
 

Kinetic Heavy Quark Mass to Three Loops
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We compute three-loop corrections to the relation between the heavy quark masses defined in the pole
and kinetic schemes. Using known relations between the pole and MS quark masses, we can establish
precise relations between the kinetic and MS charm and bottom masses. As compared to two loops, the
precision is improved by a factor of 2 to 3. Our results constitute important ingredients for the precise
determination of the Cabibbo–Kobayashi–Maskawa matrix element jVcbj at Belle II.
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Introduction.—Among the main aims of the Belle II
experiment at the SuperKEKB accelerator at the High
Energy Accelerator Research Organization (Tsukuba) is the
precise measurement of various matrix elements in the
Cabibbo–Kobayashi–Maskawa (CKM) mixing matrix.
These are crucial ingredients for our understanding of
CP violation and indispensable input for precision tests of
the standard model of particle physics. In this context, the
determination of jVcbj, the CKMmatrix element entering in
b → c transitions, at the 1% level is of particular interest. At
present its relative error of about 2% [1] constitutes an
important source of uncertainty in the predictions for K →
πνν̄ [2,3], Bs → μþμ− [4], and εK [5], the parameter that
quantifies CP violation in kaon mixing. All such processes
set strong constraints on new physics with a generic flavor
and CP structure.
At present, the values of jVcbj from inclusive b → clν

decays are obtained from global fits of jVcbj, the bottom
and charm masses (mb;c), and the relevant nonperturbative
parameters in the heavy quark expansion. The most recent
determination is jVcbj ¼ ð42.19� 0.78Þ × 10−3 [1,6–8],
where the precision is limited by perturbative and power
correction uncertainties.
In analyses of B → Xclν decays, it is mandatory to use a

so-called “threshold” mass designed such that the pertur-
bative QCD corrections to the decay rate are well-behaved.
So far for the analyses, either the kinetic mass (mkin) [9] or
the 1S mass [10–13] has been chosen. Both schemes are
well suited for B → Xclν since they allow for renormal-
ization scales μ ≤ mb. The relation between the 1S and MS
quark mass (m̄) has been computed up to next-to-next-to-
next-to-leading order in Refs. [14,15]. For the mkin–m̄

relation, two-loop corrections and the three-loop terms with
two closed massless fermion loops (often referred to as
large-β0 terms) have been computed in Ref. [16].
The rate and the moments of B → Xclν strongly depend

on the mass definition of the heavy quark, the choice of
which is closely intertwined with the size of the QCD
corrections. Perturbative calculations using the on-shell
mass scheme are affected by the renormalon ambiguity,
which manifests itself through bad behavior of the pertur-
bative series [17,18]. However, QCD corrections to the
semileptonic rates also exhibit a bad convergence in the MS
scheme [9,19]. In fact, large ðnαsÞk terms, with n ¼ 5,
arise from the mOS–m̄ conversion of the overall factor
Γ ≃G2

Fm
5
bjVcbj2=ð192π3Þ.

The kinetic scheme was introduced in [9] to sum such n-
enhanced terms via a suitable short-distance definition. It
relies on the small velocity QCD sum rules [20], which
hold in the zero-recoil limit, i.e., for hadronic final state
velocities jv⃗j ≪ 1 in the rest frame of the decaying particle
and mb ∼mc.
Note that the semileptonic B decays alone precisely

determine only a linear combination of the heavy quark
masses, approximately given by mb − 0.8mc [6]. Thus, in
order to break the degeneracy one must include in the fit
external constraints for the bottom and the charm
masses, which are usually given in the MS scheme.
Until now the scheme-conversion uncertainty from
m̄bðm̄bÞ to mkin

b ð1 GeVÞ dominates the uncertainty of the
MS bottom quark mass [21]. The global fits in [6,7]
employed only m̄c as external input as the gain in accuracy
with the further inclusion of m̄b would have been limited by
scheme conversion [6].
In this Letter we will present the complete three-loop

corrections to the m̄–mkin relation, which lead to a
significant improvement of the uncertainties in the mass
conversion. Our results constitute a fundamental ingredient
for future inclusion of Oðα3sÞ corrections in semileptonic
rates and spectral moments. Thus, our calculation is one of
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the major steps toward the reduction of the theoretical
uncertainties affecting the jVcbj determination from inclu-
sive decays at the 1% level or even below.
Kinetic mass definition.—In Ref. [9] (see also Ref. [16])

the kinetic mass has been defined via its relation to the pole
mass mOS through

mkinðμÞ ¼ mOS − Λ̄ðμÞjpert −
μ2πðμÞjpert
2mkin þ � � � ; ð1Þ

where the ellipses stand for contributions from higher
dimensional operators. The scale μ, the so-called
Wilsonian cut-off, is part of the definition of mkin and
takes the role of a normalization point for the kinetic mass.
In practice it is of the order of 1 GeV.
The quantities Λ̄ðμÞjpert and μ2πðμÞjpert in Eq. (1) corre-

spond to the heavy meson’s binding energy and the residual
kinetic energy parameters, respectively. They are defined
within perturbation theory and are obtained from the
following forward scattering amplitude of an external
current J and the heavy quark Q [cf. Fig. 1(a)]

Tðq0; q⃗Þ ¼
i
2m

Z
d4xe−iqxhQjTJðxÞJ†ð0ÞjQi; ð2Þ

where for later convenience we have separated the energy
and three momentum components of the external momen-
tum q. We furthermore denote the external momentum of
the heavy quark by p with p2 ¼ m2, and we introduce
s ¼ ðpþ qÞ2. We assume that the current J does not
change the flavor of the heavy quark with mass m. For
Λ̄ðμÞjpert and μ2πðμÞjpert, one has in the rest frame of the
heavy quark [9,16]

Λ̄ðμÞjpert ¼ lim
v⃗→0

lim
m→∞

2

v⃗2

R μ
0 ωWðω; v⃗ÞdωR μ
0 Wðω; v⃗Þdω ;

μ2πðμÞjpert ¼ lim
v⃗→0

lim
m→∞

3

v⃗2

R μ
0 ω2Wðω; v⃗ÞdωR μ
0 Wðω; v⃗Þdω ; ð3Þ

where the structure functionW is given by the discontinuity
of T, W ¼ 2Im½Tðq0; q⃗Þ�. In Eq. (3) we have ω ¼
q0 − qmin

0 , v⃗ ¼ q⃗=m, and qmin
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q⃗2 þm2

p
−m ¼

mv2=2þOðv4Þ. Note that W is zero for q0 < qmin
0 .

In order to compute corrections of Oðα3sÞ to Eq. (1), one
has to consider three-loop corrections to the imaginary part
of Tðq0; q⃗Þ in Eq. (2). This requires the evaluation of real
and virtual corrections to the scattering process shown
schematically in Fig. 1(a).
More details on the derivation of Eq. (3) are provided

in Ref. [22].
Calculation.—From Eqs. (1) and (3) we learn that the

relation between the kinetic and pole mass is obtained from
the imaginary part of the structure function Wðω; v⃗Þ in the
limit v⃗ → 0. We apply the threshold expansion [23,24],
which in our situation reduces to two momentum regions:
(i) the loop momenta can be either hard (h) and scale as the
quark mass m or (ii) ultrasoft (u) and scale as y=m where
y ¼ m2 − s measures the distance to the threshold. Note
that in our case we have y < 0. When expanding the
denominators, one has to assume that both p and q scale
as m.
We generate the four-point Feynman amplitudes with

qgraf [25] and translate the output to FORM [26] notation.
We make sure that the external momenta p and q are routed
through the heavy quark line. Afterward, we expand all
loop momenta according to the rules of asymptotic expan-
sion, which leads to a decomposition of each integral into
regions in which the individual loop momenta either scale
as hard or ultrasoft. At one-loop order, there are only two
regions. At two loops, we have the regions (uu), (uh), and
(hh), and at three loops we have (uuu), (uuh), (uhh), and
(hhh). For each diagram, we have cross-checked the scaling
of the loop momenta using the program ASY [27]. Note that
the contributions where all loop momenta are hard can be
discarded since there are no imaginary parts. The mixed
regions are expected to cancel after renormalization and
decoupling of the heavy quark from the running of the
strong coupling constant. Nevertheless, we perform an
explicit calculation of the (uh), (uuh), and (uhh) regions and
use the cancellation as a cross-check. The physical result
for the quark mass relation is solely provided by the purely
ultrasoft contributions.
The starting point of our calculation are four-point

functions. However, after the various expansions, we obtain
two-point functions with external momentum p. As a
consequence, denominators become linearly dependent
and a partial fraction decomposition is needed in order
to generate linear independent sets of propagators. They
serve as input for FIRE [28] and LITERED [29], which are
used for the reduction to master integrals.
After partial fraction decomposition, we end up with

1, 2, and 14 pure ultrasoft integral families at the one-, two-
and three-loop orders, respectively. The three-loop families
have eight propagators and four irreducible numerators,

(b)(a)

FIG. 1. (a) Schematic Feynman diagram representing the
scattering of an external current, represented by wavy lines
and a heavy quark (solid line). The blob represents one-particle
irreducible quantum corrections, which we consider up to three-
loop order. (b) The most complicated master integral. Dotted lines
represent massless relativistic propagators and solid lines stand
for eikonal propagators with mass y.
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three of which contain scalar products of the loop momenta
and the external momentum q and have been introduced to
avoid an expensive tensor reduction.
After reduction to master integrals and their subsequent

minimization across all families, the amplitude can be
expressed in terms of 1, 3, and 20 ultrasoft master integrals
at the one-, two-, and three-loop orders, respectively. At one
and two loops, all of them can be expressed in terms of Γ
functions. This is also the case for 11 of the three-loop
master integrals. For eight of the remaining integrals, we
obtain analytic results for the ϵ expansion with the help of
Mellin–Barnes [24] representations. In these cases, the
residues obtained after closing the integration contour can
be summed analytically with the packages SIGMA [30] and
EVALUATEMULTISUMS [31], together with HARMONICSUMS

[32]; additionally, we obtain high-precision numerical
results and use the PSLQ [33] algorithm to reconstruct
the analytic expression. We have only encountered one
integral where a different strategy was necessary. It is
shown in graphical form in Fig. 1(b). For this integral we
have introduced a different mass scale, x, in the bottom-
middle propagator. In case this mass is zero (x ¼ 0), the
integral can be computed analytically. Thus, we construct
differential equations [34–36], apply boundary conditions

at x ¼ 0, and evaluate the solution for x ¼ 1, which
provides the desired integral. We will provide more details
on the computation of the master integrals in Ref. [22].
Let us mention that we have performed our calculation

for a general gauge parameter ξ. We expand the amplitude
up to linear order in ξ and check that ξ cancels after adding
the quark mass counterterms. Furthermore, for the external
current J we use both a vector (J ¼ Q̄γμQ) and a scalar
(J ¼ Q̄Q) current and check that the final result for the
relation between the pole and kinetic mass is the same.
However, the intermediate expressions are different. This
concerns, e.g., the renormalization of the current itself.
Whereas the vector current has a vanishing anomalous
dimension, an explicit renormalization constant is needed
for the scalar current. Furthermore, in the case of the vector
current, there is no contribution from the virtual corrections
contained in the denominator of Eq. (3) since in the static
limit the Dirac form factor vanishes and the Pauli form
factor is suppressed by q2. On the other hand, in the scalar
case there is a contribution from the finite static form factor.
Results.—The main result of our calculation is the

relation between the kinetic and the pole mass, which up
to order α3s is given by

mkin

mOS ¼ 1 −
αðnlÞs

π
CF

�
4

3

μ

mOS þ
1

2

μ2

ðmOSÞ2
�
þ
�
αðnlÞs

π

�2

CF

�
μ

mOS

�
CA

�
−
215

27
þ 2π2

9
þ 22

9
lμ

�
þ nlTF

�
64

27
−
8

9
lμ

��

þ μ2

ðmOSÞ2
�
CA

�
−
91

36
þ π2

12
þ 11

12
lμ

�
þ nlTF

�
13

18
−
1

3
lμ

���
þ
�
αðnlÞs

π

�3

CF

�
μ

mOS

�
C2
A

�
−
130867

1944

þ 511π2

162
þ 19ζ3

2
−
π4

18
þ
�
2518

81
−
22π2

27

�
lμ −

121

27
l2μ

�
þ CAnlTF

�
19453

486
−
104π2

81
− 2ζ3

þ
�
−
1654

81
þ 8π2

27

�
lμ þ

88

27
l2μ

�
þ CFnlTF

�
11

4
−
4ζ3
3

−
2

3
lμ

�
þ n2l T

2
F

�
−
1292

243
þ 8π2

81
þ 256

81
lμ −

16

27
l2μ

��

þ μ2

ðmOSÞ2
�
C2
A

�
−
96295

5184
þ 445π2

432
þ 57ζ3

16
−
π4

48
þ
�
2155

216
−
11π2

36

�
lμ −

121

72
l2μ

�
þ CAnlTF

�
13699

1296
−
23π2

54

−
3ζ3
4

þ
�
−
695

108
þ π2

9

�
lμ þ

11

9
l2μ

�
þ CFnlTF

�
29

32
−
ζ3
2
−
1

4
lμ

�
þ n2l T

2
F

�
−
209

162
þ π2

27
þ 26

27
lμ −

2

9
l2μ

���
; ð4Þ

where lμ ¼ lnð2μ=μsÞ, μ denotes the Wilsonian cut-off and
μs is the renormalization scale of the strong coupling
constant. The color factors of the SUðNCÞ gauge group
are given by CF ¼ ðN2

C − 1Þ=ð2NCÞ, CA ¼ NC, and
TF ¼ 1=2, and the strong coupling constant is defined in
the nl flavor theory, where nl denotes the number of light
quark fields. Note that in our calculation no effects of finite
charm quark masses are taken into account. The two-loop

result of Eq. (4) and the n2l term at three loops agree with
Ref. [16].
Next, we replace the pole mass on the rhs of Eq. (4) by the

MS mass using results up to three loops [19,37,38]. Also

here we use αðnlÞs as the expansion parameter. In order to
obtain compact expressions, we identify the renormalization
scales of the MS parameters αs and m̄ and furthermore
specify the color factors to QCD (NC ¼ 3). This leads to
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mkin

m̄
¼ 1þ αðnlÞs

π

�
4

3
þ lm −

16

9

μ

m̄
−
2

3

μ2

m̄2

�
þ
�
αðnlÞs

π

�2�
307

32
þ π2

3
−
ζ3
6
þ π2

9
l2 þ

509

72
lm þ 47

24
l2m − nl

�
71

144
þ π2

18

þ 13

36
lm þ 1

12
l2m

�
þ μ

m̄

�
−
860

27
þ 8π2

9
þ 88

9
lμ þ nl

�
128

81
−
16

27
lμ

��
þ μ2

m̄2

�
−
83

9
þ π2

3
þ 2

3
lm þ 11

3
lμ

þ nl

�
13

27
−
2

9
lμ

���
þ
�
αðnlÞs

π

�3�
8462917

93312
þ 652841π2

38880
þ 58ζ3

27
−
695π4

7776
−
220a4
27

−
1439π2ζ3

432
þ 1975ζ5

216

−
575π2

162
l2 −

22π2

81
l22 −

55

162
l42 þ lm

�
93391

1296
þ 13π2

6
−
23ζ3
12

þ 13π2

18
l2

�
þ 21715

864
l2m þ 1861

432
l3m þ nl

�
−
231847

23328

−
991π2

648
−
241ζ3
72

þ 61π4

1944
þ 8a4

27
−
11π2

81
l2 þ

2π2

81
l22 þ

1

81
l42 − lm

�
5171

648
þ 17π2

36
þ 7ζ3

9
þ π2

27
l2

�
−
385

144
l2m

−
43

108
l3m

�
þ n2l

�
2353

23328
þ 13π2

324
þ 7ζ3

54
þ lm

�
89

648
þ π2

54

�
þ 13

216
l2m þ 1

108
l3m

�
þ μ

m̄

�
−
130867

162
þ 1022π2

27

þ 114ζ3 −
2π4

3
þ lμ

�
10072

27
−
88π2

9

�
−
484

9
l2μ þ nl

�
20047

243
−
208π2

81
−
140ζ3
27

þ lμ

�
−
3356

81
þ 16π2

27

�

þ 176

27
l2μ

�
þ n2l

�
−
1292

729
þ 8π2

243
þ 256

243
lμ −

16

81
l2μ

��
þ μ2

m̄2

�
−
22055

108
þ 437π2

36
þ 1535ζ3

36
−
π4

4
þ 2π2

27
l2

þ lm

�
1409

108
−
π2

3

�
þ lμ

�
689

6
−
11π2

3

�
−
11

3
lmlμ þ

23

36
l2m −

121

6
l2μ þ nl

�
1699

81
−
8π2

9
−
35ζ3
18

−
13

18
lm

þ lμ

�
−
691

54
þ 2π2

9

�
þ 2

9
lmlμ −

1

18
l2m þ 22

9
l2μ

�
þ n2l

�
−
209

486
þ π2

81
þ 26

81
lμ −

2

27
l2μ

���
; ð5Þ

with m̄ ¼ m̄ðμsÞ and

lm ¼ ln
μ2s
m̄2

; l2 ¼ ln 2; a4 ¼ Li4

�
1

2

�
: ð6Þ

We are now in the position to specify our results to the
charm and bottom quark systems and check the perturba-
tive stability of the quark mass relations.
The input values for our numerical analysis are

αð5Þs ðMZÞ ¼ 0.1179 [39], m̄cð3 GeVÞ ¼ 0.993 GeV [40]
and m̄bðm̄bÞ ¼ 4.163 GeV [41]. We use RUNDEC [42]
for the running of the MS parameters and the decoupling
of heavy particles. For the Wilsonian cut-off we
choose μ ¼ 1 GeV for bottom [6] and μ ¼ 0.5 GeV for
charm [43].
Let us start with the charm quark where we have

nl ¼ 3. We aim for a relation between mkin
c and m̄cðμsÞ

for different choices of μs. Often numerical values for
m̄cðm̄cÞ are provided. However, this choice suffers from
small renormalization scales of the order 1 GeV. A more
appropriate choice is thus m̄cð2 GeVÞ or m̄cð3 GeVÞ. For
the three choices we obtain the following perturbative
expansions

mkin
c ¼ 993þ 191þ 100þ 52 MeV ¼ 1336 MeV;

mkin
c ¼ 1099þ 163þ 76þ 34 MeV ¼ 1372 MeV;

mkin
c ¼ 1279þ 84þ 30þ 11 MeV ¼ 1404 MeV; ð7Þ

where from top to bottom μs ¼ 3 GeV, 2 GeV, and m̄c have
been chosen. Within each equation the four numbers after
the first equality sign refer to the tree-level results and the
one-, two-, and three-loop corrections. One observes that
for each choice of μs the perturbative expansion behaves
reasonably. The three-loop terms range from 11 MeV to
52MeVand roughly cover the splitting of the final numbers
for mkin

c ð0.5 GeVÞ.
In the case of the bottom quark, we follow Ref. [21] and

adapt two different schemes for the charm quark: we either
consider the charm quark as decoupled and set nl ¼ 3, or
we set nl ¼ 4, which corresponds to mc ¼ 0. (In the latter
case one could include mc=mb corrections, which we
postpone to a future analysis [22].)
Using m̄bðm̄bÞ as input we obtain the following results

for the kinetic mass

mkin
b ¼ 4163þ 248þ 81þ 30 MeV ¼ 4521 MeV;

mkin
b ¼ 4163þ 259þ 77þ 25 MeV ¼ 4523 MeV; ð8Þ
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where the top and bottom line correspond to nl ¼ 3 and
nl ¼ 4, respectively. In both cases we observe a good
convergence of the perturbative series: the coefficients
reduce by factors between ≈2.5 and ≈3.5 when including
higher orders. We estimate the unknown four-loop correc-
tions and contributions from higher dimensional operators,
which scale as αsμ

3=m3
b ∼ α4s , by 50% of the three-loop

corrections and assign an uncertainty of 15 MeV and
12 MeV for nl ¼ 3 and nl ¼ 4, respectively. Note that
our m̄b–mkin

b scheme-conversion uncertainties are now
smaller than the error of mkin

b as determined by global
fits: mkin

b ð1 GeVÞ ¼ 4554� 18 MeV [1].
For the computation of m̄bðm̄bÞ from the kinetic mass,

we proceed as follows. We first use the inverted version of
Eq. (5) to compute the MS bottom quark mass at the scale
μs ¼ mkin

b . Afterwards, we use the QCD renormalization
group equations at five-loop accuracy [44–50] as imple-
mented in RUNDEC [42] to run to μs ¼ m̄b. In order to
demonstrate the perturbative series, we choose mkin

b from
Eq. (8) and obtain for nl ¼ 3 and nl ¼ 4

m̄bðmkin
b Þ ¼ 4521 − 273 − 101 − 39 MeV;

m̄bðmkin
b Þ ¼ 4523 − 286 − 98 − 34 MeV; ð9Þ

with similar convergence properties as in Eq. (8). Thus, we
estimate the uncertainty from unknown higher order
corrections as �18 MeV and �17 MeV, respectively. In
an alternative approach, one can estimate the uncertainty
from the variation of the intermediate scale μs which leads
to similar uncertainty estimates.
Finally, we present simple formulas that can be used to

convert the scale-invariant bottom quark mass to the kinetic
scheme or vice versa using the preferred input values for the
mass and strong coupling constant. We have

m̄bðm̄bÞ
MeV

¼ 4163þ ΔðnlÞ
kin f13; 13g − Δαsf7; 7g � f18; 17g;

mkin
b

MeV
¼ 4522þ ΔMSf18; 18g þ Δαsf8; 8g � f15; 12g;

ð10Þ

where the first (second) number in the curly brackets
corresponds tonl¼3 (nl ¼ 4). Furthermore, we have defined

Δð3Þ
kin¼ðmkin

b =MeV−4518Þ=15,Δð4Þ
kin¼ðmkin

b =MeV−4520Þ=15,
ΔMS¼ðm̄bðm̄bÞ=MeV−4163Þ=16, andΔαs¼ðαs−0.1179Þ=
0.001.
Conclusions.—The main purpose of this Letter is the

improvement of the precision in the conversion relation
between the heavy quark kinetic and MS masses. This goal
is reached by computing the relation between the kinetic
and pole mass to three-loop order; previously only two-
loop corrections, supplemented by large-β0 terms, were
available. The main results of this paper can be found in

Eqs. (4) and (5). Using a conservative uncertainty estimate,
the new corrections reduce the uncertainty in transforma-
tion formulas by about a factor of 2. Our findings constitute
important ingredients in the extraction of jVcbj at the
percent level or even below.
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