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Abstract: Mercapto-substituted 1,2,4-triazoles are very interesting compounds as they play an
important role in chemopreventive and chemotherapeutic effects on cancer. In recent decades,
literature has been enriched with sulfur- and nitrogen-containing heterocycles which are used as a
basic nucleus of different heterocyclic compounds with various biological applications in medicine
and also occupy a huge part of natural products. Therefore, we shed, herein, more light on the
synthesis of this interesting class and its application as a biologically active moiety. They might also
be suitable as antiviral and anti-infective drugs.
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1. Introduction

Taribavirin (I) (Figure 1) is a triazole based clinically used as antiviral drugs (Figure 1). It is an
active agent against a number of DNA and RNA viruses. It is indicated for severe respiratory syncytial
virus (RSV) infection, hepatitis C infection, and other viral infections like the West Nile virus and
dengue fever [1–3]. Taribavirin (also known as viramidine) is an antiviral drug in Phase III human
trials, but not yet approved for pharmaceutical use [4].
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1. Introduction 

Taribavirin (I) (Figure 1) is a triazole based clinically used as antiviral drugs (Figure 1). It is an 
active agent against a number of DNA and RNA viruses. It is indicated for severe respiratory 
syncytial virus (RSV) infection, hepatitis C infection, and other viral infections like the West Nile 
virus and dengue fever [1–3]. Taribavirin (also known as viramidine) is an antiviral drug in Phase 
III human trials, but not yet approved for pharmaceutical use [4]. 
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Figure 1. Structure of anti-HIV active triazole drugs. 

AIDS is characterized by an abnormal host defense mechanism that predisposes to infections 
with opportunistic microorganisms [5]. It was reported [6] that compounds IIIa–d (Figure 1) have 
been proved as treatment for HIV-1. The viral enzymes, reverse transcriptase (RT), integrase (IN), 

Figure 1. Structure of anti-HIV active triazole drugs.

AIDS is characterized by an abnormal host defense mechanism that predisposes to infections
with opportunistic microorganisms [5]. It was reported [6] that compounds IIIa–d (Figure 1) have
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been proved as treatment for HIV-1. The viral enzymes, reverse transcriptase (RT), integrase (IN),
and protease (PR) are all good drug targets. Two distinct types of RT inhibitors, both of which block
the polymerase activity of RT, have been approved to treat HIV-1 infections, nucleoside analogs
(NRTIs), and nonnucleosides (NNRTIs), and there are promising leads for compounds that either
block the RNase H activity or block the polymerase in other ways. A better understanding of the
structure and function(s) of RT and of the mechanism(s) of inhibition can be used to generate better
drugs; in particular, drugs that are effective against the current drug-resistant strains of HIV-1.NNRTIs
via high throughput screening (HTS) using a cell-based assay for inhibiting HIV-1 replication and
promising activities against selected NNRTI-resistant mutants such as Y181L, Y181C, K103N, and L100I
were observed.

Sulfanyltriazoles IIIa and IIIc (Figure 1) exhibited EC50 values of 182 and 24 nM, respectively,
suggesting the potential of these sulfanyltriazoles to overcome the K103-related NNRTI-resistant
mutants. These sulfanyltriazoles could serve as advanced lead structures promising great potential in
overcoming these and other NNRTI-resistant mutants [7].

1,2,4-triazoles are a very important class of compounds which attracted the attention of many
chemists and biologists in organic synthesis and medicinal and pharmaceutical fields due to their various
biological activities such as anticancer [8,9], antimicrobial, anticonvulsant [10], anti-inflammatory [11],
antitubercular [12], analgesic [13], antibacterial [14], and anti-HIV [15]. In addition, there
are chemotherapeutically known drugs containing 1,2,4-triazole moiety, e.g., fluconazole
(1) [16], (2-(2,4-difluorophenyl)-1,3-di(1H-1,2,4-triazol-1-yl)propan-2-ol) and itraconazole (2) [17],
(4-(4-(4-(4-(((2S,4R)-2-((1H-1,2,4-triazol-1-yl)methyl)-2-(2,4-dichlorophenyl)-1,3-dioxolan-4-yl)methoxy)
phenyl)piperazin-1-yl)-phenyl)-1-((S)-sec-butyl)-1H-1,2,4-triazol-5(4H)-one), which are used
as very effective antifungal drugs. In addition, prothioconazole (3) [18] is commercially
available for the treatment of plant-pathogenic fungal infections, alprazolam (4) [18],
(8-chloro-1-methyl-6-phenyl-4H-benzo[f ][1,2,4]triazolo[4,3-a][1,4]diazepine), is used for treating of
anxiety disorders, and anastrozole (5) [19] in addition to letrozole (6) is used for chemotherapeutic
anticancer drugs [20] (Figure 2).
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Incorporating of thione group either in 3- or 5-position (A and B, Figure 3) has been reported
in numerous reports, leading to enhancement of biological activities related to triazole moiety [21].
Besides, the triazolethione system is considered as a cyclic analog of very important components
like thiosemicarbazides and thiocarbohydrazides, which are widely spread as a reactive building
block in many organic reactions leading to different heterocyclic rings and having effective biological
applications. Many heterocyclic compounds are the main constituents of natural products; also,
mercapto-1,2,4-triazole nucleus is found in many natural products and pharmaceuticals [22].
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Mercapto-1,2,4-triazole also may be derived from natural products by applying some reactions
to get the desired compounds [23].
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activities. 
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acid or base for both cases, in addition to different other techniques including donor–acceptor 
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obtained from triazolethiones using simple procedures; also, sometimes their structures possess 
biological and pharmaceutical activities other than triazolethione itself such as anti-inflammatory 
and anti-oxidant [41], anticancer [42], fungicidal activities [43], antibacterial [44], antiparasitic [45], 
antidepressant and antimicrobial [46]. Furthermore, many transition metal complexes of 1,2,4-
triazolethione Schiff bases and their bioactivities were reported [47–49] along with nickel complexes 
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tetrahydrobenzo[b]pyrans [47]. 
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1,2,4-triazolethiones have been prepared successfully by various methods. The most common
classical method is the dehydrative cyclization of different hydrazinecarbothioamides in presence of
basic media using various reagents such as sodium hydroxide [2,25,33], potassium hydroxide [34,35],
sodium bicarbonate [36] or acidic ionic liquid [37] followed by neutralization either with acid or base
for both cases, in addition to different other techniques including donor–acceptor interactions. Various
synthetic routes and biological applications of spiro-1,2,4-triazolethiones were also discussed as main
heterocyclic targets easily obtained from different hydrazinecarbothioamides [38,39].

Schiff bases of triazolethiones [40] have played vital roles in organic synthesis and they are obtained
from triazolethiones using simple procedures; also, sometimes their structures possess biological and
pharmaceutical activities other than triazolethione itself such as anti-inflammatory and anti-oxidant [41],
anticancer [42], fungicidal activities [43], antibacterial [44], antiparasitic [45], antidepressant and
antimicrobial [46]. Furthermore, many transition metal complexes of 1,2,4-triazolethione Schiff bases
and their bioactivities were reported [47–49] along with nickel complexes of triazolethiones [50]
showing high catalytic activity towards the synthesis of tetrahydrobenzo[b]pyrans [47].

Various reactions of mercapto-triazolethiones [25] were discussed depending on S
and N nucleophilic sites and in presence of different reagents and conditions to afford
other heterocyclic compounds, e.g., triazolothiadiazines [51,52], imidazothiadiazoles [51,53],
bistriazolethione-1,4-dihydropyridines [54] and fused triazolethione pyrimidines [55].

2. Synthesis of 1,2,4-Triazole-3-thiones

Hydrazinolysis of ethyl-substituted benzoates 7a–c yielded the carbonylhydrazides 8a–c.
Nucleophilic addition of carbon disulfide (CS2) to 8a–c in basic media [22] gave the hydrazide
oxadiazole-2-thiones 9a–c. The reaction of oxadiazoles 9a–c with hydrazine hydrate in ethanol afforded
4-amino-5-aryl-1,2,4-triazole-3-thiones 10a–c (Scheme 1) [22].
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Scheme 2. Synthesis of triazolethiones 13a–f.

A series of 1,2,4-triazole-3-thiones 19a–d were successfully prepared through stepwise reaction
starting from esterification of N-(4-hydroxyphenyl)acetamide (14) with ethyl bromoacetate (15) to give
ethyl 2-(4-acetamido-phenoxy)acetate (16) [24]. The acetohydrazide 17 was then obtained through
hydrazinolysis of compound 16 with hydrazine hydrate. The corresponding thiosemicarbazides
18a–d were synthesized by the reaction of 17 with different isothiocyanates in dry ethanol. Finally,
thiosemicarbazide derivatives 18a–d were efficiently cyclized in basic media to give the desired
1,2,4-triazole-3-thiones 19a–d in 52–88% yields [24] (Scheme 3).
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The synthesis of 5-substituted phenyl-1,2,4-triazole-3-thiones 30a–c was done in high yields from
the refluxing of arylidene derivatives and trimethylsilyl isothiocyanate using sulfamic acid as a catalyst
via the intermediates 28a–c and 29a–c (Scheme 6) [52].
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The reaction of diethyl 1-substituted-1H-1,2,3-triazole-4,5-dicarboxylates 33a–d with hydrazine
hydrate yielded diacid hydrazides 34a–d. Hydrazinecarbothioamides 35a–d were obtained via refluxing
of 34a–d with phenyl isothiocyanate. Dehydrative ring closure of compounds 35a–d under basic
condition furnished the formation of bis-1,2,4-triazole-3-thiones 36a–d in 80–85% yields. Besides, the
reaction of diacid hydrazides 34a–d with CS2 in basic solution followed by refluxing with hydrazine
hydrate gave bis-4-amino-1,2,4-triazole-3-thiones 37a–d in 80–85% yields (Scheme 8) [28]. The resulting
compounds were screened for their antimicrobial activities based on standard antimicrobial agents;
compound 37d exhibited comparable antibacterial and antifungal activities against all the tested
organisms [28].
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Scheme 8. Synthesis of bis-4-amino-triazolethiones 35a–d, 36a–d and 37a–d. 

Thiocarbohydrazide (38) was heated with 2-(thiophen-2-yl)acetic acid to get 4-amino-1,2,4-
triazole-3-thione (39). The reaction of 39 with different aryl aldehydes yielded the corresponding 
Schiff bases 40a–f in 52–61% yields (Scheme 9) [53]. All the synthesized compounds were screened 
against Mycobacterium tuberculosis H37Rv, and they proved to be less active than rifampicin (98%), 
used as reference drug. Compound 40f showed the highest inhibition (87%), and therefore, it was 
suggested to be as potentially active antituberculosis agent [53].  
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4-Methyl benzoylisothiocyanate was reacted with phenylhydrazine hydrate afforded 1-phenyl-
5-(p-tolyl)-1H-1,2,4-triazole-3(2H)-thione (41). Schiff bases of triazolethione 42a–j were obtained via 
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Screening of the synthesized compounds 42a–j against different microorganisms showed that they 
have good antifungal activity rather than antibacterial activity [56]. 
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Scheme 9. Synthesis of triazolethiones 40a–f.

4-Methyl benzoylisothiocyanate was reacted with phenylhydrazine hydrate afforded
1-phenyl-5-(p-tolyl)-1H-1,2,4-triazole-3(2H)-thione (41). Schiff bases of triazolethione 42a–j were
obtained via reaction of triazolethione 41 with formaldehyde and various aromatic amines
(Scheme 10) [54]. Screening of the synthesized compounds 42a–j against different microorganisms
showed that they have good antifungal activity rather than antibacterial activity [56].
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Scheme 11. Synthesis of triazolethiones 47a–f.

Pyridine-2,5-dicarbohydrazide (49) was synthesized from the reaction of
dimethylpyridine-2,5-dicarboxylic acid (48) with hydrazine hydrate, which reacted with
different alkyl/aryl isothiocyanates to afford 2,2′-(pyridine-2,5-dicarbonyl)bis-(N-substituted
hydrazinecarbothioamides) 50a–e. Ring closure of these hydrazine-carbothioamides 50a–e occurred in
basic media to give bis-1,2,4-triazole-3-thiones 51a–e in 85–95% yields (Scheme 12) [58]. Biological
activities of the synthesized compounds 51a–e were evaluated, and they showed high antioxidant
activity. Moreover, all of the synthesized compounds efficiently inhibited some metabolic enzymes
such as AChE (acetylcholinesterase I and II) and could be used as excellent candidate drugs in the
treatment of some diseases such as mountain sickness, glaucoma, gastric and duodenal ulcers, epilepsy,
osteoporosis, and neurological disorders [58].
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Scheme 12. Synthesis of bis-triazolethiones 51a–e. 
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with ethyl chloroacetate. The reaction of 53a–d with hydrazine hydrate gave the corresponding 
acylhydrazides 54a–d. Intramolecular cyclization of 54a–d with CS2 in alkaline media resulted in 
oxadiazole-2-(3H)thiones 55a–d. 1,2,4-Triazolo-3-thiones 56a–d were synthesized from the reaction 
of compounds 55a–d with hydrazine hydrate. In addition, triazolothiadiazines 57a–d were 
synthesized from the reaction of 56a–d with phenacyl bromide [50]. The screening of compounds 
55a–d and 57a–d revealed that they possess a higher antibacterial activity than antifungal activity; 
also, the halo-substituted compounds showed an increased growth inhibition activity higher than 
that of the reference drugs such as fluconazole and chloramphenicol (Scheme 13) [50]. 
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Scheme 13. Synthesis of triazolethiones 57a–d.

Chlorosulfonation of ethyl 2-(3,4-dimethoxyphenyl)acetate (58) gave ethyl
2-(2-(chlorosulfonyl)-4,5-dimethoxyphenyl)acetate (59) (Scheme 14). Sulfonamides 60a–e were readily
obtained via reaction of 59 with secondary amines. The desired acid hydrazides 61a–e, which were
obtained by reaction of 60a–e with hydrazine hydrate, were condensed with various isothiocyanates to
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yield the corresponding hydrazinecarbothioamides 62a–e. Further, 1,2,4-Triazole-3-thiones 63a–e were
synthesized in 44–75% yields from the cyclization 62a–e in basic media (Scheme 14) [47]. Screening of
compounds 63a–e for in vitro antifungal and antibacterial activity revealed that they have the best
antifungal activity compared with the reference bifonazole in addition to the same bactericidal activity
as streptomycin, except for Enterobacter cloacae and Salmonella species [47].
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Salmonella species [47]. 
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Scheme 15. Synthesis of 4-N-amino-triazolethiones 11d,e.

Various thiosemicarbazide derivatives 65a–c were then synthesized from the reaction of acid
hydrazides 64a–c with 3-fluorophenyl isothiocyanates. Further, 1,2,4-triazole-3-thiones 66a–c were
obtained from alkaline cyclization of compounds 65a–c with 8% NaOH solution (Scheme 16) [40].
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Scheme 16. Synthesis of triazolethiones 66a–c. 
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synthesis of 1,3,4-trisubstituted triazolethiones 69a–d was carried out from the reaction of 
triazolethiones 67a–d with (2-(acetoxymethyl)-6-bromotetrahydro-2H-pyran-3,4,5-triyl triacetate 
(68) in good yields (Scheme 17) [30]. The synthesized compounds were screened for their cytotoxic 
activity against human malignant cell lines (MCF-7 and Bel-7402). Interestingly, 69c showed more 
potent cytotoxic activity against MCF-7 cells compared with compound 67c. Compound 69b also 
was more active than compound 67b against MCF-7 and Bel-7402 cells [30]. 
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cytotoxicity of 71a–d was evaluated against the MCF-7 cell line, with cisplatin as a reference. The 
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cell line compared with cisplatin [59]. 
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Scheme 17. Synthesis of glycosides of triazolethiones 69a–d.

A series of Pd complexes containing 1,2,4-triazole-3-thiones 71a–d [59] were synthesized from
the reaction of different thiosemicarbazones 70a–d with diphenylphosphinopropane and K2[PdCl4]
(Scheme 18). The reaction produced, as a minor product, compound 72 (Scheme 18) [59]. The in vitro
cytotoxicity of 71a–d was evaluated against the MCF-7 cell line, with cisplatin as a reference.
The complexes 71b and 71c showed significant cytotoxicity against the MCF-7 (human breast cancer)
cell line compared with cisplatin [59].
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Scheme 18. Synthesis of Pd complexes of triazolethiones 71a–d. 
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It was reported that the Eschenmoser coupling reaction was used as an efficient method
to get 82–88% of diazenyl-1,2,4-triazole-5-thiones 79a–e via nucleophilic attack of disubstituted
hydrazinecarbothioamides 77a–e on 2,3,5,6-tetrachloro-1,4-benzoquinone (78, p-CHL) which acted as a
mediator [33] (Scheme 20).
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Scheme 21. Mechanism describes formation of triazolethiones 79a–e.

4-Amino-3-(4-methoxybenzyl)-1H-1,2,4-triazole-5(4H)-thione (88) was synthesized in 75% yield
by refluxing of potassium 2-(2-(4-methoxyphenyl)acetyl)-hydrazinecarbodithioate (87) with hydrazine
hydrate. Condensation of triazolethione 88 with different substituted aldehydes gave Schiff base
derivatives 89a–c in 85–86% yields (Scheme 22) [43]. Screening of different Schiff bases 89a–c
for anti-inflammatory and antioxidant activities showed that 89a and 89c were used as potent
anti-inflammatory drugs. In addition, compound 89a was the most active antioxidant drug showing an
IC50 value of 7.2 ± 2.7 µg/mL compared with that of the reference ascorbic acid (2.61 ± 0.29 g/mL) [43].



Molecules 2020, 25, 3036 14 of 54

 
Scheme 22. Synthesis of triazolethiones 89a–c. 

(S)-2-(1-Benzylpyrrolidine-2-carbonyl)-N-butylhydrazinecarbothioamide (91) was prepared 
from the refluxing of (S)-1-benzylpyrrolidine-2-carbohydrazide (90) with butyl isothiocyanate. In 
addition, it is used as a building block for heterocyclization and synthesis of the desired (S)-3-(1-
benzylpyrrolidin-2-yl)-4-butyl-1H-1,2,4-triazole-5(4H)-thione (92a) in 56% yield (Scheme 23) [36].  

 
Scheme 23. Synthesis of triazolethione 92a. 

Moreover, 4-amino-triazole-5-thiol 94 was obtained from two routes, i.e., from the fusion of 
substituted propanoic acid (93) with 38 or cyclization of potassium hydrazinecarbodithioate 
derivative 95 with hydrazine hydrate (Scheme 24) [60].  

 
Scheme 24. Synthesis of triazolethiones 97a–f. 

The reaction of triazolethione 94 with different aldehydes in acidic media afforded (E)-4-
(substituted amino)-3-(1-(4-isobutylphenyl)ethyl)-4H-1,2,4-triazole-5-thiones 96a–f in 44–85% yields 

Scheme 22. Synthesis of triazolethiones 89a–c.

(S)-2-(1-Benzylpyrrolidine-2-carbonyl)-N-butylhydrazinecarbothioamide (91) was prepared
from the refluxing of (S)-1-benzylpyrrolidine-2-carbohydrazide (90) with butyl isothiocyanate.
In addition, it is used as a building block for heterocyclization and synthesis of the
desired (S)-3-(1-benzylpyrrolidin-2-yl)-4-butyl-1H-1,2,4-triazole-5(4H)-thione (92a) in 56% yield
(Scheme 23) [36].

 
Scheme 22. Synthesis of triazolethiones 89a–c. 

(S)-2-(1-Benzylpyrrolidine-2-carbonyl)-N-butylhydrazinecarbothioamide (91) was prepared 
from the refluxing of (S)-1-benzylpyrrolidine-2-carbohydrazide (90) with butyl isothiocyanate. In 
addition, it is used as a building block for heterocyclization and synthesis of the desired (S)-3-(1-
benzylpyrrolidin-2-yl)-4-butyl-1H-1,2,4-triazole-5(4H)-thione (92a) in 56% yield (Scheme 23) [36].  

 
Scheme 23. Synthesis of triazolethione 92a. 

Moreover, 4-amino-triazole-5-thiol 94 was obtained from two routes, i.e., from the fusion of 
substituted propanoic acid (93) with 38 or cyclization of potassium hydrazinecarbodithioate 
derivative 95 with hydrazine hydrate (Scheme 24) [60].  

 
Scheme 24. Synthesis of triazolethiones 97a–f. 

The reaction of triazolethione 94 with different aldehydes in acidic media afforded (E)-4-
(substituted amino)-3-(1-(4-isobutylphenyl)ethyl)-4H-1,2,4-triazole-5-thiones 96a–f in 44–85% yields 

Scheme 23. Synthesis of triazolethione 92a.

Moreover, 4-amino-triazole-5-thiol 94 was obtained from two routes, i.e., from the fusion of
substituted propanoic acid (93) with 38 or cyclization of potassium hydrazinecarbodithioate derivative
95 with hydrazine hydrate (Scheme 24) [60].

 
Scheme 22. Synthesis of triazolethiones 89a–c. 

(S)-2-(1-Benzylpyrrolidine-2-carbonyl)-N-butylhydrazinecarbothioamide (91) was prepared 
from the refluxing of (S)-1-benzylpyrrolidine-2-carbohydrazide (90) with butyl isothiocyanate. In 
addition, it is used as a building block for heterocyclization and synthesis of the desired (S)-3-(1-
benzylpyrrolidin-2-yl)-4-butyl-1H-1,2,4-triazole-5(4H)-thione (92a) in 56% yield (Scheme 23) [36].  

 
Scheme 23. Synthesis of triazolethione 92a. 

Moreover, 4-amino-triazole-5-thiol 94 was obtained from two routes, i.e., from the fusion of 
substituted propanoic acid (93) with 38 or cyclization of potassium hydrazinecarbodithioate 
derivative 95 with hydrazine hydrate (Scheme 24) [60].  

 
Scheme 24. Synthesis of triazolethiones 97a–f. 

The reaction of triazolethione 94 with different aldehydes in acidic media afforded (E)-4-
(substituted amino)-3-(1-(4-isobutylphenyl)ethyl)-4H-1,2,4-triazole-5-thiones 96a–f in 44–85% yields 
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The reaction of triazolethione 94 with different aldehydes in acidic media afforded (E)-4-(substituted
amino)-3-(1-(4-isobutylphenyl)ethyl)-4H-1,2,4-triazole-5-thiones 96a–f in 44–85% yields [61]. One-pot
multicomponent reaction of 96a–f, formaldehyde and secondary amines afforded 2,4,5-trisubstituted
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triazolethiones 97a–f. Screening of the anti-inflammatory activity of the synthesized compounds
revealed that Mannich bases (97b and 97e) exhibited the highest anti-inflammatory activity. Besides,
the most potent anti-inflammatory molecules 97b,d–f were further examined for their analgesic activity
in mice showing better analgesic activity compared to diclofenac [61].

Thiocarbohyrazide (38) was used efficiently as precursor of 4-amino-3-(1,2,3,4,5,6-
hexahydroxyhexyl)-1H-1,2,4-triazole-5(4H)-thione (99) through refluxing with D-glucoheptonic
acid-1,4-lactone (98) [62]. Besides, the triazole-thione 99 was reacted with different substituted
benzaldehydes to afford (E)-4-amino-3-(1,2,3,4,5,6-hexahydroxyhexyl)-1H-1,2,4-triazole-5(4H)- thiones
100a–f in good to moderate yields (50–70%). Introducing a glycosyl unit into triazolethiones Schiff
bases 100a–f led to good water-solubility of these compounds and also improved their biological
activities (Scheme 25) [62].
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The reaction of different carboxylic acids with thiocarbohydrazide 38 gave aminotriazolethiones
11d,f–j in 51–57% yields. In a different manner, the reaction of 38 with ethyl esters of
γ-keto acids did not give the expected triazolethiones 104a,b but it gave 6-substituted
phenyl-7,8-dihydro-[1,2,4]triazolo[4,3-b]pyridazine-3(2H)-thiones 105a,b in 35% and 39% yields.
The reaction occurred via ring closure of triazole and intramolecular imine condensation of 104a,b
(Scheme 27) [64]. The prepared compounds were tested for their inhibitory activities against
Mycobacterium bovis BCG; compound 11d proved to be the most potent one against it, with MIC
value of 31.25 µg/mL [64].
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Reaction of 2-(coumarin-4-yl)acetic acid with thiocarbohydrazide (38) in refluxing phosphoryl
chloride yielded the target 4-((4-amino-5-thioxo-4,5-dihydro-1H-1,2,4-triazole-3-yl)methyl)-2H-
chromen-2-one (111) in 80% yield. Condensation of 111 with various aromatic aldehydes yielded
(E)-4-((4-(benzylideneamino)-5-thioxo-4,5-dihydro-1H-1,2,4-triazole-3-yl)methyl)-2H-chromen-2-ones
112a–c (Scheme 29) [37]. The synthesized compounds were evaluated in vitro as anticancer agents
in the human colon cancer (HCT 116) cell line. Compound 112c showed high anticancer activity
(relative potency >50%) with IC50 value of 4.363 µM compared to the potent anticancer drug
doxorubicin, whereas compound 112a displayed moderate anticancer activity with IC50 values
18.76 µM. The molecular docking studies of the active compounds revealed that these compounds
might act via inhibition of tyrosine kinases (CDK2) [37].
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120 gave 2-((4-allyl-5-((diphenylphosphoryl)methyl)-4H-1,2,4-triazole-3-yl)thio)acetohydrazide (121)
in 43% yield (Scheme 31) [42].
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The condensation of (E)-1-(phenoxathiin-2-yl)-3-phenylprop-2-en-1-one (125) with malononitrile
afforded 2-amino-6-(phenoxathiin-2-yl)-4-phenylnicotinonitrile (126). In addition, compound 126
reacted with triethyl orthoformate in acetic anhydride to give formimide 127, which upon
hydrazinolysis with phenyl hydrazine yielded 4-imino-7-(phenoxathiin-2-yl)-5-phenylpyrido[2-
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d]pyrimidin-3(4H)-amine (128). The reaction of the latter with CS2 gave 16-phenyl-[1,2,4]triazolo-
pyrimido[4-b]benzo[5,6][1,4]oxathiino[3,2-g]quinoline-2(3H)-thiones 129 (Scheme 33) [50].
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1-[(1R,2S)-2-fluorocyclopropyl]CPFX (133) and formaldehyde afforded 1-[(1R,2S)-2-fluorocyclopropyl]
CPFX-1,2,4-triazole-5-thiones 134a–c in 52–57% yields (Scheme 35) [67].
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Condensation of 4-amino-3-methyl-1-phenyl-1H-thieno[2,3-c]pyrazole-5-carbonitrile (137) with
triethyl orthoformate in the presence of acetic anhydride as catalyst gave (Z)-ethyl N-(5-cyano-3-
methyl-1-phenyl-1H-thieno[2,3-c]pyrazol-4-yl)formimidate (138). Hydrazinolysis of 138 with
hydrazine hydrate yielded 7-imino-3-methyl-1-phenyl-1H-pyrazolothieno[3,2-d]pyrimidin-6(7H)-
amine (139), whereas cyclization of pyrazolothienopyrimidines 139 with CS2 afforded 7-methyl-9-
phenyl-3,9-dihydro-2H-pyrazolothieno[2,3-e][1,2,4]triazolo[1,5-c]pyrimidine-2-thione (140) in 35%
yield (Scheme 37) [54].
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Similarly, the reaction of acid hydrazides 142a–i with isothiocyanates afforded the acylhydrazides
143a–i (Scheme 39). The triazolethiones 144a–i were then obtained in 62–90% yields from the reaction
of thiosemicarbazides 143a–i in NaHCO3 in ethanol (Scheme 39) [69]. The 1,2,4-triazolethione 144g was
found to be the best anti-inflammatory nucleus via inhibiting both COX-2 (IC50 = 2.1 µM) and 5-LOX
(IC50 = 2.6 µM) enzymes, and this was supported via enzyme-ligand molecular modeling (docking
studies), which gave favorable binding interactions in both COX-2 and 5-LOX active sites. It also has a
superior gastrointestinal safety profile (ulcer index = 0.25) compared to the reference drug [69].
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on oxidation with H2O2 in acidic media gave 3,4,5-trisubstituted-1,2,4- triazoles 157a–e in 54–69%
yields [71]. The synthesized compounds 157a–e screened for their antimicrobial activity revealed that
157c exhibited better antibacterial and antifungal activities than the other compounds (Scheme 41) [71].
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yield. The synthesis of triazolethione Schiff bases 162a–i was achieved, in 35–66% yield, by refluxing of
161 with different aromatic aldehydes. Besides, Mannich bases 163a–h were easily obtained from the
reaction of Schiff bases 162a–i with formaldehyde and morpholine in 39–82% yields (Scheme 43) [73].
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Substituted thiosemicarbazone 176 was cyclized to the corresponding spirotriazolethione 179 in
70–82% yields through the intermediates 177 and 178 (Scheme 49) [77].
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(1R,2R,4R,5S)-2,4-Disubstituted phenyl-3-azabicyclo[3.3.1]nonan-9-one hydro-chlorides 180a–g
reacted with ammonia to give (1R,2R,4R,5S)-2,4-disubstituted phenyl-3-azabicyclo[3.3.1]nonan-9-ones
181a–g (Scheme 50) [31]. Condensation of compounds 181a–g with thiosemicarbazide 20 afforded
compounds 182a–g, which upon cyclization in the presence of m-chlorobenzaldehyde efficiently
gave spiro-1,2,4-triazoline-3′-thiones 183a–g in 50–70% yields (Scheme 50). Screening of these
spiro-triazolethiones 183a–g for antibacterial and antifungal activities showed that compounds 183b–e
had excellent antifungal activity against all the tested microorganisms. However, compounds 183d,e
showed excellent antibacterial activity against β-H. streptococcus. Besides, compounds 183b–c,e showed
varied activities toward the tested Gram-positive and -negative strains [31].
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5-Substituted-5′-thioxospiro[indoline-3,3′-[1,2,4]triazolidin]-2-ones 185a–d (83–89% yields)
successfully were obtained from the reaction of different 5-substituted indoline-2,3-diones 184a–d with
20 in water and catalyzed by using glycine nitrate. In the same manner, bis-spirotriazolethione 187
was synthesized from the reaction of 1,1′-(propane-1,3-diyl)bis(5-bromoindoline-2,3-dione) 186 with
20 in 89% yield (Scheme 51) [78].
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183d,e showed excellent antibacterial activity against β-H. streptococcus. Besides, compounds 183b–
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Condensation of gonanone derivatives 188a–c with 20 in acidic media gave the
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Microwave irradiation was used as an efficient method to get good yields with a shorter time than
the classical method for the synthesis of 6,6-dimethyl-phenyl-1,2,4,8-tetrazaspiro[4.5]decane-3-thiones
193a–e via formation of thiosemicarbazone intermediates 192a–e, which was obtained from the reaction
of 3,3-dimethyl-phenylpiperidin-4-ones 191a–e with 20 (Scheme 53) [80].
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3. Reactions of 1,2,4-Triazolethiones

3.1. Synthesis of Open-Chain Compounds

The synthesis of mono and bipolar surfactants 201a–d and 202a–d was achieved by the reaction of
3-methyl-1H-1,2,4-triazole-5(4H)-thione (30c) and 3-phenyl-1H-1,2,4-triazole-5(4H)-thione (30d) with
various alkyl bromides. However, in the case of n-dodecyl bromide, a mixture of two isomers 203 and
204 was obtained from the reaction of 201a–d and 202a–d with another molecule of alkyl bromide.
In addition, bis-1,2,4-triazoles 205a,b were obtained from the reaction of linear dibromoalkanes with
3-methyl-1H-1,2,4-triazole-5(4H)-thione (30c) (Scheme 56) [83].

 
Scheme 56. Synthesis of bis-1,2,4-triazoles 205a,b. 

Actylation of 3-substituted aminotriazolethione 206 by acetic anhydride afforded 4-
substituted-1,2,4-triazole-5-thione 207 in 52% yield (Scheme 57). Additionally, ethyl 2-((4-amino-5-
((6-methyl-2,4-dioxo-1,2,3,4-tetrahydropyridin-3-yl)methyl)-4H-1,2,4-triazole-3-yl) thio)acetate (208) 
can be obtained in 50% yield upon reacting ethyl 2-bromoacetate with compound 206 (Scheme 57) 
[86]. 
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HIV, and anti-tuberculosis activity showed that compound 209g was the most active one with 79% 
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Coxsackievirus B4 with an MIC value of 16 mg/mL and a selectivity index of 5 [21].  
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Reaction of various 1,2,4-triazolethiones 19a–g with alkyl or aryl isothiocyanates gave
1-substituted-3-(4-((4-substituted-5-thioxo-4,5-dihydro-1H-1,2,4-triazole-3-yl)-methoxy)phenyl)thio-
ureas 209a–g (Scheme 58). All the synthesized compounds 209a–g evaluated against antiviral,
anti-HIV, and anti-tuberculosis activity showed that compound 209g was the most active one with
79% inhibition against Mycobacterium tuberculosis H37Rv and also gave moderate protection against
Coxsackievirus B4 with an MIC value of 16 mg/mL and a selectivity index of 5 [21].
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Condensation of 4-amino-5-(pyridin-3-yl)-1,2,4-triazolidine-3-thione (11o) with 4-
chlorobenzaldehyde yielded 4-chlorobenzylideneamino-5-(pyridin-3-yl)-1,2,4-triazolidine-3-thione 
(210). (E)-4-Chloro-benzylideneamino-5-(methylthio)-3-(pyridin-3-yl)-1,2,4-triazole 211 was 
synthesized form the reaction of 210 with methyl iodide. Finally, the trisubstituted 1,2,4-triazole 215 
was synthesized in presence of iodide anion through the intermediates 212–214 (Scheme 59) [87].  
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The reaction of propargyl bromide with 5-(substituted phenyl)-1,2,4-triazolidine-3-thiones
21a,c–j yielded 3-substituted-5-(prop-2-yn-1-ylthio)-4,5-dihydro-1H-1,2,4-triazoles 216a–i in 62–77%
yields. Besides, the reaction of compounds 216a–i with iodine afforded (E)-5-((2,3-diiodoallyl)thio)-
3-(substituted phenyl)-1,2,4-triazoles 217a–i in 75–92% yields and traces of thiazolotriazoles 218a–i in
44–59% yields (Scheme 60) [86].
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Reaction of 4-phenyl-5-(pyridin-3-yl)-1,2,4-triazole-3-thiol (92b) with ethyl bromoacetate gave
1,2,4-triazolthioacetate 225 which on reacting with hydrazine hydrate afforded the desired
acetohydrazide 226. Moreover, the synthesis of various N-substituted-2-(2-((4-phenyl-5-(pyridin-3-yl)-
4H-1,2,4-triazole-3-yl)thio)acetyl)hydrazinecarbothioamides 227a–f was achieved by reacting 226 with
isothiocyanates (Scheme 62) [88].

acetohydrazide 226. Moreover, the synthesis of various N-substituted-2-(2-((4-phenyl-5-(pyridin-3-
yl)-4H-1,2,4-triazole-3-yl)thio)acetyl)hydrazinecarbothioamides 227a–f was achieved by reacting 
226 with isothiocyanates (Scheme 62) [89].  
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The Schiff bases of 4-amino-3-((phenoxy)methyl)-1H-1,2,4-triazole-5(4H)-thiones 230a–e were
synthesized upon reacting 4-aminotriazolethiones 229a–e with different aldehydes. Additionally,
reaction of 230a–e with chloroacetic acid and catalyzation by pyridine gave 2-((4-(substituted
benzylideneamino)phenoxymethyl-4H-1,2,4-triazole-3-yl)thio)acetic acid derivatives 231a–e in 66–70%
yields. The former compounds were screened for antimicrobial activities showing that compounds
231b and 231d have good antifungal activities against Aspergillus niger, Cryptococcus neoformans,
and Aspergillus fumigatus at MIC of 0.25 µg/mL compared to the standard drug fluconazole with MIC
of 1 µg/mL (Scheme 64) [90].
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Refluxing of 3-(adamantan-1-yl)-4-methyl-triazolethione 131b with 2-aminochloride derivatives
afforded S-(2-aminomethyl) and N-(2-aminomethyl) derivatives 238 and 132g in 3:1 ratio,
respectively [92]. Besides, 3-(adamantyl)-5-((2-methoxyethyl)thio)-4-phenyl-1,2,4-triazole 239 was
obtained from the reaction of 1-bromo-2-methoxyethanone with 3-(adamantan-1-yl)-4-phenyl-
1H-1,2,4-triazole-5(4H)-thione 131a. However, in the case of ethyl bromo acetate, two products
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The reaction of aminotriazolethiones 243a–i with different aldehydes afforded various arylidenes
244a–l, which upon reacting with 133 gave substituted triazoles 245a–i (Scheme 67). The bioassay
of antibacterial and antifungal activities of 245a–i revealed that they have better antifungal than
antibacterial activities; also, compounds 245b,c,f,j,k,l showed excellent antifungal activity against
Candida albicans with an MIC of 16 µg/mL [93].
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Reaction of 3,4-disubstituted triazolethioles 66a–c with 2-bromoacetophenones gave
((3,4-disubstituted-1,2,4-triazole-3-yl)thio)-1-phenyl-ethanones 254a–c in 70–82% yields and
((3,4-disubstituted-1,2,4-triazole-3-yl)thio)-1-(4-fluorophenyl)ethanones 255a–c in 72–85% yields [96].
The screening of the antioxidant activity using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method
revealed that the corresponding hydrazinecarbothioamides showed excellent antioxidant activity,
while 1,2,4-triazole-3-thiones showed good antioxidant activity (Scheme 71) [96].
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3.2. Synthesis of Substituted Triazolethiones

Synthesis of Pyrazolo-1,2,4-triazoles

Compounds 4-Amino-5-(3-substituted pyrazolyl)triazolethiols 259a–d, 260a,b, and 261a–c
in 61–78% yields were synthesized via reacting 4-aminotriazole-3-thiol (258), dimethoxy-N,N-
dimethylmethanamine, and carbonyl compounds using acidic media (orthophosphoric acid) as
catalyst [98] (Scheme 73). The mechanism describing the role of orthophosphoric acid is presented in
Scheme 74.
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Condensation of 5-chloro-1-phenyl-3-(substituted)-1H-pyrazole-4-carbaldehyde with
amino-triazolethiones 11d,e furnished the corresponding Schiff bases 246a,b. Bis-aminotriazolethiones
262a,b can be obtained effectively in high yields (83–89% yields upon reaction of 246a,b with piperazine
and formaldehyde in ethanol at room temperature) (Scheme 75) [61].
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thiazolotriazoles 269a–e in 49–68% yields or (Z)-5-(1-acetyl-2-oxo-1H-indol-3(2H,3aH,7aH)-
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than respective amides [101]. 
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3.3.2. Synthesis of Thiazolotriazoles

The condensation reaction of 3-substituted-1,2,4-triazole 266a–c with chloroacetic acid in acidic
media afforded thiazolotriazoles 267a–c in 65–69% yields. Interestingly, the synthesized compounds
were screened for their antioxidant and antimicrobial activities [100] (Scheme 77). Compound 267a
exhibited effective antimicrobial activity towards all the tested organisms.
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The synthesis of N-aryl-2-(6-oxo-5,6-dihydrothiazolo[3,2-b][1,2,4]triazol-5-yl)acetamides 272
was achieved in 60–87% yields from the reaction of 268 with N-arylmaleimides in acidic media.
It was established from the structure–activity relationship of these compounds that halo-substituted
derivatives have a considerable increase in anticancer activities [103] (Scheme 80).
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Scheme 82. Synthesis of triazolo[1,3,4]-thiadiazoles 276 and 277. 

The synthesis of fused heterocyclic[1,2,4]triazolo[3,4-b]-1,3,4-thiadiazoles 278a–c and 281a–c 
was done by the reaction of 4-amino-5-(4-((4-X-phenyl)sulfonyl)phenyl)-4H-1,2,4-triazole-3-thiol 
(11p,q) with aryl isothiocyanates or with various aromatic acids. Antimicrobial screening of the 
synthesized compounds showed that they had good antimicrobial activity (Scheme 83) [106]. 
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3.3.3. Synthesis of Triazolothiadiazoles

Triazolo[3,4-b][1,3,4]thiadiazoles 276a–g and 277a–e were obtained from refluxing of different
aromatic carboxylic acids with 11o in the presence of phosphorous oxychloride [105]. Screening of
the synthesized compounds against lung carcinoma (H157) and kidney fibroblast cell lines (BHK-21)
showed that compound 277d has the highest inhibition activity of 74.0% for BHK-21 cells which is the
same as that of standard drug vincristine (74.5%). Compound 276c,d,g showed less inhibition values,
and triazolothidiazole 276a was the most potent compound with inhibition value of 85.5%, whereas
compounds 276b,f and 277a exhibited less inhibition values (Scheme 82) [105].
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When 3-substituted methylaminotriazolethione 11r was condensed with different aldehydes,
arylidene derivatives of triazolethiones 282a–c were obtained in 54–66% yield, whereas
triazolothiadiazoles 283a–c, in 48–74% yields, were synthesized from the reaction of compound
282a–c with iodine. In addition, 6-mercapto-1,2,4-triazolothiadiazoles 284 were synthesized upon
reaction of 11r with CS2 in pyridine. The synthesis of 4-((6-(ethylthio)-[1,2,4]triazolo[3,4-b][1,3,4]-
thiadiazol-3-yl)methyl)-2H-chromen-2-one 285 was occurred from reaction of 11r with methyl iodide
in basic media in 55–75% yields. Moreover, 6-methylthio derivative 285 reacted with different aromatic
amines to give triazolothiadiazoles 286a–c (in 55–75% yields). The obtained compounds were evaluated
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in vitro as anticancer agents in the human colon cancer (HCT 116) cell line where the aminosulfanyl
derivative 286c exhibited high anticancer activity (Scheme 84) [37].
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UV irradiation of disubstituted triazole-5(4H)-thione 288a–e under basic conditions gave a mixture
of 3-substituted triazolothiazines 289a–e and 3,4-disubstituted-1,2,4-triazoles 290a–e according to the
concentration of the base used. However, irradiation of 288a–e in presence of acetophenone and only
compounds 290a–e was observed [108,109] (Scheme 86).
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The synthesis of triazolothiazines 287a–i (in 48–72% yields) was done from the reaction of 
compound 217a–i with CuI and tetramethylethylenediamine (TMEDA) using basic media (Scheme 
85) [107]. 
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3.3.5. Synthesis of 1,2,4-Triazolothiadiazines

Cyclocondensation of 4-amino-3-(4-(methylsulfonyl)benzyl)-1H-1,2,4-triazole-5(4H)-thione (294)
with different substituted phenacyl bromide derivatives in ethanol afforded 6-substituted-3-
(4-(methylsulfonyl)benzyl)-7H-[1,2,4]triazolo[3,4-b][1,3,4]-thiadiazines 295a–i (Scheme 88).
The antimicrobial activity of the synthesized compounds showed that triazolothiadiazines 295b,e,f,h
have significant antibacterial and antifungal activities against all the tested microorganisms [111].
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derivatives yielded triazolothiadiazines 296–299 [112] (Scheme 89). Interestingly, compounds 297b,
299b, and 299c, having either a chloride or fluoro substituent on the phenyl ring, gave better analgesic
and anti-inflammatory activities and less ulcerogenic risk, along with minimum lipid peroxidation [112].

Cyclocondensation of 4-amino-3-(4-(methylsulfonyl)benzyl)-1H-1,2,4-triazole-5(4H)-thione 
(294) with different substituted phenacyl bromide derivatives in ethanol afforded 6-substituted-3-
(4-(methylsulfonyl)benzyl)-7H-[1,2,4]triazolo[3,4-b][1,3,4]-thiadiazines 295a–i (Scheme 88). The 
antimicrobial activity of the synthesized compounds showed that triazolothiadiazines 295b,e,f,h 
have significant antibacterial and antifungal activities against all the tested microorganisms [111]. 
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In a similar reaction, the reaction of (3-methylbenzofuran-2-yl)triazolethione 305 with either
2-bromoacetophenone or hydrazonyl halides produced the corresponding 3-(3-methylbenzofuran-2-
yl)-triazolothiadiazine 306 and (2-arylhydrazono)triazolothiadiazine derivative 307, respectively [114]
(Scheme 91).
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4-Amino-5-(2-methyl-1H-indol-3-yl)-4H-1,2,4-triazole-3-thiol (263) was successfully cyclized to
give triazolo[3,4-b][1,3,4]thiadiazine (310) via reacting with 3-chloropentane-2,4-dione through the
intermediate 309. Furthermore, diazotization occurred to compound 310 and chlorophenyldiazene to
give 311 (Scheme 93) [116].
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Scheme 94. Synthesis of triazolothiadiazines 314.

Refluxing of 11e with N-aryl-2-oxopropanehydrazonoylchloride 315a–e afforded (Z)-6-methyl-
7-(2-aryllhydrazono)-3-(trifluoromethyl)-7H-[1,2,4]triazolo[3,4-b]-[1,3,4]thiadiazine (317) via the
formation of intermediate 316 [118]. Screening of the anticancer activities revealed that compounds
316a,e were the most active inhibitors against HEPG-2 cell line, whereas compound 316a was active
against HCT cell line [118] (Scheme 95).
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Scheme 94. Synthesis of triazolothiadiazines 314. 

Refluxing of 11e with N-aryl-2-oxopropanehydrazonoylchloride 315a–e afforded (Z)-6-methyl-
7-(2-aryllhydrazono)-3-(trifluoromethyl)-7H-[1,2,4]triazolo[3,4-b]-[1,3,4]thiadiazine (317) via the 
formation of intermediate 316 [117]. Screening of the anticancer activities revealed that compounds 
316a,e were the most active inhibitors against HEPG-2 cell line, whereas compound 316a was active 
against HCT cell line [117] (Scheme 95). 

 
Scheme 95. Synthesis of [1,2,4]triazolo[3,4-b]-[1,3,4]thiadiazines 317a–e. 

4. Conclusions 

In this review, we are trying to focus attention on the routes of triazole-thione synthesis. Since, 
triazolethione-thiols have gained considerable importance in medicinal chemistry, due to their 
broad spectrum as antiviral, antibacterial, anticancer, etc. agents, their synthesis has become of 
great interest. We also give spots on the biology of the target molecule as prospective antiviral 
drugs. 
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4. Conclusions

In this review, we are trying to focus attention on the routes of triazole-thione synthesis. Since,
triazolethione-thiols have gained considerable importance in medicinal chemistry, due to their broad
spectrum as antiviral, antibacterial, anticancer, etc. agents, their synthesis has become of great interest.
We also give spots on the biology of the target molecule as prospective antiviral drugs.

Author Contributions: Writing, editing, and submitting, A.A.A.; supervision, A.A.H.; draft writing, M.M.M.;
writing and editing, S.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: Authors acknowledge support by the KIT-Publication Fund of the Karlsruhe Institute
of Technology.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Vijesh, A.M.; Isloor, A.M.; Shetty, P.; Sundershan, S.; Fun, H.K. New pyrazole derivatives containing
1,2,4-triazoles and benzoxazoles as potent antimicrobial and analgesic agents. Eur. J. Med. Chem. 2013, 62,
410–415. [CrossRef] [PubMed]
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