0

5
0
.0

7
1

0
.0

6
6

0
.0

9
9

0
.1

2
0
.0

5
6

0
.0

6
8

0
.0

8
5

Ta
bl

e
A

.6
:S

t
a
t
i
s
t
i
c
s

o
f

t
h

e
c
h

a
n

g
e

i
n

p
e
a
k

d
e
m

a
n

d
a
f
t
e
r

o
p

t
i
m

i
z
a
t
i
o

n
i
n

t
h

e
P

S
-
U

n
i
f
o

r
m

s
e
t
.

220

Θ
0
.0

0
5

0
.0

1
0
.0

2
0
.0

3
0
.0

4

Ĵ
3

6
9

3
6

9
3

6
9

3
6

9
3

6
9

M
i
n

0
.5

1
0
.4

8
0
.4

8
0
.4

7
0
.4

0
.3

7
0
.4

7
0
.3

4
0
.2

7
0
.4

7
0
.2

9
0
.2

5
0
.4

7
0
.2

8
0
.2

4

M
a
x

0
.9

8
0
.9

7
0
.9

7
0
.9

7
0
.9

6
0
.9

6
0
.9

6
0
.9

6
0
.9

6
0
.9

6
0
.9

6
0
.9

6
0
.9

6
0
.9

6
0
.9

6

M
e
a
n

0
.7

9
0
.7

7
0
.7

7
0
.7

8
0
.7

3
0
.7

2
0
.7

7
0
.7

1
0
.6

8
0
.7

7
0
.7

0
.6

7
0
.7

7
0
.6

9
0
.6

6

M
e
d

i
a
n

0
.8

5
0
.8

1
0
.8

0
.8

3
0
.7

9
0
.7

5
0
.8

2
0
.7

6
0
.7

2
0
.8

2
0
.7

6
0
.7

2
0
.8

2
0
.7

6
0
.7

2

S
t
d

.
D

e
v
.

0
.1

4
0
.1

5
0
.1

5
0
.1

4
0
.1

7
0
.1

8
0
.1

4
0
.1

9
0
.2

1
0
.1

4
0
.1

9
0
.2

2
0
.1

4
0
.2

0
.2

2

Ta
bl

e
A

.7
:S

t
a
t
i
s
t
i
c
s

o
f

t
h

e
c
h

a
n

g
e

i
n

p
e
a
k

d
e
m

a
n

d
a
f
t
e
r

o
p

t
i
m

i
z
a
t
i
o

n
i
n

t
h

e
P

S
G

s
e
t
.

Θ
0
.0

0
5

0
.0

1
0
.0

2
0
.0

3
0
.0

4

Ĵ
3

6
9

3
6

9
3

6
9

3
6

9
3

6
9

M
i
n

0
.9

7
0
.9

7
0
.9

7
0
.5

2
0
.9

4
0
.9

4
0
.8

9
0
.8

9
0
.8

8
0
.8

4
0
.8

5
0
.8

5
0
.8

2
0
.8

1
0
.8

1

M
a
x

0
.9

8
0
.9

8
0
.9

8
0
.9

7
0
.9

7
0
.9

7
0
.9

4
0
.9

4
0
.9

4
0
.9

3
0
.9

2
0
.9

2
0
.9

2
0
.9

0
.8

9

M
e
a
n

0
.9

8
0
.9

8
0
.9

8
0
.9

4
0
.9

5
0
.9

5
0
.9

2
0
.9

1
0
.9

1
0
.8

9
0
.8

8
0
.8

8
0
.8

8
0
.8

5
0
.8

5

M
e
d

i
a
n

0
.9

8
0
.9

8
0
.9

8
0
.9

5
0
.9

5
0
.9

5
0
.9

2
0
.9

1
0
.9

1
0
.8

9
0
.8

8
0
.8

8
0
.8

8
0
.8

5
0
.8

5

S
t
d

.
D

e
v
.

0
.0

0
3
7

0
.0

0
3
7

0
.0

0
3
7

0
.0

7
8

0
.0

0
6
9

0
.0

0
6
9

0
.0

1
1

0
.0

1
1

0
.0

1
3

0
.0

1
9

0
.0

1
5

0
.0

1
5

0
.0

2
1

0
.0

1
9

0
.0

1
9

Ta
bl

e
A

.8
:S

t
a
t
i
s
t
i
c
s

o
f

t
h

e
c
h

a
n

g
e

i
n

o
v
e
r
s
h

o
o

t
a
f
t
e
r

o
p

t
i
m

i
z
a
t
i
o

n
i
n

t
h

e
O

M
s
e
t
.

221

(a) Improvement in peak demand by increasing Θ
while keeping Ĵ constant

(b) Improvement in peak demand by

increasing Ĵ while keeping Θ constant.

Figure A.4: Additional Results for set PS-Nonuniform, one point per instance. The columns

are the di�erent settings for Ĵ and Θ. The Y axis indicates the change in peak demand after

optimization. Color indicates how well the instance could be optimized.

(a) Improvement in peak demand by increasing Θ
while keeping Ĵ constant.

(b) Improvement in peak demand by

increasing Ĵ while keeping Θ constant.

Figure A.5: Additional Results for set PS-Uniform, one point per instance. The columns

are the di�erent settings for Ĵ and Θ. The Y axis indicates the change in peak demand after

optimization. Color indicates how well the instance could be optimized.

222

(a) Improvement in peak demand by increasing Θ
while keeping Ĵ constant

(b) Improvement in peak demand by

increasing Ĵ while keeping Θ constant.

Figure A.6: Additional results for set PSG, one point per instance. The columns are the di�erent

settings for Ĵ and Θ. The Y axis indicates the change in peak demand after optimization. Color

indicates how well the instance could be optimized.

(a) Relative overshoot reduction by increasing Θ
while keeping Ĵ constant

(b) Relative overshoot reduction by

increasing Ĵ while keeping Θ constant.

Figure A.7: Additional results for set OM, one point per instance. The columns are the di�erent

settings for Ĵ and Θ. The Y axis indicates the change in overshoot after optimization. Color

indicates how well the instance could be optimized.

223

A.3 Discovered Motifs

(a) Motif A
(b) Motif B (c) Motif C

(d) Motif D (e) Motif E (f) Motif F

Figure A.8: All discovered motifs. Each black line indicates one occurrence of the respective

motif.

224

(g) Motif G (h) Motif H (i) Motif I

(j) Motif J

(k) Motif K

(l) Motif L

(m) Motif M (n) Motif N (o) Motif O

Figure A.8: All discovered motifs. Each black line indicates one occurrence of the respective

motif.

225

B Appendix for: Industrial Demand Side
Flexibility: A Benchmark Data Set

B.1 Full Figures for Section 6.7.1

Here, we supply larger plots for the analysis performed in Section 6.7.1 and for all

values for k in {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20}. Note that in rare cases, the ∆(Po , P̃o,k)
value slightly increases with increasing k for some occurrences. This is likely because

the algorithm we used to optimize the block decomposition is not exact. We used 10
5

iterations of sequential least-squares programming.

Figure B.1: ∆ measures for each occurrence, ordered by motif (on the x axis), for k = 1.

Figure B.2: ∆ measures for each occurrence, ordered by motif (on the x axis), for k = 2.

227

Figure B.3: ∆ measures for each occurrence, ordered by motif (on the x axis), for k = 3.

Figure B.4: ∆ measures for each occurrence, ordered by motif (on the x axis), for k = 4.

Figure B.5: ∆ measures for each occurrence, ordered by motif (on the x axis), for k = 5.

228

Figure B.6: ∆ measures for each occurrence, ordered by motif (on the x axis), for k = 6.

Figure B.7: ∆ measures for each occurrence, ordered by motif (on the x axis), for k = 7.

Figure B.8: ∆ measures for each occurrence, ordered by motif (on the x axis), for k = 8.

229

Figure B.9: ∆ measures for each occurrence, ordered by motif (on the x axis), for k = 9.

Figure B.10: ∆ measures for each occurrence, ordered by motif (on the x axis), for k = 10.

Figure B.11: ∆ measures for each occurrence, ordered by motif (on the x axis), for k = 15.

230

Figure B.12: ∆ measures for each occurrence, ordered by motif (on the x axis), for k = 20.

231

C Appendix for:
Top-Down Weight-Balanced Trees

C.1 Engineering Top-Down Weight-Balanced Trees:
Code and Data Publication

All evaluated trees as well as all benchmarking code is implemented in C++17. We

publish the code (including all benchmarking code) at

https://github.com/tinloaf/ygg/

Note that this is an ongoing project subject to changes. The exact code revision used

in this chapter can be accessed at

https://github.com/tinloaf/ygg/releases/tag/version_thesis

The code includes a �le README.md with build instructions. After building, the

directory “benchmark” contains all binaries necessary to reproduce our benchmarks.

The �le BENCHMARKING.md contains instructions on how to run the benchmarks.

We also publish all raw results we obtained from the benchmarks in a separate data

publication [BW19c]. This publication can be accessed at

https://publikationen.bibliothek.kit.edu/1000098852

It also contains a detailed description of the data format output by the various bench-

marking tools.

233

https://github.com/tinloaf/ygg/
https://github.com/tinloaf/ygg/releases/tag/version_thesis
https://publikationen.bibliothek.kit.edu/1000098852

C.2 Omi�ed Benchmark Plots

0 100 200 300 400
Tree Size (×104)

0.0

0.2

0.4

0.6

0.8

1.0

Ti
m

e
(

s)
Insert / Skewed

(a) Nodes’ keys chosen as for the

skewed case.

0 100 200 300 400
Tree Size (×104)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ti
m

e
(

s)

Insert / Pre-Sorted

1 + 2, 2
bottom-up

2, 3/2
3, 4/3

red-black

1 + 2, 2
top-down

3, 2
3/2, 5/4

(b) Nodes’ keys chosen as for the pre-sorted case.

Figure C.1: Times to insert 5% new nodes into trees of various sizes. The x axis speci�es the

size of the base tree. The y axis reports the time needed for a single insertion in microseconds.

Shaded areas indicate standard deviation.

0 100 200 300 400
Tree Size (×104)

0.0

0.2

0.4

0.6

0.8

Ti
m

e
(

s)

Delete / Skewed

(a) Nodes’ keys chosen as for the

skewed case.

0 100 200 300 400
Tree Size (×104)

0.02

0.04

0.06

0.08

0.10

0.12

Ti
m

e
(

s)

Delete / Zipf

1 + 2, 2
bottom-up

2, 3/2
3, 4/3

red-black

1 + 2, 2
top-down

3, 2
3/2, 5/4

(b) Nodes’ keys chosen as for the zipf case.

Figure C.2: Times to delete 5% nodes from trees of various sizes. The x axis speci�es the

size of the base tree. The y axis reports the time needed for a single deletion in microseconds.

Shaded areas indicate standard deviation.

234

0 100 200 300 400
Tree Size (×104)

0.0

0.2

0.4

0.6

0.8

Ti
m

e
(

s)

Insert / Uniform

1 + 2, 2
bottom-up

2, 3/2
3, 4/3

boost::intrusive::multiset

std::multiset

1 + 2, 2
top-down

3, 2
3/2, 5/4

red-black

Figure C.3: Times to insert 5% new nodes into trees of various sizes. The x axis speci�es the

size of the base tree. The y axis reports the time needed for a single insertion in microseconds.

Shaded areas indicate standard deviation. Node keys are chosen uniformly at random. Note

that this plot includes std::multiset and boost::intrusive::multiset.

10 15 20 25
Tree Size (×105)

18.0

18.5

19.0

19.5

20.0

20.5

Av
er

ag
e

N
od

e
D

ep
th

red-black
1 + 2, 2

top-down
3, 4/3
3/2, 5/4
1 + 2, 2

bottom-up
3, 2
2, 3/2

Figure C.4: Average node depth for trees of various sizes, with keys chosen for the skewed
case. The x axis speci�es the size of the tree, the y axis the average node depth. All nodes

in every tree were randomly generated, removed once, had their key changed, and were

reinserted. The solid lines indicate average values, the shaded areas the standard deviation.

235

	Introduction
	Preliminaries
	Scheduling
	Machine Scheduling
	Project Scheduling

	I Modeling
	A Comprehensive Modeling Framework for Demand Side Flexibility
	Introduction
	Related Work
	Modeling Flexibility
	Optimization Model
	Experimental Evaluation
	Discussion
	Conclusion

	Exploring the Benefits of Flexibilization in Industrial Contexts
	Introduction
	Problem Definition

	Related Work
	The Framework
	Data
	Motif Discovery
	Generation of Synthetic Instances
	Scheduling

	Evaluation
	Discovered Motifs
	Instance Sets
	Evaluation Environment
	Evaluation of FPSP-PS and FPSP-PSG
	Evaluation of FPSP-OM

	Modeling Fluctuating Demand via Job Chains
	Motif Analysis
	Discussion
	Optimization Aspects

	Conclusion & Outlook

	An Order-Based Model for the Resource Acquirement Cost Problem
	Introduction
	Preliminaries
	The Order-Based Model
	Full Description
	Viable Model Features
	Model Size

	Competitor Model: Event-Based Model
	Reducing Variable Count
	Model Size

	Experimental Evaluation
	Optimization Performance
	Empirical Model Sizes

	Conclusion

	Industrial Demand Side Flexibility: A Benchmark Data Set
	Introduction
	Preliminaries
	Single-Resource Project Scheduling
	Non-Constant Power Demands

	Finding Process Patterns
	Generating S-RACP Instances
	Grouped Generation

	The Benchmark Data Set
	Data Origin
	Data Set Parameters and Publication

	Evaluation: Characteristics of the Patterns
	Evaluation: Block Decomposition Granularity
	Approximation of the Original Power Demand Curve
	Scheduling Complexity
	Quality of Schedules with Few Blocks

	Conclusion

	II Heuristics
	Exploiting Flexibility in Smart Grids at Scale
	Introduction
	Related Work
	Contribution and Outline

	Problem Formulation
	Resource Utilization Scheduling Heuristic
	Experimental Evaluation
	Results

	Conclusion and Future Work

	Shaving Peaks by Augmenting the Dependency Graph
	Introduction
	Our Contribution
	Related Work

	Preliminaries
	The Problem
	Notation

	Scheduling With Augmented Graphs
	Algorithm Details
	Selecting Edges for Deletion
	Optimizations

	Competitor Algorithm: GRASP
	Evaluation
	Instance Sets
	Parameter Tuning
	SWAG analysis
	Comparison SWAG vs. GRASP

	Conclusion

	III Algorithmic Foundations
	Efficiently Finding Peaks Using Dynamic Segment Trees
	Introduction
	Preliminaries
	Union-Copy Data Structure

	Dynamic Segment Trees
	Red-Black Tree Operations
	General Interval Borders

	Zipping Segment Trees
	Insertion and Unzipping
	Deletion and Zipping
	Numeric Annotations
	Complexity
	Generating Ranks

	Experimental Evaluation of Dynamic Segment Trees Bases
	Conclusion

	Engineering Top-Down Weight-Balanced Trees
	Introduction
	Top-Down Weight-Balanced Trees
	Weight-Balanced Trees
	From Bottom-Up to Top-Down

	Evaluation
	Timing Operations
	Tree Balance
	Real-Life Sequences
	Rotated Node Weight

	Conclusion

	TCPSP is Fixed-Parameter Tractable in a Local Measure
	Introduction
	Preliminaries
	Pseudo Fixed-Parameter-Tractability
	Problem Definition

	Local Configurations
	Configuration Continuation
	Extensible Cost Functions

	An Exact Algorithm
	Schedule Reconstruction

	Complexity
	Objective Functions
	Conclusion

	Conclusion
	Bibliography
	Appendix for: Exploring the Benefits of Flexibilization in Industrial Contexts
	Data Publication
	Omitted Figures and Tables
	Discovered Motifs

	Appendix for: Industrial Demand Side Flexibility: A Benchmark Data Set
	Full Figures for Section 6.7.1

	Appendix for: Top-Down Weight-Balanced Trees
	Engineering Top-Down Weight-Balanced Trees: Code and Data Publication
	Omitted Benchmark Plots

