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Abstract: A planar chiral dirhodium paddlewheel
complex Rh2(Sp� PCP)4 based on the [2.2]paracyclo-
phane has been synthesized for the challenging
cyclopropanation of venylarene derivatives with
tert-butyl α-diazo propionates. The homobimetallic
rhodium catalyst relies on the high steric demand
and rigidity of [2.2]paracyclophane that favors the
cyclopropanation of 1-aryl substituted, 1,1-disubsti-
tuted and benzannulated alkenes over β-hydride
migration at room temperature with high diastereo-
selectivity.
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Rhodium(II) paddlewheel complexes are exceptionally
powerful catalysts that have wide synthetic applica-
tions in metal-carbene transformations. It includes the
formation of diverse cyclophanes which are important
motifs in bioactive natural products and pharmaceut-
icals by employing diazo compounds with alkenes.[1]
The intermediate rhodium carbenoid precursors react

in a vast range of transformations including
cyclopropanation,[1d,2] cyclopropenation,[1a,3] X� H
(X=C, Si, N, O, S) insertion,[4] and ylide
transformations[4d,5] with high chemoselectivity. Vari-
ous dirhodium tetracarboxylate complexes have been
shown to be effective catalysts for highly site-selective
and stereoselective C� H bond functionalization of a
wide range of useful substrates.[4a,6] Combined with the
ease of access to diazo compounds, their structural and
synthetic versatility as well as scalability, makes them
ideal intermediates for late-stage modifications.[4d,7]

Advancing the catalyst design, a variety of metal-
mediated reactions involving diazo compounds have
been reported in literature.[4e,8] Tailoring catalytic
reactivity of dirhodium complexes, by tuning of the
carboxylate ligands around the reaction center, with a
particular emphasis on selectivity, new efficient rho-
dium-based catalyst systems have been previously
explored.[9] The goal is to gain a more general catalytic
and synthetic utility, where a wide scope of alkenes
and diazo compounds is tolerated. Significant progress
has been made in recent years. Yet, the task remains a
longstanding challenge.[2c,10] However, an exception
has been the selective transformation involving α-
alkyl-substituted α-diazo compounds. The propensity
of the intermediate carbene to undergo β-hydride
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migration has precluded these compounds from a
general application in intermolecular reactions for a
long time.[3d,11]

To overcome this challenge, crucial effects of
sterically demanding different ligands in dirhodium
complexes in combination with low reaction temper-
ature has also been demonstrated. Taking this into
consideration, the use of α-alkyl-substituted α-diazo
compounds has become more general and led to the
development of diastereo- and enantioselective
systems.[2e,3c,12] Even though a large number of carbox-
ylate-ligands for dirhodium complexes has been inves-
tigated, mostly effecting cyclopropanation and C� X
insertion in a stereoselective manner, the element of
planar chirality has never been explored, so far.
Dirhodium complexes based on ferrocene as ligand
and their catalytic applications in intramolecular C� H
insertion reactions have been investigated
previously.[13] The huge success of planar chiral
ferrocenyl ligands represented by the JosiPhos family,
and the [2.2]paracyclophane (PCP) based PhanePhos
being the most prominent example of ligands, show
that introducing planar chirality is a viable alternative
to the most conventional, central chirality and offers
new opportunities for the development of efficient
catalyst systems.[14] Nonetheless, compared to central
and axial chirality, the research on planar chirality is
lagging behind.

Herein, we present the design and first synthesis of
the planar chiral dirhodium(II) paddlewheel complex
Rh2(Sp� PCP)4 bearing [2.2]paracyclophane carboxylate
ligands and its catalytic applications in cyclopropana-
tion reaction of vinylarenes with α-methyl-α-diazo
esters.

Our research group and others have previously
demonstrated a series of novel [2.2]paracyclophane-
based planar chiral systems and their applications as a
useful class of catalysts and ligands to facilitate
synthetically important various selective asymmetric
transformations.[15] The unique “bent and battered”
structure of the [2.2]paracyclophane possesses a con-
figurationally distorted and rigid structure with inher-
ently high steric demand.[14b,16] Our group has been
particularly interested to explore whether incorporation
of the planar chiral PCP scaffold in rhodium(II)
paddlewheel complexes, with its distorted and rigid
core, would improve catalytic activity towards cyclo-
propanation with α-alkyl-substituted α-diazo com-
pounds. Enantiomerically pure (Sp)-4-carboxy [2.2]
paracyclophane (Sp-1, Sp-PCP) was obtained from the
enantiomerically pure aldehyde[15d] via Pinnick oxida-
tion. Carboxylic acid Sp-1 was used for the preparation
of the new planar chiral dirhodium complex, Rh2
(Sp� PCP)4 (2, Scheme 1) via equatorial ligand ex-
change by heating a mixture of the ligand (Sp)-1 and
rhodium(II) acetate in a Soxhlet extractor filled with
sodium carbonate. After purification on silica gel,

greenish Rh2(Sp� PCP)4 complex was isolated in 83%
yield.

The dirhodium(II) paddlewheel complex consists of
four equatorial μ2-ligands (PCP) and two axial ligands
(as cocrystallized water molecules). Whereby the most
interesting feature of the Rh2(Sp� PCP)4, is the position-
ing of the [2.2]paracyclophane ligands in the com-
plexes (Figure 1). For the dirhodium(II) catalyst, to
transfer chiral information towards the final product,
the space above (α-face) and below (β-face) of the
O� Rh� O planes has to be sterically restricted.[1d] In
case of Rh2(Sp� PCP)4, the equatorial ligands adopt a
distorted C2 symmetry around the dirhodium core,

Scheme 1. Synthesis of the PCP-based planar-chiral dirhodium
complex Rh2(Sp� PCP)4 (2).

Figure 1. Top-view (top) and side-view (bottom) of the crystal
structure of Rh2(Sp� PCP)4 (2). Cocrystallized H2O molecules
are omitted for clarity, displacement parameters are drawn at
30% probability level. The absolute configuration was deter-
mined crystallographically.
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whereby the [2.2]paracyclophane bridge heads point
out of the O� Rh� O plane. This creates a chiral and
sterically restricted space above the rhodium center,
leaving the α-face unrestricted.

We envisioned the [2.2]paracyclophane dirhodium
complex 2 for the cyclopropanation reaction of differ-
ent alkenes with α-alkyl-substituted α-diazo com-
pounds (Scheme 2). Previously, cyclopropanation with
tert-butyl α-diazopropionate catalyzed by dirhodium
(II)tetrakis[N-tetrabromophthaloyl-(S)-tert-leucinate]
Rh2(S-TBPTTL)4 has been demonstrated, provide the
corresponding cyclopropanes with good yields and
with high diastereoselectivity.[17] We employed 2-vinyl-
naphtalene (3a) as test substrate and after optimization
using Rh2(Sp-PCP)4 (1.0 mol%) and tert-butyl α-diazo-
propionate (4, 2.0 equiv.) in diethyl ether gave the best
results, affording the cyclopropane product 5a in 74%
yield (see supporting information, Table 1). In every
case of the optimization, the product was obtained with
a d.r. > 99:1. Here, a high selectivity of the catalyst
over β-hydride migration was observed at room
temperature. For a high selectivity of a dirhodium
catalyst in the formation of the cyclopropanation
product over β-hydride migration, low temperature and
sterically demanding carboxylate ligands proved vital.
The counterintuitive finding that bulky ligands favor
the cyclopropanation reaction may be rationalized with
substrate-ligand interactions.[18] The reaction was un-
successful with higher substituted diazo compounds.
Ethyl, n-propyl, benzyl, and i-propyl groups in α-
position did not lead to any product formation, even if
the reaction was conducted at � 78 °C. The propensity
of α-alkyl-α-diazo esters to undergo β-hydride migra-
tion is inversely proportional to the degree of sub-
stitution. With increased substitution, the C� H bond
strength decreases. Lower reaction temperature stabil-
izes the carbene intermediate, but also lowers its
chemical reactivity. We assume that at lower temper-
atures, the β-hydride migration still prevails, so that
the cyclopropanation product is not formed.

The temperature profile of the reaction was exam-
ined very closely. Previous reports have shown a
higher resilience of the rhodium carbene intermediate
against β-hydride migration at lower temperatures.[3c,

d,11a] Reducing the reaction temperature to 0 °C and to
� 25 °C led to a considerably longer reaction time until
all of the diazo compound 4 was consumed. A decrease
in yield of the cyclopropanation product was observed
in both cases, whereas the formation of the elimination
product was the dominating pathway. Most likely this
is due to a reduced reactivity of the carbene
intermediate, favoring the faster β-elimination over the
cyclopropanation pathway. The use of equimolar
amounts of the diazo compound 4 led to reduction in
yield, whereas a higher excess did not lead to a
significant further increase.

With the optimized reaction conditions in hands, a
variety of terminal alkene components were screened
(Scheme 3). Generally, a high diastereoselectivity (d.r.
> 95:5) and, with few exceptions, no notable
enantioselectivity was observed. The lack of additional
sterically demanding groups on the PCP-scaffold
leaves the β-face of the catalyst mostly unrestricted.
This site is more accessible to form the carbene
intermediate from the diazo compound and reacts with
most of the alkenes without enantioselectivity. For the
cyclopropanation of styrene derivatives (3c–3h) good
to high yields were obtained. The steric and electronic
effects on the cyclopropanation was investigated using
styrene derivatives with a methyl substituent in para-
(5d) meta- (5e) and ortho- (5 f) position. Here, the
electron donating character of the methyl group
increases the yield, especially when in case of para-
position and gave the product 5d with 80% yield. The
electron donating effect in ortho-position compensates
better for the competing steric hinderance, than in
meta-position, which is shown by the product yields in
57% and 49%, respectively.

An exception to the high diastereoselectivity are
compounds 5 i, 5 l and 5m derived from 1,1-disubsti-
tuted alkenes. An additional substituent in α-position
led to the construction of two quaternary carbon
centers at once which gave the products 5 i and 5j in a
good yield and in the case of 5 i with a d.r. of 4:1.
Attempts to cyclopropanate 1,2-disubstituted alkenes
(cis and trans) as well as trisubstituted alkenes were
not successful. In the case of the α-substituted alkenes
5 i and 5j, a comparatively higher enantioselectivity up
to 31% was observed. The cyclopropanated cyclic
alkenes were obtained with 24% ee. No notable
enantioselectivity was observed for monosubstituted
alkene derivatives under these reaction conditions. The
exception to this is the bulky 9-vinyl anthracene
derivative product 5b which was obtained with 25%
ee.

Of particular note is that n-butyl vinyl ether (5k)
and the α,α-alkyl disubstituted alkenes (R)-limonene
(3 l) and (� )-α-pinene (3m) were also effectively
cyclopropanated in high yields and with a d.r. of
3:3:2:1 and 2:1, respectively. Other alkyl substituted
alkenes such as 1-octene, vinylcyclohexene, and 3-

Scheme 2. Rh2(Sp� PCP)4 catalyzed cyclopropanation reaction
of 2-vinylnaphtalenene (3a) with tert-butyl α-diazopropionate 4
employing Rh2(Sp� PCP)4 (2).
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butenylbenzene on the other hand were unreactive. The
cyclopropanation reaction of these substrates is consid-
erably slower than the competing 1,2-hydrogen shift
and no product was formed. The reaction of cyclic
alkenes was successful with annulated benzene deriva-
tives such as indene (3n), dialin (3o) and benzofuran
(3p). In these cases, the cyclopropanation gave a
single diastereoisomer with low to moderate yield. The

more reactive indene (3n) led to a higher yield than
dialin (3o) and even though benzofuran (3p), being an
aromatic heterocycle, gave the cyclopropanation prod-
uct in an even higher yield compared to indene (3n).

The cyclopropanation of heterocyclic substrates
(see supporting information, 2-vinylpyridine, 4-vinyl-
pyrididine, chromen-2-one and 3,4-dihydro-2H-pyr-
ane) was unsuccessful. In case of 2- and 4-vinyl-
pyridine, a color change of the reaction mixture to
purple and orange, respectively, was observed (sup-
porting information, Figure 70). This indicates an axial
coordination to the dirhodium core,[19] which may
cause a deactivation of the complex and inhibiting the
cyclopropanation reaction. The lack in reactivity chro-
men-2-one and dihydropyran may be related to the
electron deficiency of double bonds, thus favoring the
faster hydride shift of the carbenoid intermediate over
the cyclopropanation reaction.

To improve the diastereoselectivity for the sub-
strates 5 i, 5k, 5 l, and 5m, benzyl diazopropionate (6)
was tested instead of employing tert-butyl diazopropi-
onate (Scheme 4). Diastereomeric ratios of up to 95:5
were found for compounds 5 i’ and 5k’. A higher ratio
was also observed in the case of the pinene substrate
5 l’, whereas (R)-limonene (3 l), was obtained with
lower diastereoselectivity. These differences between
the tert-butyl and benzyl ester probably result from
favorable π- π interactions of the benzyl group with the
catalyst.

The molecular structure of the compounds 5j and
5n (Figure 2) were further confirmed by single crystal
X-ray crystallography. In case of 5n, the absolute
configuration was determined crystallographically.

Tailoring the planar chiral rhodium(II) paddlewheel
complexes via PCP ligand design, with particular
emphasis on improving selectivity, a comprehensive

Scheme 3. Synthetic scope of the cyclopropanation employing
different alkenes (0.20 M, 0.42 mmol) employing Rh2(Sp-PCP)4
(2, 1.0 mol%) and 4 (0.40 M, 0.83 mmol) in diethyl ether. The
d.r. was determined via GC-MS of the crude reaction mixture.
All yields refer to the average isolated yield from two experi-
ments.

Scheme 4. Cyclopropanation of selected alkenes (0.20 M,
0.42 mmol) employing Rh2(Sp-PCP)4 (2, 1.0 mol%) and 6
(0.40 M, 0.83 mmol) in diethyl ether. The d.r. was determined
via GC-MS of the crude reaction mixture. All yields refer to the
average isolated yield from two experiments.
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exploratory work is currently in progress. Additional
insights into mechanism could be obtained benefiting
from in-silico computational design and transition state
modeling that might assist in obtaining high regio-,
diastereo-, and enantioselective control. We also
believe that the Rh2(Sp� PCP)4 complex will inspire and
aid in the design and exploration of new bimetallic
complexes for different applications, such as develop-
ing new chiral NMR auxiliaries for enantiodifferentia-
tion and chiral recognition.[20] We are currently
progressing in this direction.

In summary, a conceptually novel planar-chiral
dirhodium complex Rh2(Sp� PCP)4 based on the [2.2]
paracyclophane scaffold was synthesized. The Rh2
(Sp� PCP)4 complex proofed viable as a highly diaster-
eoselective catalyst for the cyclopropanation of a
variety of terminal alkenes with tert-butyl-functional-
ized α-diazopropionate. The reaction occurs with a
high preference for the formation of the cyclopropana-
tion product at room temperature over a 1,2-hydride
shift. The catalytic protocol provides an attractive and
easy access to cyclopropane building blocks containing
an all-carbon quaternary stereogenic center.

Experimental Section
Dirhodium(II) tetrakis [(Sp)-[2.2]paracyclophane-4-carboxy-
late] (2). Rhodium (II) acetate (180 mg, 407 μmol, 1.00 equiv.)

and (Sp)-4-carboxy[2.2]paracyclophane (616 mg, 2.40 mmol,
6.00 equiv.) in anhydrous chlorobenzene (75 mL) was heated to
reflux under argon atmosphere in a Soxhlet extraction
apparatus. The extraction thimble was charged with potassium
carbonate that had been dried at 155 °C for 24 h. A new thimble
containing potassium carbonate was introduced every 24 h.
After 72 h, the solvent was removed under reduced pressure
and the crude mixture was purified by flash column chromatog-
raphy (silica, n-pentane /CH2Cl2/THF, 4:4:1). The title com-
pound (408 mg, 337 μmol, 83%) was obtained as a green solid.
1H NMR (500 MHz, THF-d8, ppm) δ=7.04 (d, J=2.0, 4H,
HAr), 6.44 (dd, J=7.8, 2.0, 4H, HAr), 6.31 (qd, J=7.8, 2.0,
12H, HAr), 6.21 (dd, J=7.8, 1.8, 4H, HAr), 6.11 (dd, J=7.7, 1.7,
4H, HAr), 4.08 (ddd, J=11.9, 9.2, 2.2, 4H, HPC), 2.98 (ddd, J=

14.3, 10.2, 6.7, 8H, HPC), 2.93–2.77 (m, 16H, HPC), 2.74–2.63
(m, 4H, HPC); 13C NMR (126 MHz, THF-d8, ppm) δ=187.4
(Cq, 4 C, CO), 141.6 (Cq, 4 C, CAr), 140.7 (Cq, 4 C, CAr), 140.0
(Cq, 4 C, CAr), 139.7 (Cq, 4 C, CAr), 136.4 (+ , 4 C, CH, CAr),
135.8 (+ , 4 C, CH, CAr), 135.8 (+ , 4 C, CH, CAr), 135.2 (Cq,
4 C, CAr), 133.6 (+ , 4 C, CH, CAr), 133.4 (+ , 4 C, CH, CAr),
133.0 (+ , 4 C, CH, CAr), 132.6 (+ , 4 C, CH, CAr), 37.3 (–, 4 C,
CH2), 36.1 (–, 4 C, CH2), 36.0 (–, 4 C, CH2), 35.7 (–, 4 C, CH2);
IR (ATR, cm� 1) v˜=2922 (w), 2850 (w), 1647 (m), 1595 (w),
1568 (m), 1551 (m), 1432 (w), 1409 (s), 1374 (vs), 1319 (w),
1248 (w), 1203 (w), 1181 (w), 1082 (w), 1040 (w), 907 (w),
884 (w), 873 (w), 800 (m), 785 (m), 715 (m), 677 (m), 626 (w),
534 (m), 506 (s); HRMS (ESI+, [M]+, C68H60O8Rh2) calc.:
1210.2398; found: 1210.2397; EA (C 68H60O8Rh2 + C4H8O2,
1299.1, %) calc.: C 66.57, H 5.28; found C 66.33, H 5.52

General Procedure for the Cyclopropanation of Alkenes. In
a sealable vial, the corresponding alkene (415 μmol,
1.00 equiv.) and Rh2(Sp� PCP)4 (5.00 mg, 4.20 μmol,
1.00 mol%) were dissolved under argon atmosphere in dry
diethyl ether (2.1 mL, 0.20 M) at 20 °C. To this solution tert-
butyl 2-diazopropanoate (130 mg, 190 μL, 0.83 mmol,
2.00 equiv.) in diethyl ether (3.1 mL, 0.40 M) was added at a
rate of 0.5 mL/h, then stirred for 12 h. The solvent was removed
under reduced pressure and the residue was purified by flash
column chromatography on silica gel to obtain the correspond-
ing cyclopropyl compound.
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