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Abstract
Applications of neural networks to data analyses in natural sciences are complicated by the fact that many inputs are subject 
to systematic uncertainties. To control the dependence of the neural network function to variations of the input space within 
these systematic uncertainties, several methods have been proposed. In this work, we propose a new approach of training the 
neural network by introducing penalties on the variation of the neural network output directly in the loss function. This is 
achieved at the cost of only a small number of additional hyperparameters. It can also be pursued by treating all systematic 
variations in the form of statistical weights. The proposed method is demonstrated with a simple example, based on pseudo-
experiments, and by a more complex example from high-energy particle physics.

Keywords Neural networks · Systematic uncertainties · High-energy particle physics

Introduction

Neural network (NN) techniques are in wide and increasing 
use to solve classification and regression tasks in the analy-
sis of high-energy particle physics data. Examples of their 
use in physics object identification, e.g., at the LHC experi-
ments ATLAS and CMS, are the classification of particle 
jets induced by heavy flavor quarks [1, 2] and the identifica-
tion of � leptons [3, 4]. Examples for data analyses that make 
use of NNs not only for object identification, but also to 
distinguish between signal- and background-like samples are 
the latest analyses of Higgs boson events in association with 
third-generation fermions, at the LHC [5–9]. These classi-
fication tasks usually aim at the distinction of a signal from 

one or more background processes. They are characterized 
by a relatively small number of input parameters to the NN, 
of one or two orders of magnitude, which may reveal non-
trivial correlations among each other.

Each physics measurement is subject to systematic uncer-
tainties, which have to be propagated from the input space 
� = {xi} to the NN output f (�) . This usually happens in 
terms of variations of a given input parameter xi within its 
uncertainties Δi . We abbreviate the set of Δi by � = {Δi} and 
the set of modified input parameters by � + � = {xi + Δi} . 
These variations may be implemented in the form of varia-
tions of the actual values of xi , or such that a sample, with a 
given value of xi , enters the analysis with a different statisti-
cal weight, also referred to as reweighting throughout this 
text. Unlike varying the values of xi , reweighting does not 
rely on a reprocessing of the dataset and, therefore, generally 
implies significantly smaller computational costs.

The possibility to implement prior information about sys-
tematic uncertainties already in the NN training is motivated 
by two considerations: first, a powerful distinction between 
classes in principle can be considerably compromised by 
systematic uncertainties. Integrating prior knowledge of 
uncertainties in the NN training helps in guiding the NN 
to focus on features in the input space that are less prone to 
such a performance degradation. This may even result in a 
gain for the analysis performance, as observed in Ref. [10]. 
Second, the dependence of a systematic variation of a given 
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feature xi on other parameters {xj}, j ≠ i in the input space 
might only be poorly known, or even unknown, and the user 
might want to generally uncorrelate the NN output from this 
uncertainty to assure a reliable response of the NN to the 
given task. Both points raise interest in training the NN with 
the boundary condition that the dependence of f (� + �) on 
� should be minimal.

One way of achieving this decorrelation of f (� + �) from 
� that has been proposed in the past and that we will refer 
to in more detail throughout this paper, makes use of a sec-
ondary NN that is trained in addition to the primary NN in 
an iterative procedure, resulting in an adversarial architec-
ture [11] for robust binary classification [12]. This secondary 
NN has the task of drawing information of the systematic 
variation from the output of the primary NN. The output of 
the secondary NN is then included in the loss function of the 
primary NN as part of a minimax optimization problem. The 
resulting setup becomes insensitive to the systematic varia-
tion of the inputs. This method requires a relatively complex 
iterative training procedure; it introduces a large and to some 
extent, arbitrary number of new hyperparameters implied 
by the choice of the architecture of the secondary NN, and 
requires the resampling of xi within its uncertainties Δi.

Another approach to decorrelate f (� + �) from � is 
to include the knowledge about systematic uncertainties 
in a systematics-aware objective function as proposed in 
Refs. [13, 14]. An approach related to boosted decision trees 
is implemented by splitting the tree nodes using the signal 
significance including systematic uncertainties as objective, 
resulting in a classifier that successfully reduces the impact 
of systematic uncertainties on the result [15]. A similar 
approach for NNs has been studied in Ref. [16]. A compari-
son of systematics-aware learning techniques in high-energy 
particle physics has been carried out in Ref. [17]. In addi-
tion to the adversarial approach discussed above, this study 
includes a comparison to data perturbation and augmenta-
tion, and tangent propagation [18].

In our approach, we implement a penalty on the dif-
ferences between the NN output obtained from the nomi-
nal value of xi and its variations Δi , directly into the loss 
function. For this purpose, we use histograms of f (�) and 
f (� + �) filled during each training batch. The number nk 
of histogram bins {k} , and the batch size nb are hyperpa-
rameters of the training. To guarantee a differentiable loss 
function for the optimization of the trainable parameters of 
the NN, the histogram bins are blurred by a filter function 
applied to each sample b of the training batch, affected by 
the uncertainty variations, where b corresponds to a single 
sample represented by a point associated to each respective 
training dataset in the input space � . We use Gaussian func-
tions Gk(�) , normalized to max

(

Gk(�)
)

= 1 as filters, where 
the mean and standard deviation are given by the center and 
half-width of histogram bin {k} . The count estimate can then 

be written as Nk(f (�)) =
∑

b Gk(f (xb)) , and the loss function 
consists of the two parts

where L′ corresponds to the loss function of the primary 
task, like for example the cross-entropy function for a clas-
sification task, and Λ(�,�) to the term that penalizes dif-
ferences in the NN function between f (�) and f (� + �) . 
The factor � controls the influence of the penalty and adds 
another hyperparameter to the training. The count estimate 
Nk(f (� + �)) can be derived from Nk(f (�)) in terms of 
reweighting, such that no reprocessing of the dataset during 
the training procedure is required.

In this approach, more than one uncorrelated uncertainty 
simply adds to the sum of Λ

�
(�,�) , for � uncorrelated uncer-

tainties. Two fully (anti-) correlated uncertainties should be 
represented by a common variation for both uncertainties 
at the same time. While an exact modeling of correlations 
across uncertainties may not always be exactly known this 
knowledge is not strictly required by the method, as long 
as the loss function converges to its minimum and solves 
the defined task. The parameters �

�
 correspond to fur-

ther hyperparameters, whose values relative to each other 
define different tasks of the NN training. We would like to 
emphasize that the use of a histogram of f (�) (and f (� + �) 
respectively) in the loss function might lead to a suboptimal 
performance with respect to the direct use of f (�) . Also, we 
do not claim the resulting discriminator to be optimal for the 
final measurement.

In "Application to a Simple Example Based on Pseudo-
experiments", we demonstrate the method on a simple exam-
ple based on pseudo-experiments. A more complex analysis 
task typical for high-energy particle physics is studied in 
"Application to a More Complex Analysis Task Typical for 
High-Energy Particle Physics". We summarize our findings 
in "Summary".

Application to a Simple Example Based 
on Pseudo‑Experiments

To illustrate our approach, we refer to a simple example 
based on pseudo-experiments that has also been used in 
Ref. [12]. It consists of two variables x1 and x2 , which are 
the input to separate two classes, in the following labeled 
as signal and background. The input space is visualized in 
Fig. 1. A systematic uncertainty for the background class is 
introduced by two variations of x2 by ±1 . We consider only 
the discrete variations that quantify the difference between 

LΛ = L� + �Λ(�,�)

with:

Λ(�,�) =
1

nk

∑

k

(Nk(f (�)) −Nk(f (� + �))

Nk(f (�))

)2

,
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Nk(f (�)) and Nk(f (� + �)) , which is sufficient to define the 
part of Λ(�,�) to be minimized during the training process. 
We have checked that a Gaussian sampling with a standard 
deviation of � = 1 , as applied in [12] would lead to the same 
result in a more complex setup.

The NN used to solve the classification tasks consists of 
two hidden layers with 200 nodes each, with rectified linear 
units as activation functions [19] and a sigmoid activation 

function for the output layer. The trainable parameters are 
initialized using the Glorot algorithm [20]. The optimiza-
tion is performed using the Adam algorithm [21] with a 
batch size of 103 . Our choice for L′ is the cross-entropy 
function. For Λ , we use ten equidistant bins in the range 
[0, 1] of the NN output. We have not observed any sig-
nificant performance differences by varying the number 
of histogram bins within reasonable boundaries, though. 
Finally, we set � to 20. The training on 5 × 104 events is 
stopped if the loss obtained from the training dataset has 
not decreased for five epochs in sequence, on an independ-
ent validation dataset of the same size. In addition, we use 
105 events for testing and to produce the figures to illustrate 
the result. The impact of the systematic variations on the 
NN output is shown in Fig. 2 for the case of a classifier 
trained with a loss function given only by L′ ( fL′ ) and a 
classifier based on a loss function including the additional 
penalty term Λ ( fLΛ).

As can be seen from Fig. 2, the approach successfully 
mitigates the dependence of the NN output on the varia-
tion of x2 and, therefore, results in a classifier that is more 
robust in the presence of this systematic uncertainty. This 
is achieved on the expense of obliterating at least parts, 
if not all, separating information of x2 . Fig. 3 visualizes 
the NN output as a function of the input space spanned 
by x1 and x2 . The additional penalty term, Λ , leads to the 
intended alignment of the surface of the NN output with 
the variation of x2 , resulting in similar values of the NN 
output for all realisations of the systematic variation. We 
find our approach to have an effect similar to the setup 
described in [12].

−1 0 1 2
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−1

0

1

2

3

x
2

Signal
Background

Nominal
Up variation
Down variation

Fig. 1  Distribution of the input variables in the example of two 
classes labeled as signal and background, given in Application to a 
Simple Example Based on Pseudo-experiments. Two multivariate 
Gaussian distributions are centered around 

(

0 0
)

 and 
(

1 1
)

 with the 

covariance matrices 
(

1 − 0.5

−0.5 1

)

 and 
(

1 0

0 1

)

 , respectively. An addi-

tional uncertainty may lead to variations of the mean of the back-
ground sample on the y axis as indicated for the mean values of the 
background distribution in the figure

Fig. 2  Distribution of the NN 
output for a classifier trained 
(left) with a cross-entropy func-
tion only ( fL′ ), and (right) with 
an additional term penalizing 
the variation of the NN output 
with the systematic variation 
of x

2
 ( fLΛ ). The colored band 

around the distribution of the 
NN output of the background 
sample shows the effect of the 
systematic variation of x

2
± 1 . 

Note that the uncertainty band 
in the first bin of the back-
ground histogram in the left 
subfigure is cut off
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Application to a More Complex Analysis Task 
Typical for High‑Energy Particle Physics

In the following, we apply the proposed method to a more 
complex task typical for high-energy particle physics. We 
use a dataset that has been released for the Higgs boson 
machine learning challenge described in Ref. [22]. This 
challenge uses a simplified synthetic dataset from simulated 
collisions of high-energy proton beams with underlying 
hypothesized signal and background processes at the CERN 
LHC. The original target of the challenge was to separate 
events containing the decay of a Higgs boson into two tau 
leptons (signal) from all other events (background), to serve 
as benchmark for the success of different machine learning 
algorithms. The consideration of uncertainties, as required 
for a complete analysis of the data was not part of it. The 
dataset contains 30 input parameters, whose exact physical 
meanings are given in Ref. [22]. We split the dataset and 
use one-third for training and validation of the NN and two 
thirds for deriving the following results.

For our example, we use all parameters as input for 
the NN training. In addition, we introduce a systematic 
uncertainty, resembling the fact that the momentum and 
energy of a particle are the results of external measure-
ments with a finite resolution. For our study, we assume 
an uncertainty of ±3% [23] on the transverse momentum 
of the reconstructed hadronic � decay p�

t
 , measured in GeV 

and labeled as PRI_tau_pt in Ref. [22]. The distribu-
tions of the nominal and varied input parameters are visu-
alized in Fig. 4 (upper row). To allow for migrations in 
and out of the selected input space due to the systematic 
variation, we restrict the originally available dataset by 
raising the lower p�

t
 requirement from 20 to 25 GeV. For 

the background the distribution of p�
t
 is steeply falling. 

Thus, the variation is dominated by migration effects at 
the lower p�

t
 boundary, resulting in an overall normali-

zation uncertainty. The signal shows a maximum around 

p�
t
≈ 25GeV , leading to a more apparent additional varia-

tion of the shape of the p�
t
 distribution, as shown in Fig. 4 

upper right. The dataset used for these results contains 
814.9 (163750) weighted (unweighted) signal events and 
162705.0 (238778) weighted (unweighted) background 
events using an additional scaling of the weighted number 
of signal events by a factor of two.

Instead of resampling the signal and background data-
sets with the varied values of p�

t
 , we introduce the system-

atic variation in form of statistical weights. In this way, we 
give a higher (lower) statistical weight to subsamples with 
low (high) values of p�

t
 with respect to the nominal sam-

ple. These weights are determined from the p�
t
 distributions 

shown in Fig. 4 (upper row) for the background and signal 
sample, respectively. By construction, all correlations across 
features of the input space are conserved by the reweighting, 
thus that reweighting p�

t
 leads to shape variations also of 

correlated observables, e.g., like the reconstructed missing 
transverse momentum or the estimate of the invariant di-� 
mass, described in Ref. [22], as shown in Fig. 4 (lower row). 
We would like to emphasize that this reweighting technique 
is in fact the only way to apply a systematic variation of 
p�
t
 that respects the correlations to all other features of the 

input space on the given dataset. In a realistic analysis, the 
reweighting technique is not meant to replace the resam-
pling, but rather to complement it. A resampling could and 
should be applied, where correlations across input features 
may not be desired. To give an example, p�

t
 is mostly deter-

mined from track information. Therefore, an uncertainty in 
the missing transverse momentum due to uniformity uncer-
tainties in the calibration of the hadronic calorimeter should 
not impact p�

t
 with a correlation of 100%. As in the case of 

the simple example of "Application to a Simple Example 
Based on Pseudo-experiments", we use only the two dis-
crete shapes corresponding to the ±3% shifts in p�

t
 , which 

are a sufficient input for the minimization of the loss func-
tion during the training process. Samples of intermediate 

Fig. 3  The NN output as func-
tion of the input space, spanned 
by x

1
 and x

2
 (left) for the 

classifier trained with a cross-
entropy function only ( fL′ ), and 
(right) with an additional term 
penalizing the variation of the 
NN output with the systematic 
variation of x

2
 ( fLΛ ). The mark-

ers indicate the mean values of 
the input distributions for the 
nominal and varied datasets
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realizations of these shifts have been checked to lead to the 
same result despite the more complex setup.

The NN has the same architecture as described in "Appli-
cation to a Simple Example Based on Pseudo-experiments". 
For the implementation of fLΛ , we chose 20 equidistant bins 
in the range of [0, 1] of the NN output for Λ , and � = 20 . 
The batch size is set to 103 . The optimization of the train-
able parameters is performed on 75% of the training dataset 
and stopped if the loss has not decreased for 10 epochs in 
sequence, on the remaining part of the training dataset. The 
results are shown on an independent test dataset. We would 
like to emphasize that � = 20 , is a free choice that has been 
made for illustrative purposes only. In a realistic applica-
tion, the optimal choice of � should be studied on a case by 
case basis.

In Fig. 5 the NN outputs fL′ and fLΛ are shown. As in the 
case of the simple example given in "Application to a Sim-
ple Example Based on Pseudo-experiments", though less 
pronounced, the training based on a loss function including 
Λ leads to a mitigated dependence of the NN output on the 
systematic variation of p�

t
 . An important difference between 

both examples is that the uncertainty of the simple exam-
ple given in "Application to a Simple Example Based on 

Pseudo-experiments" is exclusively shape altering. In con-
trast to this, the uncertainty variation in this more complex 
example includes a significant component acting on the nor-
malization of the NN output, especially for the background 
distribution. A pure normalization uncertainty that does not 
lead to noticeable differences in the input space that can be 
related to its systematic variation can not be mitigated. In 
consequence, a dominant overall normalization uncertainty, 
visible especially for the background distribution of fL′ , is 
not significantly reduced by the use of fLΛ.

In Fig. 6, the p�
t
 distributions for signal and background 

for the full sample, and for two signal-enriched subsamples 
are shown. The latter are obtained by a restriction of fL′ and 
fLΛ to a value larger than 0.7. On the full sample, a generally 
harder p�

t
 spectrum for the signal is observed with a maxi-

mum around 45 GeV, in contrast to a steadily falling and 
softer spectrum for the background. In the signal-enriched 
subsample based on fL′ > 0.7 , the p�

t
 distribution for the 

background is biased towards the same distribution as for 
signal. In the signal-enriched subsample based on fLΛ > 0.7 , 
this bias is alleviated and the p�

t
 distributions for signal and 

background are qualitatively unchanged with respect to the 
full sample.

Fig. 4  Distribution of the trans-
verse momentum of the had-
ronic � decay p�

t
 (PRI_tau_

pt in [22]), for the (upper left) 
background and (upper right) 
signal sample. Variations of this 
input parameter are introduced 
in form of statistical weights, 
i.e., for the ±3% variation, sub-
samples with high (low) values 
of p�

t
 enter the analysis with a 

lower (higher) statistical weight 
than for the nominal sample. 
The weights for the background 
and signal sample, can be read 
off from the lower panels of 
these figures. Also shown are 
the (lower left) reconstructed 
missing transverse momentum 
and (lower right) the invari-
ant di-� mass estimated from 
the selected � candidates, as 
described in Ref. [22], from the 
signal sample, demonstrating 
the effect of the reweighting on 
variables correlated to p�

t
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At the LHC experiments, the presence of the Higgs boson 
signal has been inferred from hypothesis tests based on a 
likelihood ratio between the case of including the Higgs 
boson signal and that of the null hypothesis without Higgs 
boson signal  [24]. Systematic uncertainties have been 
incorporated in form of nuisance parameters, which might 
be correlated, e.g., across processes, into the likelihoods. 
Best estimates and constraints on these nuisance parameters 
have been obtained by nuisance parameter optimization. The 
presence of the signal has been quantified, e.g., by means 
of its statistical significance in terms of Gaussian standard 
deviations (SD), in the limit of large numbers. To serve our 
discussion, we emulate this discovery scenario, in a simpli-
fied way, constructing binned likelihoods for the signal and 
null hypotheses based on the histograms shown in Fig. 5. In 

addition to the statistical uncertainties of the pseudo-data, 
we incorporate the uncertainty indicated by the bands in 
Fig. 5 as process- and bin-correlated variations in the likeli-
hoods, bound to a single nuisance parameter � , following 
the prescriptions of [24]. The fit of a Higgs boson signal 
hypothesis with a single signal strength parameter of inter-
est, � , to the pseudo-data, including the signal as expected 
by theory, leads to a constraint of the uncertainty in � to 3% 
of its initial value, both in the case of fL′ and fLΛ as input 
distributions to the fit. This constraint is dominated by the 
power of the pseudo-data to determine the normalization 
related to � , especially in the first bins of the background 
dominated pseudo-data sample distribution, e.g., with more 
than 65 thousand counts in the first bin. When splitting the 
uncertainty into two independent nuisance parameters, �norm 
to govern the pure normalization uncertainty, and �shape to 
govern the pure shape altering uncertainty, we find the initial 
normalization uncertainty to be 7.6% ( 2.2% ) for the back-
ground (signal) sample. We anticipate that the implementa-
tion with two independent nuisance parameters is not fully 
correct, but keeping this caveat in mind the study still serves 
the test we are interested in. After the fit of the Higgs signal 
hypothesis to the pseudo-data, we observe the same con-
straint as on the uncertainty in � before on the uncertainty in 
�norm . We observe an ≈35% correlation between �norm and � . 
The constraint on the uncertainty in �shape is 0.8 (0.4) for fL′ 
and fLΛ as input distributions to the fit, with a correlation of 
55% (5%) to � . We observe similar results when performing 
a fit of the null hypothesis. The reduction of the correla-
tion of �shape with � , when using fLΛ instead of fL′ gives a 
quantitative measure in this case of the decorrelation of the 
shape altering part of the uncertainty with the parameter of 
interest.

In Fig. 7, the significance of the analyzed signal in the 
pseudo-data, based on the fit to the null hypothesis is shown 
as a function of the hyperparameter � , where � = 0 corre-
sponds to fL′ as input to the fit. Using fL′ as input to the fit 

Fig. 5  Distribution of the NN 
output for a classifier trained 
(left) with a cross-entropy func-
tion only ( fL′ ), and (right) with 
an additional term penalizing 
the variation of the NN output 
with the systematic varia-
tion ( fLΛ ). The colored bands 
around the distribution of the 
NN outputs of the signal and 
background samples indicate 
the effect of the systematic 
variation of (1.0 ± 0.03) p�

t
 . 
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Fig. 6  Distribution of the transverse momentum of the hadronic � 
decay p�

t
 (PRI_tau_pt in  [22]). The distributions for signal and 

background are shown on the full unbiased sample, and two signal-
enriched subsamples with fL′ > 0.7 and fLΛ > 0.7



Computing and Software for Big Science             (2020) 4:5  

1 3

Page 7 of 8     5 

leads to a significance of 6.7 SD, corresponding to a com-
bined systematic and statistical relative uncertainty in the 
parameter of interest of Δ�∕� = 15% . This significance 
drops to a value of 5.2 SD, corresponding to Δ�∕� = 19% , 
for � = 20 . Such a drop is expected, since p�

t
 plays an impor-

tant role in the separation of signal and background, not 
only as a single feature, but also via its correlations to other 
features in the input space [25]. The scan of � in this way 
visualizes to what extend the separation relevant informa-
tion related to p�

t
 in the input space that is vulnerable to the 

variation of p�
t
 , is masked during the training process for 

increasing values of � . The information loss seems small for 
values of � ≤ 5 with a significant drop around � ≈ 10 and a 
plateau around � ≈ 20 , which is the value we have chosen 
for our study. At this point most of the separation relevant 
information related to p�

t
 that is vulnerable to the variation 

of p�
t
 seems to be masked out from the training, such that fLΛ 

turns mostly blind for p�
t
 . Implicitly this can also be inferred 

from Fig. 6, where the distribution of p�
t
 qualitatively is the 

same for the signal-enriched and the inclusive samples.
In turn, the uncertainty on the significance due to the 

systematic variation drops, roughly proportional to the 
loss in significance, from ≈7.5% (for � = 0 ) to ≈1.8% (for 
� = 20 ). We estimate the contribution of the systematic vari-
ation in p�

t
 to Δ�∕� , with 6.6% (for � = 0 ), dropping to 1.8% 

(for � = 20 ). At the same time, and with a larger slope, the 
absolute contribution of the statistical uncertainty to Δ�∕� 
increases from 13.4% (for � = 0 ) to 19.3% (for � = 20 ), 

resulting in the overall decrease of the significance for 
increasing values of � , for the given example. The loss in 
statistical power stems from the worse separation of signal 
and background for increasing values of � , as also visible 
from Fig. 5.

Increasing � to larger and larger values leads to another 
drop of the significance, which converges to the value for 
a single counting experiment that does not distinguish 
between signal and background, in the limit of � → ∞ . This 
can be understood in terms of Λ completely dominating the 
loss function thus that L′ will more and more loose influence 
in the training task. As a consequence the NN will primarily 
be optimized on the suppression of the variation of p�

t
 rather 

than the separation of signal and background.
We would like to point out at the end of this discussion 

that it is usual practice in a measurement scenario to accept 
the increase of statistical uncertainty, which can in principle 
be controlled by an increase of the dataset for the benefit 
of a reduced sensitivity of the measurement on systematic 
variations of its input parameters, which might be difficult 
to control. We anticipate though that in the given scenario, 
� = 0 remains the choice that maximizes the significance 
of the analysis despite its larger sensitivity to the system-
atic variation in this case. Our choice of � = 20 should be 
viewed as a free, while still sensible choice to showcase the 
reduction of the influence of the systematic variation on the 
NN output.

Summary

We have presented a new approach to reduce the depend-
ence of the NN output to variations of features xi of the NN 
input space due to systematic uncertainties in the measured 
input parameters. We achieve this reduction by including 
the variation of the NN output w.r.t. the nominal value of xi 
in the loss function used for training. Compared to a previ-
ously published method of using an adversarial technique, 
the complexity of the presented method is reduced to one 
additional term in the loss function with less hyperparam-
eters and no further trainable parameters. Systematic vari-
ations can be inscribed in the form of statistical weights, 
implying no further needs of reprocessing, further reducing 
the complexity of the training. Additional uncertainties just 
add to the sum of penalty terms in the loss function. In turn, 
the method requires batch sizes large enough to populate 
the blurred histogram of the NN output used for the evalua-
tion of the variation w.r.t the nominal value of xi in the loss 
function.

We have demonstrated the new approach with a sim-
ple example directly comparable to a solution of the same 
task exploiting the adversarial technique, and a more com-
plex analysis task typical for high-energy particle physics 
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Fig. 7  Statistical significance of the Higgs boson signal in the dataset 
given in Ref.  [22], in standard deviations (SD), as a function of the 
tunable hyperparameter � . The parameter value � = 0 corresponds to 
the choice of the distribution of fL′ as input to the fit to the pseudo-
data. Increasing � further than shown here leads to another drop after 
� ≈ 35 approaching the significance for a single counting experiment 
that does not distinguish between signal and background, in the limit 
of � → ∞
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experiments. In all cases, the dependence of the NN output 
on the variation of a chosen input parameter is successfully 
mitigated. In application to a high-energy particle physics 
measurement this leads to a result less prone to systematic 
uncertainties, which is of increasing interest in the presence 
of growing datasets, where statistical uncertainties play a 
subdominant role in the measurement.
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