
Timing Sensitive Dependency Analysis and its Application to Software

Security

Zur Erlangung des akademischen Grades eines

DOKTORS DER INGENIEURWISSENSCHAFTEN

von der KIT-Fakultät für Informatik des
Karlsruher Instituts für Technologie (KIT)

genehmigte

DISSERTATION

von

Martin Hecker
aus Hannover

Tag der mündlichen Prüfung: 20.07.2020

1. Referent: Prof. Dr.-Ing. Gregor Snelting

2. Referent: Prof. Dr. Markus Müller-Olm

Zusammenfassung

Ich präsentiere neue Verfahren zur statischen Analyse von
Ausführungszeit-sensitiver Informationsflusskontrolle in Softwaresys-
temen. Ich wende diese Verfahren an zur Analyse nebenläufiger Java
Programme, sowie zur Analyse von Ausführungszeit-Seitenkanälen in
Implementierungen kryptographischer Primitive.

Methoden der Informationsflusskontrolle zielen darauf ab, Fluss von
Informationen (z.B.: zwischen verschiedenen externen Schnittstel-
len einer Software-Komponente) anhand expliziter Richtlinien einzu-
schränken. Solche Methoden können daher zur Einhaltung sowohl
von Vertraulichkeit als auch Integrität eingesetzt werden. Der Ziel kor-
rekter statischer Programmanalysen in diesem Umfeld ist der Nach-
weis, dass in allen Ausführungen eines gegebenen Programms die zu-
gehörigen Richtlinien eingehalten werden. Ein solcher Nachweis er-
fordert ein Sicherheitskriterium, welches formalisiert, unter welchen
Bedingungen dies der Fall ist.

Jedem formalen Sicherheitskriterium entspricht implizit ein
Programm- und Angreifermodell. Einfachste Nichtinterferenz-Kriterien
beschreiben beispielsweise nur nicht-interaktive Programme. Dies
sind Programme die nur bei Beginn und Ende der Ausführung Ein-
und Ausgaben erlauben. Im zugehörigen Angreifer-Modell kennt der
Angreifer das Programm, aber beobachtet nur bestimmte (öffentliche)
Aus- und Eingaben oder stellt diese bereit. Ein Programm ist nicht-
interferent, wenn der Angreifer aus seinen Beobachtungen keinerlei
Rückschlüsse auf geheime Aus- und Eingaben terminierender Aus-
führungen machen kann. Aus nicht-terminierenden Ausführungen
hingegen sind dem Angreifer in diesem Modell Schlussfolgerungen
auf geheime Eingaben erlaubt.

i

Zusammenfassung

Seitenkanäle entstehen, wenn einem Angreifer aus Beobachtungen rea-
ler Systeme Rückschlüsse auf vertrauliche Informationen ziehen kann,
welche im formalen Modell unmöglich sind. Typische Seitenkanäle
(also: in vielen formalen Sicherheitskriterien unmodelliert) sind neben
Nichttermination beispielsweise auch Energieverbrauch und die Aus-
führungszeit von Programmen. Hängt diese von geheimen Eingaben
ab, so kann ein Angreifer aus der beobachteten Ausführungszeit auf
die Eingabe (z.B.: auf den Wert einzelner geheimer Parameter) schlie-
ßen.

In meiner Dissertation präsentiere ich neue Abhängigkeitsanalysen,
die auch Nichtterminations- und Ausführungszeitkanäle berücksich-
tigen. In Hinblick auf Nichtterminationskanäle stelle ich neue Verfah-
ren zur Berechnung von Programm-Abhängigkeiten vor. Hierzu ent-
wickle ich ein vereinheitlichendes Rahmenwerk, in welchem sowohl
Nichttermination-sensitive als auch Nichttermination-insensitive Ab-
hängigkeiten aus zueinander dualen Postdominanz-Begriffen resultie-
ren. Für Ausführungszeitkanäle entwickle ich neue Abhängigkeitsbe-
griffe und dazugehörige Verfahren zu deren Berechnung. In zwei An-
wendungen untermauere ich die These:

Ausführungszeit-sensitive Abhängigkeiten ermöglichen korrekte statische
Informationsfluss-Analyse unter Berücksichtigung von Ausführungszeitka-
nälen.

Basierend auf Ausführungszeit-sensitiven Abhängigkeiten entwer-
fe ich hierfür neue Analysen für nebenläufige Programme.
Ausführungszeit-sensitive Abhängigkeiten sind dort selbst für
Ausführungszeit-insensitive Angreifermodelle relevant, da dort inter-
ne Ausführungszeitkanäle zwischen unterschiedlichen Ausführungs-
fäden extern beobachtbar sein können. Meine Implementierung für
nebenläufige Java Programme basiert auf auf dem Programmanalyse-
System JOANA.

Außerdem präsentiere ich neue Analysen für Ausführungszeitkanä-
le aufgrund mikro-architektureller Abhängigkeiten. Exemplarisch unter-
suche ich Implementierungen von AES256 Blockverschlüsselung. Bei

ii

Zusammenfassung

einigen Implementierungen führen Daten-Caches dazu, dass die Aus-
führungszeit abhängt von Schlüssel und Geheimtext, wodurch diese
aus der Ausführungszeit inferierbar sind. Für andere Implementie-
rungen weist meine automatische statische Analyse (unter Annahme
einer einfachen konkreten Cache-Mikroarchitektur) die Abwesenheit
solcher Kanäle nach.

iii

Abstract

I present new methods for the static analysis of timing sensitive infor-
mation flow control in software systems. I apply these methods in the
analysis of concurrent Java programs, as well as the analysis of timing
side-channels in implementations of cryptographic primitives.

Methods for information flow control aim to control the flow of in-
formation (e.g.: between different external interfaces of a software
component) with respect to explicit flow policies. Such methods can
protect confidentiality as well as integrity of information. In this set-
ting, the goal of sound static program analysis is to proof that in all
executions of a given program, a corresponding flow policy is re-
spected. Such a proof requires a security criterion which formalizes
under which condition this is indeed the case.

Every formal security criterion implicitly corresponds to a program
and attacker model. Simple non-interference criteria, for example, ap-
ply only to non-interactive programs. These are programs which al-
low input and output only at the beginning and the end of the execu-
tion. In the corresponding attacker model, the attacker does know the
program, but observes only certain (public) output and input, or pro-
vides those. A program is non-interferent if from these observations
the attacker cannot infer any properties of secret input and output
of terminating executions. From non-terminating executions in this
model, the attacker is allowed to infer properties of secret input.

Side channels occur if an attacker can infer properties of secret in-
formation from observations of real systems which are impossible to
infer in the formal model. Typical side channels include (i.e., typically
unmodeled are): nontermination as well as energy consumption and

v

Abstract

timing channels: By observing the program’s execution time, the at-
tacker (partially or completely) infers the program’s secret input on
which the execution time depends.

In my dissertation I present new dependency analysis sensitive to both
nontermination and timing channels. With respect to nontermination,
I introduce new methods for the computation of control dependen-
cies. For this purpose, I develop a generalized framework in which
nontermination-sensitive as well as nontermination-insensitive control
dependencies result from (mutually dual) postdominance notions. For
timing channels, I develop new notions of control dependencies, and
corresponding methods for their computation. In two applications, I
substantiate my thesis:

Timing sensitive control dependencies facilitate sound static information flow
control in the presence of timing channels.

For this purpose, I develop new analysis for concurrent programs,
based on timing sensitive control dependencies. In this setting, timing
sensitive control dependencies are relevant even for timing insensitive
attacker models, since there internal timing channels between concur-
rent threads of execution may become observable externally. My im-
plementation for concurrent Java programs is based on the JOANA
program analysis framework.

I also present new analysis for timing channels caused by micro-
architectural dependencies. I illustrate these by a study of AES256
block cipher implementations. For some implementations, data caches
cause the execution time to depend on key and plaintext, making them
inferrable from the execution time. For other implementations, my
automatic static analysis proves (assuming a simple concrete cache
micro-architecture) the absence of such timing channels.

vi

Contents

Zusammenfassung . i

Abstract . v

Symbols . xiii

1 Introduction . 1
1.1 Contributions . 4

2 Methodology . 7

I Dependency Analysis in Arbitrary Graphs 11

3 Control Dependence in Arbitrary Graphs 13
3.1 Generalized Control Dependence 15
3.2 An Algorithm for Generalized Control Dependence . . 18
3.3 Related Work . 29

4 Nontermination (In-)Sensitive Control Dependence 31
4.1 Nontermination (In-)Sensitive Control Dependence in

Arbitrary Graphs . 33

5 Postdominator Pseudoforests 39
5.1 Fixed-Point Characterizations for Postdominance . . . 41
5.2 Nontermination Sensitive Pseudoforests 44
5.3 Nontermination Insensitive Pseudoforests 51
5.4 Reduction to Postdominance Trees 59

vii

Contents

6 Order Dependence . 63
6.1 Decisive Order Dependence 66
6.2 Nontermination Sensitive Order Dependence 72
6.3 Soundness of Nontermination Sensitive Slices 78
6.4 Weak Order Dependence 85
6.5 Soundness of Nontermination Insensitive Slices 89
6.6 A Trace-Based Notion of Infinite Delay 92
6.7 Nontermination Insensitive Order Dependence 97
6.8 Soundness of Nontermination Insensitive Order Depen-

dence . 113

7 Slicing . 117
7.1 Nontermination Insensitive Slicing 121
7.2 Nontermination Sensitive Slicing 136
7.3 Weak Order Control Slices 138
7.4 Weak Control Closures 139
7.5 The Role of →nticd for Nontermination Insensitive Slices 141

8 Performance Benchmarks 143
8.1 Nontermination Sensitive Postdominance 146
8.2 Nontermination Insensitive Postdominance 148
8.3 Generalized Postdominance Frontiers 150
8.4 Control Slices . 152
8.5 Nontermination Insensitive Order Dependence 154
8.6 Nontermination Insensitive Slices 156
8.7 Timing Sensitive Algorithms 158

II Timing Sensitive Dependency Analysis 161

9 Timing Sensitive Control Dependence 163
9.1 Timing Sensitive Control Dependence 167
9.2 Timing Sensitive Post Postdominance Frontiers 172
9.3 Transitive Timing Sensitive Postdominance 179
9.4 Algorithms for Timing Sensitive Control Dependence . 188

viii

Contents

9.5 Soundness and Minimality of Timing Sensitive Control
Dependence . 197

9.6 Timing Sensitive Control Dependence in Graphs with
Unique Exit Node . 198

10 Timing Dependence . 201
10.1 Timing Dependence . 204
10.2 Computation of Timing Dependence 206

11 Timing Stratification . 207
11.1 Timing Sensitive Control Dependence for Arbitrary

CFG with Cost Model 210
11.2 Timing-Stratification . 213
11.3 An Algorithm for Timing Stratification 217

III Timing Sensitive Software Security 221

12 Transforming Out Timing Leaks in Arbitrary CFG 223
12.1 An Naive Algorithm . 227
12.2 A More Precise Algorithm 229

13 Micro-Architectural Dependencies 233
13.1 Introduction . 235
13.2 Control Flow Graphs . 238
13.3 Micro-Architectural Dependencies 244
13.4 Limitations of Micro-Architectural Dependencies . . . 256
13.5 Timing Dependence for Micro-Architectural Dependen-

cies . 258
13.6 Arrays . 263

14 Cache Timing Attacks on AES256 267
14.1 AES256 Encryption . 268
14.2 Pre-Caching . 272
14.3 Constant Time S-Box Substitution 274
14.4 Validation . 276

ix

Contents

15 Approximate Cache Dependencies 281
15.1 Data Dependence . 282
15.2 Local Cache-Cache Dependencies 283
15.3 Local State-Cache Dependence 288
15.4 Transitive Cache Dependencies 291
15.5 Approximate Cache Dependencies 293
15.6 Improving the Precision 295
15.7 Approximation in AES256 Implementations 296
15.8 Related Work . 300

16 Timing Sensitivity in Concurrent Programs 303
16.1 Probabilistic Noninterference 305
16.2 Observability of Internal Timing Leaks 306
16.3 The RLSOD Criterion . 308
16.4 A Statistical Test for Probabilistic Noninterference . . . 317
16.5 Imprecision of the RLSOD criterion 325
16.6 Timing Sensitivity for Probabilistic Noninterference . . 331

17 Timing Sensitivity with JOANA 337
17.1 Precision of the TIMING criterion for Java 339
17.2 Scalability of the TIMING criterion for Java 341

18 Summary and Future Work 343

A Proofs . 349
A.1 Nontermination (In-)Sensitive Control Dependence in

Arbitrary Graphs . 350
A.2 Postdominator Pseudoforests 354
A.3 Order Dependence . 358

B Nontermination (In-)Sensitive Control Dependence 361
B.1 Analysis of previous Algorithms 362
B.2 Duality of Nontermination (In-)Sensitivity 373
B.3 New Algorithms . 379

C A Slicing Algorithm using C-Edges 385

x

Contents

D Algorithm Variants . 395
D.1 Another Algorithm for →nticd 400
D.2 Efficient lca< via Postorder Numbers 402

E Generalizations for CFG with Timing Cost Model 409

xi

Symbols
What’s all this? Looks like Darth Vader’s bathroom.

(Michal Knight — Knight Rider, Knight of the Phoenix)

New contributions of this thesis are highlighted.

Part I

nontermination sensitive p. p. nontermination insensitive
postdominance wMAX 36 36 wSINK postdominance
..pseudo-forest <MAX <SINK ..pseudo-forest

control dependence →ntscd 34 34 →nticd control dependence
order dependence →ntsod 72 99 →ntiod order dependence

“nearest dominator” →ntind 122 136 →ntsnd “nearest dominator”
(generalized) (generalized)

p.
standard postdomimance wPOST 17

standard control dependence →cd 17
decisive order dependence →dod 66

weak order dependence →wod 85

generalized 1-postdominance 1-w 19
generalized immediate postdominators ipdomw (n) 19

generalized postdominance frontier PDFw (n) 21

least common ancestor lca< ((, n) , m) 46
backward slice (→a ·∪ →b)∗ 74

generic graph transformations GM 6→, G→
∗M, . . . 75

input equivalence (unlabeled CFG) i ∼S i′ 80
trace equivalence (unlabeled CFG) t ∼S t′ 80

next-observable obsS (n) 89
observation equivalance (unlabeled CFG) i ∼ω

TM
i′ 94

weakly deciding nodes WDG (M) 139
weak control closure WCCG (M) 139

xiii

Symbols

Part II

p.
timing sensitive postdominance wTIME[FIRST] 167

timing sensitive postdominance (transitive) wTIME 179
..pseudo-forest <TIME 179

timing sensitive control dependence →tscd 168
“fuel available” Fn 184

timing dependence →td 205

Part III

p.
timing dependence (in concurrent CFG) →timing 331

macro-architectural state σM 238
micro-architectural state σµ 239

micro-architectural dependence →µd 254
approximate cache micro-architectural dependence →#

µd
293

Notation
For any binary relation R, I write R+ for its transitive closure, and R∗

for its transitive reflexive closure. Whenever I denote a binary relation
by a symbol similar to v, I write w for its inverse, and @ for the
relation v \{(x, x)}. Similarly for the symbol ≤.

xiv

static int runs = 2000000;
static void main() {
h = input();
for (int i=31; i>0; i−−) {
int b = h & (1 << 30);
A a = new A();
a.start();
if (b != 0) {
delay(runs);
}
x = 1;
h = h << 1;
a.join();
print(x);
}
}

class A extends Thread {
public void run() {
delay(runs/2);
x = 0;
}
}

static int delay(int t) {
int n = 1;
for (int k=1; k < 100; k++) {
for (int j=1; j < t; j++) {
n = n * k;
}
}
return n;
}

(a) Internal Timing Channel

...
for (int i=0; i<16; i++) {
state[i] = sbox[state[i]]
}
...

(b) External Timing Channel

1 Introduction

Consider the first program code example above. It reliably prints1

the input value obtained from h = input(). It is propagated due to
the relative execution time of the main thread, and the thread A started
in the main loop. The execution time of each iteration of the main
loop depends on the input, and the program exhibits an internal tim-
ing channel. The second example is part of an implementation of a
AES256 block cipher. If run on modern CPUs with data caches, and
given enough observations of the execution time of encrypt operations,
an attacker can infer the AES256 key (e.g., [Ber05; BM06]). The imple-
mentation exhibits an external timing channel.

1 for example, using OpenJDK11 JVM, on a Intel Xeon Gold 6230 CPU

1

1 Introduction

Timing channel attacks on software systems exploit that the execution
time of some program part depends on secret input. They occur in
numerous attack scenarios. For example:

• The attacker passively observes the execution time of a user-
provided program on the users computer. The attacker is either
a legitimate client of the program, or monitors the programs
network traffic. The attacker may be able to provoke multiple
computation with the same secret input, which allows him to
take multiple samples of the computation time. This scenario
includes several attacks on cryptographic protocols and imple-
mentations (e.g., [BB05; Ber05]), such as that shown in the sec-
ond example.

• The attacker provides a program to the user, who tries to au-
tomatically verify that the program leaks no secret information
back to the attacker. The attacker may have included code sim-
ilar to the first example. Alternatively, the user wants to verify
that a program provided by himself does not by leak secret infor-
mation. The verification can be done either by the user himself,
or a trusted third party. This scenario includes, for example, ev-
ery World Wide Web site that includes JavaScript or WebAssem-
bly code, or app stores for mobile devices (e.g., [Lor+14]).

• The attackers and the users program run on shared hardware.
The attacker is able to observe the users computation through
side channels arising from the use of shared resources such as
data caches. This scenario includes the “Meltdown” and “Spec-
tre” attacks ([Lip+18; Koc+19]).

In the first two scenarios, timing attacks can in principle be detected
by analysis of a single program, while in the third scenario, the inter-
action of two programs on the shared hardware needs to be taken into
consideration. There, the attacker measures the execution time of his
program.

2

Information flow control aims to detect and prevent illegitimate flow
of information, as defined by a formal security property. Numer-
ous different security properties exist, for example: standard non-
interference (for batch execution of sequential programs), strategy non-
interference (for interactive programs), possibilistic and probabilistic
non-interference (for concurrent programs).

Information flow control methods can either be purely static or dy-
namic. Depending on the program model (abstract syntax tree or
control flow graph), static methods are typically based on security
type-systems, or program dependency graphs [FOW87; HS09]. Pro-
gram dependency graphs include some form of data dependencies and
control dependencies. Data dependencies capture the dependencies of
the data-state on previous data-state, while control dependencies cap-
ture the dependence of the control state on (choices made at) previous
control state. Hence data and control dependencies account for explicit
and implicit channels, but not for timing channels.

All useful information flow control security properties are proper hy-
perproperties[CS10], which means that their violation cannot be de-
tected purely dynamically (i.e.: by monitoring of one execution of the
problem). Therefore, even dynamic information flow control must in-
clude some form of static analysis. Control dependence can be applied
here, as well [Jus+11; XZ07].

In this thesis, I propose a new notion of timing sensitive control de-
pendence. I demonstrate by that this new notion can be used for static
timing sensitive information flow control in the first two attack scenar-
ios, and programs like those in the two examples. For the third attack
scenario, I suspect that timing sensitive control dependence could in
principle be relevant as well, but make no attempt to demonstrate this.

3

1 Introduction

1.1 Contributions

My central contributions (in Part II of this thesis) is the new notion of
timing sensitive control dependence (Chapter 9), and the related notion of
timing dependence (Chapter 10). Just as control and data dependencies
represent dependencies for data and control state, timing dependen-
cies represent dependencies in the timing state of a configuration, i.e.:
the part of an configuration that models how much time has passed
during the programs execution. In Chapter 11, I introduce the notion
of timing cost model that is implicit in Chapter 9 and Chapter 10. I
also introduce the technical notion of timing stratification, which sheds
light on the relation between timing sensitive control dependence and
nontermination sensitive control dependence.

In Part III of this thesis I demonstrate that timing dependence and
timing sensitive control dependence enable sound static information
flow analysis for internal timing channels (for concurrent programs,
in Chapter 16) and (external) timing channels (due to the micro-
architecture of modern CPUs, in Chapter 13). The two central contri-
butions of this part are a new notion of micro-architectural dependen-
cies (Section 13.6), and a new timing dependence based criterion for
probabilistic noninterference (Section 16.6). I apply micro-architectural
dependencies in a case study on cache-based timing attacks in im-
plementations of the AES256 block cipher (Chapter 14). At the ex-
pense of some precision, I develop an efficient approximation to micro-
architectural dependencies for cache micro-architectures in Chapter 15.
I also explain in Chapter 12 how under simple timing cost models,
timing leaks can sometimes be automatically “transformed out”.

I derive algorithms for the computation of timing sensitive control
dependence and timing dependence from algorithms for nontermina-
tion sensitive control dependence in arbitrary graphs. My algorithms
for micro-architectural dependence on the other hand rely on algo-
rithms for nontermination insensitive control dependence and slices.
In that light, the central contributions of Part I of thesis then simply
are new algorithms (Chapter 3, Chapter 5) for nontermination sensi-

4

1.1 Contributions

tive and insensitive control dependence (Chapter 4), as well as new
algorithms for corresponding slices (Chapter 7). In fact if one is inter-
ested only in timing sensitive information flow control, one may want
to skip Part I on first reading of this thesis, and trust that indeed: Al-
gorithms for nontermination sensitive and insensitive control depen-
dence in arbitrary graphs can be obtained by suitable generalizations
of algorithms for standard control dependence in graphs with unique
exit node (Section 3.1). But I also want to highlight the following
other contributions from Part I, which I find to be of interest inde-
pendent from their application to timing sensitive analysis: 1. A new
fixed-point characterizations of nontermination sensitive and insensi-
tive postdominance (Section 5.1). 2. Two new notions for nontermi-
nation sensitive and insensitive order dependence (Chapter 6). 3. Two
new notions of soundness for nontermination insensitive slicing (Sec-
tion 6.5, Section 6.6). 4. Reductions of several different notions of
nontermination insensitive slicing to slices from nontermination in-
sensitive control dependence (Section 7.5).

5

2 Methodology

The first principle is that you must not fool yourself —
and you are the easiest person to fool. So you have to
be very careful about that. And after you’ve not fooled
yourself, it’s easy not to fool other scientists. You just
have to be honest in a conventional way after that.

(Richard P. Feynman — Cargo Cult Science)

In this thesis, I claim numerous new results (e.g., soundness and some-
times minimality) for various forms of program dependencies. The
conventional method to support such claims is by mathematical proof,
which can range from offhand sketches to fully formalize and mechan-
ically checked proof scripts for systems like Isabelle/HOL ([NWP02]),
Coq ([Tea17]) or Lean ([Mou+15]). In this thesis, I provide semi-formal
proofs for some, but by no means for all new results. For most other
results, I gathered evidence by performing extensive random testing of
the claimed result. Specifically, for such results I

• implemented all involved predicates and algorithms in the pure
functional programming language Haskell,

• used a randomized test data generator to generate inputs, and

• verified the claimed result for a large number of random inputs.

For example, Observation 5.3.7 involves one algorithm and a relation
wSINK, and reads:

7

2 Methodology

Let G be any CFG. Then Algorithm 6 terminates with a result <SINK s.t.
>SINK is a transitive reduction of wSINK.

In order to randomly test this observation, I use a rather inefficient
“reference” implementation of the relation wSINK to check the more
efficient to Algorithm 6. The “input” graphs G are obtained from the
randomized graph generator for the Haskell Functional Graph Library
([EM17; Mil17; Erw01]). I then test the observation on random graphs
of size up to 100 nodes, by running the random tests for several days.
Here, one million of such graphs can tested in approximately one hour
on a standard desktop PC.

In this example I cannot use a naive “reference” implementation of
the relation wSINK. In fact, a direct implementation of its definition
would require me to check infinitely many paths in input graphs G.
Instead I use a fixed point characterization of wSINK (Theorem 5.1.2)
which can be naively implemented in Haskell. While this reference
implementation is effective, it is not very efficient for larger graphs
(e.g.: larger than 100 nodes). For example, it would take me at least
16 hours to check this observation for one million random graphs of
size up to 500 nodes.

For every Observation in this thesis, I provide random test properties
in the Haskell QuickCheck framework ([CH02]). For example, the
property for Observation 5.3.7 reads1

observation_5_3_7 = testProperty "isinkdomOf^* == sinkdomOfGfp" $
\(ARBITRARY(g)) −>

toSuccMap $ trc $ (fromSuccMap $ PDOM.isinkdomOf g)
== PDOM.sinkdomOfGfp g

All properties are available in a ready-to-run virtual machine
image[Hec20]. They can be found in the Haskell module
Program.Properties.DissObservations.

1 up to renaming of variables, and type annotations

8

Ideally, of course, every observation would be supported not only by
evidence from randomized tests, but by formal proofs. In fact for
some key results of Part I, proofs in the Isabelle/HOL proof assistant
are available due to ongoing work by Simon Bischof[Bis19].

9

Part I

Dependency Analysis in
Arbitrary Graphs

Choice. The problem is: choice.

(Neo, The Matrix Reloaded (2003),
The Wachowskis)

11

3 Control Dependence in Arbitrary
Graphs

I am never forget the day I first meet the great Lobachevsky. In one
word he told me secret of success in mathematics: Plagiarize!

Let no one else’s work evade your eyes
Remember why the good Lord made your eyes
So don’t shade your eyes
But plagiarize, plagiarize, plagiarize

Only be sure always to call it please “research”

(Tom Lehrer — Lobachevsky)

My overall strategy to obtain definitions and algorithms for time sen-
sitive control dependence is as follows:

1. Generalize existing algorithms for standard (nontermination in-
sensitive) control dependence such that they become applicable
also to nontermination sensitive control dependence.

2. Define timing sensitive control dependence as modification of
nontermination sensitive control dependence. Then modify the
generalized algorithms for nontermination sensitive control de-
pendence such that they become applicable also to timing sensi-
tive control dependence.

In principle, I could have tried to follow this strategy under the cus-
tomary assumption that (control flow) graphs always come with a
unique exit node. Instead I chose to drop this assumption, and de-
velop generalizations that apply to arbitrary graphs. I do this not only
out of theoretical curiosity, since this investment pays off at the latest
in Chapter 13, in which I will utilize control dependence for certain
graphs (derived from control flow graphs) that do not have unique exit
nodes, even if the control flow graphs they derive from do have a
unique exit node.

13

3 Control Dependence in Arbitrary Graphs

In Section 3.1 of this chapter, I define the framework of generalized
control dependence for arbitrary graphs, of which standard control
dependence is an instantiation. Then in Section 3.2, I develop a new
algorithm for the computation of generalized control dependence. I
do so by generalizing the standard approach from [Cyt+91].

14

3.1 Generalized Control Dependence

3.1 Generalized Control Dependence

For the purpose of the first two parts of this thesis, a control flow graph
is any directed, unlabeled graph. Standard definitions and algorithm
for control dependence require the existence of unique exit-nodes, but
the new generalized definitions introduced in this chapter do not.

Definition 3.1.1 (Control Flow Graph). A pair G = (N, E) of a finite
set N of nodes, and a set E ⊆ N × N of directed edges is called a
control flow graph. I write

• n→G m whenever (n, m) ∈ E, and sometimes omit the subscript
G when it is clear from the context: n→ m.

A node ne ∈ N is called the unique entry node of G whenever it is the
only in N such that

• it is an entry node, i.e.: ne has no incoming edge in G, and

• every node is reachable from ne, i.e.: ∀m ∈ N. ne →∗ m

Similarly, a node nx ∈ N is called the unique exit node of G whenever
it is the only in N such that

• it is an exit node, i.e.: nx has no outgoing edge in G, and

• nx is reachable from every node, i.e.: ∀m ∈ N. m→∗ nx

A path π = n1, . . . , nk, . . . is a (possibly empty or infinite) sequence
of nodes ni ∈ N such that (ni, ni+1) ∈ E for all ni, ni+1 ∈ π. Given a
finite path π1 = n1, . . . , nk and a path π2 = m1 . . ., I write π1, π2 for

• the path n1, . . . , nk, m1, . . . if neither π1 nor π2 is empty, and
(nk, m1) ∈ E

• the path π2 if π1 is empty

• the path π1 if π2 is empty

15

3 Control Dependence in Arbitrary Graphs

A finite path π = n0, . . . , nk is said to have length k. A finite path π of
length k is said to be between n and m if n = n0 and m = nk. In this

case, I write n π→k
m, and sometimes omit k. With nΠm I denote the

set of all (finite) paths between n and m.

Intuitively, a node n (immediately) controls whether a node m is exe-
cuted, if a (control flow) choice made at n — i.e.: the choice at which
successor nl of some choice node n to continue — can force control
flow to “eventually” reach m, while a different choice (to continue at
some other successor nr of n) does not force control flow to eventually
reach m.

This intuitive characterization is ambiguous: what exactly does it
mean for control flow at nl to be forced to “eventually” reach m?
Different realization of this concept will lead to different control de-
pendence notion. Formally, control dependence is parameterized by a
binary relation w on nodes that specifies a notion of eventuality.

Definition 3.1.2 (w-Control Dependence). Let G = (N, E) be a CFG,
and w ⊆ N × N any binary relation on nodes1 (where m w n is
meant to be read: any path from n “eventually” reaches m, or: m
“postdominates” n). Then m is said to be w-control dependent on n
in G iff there exist nodes nl and nr such that

• n→ nl and n→ nr,

• m w nl , and

• ¬ m w nr

One contribution of this thesis is a new timing sensitive instantiation
of w, which I will introduce in Section 9.1. For now, I will review the
instantiation of w that leads to standard control dependence.

Given a graph G with unique exit node nx, it is natural to say that any
path “eventually” reaches nx. For arbitrary nodes m, it is then equally

1 more formally: a function that maps a CFG G to such a relation w

16

3.1 Generalized Control Dependence

natural to say that any path from n reaches m if m postdominates n
(w.r.t the unique exit node nx), i.e.: if m occurs on every (necessarily
finite) path between n and nx:

Definition 3.1.3 (Standard Postdominance). Let G be a CFG with
unique exit node nx. Then m (standard) postdominates n, and I write
m wPOST n, iff all paths in G from n to nx contain m, i.e.: iff

∀π ∈ nΠnx . m ∈ π

Also, for standard control dependence (i.e.: wPOST-control depen-
dence) I just write:

n→cd m

Standard control dependence n→cd m then holds iff there exist suc-
cessors nl and nr of n such that

• m wPOST nl (i.e.: m standard postdominates n), and

• ¬ m wPOST nr

Remark 3.1.1. This definition of standard control dependence n →cd
m appears to be due to [Wol95]. A more classical definition is found
in [FOW87], and reads:

Definition 3.1.4 (Standard Control Dependence, Alternative Defini-
tion). m is standard control dependent on n, iff

1. ¬ m wPOST n

2. there exists a path n n,π,m→ m such that

• m /∈ π, and

• ∀n′ ∈ π. m wPOST n′

A proof of equivalence of these two definition can be found in [Was10].

17

3 Control Dependence in Arbitrary Graphs

3.2 An Algorithm for Generalized Control
Dependence

Efficient computation of standard control dependence for CFGs with
unique exit node nx is possible due to the following facts:

1. Every node n 6= nx has a unique immediate post-dominator
ipdom (n) ∈ N, i.e. a node m such that m APOST n, and
m′ wPOST m for all nodes m′ s.t. m′ APOST n.

2. Hence, the mapping ipdom induces a tree rooted in nx.

3. This postdominator tree can be computed efficiently (e.g., [LT79]).

4. Given the postdominator tree, the postdominance frontier
PDF (m) ⊆ N for nodes m ∈ N can be computed efficiently
([Cyt+91]).

Here, PDF (m) is the set of all nodes n such that

• m does not strictly post-dominate n

• m post-dominates some direct successor n′ of n,

5. n→cd m iff n ∈ PDF (m) for m 6= n.

In order to understand item 5, observe that item 2 of Definition 3.1.4
is equivalent to m postdominating some direct G-successor n′ of n
([Cyt+91], Lemma 11).

In this section, I develop suitable generalizations of the notions post-
dominance and postdominance frontier, and present a new generalized
algorithm for the computation of postdominance frontiers. This algo-
rithm makes use of a generalization of postdominator trees. Later in
Section 4.1, I will provide efficient algorithms for their computation in
arbitrary CFGs (specifically: CFGs which lack a unique exit node nx),
and hence obtain an efficient algorithm for the computation of control
dependence in arbitrary CFGs.

18

3.2 An Algorithm for Generalized Control Dependence

Generalized Immediate Postdominance

The algorithm from [Cyt+91] computes the postdominance frontiers
for the standard postdominance relation wPOST

2. In this subsection,
I identify a set of sufficient properties of otherwise arbitrary post-
dominance relations w that are enough to allow efficient postdomi-
nance frontiers algorithms for such arbitrary postdominace relations.
Specifically, these postdominance relations will not need to be anti-
symmetric (as wPOST is). In a first step, I provide a substitute for the
notion of strict postdominance.

Definition 3.2.1 (Immediate w-Postdominance). Given a relation w
⊆ N × N, a node x ∈ N is said to 1-w-postdominate z if there exists
some node y such that

x A y w z

The set ipdomw (n) of immediate w-postdominators of n is defined by

ipdomw (n) =

{
m

∣∣∣∣∣ m 1-w n
∀m′ ∈ N. m′ 1-w n =⇒ m′ w m

}

Remark 3.2.1. 1-w differs from strict postdominance A whenever w
contains “cycles”. If, for example,

x A y A x

then x 1-w x, but not: x A x. If, on the other hand, w is a partial
order, then

m A n ⇔ m 1-w n

Corollary 3.2.1. Immediate w-postdominance generalizes immediate
postdominance for CFGs with unique exit node nx:

• ipdomwPOST
(nx) = ∅

2 or the dominance frontiers for the fixed dominance relation wDOM, which is exactly
the postdominance relation in the graph G−1 with inverted edges

19

3 Control Dependence in Arbitrary Graphs

• ipdomwPOST
(n) = {ipdom (n)} for n 6= nx

Remark 3.2.2. Essentially, 1-w-postdominance behaves like standard
strict postdominance, but allows sets of “equivalent” (w.r.t w) nodes,
i.e. nodes m, m′ such that m A m′ and m′ A m.

Informally:

1-w ∧
= APOST for relations possibly lacking anti-symmetry

ipdomw
∧
= ipdomwPOST

lifted to sets of w -equivalent nodes

Specifically, if w is reflexive and transitive, it admits the following
rules:

Lemma 3.2.1.

x w y y w x x 6= y
x ∈ ipdomw (y) ∧ y ∈ ipdomw (x)

EQw1

x w y y w x
ipdomw (x) = ipdomw (y)

EQw2

x w y y w x x ∈ ipdomw (z)

y ∈ ipdomw (z)
EQw3

Rule EQw1 says that if x and y are in a w-“cycle”, then they are imme-
diate w-postdominators of each other. By EQw2 , they then also have
the same set of immediate w-postdominators. EQw3 says that if x is an
immediate w-postdominator of some other node y, then also is y.

Proof: On page 350 in the appendix.

20

3.2 An Algorithm for Generalized Control Dependence

Postdominance Frontiers

Intuitively, the postdominance frontier of a node x is the set of nodes
y such that y is at the frontier of regions of nodes postdominating x,
i.e.: only after making a CFG choice y →G s at y am I guaranteed to
“eventually” meet x. I propose the following general definition:

Definition 3.2.2 (w-Postominance Frontiers). Given a CFG G =
(N, E), a relation w ⊆ N × N and a node x ∈ N, the w-
postdominance frontier PDFw (x) is defined by

PDFw (x) =

{
y

∣∣∣∣∣ ¬ x 1-w y
for some s s.t. y→G s : x w s

}

The key to efficient computation of PDFw is to partition PDFw (x) into
two parts: those nodes y contributed to PDFw (x) locally, and those
nodes y contributed to PDFw (x) by nodes z which are immediately
w-postdominated by x (implying x w z).

Definition 3.2.3 (w-Postdominance Frontiers: local part). Given a CFG
G = (N, E), a relation w ⊆ N × N and a node x ∈ N, the w-
postdominance frontiers local part PDFlocal

w (x) is defined by

PDFlocal
w (x) =

{
y

∣∣∣∣∣ ¬ x 1-w y
y→G x

}

Definition 3.2.4 (w-Postdominance Frontiers: up part). Given a CFG
G = (N, E), a relation w ⊆ N × N and a node z ∈ N, the part
PDFup

w (z) of nodes y ∈ PDFw (z) that z contributes upwards (i.e.: to
immediate w-postdominators x of z) is defined by

PDFup
w (z) =

{
y ∈ PDFw (z)

∣∣∣ ∀x ∈ ipdomw (z) . ¬ x 1-w y
}

Remark 3.2.3. Definition 3.2.2, 3.2.3 and 3.2.4 generalize definitions
from ([Cyt+91], Section 4.2), by parameterizing w.r.t the underlying

21

3 Control Dependence in Arbitrary Graphs

postdominance relation w, and replacing A by the generalized notion
of 1-w -postdominance.

Specifically, I have:

PDFwPOST (x) =

{
y

∣∣∣∣∣ ¬ x APOST y
for some s s.t. y→G s : x wPOST s

}

PDFlocal
wPOST

(x) =

{
y

∣∣∣∣∣ ¬ x APOST y
y→G x

}

PDFup
wPOST

(z) =
{

y ∈ PDFwPOST (z)
∣∣∣ ¬ ipdom (z) APOST y

}
Note that in [Cyt+91], dominance frontiers are defined for
predominance, and CFGs with unique entry node ne. In contrast, I
only consider (generalizations of) postdominance. Consequently, my
definitions differ from those in [Cyt+91] also w.r.t the direction of
CFG edges.

I now state the conditions under which PDFup
w and PDFlocal

w are indeed
suitable partitions of PDFw.

Lemma 3.2.2. Assume a CFG G = (N, E), a node z ∈ N and a relation
w ⊆ N × N such that w is transitive and reflexive. Also, identify

ipdomw with the relation
{
(x, z)

∣∣∣ x ∈ ipdomw (z)
}

, and assume that
its transitive and reflexive closure is w, i.e.:

ipdom∗w = w

Then:

PDFw (x) = PDFlocal
w (x) ∪

⋃
{z | x∈ipdomw(z)}

PDFup
w (z)

Proof: On page 350 in the appendix.

22

3.2 An Algorithm for Generalized Control Dependence

Remark 3.2.4. For CFG with unique exit node nx, the requirement

ipdom∗w = w

for w=wPOST is trivially true because there, the unique transitive
reduction > of wPOST (i.e.: the wPOST-dominance tree) is exactly
ipdomwPOST

:
m > n ⇔ m ∈ ipdom (n)

This equivalence between ipdomw and transitive reductions of w will
not hold in general.

Algorithmically, the definitions of PDFup
w and PDFlocal

w are not satisfac-
tory, for they imply reachability checks

x 1-w y

Now I identify the conditions under which these checks can
by replaced by cheaper checks that only involve immediate w-
postdominators.

Definition 3.2.5 (Closed under→G). A relation w ⊆ N × N is said
to be closed under→G if it admits the rule:

y→G x x′ w y x′ 6= y
x′ w x

CL→G

Remark 3.2.5. Of course, wPOST is closed under→G .

Lemma 3.2.3. Let w ⊆ N × N be transitive, and closed under →G .
Then

PDFlocal
w (x) =

{
y

∣∣∣∣∣ ¬ x ∈ ipdomw (y)
y→G x

}

Proof: On page 352 in the appendix.

23

3 Control Dependence in Arbitrary Graphs

Informally, the next technical observation says that (unless x and y
are w-equivalent) when starting at y and going w-upwards towards x,
there exist some nodes w, v such that I am not w-equivalent to x upon
reaching v, but become w-equivalent to x by taking just one more ≥
step towards x (from v to w).

Observation 3.2.1. Let ≥ be any relation such that ≥∗ = w, and x w y
but ¬y w x. Then there exists some w, v such that

x w w ≥ v w y

and w w x
but: ¬ v w x

The requirement of w being closed under→G allowed me to simplify
PDFlocal

w . The next additional requirement will allow me to simplify
PDFup

w .

Definition 3.2.6 (Lack of Joins). A relation w ⊆ N×N is said to lack
joins, if it admits the rule:

x ∈ ipdomw (v)
x ∈ ipdomw (z)

v w s
z w s

z 6= v

v ∈ ipdomw (z) ∨ z ∈ ipdomw (v)
NoJoin

In order to justify the phrase lacking joins, consider Figure 3.1, where
arrows n → m signify3 m ∈ ipdomw (n). Rule NoJoin demands that
in Figure 3.1a, there are no joins at x for “paths” starting in s, unless

3 i.e.: arrows are downwards with respect to w, that is, they are in accord with the
inverse v of w. The justification of this choice of presentation is that it presents
postdominance relations (or their transitive reductions) in accord with the “general
direction” of control flow. Specifically, if in a CFG I have an edge n →G m such that
m is the only G-successor of n, I will have m ∈ ipdomw (n) (and usually: m > n in
a transitive reduction of w). By drawing an edge from n to m, this then is in accord
with the G-edge n→G m.

24

3.2 An Algorithm for Generalized Control Dependence

(a) (b) (c)

Figure 3.1: Illustration of Definition 3.2.6.

either z → v or v → z, i.e.: I cannot have s → z in Figure 3.1a. On the
other hand, the situations in Figure 3.1b and Figure 3.1c are allowed.

Remark 3.2.6. Standard postdominance wPOST lacks joins, because
(given a unique exit node nx) ipdomwPOST

forms a tree rooted in nx,
and wPOST = ipdom∗.

Lemma 3.2.4. Let w ⊆ N × N be transitive, reflexive, lacking joins,
and closed under→G . Also assume

ipdom∗w =w

Then, given some x ∈ ipdomw (z):

PDFup
w (z) =

{
y ∈ PDFw (z)

∣∣∣ ¬ x ∈ ipdomw (y)
}

Proof: On page 352 in the appendix.

Definition 3.2.7 (Efficient PDF Partitioning). In summary, I say that a
relation w admits an efficient PDF partitioning if

1. it is reflexive and transitive (but not necessarily anti-symmetric)

25

3 Control Dependence in Arbitrary Graphs

2. ipdom∗w =w
3. it admits the rules

y→G x x′ w y x′ 6= y
x′ w x

CL→G

x ∈ ipdomw (v)
x ∈ ipdomw (z)

v w s
z w s

z 6= v

v ∈ ipdomw (z) ∨ z ∈ ipdomw (v)
NoJoin

In that case, I have

PDFw (x) = PDFlocal
w (x) ∪ ⋃

{z | x∈ipdomw(z)} PDFup
w (z)

PDFlocal
w (x) =

{
y

∣∣∣∣∣ ¬ x ∈ ipdomw (y)
y→G x

}

PDFup
w (z) =

{
y ∈ PDFw (z)

∣∣∣ ¬ x ∈ ipdomw (y)
}

for x ∈ ipdomw (z)

If w admits an efficient PDF partitioning, an algorithm to compute
PDF is immediately available by

1. computing ipdomw

2. computing — using, e.g., any suitable work-list algorithm — the
least fixed point of the monotone functional defined by the rules

¬ x ∈ ipdomw (y) y→G x

y ∈ PDFw (x)

¬ x ∈ ipdomw (y) x ∈ ipdomw (z) y ∈ PDFw (z)

y ∈ PDFw (x)

26

3.2 An Algorithm for Generalized Control Dependence

It is natural to choose a topological iteration order during fixed-point
iteration, and also to choose an efficient representation of ipdomw. A
naive representation of ipdomw (e.g.: using a generic data structure
that maps nodes to set of nodes) is inefficient in general: recall from
rule EQw3 and EQw2 that ipdomw (z) may consists of many x 6= x′ such
that x w x′ and x′ w x, and also that then: ipdomw (x) = ipdomw (x′).

Given any transitive reduction > of w, I can

1. compute the strongly connected components of the graph
(N,<), and a corresponding topological sorting, both of which
can either be provided implicitly by the algorithm computing
<, or can be done simultaneously by, e.g., Tarjan’s algorithm
[Tar72].

2. compute PDF by traversing the condensed graph in that order
once.

For the computation of nontermination insensitive control dependence
and nontermination sensitive control dependence (Section 4.1), I will use
algorithm 1. Note that the test

¬ x ∈ ipdomw (y)

becomes
¬∃x′ ∈ scc. x′ > y

due to the characterizations of ipdomwSINK
and ipdomwMAX

in Obser-
vation 5.3.2 and Observation 5.2.2. Also note that by computing the
set scc> = { y | ∃x′ ∈ scc. x′ > y } once per scc, I can use this for both
the tests on y, and for enumerating z.

Of course, for w = wPOST, algorithm 1 becomes the well known algo-
rithm 2 from [Cyt+91].

27

3 Control Dependence in Arbitrary Graphs

Input : A transitive reduction < of v
Input : A topological sorting sccs of all strongly connected

components of <.
Output: PDFw
for scc ∈ sccs do

local← {y | x ∈ scc, y→G x, ¬∃x′ ∈ scc. x′ > y︸ ︷︷ ︸
y ∈ scc>

}

up ← {y | x ∈ scc, x > z︸ ︷︷ ︸
z ∈ scc>

, y ∈ DF[z], ¬∃x′ ∈ scc. x′ > y︸ ︷︷ ︸
y ∈ scc>

}

for x ∈ scc do
DF[x]← local ∪ up

end
end

Algorithm 1: Computation of PDF

Input : The postdominance tree >
Output: PDFwPOST
for each node x in a bottom up traversal of > do

local← {y | y→G x, ¬ x > y}
up ← {y | x > z, y ∈ DF[z], ¬ x > y}
DF[x]← local ∪ up

end
Algorithm 2: Computation of PDFwPOST , [Cyt+91]

28

3.3 Related Work

3.3 Related Work

I generalized from standard postdominance wPOST to relations w that
admit an efficient PDF partitioning. Specifically, they need not be
anti-symmetric, and CFGs are not required to have a unique exit node
nx. Other generalization exists, but still require a unique exit node
nx. For example, the authors of [BP96] generalize to P-dominance
relations, and identify conditions that guarantee that the dominance
relation remains anti-symmetric, and that its transitive reduction is
unique and forest-structured. They apply their framework to obtain
algorithms to compute “weak” control dependence. The framework
from [CR06] also only applies to CFG with unique exit node nx.

Summary

• The standard algorithm by Cytron et al for standard con-
trol dependence can be generalized to a class of postdom-
inance relations that do not necessarily reduce to a tree.

29

4 Nontermination (In-)Sensitive
Control Dependence

But remember not a game new under the sun
Everything you did has already been done
I know all the tricks from bricks to kingston

(Lauryn Hill — Lost Ones)

In [Ran+07], the authors introduce both non-terminiation sensitive
and -insensitive notions of control dependence (→ntscd and →nticd)
suitable for modern program structures. Specifically, they develop these
notions for control flow graphs that do not have a unique exit node nx.
They also propose suitable notions of correctness for nontermination
sensitive slicing, and give proof of correspondence for slices involving
→ntscd. They do not, however, provide a notion of slicing correct-
ness for nontermination insensitive slicing, or for →nticd. Instead in
[Amt08], the authors need a new kind of nontermination insensitive
dependence. In general, neither →ntscd nor →nticd slices are sound:

• Sound nontermination sensitive slices must be closed not only
under→ntscd and data dependence, but also under decisive order
dependence ([Ran+07]).

• Sound nontermination insensitive slices must be closed not un-
der →nticd and data dependence, but instead under weak order
dependence and data dependence ([Amt08]).

The authors claim algorithms for the computation of nontermination
sensitive and insensitive control dependence, and decisive order de-
pendence, all with running time polynomial in the size of the control
flow graph.

In this chapter, I merely repeat definitions and basic results from
[Ran+07]. However for those interested, a detailed treatment of the
algorithms from [Ran+07] can be found in Appendix B. There in Sec-
tion B.1, I explain why their algorithms for →ntscd and →nticd are

31

4 Nontermination (In-)Sensitive Control Dependence

flawed. In particular, there is no immediately obvious way to re-
pair the algorithm for →nticd. In order to find a correct algorith for
→nticd, in Section B.2 I try to explain how nontermination-sensitive
control dependence naturally corresponds to least fixed points, while
nontermination-insensitive control dependence corresponds to greatest
fixed points. I do this by an analogy with liveness and safety properties.
Indeed in Section B.3, I propose a fixed-point based characterization
for →ntscd and →nticd that immediately yields correct algorithms both
for→ntscd and→nticd. There,→nticd and→ntscd are obtained from least
and greatest fixed point, respectively, of the same functional, yielding
the informal slogan:

nontermination sensitivity = least fixed point
nontermination insensitivity = greatest fixed point

32

4.1 Nontermination (In-)Sensitive Control Dependence in Arbitrary Graphs

4.1 Nontermination (In-)Sensitive Control
Dependence in Arbitrary Graphs

Standard postdominance wPOST requires a unique exit node nx to for-
malize the notion of a node m always “eventually” executing after an
execution of n. In order to formalize this notions for arbitrary graphs
(possibly lacking a unique exit node nx), in [Ran+07] the authors in-
troduce the notion of control sinks.

Definition 4.1.1. Mostly following [Ran+07], I define:

• A path π is called maximal if it is infinite, or its last node is an
exit node (i.e.: it has no outgoing edges). With

nΠG
MAX = {π | π = n, . . . and π is maximal}

I denote the set of maximal paths starting in n.

• A set S ⊆ N is called a control sink if it is a strongly connected
component of G, and successors y of nodes x ∈ S remain in S:

x →G y x ∈ S
y ∈ S

• A control sink is called trivial if it consists of one node. This is
then either a (not necessarily unique) exit node, or a node with
a self-edge (and no other outgoing edges).

• A maximal path π is called sink-bound (for some control-sink S)
if

– there is some node ns ∈ π ∩ S

– if S is non-trivial, then all nodes in S appear in π infinitely
often.

33

4 Nontermination (In-)Sensitive Control Dependence

I also call such paths simply sink paths. With

nΠG
SINK = {π | π = n, . . . and π is sink-bound}

I denote the set of sink paths starting in n.

• The set of conditional nodes of G is

CONDG = {n | ∃nl 6= nr. n→G nl ∧ n→G nr}

Definition 4.1.2. Let m, n ∈ N be nodes in a graph G. Then m is
said to be non-termination sensitively/insensitively control-dependent on n,
written n→ntscd m / n→nticd m, if there exists edges

n→G nl , n→G nr

such that all maximal/sink- paths from nl contain m, but not all
maximal/sink- paths from nr do:

n→ntscd m iff

• ∀π ∈ nl ΠMAX. m ∈ π

• ¬∀π ∈ nr ΠMAX. m ∈ π

n→nticd m iff

• ∀π ∈ nl ΠSINK. m ∈ π

• ¬∀π ∈ nr ΠSINK. m ∈ π

In Figure 4.1b, I show nontermination insensitive control dependence
for the graph G in Figure 4.1a. It is nontermination insensitive be-
cause, for example, node 9 is not dependent on node 3, which can in
principle delay the execution of node 9 infinitely.

The graph G has one non-trivial control sink {6, 7, 8, 11, 13}. Note that
every node in this sink is control-dependent on node 2, but within this
sink, there are no control dependencies. Intuitively, one might have ex-
pected, for example, node 11 to be dependent on node 7. Although
node 7 can prevent node 11 from being executed in principle, it can
only do so by delaying it infinitely (i.e.: by always choosing the succes-
sor 8). But nontermination-insensitivity here causes →nticd to ignore
such executions. The fact that there are no such →nticd-dependencies
within control-sinks means that→nticd alone cannot be used for slicing
in information-flow applications.

34

4.1 Nontermination (In-)Sensitive Control Dependence in Arbitrary Graphs

1

2

10

36

4 9

1214

5

7

8

11

13

(a) A CFG G

1

2

103 6 7 8 9 11 13

4 5

12 14

(b)→G
nticd

Figure 4.1: Nontermination Insensitive Control Dependence

1

2

10

36 7 8

4 59

1214

11

13

(a)→G
ntscd

Figure 4.2: Nontermination Insensitive Control Dependence

35

4 Nontermination (In-)Sensitive Control Dependence

In Figure 4.2a, I show nontermination sensitive control dependence
for the same graph CFG from Figure 4.1a. It is sensitive because,
for example, node 9 is dependent on node 3, which can delay the
execution of node 9 infinitely. Also, node 11 is control dependent on
node 7. In this graph G, →ntscd induces sound slices, but this is not so
for every graph G.

Definition 4.1.3. In the words of Definition 3.1.2 from Section 3.2,
→nticd is just wSINK-control dependence, and →ntscd is just wMAX-control
dependence, where

m wG
SINK n ⇔ ∀π ∈ nΠG

SINK. m ∈ π

m wG
MAX n ⇔ ∀π ∈ nΠG

MAX. m ∈ π

I say that wG
SINK is a nontermination insensitive form of postdominance,

while wG
MAX is a nontermination sensitive.

Nontermination insensitive control dependence →nticd generalizes
standard control dependence to graphs without unique exit node nx.
Nontermination sensitive control dependence →ntscd generalizes weak
control-dependence [PC90] to graphs without unique exit node. Intu-
itively, the difference between→nticd and→ntscd is that→nticd assumes
“every loop to terminate”. Thus I have n →ntscd m even if the only
possibility of conditional node n to prevent the execution of m is by
infinitely often choosing the same successor nl . On the other hand,
→nticd assumes such loops to terminate, i.e.: it expects n to eventually
choose a different successor nr.

Indeed, Ranganath et al. give proofs for the following properties:

Theorem 4.1.1 (Ranganath et al., Theorem 1). Let G have a unique exit
node nx. Then

n→nticd m ⇐⇒ n→cd m

Theorem 4.1.2 (Ranganath et al., Theorem 4). Let G be any CFG.Then

n→nticd m =⇒ n→ntscd m

36

4.1 Nontermination (In-)Sensitive Control Dependence in Arbitrary Graphs

Summary

• Nontermination sensitive and insensitive control depen-
dence generalize standard control dependence notions to
graphs without unique exit node.

• But these notions alone do not lead to sound slices.

• They can be defined uniformly, by reference to nontermi-
nation sensitive and insensitive postdominance wMAX and
wSINK.

37

5 Postdominator Pseudoforests

You come to me for advice, but you can’t cope
with anything you don’t recognize. Hmmm. So
we’ll have to tell you something you already
know but make it sound like news, eh. Well,
business as usual , I suppose.

(Douglas Adams — The Ultimate Hitchhiker’s
Guide to the Galaxy)

Neither the (originally flawed) Algorithm 14 for →ntscd due to
[Ran+07], nor my correct algorithm Algorithm 16 for →nticd from Ap-
pendix B offer performance comparable to the efficient-in-practice al-
gorithm for standard control dependence →cd.

But with the algorithm for generalized control dependence from Sec-
tion 3.2, I can immediately derive efficient-in-practice algorithm for
both →nticd and →ntscd if

1. wSINK and wMAX admit efficient PDF partitionings, and

2. I can provide efficient-in-practice algorithm for the computation
of some transitive reduction < of wSINK and wMAX.

In order to do this, I first give in Section 5.1 fixed-point characteriza-
tions of wSINK and wMAX. Then in Section 5.2 and Section 5.3 I generalize
the notion of standard postdominator trees to obtain the new notion
of postdominator pseudo-forests. These will materialize as transitive re-
ductions of nontermination sensitive and insensitive postdominance
wMAX and wSINK, and together with the fixed-point characterizations of
wSINK and wMAX immediately lead to efficient-in-practice algorithms for
their computation.

For the nontermination sensitive case →ntscd, I am not aware of pre-
viously existing efficient algorithms even for graphs with unique exit

39

5 Postdominator Pseudoforests

node nx.1 For the nontermination insensitive case, on the other hand,
such algorithms exist ([LT79; Cyt+91]). Indeed if I were only interested
in (“offline”) algorithms for→nticd, I would not need the development
in Section 5.3, because there exists a reduction G 7→ GS such that GS is
a graph with unique-exit node, and nontermination insensitive control
dependence→G

nticd in G can easily be obtained from standard control-
dependence →GS

cd in GS. I explain this reduction in Section 5.4. Later
in Section 6.7 however, I will make use of the algorithms developed in
Section 5.3 in order to support an incremental recomputation of a se-
ries (wGm

SINK)m∈M of postdominance pseudo-forests wGm
SINK for a sequence

(Gm)m∈M of related graphs.

1 In [BP96], the authors provide an efficient algorithm for the computation of the Aug-
mented Loop-Postdominator-Tree, which for CFG with unique exit nodes is derived by
augmenting a nontermination-sensitive postdomominance forest. Using this tree,
they give an algorithm to answer weak (i.e.: nontermination-sensitive) control depen-
dence queries, but do not give an explicit algorithm to efficiently compute the whole
weak control relation.

40

5.1 Fixed-Point Characterizations for Postdominance

5.1 Fixed-Point Characterizations for
Postdominance

It is implicit already in, e.g., [HU73], that wPOST (i.e.: the postdom-
inance relation underlying standard control dependence for graphs
with unique end node nx) has a greatest fixed point characterization:

Theorem 5.1.1. Let G be a CFG with unique end node nx and P be the
rule-system

n w n
Pself ∀p→G x. m w x p 6= nx

m w p
Psuc

Then wPOST= νP over the lattice (N × N,⊆).

Proof: On page 354 in the appendix.

Note that when computing wPOST as the greatest fixed point of P,
fixed point iteration starts with the initial value > = N × N, i.e. with
the assumption

m w n for all m, n

regardless whether m is even reachable in G from n. This is correct
because an assumption m w n for ¬ n →∗G m must be validated by
m w x for all G-successors x of n. But eventually I must reach nx
without ever reaching m before, and at nx i cannot validate m w nx.

Usually, P is presented as a system of equations:

ipdomPOST (nx) = {nx}
ipdomPOST (n) = {n } ∪⋂n→G x ipdomPOST (x) n 6= nx

An algorithm loosely based on P is given in [CHK01]. Here, the au-
thors — while computing immediate postdominators — do not explic-

41

5 Postdominator Pseudoforests

itly (or implicitly!) start with the assumption that any node m may
post-dominate any node n. Instead, they make crucial use of the fact
that any preliminary guess ipdom (n) = x for any G-successor x of n
is always O.K. in the sense that x will at least always reach the true
ipdom (n) (by following ipdom upwards the dominator tree).

Following the idea that →nticd is a generalization of standard control
dependence (i.e.: wPOST control dependence), and wSINK a generaliza-
tion of wPOST, I must suspect that the greatest fixed point of some gen-
eralization of P describes wSINK for CFGs without unique end nodes.
Moreover, the slogan

non-termination insensitivity = greatest fixed point
non-termination sensitivity = least fixed point

then also suggests that it’s least fixed point characterizes wMAX. In fact:

Theorem 5.1.2. Let G be any CFG and D be the rule-system

n w n
Dself ∀p→G x. m w x p→∗G m

m w p
Dsuc

Then
νD = wSINK

µD = wMAX

Proof: On page 354 in the appendix.

Remark 5.1.1. A formal proof of Theorem 5.1.2 checked by the Is-
abelle/HOL proof assistant is available from Simon Bischof [Bis19].

When generalizing to D from P, I had to add the reachability con-
straint p →∗G m, since otherwise I could — for example: given some
control sink S, and nodes n ∈ S but m /∈ S — validate m wSINK n

42

5.1 Fixed-Point Characterizations for Postdominance

merely by mutual application of rule Dsuc (to all nodes in S), even if
m is not even reachable from n. Given this reachability constraint, I
do not need a generalization of the constraint p 6= nx, since it’s main
function was to prevent application of rule Psuc to nodes p that do not
have any successors (of which nx is the only one in CFG with unique
exit node). But in D, this is already accomplished by the reachability
constraint p→∗G m.

Remark 5.1.2. Rule system D can be read as a simplified version of the
following rule system D3 from the appendix.

m ∈ nextCOND [x]
m w x

Dlin
3

n = nextCOND [x]
∀n→G x. m w x x →∗G m

m w x
Dcond

3

But D3, then, can be read as just a variant of the rules S3 (Defini-
tion B.2.5 in the appendix).

Both D fixed-points can be computed naively, using an explicit rep-
resentations of the relation w. For more efficient algorithms, I need
instead a sparse representations of w, which is available both for wMAX

and wSINK in form of pseudo forests.

43

5 Postdominator Pseudoforests

5.2 Nontermination Sensitive Pseudoforests

Before I devise an efficient algorithm for nontermination sensitive
postdominance wMAX, let me first affirm that, indeed, wMAX admits ef-
ficient PDF partitionings, as required if I want to use my generalized
postdominance frontiers algorithm from Section 3.2. It is easy to see
that the first requirement is met:

Lemma 5.2.1. wMAX is reflexive and transitive.

Proof (Sketch): By definition.

In order to establish he remaining requirements, I investigate the
structure of wMAX.

Observation 5.2.1. Let G be any CFG, and >MAX any transitive reduc-
tion of wMAX. Then the graph

(N, <MAX) = (N, { (m, n) | n>MAXm })

is a pseudo forest, i.e.: a graph with at most one successor at each node
n.

A glance at Figure 5.1b will justify the name pseudo forest: Visible
are five independent pseudo-trees (where roots sometimes consist of
multiple nodes n ∈ N) with roots: 1, 2, 3, {6, 7, 8} , 10. The roots are
shown near the bottom, and arrows→ follow <MAX.

Observation 5.2.2. Let >MAX be any transitive reduction of wMAX. Then

x 1-wMAX z ⇐⇒ x>+
MAXz

x ∈ ipdomwMAX
(z) ⇐⇒ x′>∗MAXx>∗MAXx′

for some x′ s.t. x′>MAXz

44

5.2 Nontermination Sensitive Pseudoforests

1

2

10

36

4 9

1214

5

7

8

11

13

(a) A CFG

1 2

9

103

4

5

12 14

6

7 8

11 13

(b) A transitive reduction <MAX of it’s relation
wMAX

Figure 5.1: A Dominator Pseudo-Forest

and consequently:

ipdom∗wMAX
= wMAX

Lemma 5.2.2. wMAX lacks joins.

x ∈ ipdomwMAX
(v)

x ∈ ipdomwMAX
(z)

v wMAX s
z wMAX s

z 6= v

v ∈ ipdomwMAX
(z) ∨ z ∈ ipdomwMAX

(v)
NoJoin

Proof: On page 355 in the appendix.

45

5 Postdominator Pseudoforests

Lemma 5.2.3. wMAX is closed under→G .

y→G x x′ wMAX y x′ 6= y
x′ wMAX x

CL→G

Proof: By definition.

The Algorithm for computing a pseudo-forest <MAX will require
the computation of least common ancestors for (preliminary) pseudo-
forests:

Definition 5.2.1. Given a pseudo-forest < and two nodes n, m

lca< (n, m) =

{
a

∣∣∣∣∣ n <∗ a ∧ m <∗ a
∀a′. (n <∗ a′ ∧ m <∗ a′) =⇒ a <∗ a′

}

More generally: for any set S of nodes:

lca< (S) =

{
a

∣∣∣∣∣ ∀n ∈ S. n <∗ a
∀a′. (∀n ∈ S. n <∗ a′) =⇒ a <∗ a′

}

A least common ancestor lca< (S) of a set S can be computed by iter-
ating over nodes n ∈ S:

Proposition 5.2.1. Given a pseudo-forest < and nodes x, y, z, if axy ∈
lca< (x, y) and axyz ∈ lca<

(
axy, z

)
, then axyz ∈ lca< ({x, y, z}).

The least common ancestor can naively be computed by, e.g., Algo-
rithm 3, and be extended to sets via Algorithm 4. See Algorithm 18
in Appendix D for the slightly more performant variant used in all
benchmarks.

46

5.2 Nontermination Sensitive Pseudoforests

Input : A pseudo-forest <, represented as a map
IMDOM : N ↪→ N s.t. IMDOM [n] = m iff n < m.

Input : Nodes m0, n 0
Output : A least common ancestor of n 0, m0, or ⊥ if there is

none.
begin

return lca (n 0, m0)
end
Function lca (π n , πm)

Input : A <-path π n = n 0, . . . , n ending in n
Input : A <-path πm = m0, . . . , m ending in m
if m ∈ π n then

return m
end
if n ∈ πm then

return n
end

switch {IMDOM[n]} \ π n do
case ∅ do

switch {IMDOM[m]} \ πm do
case ∅ do

return ⊥
end
case {m’} do

return lca(πmm’, π n)
end

end
end
case {n’} do

return lca(πm , π n n’)
end

end
end

Algorithm 3: A least common ancestor algorithm.

47

5 Postdominator Pseudoforests

Input : A pseudo-forest <, represented as a map IMDOM : N ↪→ N
s.t. IMDOM [n] = m iff n < m.

Input : A set {n} ∪ S of at least one Node
Output: A least common ancestor of {n} ∪ S, or ⊥ if there is none.
begin

a← n
for s ∈ S do

a← lca (a, s)
end

end
Algorithm 4: A least common ancestor algorithm for sets.

5.2.1 An Algorithm for Nontermination Sensitive
Postdominance

I can now present Algorithm 5 for the computation of some transitive
reduction >MAX of wMAX. It can be understood as a least fixed point
computation (of µD3) using an efficient representation <MAX ∈ α (wMAX)
of wMAX. Informally:

γ (<) = <∗

α (w) = {< | <∗=v}

with (abstract) rule system D#
3

m→G x ¬m ∈ COND

m<MAXx

a = ε a. a ∈ lca<MAX ({ x | m→G x }) m ∈ COND m→∗G a
m<MAXa

48

5.2 Nontermination Sensitive Pseudoforests

In order to guarantee termination, the algorithm will choose

ε a. a ∈ lca<MAX (. . .)

consistently (i.e.: always choose the same a for a given input.) The Al-
gorithm 5 is a straight-forward implementation of a chaotic least fixed
point iteration. The update of workset can be implemented reasonably
efficiently if the set {y | y <∗ x} can be enumerated efficiently, which
can, for example, be done by maintaining a second data structure
IMDOM : N → 2N representing >.

Observation 5.2.3. Let G be any CFG. Then Algorithm 5 terminates
with a result <MAX s.t. >MAX is a transitive reduction of wMAX.

Also see Subsection A.2.1 in the appendix for a sketch a proof of Ob-
servation 5.2.3.

This chaotic iteration can be improved slightly by making use of the
fact that for each node x ∈ COND, the value IMDOM [x] is never
changed from some z0 back to ⊥, and changed from some z0 to
some z only for z0, z ∈ ipdomwMAX

(x): never re-insert nodes n s.t.
IMDOM [n] 6= ⊥.

For the very same reason, a sequential (non-chaotic) variant of this
least fixed point computation can be implemented reasonably effi-
ciently: The resulting algorithm (Algorithm 19 in Appendix D) main-
tains a FIFO queue which at all times contains those nodes x ∈ COND

for which IMDOM [x] = ⊥, re-inserting nodes x only if no lca 6= ⊥ was
found. It terminates as soon as the whole queue was traversed once
without it becoming smaller.

49

5 Postdominator Pseudoforests

Input : A CFG G
Data: A pseudo-forest < represented as a map IMDOM : N ↪→ N s.t.

IMDOM [n] = m iff n < m
Output: A transitive reduction <MAX of wMAX

begin
for x ∈ N, {z | x →G z} = {z} , z 6= x do

IMDOM [x]← z
end
MAXIMALup
return IMDOM

end
Procedure MAXIMALup

workset← CONDG
while workset 6= ∅ do

x ← remove(workset)
a← lca ({ y | x →G y })

z←
{
⊥ if a = ⊥ ∨ a = x
a otherwise

assert z 6= IMDOM[x] ⇒ z 6= ⊥
assert z 6= IMDOM[x] ∧ IMDOM[x] = z0 ⇒ z0 <∗ z <∗ z0
if z 6= IMDOM[x] then

workset← workset∪ {n ∈ COND | n 6= x, ∃n→G y. y <∗ x}
IMDOM [x]← z

end
end

end
Algorithm 5: An algorithm for the computation of some <MAX.

50

5.3 Nontermination Insensitive Pseudoforests

5.3 Nontermination Insensitive Pseudoforests

Just as Algorithm 5 for a transitive reduction >MAX of wMAX corresponds
to a computation of the least fixed point µD, the algorithm for a transi-
tive reduction >SINK of wSINK will resemble a greatest fixed point compu-
tation (of the functional D). The key of obtaining an efficient algorithm
will be

1. To avoid explicit reachability checks m →∗G a. These were un-
necessary in the least fixed point computation because there,
reachability was established during the iteration starting from
⊥ = ∅ ⊆ N × N. In the greatest fixed-point computation, how-
ever, these would become necessary if I were to start a greatest
fixed point computation at > = N × N.

2. To instead find a pseudo forest < such that

>∗ ⊇ wMAX

to start the fixed point iteration from.

I first affirm that wSINK does, indeed, admit efficient PDF partitionings.
Again, it is easy to see that the first requirement is met:

Lemma 5.3.1. wSINK is reflexive and transitive.

Proof (Sketch): By definition.

Also, the structure of transitive reductions >SINK is not different from
before:

Observation 5.3.1. Let G be any CFG, and >SINK any transitive reduc-
tion of wSINK. Then the graph

(N, <SINK) = (N, { (m, n) | n>SINKm })

is a pseudo forest.

51

5 Postdominator Pseudoforests

1

2

10

36

4 9

1214

5

7

8

11

13

(a) A CFG

1 2

3

9

4

5

6

7

8

11

10 13

12 14

(b) A transitive reduction <SINK of it’s relation
wSINK

Figure 5.2: A Dominator Pseudo Forest

In Figure 5.2b such a pseudo forest <SINK is shown for the previously
used example CFG. Visible are four independent pseudo-trees with
roots: 1, 2, 10, {6, 7, 8, 11, 13}.

Observation 5.3.2. Let <SINK be any transitive reduction as above. Then

x 1-wSINK z ⇐⇒ x>+
SINKz

x ∈ ipdomwSINK
(z) ⇐⇒ x>∗SINKx′>∗SINKx

for some x′ s.t. x′>SINKz

and consequently:

ipdom∗wSINK
= wSINK

Just as before, wSINK lacks joins, and is closed under→G :

52

5.3 Nontermination Insensitive Pseudoforests

Observation 5.3.3.

x ∈ ipdomwSINK
(v)

x ∈ ipdomwSINK
(z)

v wSINK s
z wSINK s

z 6= v

v ∈ ipdomwSINK
(z) ∨ z ∈ ipdomwSINK

(v)
NoJoin

Proof: Just as for Lemma 5.2.2.

Observation 5.3.4.

y→G x x′ wSINK y x′ 6= y
x′ wSINK x

CL→G

Additionally, the sinks of the CFG determine <SINK to some degree:

Observation 5.3.5. Let >SINK be a transitive reduction of wSINK. Then the
multi-node roots of the pseudo-forest <SINK are exactly the multi-node
sinks of G. Also, any single-node sink of G is a single-node root in
<SINK.

The Algorithm 6 for the computation of <SINK then works in two phases.
In the first phase SINKup, it computes some approximation <0 “just
above” <SINK, i.e.: a pseudo-forest <0 such that

>∗0 ⊇ wSINK

The phase SINKdown then computes <SINK by (greatest) fixed-point iter-
ation from above.
In SINKup, I necessarily have to be more lenient than I was in
MAXIMALup. There, in order to establish x < a, I needed
positive evidence that a ∈ lca< ({ y | x →G y }). Now, even if
lca< ({ y | x →G y }) = ∅, I will sometimes have to chose an assump-
tion x < a for some reasonable a, which I later either validate, weaken
or abandon in SINKdown.

53

5 Postdominator Pseudoforests

Consider the preliminary pseudo forest < in Figure 5.3b. I need to
establish 1 < 3 (i.e.: that 3 is an “immediate postdominator” of 1), but
I find that lca< ({2, 3}) = ∅. Now I would like to assume both, 1 < 3
and 1 < 2, the latter of which would then be invalidated in phase
SINKdown. But then < no longer would be a pseudo forest! If I were
to assume just 1 < 2, I would obtain a >0 to start the phase SINKdown
with such that not: >∗0 ⊇ wMAX, so I need to make the assumption
1 < 3. But what is a generally applicable criterion to decide which
assumption to make?

Observation 5.3.6. Let >SINK be a transitive reduction of wSINK. Then
whenever x<SINKy, there is at most one sink S such that any path start-
ing in x is bound for S, and any such S is the same sink that y is bound
for.

Note that in this example, for node 3 I have already established 3 <∗ 4
for the sink node 4 ∈ S, but I have not yet established 2 <∗ 4 (nor:
2 <∗ s for any sink node s). This suggest that I must — whenever
lca< ({ y | x →G y }) = ∅ — choose some G-successor node y of x
such that already y <∗ s for some sink node s. I will call such nodes y
processed, and maintain in Algorithm 6 a set PROCD of all such nodes.
Not shown is the procedure newProcessed (x) which updates PROCD
given a node x s.t. x <∗ s for some sink node s, by following linear
segments ending in x upwards.

The second phase SINKdown then corresponds to a (downward) fixed-
point iteration that computes of νD starting from >∗0 (instead of: from
>). The second phase is essentially the same as the first and only
phase MAXIMALup of Algorithm 5. Remember that there, I computed
µD from ⊥. Yet, here are some differences between SINKdown and
MAXIMALup. In MAXIMALup, I can make use of the fact that for
each n, I need to set IMDOM[n] at most once, while in SINKdown, I
may need to update ISDOM[n] several times. Also, SINKdown only
updates non-sink nodes – sink-nodes were already dealt with during
the initialization. Finally, whenever the algorithm would normally set
IMDOM[x] to s for some node s in sink Si, the algorithm instead sets

54

5.3 Nontermination Insensitive Pseudoforests

1

2 3

4

(a) A CFG

1

3

2

4

(b) Preliminary pseudo forest <

Figure 5.3

IMDOM[x] to si for some canonical sink node si ∈ Si. This is required
to ensure termination, since otherwise, the algorithm might oscillate
between choosing x < s and x < s′ for two nodes s, s′ ∈ Si

2. Also note
that during the workset update with n, here necessarily n 6= x.

Dually to MAXIMALup, the algorithm SINKdown can be made slightly
more efficient by making use of the fact that once ISDOM [x] = ⊥
has been established, it must remain so: never insert such nodes into
the workset. Again, chaotic iteration can be replaced with sequential
iteration, making use of this same fact.

Observation 5.3.7. Let G be any CFG. Then Algorithm 6 terminates
with a result <SINK s.t. >SINK is a transitive reduction of wSINK.

This result concludes Chapter 5 satisfactorily: I have provided algo-
rithms for the computation of both wMAX and wSINK for arbitrary CFG,
both of which

2 In phase MAXIMALup of Algorithm 5, the fact that < approximated wMAX was enough
to guarantee termination, but here, < approximating wSINK is not.

55

5 Postdominator Pseudoforests

Input : A CFG G
Output: A transitive reduction <SINK of wSINK

begin
{S1, . . . , Sn} ← {Si | Si ∈ scc (G) ,¬ ∃s→G n. s ∈ Si ∧ n /∈ Si}
using any efficient scc algorithm.

S← ⋃
Si

for 1 ≤ i ≤ n do
si ← any node in Si
for nj ∈ S in any fixed ordering n1, . . . , nki

of Si do
ISDOM

[
nj
]
← nj+1 mod ki

unless ki = 1
processed

(
nj
)

end
end
for x ∈ N, x /∈ S, {z | x →G z} = {z} , z 6= x do

ISDOM [x]← z
if z ∈ PROCD then processed (x)

end

SINKup
SINKdown
return ISDOM

end
Algorithm 6: An algorithm for the computation of some <SINK.

• use efficient data structures (pseudo forests) to compute and rep-
resent wMAX, wSINK

• do not require explicit reachability checks m→∗G n

I derived these algorithm from simple fixed-points characterizations
of wMAX, wSINK via D, following the least/greatest fixed point duality.

Later in Chapter 8 validate that these algorithms are efficient in prac-
tice.

56

5.3 Nontermination Insensitive Pseudoforests

Procedure SINKup
workqueue← CONDG \ S in any order
while workqueue 6= ∅ do

x ← removeFront(workqueue)
assert ISDOM [x] = ⊥ ∧ x /∈ PROCD
SUCCS← { y | x →G y, y ∈ PROCD }
if SUCCS = ∅ then

z← ⊥
else

a← lca (SUCCS)

z←
{

any y ∈ SUCCS if a = ⊥
a otherwise

end
if z 6= ⊥ then

ISDOM [x]← z
processed (x)

end
else

pushBack(workqueue, x)
end

end
end
Upward Iteration for Algorithm 6.

57

5 Postdominator Pseudoforests

Procedure SINKdown
workset← { n | n ∈ CONDG \ S, ISDOM[n] 6= ⊥}
while workset 6= ∅ do

x ← removeMin(workset)
a← lca ({ y | x →G y })

z←

⊥ if a = ⊥
si if a ∈ Si

a otherwise
assert ISDOM[x] = ⊥ ⇒ z = ⊥
if z 6= ISDOM[x] then

workset← workset∪ {n ∈ COND \ S | ∃n→G y. y <∗ x}
ISDOM [x]← z

end
end

end
Downward Iteration for Algorithm 6. Set workset is ordered by any
fixed ordering of nodes N.

58

5.4 Reduction to Postdominance Trees

5.4 Reduction to Postdominance Trees

I this section, I present another approach to the computation of wSINK.

By Observation 5.3.5, the roots (whether trivial or non-trivial) of
pseudo-forests <SINK (i.e.: the <SINK-cycles) are exactly the control-sinks
in G, which are exactly the strongly connected components if G that
have no outgoing edge. Within such a root (i.e.: within such a set
M ⊆ N of nodes), any two nodes m1, m2 ∈ M do wSINK-postdominate
each other, hence no node is ever nontermination insensitively control
dependent on any node m ∈ M. At the same time, a node n (possibly
not in M) is wSINK-postdominated by some node m ∈ M if and only if
every node m ∈ M is. In other words: nodes m ∈ M are equivalent
with regard to wSINK-postdominance. This suggests that it is possible
to reduce the computation of <SINK to a computation a CFG obtained
by condensing sinks in G.

The Idea behind the following Construction was suggested by Maxi-
milian Wagner:

Observation 5.4.1. Let G = (N, E) be any CFG, and S1, . . . , Sn its
sinks. For S =

⋃
Si, a fresh node nx /∈ N, and given for each sink

Si a representative node si ∈ Si, let

GS = (NS, ES)

NS = {nx, s1, . . . , sn} ∪ (N \ S)

ES = {(n, m) | n→G m, n, m /∈ S}
∪ {(n, si) | n→G s for some s ∈ Si}
∪ {(si, nx) | 1 ≤ i ≤ n}

Then for nodes x, m ∈ N \ S:

m wG
SINK x ⇐⇒ m wGS

POST x

59

5 Postdominator Pseudoforests

and for x ∈ N \ S and m ∈ Si:

m wG
SINK x ⇐⇒ x ∈ Si ∨ si wGS

POST x

This immediately suggests Algorithm 7 for the computation of some
transitive reduction >SINK of wSINK

Input : A CFG G
Output: A transitive reduction >SINK of wSINK represented as a map

ISINKDOM : N ↪→ N s.t. ISINKDOM [n] = m iff n<SINKm
begin
{S1, . . . , Sn} ← {Sk | Sk ∈ scc (G) ,¬ ∃s→G n. s ∈ Sk, n /∈ Sk}
using any efficient scc algorithm.

S← ⋃
Si

for 1 ≤ i ≤ n do
si ← any node in Si

end
IPDOM← ipdom (GS) by any efficient postdominance algorithm
for graphs with unique end-node

for m ∈ N \ S do
ISINKDOM [n]← IPDOM [n]

end
for 1 ≤ i ≤ n do

n1, . . . , nk ← any ordering of Si
for 1 ≤ j ≤ k do

ISINKDOM
[
nj
]
← nj+1 mod k

end
end
return ISINKDOM

end
Algorithm 7: An algorithm for the computation of some <SINK.

Observation 5.4.2. Let G be any CFG. Then Algorithm 7 terminates
with a result <SINK s.t. >SINK is a transitive reduction of wSINK.

60

5.4 Reduction to Postdominance Trees

Remark 5.4.1. Wagner originally proposed to use the construction in
Observation 5.4.1 to compute →nticd directly, using any wPOST-control
dependence algorithm on GS. This is possible, as well.

Summary

• Nontermination sensitive and insensitive postdominance
wMAX and wSINK can be defined uniformly, as the least and
greatest fixed point of a single functional.

• wMAX and wSINK transitively reduce not to trees, but to
pseudoforests.

• These can be used to obtain least- and greatest fixed point
algorithms.

61

6 Order Dependence

When you want to know how things really work,
study them when they’re coming apart.

(William Gibson — Zero History)

In the context of this thesis, the ultimate purpose of control- and other
dependencies is to statically establish information flow security. In
fact it is well known that — given a CFG with unique exit node nx
— non-termination insensitive, batch-style non-interference is soundly
approximated by slicing w.r.t standard control dependence →cd and
data dependence →data (see, e.g., [Was10]). Informally, in this setting

IFC = (→cd ∪ →data)∗

Nontermination sensitive control dependence→ntscd and nontermina-
tion sensitive control dependence →ntscd were explicitly designed for
CFG without unique exit node nx, in the extended setting of interac-
tive, non-terminating programs. Ranganath et al. found that here, it is
not enough to move from standard control dependence →cd to →ntscd

or →nticd. In this setting, the attacker does not only see the values of
some program configurations at the termination of the program (i.e.:
when control flow reaches nx), but also observes events during exe-
cution of possibly never-terminating sections in the CFG (e.g., during
the execution of control sinks). Specifically, the attacker observes the
order of execution of some such nodes.

With regard to non-termination sensitive notions of IFC, in [Ran+07]
the authors define the ternary notion of decisive order dependence, writ-
ten n →dod (m1, m2), which formalizes the notion that n controls the
order in which two nodes m1, m2 are executed. Backward-Slicing w.r.t
→dod then proceeds along the rule

m1 ∈ S m2 ∈ S n→dod (m1, m2)

n ∈ S

63

6 Order Dependence

and in the nontermination sensitive setting, the authors show that
(informally):

IFC = BISIM = (→ntscd ∪ →dod ∪ →data)∗

by proving that any sliced program (w.r.t→ntscd,→dod,→data) is weakly
bi-similar to it’s unsliced original program.

As for the nontermination insensitive setting, in [Amt08] the authors
define a ternary notion of weak order dependence, written n →wod
(m1, m2), and then establish in this setting:

SIM = (→wod ∪ →data)∗

i.e.: they show that the sliced program (w.r.t →wod,→data) can weakly
simulate the unsliced original program (but not the other way around,
because the original program may get stuck in an infinite loop without
observable actions, while the sliced program can proceed because the
loop was sliced away).

In Section 6.1, I review →dod, and then observe how those regions of
a graph in which →dod is non-empty can be characterized in terms of
nontermination-sensitive postdominance >MAX. This leads to practical
algorithm for the computation of →dod.

Then in Section 6.2, I propose the new nontermination sensitive order
dependence relation →ntsod which can substitute for →dod during slic-
ing, but is often smaller and more efficient to compute than →dod.

In Section 6.3, I quickly review the bisimulation soundness criterion
for nontermination sensitive slicing in labeled control flow graphs from
[Ran+07], and then propose a new trace based soundness criterion for
nontermination sensitive slicing in unlabeled graphs. With regard to
this criterion, the slices obtained from→ntsod and→dod (together with
→ntscd) will not only be sound but also minimal.

64

Later in Section 6.4, I will argue that →wod is not appropriate for the
purpose of information flow control, both for principal and for prac-
tical reasons. In particular:

• There exist always-terminating programs for which the
→wod,→data backward slice of publicly “observable” nodes con-
tain no private nodes, yet still, intuitively, private information is
leaked.

• The relation →wod is very large even for CFG with unique exit
node nx.

Because it is difficult to formulate a trace-based soundness criterion
for nontermination insensitive slicing, I first suggest in Section 6.5 a
simple criterion based on the notion of next observable nodes.

Only then in Section 6.6 I offer my attempt to actually define a trace
based criterion for nontermination insensitive slicing, using a notion
of infinite delay.

In Section 6.7 I define nontermination insensitive order dependence
(→ntiod) such that in the non-termination insensitive setting

IFC = INFDEL = NEXTOBS = (→nticd ∪ →ntiod ∪ →data)∗

The relation →ntiod will in practice be much smaller than →wod. In
particular, and unlike→wod, the relation→ntiod is empty for CFG with
unique exit node nx. The relation →ntiod may still become large for
CFG with large control-sinks, but at least I will provide an algorithm
for the computation of→ntiod that in practice scales no worse than this
size. This algorithm will be based on SINKdown of Algorithm 6 from
Section 5.2.

65

6 Order Dependence

Figure 6.1: The canonical irreducible graph, where neither n→ntscd m1 nor n→ntscd m2.

6.1 Decisive Order Dependence

In [Ran+07], the authors note that for graphs such the canonical ir-
reducible graph (Figure 6.1), nontermination sensitive control depen-
dence →ntscd is not enough to guarantee observational equivalence:
there, neither n →ntscd m1 nor n →ntscd m2, but — assuming that
both m1 and m2 are observable — the decision made at n will decide
whether the sequence m1, m2, m1, . . . or the sequence m2, m1, m2, . . . is
observed. In other words: An observer making either of these obser-
vations will learn what decision was made at n.

This is not merely a technical problem with →ntscd. In fact, no binary
(dependence) relation can precisely capture observable equivalence
for such graphs (also see: Observation 6.7.1 on page 99, or section 3.2
in [Ran+07]).

The authors remedy this by introducing the notion of decisive order
dependence, a ternary relation →dod where n →dod (m1, m2) iff n deci-
sively decides in which order m1 and m2 may be observed. In order
to state their formal definition, I need the following notation:

Definition 6.1.1. Given a path π, I write m1 wm2 π if π contains m1
before any occurrence of m2, i.e.:

• m1 ∈ π

• for the shortest prefix π0 of π such that m1 ∈ π0: m2 /∈ π0

66

6.1 Decisive Order Dependence

Definition 6.1.2 (→dod, ([Ran+07])). Let G be any CFG, and n, m1, m2
be distinct nodes. Then m1, m2 are decisively order dependent on n,
written: n→dod (m1, m2), iff

(a) All maximal paths from n contain both m1 and m2, i.e.:

m1 wMAX n and m2 wMAX n

(b) There exists some successor nl of n such that all maximal paths
πl starting in nl contain m1 before any occurrence of m2, i.e.:

∃n→G nl . ∀π ∈ nl ΠMAX. m1 wm2 π

(c) There exists some successor nr of n such that all maximal paths
πr starting in nr contain m2 before any occurrence of m1, i.e.:

∃n→G nr. ∀π ∈ nr ΠMAX. m2 wm1 π

The authors proof that →dod is no larger than it needs to be, in the
following sense:

Lemma 6.1.1 (([Ran+07]), Lemma 3). Let G be reducible. Then →dod

is empty.

Unfortunately, this does not characterize the “regions” where triples
n →dod (m1, m2) may be found if G is not reducible. But such a char-
acterization, presumably, is necessary for any efficient algorithm com-
puting →dod. I now give such a characterization.

Lemma 6.1.2. Let G be any CFG.

(i) Whenever n→dod (m1, m2), then

m1 wMAX m2 and m2 wMAX m1

67

6 Order Dependence

(ii) Whenever n→dod (m1, m2), and m wMAX n for m 6= n, then

m1 wMAX m and m wMAX m1

as well as
m2 wMAX m and m wMAX m2

(iii) Whenever n→dod (m1, m2), then

neither n wMAX m1 nor n wMAX m2

Proof: On page 358 in the appendix.

As shown before in Section 5.2, wMAX can be efficiently computed and
represented as transitive reduction >MAX, which turned out to be a
pseudo-forest. The situation in Lemma 6.1.2, rephrased in terms of
>MAX — is depicted in Figure 6.2, and formally reads:

Corollary 6.1.1. Let G be any CFG, and >MAX any transitive reduction
of wMAX.

For n →dod (m1, m2), let M = {m | m1<
∗
MAXm } = {m | m2<

∗
MAXm } be

the <MAX-cycle both m1, m2 are part of. Then

• n /∈ M

• n<MAXm for some m ∈ M.

68

6.1 Decisive Order Dependence

. . .

Figure 6.2: The situation in Corollary 6.1.1, exemplified. Given m1, m2 ∈ Mi , the set of
n such that n→dod (m1, m2) is contained in NMi .

6.1.1 Algorithms

In [Ran+07], the authors propose a semi-naive algorithm (Figure 7,
page 38) for the computation of →dod. As a subroutine, it implements
a check DEP (n, m1, m2)

1 such that

DEP (n, m1, m2) ⇐⇒ clauses (b), (c) in Definition 6.1.2 hold

The author then propose to compute2 →dod as the set of all triples
(n, m1, m2) such that

n ∈ COND, m1 →∗G m2, m2 6= m1, m2 →∗G m1, DEP (n, m1, m2) (6.1)

1

2

3

4

Let me first point out that this is incorrect in general. An
example is shown on the right. Here, ¬ 3 →dod (2, 4), since
while clauses (b) and (c) hold, clause (a) does not: Neither
2 wMAX 3 nor 3 wMAX 2.

1 originally: DEPENDENCE
2 via “generate-and-test” in the implied order

69

6 Order Dependence

The obvious fix is to replace the checks

m1 →∗G m2, m2 →∗G m1 by m1 wMAX n, m2 wMAX n

and obtain

n ∈ COND, m1, m2 wMAX n, m2 6= m1, DEP (n, m1, m2) (6.2)

but the authors do not provide an algorithm to check (let alone: enu-
merate such mi given n) this. Given my Algorithm 5 for the computa-
tion of some <MAX, however, this is both trivial.

Furthermore, Corollary 6.1.1 allows me to significantly reduce the
number of queries DEP (n, m1, m2). Let > be some transitive re-
duction of wMAX, and M be the set of <-cycles M, which are easily
enumerated given <. Also easily enumerated for each M is the set
NM = { n ∈ COND | n /∈ M, ∃m ∈ M. n < m }. The resulting scheme
— which can be further optimized by noting that →dod is symmetric
w.r.t m1, m2 — then is:

M ∈M, m1 6= m2 ∈ M, n ∈ NM, DEP (n, m1, m2) (6.3)

Using my own implementation of the algorithm DEP (which I will
not repeat, here), the empirical comparison of (6.2) and (6.3) confirms
Lemma 6.1.2:

Observation 6.1.1. Given any CFG, the relation computed via 6.2
equals that computed via 6.3.

Given a CFG G = (N, E), the complexity of DEP is, in [Ran+07], given
as O (|E| × |N| × log (|N|)).

The original (flawed) scheme (6.1) requires Θ
(
|N|3

)
queries to DEP,

while for my scheme (6.3), the number of queries is highest if the
maximal size

max
M∈M

|M|

70

6.1 Decisive Order Dependence

among <MAX-cycles M is maximized (since each M and NM are dis-
junct). Hence, the scheme (6.3) requires O

(
|N|2

)
queries to DEP, but

I claim that in CFG for virtually any programming language and any
but the most untypical program, maxM∈M |M| is much smaller than
|N|. This is because any <MAX-cycle M = {m1, . . . , mk} is just the spine
of a sub-cycle free control-sink, i.e., a G-subgraph of the form

...

71

6 Order Dependence

6.2 Nontermination Sensitive Order Dependence

I do not attempt to further improve upon the computation scheme
(6.3) for →dod I gave in Subsection 6.1.1.

Instead, in this section, I propose a new (indecisively) nontermination
sensitive order dependence relation →ntsod which, in the application
of information flow control, can be substituted for →dod. Informally:

(→ntscd ∪ →dod)∗ = (→ntscd ∪ →ntsod)∗

For this new relation →ntsod, I will give an efficient-in-practice algo-
rithm. This will be possible because I can rephrase →ntsod in terms
of →ntscd for certain subgraphs of G. Hence, I can once again use Al-
gorithm 1 for the computation of suitable generalized postdominance
frontiers, based on Algorithm 5 (or Algorithm 19).

Definition 6.2.1 (→ntsod). Let G be any CFG, and n, m1, m2 be distinct
nodes. Then m1 is nontermination sensitively order dependent on n
with respect to m2, written: n→ntsod (m1, m2), iff

(a) All maximal paths from n contain both m1 and m2, i.e.:

m1 wMAX n and m2 wMAX n

(b) There exists some successor nl of n such that all maximal
paths πl starting in nl contain m1 before any occurrence of m2,
i.e.:

∃n→G nl . ∀π ∈ nl ΠMAX. m1 wm2 π

(c) There exists some successor nr of n such that not all maximal
paths πr starting in nr contain m1 before any occurrence of m2,
i.e.:

∃n→G nr. ¬ ∀π ∈ nr ΠMAX. m1 wm2 π

72

6.2 Nontermination Sensitive Order Dependence

Note that (as opposed to →dod) this definition is not symmetric
in m1, m2. Also note that after holding fast m2, and subject to
the constraint (a), the binary relation · →ntsod (·, m2) follows the
scheme of w control dependence (established in Definition 3.1.2), us-
ing w = wMAX[m2] and the following notation:

Definition 6.2.2 (m1 wMAX[m2] n). Let G be some CFG.

m1 wG
MAX[m2]

n ⇔ ∀π ∈ nΠMAX. m1 wm2 π

A minor modification to the rule system D from Theorem 5.1.2 yields
the following rule system:

Proposition 6.2.1. Let G be a CFG, m2 any of it’s nodes, and Dm2 be
the rule-system

n 6= m2

n w n
Dself

m2

∀p→G x. m w x p→∗G m p 6= m2

m w p
Dsuc

m2

Then wMAX[m2] = µDm2 .

6.2.1 Comparison with Decisive Order Dependence

The relation →ntsod is meant to replace →dod. In fact, its symmetric
core is just →dod:

Observation 6.2.1. Let G be any CFG. Then

n→dod (m1, m2) ⇐⇒ n→ntsod (m1, m2) ∧ n→ntsod (m2, m1)

At the same time,→ntsod is not too large for application to information
flow control:

73

6 Order Dependence

Observation 6.2.2. Let G be any CFG, and assume n →ntsod (m1, m2),
but ¬ n →ntsod (m2, m1). Then there exists some n′ with both
n′ →ntsod (m1, m2) and n′ →ntsod (m2, m1) such that

n→∗ntscd n′

This observation immediately implies that slicing backwards from any
set M along →nticd, →dod is equivalent to slicing backwards along
→nticd, →ntsod. I use the following notation to state this as Proposi-
tion 6.2.2:

Definition 6.2.3. Given a binary relation · → · and a ternary relation
· ⇒ (·, ·) on nodes N, their backward slice — written (→ ·∪ ⇒)∗ —
is the function mapping any set M ⊆ N to the smallest set S ⊇ M
satisfying

n→ m m ∈ S
n ∈ S

n⇒ (m1, m2) m1 ∈ S m2 ∈ S
n ∈ S

I write both
(→)∗ f or (→ ·∪ ∅)∗

and (⇒)∗ f or (∅ ·∪ ⇒)∗

The following result directly follows from Observation 6.2.1 and Ob-
servation 6.2.2.

Proposition 6.2.2.

(→ntscd ·∪ →dod)∗ = (→ntscd ·∪ →ntsod)∗

Structural Properties

Structurally, the relation→ntsod is constrained to the very same regions
within >MAX that →dod is:

74

6.2 Nontermination Sensitive Order Dependence

Observation 6.2.3. Lemma 6.1.2 still holds after replacing all occur-
rences of n→dod (m1, m2) with n→ntsod (m1, m2).

6.2.2 An Algorithm Based on Nontermination Sensitive
Postdominance

Owing to Observation 6.2.3, I can limit the search for triples n →ntsod
(m1, m2) the same way I previously (in Subsection 6.1.1) did for→dod.
But I can do more: for fixed m2, the relation · →ntsod (·, m2) is es-
sentially wMAX[m2]-control dependence, with wMAX[m2] almost equal to
wMAX :

∀π ∈ ns ΠMAX. m1 wm2 π ⇔ m1 wMAX[m2] ns

instead of ∀π ∈ ns ΠMAX. m1 ∈ π ⇔ m1 wMAX ns

By choosing — given m2 — a suitable subgraph of G, it is not hard to
reduce wMAX[m2] in G to wMAX in the subgraph. To do this, I use the
following notation:

Definition 6.2.4. Let G = (N, E) be some CFG, n, m ∈ N, M ⊆ N.
Then I define

GM 6→ = (N, E \ { (m, n) | n ∈ N, m ∈ M })
Gm 6→ = G{m}6→

In other words: GM 6→ is the subgraph obtained from G by deleting all
outgoing edges of nodes in M.

N→
∗M = { n | ∃m ∈ M. n→∗G m } NM→∗ = { n | ∃m ∈ M. m→∗G n }

G→
∗M =

(
N→

∗M, E
∣∣

N→∗M

)
GM→∗ =

(
NM→∗ , E

∣∣
NM→∗

)
N→

∗m = N→
∗{m} Nm→∗ = N{m}→

∗

G→
∗m = G→

∗{m} Gm→∗ = G{m}→
∗

75

6 Order Dependence

G→
∗M is the subgraph of G consisting of those nodes that can reach

some node in M, and GM→∗ is the subgraph of G consisting of those
nodes that area reachable from some node in M.

G→
∗M

m 6→ =
(

G→
∗M
)

m 6→
GM1→∗M2 =

(
GM1→∗

)→∗M2

GM→∗
m 6→ =

(
GM→∗

)
m 6→

G→
∗M

M′ 6→ =
(

G→
∗M
)

M′ 6→

GM1→∗M2 is the “chop” subgraph of G between M1 and M2, and GM→∗
m 6→

is the graph obtained from G by retaining only those nodes that are
reachable from some node in M, and deleting all outgoing edges of
node m.

Observation 6.2.4. Let G = (N, E) be any CFG, and ns, m1, m2 ∈ N,
m1 6= m2. Then any maximal G-path starting in ns contains m1 before
any occurrence of m2 iff in the graph Gm2 6→ obtained by removing all
outgoing edges of m2, any maximal path starting in ns contains m1, i.e.:

m1 wG
MAX[m2]

ns ⇐⇒ m1 w
Gm2 6→
MAX ns

Combining Observation 6.2.3 and Observation 6.2.4 in a form suggest-
ing an algorithm, I make the following observation:

Observation 6.2.5. Let G = (N, E) be any CFG, > = >MAX any transi-
tive reduction of wG

MAX, M the set of <-cycles, and let — as before in
Figure 6.2 — for M ∈M the set of conditional nodes n /∈ M s.t. n < m
for some m ∈ M be denoted by NM.

Then, n→ntsod (m1, m2) if and only if in the CFG

Gm2 := GNM→∗M
m2 6→

m1 is →ntscd-control dependent on n, where M ∈ M is the <-cycle
containing both m1 and m2, i.e.:

n→ntsod (m1, m2) ⇔ ∃M ∈M. m1, m2 ∈ M ∧ n ∈ NM ∧ n→Gm2
ntscd m1

76

6.2 Nontermination Sensitive Order Dependence

Informally:

→ntsod ≈
(

∑
M∈M

|M|
)
× →ntscd

77

6 Order Dependence

6.3 Soundness of Nontermination Sensitive
Slices

In [Ran+07], the soundness criterion for nontermination sensitive slic-
ing requires a weak bisimulation between the original and sliced pro-
gram. The authors label CFG-nodes with statements reading and
modifying states σ ∈ Σ, and assume a corresponding CFG-execution
semantics G ` s → s′ for s, s′ ∈ N × Σ. Given a set S of (observable)
nodes, they differentiate between S-visible, and silent (τ) transitions:

Definition 6.3.1 ([Ran+07], Definition 20).

• for s = (n, σ), G ` s n7−→ s′ iff G ` s→ s′ ∧ n ∈ S

• for s = (n, σ), G ` s τ7−→ s′ iff G ` s→ s′ ∧ n /∈ S

• G ` τZ==⇒ = G ` τ7−→∗

• G ` s nZ==⇒ s′′ iff G ` s τZ==⇒ s′, G ` s′ n7−→ s′′ for some s′

Furthermore, given a set S of nodes and statement-labeled CFG G, the
authors define the corresponding sliced (labeled) CFG GS such that
labels remain unchanged for n /∈ S, and become no-ops3 for n ∈ S.

Then, the authors show that, for S closed under →ntscd, →data, →dod,
there exists some weak bisimulation R between G and GS, i.e. a binary
relation R on configurations s such that:

• If s1 R s2 and G ` s1
τ7−→ s′1, then GS ` s2

τZ==⇒ s′2 for some s′2
such that s′1 R s′2, and
if s1 R s2 and GS ` s2

τ7−→ s′2, then G ` s1
τZ==⇒ s′1 for some s′1

such that s′1 R s′2

• If s1 R s2 and G ` s1
n7−→ s′1, then GS ` s2

nZ==⇒ s′2 for some s′2
such that s′1 R s′2, and

3 i.e.: operations that leave the state component σ unchanged

78

6.3 Soundness of Nontermination Sensitive Slices

if s1 R s2 and GS ` s2
n7−→ s′2, then G ` s1

nZ==⇒ s′1 for some s′1
such that s′1 R s′2

Thanks to Proposition 6.2.2, the same holds for S closed under→ntscd,
→data, →ntsod, so I am almost ready to conclude my treatment of non-
termination sensitive order dependencies.

Before I do that, however, I will observe that in the simplified setting
of unlabeled CFG (i.e.: those without statements), slicing w.r.t →ntscd,
→ntsod (but not: →data, since data dependencies no longer make sense)
satisfies a different trace based criterion.

The advantages of this criterion will be that

1. At least for very small CFG4 (|N| ≤ 25), it can be exhaustively
tested.

2. It will turn out that — with regards to this criterion — slices will
not only be sound, but also minimal. 5

Definition 6.3.2. Let G be any (unlabeled) CFG, and Nx =
{ nx | ¬∃m.n→G m } be the set of exit nodes. An input i to G is a pair
i = (ne, ε) of a node ne (the entry node) and a map ε : CONDG → N
(the choice made by i at n) such that n →G ε (n) for all conditional
nodes n.

Given input i, the deterministic transition relation

• G, i ` n→ n′ if n′ = ε (n) for n ∈ CONDG

• G, i ` n→ n′ if n→G n′ for n /∈ CONDG

4 and sets of nodes S arising as backward slides from small slicing criteria M ⊆ S
5 presumably, →ntscd, →data, →ntsod-slices are also minimal for statement-labeled CFG

up to the def-use abstraction, i.e.: whenever n ∈ S, there exists some labeling for the
same CFG with the same def- and use sets such that the newly-labeled CFG behaves
observably differently for two observably-equivalent inputs. A corresponding result
for syntax-tree based slicing is given [Dan+05], but I am unaware of any prior result
with regard to the slicing of arbitrary CFG.

79

6 Order Dependence

determines a unique (possibly infinite) path in G

πG
i = ne, . . .

such that n ∈ CONDG implies n′ = ε (n) for any two consecutive nodes
n, n′.

Similarly, it determines a unique sequence tG
i of partial edges

(n, n′) ∈ E ∪ (Nx × {⊥}) that is either finite with — for some exit
node nx —

tG
i = (ne, n1) , (n1, n2) , . . . , (nk, nx) , (nx,⊥)

or infinite with

tG
i = (ne, n1) , (n1, n2) , . . .

such that n ∈ CONDG implies n′ = ε (n) for any edge (n, n′). I call such
sequences traces.

Remark 6.3.1. Given such an input i, the trace ti in G is uniquely de-
termined. This is not so different from models of labeled CFG with
deterministic state transitions at non-conditional nodes, and mutually
exclusive (and: usually exhaustive) choices (depending on state σ)
made at conditional nodes. Usually in those models, the entry node
ne is fixed, and the input consists of an initial state σ0.

Definition 6.3.3. Given an input i = (ne, ε) to G and a set S of (“ob-
servable”) nodes, the S-observable input i

∣∣
S of i is the restriction(

ne, ε
∣∣
S

)
of the choices ε to nodes S. Furthermore, two inputs i, i′

in G are called S-equivalent, and I write i ∼S i′, iff

i
∣∣
S = i′

∣∣
S

Definition 6.3.4. Given a (possibly infinite) sequence t of partial
edges, and a set S of (observable) nodes, the S-observable sub-
sequence t

∣∣
S of t is obtained from t by removing any occurrences

80

6.3 Soundness of Nontermination Sensitive Slices

of (partial) edges (n, _) s.t. n /∈ S from t (possibly transforming an
infinite sequence into a finite).

Furthermore, two traces t, t′ in G are called nontermination sensitively
S-equivalent, and I write t ∼S t′, iff

t
∣∣
S = t′

∣∣
S

Because in this “stateless” notion of input and execution of CFG,
choices ε (n) made at n ∈ COND are deterministic (depending only
on n, and not on some state σ), any path πi is either

• a finite path of the form

πfin = ne, . . . , nx

for some nx such that ¬ nx →G , or

• an infinite path of the form

πinf = ne, . . . , n︸ ︷︷ ︸
πfin,0

, π, π, . . .

with a finite prefix πfin,0 and an infinitely-repeating, finite and
minimal cycle-segment π, i.e.: a path

π = n′, . . . , m

with no node occurring twice, and such that n→G n′ and m→G
n′

This fact allows me, given any input i, to finitely6 represent its exe-

cution path πi via γ
(

π f in

)
= π f in and γ

(
π f in,0, π

)
= πin f . I can

represent any execution trace ti similarly.

6 and: uniquely

81

6 Order Dependence

It is self-evident that, given such a finite representation of some t, the
finite representation of t

∣∣
S can be efficiently computed. Also, as will

be required later, it can be efficiently checked whether t vT t′, i.e.:
whether t is a prefix of t′, and the finite representation of the concate-
nation t t′ can be computed efficiently, with tt′ = t if t is infinite.

In summary, I can confirm the following observation empirically:

Observation 6.3.1 (Soundness of →ntsod,→ntscd). Let G be any CFG,
and M ⊆ N a set of nodes (the slicing criterion). Let S =
(→ntscd ·∪ →ntsod)∗ (M) be the backward slice w.r.t M. Then, for any
inputs i, i′ such that

i ∼S i′

I have
ti ∼S ti′

Observation 6.3.2 (Minimality of →ntsod,→ntscd). Let G be any CFG,
and M ⊆ N a set of nodes (the slicing criterion). Let S =
(→ntscd ·∪ →ntsod)∗ (M) be the backward slice w.r.t M. Then, for any
n ∈ S, n /∈ M and S′ = S \ {n}, there exist inputs i, i′ such that

i ∼S′ i′

but:
¬ ti ∼S′ ti′

The fact that →ntscd, →ntsod slices are minimal also retrospectively
establishes that in fact, some kind of ternary dependence relation is
required, and there is not merely a problem with the binary rela-
tion →ntscd. To show why, I repeat in Figure 6.3 the canonical ir-
reducible graph from Figure 6.1. Assume that there exists some
binary relation →xcd such that for all slicing criteria M, the slice
(→xcd)∗ (M) is sound and minimal. For M = {m1, m2}, I then have
(→xcd)∗ (M) = {n, m1, m2}. Since →xcd is binary, then necessarily
n→xcd m1 ∨ n→xcd m2. But if n→xcd m1, then for the alternative

82

6.3 Soundness of Nontermination Sensitive Slices

Figure 6.3: Neither n →ntscd m1 nor n →ntscd m2, but n →ntsod (m1, m2) and n →ntsod
(m2, m1).

slicing criterion M′ = {m1}, I have (→xcd)∗ (M′) ⊇ {n, m1}, which
is not minimal, since (→ntscd ·∪ →ntsod)∗ (M′) = {m1}.

Observation 6.3.3. Let G = (N, E) be the canonical irreducible graph
from Figure 6.1 on page 66. Then there exists no binary relation →
such that for all M ⊆ N

(→)∗ (M) = (→ntscd ·∪ →ntsod)∗ (M)

Remark 6.3.2. I must stress that when applying slicing (be it nontermi-
nation sensitive or not) for the purpose of information flow control,
the set S of nodes deemed observable will usually not be implicitly
defined to be the slice S = (. . .)∗ (M) of some criterion M. Instead,
the set of observable nodes will remain fixed and fully determined
by a user-provided specification, and not depend on the chosen slic-
ing technique. For example, the user might provide a set L of nodes
deemed public (or: low observable), and a disjoint set H of secret (or:
high-observable) nodes. Slicing will then determine whether

h ∈ (. . .)∗ (L)

for some h ∈ H, in which case I must expect some inputs i, i′ with
different choices ε (h) 6= ε′ (h) made at h made such that

i ∼L i′

83

6 Order Dependence

but:
¬ ti ∼L ti′

If, on the other hand, no such h exists, i will conclude that any (L-
observable) difference between ti

∣∣
L and ti′

∣∣
L is purely due to different

choices ε (x) 6= ε′ (x) made at nodes x /∈ H (i.e.: that are not consid-
ered high), and hence that any L-observer cannot learn choices made
at h ∈ H.

84

6.4 Weak Order Dependence

6.4 Weak Order Dependence

In this and the following sections, I turn from nontermination sensitive
notions of order dependency to nontermination insensitive notions.
The first such notion for arbitrary CFG was proposed in [Amt08]:

Definition 6.4.1 (→wod). Let G be any CFG, and n, m1, m2 be nodes.
Then m1, m2 are weakly order dependent on n, written: n →wod
(m1, m2), iff

(a) There exists some path

π1 = n, . . . , m1 with m2 /∈ π1

(b) There exists some path

π2 = n, . . . , m2 with m1 /∈ π2

(c) There exists some successor n′ of n such that one of the following
holds:

• m1 is reachable from n′, and m1 ∈ π′1 for all paths

π′1 = n′, . . . , m2

• m2 is reachable from n′, and m2 ∈ π′2 for all paths

π′2 = n′, . . . , m1

Note that n →wod (m1, m2) implies that n, m1, m2 are distinct. Also
note that — unlike →dod and →ntsod —, nodes such that n →wod
(m1, m2) are not constraint to any particular regions of the CFG (e.g.,
n →wod (m1, m2) does not, in general, imply that m1 wSINK m2 and
m2 wSINK m1, or similar). In fact, →wod is designed to “cover” the
whole CFG, in the sense that slicing is meant not to additionally re-

85

6 Order Dependence

quire closure w.r.t→nticd (unlike slicing with→dod, which additionally
required closure under →ntscd).

Assuming a statement-labeled CFG (see: Definition 6.3.1 etc. pp.), the
authors proceed to show that, for S closed under →data, →wod, there
exists some weak simulation R between G and GS (i.e.: the labeled
graph obtained from G by replacing statements of nodes n /∈ S with
no-ops):

• If s1 R s2 and G ` s1
nZ==⇒ s′1, then GS ` s2

nZ==⇒ s′2 for some s′2
such that s′1 R s′2.

The key difference between this result and the corresponding result
for nontermination sensitive slicing is that there, the original and the
sliced graph were (weakly) bi-similar, i.e.: any observable step in the
original graph could be matched in the sliced graph and vice versa,
while weakly similarity for nontermination insensitive slicing as just
stated does not demand observable steps in the sliced graph to be
matched in the original graph, because non-termination may have
been “sliced away”.

While this simulation-based correctness-notion is appropriate for
batch-style non-interference for CFG with unique exit node nx (see, e.g.,
[Was10] for formal proof), and while some notions of non-interference
that allow observations before a programs termination are similar,
(e.g.: TINI in [Ask+08]), I find it unsatisfactory because under this no-
tion, even always-terminating programs may leak (even: “more than
a bit”). To see this, consider Figure 6.4a, and imagine this to be the
CFG of the program that at each conditional node ni tests h == i for
some secret input variable h. Also, let M = {m1, . . . , mk} be the set
of observable node. Then the observable trace of this CFG (assuming
entry node ne = n1) is

(m1, n2) , . . . , (mi, ni+1) iff the input to h is i,

86

6.4 Weak Order Dependence

...

(a) The CFG of an always-
terminating program

...

(b) The CFG of a possibly non-
terminating program

Figure 6.4: The CFG of a program that leaks more than a bit

but it is easy to see that the simulation criterion holds for S = M. In
fact, for any pair mi, mi′ ∈ M, there exist no n ∈ N such that n →wod
(mi, mi′), so the set

S = M = (→data ·∪ →wod)∗ (M)

is closed under →data, →wod.

Remark 6.4.1. The example in Figure 6.4a can be understood to para-
phrase the example Program 2 from [Ask+08], show in Figure 6.5. I
essentially unrolled the for loop, and replaced the while loop with a

87

6 Order Dependence

1 for i = 0 to k (
2 output i on public_channel
3 if (i = secret) then (while true do skip)
4)

Figure 6.5: Example from [Ask+08]

transition to an exit node nx
i . In the light of this, I concede that my

misgivings of the simulation criterion are possibly not fundamental,
since it appears that any always-terminating, leaking program satisfy-
ing the simulation criterion that involves multiple exit nodes nx

i can
be transformed back into a program which any reasonable nontermi-
nation insensitive criterion must accept, simply by replacing nx

i with
a loop, exiting into mi (see, e.g., Figure 6.4b).

88

6.5 Soundness of Nontermination Insensitive Slices

6.5 Soundness of Nontermination Insensitive
Slices

So how can I characterize what nodes – in my opinion – are missing
in →wod slices? To do this, let me first recall (from [Amt08]) the no-
tion and property of next observable nodes crucial for establishing the
simulation property of →wod,→data slices. That notion captures the
following intuition: once an “unobservable region” is reached during
execution, any decision made in this region (e.g., at nodes n within
that region) shall have no influence on which other node is observed
next when leaving this region — since otherwise, observing some
node m instead of another (a priori possible) possible node m′ will
tell an observer which decision was made at n.

Definition 6.5.1 ([Amt08], Definition 3). Given a CFG G, a node n, and
a set S of nodes, the set obsG

S (n) of next-observable nodes is the set of
nodes m ∈ S with the property that in G there exists a non-empty path
π = n1 . . . , nk with n1 = n and nk = m such that ni /∈ S for 1 ≤ i < k.

Note that for n ∈ S, obsG
S (n) = {n}.

Lemma 6.5.1 ([Amt08], Lemma 5). Let G be any CFG, and assume
that S is closed under →wod. Then for all n in G, obsG

S (n) is at most
singleton.

This property is so crucial to the correctness of slicing that other au-
thors, in effect7, take it to be the definition of correctness.

Definition 6.5.2 (adapting [Dan+11], Definition 34 and Definition 9).
A node n /∈ S is S-weakly committing in G if obsG

S (n) is at most a
singleton.

Definition 6.5.3 (adapting [Dan+11], Definition 35). A set S ⊆ N is
weakly control closed in G = (N, E) iff all vertices n /∈ S reachable
from S are S-weakly committing in G.

7 see: [Dan+11], Theorem 45

89

6 Order Dependence

The additional new requirement I want to pose — which , in gen-
eral, does not hold for sets S closed under →wod (or, for that matter,
about weakly control closed sets S) — is the following: Once execution
reaches an S-unobservable region, no decision made in this region can
influence whether the region can eventually be left, or not.

Formally — since obviously obsG
S (n′) ⊆ obsG

S (n) whenever n →G n′

for n /∈ S — I propose:

Definition 6.5.4. Given a CFG G = (N, E), and a set of (“observable”)
nodes S, I say that a node n /∈ S retains all possible next observations iff

obsG
S (n) = obsG

S
(
n′
)

for all nodes n′ such that n→G n′.

I say that all possible next observations are retained outside S iff this is the
case for all n /∈ S.

Recalling Figure 6.4a for the set S = M = {m1, . . . , mk} closed un-
der →wod, you will find that S is weakly control closed, but that not
all possible next observations are retained outside S. For example,
obsG

S (n1) = {m1}, but after the step n1 →G nx
1 , I have obsG

S (n1) = ∅.

On the other hand in Figure 6.4a for the same set S = M =
{m1, . . . , mk}, not only is S is weakly control closed, but also all
possible next observations are retained outside S, since obsS

(
nε

i
)
=

obsS (l) = obsS (mi) = {mi}.
In general, the following holds:

Observation 6.5.1. If all possible next observations are retained out-
side S, then S is weakly control closed.

I propose that a slice S is to be deemed nontermination insensitively
sound if all possible next observations are retained outside S. This cri-
terion has a somewhat syntactic flavor: it does not explicitly reference
some notion of execution of the graph G. Instead, it is directly stated

90

6.5 Soundness of Nontermination Insensitive Slices

...

Figure 6.6: A CFG with infeasibly large →wod.

in terms of reachability in the graph. Contrast this with Section 6.3.
There, in the nontermination sensitive case, I gave a notion of input
and executions (“traces”), and used a notion of trace-equivalence to
give a soundness (and minimality) criterion for control slices. In other
words, I gave a semantic criterion.

In an attempt to obtain a semantic criterion for control slices also in
the nontermination insensitive case, in Section 6.6 I propose a similar,
trace-based notion of execution in arbitrary graphs.

Then in Section 6.7, I will propose the new dependency notion→ntiod.
Slices S w.r.t. →nticd,→ntiod will not only be weakly control closed,
but all possible next observations outside S will be retained, as well.
They will also be minimal along all such slices. More importantly,
though,→ntiod will address the following criticism of→wod as a foun-
dation for practical slicing: Since it “covers” the whole CFG, and since
it is a ternary relation, explicit representations of →wod become infea-
sibly large even for graphs with unique exit node nx. To get an Idea,
consider Figure 6.6. Not only do I have n →wod (m1, m2), but in fact
n→wod (m1, m′2) for all m′2 /∈ {n, m1}.

91

6 Order Dependence

6.6 A Trace-Based Notion of Infinite Delay

What is an appropriate “semantic” notion of nontermination insensi-
tive slicing correctness? In this chapter, I will give a notion which I
find satisfying for the “stateless” notion8 of input and execution for
CFG from Section 6.3. I consider this result preliminary, if only for the
fact that it is not obvious to me how this notion can be generalized to
a more traditional stateful notion of input and execution.

Reconsider Figure 6.4b. In the stateless notion of execution, consider
inputs i = (n1, ε) with entry node n1. Then, if ε

(
nj
)
= mj for all j, the

execution trace ti is

(n1, m1) , (m1, n2) , . . . , (nk, mk) , (mk, nk+1) , (nk+1,⊥)

If, on the other hand, ε
(
nj
)
= nε

j for some j, the choice ε
(

nε
j

)
made at

nε
j determines whether an execution reaching nj can continue towards

mj, or if it infinitely delays this continuation by choosing ε
(

nε
j

)
= lj.

Suppose, again, that M = {m1, . . . , mk} is the set of observable nodes.
Then — as was the case for Figure 6.4a — any observable trace is of
the form

ti
∣∣

M = (m1, n2) , . . . ,
(
mj, nj+1

)
with

j = k and ti = . . . ,
(
mj, nj+1

)
,
(

nk+1, nε
k+1

)
or ti = . . . ,

(
mj, nj+1

)
,
(

nj+1, nε
j+1

)
, t, t, t, . . .

and
t =

(
nε

j+1, lj+1

)
,
(

lj+1, nε
j+1

)

8 i.e.: with execution steps between configurations consisting only of nodes n instead
of pairs (n, σ) with variable state σ.

92

6.6 A Trace-Based Notion of Infinite Delay

Also: the only (“up to infinite delay”) possible observable continua-
tions of ti

∣∣
M are

t′
∣∣

M = ti
∣∣

M ,
(
mj+1, nj+2

)
t′′
∣∣

M = ti
∣∣

M ,
(
mj+1, nj+2

)
,
(
mj+2, nj+3

)
...

= ti
∣∣

M ,
(
mj+1, nj+2

)
,
(
mj+2, nj+3

)
, . . . , (mk, nk+1)

and form a prefix-chain

ti
∣∣

M vT t′
∣∣

M vT t′′
∣∣

M vT . . .

Let me — by example — explain how these infinitely delayed obser-
vations can be explained. Consider the observation t′

∣∣
M. It can be

obtained as the concatenation of the finite observation ti
∣∣

M with an
observation ti′

∣∣
M determined by an input i′ = (n′e, ε′) which “breaks

out of the loop”: i′ starts the execution at some node n′e in the loop L
which infinitely delays the observation

(
mj+1, nj+2

)
, i.e.:

n′e ∈ L =
{

nε
j+1, lj+1

}
and then makes choices ε′ observably-consistent with those made by i,
i.e.

ε′
∣∣

M = ε
∣∣

M

For example:

ε′ (n) =

mj+1 for n = nε

j+1

nε
j+2 for n = nj+2

lj+2 for n = nε
j+2

ε (n) otherwise

93

6 Order Dependence

where the first choice breaks out of the loop L, while the next two
choices force the execution to remain in the following loop L′ =
{nε

j+2, lj+2}.
Definition 6.6.1. Let G be any CFG, M be any set (of observable

nodes), and i = (ne, ε) any input to G. Then the set T ω,G
i

∣∣∣
M

(or just

T ω
i

∣∣
M) of observable behavior up to infinite delay is defined to be{

ti
∣∣

M

}
if ti is finite

{
ti
∣∣

M ti′
∣∣

M

∣∣∣ i′ = (n′e, ε′) , ε′
∣∣

M = ε
∣∣

M, n′e ∈ t
}

if ti is infinite

where for infinite ti:

ti =
(
ne, n′

)
, . . . , t, t, t, . . .

for some finite prefix followed by the infinitely repeating cycle t.

Obviously, ti
∣∣

M ∈ T ω
i

∣∣
M and ti

∣∣
M vT t for all t ∈ T ω

i

∣∣
M.

Definition 6.6.2. Let G be any CFG, M be any set (of observable
nodes), and i, i′ two inputs G. Then input i, i are said to have M-
equivalent observable behavior up to infinite delay iff the observable be-
havior up to infinite delay of i and i′ form non-disjoint vT -ascending
chains.

Formally: i ∼ω
TM

i′ iff

(a) T ω
i

∣∣
M = {t1, t2, t3, . . .} with t1 vT t2 vT t3 vT . . .

(b) T ω
i′
∣∣

M =
{

t′1, t′2, t′3, . . .
}

with t′1 vT t′2 vT t′3 vT . . . and

(c) T ω
i

∣∣
M ∩ T ω

i′
∣∣

M 6= ∅

The requirement item (c) appears to be remarkably permissive. Why
can I not demand T ω

i

∣∣
M = T ω

i′
∣∣

M? Or, for example,

T ω
i
∣∣

M ⊆ T ω
i′
∣∣

M ∨ T ω
i′
∣∣

M ⊆ T ω
i
∣∣

M

94

6.6 A Trace-Based Notion of Infinite Delay

Figure 6.7: Infinite observable behavior up to infinite delay

To see why, consider Figure 6.7, for M = {m}, i = (ne, ε), i′ = (ne, ε′)
and

ε (ne) = nε ε (nε) = nε

ε′ (ne) = m ε′ (nε) = nε

and thus
ti
∣∣

M = and ti′
∣∣

M = (m, nε)

Intuitively, both inputs have just the same observable behavior up to
infinite delay: an infinite sequence t = (m, nε) , (m, nε) , But
formally

T ω
i
∣∣

M = {t, } and T ω
i′
∣∣

M = {t, (m, nε)}

Neither are these sets of observable traces the same, nor is one a subset
of the other.

6.6.1 Other Criteria for Nontermination Insensitive Slicing

Aside from my two new notions (Definition 6.5.4 in Section 6.4 and
Definition 6.6.2 in this section) and the simulation criterion (Sec-
tion 6.4), several other approached defining correctness for nonter-
mination insensitive slicing are possible.

95

6 Order Dependence

In his thesis [Gif12], Dennis Giffhorn, too, proposes a notion of infinite
delay in order to define low-equivalence between traces. Unlike the
notions I developed in this section, Giffhorns definitions resort to the
notion of dynamic control dependence, which, in turn resorts to (stan-
dard) control-dependence for CFG with unique end node. Hence, his
notions presuppose that (dynamic) control dependence are appropriate
to specify the meaning of infinite delay. I, on the other hand, devel-
oped the notions in this chapter in order to establish the adequacy of
the notion of →ntiod (to be defined in the following section) for the
application of slicing of arbitrary CFG, and hence needed to give a
criterion only based on observable traces ti

∣∣
M.

Other notions are based on transfinite semantics of programs. In such
semantics, for example, the program

1 x = 0;
2 while(true) {
3 x = 1;
4 }
5 x = 2;

might be assigned the transfinite state-sequence

[x 7→ 0] , [x 7→ 1] , [x 7→ 1] , . . .︸ ︷︷ ︸
ω

, [x 7→ 2]

corresponding to the ordinal ω + 1. Correctness of nontermination
insensitive slicing then demands some correspondence between the
transfinite semantics of the original and the transfinite semantics of
the sliced program. In the example, slicing w.r.t x at the programs
end and obtaining the program x = 2 with the semantics [x 7→ 2] is
considered correct. For details, see, e.g., [GM03], and [Bar+10] for a
critique.
In fact, my notion T ω

i

∣∣
M of infinite delay can be understood as an

ad-hoc “finitization” of a poor-mans transfinite semantic: instead of
considering actual transfinite sequences, I consider all possibilities of
short-cutting loops in and behind an infinite trace ti with finite obser-
vation ti

∣∣
M.

96

6.7 Nontermination Insensitive Order Dependence

6.7 Nontermination Insensitive Order
Dependence

In this section, I develop a nontermination insensitive notion of or-
der dependence. At first glance, this section is just a variation on
Section 6.2, in which I developed a new notion of nontermination
sensitive order dependence. Following the least-/greatest fixed point
duality (Section B.2), I will mostly replace

nontermination sensitivity with nontermination sensitivity
µ with ν

wMAX with wSINK

>MAX with >SINK

→ntscd with →nticd

m1 wMAX[m2] n with m1 wSINK[m2] n
→ntsod with →ntiod

However, there will also be the following differences w.r.t. Section 6.2:

• The nodes n s.t. n→ntiod (m1, m2) will not be restricted to nodes
NM “near the roots M of <SINK”, but also appear within those roots
M s.t. m1, m2 ∈ M.

• It is not plausible to argue that such roots M (i.e.: such <SINK

cycles) are, in practice, small. In fact, given any CFG G0 with
unique entry and exit nodes ne, nx, the graph G with edges E =
E0 ∪ (ne, nx) will yield a >SINK-cycle M = N.

• Since with regards to the computation of →ntiod, I will (“again”)
have

→ntiod ≈
(

∑
M∈M

|M|
)
× →nticd

I devise schemes that allow me — given m2 ∈ M and the

postdominance-tree >
Gm2
SINK for one subgraph Gm2 — to compute

97

6 Order Dependence

(a) Neither n →nticd m1 nor
n→nticd m2.

1

2

10

36

4 9

1214

5

7

8

11

13

(b) Not: 7 →nticd 11 (nor
11→nticd 13, 7→nticd 13)

Figure 6.8: →nticd is too small with respect to nontermination insensitive slicing
.

the postdominance-tree >
Gm′2
SINK for some other subgraph Gm′2

in-

crementally, by (minimally) modifying >
Gm2
SINK .

As argued in Section 6.4, I reject slicing w.r.t. →wod on the grounds
that such slices are too small, since outside such slices, in general, pos-
sible next observations are not retained. My goal can only be then to
devise a new notion →ntiod such that

(→nticd ∪ →ntiod)∗ ⊇ (→wod)∗

but not much larger.

The fact that some ternary relation is required can (as earlier for non-
termination sensitive slicing) be demonstrated via the canonical ir-
reducible CFG (Figure 6.8a), but also in the reducible CFG from Fig-
ure 6.8b. Specifically,→nticd is too small, but even more: no binary (de-
pendence) relation →xcd precisely characterizes nontermination sen-
sitive slicing in those CFG. Consider Figure 6.8b. Intuitively, I would
want 7 →xcd 11. But if 11 is the only observable node, then all ob-
servable traces reaching 6 are of the form 11, 11, . . ., and hence a slice

98

6.7 Nontermination Insensitive Order Dependence

including 7 would be imprecise. On the other hand I would need some-
thing like 7→xcd 11 as soon as, for example, node 8 is also observable.

Observation 6.7.1. Let G = (N, E) be either of the CFG from Figure 6.8
(or: the subgraph G

∣∣
{6,7,8,11,13} of Figure 6.8b). Then there exists no

binary relation→xcd such that for all M ⊆ N

(→xcd)
∗ (M) = (→wod)∗ (M)

The same observation will hold for →wod replaced with →nticd ·∪
→ntiod.

Definition 6.7.1 (→ntiod, corresponding to Definition 6.2.1). Let G be
any CFG, and n, m1, m2 be distinct nodes. Then m1 is nontermination
insensitively order dependent on n with respect to m2, written:
n→ntiod (m1, m2), iff

(a) All sink paths from n contain both m1 and m2, i.e.:

m1 wSINK n and m2 wSINK n

(b) There exists some successor nl of n such that all sink paths
πl starting in nl contain m1 before any occurrence of m2, i.e.:

∃n→G nl . ∀π ∈ nl ΠSINK. m1 wm2 π

(c) There exists some successor nr of n such that not all sink paths
πr starting in nr contain m1 before any occurrence of m2, i.e.:

∃n→G nr. ¬ ∀π ∈ nr ΠSINK. m1 wm2 π

Again (and as opposed to →wod), this definition is not symmetric in
m1, m2. Also note again that after holding fast m2, and subject to the
constraint (a), the relation · →ntiod (·, m2) follows the scheme of w
control dependence (see Definition 3.1.2).

99

6 Order Dependence

Definition 6.7.2 (m1 wSINK[m2] n, corresponding to Definition 6.2.2).
Let G be some CFG.

m1 wG
SINK[m2]

n ⇔ ∀π ∈ nΠSINK. m1 wm2 π

As expected, wMAX[m2] is not the least but the greatest fixed point of a
suitable rule system.

Proposition 6.7.1. Let G be a CFG, m2 any of its nodes, and
Dm2 be the rule-system from Proposition 6.2.1 on page 73. Then
wSINK[m2] = νDm2 .

Comparison with Weak Order Dependence

The relation →ntiod (together with →nticd) is meant to replace →wod.
In fact, it is a subset:

Observation 6.7.2. Let G be any CFG. Then

n→ntiod (m1, m2) ⇒ n→wod (m1, m2)

Remember that →wod “covers” the whole CFG, while →ntiod is meant
to “cover” only those regions not covered by →nticd, i.e.: the control
sinks. Also remember that →wod is symmetric, while →ntiod is not.

In the other direction the situation is as follows:

Observation 6.7.3. Let G be any CFG, and assume

n→wod (m1, m2)

Then
n→ntiod (m1, m2) ∨ n→∗nticd m1

∨ n→ntiod (m2, m1) ∨ n→∗nticd m2

100

6.7 Nontermination Insensitive Order Dependence

Corollary 6.7.1.

(→wod)∗ ⊆ (→nticd ·∪ →ntiod)∗

For example in Figure 6.4a on page 87 and with M = {m1, . . .},
the slice (→wod)∗ (M) contains only the nodes M, while the slice
(→nticd ·∪ →ntiod)∗ (M) additionally contains the nodes {n1, . . .}. This
is required by Definition 6.5.4, since if these nodes were missing, the
slice would not retain next-observable nodes. Similarly in Figure 6.8b
and with M = {8, 11}, the slice (→wod)∗ (M) contains M and node 7,
while (→nticd ·∪ →ntiod)∗ (M) additionally contains the nodes {1, 2}.

Structural Properties

In support of algorithms for nontermination insensitive order depen-
dence →ntiod, I now characterize the regions in which →ntiod is non-
empty.

Observation 6.7.4 (corresponding to a weakening of Lemma 6.1.2). Let
G be any CFG.

(i) Whenever n→ntiod (m1, m2), then

m1 wSINK m2 and m2 wSINK m1

(ii) Whenever n→ntiod (m1, m2), and m wSINK n for m 6= n. Then

m1 wSINK m and m wSINK m1

as well as
m2 wSINK m and m wSINK m2

As shown before, wSINK can be efficiently computed and represented
as transitive reduction >SINK, which turned out to be a pseudo-forest.

101

6 Order Dependence

. . .

Figure 6.9: The situation in Corollary 6.7.2, exemplified. Given m1, m2 ∈ Mi , the set of
n such that n→ntiod (m1, m2) is contained in NMi .

The situation in Observation 6.7.4, rephrased in terms of >SINK — is
depicted in Figure 6.9, and formally reads:

Corollary 6.7.2 (corresponding to a weakening of Corollary 6.1.1). Let
G be any CFG, and >SINK any transitive reduction of wSINK.

For n→ntiod (m1, m2), let M = {m | m1<
∗
SINKm } = {m | m2<

∗
SINKm } be

the <SINK-cycle both m1, m2 are part of. Then

• n<SINKm for some m ∈ M.

6.7.1 An Incremental Algorithm Based on Nontermination
Insensitive Postdominance

Owing to Observation 6.7.4, I can limit the search for triples
n→ntiod (m1, m2) the same way I previously did for →dod. But, just
as was the case for →ntsod, I can do more: for fixed m2, the rela-

102

6.7 Nontermination Insensitive Order Dependence

tion · →ntiod (·, m2) is essentially wSINK[m2]-control dependence, with
wSINK[m2] almost equal to wSINK: I have

∀π ∈ ns ΠSINK. m1 wm2 π ⇔ m1 wSINK[m2] ns

instead of ∀π ∈ ns ΠSINK. m1 ∈ π ⇔ m1 wSINK ns

Again, by choosing — given m2 — a suitable subgraph G, it is not
hard to reduce wSINK[m2] in G to wSINK in the subgraph.

Observation 6.7.5 (corresponding to Observation 6.2.4). Let G =
(N, E) be any CFG, and ns, m1, m2 ∈ N, m1 6= m2. Then any G-sink-
path starting in ns contains m1 before any occurrence of m2 iff in the
graph Gm2 6→ obtained by removing all outgoing edges of m2, any sink-path
starting in ns contains m1, i.e.:

m1 wG
SINK[m2]

ns ⇐⇒ m1 w
Gm2 6→
SINK ns

Again, combining Observation 6.7.4 and Observation 6.7.5 in a form
suggesting an algorithm, I make the following observation:

Observation 6.7.6 (corresponding to Observation 6.2.5). Let G =
(N, E) be any CFG, > = >SINK any transitive reduction of wG

SINK, M

the set of <-cycles (i.e.: the set of control sinks), and let for M ∈ M

the set of conditional nodes n s.t. n < m for some m ∈ M be denoted
by NM.

Then, n→ntiod (m1, m2) if and only if in the CFG

Gm2 := GNM→∗M
m2 6→

m1 6= n is→nticd-control dependent on n, where M ∈M is the <-cycle
containing both m1 and m2, i.e.:

n→ntiod (m1, m2)⇔ ∃M ∈M.m1, m2 ∈ M ∧ n ∈ NM ∧ n→Gm2
nticd m1

∧ m1 6= n

103

6 Order Dependence

Informally:

→ntiod ≈
(

∑
M∈M

|M|
)
× →nticd

Note that in Observation 6.2.5, m1 6= n was implied by m1 ∈ M, but
this is not the case here, since here NM, does not exclude M.

As argued in the opening words of this section, it is not unreasonable
to expect large M ∈ M, e.g.: M = N. A naive algorithm will simply
compute →nticd in Gm for each sink-node m, by computing <SINK and
then →nticd from scratch for each such graph. In order to achieve a
reasonable performance for graphs with big M ∈M, I will replace the
from-scratch <SINK computations by incremental computations.

Specifically, for each M ∈M, I will compute the

<m = <Gm
SINK

such that >m is a transitive reduction of wGm
SINK, i.e.:

wm = wGm
SINK

for
wm = (>m)

∗

Gm = (GM)m 6→ and
GM = GNM→∗M

for each m ∈ M incrementally.

By construction, the following holds:

Proposition 6.7.2.

1. Gm is a graph with unique exit node m.

2. <m is a tree with root m (i.e.: ∀n 6= m. ∃!n′. n <m n′, and
¬ ∃n. m <m n).

104

6.7 Nontermination Insensitive Order Dependence

Observation 6.7.7. Let M be any control-sink of a CFG G (and hence:
a >G

SINK-cycle), and use the above notation for any node m ∈ M. Let
m2, m′2 ∈ M, m2 6= m′2 such that m2 →GM m′2. Furthermore, let

<′m2
= { (n, m) | n <m2 m, n 6= m′2, ¬n→GM m′2 }
∪ { (n, m′2) | n 6= m′2, n→GM m′2 }

be the tree which is obtained from <m2 by making m′2 the new root,
and letting all GM-predecessors n 6= m′2 of m′2 point to m′2, and write
w′m2

for
(
>′m2

)∗. Then the following holds:

1. If m2 is the only GM-predecessor of m′2, then >′m2
is a transitive

reduction of w
Gm′2
SINK , i.e.:

w′m2
= wm′2

2. Otherwise, w′m2
approximates w

Gm′2
SINK from above, i.e.:

w′m2
⊇ wm′2

Also, if I write <0 for the two-tree forest (<m2)m′2 6→, then for any
nodes n such that n→GM m′2 or ¬ n <∗0 m2, I have:

{ x | x w′m2
n } = { x | x wm′2

n }

I attempt to visualize this process in figure Figure 6.10.

With regard to computation costs, I note the following:

• The computation of <′m2
from <m2 is trivially cheap for any but

the most ridiculous graphs G.

• The fact that w′m2
is a superset of wm′2

allows me to compute
wm′2

by immediately starting a fixed-point computation from

105

6 Order Dependence

✂
⎘

. . .

Figure 6.10: The Process in Observation 6.7.7. On top: <G
SINK. The last step is only neces-

sary if m2 is not the only predecessor of m′2.

w′m2
(e.g., by using phase SINKdown from Algorithm 6). I do

not need to execute phase SINKup.

• Even more, I am done for any node n such that n →GM m′2 or
¬ n <∗0 m2, and hence can modify workset-based algorithms
such as SINKdown to never put such nodes in the workset!

Now, Observation 6.7.7 only applies whenever m2 →GM m′2, but this
already allows me to compute wm for all m ∈ M as follows:

106

6.7 Nontermination Insensitive Order Dependence

1. Using any heuristic, enumerate a sequence π1, . . . , πk of (finite)
GM-paths in M such that

M =
⋃

i
πi

2. For all
πi = m, . . .

compute wm using any postdominator-tree algorithm (remem-
ber that Gm is a CFG with unique exit node m). Then, for all
other nodes m′2 ∈ πi with πi-predecessor m2, compute wm′2

us-
ing wm2 via Observation 6.7.7.

Any heuristic that chooses the πi should then, presumably:

• Attempt to cover each node m ∈ M only once.

• Try to minimize the number of πi-neighbours m2, m′2 such that
m2 is not the only GM-predecessor of m′2.

• Try to minimize the number k of πi, since every πi = m, . . .
requires an initial full computation of wm.

My implementation uses a greedy heuristic that finds paths starting
in join nodes, and covers each node exactly once.

A Variant for Arbitrary Enumeration of Sink Nodes

Owing to the following observation, it turns out that the full com-
putations of wm for πi = m, . . . is not even necessary. I attempt to
visualize the corresponding process in figure Figure 6.11 on page 112.

107

6 Order Dependence

Observation 6.7.8. Let M be any control-sink of a CFG G (and hence:
a >G

SINK-cycle), and use the above notation for any node m ∈ M. Let
m2 6= m′2 be any nodes in M. Furthermore, let

<0 = (<m2)m′2 6→

be the two-tree forest obtained by cutting the subtree with root m′2
from the tree <m2 rooted in m2, and write w0 for (>0)

∗.

Also, let
Pm′2

= { n | m′2 w0 n }

be the set of nodes n that are in the tree rooted in m′2,

Sm′2
= { n | m2 →G n, m′2 w0 n }

be the set of G-successors n of m2 that are in the tree rooted in m′2,

Cm2 = { n | n ∈ CONDGm′2
, m2 w0 n }

be the set of conditional (in Gm′2
) nodes n that are in the tree rooted in

m2.

Then

1. If Sm′2
is non-empty, there is a unique least common ancestor

z ∈ lca<0

(
Sm′2

)
of all such Sm′2

, and the graph

<′m2
= <0 ∪ {(m2, z)}

is a tree (rooted in m′2); specifically — in the words of
Algorithm 6 — every node is processed.

2. If Sm′2
is empty, then for all n ∈ Pm′2

:

{ x | x w0 n } ⊇ { x | x wm′2
n }

108

6.7 Nontermination Insensitive Order Dependence

Also, let

<′0 = { (n, m) | n <0 m, n /∈ Cm2 }

∪

∅ if m2 ∈ CONDGm′2
{(m2, m)} if m is the unique Gm′2

− successor of m2

and let <′m2
be the tree obtained by “processing” the tree <′0,

i.e.: let <′m2
be the tree obtained by running phase SINKup

9 from
Algorithm 6 with initial set PROCD = Pm′2

of processed nodes,
and initial workqueue = Cm2 .

In both cases, write w′m2
for
(
>′m2

)∗. Then:

w′m2
⊇ wm′2

and also for n /∈ { n | m2 w0 n } ⊇ Cm2 :

{ x | x w′m2
n } = { x | x wm′2

n }

With regard to computation costs, I note the following:

• The computation of <′m2
from <m2 is trivially cheap if Sm′2

6= ∅,
but requires a partial execution of phase SINKup if it is empty.

• Again, the fact that w′m2
is a superset of wm′2

allows me to com-
pute wm′2

by immediately starting a fixed-point computation
from w′m2

(e.g., by using phase SINKdown from Algorithm 6).

• Even more, I am done for any node n /∈ Cm′2
, and hence can

modify workset-based algorithms such as SINKdown to never put
such nodes in the workset!

Thanks to Observation 6.7.8 — together with Observation 6.7.7 — I
can compute wm for all m ∈ M as follows:

9 for Gm′2

109

6 Order Dependence

1. Using any heuristic, enumerate any finite sequence10 π of nodes
such that M = {m | m ∈ π }

2. For
π = m, . . .

compute wm using any postdominator-tree algorithm. Then, for
all other nodes m′2 ∈ π with π-predecessor m2, compute wm′2
using wm2 via Observation 6.7.7 if m2 →GM m′2, or via Observa-
tion 6.7.8 if not.

Any heuristic that chooses π should then, presumably:

• Attempt to cover each node m ∈ M only once.

• Try to minimize the number of π-neighbours m2, m′2 such that
m2 is not a GM-predecessor of m′2, and then

• try to minimize the number of π-neighbours m2, m′2 such that
m2 is not the only GM-predecessor of m′2.

Using this scheme, and taking into account Observation 6.7.6, the com-
putation of →ntiod for a CFG G reduces to the computation of

1. <G
SINK

2. the set M of control-sinks M of G11

3. for each M ∈M the subgraph GM

4. for each m2 ∈ M:

a) <m as described

b) the set of n ∈ NM, m1 ∈ M, m1 6= n such that n →Gm2
nticd m1,

obtaining n→ntiod (m1, m2).

10 not necessarily a GM-path!
11 which are exactly the <G

SINK-cycles, and also: exactly the strongly connected compo-
nents of G that do not have edges leaving the component.

110

6.7 Nontermination Insensitive Order Dependence

The computation item 4b can be done using any postdominance fron-
tier algorithm.

Remark 6.7.1. I described a scheme to obtain

<m′2
from <m2

I did not investigate whether it is possible to directly obtain

→
Gm′2
nticd from →Gm2

nticd

Although this might very well be possible, it appears to be of limited
practical value, since experiments suggest that in practice, the scheme
I presented already yields an algorithm with execution time roughly
linear in the size of the relation →ntiod.

111

6 Order Dependence

⎘
✂

(a)C
ase

S
m
′2 6=

∅
.

✂
✂

(b)C
ase

S
m
′2
=

∅
.

Figure
6.11:T

he
Process

in
O

bservation
6.7.7.D

ashed
arrow

s
are

edges
in

G
.

112

6.8 Soundness of Nontermination Insensitive Order Dependence

6.8 Soundness of Nontermination Insensitive
Order Dependence

In Section 6.4, I recalled the simulation based correctness criterion
for nontermination insensitive slicing which is satisfied by →wod

([Amt08]). I offered a critique of this criterion by example of an “al-
ways terminating” CFG that satisfies the simulation-criterion for some
set S = M of observable nodes, but intuitively leaks information.

The simulation criterion is based on “stateful” executions of CFG with
configurations as pairs (n, σ) of nodes and variable assignments. It
requires closure under →data. In [Amt08], it was shown that S being
weakly control-closed is useful in proving the simulation property. In
[Was10], for graphs with unique end nodes nx, and assuming nx ∈ S,
it was shown that being weakly control-closed is outright the only
property of control-dependency necessary to establish the simulation
property, and in [Dan+11] this property is straight out taken to define
correctness of CFG slicing.

While I did not propose a strengthened version of the simulation cri-
terion, I did (in Section 6.5) propose a new requirement for (unlabeled)
CFG (in addition to being weakly control-closed) that prevents infor-
mation leak for always-terminating programs. I also proposed — in
Section 6.6 — a new trace-based criterion with the same purpose.

In this section, I confirm that→ntiod12 is, indeed, both sound and min-
imal with respect to these two new criteria. I also confirm that, for
always-terminating CFG, slicing w.r.t →ntiod is nontermination sensi-
tively sound, i.e.: observable traces are uniquely defined by the ob-
servable input, which is not the case for slicing w.r.t →wod.

Observation 6.8.1 (Soundness of →ntiod,→nticd w.r.t obsS). Let G be
any CFG, and M ⊆ N a set of nodes (the slicing criterion). Let
S = (→nticd ·∪ →ntiod)∗ (M) be the backward slice w.r.t. M. Then all

12 together with →nticd

113

6 Order Dependence

possible next observations are retained outside S (see Definition 6.5.4
on page 90).

Observation 6.8.2 (Minimality of →ntiod,→nticd w.r.t obsS). Let G be
any CFG, and M ⊆ N a set of nodes (the slicing criterion). Let S =
(→nticd ·∪ →ntiod)∗ (M) be the backward slice w.r.t. M. Then, for any
n ∈ S, n /∈ M and S′ = S \ {n}, not all possible next observations are
retained outside S′

Minimality of →ntiod as stated in Observation 6.8.2 is directly
amenable to empirical validation. For the following alternative no-
tion of minimality, Simon Bischof prepared a machine checked proof
in the Isabelle/HOL proof assistant:

Theorem 6.8.1 ([Bis19], Minimality of →ntiod,→nticd w.r.t obsS). Let G
be any CFG, and M ⊆ N a set of nodes (the slicing criterion). Let S =
(→nticd ·∪ →ntiod)∗ (M) be the backward slice w.r.t. M. Let S′ ⊇ M
be any set of nodes that retains all possible next observations. Then
S′ ⊇ S.

Slicing via →ntiod and →nticd is also sound and minimal with regard
to the nontermination insensitive trace based criterion of infinite delay.

Observation 6.8.3 (Soundness of →ntiod,→nticd w.r.t T ω
∣∣
S). Let G be

any CFG, and M ⊆ N a set of nodes (the slicing criterion). Let S =
(→nticd ·∪ →ntiod)∗ (M) be the backward slice w.r.t. M. Then, any
S-equivalent inputs i, i′ — i.e.: inputs such that

i ∼S i′

— have S-equivalent observable behavior up to infinite delay13, i.e.:

i ∼ω
TS

i′

13 see Definition 6.6.2 on page 94

114

6.8 Soundness of Nontermination Insensitive Order Dependence

Observation 6.8.4 (Minimality of →ntiod,→nticd w.r.t T ω
∣∣
S). Let G be

any CFG, and M ⊆ N a set of nodes (the slicing criterion). Let S =
(→nticd ·∪ →ntiod)∗ (M) be the backward slice w.r.t. M. Then, for any
n ∈ S, n /∈ M and S′ = S \ {n}, there exists S′-equivalent inputs i, i′ —
i.e.: inputs such that

i ∼S i′

— that do not have S′-equivalent observable behavior up to infinite
delay, i.e.:

¬ i ∼ω
TS

i′

The two preceding observation are the nontermination insensitive ana-
logues of observations 6.3.1 and 6.3.2 that concerned nontermination
sensitive slicing. The following observation confirms that, for always-
terminating CFG, nontermination insensitive slicing is as strict as non-
termination sensitive slicing.

Observation 6.8.5 (Trace Equivalence for →ntiod,→nticd in acyclic
CFG). Let G be a CFG in which all executions terminate, i.e.: an acyclic
graph. Let M ⊆ N be a set of nodes (the slicing criterion), and let
S = (→nticd ·∪ →ntiod)∗ (M) be the backward slice w.r.t. M. Then,
any S-equivalent inputs i, i′ — i.e.: inputs such that

i ∼S i′

— have nontermination sensitively S-equivalent traces14, i.e.:

ti ∼S ti′

Remember that this last observation, although relatively weak, does
not hold for slicing under →wod, as was exemplified in Figure 6.4a on
page 87.

14 see Definition 6.3.4 on page 80

115

6 Order Dependence

Summary

• Together, decisive order dependence →dod and nonter-
mination sensitive control dependence →ntscd produce
sound and minimal slices.

• The same holds for nontermination insensitive order de-
pendence →ntsod.

• →ntsod can naturally be reduced to→ntscd, which leads to
an algorithm for →ntsod.

• Together, nontermination sensitive order dependence
→ntiod and nontermination insensitive control depen-
dence →nticd produce sound and minimal slices.

• Soundness and minimality of nontermination insensitive
slicing can either be defined by a notion of infinite delay,
or by a condition of next observables.

• →ntiod can naturally be reduced to →nticd, which leads to
an algorithm for →ntiod.

116

7 Slicing

If you do something too good, then, after a while, if
you don’t watch it, you start showing off.

(J.D. Salinger — The Catcher in the Rye)

In the preceding chapters, I devised new algorithms for the computa-
tion of (explicit representations of) the dependency relations

1. Non-Termination Sensitive Control Dependence →ntscd

a) indirectly via <MAX and Algorithm 1

2. Non-Termination Insensitive Control Dependence →nticd

a) directly via Algorithm 16

b) indirectly via <SINK and Algorithm 1

3. Decisive1 Order Dependence →dod

a) via the generate-and-test scheme 6.3 on page 70

4. Non-Termination Sensitive Order Dependence →ntsod

a) via the scheme implied by Observation 6.2.3 and Observa-
tion 6.2.5

5. Non-Termination Insensitive Order Dependence →ntiod

a) via the scheme implied by Observation 6.7.4 and Observa-
tion 6.7.6,

b) improved upon via Observation 6.7.7 and Observation 6.7.8

Their natural application in information flow control is (backward)-
slicing, i.e.: the computation of

1 non-termination sensitive

117

7 Slicing

((→nticd∪→data) ·∪ →ntiod)∗ (M) (7.1)

for sets of “observable” nodes M.

For graphs with unique end nodes nx, this is equivalent to slice along
standard control dependence →cd only, i.e.:

(→cd∪→data)∗ (M)

Here, it usually is of little practical importance whether slicing is per-
formed with regard to only one set M of nodes, or several such sets
M, M′, . . .: Computation of →cd is — in practice — cheap2 so in both
cases, one just does this, and then slices backwards from M, M′, . . . in
the obvious way.

On the other hand, for arbitrary graphs, I must slice as per (7.1). Here,
in accordance with the informal slogan

→ntiod ≈
(

∑
M∈M

|M|
)
× →nticd

any algorithm computing →ntiod in an explicit representation must be
expected to run in ' |N|2 steps for typical CFG, and O

(
|N|3

)
worst

case. To see this directly, consider the n-node looping ladder CFG in
Figure 7.1 The variant of this graph which lacks node n and has no
edge (n− 1) → 0 is the canonical example of a CFG for which →cd

has size Θ
(
n2). As is, this graph demonstrates that →ntiod can be of

size Θ
(
n3). This is because for every odd node m1 and every even

node m2, I have

n→ntiod (m1, m2) ⇔ n < m1 ∧ n 6= m2

2 In program slicing, →cd often is “mostly” a tree, and hence small, with |→cd| ' |N|.
In fact, if one demands ne →G nx and a reducible graphs G, it is a tree.

118

...

Figure 7.1: The n-node looping ladder CFG.

which means that for every odd m1, the set of such m2, n is of size

sm1 =
⌊n

2

⌋
· m1 + 1

2

and hence:

|→ntiod| ≥ ∑
m1 odd

sm1 =
⌊n

2

⌋ (n− 1
8

+
1
4

)
(n− 1) ∈ Θ

(
n3
)

If I am interested in the slice (7.1) of only one set M of nodes, can I
compute this without risking a size O

(
|N|3

)
computation? In this

chapter, I answer this question in the affirmative.

119

7 Slicing

In Section 7.1 I obtain →ntiod, →nticd backwards slice in G by a re-
duction to one computation of →GM

nticd for a suitable subgraph GM of
G. Then, I will show that it is even enough to compute nontermina-
tion sensitive postdominance wGM

SINK only, and then directly read off the
→GM

nticd-backwards slice of M, without fully computing→GM
nticd.

If only the →nticd backwards slice in G is required (e.g.: if all control
sinks in the graph G are trivial), I can generalize the technique used
in [SG95] to compute the →nticd backwards slice in G of any slicing
criterion M. I present this generalization in Appendix C.

In Section 7.2 I present the nontermination sensitive analogue of the
result from Section 7.1. In Section 7.3 I present the analogue of the
result from Section 7.1 for →wod backward slices. In Section 7.4 I
present the analogue of the result from Section 7.1 for weak control
closures, and then summarize the results in Section 7.5.

120

7.1 Nontermination Insensitive Slicing

7.1 Nontermination Insensitive Slicing

In this section, I will attack the simplified problem of computing the
control slice only, i.e.: I disregard data dependencies →data. Given a
single set M of “observable” nodes in an arbitrary CFG G, the appro-
priate reduction to one computation is remarkably simple. It will turn
out that (

→G
nticd ·∪ →G

ntiod

)∗
(M) =

(
→GM 6→

nticd

)∗
(M) (7.2)

Recall that GM 6→ is the graph obtained from G by removing all edges
originating in M.

Intuitively, equation 7.2 holds because by Corollary 6.7.2 on page 102,
n→ntiod (m1, m2) can only hold for nodes m1, m2 that occur in a com-
mon cycle C in the pseudo-forest <SINK, and nodes n that either are in
the same <SINK cycle C, or not in any such cycle. By Observation 5.3.5,
such cycles C are control sinks in G, i.e., they are strongly connected
components of G that have no edge leaving the component. Then by
deleting outgoing edges of the slicing criterion M, the component C
becomes a region with exit nodes C ∩ M, and any node n that for-
merly controlled the order of nodes m1 and m2 now controls which of
the two nodes is executed at all.

Consider the example from Section 5.3, repeated in Figure 7.2a. The
only non-trivial control sink of G is C = {6, 7, 8, 11, 13}. All nodes in C
are nontermination insensitively control dependent on node 2 and 1,
but these are the only nodes they are control dependent on. For exam-
ple, node 11 is not nontermination insensitively control dependent on
node 7. Instead, node 11, 8 together are nontermination insensitively
order dependent on node 7: 7→ntiod (11, 8). So consider the slicing
criterion M = {7, 8}, for which the combined backward slice is(

→G
nticd ·∪ →G

ntiod

)∗
(M) = {7, 8, 11, 2, 1}

The resulting graph GM is shown in Figure 7.2c, together with the
corresponding nontermination insensitive control dependence in Fig-

121

7 Slicing

1

2

10

36

4 9

1214

5

7

8

11

13

(a) A graph G

1

2

103 6 7 8 9 11 13

4 5

12 14

(b) →G
nticd

1

2

10

36

4 9

1214

5

7

8

11

13

(c) The Graph GM

1

2

103 6 7 9

8 11

13

4 5

12 14

(d) →GM

nticd

Figure 7.2: Equation 7.2 for M = {8, 11}

ure 7.2d. The choice at node n = 7 (which formerly decided the order
of nodes 8, 11) now controls whether node 8 or node 11 is executed.

Before I can proof equation (7.2), I need a new characterization of the
transitive closure of →nticd.

122

7.1 Nontermination Insensitive Slicing

Definition 7.1.1. Let G be any CFG, and m 6= n nodes in G. Then m /∈
ipdomwSINK

(n) is said to be on a path starting in n strictly before any
immediate wSINK-dominator of n — and I write n →ntind m — iff there
exists some G-successor x of n such that m is reachable in the graph
obtained from G by removing all edges originating in ipdomwSINK

(n),
i.e.:

x →∗G(
ipdomwSINK

(n)
)
6→

m

This notion is most easily understood as a generalization of Weiser’s
transitive notion →nd of control dependence ([Wei81]) for graphs
with unique exit node nx. Recall that (for n 6= nx), n →nd m iff
m /∈ {n, n′} is on a G-path between n and the unique immediate post-
dominator n′ of n. The subscript nd is derived from the immediate
postdominator, which Weiser calls nearest (inverse) dominator. It is easy
to see that →ntind is in fact a generalization of →nd, i.e.:

n→ntind m ⇐⇒ n→nd m

for graphs with unique exit node nx. More importantly, it relates to
→nticd the same way that →nd does to →cd:

Observation 7.1.1. Let G be any CFG, and m 6= n nodes in G. Then

n→ntind m ⇐⇒ n→∗nticd m

For the proof of (7.2), I also need the following properties of →nticd.

Observation 7.1.2. Let G be any CFG, and M any set of nodes in G.
Then for all nodes n, m, and all nodes m0 ∈ M such that m 6= m0:

m w
GM 6→
SINK n =⇒ m wG

SINK[m0]
n

In other words: if m must appear on every GM 6→-sink-path starting in
n, then m must also appear before m0 on every G-sink-path starting in
n.

123

7 Slicing

Observation 7.1.3. Let G be any CFG, and M any set of nodes in G.
Then for all nodes n, m:

m w
GM 6→
SINK n =⇒ m wG

SINK n

The following fact is well-known, but hitherto only for the special case
of graphs with unique exit-node nx.

Observation 7.1.4. Let G be any CFG, and m1 wG
SINK n as well as

m2 wG
SINK n. Then, “up to wSINK-equivalence”, the order in which paths

starting in n visits m1, m2 is fixed, i.e.:

1. m1 wG
SINK[m2]

n, or

2. m2 wG
SINK[m1]

n, or

3. both m1 wG
SINK m2 and m2 wG

SINK m1

Immediate wSINK-dominators are always visited before non-immediate
postdominators:

Observation 7.1.5. Let G be any CFG and n 6= m2. Also, let m2 wG
SINK n

as well as not only m1 wG
SINK n but also

m1 ∈ ipdomwSINK
(n)

Then, “up to wSINK-equivalence”, any paths starting in n always visits
m1 before m2, i.e.:

1. m1 wG
SINK[m2]

n, or

2. both m1 wG
SINK m2 and m2 wG

SINK m1, as well as

m2 ∈ ipdomwSINK
(n)

I need the following three technical observations in the proof of (7.2).

124

7.1 Nontermination Insensitive Slicing

Observation 7.1.6. Let G be any CFG, and M any set of nodes in G.
Then whenever

m wG
SINK n but ¬ m w

GM 6→
SINK n

there exists some node m0 ∈ M and some GM 6→-path π such that
m0 6= m and

π = n, . . . , m0 such that m /∈ π

Proof: From ¬ m w
GM 6→
SINK n I obtain some GM 6→ sink-path π starting in

n with m /∈ π. Then m0 ∈ π for some m0 ∈ M, since otherwise π is
also a G sink-path with m /∈ π, contradicting m wG

SINK n. With m0 ∈ π,
it must be of the form

π = n, . . . , m0

Observation 7.1.7. Let G be any CFG, and M any set of nodes in G.
Then whenever

m wG
SINK n but ¬ m w

GM 6→
SINK n

there exists some node m0 ∈ M such that

1. m0 6= m,

2. m wG
SINK m0,

3. n →∗GM 6→
m0 →+

G m, and

4. ¬ m wG
SINK[m0]

n

Observation 7.1.8. Let G be any CFG, and M any set of nodes in G.
Also, let

n
(
→GM 6→

nticd

)∗
m

for some m ∈ M. Then, for all n′ 6= n:

¬ n′ w
GM 6→
SINK n

Proof (Sketch): By induction on n
(
→GM 6→

nticd

)∗
m.

125

7 Slicing

Using these observations, I will proof (7.2) via two inductive argu-
ments, starting with the reverse implication.

Theorem 7.1.1. Let G be any CFG, and M any set of nodes in G. Then
for any n,

n ∈
(
→G

nticd ·∪ →G
ntiod

)∗
(M)︸ ︷︷ ︸

=:A

⇐ n ∈
(
→GM 6→

nticd ·∪ ∅
)∗

(M)︸ ︷︷ ︸
=:B

Proof: By induction on n ∈ B, via Definition 6.2.3. The case n ∈ M is

trivial. For the case n→GM 6→
nticd n0 for some n0 ∈ B, i can assume n0 ∈ A.

Hence, i also can assume n 6= n0, and also: n /∈ M, since otherwise I
am done. By definition, I have some GM 6→ successors x, x′ of n such
that

n0 w
GM 6→
SINK x′ and hence, by Observation 7.1.3 n0 wG

SINK x′

¬ n0 w
GM 6→
SINK x

Of course, the GM 6→-successors of n are exactly the G-successors of n.

If n →G
nticd n0 I am done immediately, so I only have to deal with the

opposite, i.e.: ¬ n→G
nticd n0. But then, from n0 wG

SINK x′ i conclude

∀y s.t. n→G y. n0 wG
SINK y and hence n0 wG

SINK n

Specifically for x, I have

n0 wG
SINK x

but: ¬ n0 w
GM 6→
SINK x

From Observation 7.1.7, I obtain some m0 ∈ M such that

m0 6= n0 n0 wG
SINK m0

x →∗GM 6→
m0 →+

G n0 ¬ n0 wG
SINK[m0]

x

126

7.1 Nontermination Insensitive Slicing

Now, I discern the two cases m0 wG
SINK n0 and ¬ n0 wG

SINK m0.

If m0 wG
SINK n0, I intend to show n→ntiod (n0, m0) by directly confirming

Definition 6.7.1. I already have n0 wG
SINK n, and m0 wG

SINK n follows
from m0 wG

SINK n0, so I have item (a) covered. For item (b), I want to
show n0 wG

SINK[m0]
x′, but this follows from n0 w

GM 6→
SINK x′ and — since

m0 6= n0 and m0 ∈ M – Observation 7.1.2. For item (c), I already have
¬ n0 wG

SINK[m0]
x.

Now if on the other hand, ¬ m0 wG
SINK n0, I intend to show n→∗nticd m0

in G. Since m0 in M and only needed to cover the case n /∈ M, this
is equivalent — by Observation 7.1.1 — to showing n →ntind m0 in G.
Writing

N′ = ipdomwG
SINK

(n)

I will do this by exposing a path

π = x, . . . , m0 such that π ∩ N′ = ∅

In order to do this, I differentiate the following cases:

1. N′ = ∅

2. N′ = S for some control-sink S in G

3. N′ = {n′} for some node n′

It is indeed sufficient to cover these cases since wG
SINK is the reflexive,

transitive closure of some pseudo-forest >, and there either n has no
<-successor, in which case N′ = ∅, or n has a unique <-successor n′.
Then, if n′ lies in some <-cycle S, S is a control-sink in G and N′ = S.
Otherwise, N′ = {n′} (c.f. Observation 5.3.2).

I already have x →∗GM 6→
m0 and hence x →∗G m0, so case 1 is trivial.

127

7 Slicing

For case 2, from n0 wG
SINK n I know that n0 ∈ S = N′, and then from

¬ m0 wG
SINK n0 I have m0 /∈ S = N′ (S is a “root” of <). But then for any

G-path
π = x, . . . , m0

I have π ∩ N′ = ∅, since i cannot leave a control-sink!

For case 3, I know that n 6= n′, since otherwise n is its only <-
successor, and hence ¬n′ 1-wSINK n. If n′ = n0 then from ¬ n0 wG

SINK[m0]

x and observing n0 6= m0, I obtain a path

π = x, . . . , m0 such that n0 /∈ π

which is exactly what I need.

I still need to cover the case n′ 6= n0, i.e.: n0 /∈ N′. Remembering
that I still have n 6= n0, n0 wG

SINK n, n′ ∈ N′, I use Observation 7.1.5 to
conclude

n′ wG
SINK[n0]

n

But since w
Gn0 6→
SINK is closed under taking a step to Gn0 6→-successors (i.e.:

closed under →Gn0 6→
) and both n 6= n0 and n 6= n′, I have (via two

applications of Observation 6.7.5):

n′ wG
SINK[n0]

x′

from which I can obtain some path

π′ = x′, . . . , n′ such that n0 /∈ π′

Again from ¬ n0 wG
SINK[m0]

x (and still: observing that m0 6= n0) I
obtain a path

π = x, . . . , m0 such that n0 /∈ π

But π cannot contain n′, since otherwise, I had a path π′′ = n′, . . . , m0
with n0 /∈ π′′, and together with π′ a path

π′ π′′ = x′, . . . , n′, . . . , m0 such that n0 /∈ π′ π′′

128

7.1 Nontermination Insensitive Slicing

in contradiction with the fact that

n0 wG
SINK[m0]

x′

which follows from n0 w
GM 6→
SINK x′ via Observation 7.1.2 and m0 6=

n0, m0 ∈ M. With n′ /∈ π, I have concluded case 3 and hence the
proof.

What remains is the forward implication. The proof may — at first
— appear to mirror the proof of Theorem 7.1.1. This is because the
definition of →G

nticd n0 requires n0 wSINK both in the positive and in
the negative for some x, x′. But the actual situations are quite different
from the former proof.

Theorem 7.1.2. Let G be any CFG, and M any set of nodes in G. Then
for any n,

n ∈
(
→G

nticd ·∪ →G
ntiod

)∗
(M)︸ ︷︷ ︸

=:A

⇒ n ∈
(
→GM 6→

nticd ·∪ ∅
)∗

(M)︸ ︷︷ ︸
=:B

Proof: By induction on n ∈ A, via Definition 6.2.3. The case n ∈ M is
trivial.

For the case n→G
nticd n0 for some n0 ∈ A, I can assume n0 ∈ B. Hence,

I also can assume n 6= n0, and also: n /∈ M, since otherwise I am done.
By definition, I have some G successors x, x′ of n such that

n0 wG
SINK x

¬ n0 wG
SINK x′ and hence, by Observation 7.1.3 ¬n0 w

GM 6→
SINK x′

Since n /∈ M, the G-successors of n are exactly the GM 6→-successors of
n.

129

7 Slicing

If n →GM 6→
nticd n0 I am done immediately, so I only have to deal with the

opposite, i.e.: ¬ n→GM 6→
nticd n0. But then, from ¬ n0 w

GM 6→
SINK x′ I conclude

∀y s.t. n→G y. ¬ n0 w
GM 6→
SINK y

Specifically for x, I have

n0 wG
SINK x

but: ¬ n0 w
GM 6→
SINK x

From Observation 7.1.6, I obtain some m0 ∈ M with m0 6= n0 and a
GM 6→-path

π = x, . . . , m0 such that n0 /∈ π

I will show that there exists no n′ 6= n such that n′ w
GM 6→
SINK n. Once I

have done that, I can conclude that

N′ = ipdom
w

GM 6→
SINK

(n) = ∅

and immediately get n→∗nticd m0 in GM 6→ from n→ntind m0 (in GM 6→),
which then holds because of x →∗GM 6→

m0 .

In order to show that there exists no n′ 6= n such that n′ w
GM 6→
SINK n, I

assume the opposite. Then also n′ w
GM 6→
SINK x and n′ w

GM 6→
SINK x′. I also

obtain from ¬ n0 wG
SINK x′ some G-path

π′ = x′, , z such that n0 /∈ π′ and ¬ z→∗G n0

I discern the two cases ∃m′ ∈ M. m′ ∈ π′ and its negation, both of
which I have to lead to a contradiction. If there exists such a m′, I can
choose m′ as the one appearing first in π′. Then from n′ w

GM 6→
SINK n I

130

7.1 Nontermination Insensitive Slicing

conclude that n′ must appear in π′ before (or at) this occurrence. In
summary, I have3

π′ = x′, . . . , n′, . . . , m′, . . . , z︸ ︷︷ ︸
=:π′0

with n0 /∈ π′ and ¬ z→∗G n0

Now, for the GM 6→-path

π = x, . . . , m0 such that n0 /∈ π

I infer from n′ w
GM 6→
SINK n that n′ ∈ π, and hence have a prefix π0 =

x, . . . , n′ with n0 /∈ π. But then I have

n0 /∈ π0π′0 = x, . . . , n′, . . . , m′, . . . , z with ¬ z→∗G n0

in contradiction to n0 wG
SINK x.

In order derive a contradiction from ¬ ∃m′ ∈ M. m′ ∈ π′, I observe
that then π′ is not only a G-path but also a GM 6→-path. This means
that either n′ ∈ π′, i.e.:

π′ = x′, . . . , n′, . . . , z︸ ︷︷ ︸
=:π′0

such that n0 /∈ π′ and ¬ z→∗G n0

in which case I obtain a contradiction just as I did before, or there
exists a continuation π′′ of π′ in GM 6→ such that n′ ∈ π′′, i.e.:

π′π′′ = x′, . . . , z, . . . , n′

But since ¬ z →∗G n0, I have n0 /∈ π′′ and ¬ n′ →∗G n0. Choosing
π0 = x, . . . , n′ with n0 /∈ π0 as before, this contradicts n0 wG

SINK x. This
concludes the inductive case n→G

nticd n0.

3 not demanding x′, n′, m′, z to be mutually different

131

7 Slicing

What is left is the inductive case n→G
ntiod (m1, m2) for some m1, m2 ∈

A, in which case I can assume m1, m2 ∈ B. Hence, I also can assume
n 6= m1, n 6= m2 and also: n /∈ M, since otherwise I am done.

I have m1 6= m2 by definition of →ntiod, so by Observation 7.1.8 and
m2 ∈ B I conclude

¬ m1 w
GM 6→
SINK m2

Also by definition, I have some G successors x, x′ of n such that

m1 wG
SINK[m2]

x

¬ m1 wG
SINK[m2]

x′

as well as

m1 wG
SINK n and since n 6= m1 m1 wG

SINK x′

¬ m2 wG
SINK n

Since n /∈ M, the G-successors of n are exactly the GM 6→-successors of
n.

From ¬ m1 wG
SINK[m2]

x′ I obtain a G-path

π′ = x′, . . . , m2 such that m1 /∈ π′

If n→GM 6→
nticd m1 I am done immediately, so I only have to deal with the

opposite, i.e.: ¬ n→GM 6→
nticd m1. So either

∀y s.t. n→G y. ¬ m1 w
GM 6→
SINK y

or ∀y s.t. n →G y. m1 w
GM 6→
SINK y. But the latter cannot be, since if it

did hold, I would have m1 w
GM 6→
SINK x′ from which it would follow —

since m1 /∈ π′ — that π′ is not only a G-path, but also a GM 6→-path,
and also that any GM 6→-sink-path starting in m2 needed to contain m1,

contradicting ¬ m1 w
GM 6→
SINK m2.

132

7.1 Nontermination Insensitive Slicing

I will show that there exists no n′ 6= n such that n′ w
GM 6→
SINK n. Once I

have done that, I can conclude that

N′ = ipdom
w

GM 6→
SINK

(n) = ∅

and immediately get n→∗nticd m0 in GM 6→ from n→ntind m0 (in GM 6→)
for some m0 ∈ M, which must exist because of

m1 wG
SINK x =⇒ x →∗G m1

m1 ∈ B =⇒ ∃m′0 ∈ M.m1 →∗G m′0

but any G-path x, . . . , m′0 must either already be a GM 6→-path, or inter-
rupted by some m0 ∈ M.

In order to show that there exists no n′ 6= n such that n′ w
GM 6→
SINK n, I

assume the opposite. Then also n′ w
GM 6→
SINK x and n′ w

GM 6→
SINK x′. I discern

the two cases ∃m′ ∈ M. m′ ∈ π′ and its negation, both of which I have
to lead to a contradiction. If there exists such a m′, I can choose chose
m′ as the one appearing first in π′. Then from n′ w

GM 6→
SINK n I conclude

that n′ must appear in π′ before (or at) this occurrence. In summary, I
have4

π′ = x′, . . . , n′, . . . , m′, . . . , m2︸ ︷︷ ︸
=:π′0

with m1 /∈ π′

Now, from ¬ m1 w
GM 6→
SINK x I obtain some m ∈ M and some GM 6→-path

π = x, . . . , m such that m1 /∈ π

and infer from n′ w
GM 6→
SINK n that n′ ∈ π, and hence have a prefix π0 =

x, . . . , n′ with m1 /∈ π. But then I have

m1 /∈ π0π′0 = x, . . . , n′, . . . , m′, . . . , m2

4 not demanding x′, n′, m′, m2 to be mutually different

133

7 Slicing

in contradiction to m1 wG
SINK[m2]

x.

In order derive a contradiction from ¬ ∃m′ ∈ M. m′ ∈ π′, I observe
that then π′ is not only a G-path but also a GM 6→-path, and m2 /∈ M. If
n′ ∈ π′, I derive a contradiction as before. Otherwise, I have n′ 6= m2,
and because of n′ w

GM 6→
SINK x′, any GM 6→-sink-path continuing π′5 must

contain n′, i.e.: n′ w
GM 6→
SINK m2. But by Observation 7.1.8 and m2 ∈ B this

contradicts n′ 6= m2.

This concludes the proof of Equation 7.2, but I am not quit finished: in
many applications, I will need to slice w.r.t to some additional binary
relation→d such as, e.g., data-dependence→data. I do not give formal
proof but merely observe that under just one weak condition, this is
possible as well:

Observation 7.1.9. Let G be any CFG, M any set of nodes, and→d be
any binary relation on nodes compatible with→G , i.e.:

n→d m =⇒ n→∗G m

Then (
→G

nticd ∪ →d ·∪ →G
ntiod

)∗
(M) =

(
→GM 6→

nticd ∪ →d

)∗
(M)

7.1.1 A Direct Algorithm for Control Slicing

Given Equation 7.2, i.e.:(
→G

nticd ·∪ →G
ntiod

)∗
(M) =

(
→GM 6→

nticd

)∗
(M)

I can obviously compute the non-termination insensitive backward

control slice of M using only →GM 6→
nticd , without the need to compute

5 i.e.: starting in some GM 6→-successor of m2

134

7.1 Nontermination Insensitive Slicing

→ntiod. But I do not even need →GM 6→
nticd . Thanks to the fact that in

GM 6→, nodes n (transitively) controlling nodes m ∈ M have no suc-

cessor in the corresponding pseudo-forest <
GM 6→
SINK , and thanks to the

characterization of such n via →GM 6→
ntind , it is enough to compute <

GM 6→
SINK ,

and then enumerate those n following a reverse depth search in GM 6→
starting in M:

Lemma 7.1.1.(
→GM 6→

nticd

)∗
(M) = { n | n→∗GM 6→ m, m ∈ M, ¬n<

GM 6→
SINK }

Proof: Directly from Observation 7.1.8 and Observation 7.1.1.

135

7 Slicing

7.2 Nontermination Sensitive Slicing

Given the reduction to (→nticd)∗ from equation (7.2), i.e.:(
→G

nticd ·∪ →G
ntiod

)∗
(M) =

(
→GM 6→

nticd

)∗
(M)

it is natural to ask whether slices w.r.t. other ternary relations can be
obtained similarly. For →ntsod this is indeed the case:

Observation 7.2.1. Let G be any CFG, and M any set of nodes in G.
Then (

→G
ntscd ·∪ →G

ntsod

)∗
(M) =

(
→GM 6→

ntscd

)∗
(M)

I do not give proof, but merely note that the analogue of the char-
acterization Observation 7.1.1 of the transitive closure of →nticd does
indeed hold, simply by replacing wSINK with wMAX.

Definition 7.2.1. Let G be any CFG, and m 6= n nodes in G. Then
m /∈ ipdomwMAX

(n) is said to be on a path starting in n strictly before
any immediate wMAX-dominator of n — and I write n→ntsnd m — iff

x →∗G(
ipdomwMAX

(n)
)
6→

m

Observation 7.2.2. Let G be any CFG, and m 6= n nodes in G. Then

n→ntsnd m ⇐⇒ n→∗ntscd m

Also, i do not need to compute →GM 6→
ntscd , but it is enough to compute

<
GM 6→
MAX .

Observation 7.2.3. Let G be any CFG, and M any set of nodes in G.
Also, let

n
(
→GM 6→

ntscd

)∗
m

136

7.2 Nontermination Sensitive Slicing

for some m ∈ M. Then, for all n′ 6= n:

¬ n′ w
GM 6→
MAX n

Lemma 7.2.1.(
→GM 6→

ntscd

)∗
(M) = { n | n→∗GM 6→ m, m ∈ M,¬n<

GM 6→
MAX }

Proof: Directly from Observation 7.2.3 and Observation 7.2.2.

Since ultimately, I am interested in slices respecting not only control-
but also data-dependencies, I also need the following observation:

Observation 7.2.4. Let G be any CFG, M any set of nodes, and→d be
any binary relation on nodes compatible with→G , i.e.:

n→d m =⇒ n→∗G m

Then (
→G

ntscd ∪ →d ·∪ →G
ntsod

)∗
(M) =

(
→GM 6→

ntscd ∪ →d

)∗
(M)

137

7 Slicing

7.3 Weak Order Control Slices

Recall from the discussion of Figure 6.4 on page 87 that slices w.r.t
→nticd,→ntiod are larger than slices w.r.t →wod because the former de-
mand that the slice includes any node n which can make another node
in the slice unreachable. This in mind, and given the success of the re-
duction to GM 6→ in equation (7.2), my following reduction is no longer
surprising:

Observation 7.3.1. Let G be any CFG, and M any set of nodes in G,
and let

GM = G→
∗M

M 6→

be the CFG obtained from G by removing any nodes that cannot reach
M, and then any outgoing edges of M. Then

(→G
wod)
∗
(M) =

(
→GM

nticd

)∗
(M)

In algorithmic terms, Observation 7.3.1 says that for a given query
(→G

wod)
∗ (M), I can compute <

GM
SINK and then (by Algorithm 17 or

Lemma 7.1.1)
(
→GM

nticd

)∗
(M).

Remark 7.3.1. When faced with multiple queries M1, M2, . . ., for the
same CFG G, it is in fact possible to compute <

GM
SINK from <G

SINK by an
incremental algorithm vaguely similarly to the computation of <m′2
from <m2 in Observation 6.7.8 on page 107, but I do not describe it
here. Note that in the extreme case, where G consists of a single sink
N, <G

SINK is completely useless for the computation of <
GM
SINK since then

<G
SINK is just one big cycle containing every node N, and carries no

information about the control structure of G at all.

138

7.4 Weak Control Closures

7.4 Weak Control Closures

Recall (Definition 6.5.2) that a set S ⊆ N was defined to be weakly
control closed in G iff all vertices n /∈ S reachable from S are S-weakly
committing (i.e.: obsG

S (n) is at most a singleton) in G. In [Dan+11],
the same authors also define the notion of weakly deciding nodes:

Definition 7.4.1 (adapting [Dan+11], Definition 50). Given a CFG G =
(N, E) and a set M ⊆ N, a node n /∈ M is M-weakly deciding in G if
there exist paths

πl = n, . . .︸ ︷︷ ︸
/∈S

, ml such that ml ∈ M

πr = n, . . .︸ ︷︷ ︸
/∈S

, mr such that mr ∈ M

with πl ∩ πr = {n}. Specifically: ml 6= mr.

Definition 7.4.2. I denote with WDG (M) the set of M-weakly decid-
ing nodes in G, and with WCCG (M) the smallest set S ⊇ M that is
weakly control closed in G.

Lemma 7.4.1 ([LKL18], Property 4). Recall that for a CFG G = (N, E)
and M ⊆ N, NM→∗ is the set of nodes reachable from M in G.

WCCG (M) = (M ∪WDG (M)) ∩ NM→∗

Weak control closures and the set of weakly deciding nodes relate
to weak order dependence and nontermination-insentitive control de-
pendence as follows:

Observation 7.4.1.

(→G
wod)
∗
(M) = M ∪WDG (M)

139

7 Slicing

Also

WCCG (M) = (→G
wod)
∗ (M) ∩ NM→∗

= (→GM

wod)
∗ (M) for GM = GM→∗

=
(
→GM

nticd

)∗
(M) ∩ NM→∗ for GM = G→

∗M
M 6→

=
(
→GM

nticd

)∗
(M) for GM = GM→∗M

M 6→

140

7.5 The Role of →nticd for Nontermination Insensitive Slices

7.5 The Role of →nticd for Nontermination
Insensitive Slices

In review of this chapter, I want to comment on the role of nonter-
mination insensitive control dependence →nticd, originally defined in
[Ran+07].

While it was meant to generalize standard control dependency →cd,
the fact that →nticd does not capture any dependencies within control-
sinks begs the question: What is the purpose of →nticd?

In fact in [Amt08], →nticd was abandoned in favor of →wod by its in-
ventors. But in Chapter 6 I showed that “with a little help from”
nontermination insensitive order dependence →ntiod, nontermination
insensitive control dependence →nticd is indeed a sound (and mini-
mal!) basis for nontermination insensitive slicing.

Even more, by moving from G to an appropriate CFG GM,→GM
nticd alone

can in fact be used to obtain what I think are the three relevant notions
of nontermination insensitive slicing of arbitrary CFG:

(
→G

nticd ·∪ →G
ntiod

)∗
(M) =

(
→GM

nticd

)∗
(M) for GM = GM 6→

(→G
wod)
∗ (M) =

(
→GM

nticd

)∗
(M) for GM = G→

∗M
M 6→

WCCG (M) =
(
→GM

nticd

)∗
(M) for GM = GM→∗M

M 6→

Due to the fact that all three GM are of the form G′M 6→, Lemma 7.1.1 is

applicable and I do not need to explicitly compute→GM
nticd. The only re-

quirement is the corresponding nontermination insensitive postdomi-
nance pseudo-forest <

GM
SINK .

I stress that in this application, the crucial step in the generalization
from postdominance trees <POST for CFG with unique exit node nx,
to pseudo-forests <SINK for arbitrary CFG is not the pseudo-part (i.e.:

141

7 Slicing

the presence of cycles in <SINK), but the forest-part: The transformation
G 7→ G′M 6→ only ever introduce proper trees (among them: those with
roots M). “Pseudoness” is not important here —in fact, the second
and third variant of GM lead to proper forests, with the each m ∈ M
being a root.

Originally, I specifically designed Algorithm 17 from Appendix C to
compute slices in GM, and it does this adequately. Computation via
Lemma 7.1.1, however, is much simpler, and I probably would not
have bothered with design of Algorithm 17 but for the fact that at that
time, I had not yet discovered Lemma 7.1.1, yet! As is, Algorithm 17
retains useful for the case of multiple queries M1, M2, . . . for CFG G
without non-trivial sinks.

Summary

• Nontermination insensitive order dependence →ntiod can
be of size O

(
|N|3

)
.

• But nontermination insensitive slices can be computed
directly from nontermination insensitive postdominance
wSINK, in a suitable graph GM obtained from the slicing
criterion M.

142

8 Performance Benchmarks

Atticus told me to delete the adjectives and I’d
have the facts.

(Harper Lee — To Kill a Mockingbird)

I evaluated the performance of all new algorithms from Part I of this
thesis on three classes of graphs:

1. Control flow graphs of Java methods, as generated by the
JOANA system for various third party Java programs

2. Randomly generated graphs G = (N, E) usually with |E| =
2 |E|, as generated by the standard generator from the
JGraphT[NP19] library

3. Variants of “ladder” graphs (see Figure 7.1 on page 119), in-
tended to expose “Bad Case” behavior.

Except for the benchmarks concerned with nontermination insensitive
order dependence →ntiod, the ladder graphs I use will be unique-exit-
node ladder graphs. This sometimes allows me to directly compare
with existing algorithms for such graphs.

All benchmarks in this chapter were made on a “desktop worksta-
tion” class computer with an Intel i7-6700 CPU at 3.40GHz, and 64 gi-
gabyte RAM. I implemented the algorithms in the Java programming
language, and used the OpenJDK Java 9 VM to run them. All bench-
marks were run using the Java Microbenchmark Harness JMH[Cor20].

Unless explicitly stated otherwise, all data points represent the aver-
age over n + 1 runs of the benchmark, where n is at least the number
of runs which can be finished within 1 second. For example, the data
point at |N| = 21076, time = 18ms in Figure 8.1a stands for the av-
erage of at least ≈ 50 runs of the benchmark that finished within 1
second. On the other hand, the data point in at |N| = 65000, time
= 88s in Figure 8.1c results from only one run of the benchmark.

143

8 Performance Benchmarks

The purpose of these benchmarks is to give a general idea of the scala-
bility of the algorithms. For example, the benchmark in the upper left
and upper right of Figure 8.3 suggest that my new algorithm for the
computation of nontermination sensitive control dependence →ntscd

appears to scale “almost linearly” for “average” input CFG, while the
original algorithm from [Ran+07] is clearly grows super-linearly for
such graphs.

The central outcome of the benchmarks in this chapter is:

1. For “average” CFG, all my algorithms for control dependence
variants for arbitrary graphs offer performance “almost linear”
in the size of the graph.

2. But for “bad case” CFG, some algorithms perform for decidedly
super-linear, and become impractical for very large such graphs.

I also include benchmarks for timing sensitive control dependence, tim-
ing dependence, and timing sensitive postdominance, as to be intro-
duced later in part II of this thesis. There the central outcome is:

1. Timing sensitive postdominance can be computed in “almost lin-
ear” time for “average” CFG.

2. But even for “average” CFG, timing sensitive control depen-
dence and timing dependence scale super-linearly.

144

145

8 Performance Benchmarks

8.1 Nontermination Sensitive Postdominance

In Subsection 5.2.1, I introduced Algorithm 5 for the computation of
maximal path postdominance wMAX, represented as a pseudo-forest
<MAX. This algorithm requires the computation of least common an-
cestors lca< in pseudo-forests <. I introduced two variants thereof
(Algorithm 3 on page 47, and Algorithm 18 on page 396), of which I
use the latter.

The Algorithm 5 implements chaotic iteration, by reinserting into a
workset those nodes affected by modification to the pseudo-forest. In
contrast, the Algorithm 19 on page 397 repeatedly iterates in a fixed
node order.

Both these variants do not specify an iteration order (i.e.: Algorithm 5
does not specify which node x to remove from the work set at the start
of each iteration, and Algorithm 19 does not specify the initial order of
nodes in the workqueue). By default, my implementations orders the
nodes reversed-topologically (as computed by an implementation of
Kosaraju’s Algorithm for strongly connected components, with nodes
in the same strongly connected component ordered arbitrarily). For
Algorithm 5 this means that at the beginning of each iteration, the
rightmost node (by topological ordering) is removed from the workset.

For Java CFG and randomly generated graphs (neither necessarily
with unique exit node), Algorithm 5 () and Algorithm 19 (H) behave
similarly (Figure 8.1a and Figure 8.1b). Ladder graphs expose non-
linear bad-case behavior (Figure 8.1c). This is even more pronounced
when additionally, I deliberately choose a bad iteration order (Fig-
ure 8.1d).

146

8.1 Nontermination Sensitive Postdominance

✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚

✚

✚✚

✚

✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚
✚

✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚ ✚
✚✚

✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚

✚

✚ ✚

✚

✚✚✚✚✚✚ ✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚
✚

✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚
✚

✚✚
✚

✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚ ✚✚✚ ✚✚

✚

✚

✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚ ✚✚ ✚✚✚

✚

✚✚✚✚
✚

✚✚

✚

✚✚✚✚✚✚✚✚✚
✚

✚✚
✚

✚✚✚✚

✚

✚✚✚

✚

✚✚✚✚✚ ✚✚✚✚
✚

✚✚✚✚✚
✚ ✚✚✚✚✚✚

✚

✚

✚✚ ✚ ✚✚ ✚
✚✚✚✚✚✚✚✚ ✚✚ ✚✚ ✚✚

✚

✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚
✚

✚✚

✚

✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚
✚

✚✚✚✚✚✚✚
✚

✚ ✚✚✚

✚

✚
✚✚
✚✚✚ ✚

✚✚ ✚✚✚✚✚✚✚✚✚✚✚
✚

✚✚✚✚✚
✚

✚✚

✚

✚
✚✚✚
✚✚✚✚✚ ✚✚✚✚ ✚✚▼▼▼

▼

▼▼

▼

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼
▼

▼▼
▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼

▼

▼▼

▼

▼▼
▼

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼
▼

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼

▼

▼

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼

▼

▼▼▼▼▼▼▼

▼

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼

▼

▼▼▼

▼

▼▼▼▼▼▼▼▼▼
▼

▼▼▼▼▼▼▼▼▼▼▼▼

▼

▼

▼▼▼
▼▼▼

▼▼▼▼▼▼▼▼▼▼▼▼▼▼

▼

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ ▼▼▼

▼

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼
▼▼▼▼▼▼▼▼

▼
▼▼▼▼

▼

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼
▼

▼▼

▼

▼
▼

▼▼
▼▼▼▼▼▼▼▼▼▼▼

✚

▼

0
5

10
15

20

ti
m
e
(m

s)

0 5000 10000 15000 20000

|N |

DissJavaProcedureMDOM

DissJavaProcedureMDOMFixed

(a) Java CFG

✚ ✚
✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚

✚ ✚ ✚
✚ ✚ ✚

✚ ✚ ✚
✚ ✚

✚ ✚
✚ ✚ ✚

✚ ✚
✚ ✚ ✚ ✚

✚

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼
▼▼▼▼▼▼▼▼▼▼▼

▼▼
▼▼

▼▼▼▼▼
▼▼▼▼▼

▼▼
▼▼▼▼

▼▼
▼▼

▼✚

▼

0.
0

0.
5

1.
0

ti
m
e
(s
)

0 50000 100000 150000 200000 250000

|N | (|→G| = 2 |N |)

DissRandomAbitraryMDOM

DissRandomAbitraryMDOMFixed

(b) Random Graphs

✚ ✚
✚ ✚

✚ ✚ ✚
✚ ✚ ✚ ✚

✚ ✚
✚

✚ ✚
✚ ✚ ✚

✚
✚
✚ ✚

✚
✚
✚
✚
✚

✚

▼▼
▼▼▼▼▼▼▼▼

▼▼▼
▼
▼
▼▼▼▼

✚

▼

0
20

40
60

80

ti
m
e
(s
)

0 10000 20000 30000 40000 50000 60000

|N | (|→G| ≈ 1.5 |N |)

DissEntryExitLadderMDOM

DissEntryExitLadderMDOMFixed

(c) “Bad Case”

✚ ✚
✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚

✚ ✚ ✚
✚

▼▼▼
▼

▼

▼

▼

▼

▼

▼

✚

▼

0
10
0

20
0

30
0

ti
m
e
(s
)

0 10000 20000 30000 40000 50000 60000

|N | (|→G| ≈ 1.5 |N |)

DissEntryExitLadderMDOMVertex

DissEntryExitLadderMDOMFixedVertex

(d) “Bad Case”, bad iteration order

Figure 8.1: Computation of <MAX.

147

8 Performance Benchmarks

8.2 Nontermination Insensitive Postdominance

In Section 5.3, I introduced Algorithm 6 for the computation of sink
path postdominance wSINK, represented as a pseudo-forest <SINK. Just
as before, it uses Algorithm 18 for the computation of least common
ancestors lca<.

Again, Algorithm 6 implements chaotic iteration, by reinserting into
a workset those nodes affected by modification to the pseudo-forest.
I also implemented a variant of Algorithm 6 in which the down-
ward fixed point phase repeatedly iterates a workqueue of nodes in
a fixed node order. Again, neither variant specifies an iteration order.
As before, implementations by defaults orders the nodes reversed-
topologically. Unlike before, this ordering does not require an ad-
ditional step, since the strongly connected component computation
it can be obtained from is necessary anyway, in order to find control
sinks, which are exactly those components without outgoing edges.

In Section D.2 in the appendix, I introduce Algorithm 24 for the com-
putation of wSINK. This algorithm computes least common ancestors
lca< by comparison of postorder numbers, via Algorithm 23. By de-
fault, nodes are iterated in reversed-topological order.

For Java CFG (Figure 8.2a) the fixed-iteration order variant of Al-
gorithm 6 (H) performs on par with the original Algorithm 6 ().
For randomly generated graphs (Figure 8.2b)1 the variant (H) appears
to perform a bit better than the original () for very large graphs,
roughly on-par with Algorithm 24 (�).

Using reversed-topological iteration order, ladder graphs (Figure 8.2c)
expose non-linear bad-case behavior only for Algorithm 6 () and its
variant (H). Even with a deliberately bad iteration order, I could
not produce much worse performance for these two algorithm (Fig-
ure 8.2d). Presumably, the iteration in upward phase SINKup (which
is the same both variants) finds a good-enough approximation. On

1 just as the Java CFG, not necessarily with unique exit node

148

8.2 Nontermination Insensitive Postdominance

✚✚✚✚ ✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚

✚

✚✚ ✚✚

✚

✚✚✚✚✚✚✚✚✚ ✚✚✚✚
✚

✚✚✚✚✚✚
✚

✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚
✚

✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚ ✚
✚✚

✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚

✚

✚ ✚

✚

✚✚✚✚✚✚ ✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚
✚

✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚
✚

✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚ ✚✚✚ ✚✚

✚

✚

✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚

✚

✚✚✚✚
✚✚✚

✚

✚✚✚✚✚✚✚✚✚ ✚✚✚ ✚✚✚✚✚

✚

✚✚✚

✚

✚✚✚✚✚ ✚✚✚✚
✚

✚✚✚✚✚ ✚ ✚✚✚✚✚✚

✚

✚

✚✚ ✚ ✚✚ ✚
✚✚✚✚✚✚✚✚ ✚✚ ✚✚ ✚✚

✚

✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚
✚

✚✚

✚

✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚
✚✚✚✚✚✚✚✚

✚
✚ ✚✚✚

✚

✚
✚

✚ ✚✚✚ ✚
✚✚ ✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚

✚
✚✚

✚

✚ ✚✚✚
✚✚✚✚✚ ✚✚✚✚ ✚✚▼▼▼

▼

▼▼

▼

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼
▼

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼
▼

▼▼
▼▼

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼

▼

▼▼

▼

▼▼
▼

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼
▼

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼

▼

▼

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼

▼

▼▼▼▼▼▼▼

▼

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼

▼

▼▼▼

▼

▼▼▼▼▼▼▼▼▼
▼

▼▼▼▼▼▼▼▼▼▼▼▼

▼

▼

▼▼▼ ▼▼▼
▼▼▼▼▼▼▼▼▼▼▼▼▼▼

▼

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼
▼

▼▼

▼

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼
▼▼▼▼▼▼▼▼

▼
▼▼▼▼

▼

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼
▼

▼▼

▼

▼
▼▼▼
▼▼▼▼▼▼▼▼▼▼▼■■■

■

■■

■

■■■■■■■■■■■■■ ■■■■■■■
■

■■■■■■■■■■■■■■ ■■■■■
■

■■■ ■■■■■■■■■■■■■■■■■■■■ ■■■■■■■■■■■■■ ■ ■
■■

■■■■■■■■■■■■■■■■■■■■■■■■

■

■■

■

■■■■■■ ■■
■

■■■■■■■■■■■■■■■■■■■■
■

■■ ■■■■■■■■■■■■■■■ ■■■■■■■

■

■

■■■ ■■■■■■■■■■■■■ ■■■

■

■■■■ ■■■

■

■■■■■■■■■ ■■■■■■■■

■

■■■

■

■■■■■■■■■
■

■■■■■■■■■■■■

■

■

■■ ■ ■■■
■■■■■■■■ ■■■■■■

■

■■■■■■■■■■■■■■■■■■■■
■

■■

■

■■■■■■■■■■■■■■■■ ■■■■
■■■■■■■■

■
■■■■

■

■ ■■ ■■■■■■■■■■■■■■■■■ ■■■■■■
■

■■

■

■
■■■
■■■■■■■■■■■

✚

▼

■

0
10

20
30

ti
m
e
(m

s)

0 5000 10000 15000 20000

|N |

DissJavaProcedureSINKDOM

DissJavaProcedureSINKDOMFixed

DissJavaProcedureSINKDOMNumber

(a) Java CFG

✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚
✚ ✚

✚ ✚ ✚ ✚
✚ ✚ ✚ ✚ ✚

✚ ✚ ✚ ✚ ✚
✚
✚

✚
✚

✚

✚

✚
✚
✚

✚ ✚
✚ ✚ ✚

✚

✚ ✚ ✚
✚ ✚

✚ ✚ ✚ ✚

✚
✚
✚

✚ ✚

✚

✚
✚
✚

✚

✚

✚

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼
▼▼▼▼

▼
▼▼

▼▼▼
▼▼

▼▼▼

▼
▼▼▼

▼▼▼▼▼▼
▼▼

▼▼

▼▼
▼

▼

▼

▼

▼▼
▼

▼
▼

▼
▼
▼
▼

▼

■■■■■■■■■
■■■

■■■■
■■■■■■■

■■■
■■■

■
■■

■■■■

■

■■■

■
■

■■
■

■■
■

■

■

■

■

■

■

■

■■■
■■■■

✚

▼

■

0.
0

0.
5

1.
0

1.
5

2.
0

ti
m
e
(s
)

0 50000 100000 150000 200000 250000

|N | (|→G| = 2 |N |)

DissRandomAbitrarySINKDOM

DissRandomAbitrarySINKDOMFixed

DissRandomAbitrarySINKDOMNumber

(b) Random Graphs

✚ ✚
✚ ✚ ✚ ✚ ✚

✚ ✚ ✚ ✚
✚ ✚ ✚ ✚

✚

✚
✚ ✚

✚
✚

✚ ✚
✚
✚

✚
✚

✚
✚

✚

✚
✚
✚
✚
✚

✚

✚
✚
✚
✚
✚
✚
✚

✚

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼
▼▼▼▼

▼▼
▼▼▼▼

▼
▼

▼
▼▼

▼

▼
▼
▼

▼
▼

▼

▼

▼
▼

▼
▼
▼
▼
▼
▼
▼
▼

■■■

●●●
●

●●●
●

●
●●

●●●●●●●●●●●●●●●●

✚

▼

■

●

0
20

40
60

ti
m
e
(s
)

0 10000 20000 30000 40000 50000 60000

|N | (|→G| ≈ 1.5 |N |)

DissEntryExitLadderSINKDOM

DissEntryExitLadderSINKDOMFixed

DissEntryExitLadderSINKDOMNumber

DissEntryExitLadderTarjan

(c) “Bad Case”

✚ ✚
✚ ✚ ✚ ✚

✚ ✚ ✚
✚ ✚

✚ ✚
✚
✚

✚

✚

✚

✚

✚
✚
✚
✚
✚

✚ ✚
✚
✚
✚

✚ ✚
✚
✚

✚

▼▼
▼
▼
▼

▼
▼

▼▼
▼
▼

▼

▼

▼▼

▼

▼
▼

▼▼
▼
▼
▼
▼

▼
▼

▼

■■
■
■

■

■

■

■

■

■

●●●
●

●●●
●

●
●●

●●●●●●●●●●●●●●●●

✚

▼

■

●

0
20

40
60

ti
m
e
(s
)

0 10000 20000 30000 40000 50000 60000

|N | (|→G| ≈ 1.5 |N |)

DissEntryExitLadderSINKDOMVertex

DissEntryExitLadderSINKDOMFixedVertex

DissEntryExitLadderSINKDOMNumberVertex

DissEntryExitLadderTarjan

(d) “Bad Case”, bad iteration order

Figure 8.2: Computation of <SINK.

the other hand, Algorithm 24 (�) is affected heavily by a deliberately
bad iteration order.

The ladder graphs I use are unique-exit-node ladder graphs, since if I
used the ladder graph from Figure 7.1 on page 119 as shown, the whole
graph would form one big control-sink, and <SINK one big cycle, making
the performance comparison moot. This also allows me to directly
compare with an implementation of the algorithm by Lengauer, Tarjan
[LT79] ().

149

8 Performance Benchmarks

8.3 Generalized Postdominance Frontiers

In Section 3.2, I introduced Algorithm 1 for the computation general-
ized postdominance frontiers.

Nontermination Sensitive Control Dependence When instantiated
with <MAX, this yields an algorithm for nontermination sensitive control
dependence →ntscd. The benchmarks include the computation time of
both Algorithm 1, and <MAX via Algorithm 19 (H). I compare with
Algorithm 14 from [Ran+07] as shown on page 363 ().

For Java CFG and randomly generated graphs, Algorithm 14 becomes
impractical for moderately sized graphs, while Algorithm 1 performs
well even for very large graphs (Figure 8.3, upper left and right).

Ladder graphs expose non-linear bad-case behavior even for Algo-
rithm 1 (Figure 8.3c). This cannot be circumvented, since in these
ladder graphs, the size of the relation →nticd is quadratic in the num-
ber of nodes (similar to the size of relation →ntiod being cubic for the
ladder graphs on page 119).

Nontermination Insensitive Control Dependence When instantiated
with <SINK, Algorithm 1 yields an algorithm for nontermination sen-
sitive control dependence →ntscd. The benchmarks include the com-
putation time of both Algorithm 1, and wSINK via the variant of Algo-
rithm 19 with fixed iteration order (H). Since the Algorithm 15 from
[Ran+07] is incorrect, I do not compare with it. Instead, I compare
with Algorithm 16 as shown on page 380 ().

For Java CFG and randomly generated graphs, Algorithm 16 becomes
impractical for moderately sized graphs, while Algorithm 1 performs
well even for very large graphs (Figure 8.4, upper left and right).

Ladder graphs expose non-linear bad-case behavior even for Algo-
rithm 1 (Figure 8.4c), which again cannot be circumvented.

150

8.3 Generalized Postdominance Frontiers

✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚ ✚✚✚✚ ✚✚✚✚✚✚✚ ✚✚✚ ✚✚✚✚ ✚✚✚

✚

✚✚✚ ✚✚ ✚✚✚ ✚✚✚✚✚✚✚✚✚ ✚✚✚ ✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚ ✚✚✚✚ ✚✚✚✚✚✚✚✚✚ ✚✚

✚

✚✚✚✚✚✚✚✚✚✚✚✚ ✚ ✚✚✚✚✚ ✚✚ ✚✚✚ ✚✚✚✚ ✚✚✚✚ ✚✚✚✚ ✚✚✚✚ ✚ ✚✚✚✚ ✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚ ✚✚✚✚✚ ✚ ✚✚✚ ✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚

✚

✚ ✚

✚

✚✚ ✚✚✚✚ ✚✚✚✚✚ ✚✚✚✚ ✚✚✚✚ ✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚ ✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚ ✚✚✚ ✚✚

✚

✚

✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚ ✚✚✚✚✚ ✚✚✚

✚

✚✚✚✚✚✚✚✚✚ ✚✚✚ ✚✚✚✚✚
✚

✚✚✚

✚

✚✚✚✚✚ ✚✚✚✚ ✚✚✚✚✚✚ ✚ ✚✚✚✚✚✚

✚

✚

✚✚ ✚ ✚✚ ✚✚✚✚✚✚✚✚✚ ✚✚ ✚✚ ✚✚

✚

✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚ ✚✚✚ ✚✚✚

✚

✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚ ✚✚✚✚✚✚✚✚ ✚✚ ✚✚✚ ✚✚ ✚✚ ✚✚✚ ✚✚✚ ✚✚✚✚✚✚✚✚✚ ✚✚ ✚✚✚✚✚✚ ✚✚✚

✚

✚ ✚✚✚ ✚✚✚✚✚ ✚✚✚✚ ✚✚▼▼▼
▼

▼▼ ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ ▼▼▼ ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼
▼

▼▼ ▼▼▼ ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ ▼ ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ ▼▼▼▼▼▼▼▼ ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ ▼▼▼▼ ▼▼▼▼▼▼▼▼▼▼ ▼▼▼▼▼▼▼▼▼▼▼▼▼
▼

▼▼▼▼ ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ ▼▼▼ ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ ▼▼▼▼▼▼▼▼ ▼▼▼▼▼ ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ ▼▼▼
▼

▼ ▼▼▼ ▼▼▼▼▼▼▼▼▼▼▼

✚

▼

0
5

10

ti
m
e
(s
)

0 5000 10000 15000 20000

|N |

DissJavaProcedureNTSCDS4

DissJavaProcedureNTSCDPDF

✚✚
✚
✚

✚
✚

✚✚

✚

✚

▼▼

✚

▼

0
20

40
60

ti
m
e
(s
)

0 50000 100000 150000 200000 250000

|N | (|→G| = 2 |N |)

DissRandomArbitraryNTSCDS4

DissRandomArbitraryNTSCDPDF

✚ ✚ ✚
✚ ✚

✚

✚ ✚

✚

✚

▼ ▼
▼

▼

▼

▼
▼

▼

▼

▼

✚

▼

0
20

40
60

80

ti
m
e
(s
)

0 1000 2000 3000 4000 5000

|N | (|→G| ≈ 1.5 |N |)

DissEntryExitLadderNTSCDS4

DissEntryExitLadderNTSCDPDF

(c) “Bad Case”

Figure 8.3: Computation of →ntscd.

✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚ ✚✚✚✚ ✚✚✚✚✚ ✚✚✚✚✚ ✚✚✚✚ ✚✚✚

✚

✚✚✚✚✚ ✚✚✚ ✚✚✚✚✚✚ ✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚ ✚✚✚✚ ✚✚ ✚✚✚✚✚✚✚✚ ✚

✚

✚✚✚✚✚✚✚✚✚✚✚✚ ✚ ✚✚✚✚✚ ✚✚ ✚✚✚ ✚✚✚ ✚✚✚✚✚✚✚✚✚ ✚✚✚✚ ✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚ ✚✚✚✚✚ ✚✚✚ ✚✚✚✚✚✚ ✚✚✚✚ ✚✚ ✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚ ✚✚✚✚ ✚✚✚✚ ✚✚✚✚ ✚✚✚✚✚ ✚ ✚✚✚ ✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚ ✚✚✚ ✚

✚

✚ ✚

✚

✚✚ ✚✚ ✚✚ ✚✚✚✚✚ ✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚ ✚✚✚ ✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚ ✚✚ ✚✚✚✚✚ ✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚ ✚✚✚ ✚✚

✚

✚

✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚ ✚✚ ✚✚✚ ✚✚✚✚✚ ✚✚✚
✚

✚✚✚✚✚✚✚✚✚ ✚✚✚ ✚✚✚✚ ✚ ✚✚✚✚

✚

✚✚✚✚✚ ✚✚✚✚ ✚✚✚✚✚✚ ✚ ✚✚✚✚✚✚

✚

✚

✚✚ ✚ ✚✚ ✚✚✚✚✚✚✚✚✚ ✚✚ ✚✚ ✚✚ ✚✚✚✚✚✚✚✚✚ ✚✚✚✚ ✚✚✚✚✚ ✚✚✚ ✚✚✚

✚

✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚ ✚✚✚✚ ✚✚✚✚✚✚✚✚ ✚✚ ✚✚✚ ✚✚ ✚✚ ✚✚✚ ✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚ ✚✚✚

✚

✚ ✚✚✚ ✚✚✚✚✚ ✚✚✚✚ ✚✚▼▼▼ ▼▼▼ ▼▼▼ ▼▼▼ ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ ▼▼▼ ▼▼▼ ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ ▼ ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ ▼▼▼▼▼▼▼▼ ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ ▼▼▼▼ ▼▼▼▼▼▼▼▼▼▼ ▼▼▼▼▼▼▼▼▼▼▼▼▼ ▼▼▼▼▼ ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ ▼▼▼ ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ ▼▼▼▼▼▼▼▼ ▼▼▼▼▼ ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ ▼▼▼ ▼▼ ▼▼▼ ▼▼▼▼▼▼▼▼▼▼▼

✚

▼

0
10

20
30

ti
m
e
(s
)

0 5000 10000 15000 20000

|N |

DissJavaProcedureNTICDS3

DissJavaProcedureNTICDPDF

✚✚
✚
✚

✚

✚

✚

✚

✚

✚

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼
▼▼

▼▼▼
▼▼▼▼

▼▼▼▼▼
▼
▼▼▼

▼
▼
▼
▼
▼
▼
▼▼

▼
▼

▼▼

▼▼▼▼▼▼▼▼
▼▼

▼
▼
▼

✚

▼

0
1

2
3

4
5

ti
m
e
(s
)

0 50000 100000 150000 200000 250000

|N | (|→G| = 2 |N |)

DissRandomArbitraryNTICDS3

DissRandomArbitraryNTICDPDF

✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚
✚ ✚

▼ ▼
▼

▼

▼

▼
▼

▼

▼

▼

✚

▼

0
20

40
60

80

ti
m
e
(s
)

0 1000 2000 3000 4000 5000

|N | (|→G| ≈ 1.5 |N |)

DissEntryExitLadderNTICDS3

DissEntryExitLadderNTICDPDF

(c) “Bad Case”

Figure 8.4: Computation of →nticd.

151

8 Performance Benchmarks

8.4 Control Slices

Given →nticd, corresponding slices (→nticd)∗ (M) of sets of nodes M
can be computed in linear time. The relation →nticd, however, can be
of size quadratic in the number of nodes. In Appendix C, I give a
generalization of an algorithm based on DJ-Graphs[SG95] (i.e.: domi-
nance trees enriched by join edges) to the pseudo-forests <SINK, enriched
with conditional edges (Algorithm 17). The algorithm requires only the
postdominance pseudo-forest, but not the corresponding control de-
pendence relation.

NTICD Slices (Figure 8.5) For slices via →nticd (), computation
time includes the computation of →nticd. The computation time for
Algorithm 17 (H) includes the computation of <SINK. I also imple-
mented a variant of Algorithm 17 that is based on <SINK as represented
by postorder numbers, i.e.: as computed by Algorithm 24 on page 406.
Marker � include computation time of both.

NTSCD Slices (Figure 8.6) For slices via →ntscd (), computation
time includes the computation of →ntscd. Algorithm 17 also works
→ntscd slices, by using <MAX instead of <SINK, and similar in the definition

n→C m ⇔ n→G m ∧ m /∈ ipdomwMAX
(n)

of conditional edges. The computation time (H) includes the compu-
tation of <MAX.

All slices are w.rt. randomly selected noes M, with |M| = 5.

Note that in the “bad case” plots, I can show the |N|-axis up to |N| =
65000, while before in Section 8.3, I could only it up to |N| = 5000,
since then computation time began to approach and exceed 60s.

152

8.4 Control Slices

✚✚✚✚ ✚✚ ✚✚✚✚✚✚ ✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚

✚

✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚

✚

✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚ ✚✚✚ ✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚

✚

✚ ✚

✚

✚✚✚✚✚✚ ✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚ ✚✚✚✚✚✚ ✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚ ✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚ ✚✚✚ ✚✚

✚

✚

✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚ ✚✚✚✚✚ ✚✚✚ ✚✚✚✚✚✚✚✚✚✚ ✚✚✚ ✚✚✚✚✚ ✚✚✚✚

✚

✚✚✚✚✚ ✚✚✚✚ ✚✚✚✚✚✚ ✚ ✚✚✚✚✚✚

✚

✚

✚✚ ✚ ✚✚ ✚✚✚✚✚✚✚✚✚ ✚✚ ✚✚ ✚✚

✚

✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚ ✚✚✚

✚

✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚ ✚✚✚✚✚✚✚✚ ✚✚ ✚✚✚ ✚✚ ✚✚ ✚✚✚ ✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚ ✚✚✚

✚

✚ ✚✚✚ ✚✚✚✚✚ ✚✚✚✚ ✚✚▼▼▼
▼

▼▼
▼

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ ▼▼▼ ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼
▼

▼▼
▼

▼▼ ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ ▼ ▼
▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ ▼▼▼▼▼▼▼▼ ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ ▼▼▼▼

▼
▼▼▼▼▼▼▼▼▼ ▼▼▼▼▼▼▼▼▼▼▼▼▼

▼
▼

▼▼▼ ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ ▼▼▼ ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ ▼▼▼▼▼▼▼▼ ▼▼▼▼▼ ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ ▼▼▼
▼

▼ ▼▼▼ ▼▼▼▼▼▼▼▼▼▼▼■■■

■

■■
■

■■■■■■■■■■■■■ ■■■■■■■ ■■■■■■■■■■■■■■■ ■■■■■ ■■ ■■■■■■■■■■■■■■■■■■■■ ■■■■■■■■■■■■■ ■ ■■■ ■■■■■■■■■■■■■■■■■■■■■■■■

■

■■
■

■■■■■■ ■■ ■■■■■■■■■■■■■■■■■■■■■ ■■■ ■■■■■■■■■■■■■■■ ■■■■■■■
■ ■

■■■ ■■■■■■■■■■■■■ ■■■ ■■■■■ ■■■ ■■■■■■■■■■ ■■■■■■■■ ■■■■
■

■■■■■■■■■ ■■■■■■■■■■■■■

■
■

■■ ■ ■■■■■■■■■■■ ■■■■■■
■

■■■■■■■■■■■■■■■■■■■■ ■■■ ■■■■■■■■■■■■■■■■■ ■■■■ ■■■■■■■■ ■■■■■ ■■ ■■ ■■■■■■■■■■■■■■■■■ ■■■■■■ ■■■

■

■ ■■■ ■■■■■■■■■■■

✚

▼

■

0
20

0
40

0
60

0

ti
m
e
(m

s)

0 5000 10000 15000 20000

|N | (|→G| = 2 |N |)

DissJavaProcedureNTICDSlice

DissJavaProcedureNTICDSliceCEdge

DissJavaProcedureNTICDSliceCEdgeNumber

✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚
✚ ✚

✚ ✚ ✚ ✚
✚ ✚

✚ ✚
✚ ✚

✚ ✚ ✚ ✚ ✚ ✚ ✚
✚
✚

✚
✚
✚
✚ ✚ ✚ ✚

✚
✚

✚

✚

✚

✚
✚ ✚ ✚

✚
✚
✚

✚

✚

✚
✚

✚

✚

✚

✚

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼
▼
▼▼▼▼▼▼▼▼▼▼

▼
▼▼▼▼▼

▼
▼▼▼▼▼▼

▼▼
▼▼▼

▼

■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
■■■■■■

■■■■
■

■
■

■■■■■■■■■
■

■■■■■
■

✚

▼

■

0
1

2
3

ti
m
e
(s
)

0 50000 100000 150000 200000 250000

|N | (|→G| = 2 |N |)

DissRandomArbitraryNTICDSlice

DissRandomArbitraryNTICDSliceCEdge

DissRandomArbitraryNTICDSliceCEdgeNumber

✚✚✚
✚
✚
✚✚

✚

✚

✚

▼▼▼
▼
▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼

■■■

✚

▼

■

0
50

10
0

15
0

20
0

ti
m
e
(s
)

0 10000 20000 30000 40000 50000 60000

|N | (|→G| = 2 |N |)

DissEntryExitLadderNTICDSlice

DissEntryExitLadderNTICDSliceCEdge

DissEntryExitLadderNTICDSliceCEdgeNumber

(c) “Bad Case”

Figure 8.5: Computation of (→nticd)∗ (M)

✚✚✚✚ ✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚

✚

✚✚ ✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚

✚

✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚ ✚ ✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚ ✚✚✚ ✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚

✚

✚ ✚

✚

✚✚✚✚✚✚ ✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚ ✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚ ✚✚✚ ✚✚

✚

✚

✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚ ✚✚✚✚✚ ✚✚✚ ✚✚✚✚✚✚✚✚✚✚ ✚✚✚ ✚✚✚✚✚ ✚✚✚✚

✚

✚✚✚✚✚ ✚✚✚✚ ✚✚✚✚✚✚ ✚ ✚✚✚✚✚✚

✚

✚

✚✚ ✚ ✚✚ ✚✚✚✚✚✚✚✚✚ ✚✚ ✚✚ ✚✚

✚

✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚ ✚✚✚

✚

✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚ ✚✚✚✚✚✚✚✚ ✚✚ ✚✚✚ ✚✚ ✚✚ ✚✚✚ ✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚ ✚✚✚

✚

✚ ✚✚✚ ✚✚✚✚✚ ✚✚✚✚ ✚✚▼▼▼

▼

▼▼
▼

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ ▼▼▼ ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼

▼

▼▼
▼

▼▼ ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼
▼ ▼

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ ▼▼▼▼▼▼▼▼ ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ ▼▼▼▼
▼

▼▼▼▼▼▼▼▼▼ ▼▼▼▼▼▼▼▼▼▼▼▼▼

▼
▼

▼▼▼ ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼
▼

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ ▼▼▼ ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ ▼▼▼▼▼▼▼▼ ▼▼▼▼▼ ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ ▼▼▼

▼

▼ ▼▼▼ ▼▼▼▼▼▼▼▼▼▼▼

✚

▼

0
20

0
40

0
60

0

ti
m
e
(m

s)

0 5000 10000 15000 20000

|N | (|→G| = 2 |N |)

DissJavaProcedureNTSCDSlice

DissJavaProcedureNTSCDSliceCEdge

✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚
✚ ✚

✚ ✚
✚ ✚ ✚ ✚ ✚

✚
✚ ✚

✚
✚ ✚ ✚ ✚ ✚

✚

✚ ✚ ✚
✚ ✚ ✚ ✚ ✚ ✚

✚

✚

✚

✚

✚
✚

✚ ✚ ✚
✚ ✚

✚

✚

✚

✚ ✚
✚ ✚

✚

✚

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼
▼▼▼▼▼▼▼▼▼▼▼

▼▼▼▼▼▼
▼▼▼▼▼

▼▼
▼▼▼▼▼▼▼▼▼

▼
▼
▼▼▼▼

▼

✚

▼

0
1

2

ti
m
e
(s
)

0 50000 100000 150000 200000 250000

|N | (|→G| = 2 |N |)

DissRandomArbitraryNTSCDSlice

DissRandomArbitraryNTSCDSliceCEdge

✚✚
✚
✚

✚

✚
✚

✚

✚

✚

▼▼
▼

✚

▼

0
20

40
60

80

ti
m
e
(s
)

0 10000 20000 30000 40000 50000 60000

|N | (|→G| = 2 |N |)

DissEntryExitLadderNTSCDSlice

DissEntryExitLadderNTSCDSliceCEdge

(c) “Bad Case”

Figure 8.6: Computation of (→ntscd)∗ (M)

153

8 Performance Benchmarks

8.5 Nontermination Insensitive Order
Dependence

By the slogan

→ntiod ≈
(

∑
M∈M

|M|
)
× →nticd

from Subsection 6.7.1, computation of →ntiod for a graph G can be
reduced to the computation of →nticd on subgraphs of G. These sub-
graphs consists of the graphs control sinks M (and the those nodes
between M and those nodes n of which M are immediate postdomi-
nators). Specifically, these subgraphs all have a unique exit node nx,
and hence there it holds that →nticd = →cd. This means that classics
algorithms[LT79; Cyt+91] can be used. Their computation time form
the baseline (�) in Figure 8.7.

Also in Subsection 6.7.1, I introduced two schemes (Observation 6.7.7
shown as , and Observation 6.7.8 shown as H) that avoided full
computation of <SINK for every node m ∈ M in some control sink M of
G. These are based on phase SINKdown from Algorithm 19.

The plot in Figure 8.7b contains data points (, H and �) near the
|N|-axis. These indicate that for the given graph (with size |N|), the
relation →ntiod is either empty or very small (i.e.: there are no non-
trivial control sinks in G, or they are small). In other words: aside
from one computation of <SINK for the whole graph, my algorithms for
→ntiod require additional computation only insofar it contains non-
trivial control sinks.

This can also be seen in Figure 8.7d, in which the execution time of the
computation due to Observation 6.7.7 () is compared with the size
|→ntiod| (�) of the computed relation. I conjecture that in practice,
they are asymptotically equal, i.e.: in practice, Observation 6.7.7 is
asymptotically optimal under all algorithms that compute an explicit
representation of →ntiod.

154

8.5 Nontermination Insensitive Order Dependence

✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚
✚

✚ ✚ ✚

✚ ✚

✚ ✚ ✚

✚

✚
✚

✚

✚ ✚
✚

✚

✚
✚

✚

✚▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼
▼

▼ ▼ ▼

▼ ▼

▼ ▼ ▼

▼

▼

▼

▼

▼ ▼
▼

▼

▼ ▼
▼

▼■ ■ ■ ■ ■ ■
■ ■

■

■

■

■
■

■ ■

■

■

■

■

■

■

■

■

■

■ ■

✚

▼

■

0
50

10
0

15
0

ti
m
e
(s
)

0 1000 2000 3000 4000 5000 6000 7000

|N | (|→G| = 2 |N |)

DissNTIOD

DissNTIODGeneralized

DissNTIODTarjan

(b) Random Graphs

✚ ✚ ✚
✚

✚

✚

✚

✚

✚

✚

▼ ▼ ▼
▼

▼

▼

▼

▼

▼

▼

■ ■ ■ ■
■

■

■

■

■

■

✚

▼

■

0
10

20

ti
m
e
(s
)

100 200 300 400 500

|N | (|→G| = 2 |N |)

DissNTIODLadder

DissNTIODLadderGeneralized

DissNTIODLadderTarjan

(c) “Bad Case”

✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚
✚

✚
✚ ✚

✚ ✚

✚ ✚
✚

✚

✚

✚

✚

✚
✚

✚

✚

✚
✚

✚

✚■ ■ ■ ■ ■ ■ ■ ■
■

■

■ ■
■

■ ■

■
■

■

■

■
■

■

■

■
■

■

■
■

■

■

✚

■

50
10
0

ti
m
e
(s
)

0.
5

1
.0
×
1
0
8

|→
N
T
IO

D
|

0 2000 4000 6000

|N | (|→G| = 2 |N |)

DissNTIOD (time)

DissNTIOD (size)

(d) Comparison: execution time vs
size |→ntiod|.

Figure 8.7: Computation of →ntiod.

In randomly generated graphs (Figure 8.7b), the two more compli-
cated schemes () and (H) give an advantage over my baseline scheme
(�) (Figure 8.7b). In “bad case” ladder graphs (Figure 8.7c), the situa-
tion is reversed.

155

8 Performance Benchmarks

8.6 Nontermination Insensitive Slices

In Section 7.5, I observed that for any given set M of nodes in an arbi-
trary graph G, I can reduce three different notions of nontermination
insensitive slicing to→nticd-slicing in modified graphs GM, as follows:(
→G

nticd ·∪ →G
ntiod

)∗
(M) =

(
→GM

nticd

)∗
(M) for GM = GM 6→

(→G
wod)
∗ (M) =

(
→GM

nticd

)∗
(M) for GM = G→

∗M
M 6→

WCCG (M) =
(
→GM

nticd

)∗
(M) for GM = GM→∗M

M 6→

These equations each yield, together with Lemma 7.1.1, an algorithm
for computing M-slices directly from <

GM
SINK , without the need to com-

pute→GM
nticd.

With regard to performance, these three reduction behave essen-
tially the same. I show the computation time for weak control slices
WCCG (M) in Figure 8.8. The best algorithm2 other than mine is from
[LKL18] (H), with which I compare my algorithm () in randomly
generated graphs. The Implementation of the algorithm from [LKL18]
is my own, and appears (with respect to constant factors) to be faster
than the authors original implementation.

2 that I am aware of

156

8.6 Nontermination Insensitive Slices

✚ ✚
✚ ✚ ✚ ✚

✚
✚ ✚ ✚

✚ ✚ ✚ ✚
✚ ✚

✚ ✚ ✚
✚ ✚ ✚

✚ ✚
✚ ✚

✚

▼▼▼▼▼▼▼▼▼▼
▼▼▼

▼▼▼
▼▼▼▼

▼▼
▼▼

▼▼▼
▼

▼▼▼
▼

▼▼
▼▼

▼
▼▼

▼

▼▼

▼

▼
▼▼

▼▼

▼

▼
✚

▼

0
2

4
6

ti
m
e
(s
)

0 50000 100000 150000 200000 250000

|N | (|→G| = 2 |N |)

DissWeakControlClosureViaISINKDOM

DissWeakControlClosureViaFCACD

Figure 8.8: Computation of WCCG (M).

157

8 Performance Benchmarks

8.7 Timing Sensitive Algorithms

Together, Algorithm 11, 10, 9, 10 and 8 implement timing sensitive
control dependence →tscd. Timing dependence →td can be computed
via Observation 10.2.1 and Algorithm 8.

Timing Sensitive Control Dependence The benchmarks include the
computation time of all sub-algorithms (). Ladder graphs expose
non-linear bad-case behavior.

Timing Dependence By Observation 10.2.1, for each graph, I com-
pute |N| transitive reductions <Gm

TIME of transitive timing sensitive
postdominance wGm

TIME, for certain subgraphs Gm of the control flow
graph G. I use Algorithm 8. The benchmarks include all |N| invoca-
tions for each graph ().

Timing Sensitive Postdominance Pseudo-Forests I also show bench-
marks for the computation of computation of <TIME only, via Algo-
rithm 8.

158

8.7 Timing Sensitive Algorithms

✚✚✚✚ ✚✚ ✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚

✚

✚✚

✚

✚✚✚✚✚✚✚✚✚✚ ✚✚✚ ✚✚✚✚✚✚✚ ✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚ ✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚ ✚✚✚ ✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚

✚

✚ ✚

✚

✚✚✚✚✚✚ ✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚ ✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚ ✚✚✚ ✚✚

✚

✚

✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚ ✚✚✚✚✚ ✚✚✚ ✚✚✚✚✚✚✚✚✚✚ ✚✚✚ ✚✚✚✚✚ ✚✚✚✚

✚

✚✚✚✚✚ ✚✚✚✚ ✚✚✚✚✚✚ ✚ ✚✚✚✚✚✚

✚

✚

✚✚ ✚ ✚✚ ✚✚✚✚✚✚✚✚✚ ✚✚ ✚✚ ✚✚

✚

✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚ ✚✚✚

✚

✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚ ✚✚✚✚ ✚✚✚✚✚✚✚✚ ✚✚ ✚✚✚ ✚✚ ✚✚ ✚✚✚ ✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚ ✚✚✚

✚

✚ ✚✚✚ ✚✚✚✚✚ ✚✚✚✚ ✚✚

✚

0.
0

0.
2

0.
4

0.
6

ti
m
e
(s
)

0 5000 10000 15000 20000

|N |

DissJavaProcedureTSCDPDF

✚ ✚
✚
✚ ✚ ✚

✚
✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚

✚
✚
✚ ✚ ✚ ✚

✚ ✚
✚ ✚ ✚ ✚ ✚

✚ ✚
✚ ✚ ✚

✚ ✚
✚ ✚

✚

✚

0
2

4
6

ti
m
e
(s
)

0 50000 100000 150000 200000 250000

|N | (|→G| = 2 |N |)

DissRandomArbitraryTSCDPDF

✚ ✚ ✚
✚

✚

✚

✚

✚

✚

✚

✚

0
10
0

20
0

30
0

ti
m
e
(s
)

1000 2000 3000 4000 5000

|N | (|→G| ≈ 1.5 |N |)

DissEntryExitLadderTSCDPDF

(c) “Bad Case”

Figure 8.9: Computation of →tscd.

✚✚✚✚✚✚✚✚ ✚✚✚✚✚ ✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚ ✚✚✚✚ ✚✚✚✚✚ ✚✚✚✚✚ ✚✚✚✚ ✚✚✚

✚

✚✚✚ ✚✚ ✚✚✚ ✚✚✚✚✚✚ ✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚ ✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚

✚

✚✚✚✚✚✚✚ ✚✚✚✚ ✚✚ ✚✚✚✚✚ ✚✚ ✚✚✚✚✚✚ ✚✚✚✚✚ ✚✚✚✚ ✚✚✚✚ ✚ ✚✚✚✚✚✚✚✚✚✚ ✚✚ ✚✚✚ ✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚ ✚✚✚ ✚✚✚✚✚ ✚✚✚ ✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚

✚

✚ ✚

✚

✚✚ ✚✚ ✚✚ ✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚ ✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚ ✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚ ✚✚✚ ✚✚

✚

✚

✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚ ✚✚ ✚✚✚ ✚✚✚✚✚ ✚✚✚ ✚✚✚✚✚✚✚✚✚✚ ✚✚✚ ✚✚✚✚✚ ✚✚✚✚

✚

✚✚✚✚✚ ✚✚✚✚ ✚✚✚✚✚✚ ✚ ✚✚✚✚✚✚

✚

✚

✚✚ ✚ ✚✚ ✚✚✚✚✚✚✚ ✚✚ ✚✚ ✚✚ ✚✚ ✚✚✚✚✚✚✚✚✚ ✚✚✚✚ ✚✚✚✚✚ ✚✚✚ ✚✚✚

✚

✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚ ✚✚✚✚✚✚✚✚ ✚✚ ✚✚✚ ✚✚ ✚✚ ✚✚✚ ✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚ ✚✚✚

✚

✚ ✚✚✚ ✚✚✚✚✚ ✚✚✚✚ ✚✚

✚

0
20

40
60

80

ti
m
e
(s
)

0 5000 10000 15000 20000

|N |

DissJavaProcedureTDEP

✚ ✚
✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚

✚ ✚ ✚ ✚

✚
✚
✚
✚
✚ ✚ ✚ ✚ ✚

✚ ✚
✚
✚

✚
✚

✚ ✚ ✚

✚ ✚
✚

✚

✚

✚

✚

0
5

10
15

ti
m
e
(s
)

0 500 1000 1500 2000 2500

|N | (|→G| = 2 |N |)

DissRandomArbitraryTDEP

✚ ✚
✚ ✚

✚ ✚
✚ ✚ ✚ ✚

✚ ✚ ✚ ✚
✚ ✚

✚
✚
✚
✚
✚
✚
✚
✚
✚

✚
✚
✚

✚

0
20

40
60

ti
m
e
(s
)

0 500 1000 1500 2000 2500

|N | (|→G| ≈ 1.5 |N |)

DissEntryExitLadderTDEP

(c) “Bad Case”

Figure 8.10: Computation of →timing.

159

8 Performance Benchmarks

✚✚✚✚ ✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚ ✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚

✚

✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚

✚

✚✚✚✚✚✚ ✚✚✚✚✚✚✚
✚✚✚✚✚✚✚
✚

✚✚✚✚✚✚✚✚✚✚✚✚✚✚
✚✚✚✚✚
✚

✚✚✚ ✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚ ✚✚✚✚✚✚✚✚✚ ✚
✚

✚✚
✚

✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚

✚

✚ ✚

✚

✚✚✚✚✚✚ ✚✚✚✚✚ ✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚
✚

✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚✚
✚

✚✚
✚

✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚ ✚✚✚ ✚✚

✚

✚

✚✚✚ ✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚

✚

✚✚✚✚
✚

✚✚

✚

✚✚✚✚✚✚✚✚✚ ✚✚✚ ✚✚✚✚✚

✚

✚✚✚

✚

✚✚✚✚✚ ✚✚✚✚

✚

✚✚✚✚✚ ✚ ✚✚✚✚✚✚

✚

✚

✚✚ ✚
✚✚ ✚

✚✚✚✚✚✚✚✚ ✚✚ ✚✚ ✚✚

✚

✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚
✚

✚✚

✚

✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚✚ ✚✚✚✚
✚

✚✚✚✚✚✚✚
✚

✚ ✚✚✚

✚

✚
✚✚
✚✚✚ ✚

✚✚ ✚✚✚✚✚✚✚✚✚✚✚
✚✚✚✚✚✚

✚
✚✚

✚

✚
✚

✚✚
✚✚✚✚✚ ✚✚✚✚ ✚✚

✚

0
5

10
15

ti
m
e
(m

s)

0 5000 10000 15000 20000

|N |

DissJavaProcedureTIMDOM

✚ ✚
✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚ ✚

✚ ✚
✚ ✚ ✚ ✚ ✚

✚ ✚ ✚
✚ ✚

✚

✚

0.
0

0.
5

1.
0

ti
m
e
(s
)

0 50000 100000 150000 200000 250000

|N | (|→G| = 2 |N |)

DissRandomAbitraryTIMDOM

✚ ✚
✚ ✚ ✚

✚ ✚ ✚

✚
✚
✚ ✚ ✚ ✚ ✚ ✚ ✚

✚
✚ ✚ ✚

✚ ✚ ✚
✚ ✚ ✚

✚
✚ ✚ ✚ ✚

✚ ✚ ✚ ✚
✚ ✚ ✚

✚
✚ ✚

✚

✚

0
50

10
0

15
0

20
0

25
0

ti
m
e
(m

s)

0 10000 20000 30000 40000 50000 60000

|N | (|→G| ≈ 1.5 |N |)

DissEntryExitLadderTIMDOM

(c) “Bad Case”

Figure 8.11: Computation of <TIME.

160

Part II

Timing Sensitive
Dependency Analysis

Endlich Zeitumstellung zu nehmen (it’s time)
Den Wendehals noch schnell umzudrehen
Endlich wieder den Schweinehund ausführen
Zeit umzukehren vor der eigenen Haustür
Höchste Zeit es beim Namen zu nennen
Dass es höchste Zeit ist zum Farbe bekenn’, ja

(Dendemann — Zeitumstellung)

161

9 Timing Sensitive Control
Dependence

“Wonderful”, the Flatline said, “I never did like to do
anything simple when I could do it ass-backwards.”

(William Gibson — Neuromancer)

In both Section 6.3 and Section 6.8, I established soundness of slicing
by virtue of trace based notions of observation. There, I defined a
trace t to be a sequence of partial edges (n, n′) ∈ E ∪ (Nx × {⊥}) that
is either finite with

t = (ne, n1) , (n1, n2) , . . . , (nk, nx) , (nx,⊥)

for some exit node nx, or infinite with

t = (ne, n1) , (n1, n2) , . . .

Given a set S of “observable” nodes and a trace t, I defined the S-
observation t

∣∣
S of t to be the sub-sequence of t containing only edges

(n, n′) with n ∈ S. In terms of an attacker model, this means that I
assume an attacker to observe exactly those choices made at nodes
n ∈ S. Specifically, I assume that an attacker can observe neither
the nodes in a subtrace between observable nodes, nor the time spent
between two observable nodes (i.e: the length of the subtrace between
two observable nodes). In other words, I make the assumption that
the attacker has no clock! As a result, even programs deemed secure
under trace equivalence, i.e.: programs such that

ti ∼S ti′

for any two low-equivalent inputs i ∼S i′ may yet have external timing
leaks. A most trivial example is shown in Figure 9.1a, with observable

163

9 Timing Sensitive Control Dependence

(a) A CFG with external timing leak (b) A CFG without timing leak

Figure 9.1: Dependence of execution time of mx on n.

nodes S = {m, mx}. Regardless of the choice made at n, all inputs i, i′

starting in m have the same observable trace

ti
∣∣
S = (m, n) , (mx,⊥) = ti′

∣∣
S

consisting of two pseudo-edges and terminating in mx, hence:
ti ∼S ti′ . However, if equipped with a suitably precise clock, and as-
suming a uniform execution time of one time unit u per edge, an
attacker will observe mx after 3u have passed if the input i chooses n′′

at n, but only after 5u if i chooses n′ at n, exposing an external timing
leak. This becomes obvious if I annotate each edge in traces ti, t′i with
its execution time, and then compare their S-observation:

t�i
∣∣
S = (m, n)� [0] , (mx,⊥)� [3]
6= (m, n)� [0] , (mx,⊥)� [5] = t�i′

∣∣
S

On the other hand, the program in Figure 9.1b has no timing leak.
That is, even if I annotate each edge in the observable trace with its
execution time, all inputs i, i′ starting in m have the same observable
clocked trace

t�i
∣∣
S = (m, n)� [0] , (mx,⊥)� [5] = t�i′

∣∣
S

164

In this chapter, I fully develop an approach for timing sensitive slicing.
Unlike nontermination (in)-sensitive slicing, which in the general case
required additional ternary notions of dependence, I propose a sin-
gle (binary) notion of timing sensitive control dependence→tscd which
will result in slices that are both sound and minimal with regard to
observational equivalence of clocked traces, justifying the slogan

Timing Sensitive IFC = (→tscd ∪ →data)∗

I will propose an efficient algorithm for the computation of →tscd
which will almost, bot not quite follow the development of algorithms
for →nticd and →ntscd I exercised in Chapter 3 and Chapter 5. Specifi-
cally, I will

1. Propose a notion wTIME[FIRST] of timing sensitive postdominance

2. Give a least fixed point characterization of wTIME[FIRST]

3. Propose a notion→tscd of timing sensitive control dependence. It
will be based on wTIME[FIRST] almost the same way that →ntscd is
based on wMAX.

I will (and in general: can) not give an algorithm to compute a tran-
sitive, reflexive reduction >TIME[FIRST] of wTIME[FIRST]. Instead, I pro-
pose another notion wTIME of timing sensitive postdominance that is
almost the same as wTIME[FIRST]. Then, I will

5. Give a least fixed point characterization of wTIME

6. Propose an algorithm to compute a transitive, reflexive reduc-
tion >TIME of wTIME. The Algorithm will be almost the same as
Algorithm 5 for >MAX.

7. Propose an auxiliary notion of Fn of “fuel available” at nodes
n which will allow me to characterize wTIME[FIRST] in terms of
wTIME. Informally:

wTIME[FIRST] = wTIME + F

165

9 Timing Sensitive Control Dependence

8. Propose a “post processing” algorithm that — given >TIME —
computes F.

9. Characterize — in terms of <TIME and F — for very node n the
set ipdomwTIME[FIRST]

(n) of immediate wTIME[FIRST] postdomina-
tors of n.

10. Give an algorithm (similar to the generalized Cytron Algorithm
from Chapter 3) that — given ipdomwTIME[FIRST]

— computes the
timing sensitive postdominance frontiers and hence: →tscd.

166

9.1 Timing Sensitive Control Dependence

9.1 Timing Sensitive Control Dependence

In Figure 9.1a, the node mx does nontermination sensitively postdom-
inate n (mx wMAX n) because any maximal path starting in either G-
successor of n must contain mx (i.e.: both mx wMAX n′ and mx wMAX n′′),
and so must any maximal path starting in n. Remember that wMAX was
defined via

m wG
MAX n ⇔ ∀π ∈ nΠG

MAX. m ∈ π

where nΠG
MAX is the set of maximal G-paths starting in n.

In order to account for the different timing of the (first) occurrence of
mx in maximal paths starting in n, my following definition is com-
pletely natural:

Definition 9.1.1. Let G be any CFG, n, m any nodes in G. Given any
path

π = m0, m1, m2, . . .

I say that m appears in π at position k iff m = mk, and write m ∈k π.
If additionally, mi 6= m for all i < k, I say that m first appears in π at
position k, and write m ∈k

FIRST π.

Furthermore, I say that m timing-sensitively postdominates n at po-
sition k ∈ N in G iff on all maximal G-paths starting in n, m first
appears at position k. I omit “in G” whenever possible, and just say
that m timing-sensitively postdominates n iff this is the case for some
k. Formally:

m wk in G
TIME[FIRST] n ⇔ ∀π ∈ nΠG

MAX. m ∈k
FIRST π

m wG
TIME[FIRST] n ⇔ ∀π ∈ nΠG

MAX. m ∈k
FIRST π for some k ∈N

Remark 9.1.1. Obviously, given m and n, the k such that m wk
TIME[FIRST]

n (if it exists!) is unique.

167

9 Timing Sensitive Control Dependence

Following Definition 3.1.2 on page 16, but taking into account that
· w·TIME[FIRST] · is a ternary relation, I can immediately define the
following timing sensitive notion of control dependence:

Definition 9.1.2. Let G be any CFG, n, m any nodes in G. Then m is
said to be timing sensitively control-dependent on n, written n →tscd m,
if there exists G successors nl and nr of n, and some k ∈ N such
that m wk

TIME[FIRST]-post dominates nl , but not: m wk
TIME[FIRST]-post

dominates nr. Formally: n→tscd m ⇔

m wk
TIME[FIRST] nl and

¬ m wk
TIME[FIRST] nr

for some k ∈N and nl , nr such that n→G nl and n→G nr.

Remember from Theorem 5.1.2 that wMAX is the least fixed point of the
following rule system D

n w n
Dself ∀p→G x. m w x p→∗G m

m w p
Dsuc

in the lattice
(
2N×N ,⊆

)
.

Similarly, the ternary relation wTIME[FIRST] is the least fixed point of
the rule system TFIRST in the underlying lattice

(
2N×N×N ,⊆

)
.

Proposition 9.1.1. Let G be a CFG and TFIRST be the rule-system1

n w0 n
Tself

FIRST
∀p→G x. m wk x m 6= p p→+

G m

m wk+1 p
Tsuc

FIRST

Then wTIME[FIRST] = µTFIRST.

1 over a ternary relation · w · ·

168

9.1 Timing Sensitive Control Dependence

Remark 9.1.2. The condition p →∗G m is redundant for nodes p that
have some successor x, since I only consider the least (but never: the
greatest) fixed point of TFIRST.

The timing sensitive postdominance for the CFG from the earlier ex-
ample in Figure 5.1a is shown in Figure 9.3b. Figure 9.3c and Fig-
ure 9.3d show the corresponding non-termination sensitive and timing
sensitive control dependencies. Note, for example, that 7 →tscd 8 be-
cause a choice 7→G 11 can delay node 8, but in contrast: ¬ 7→∗ntscd
8, because no choice at node 7 can prevent node 8 from being executed.
It is not the case that, in general, n →ntscd m implies n →tscd m. For
example: 2→ntscd 8, but ¬ 2→tscd 8. What does hold here is 2→∗tscd 8
via 2→tscd 7→tscd 8. In fact, timing sensitive control independence is
transitively a stricter requirement than non-termination sensitive con-
trol independence:

Observation 9.1.1. Let G = (N, E) be any CFG, and M ⊆ N any set
of nodes. Then the timing sensitive backward slice of M contains the
nontermination sensitive backward slice of M:

(→tscd)
∗ (M) ⊇ (→ntscd ·∪ →ntsod)∗ (M)

= (→ntscd ·∪ →dod)∗ (M)

It is worth noting that the →tscd slice in Observation 9.1.1 does not
require a timing sensitive analogue of the relation →ntsod. Recall that
the necessity of either →dod or →ntsod was motivated by the canonical
irreducible graph from Figure 6.1 on page 66. Essentially the same
CFG is shown in Figure 9.2. The problem with→ntscd was that neither
m1 nor m2 is nontermination sensitively control dependent on n, yet
the decision at n determines which node is observed next. In contrast,
both m1 and m2 are timing-sensitively control dependent on n (e.g.:
n →tscd m1 because m1 w1

TIME[FIRST] n′, but ¬ m1 w1
TIME[FIRST] n′′, and

also: m1 w2
TIME[FIRST] n′′, but ¬ m1 w2

TIME[FIRST] n′).

169

9 Timing Sensitive Control Dependence

(a) A CFG G

0

1

1
0

0

2

21 1

0 0

(b) wTIME[FIRST] in G
(edges reversed)

(c)→G
tscd

Figure 9.2: The canonical irreducible graph, where neither n→ntscd m1 nor n→ntscd m2.

170

9.1 Timing Sensitive Control Dependence

1

2

10

36

4 9

1214

5

7

8

11

13

(a) A CFG

1 0

2 0

3 0

4

3

0

5

2

1

0

6 0

7

1

0

8

1

2

0

9 0

10

1

0

11 0

12

2

1

0 13

2

3

1

014

2

1

0

(b) Its relation wTIME[FIRST] (edges re-
versed)

1

2

10

36 7 8

4 59

1214

11

13

(c) Its non-termination sensitive
control dependence →ntscd

1

2

10

3

6

7

4 5 9

12 148

11

13

(d) Its timing sensitive control depen-
dence→tscd

Figure 9.3: Timing sensitive postdominance. Edges n k−→ m indicate m wk
TIME[FIRST] n.

171

9 Timing Sensitive Control Dependence

(a) A CFG G

0

1

1
0

0

2

21

0

(b) · w·TIME[FIRST] ·

edges reversed

(c) · wTIME[FIRST] ·

edges reversed

Figure 9.4: An irreducible graph with intransitive · wTIME[FIRST] ·

9.2 Timing Sensitive Post Postdominance
Frontiers

In order to develop efficient algorithms for the computation of tim-
ing sensitive postdominance wTIME[FIRST] and timing sensitive control-
dependence→tscd, I first recall that algorithms I previously developed
for nontermination sensitive postdominance and control dependence
(i.e.: for wMAX and →ntscd) heavily relied on the fact that wMAX is transi-
tive:

1. Transitivity of wMAX allowed me to efficiently compute and rep-
resent wMAX in form of its transitive reduction >MAX. Here, <MAX

turned out to be a pseudo-forest.

2. Transitivity of wMAX, and the fact that

ipdom∗wMAX
= wMAX

allowed me to use Algorithm 1 to efficiently compute→ntscd (see
Definition 3.2.7) via the nontermination sensitive postdominance
frontier PDFwMAX .

172

9.2 Timing Sensitive Post Postdominance Frontiers

Disregarding for now the fact that →tscd is defined in terms of the
ternary relation · w·TIME[FIRST] · , and not in terms of its (binary) “∃k. -
closure” · wTIME[FIRST] · , let me investigate first if · wTIME[FIRST] · is
— in general — transitive. To do this, consider the (irreducible) CFG
in Figure 9.4a. Here, every maximal path starting in n first reaches
m1 after two steps, hence m1 wTIME[FIRST] n. Also, every maximal path
starting in m1 first reaches m2 after one step, hence m2 wTIME[FIRST] m1.
But it is for no number k of steps the case that m2 wk

TIME[FIRST] n,
hence: ¬ m1 wTIME[FIRST] n. In summary, · wTIME[FIRST] · here is not
transitive.

On the other hand, situations such as that in Figure 9.4 are the only in
which · wTIME[FIRST] · is not transitive:

Observation 9.2.1. Let G be any reducible CFG, and write w for
· wTIME[FIRST] ·. Then w is transitive.

Also, if there exists a unique exit node nx, then · wTIME[FIRST] · is
transitive even for irreducible CFG.

Observation 9.2.2. Let G be any CFG with unique exit node nx, and
write w for · wTIME[FIRST] ·. Then w is transitive.

Since I know now that · wTIME[FIRST] · is “usually” transitive, I am
encouraged to work towards a modification of Algorithm 1 which
allows me to compute the timing sensitive postdominance frontier
PDFwTIME[FIRST] . But first, I need to ensure that PDFwTIME[FIRST] will actu-
ally allow me to determine→tscd. Remember that for m 6= n, I simply
had

n ∈ PDFwMAX (m) ⇔ n→ntscd m

which was obvious from the definition of →ntscd, which is in terms of
the binary relation wMAX.

In order to obtain the analogous result for →tscd, I first need to “con-
servatively” redefine the notion PDFw of w-postdominance in order to

173

9 Timing Sensitive Control Dependence

obtain a notion appropriate for non-transitive relations w. Remember
that in Definition 3.2.2 on page 21, I defined for any binary relation w:

PDFw (m) =

{
n

∣∣∣∣∣ ¬ m 1-w n
for some n′ s.t. n→G n′ : m w n′

}

Syntactically, I will stick with this definition, but I will modify the
notion of 1-w-postdominance. The new definition is

Definition 9.2.1 (1-w-Postdominance, redefinition). Given a relationw
⊆ N× N, a node x ∈ N is said to 1-w-postdominate z if x w z and
there exists some node y such that

x A y w z

The only change is the new requirement x w z , which of course was
redundant up to this chapter, since any relation w I considered (i.e.:
wPOST, wMAX and wSINK) was transitive. Implicitly, this change also af-
fects immediate w-postdominance ipdomw — see Definition 3.2.1 on
19.

Theorem 9.2.1. Let G be any CFG, and n 6= m two nodes in G. Then

n ∈ PDFwTIME[FIRST] (m) ⇔ n→tscd m

Proof: In this proof, I write w for wTIME[FIRST], and x wk y for
x wk

TIME[FIRST] y, and note that w is reflexive.

I begin with the forward implication, and assume n ∈ PDFw (m).
From m 6= n and since ¬ m 1-w n, I conclude that ¬ m w n. Since
m 6= n, this just means that for all k ∈ N there must exist some G-
successor n′′ such that

¬ m wk n′′

174

9.2 Timing Sensitive Post Postdominance Frontiers

But at the same time, from n ∈ PDFw (m) I obtain some G-successor
n′ of n with

m wk n′

for some k and hence: n→tscd m.

For the reverse implication, I can assume

m wk nl

¬ m wk nr

for some G-successors nl , nr of n and some k ∈ N. Since I do have
m w nl , all I need to show is ¬ m 1-w n. I assume the opposite in
order to derive a contradiction. Given the new definition of m 1-w n,
I then have some k′ such that m wk′ n. Because m 6= n, I have k′ > 0
and both

m wk′−1 nl and
m wk′−1 nr

But this means k = k′ − 1 in contradiction of ¬m wk nr.

The postdominance frontier algorithm from [Cyt+91], and my gener-
alization of that algorithm in Chapter 3, was based on the separation
of the postdominance frontier PDFw (x) into its local part PDFlocal

w (x),
and the parts PDFup

w (z) contributed to PDFw (x) by nodes z for which
x is an immediate postdominator. In order to apply the same idea for
timing sensitive postdominance wTIME[FIRST], I can keep the definition
for the local part PDFlocal

w (x) (changed only implicitly due to the re-
definition of 1-w-postdominance), which is (see: Definition 3.2.3 on
page 21):

PDFlocal
w (x) =

{
y

∣∣∣∣∣ ¬ x 1-w y
y→G x

}

I do, however, have to be more discriminate when considering the
up-contributions, since due to the implicit redefinition of immediate
postdominance, nodes that are wTIME[FIRST]-“equivalent” (i.e.: nodes

175

9 Timing Sensitive Control Dependence

x, x′ such that both x wTIME[FIRST] x′ and x wTIME[FIRST] x′) no longer
necessarily are immediate postdominators of the same nodes z. Re-
member that the definition for immediate postdominators reads:

ipdomw (z) =

{
x

∣∣∣∣∣ x 1-w z
∀x′ ∈ N. x′ 1-w z =⇒ x′ w x

}

Specifically, I do not use the Definition 3.2.4 which read:

PDFup
w (z) =

{
y ∈ PDFw (z)

∣∣∣ ∀x ∈ ipdomw (z) . ¬ x 1-w y
}

Instead, I use the following:

Definition 9.2.2 (w-Postdominance Frontiers: up part for a given
immediate postdominator x). Given a CFG G = (N, E), a relation
w ⊆ N × N and nodes x, z ∈ N such that

x ∈ ipdomw (z)

the w-postdominance frontiers up part PDFup
w (z, x) for z given x is

defined by

PDFup
w (z, x) =

{
y ∈ PDFw (z)

∣∣∣ ¬ x 1-w y
}

Unfortunately, even this change does not give me the same decompo-
sition of PDFwTIME[FIRST] (x) as I had before (i.e.: as I had in Lemma 3.2.2
on page 22). Specifically, at some nodes x I can only inherit dominance
frontier nodes y (from nodes z s.t. x is a immediate wTIME[FIRST]-
postdominator of z) under the additional condition y ∈v′x, for v′x as
defined as in the following observation:

Observation 9.2.3. Given any CFG G = (N, E) and a node x ∈ N, let

w = wTIME[FIRST]

176

9.2 Timing Sensitive Post Postdominance Frontiers

Then:

PDFw (x) = PDFlocal
w (x)

∪
⋃

{z | x∈ipdomw(z), ¬z∈ipdomw(x)}
PDFup

w (z, x)

∪
⋃

{z | x∈ipdomw(z), z∈ipdomw(x)}
PDFup

w (z, x)∩ v′x

where v′x = { y | for some y′ s.t. y→G y′ : x w y′ }.

In contrast to the corresponding result (Lemma 3.2.2 on page 22) for
transitive postdominance relations, I do not offer a formal proof of Ob-
servation 9.2.3. I also do not attempt to give general conditions under
which Observation 9.2.3 may hold for (intransitive) postdominance re-
lations other than wTIME[FIRST]. I also do not offer any such conditions
for the two following simplifications of PDFlocal

w (x) and PDFup
w (z, x).

I do want to note, however, that while wTIME[FIRST] is in general not
transitive, it does fulfill the other two earlier conditions of being closed
under→G and lacking joins.

Observation 9.2.4. Given any CFG G, let

w = wTIME[FIRST]

Then w is closed under→G , and

PDFlocal
w (x) =

{
y

∣∣∣∣∣ ¬ x ∈ ipdomw (y)
y→G x

}

Observation 9.2.5. Given any CFG G, let

w = wTIME[FIRST]

177

9 Timing Sensitive Control Dependence

¬ x ∈ ipdomw (y) y→G x
y ∈ PDFw (x)

PDFlocal

¬ x ∈ ipdomw (y)
x ∈ ipdomw (z) ¬ z ∈ ipdomw (x) y ∈ PDFw (z)

y ∈ PDFw (x)
PDFup

1

y→G y′ ¬ x ∈ ipdomw (y) x w y′

x ∈ ipdomw (z) z ∈ ipdomw (x) y ∈ PDFw (z)
y ∈ PDFw (x)

PDFup
2

Figure 9.5: A rule system for PDFwTIME[FIRST]
, writing w for wTIME[FIRST].

Then w lacks joins and is closed under →G , and given any x ∈
ipdomw (z):

PDFup
w (z, x) =

{
y ∈ PDFw (z)

∣∣∣ ¬ x ∈ ipdomw (y)
}

Rephrasing observations 9.2.3, 9.2.4 and 9.2.5, I obtain a characteriza-
tion of PDFwTIME[FIRST] as the least fixed point of the monotone func-
tional defined by the rules in Figure 9.5.

In order to obtain an efficient algorithm for PDFwTIME[FIRST] , I thus need
to develop

1. An efficient algorithm for the computation of (an efficient repre-
sentation of) ipdomwTIME[FIRST]

2. A way to replace the explicit generate-and-test

y→G y′, x wTIME[FIRST] y′

of some y′ such in the rule PDFup
2 by an efficient (implicit) check.

178

9.3 Transitive Timing Sensitive Postdominance

9.3 Transitive Timing Sensitive Postdominance

When I developed algorithms for ipdomwSINK
and ipdomwMAX

, I made
use of the fact that there, I had

ipdom∗w = w

and ipdomw was easily derived from any transitive reduction > of w
(e.g.: Observation 5.2.2 on 44).

With wTIME[FIRST], things are different: for example, in the CFG from
Figure 9.4a, repeated in Figure 9.6a, I have

ipdom∗wTIME[FIRST]
6= wTIME[FIRST]

as is evident fromwTIME[FIRST] and ipdomwTIME[FIRST]
shown in the same

figure. Note, for example, that

m2 ∈ ipdomwTIME[FIRST]
(m1) and

m1 ∈ ipdomwTIME[FIRST]
(m2) , but

¬ m2 wTIME[FIRST] n

As mentioned before, this very same CFG demonstrates that
· wTIME[FIRST] · is — in general — not transitive, and hence cannot
be efficiently represented by some transitive reduction >. Similarly,
the ternary relation · w·TIME[FIRST] · is — in general — not transitive.
Here, by transitive I mean the following:

Definition 9.3.1. A ternary relation · w· · ⊆ N×N×N is transitive
if

whenever m wk m′ and m′ wk′ n

then i also have m wk+k′ n

In contrast to · w·TIME[FIRST] · , the following ternary relation is transi-
tive:

179

9 Timing Sensitive Control Dependence

Definition 9.3.2. I say that m timing-sensitively and transitively post-
dominates n at position k in G iff on all maximal G-paths starting in
n, m appears at position k. I omit “in G” whenever possible. Formally:

m wk in G
TIME n ⇔ ∀π ∈ nΠG

MAX. m ∈k π

Note that the only difference between this definition of wTIME and the
Definition 9.1.1 of wTIME[FIRST] is the use of ∈k instead of ∈k

FIRST, i.e.:
wTIME only requires m to appear at position k in π, while wTIME[FIRST]
additionally requires k to be the first position in π at which m appears.

Observation 9.3.1. Given any CFG G, the ternary relation · w·TIME ·
is transitive.

Just as for wTIME[FIRST], I can give a least fixed point characterization
of wTIME in the underlying lattice

(
2N×N×N ,⊆

)
.

Proposition 9.3.1. Let G be a CFG and T be the rule-system2

n w0 n
Tself ∀p→G x. m wk x p→+

G m

m wk+1 p
Tsuc

Then wTIME = µT.

The only difference to TFIRST is the omission of the requirement m 6= p
in Proposition 9.3.1.

2 over a ternary relation · w · ·

180

9.3 Transitive Timing Sensitive Postdominance

(a) A CFG G (b) wTIME[FIRST] (edges
reversed)

(c) ipdomwTIME[FIRST]

Figure 9.6: An irreducible graph with intransitive · wTIME[FIRST] ·

Unlike wTIME[FIRST], the relation wTIME is not finite, so I cannot naively
implement wTIME to obtain a “reference” implementation. For exam-
ple, in the CFG from Figure 9.6a, I have

m1 w2
TIME n

m2 w3
TIME n

m1 w4
TIME n

m2 w5
TIME n

. . .
. . .

I can, however, use T to obtain (for any n ∈N) a reference implemen-
tation for k ≤ n, i.e. for:

wTIME ∩ N ×N≤n × N

using an explicit representation.

The fact thatwTIME is transitive suggests that I can efficiently represent
the full relation wTIME using a transitive reduction > of wTIME:

181

9 Timing Sensitive Control Dependence

Definition 9.3.3. A ternary relation

· >· · ⊆ N ×N× N

is called a transitive reduction of a ternary relation

· w· · ⊆ N ×N× N

iff w is equal to the reflexive, transitive closure of >, and > is minimal
w.r.t. this property, i.e.:

1. For any n, m ∈ N and any k ∈N,

m wk n ⇔ m >k1 m′ >k2 m′′ . . . >kc n (c ≥ 0)

for some nodes m′, m′′, . . . such that k = ∑ ki

where the case c = 0 is understood to mean k = 0 and m = n,
and

2. > has minimal size |>| ≤ |>′| among all such relations >′.

In the following, given a ternary relation > (or similar), I will write3

n <k m for m >k n. The ternary relation <TIME corresponding to a
ternary transitive reduction >TIME of wTIME for the example CFG is
shown in Figure 9.7.

In order to obtain an efficient algorithm for the computation of some
transitive reduction > of wTIME, the following property is crucial:

Proposition 9.3.2. Let G be any CFG, and > a transitive reduction of
· w·TIME · (and < its inverse, as just defined). Then < is a (N-)
labeled pseudo-forest, i.e. for any node n, whenever both n <k m and
n <k′ m′, I have k = k′ and m = m′.

3 in contrast, I will never write <k or >k for the kth iteration of some binary relation <
or >

182

9.3 Transitive Timing Sensitive Postdominance

(a) A CFG G

1

1

2

1

(b) <TIME

Figure 9.7: An irreducible graph with intransitive · wTIME[FIRST] ·

n4

m2

n2

n5n6

n3

m1

n1

(a) A CFG G

1

1

1

13

1

2

n4 (F=3)

m2 (F=1)

n2 (F=3) n3 (F=2)n6 (F=2) n5 (F=2)

m1 (F=1)

n1 (F=0)

(b) <TIME

n4

m2

n2 n5n6 n3

m1

n1

(c) ipdomwTIME

Figure 9.8: An irreducible graph with intransitive · wTIME[FIRST] ·

In order for wTIME to be of any use in obtaining an algorithm for
→tscd, I must now (by Observation 9.2.3) explain how to derive
ipdomwTIME[FIRST]

from wTIME.

In Figure 9.8a, I show a somewhat more interesting CFG. First note
that m1 w3

TIME n3, but not: m1 w3
TIME[FIRST] n3 (nor: m1 wk

TIME[FIRST] n3

for any other k), since I can reach m1 from n3 in just 1 6= 3 G-

183

9 Timing Sensitive Control Dependence

step n3 →G m1. In terms of “following edges” in <TIME, I can
say: the <TIME-path n3 <2

TIME m2 <1
TIME m1 is valid with respect

to vTIME[FIRST] only up to m2.

On the other hand, consider the G-successors n3 and n4 of n2. Both
the <TIME-paths n3 <2

TIME m2 and n4 <1
TIME m6 <1

TIME m2 are valid
up to m2, and have the same total “cost” 2, from which I can conclude
m2 w3=1+2

TIME[FIRST] n2 (adding to the common cost 2 the cost 1 that is due
to going from n2 to any of its G-successor n3 or n4).

In general, I make the following observation on the relation of
wTIME[FIRST] and wTIME:

Observation 9.3.2. Let G be any CFG. Then for every node n there
exists a number Fn ∈N (the “amount of fuel available at n”) such that
for all nodes m and any “distance” k ∈N such that m wk

TIME n, I have

m wk
TIME[FIRST] n ⇔ k ≤ Fn

In the following, I just write Fn for the least such number.

Let me try to justify the colloquial phrase “amount of fuel available at
n” by rephrasing Observation 9.3.2 in terms of a transitive reduction
>TIME of wTIME: When “starting” at node n with a tank filled with
Fn units of fuel, and if following edges <

f
TIME consumes f units of

fuel, the nodes m such that m wk
TIME[FIRST] n for some k are exactly

those nodes I can reach without running out of fuel. Given such m,
the number k is exactly the amount of fuel consumed before reaching
m.

Rephrasing my remarks on Figure 9.8b, I first note that m1 wk=3
TIME

n3 (and that k = 3 is the least such k), but not: m1 wk=3
TIME[FIRST] n3

(nor: m1 wk=k
TIME[FIRST] n3 for any other k), since k = 3 > 2 = Fn3 .

In other words: attempting to reach m1 from n3 in <TIME fails by
running out of fuel, since after starting with Fn3 = 2 and traversing

184

9.3 Transitive Timing Sensitive Postdominance

the edge n3 <2
TIME m2 my tank is empty, and I cannot traverse the

edge m2 <1
TIME m1 to reach m1.

On the other hand, I have m2 w3
TIME n2 and 3 ≤ 3 = Fn2 , from which I

can conclude m2 w3
TIME[FIRST] n2.

The following observation states that the function n 7→ Fn on the
nodes of some CFG is easily recoverable from its restriction to nodes
“entering” some <TIME-cycle M, i.e.: nodes n ∈ NM where (similar to
the NM in Subsection 6.1.1):

NM = { n ∈ N | n /∈ M, ∃m ∈ M, k ∈N. n <k
TIME m }

In Figure 9.8b, the only cycle is M = {m1, m2}, and NM =
{n2, n3, n5, n6}.

Observation 9.3.3. Let G be any CFG, >TIME a transitive reduction of
wTIME, and n 6= m nodes such that n <k

TIME m. Then either

a) n is a node “entering” some <TIME-cycle M (i.e.: n ∈ NM) and
m ∈ M, or

b) neither n nor m are in any <TIME-cycle, and Fn = Fm + k, or

c) both n and m are in some <TIME-cycle M, and

m wk
TIME[FIRST] n

as well as n wFm
TIME[FIRST] m

Remark 9.3.1. In item c) of Observation 9.3.3, the sum k + Fm is exactly
the circumference cM of the <TIME-cycle M, i.e. the sum over all the
distance in M:

cM = ∑
m∈M, m<k

TIMEm′
k

185

9 Timing Sensitive Control Dependence

Note also that for any m1, m2 ∈ M such that m1 6= m2, I always have

m1 wk
TIME[FIRST] m2

as well as m2 wk′
TIME[FIRST] m1

for some k, k′ with k + k′ = cM.

Let me try to rephrase Observation 9.3.3 in colloquial terms. Assume
I want to start a trip in <TIME, starting at node n0. The total fuel
available for my trip then is Fn0 , and traversing some edge n <k

TIME m
will cost k units of fuel. By Observation 9.3.2, whenever I reach some
node m after spending k units of fuel, I learn m wk

TIME[FIRST] n0. Now,
item b) and c) in Observation 9.3.3 tell me that

b) if I start my trip at some node n0 that is not in any <TIME-cycle
M, then I will never run out of fuel, unless I reach some node
n ∈ NM from which I will “enter” some <TIME-cycle M. Then at
that node n, I am guaranteed to have exactly Fn units of fuel re-
maining (which may allow me to visit some, but not necessarily
all nodes m ∈ M).

c) if I start my trip at in some <TIME-cycle M (i.e.: n0 ∈ M), then I
will run out of fuel just short of coming back to n0, i.e. at the node
m ∈ M such that m <TIME n0. In other words, I will visit exactly
the nodes in M, and every node exactly once.

Being lazy as I am, this means that after fueling up my empty tank
at n0, I do not even need to worry about my fuel consumption, un-
less I visit some border city n ∈ NM. At that point, some friendly
road sign4 will assure me: “You have Fn units of fuel remaining”. Ad-
ditionally, another road sign will tell me: “You have enough fuel to
visit: {m1, m2, . . .} ⊆ M”. Only this road sign will have been put up
by ipdomwTIME[FIRST]

:

4 valid no matter where exactly I started my journey!

186

9.3 Transitive Timing Sensitive Postdominance

Observation 9.3.4. Given any CFG G, let

w = wTIME[FIRST]

Then for any node n

• if n ∈ NM for some <TIME-cycle M, then

ipdomw (n) = {mc | n <k1
TIME m1 <k2

TIME . . . <kc
TIME mc, ∑

i
ki ≤ Fn }

where the c are understood to be ≥ 1.

• if n ∈ M for some <TIME-cycle M, then

ipdomw (n) =

{
∅ if M = {n}
M otherwise

• otherwise
ipdomw (n) = {m | n <k

TIME m }
which is, by virtue of <TIME being a (labeled) pseudo-forest, at
most a singleton.

In colloquial terms: outside of <TIME-cycles M and border cities NM,
the sign put up by ipdomwTIME[FIRST]

will just tell me which node m I
will visit next (and not to worry about fuel).

187

9 Timing Sensitive Control Dependence

9.4 Algorithms for Timing Sensitive Control
Dependence

I ended the previous section by giving a (easy-to-implement)
scheme to derive ipdomwTIME[FIRST]

from <TIME and the fuel-mapping
F = n 7→ Fn. Now, I need to explain how to

1. efficiently compute <TIME

2. efficiently compute F (from <TIME)

3. use the previous result from Observation 9.2.3 to obtain an effi-
cient algorithm for PDFwTIME[FIRST] and hence (by Theorem 9.2.1):
→tscd.

9.4.1 An Algorithm for <TIME

This first task is — in principle — the easiest. I merely need to modify
the least common ancestor Algorithm 3 from page 47 to support counting
of the cost of <TIME-paths, and then modify the wMAX-Algorithm 5 to
use the modified least common ancestor algorithm. The result of the
latter is shown in Algorithm 8. The most significant modifications are
highlighted. I need to omit the check z 6= x because I have to differen-
tiate between an exit node x (i.e.: a node x without G-successor), and a
“one node sink” x (i.e.: a node x with only G-successor x). For the for-
mer I only have x w0

TIME x, while for the latter, I also have x w1
TIME x,

x w2
TIME x, Instead of finding the least common ancestors in some

(binary) pseudo-forest, I need to find the least common ancestor in a
N-labeled (ternary) pseudo-forest, by a call to lca<. Here, lca< on a
set (of successors y of x, and their distance 1 from x) is implemented
by iterating over Algorithm 9 (similar to Algorithm 4 on page 48).

The least common ancestor for N-labeled pseudo forests like <TIME is
defined with respect to the amount kn, km of “amount of fuel already
spent” before reaching nodes n, m.

188

9.4 Algorithms for Timing Sensitive Control Dependence

Definition 9.4.1. Let < be a N-labeled pseudo-forest, n, m two nodes
in <, and kn, km ∈ N two natural numbers. If (z, k) is the least (by
comparison of k) pair such that both

n <k1 . . . <kc z with k = kn + ∑i ki

and m <k′1 . . . <k′c′ z with k = km + ∑i k′i

then (z, k) is the least common ancestor of n, m in < with respect to
initial “fuel consumption” kn, km, and I write

lca< ((n, kn) , (m, km)) = (z, k)

I do not attempt to rigorously defend the Algorithm 9 for the compu-
tation of lca< ((n, kn) , (m, km)). I merely note that the check

n′ ∈ πn ∧ n′ /∈ πm ∧ |KSm [m]| > 1

is needed to guarantee termination whenever πn has reached (at n′) a
different <-cycle than πm is in. The check

max KSn [n] > min KSm [n] ∧ min KSn [n] < max KSm [n]

terminates the search whenever both πn and πm have reached the
same <-cycle M, but are “out of phase” with regard to amount of
“fuel consumed” before reaching M, and the circumference cM of M.
The use of a map KS that contains multiple numbers k for a given
node n once a <-cycle M is reached is certainly not most efficient. I
could instead make use of the fact that for such nodes n, I have some
kn such that eventually kn + i · cM ∈ KSn (n) for all i.

Also note that Algorithm 8 could (by virtue of the two assertions)
be optimized by never re-inserting a node n into the workset once
ITIMEDOM [n] 6= ⊥. Presumably, a workset-free algorithm (similar to
Algorithm 19 for <MAX on page 397) is possible and may be preferable.

189

9 Timing Sensitive Control Dependence

Input : A CFG G
Data: A N labeled pseudo-forest <, represented as a map

IDOM : N ↪→ N ×N s.t. IDOM [n] = (m, k) iff n <k m
Output: A transitive reduction >TIME of wTIME
begin

for x ∈ N, {z | x →G z} = {z} , z 6= x do
IDOM [x]← (z, 1)

end
TIMEup
return IDOM

end
Procedure TIMEup

workset← CONDG
while workset 6= ∅ do

x ← remove(workset)

(z, k)← lca< ({ (y, 1) | x →G y })
assert (z, k) 6= IDOM[x] ⇒ (z, k) 6= ⊥
assert (z, k) 6= IDOM[x] ⇒ IDOM[x] = ⊥
if (z, k) 6= IDOM[x] then

workset← workset∪ {n ∈ COND | n 6= x, ∃n→G y. y <∗ x}
IDOM [x]← (z, k)

end
end

end
Algorithm 8: An algorithm for the computation of <TIME. Here, y <∗

x means: x = y ∨ y <k1 . . . <kc x

190

9.4 Algorithms for Timing Sensitive Control Dependence

Input: A N labeled pseudo-forest <, represented as a map
IDOM : N ↪→ N ×N s.t. IDOM [n] = (m, k) iff n <k m

Input: Numbers kn0 , km0 ∈N and nodes n0, m0
Output: lca< ((n0, kn0) , (m0, km0)) if it exists, or ⊥ otherwise.
return lca ((n0, kn0 , [n0 7→ kn0]) , (m0, km0 , [m0 7→ km0]))
Function lca (πn, πm)

Input: A <-path πn = n0, . . . , n ending in n, represented by a
tuple (n, kn, KSn) where KSn is a map on the nodes n
appearing in πn s.t. kn = maxKSn[n] and for any such n

KSn [n] = { kn0 + ∑i ki | n0 <k1 . . . <kc n in πn }
Input: A <-path πm = m0, . . . , m likewise
if kn > km then return lca (πm , πn)
if n /∈ πm then switch IDOM[n] do

case ⊥ do return ⊥
case

(
n’ , kn’

)
do

if n’ ∈ πn ∧ n’ /∈ πm ∧ |KSm [m]| > 1 then return ⊥
KSn [n’]← KSn [n’] ∪ {kn + kn’}
return lca

((
n’ , kn + kn’ , KSn

)
, πm

)
end

end

if kn ∈ KSm [n] then return (n, kn)
if maxKSn[n] > minKSm [n] ∧minKSn[n] < maxKSm [n] then return ⊥

switch IDOM[n] do
case ⊥ do return ⊥
case

(
n’ , kn’

)
do

KSn [n’]← KSn [n’] ∪ {kn + kn’}
return lca

((
n’ , kn + kn’ , KSn

)
, πm

)
end

end
end

Algorithm 9: A timing sensitive least common ancestor algorithm.

191

9 Timing Sensitive Control Dependence

9.4.2 An Algorithm for F

My algorithm for the computation of F from <TIME is based on the
following fixed point characterization of F.

Observation 9.4.1. Let G = (N, E) be any CFG, and F be the rule
system

F (n) ≥ 0
Flin

m wkm
TIME n F (n) ≥ km

m′ wk
TIME m k = min{ k | m′ wk

TIME m } m′ 6= n

∀n→G x. m′ wkm+k−1
TIME x ∧ F (x) ≥ km + k− 1

F (n) ≥ km + k
Ftrans

Then F = µF for the corresponding monotone functional F over the
pointwise lattice on N →N.

The corresponding Algorithm 10 will

• remember for each node n with F (n) = km the current witness m
such that m wkm

TIME n.

• obtain the next mode m′ 6= n such that m′ wk
TIME m

and k = min{ k | m′ wk
TIME m } simply by following one edge

m <k
TIME m′ in <TIME.

• implement the check for successors x of n by looking for a cycle-
free <TIME-path from x to m′ with cost km + k− 1.

192

9.4 Algorithms for Timing Sensitive Control Dependence

Furthermore, by Observation 9.3.3, it is possible to replace the check
F (x) ≥ km + k− 1 by only checking for fuel on “border” nodes5 n′ on
the <TIME-path from x to m′, i.e.: to check

km + k− 1− kn′ ≤ F
(
n′
)

for nodes n′ such that n′ ∈ NM for some <TIME-cycle M, where kn′

is the amount of fuel spent when reaching node n′. But this means
that it is enough to compute the restrictions F

∣∣
NM

of F to border nodes
n′ ∈ NM for <TIME-cycles M. Even if I am interested in the value Fn
for every node, then these can be recovered from the restrictions F

∣∣
NM

by Observation 9.3.3, and I do not need to compute them explicitly in
Algorithm 10. In other words: Algorithm 10 only iterates over such
border nodes n ∈ NM, where M is the set of <TIME-cycles M, and

NM =
⋃

M∈M

NM

9.4.3 An Algorithm for PDFwTIME[FIRST]

Now that I have devised algorithms for <TIME and F, I am almost ready
to use the characterization of ipdomwTIME

from Observation 9.3.4 and
the rule system in Figure 9.5 on page 178 to give an algorithm for
timing sensitive postdominance frontiers PDFwTIME[FIRST] .

I could use the rule system in Figure 9.5 as is, since the test

x wTIME[FIRST] y′ in rule PDFup
2

can be answered by <TIME and F (using the very definition of F, i.e.:
Observation 9.3.2). But this would result in an inefficient algorithm

5 of which there is at most one on each cycle-free <TIME-path

193

9 Timing Sensitive Control Dependence

Input : A CFG G = (N, E)
Input : The labeled pseudo forest <TIME for G
Input : The set NM of “border” nodes n′ in <TIME
Output: A map F : NM →N× N s.t. for all n ∈ NM: F [n] = (Fn, m)

for some “witness” m
for n ∈ NM do

F [n]← (0, n)
end
changed← true
while changed do

changed← false
for (n, (km, m)) ∈ F, m <k

TIME m′, m′ 6= n do
validm′ ← true
for n→G x do if validm′ then

let n0 <k0
TIME . . . <kc

TIME nc+1 be the cycle-free <TIME-path
where n0 = x and nc+1 = m′

if ∑ ki = km + k− 1 then
if ∃nj. nj ∈ NM and km + k− 1−∑

i<j
ki > F

[
nj
]

then

validm′ ← false
end

end
else

validm′ ← false
end

end

if validm′ then
F [n]← (km + k, m′)
changed← true

end
end

end
return F

Algorithm 10: An algorithm for the computation of F from <TIME.
Here, y <∗ x means: x = y ∨ y <k1 . . . <kc x

194

9.4 Algorithms for Timing Sensitive Control Dependence

whenever the number of nodes in <TIME-cycles and hence: the num-
ber of nodes x, y such that both

x ∈ ipdomwTIME[FIRST]
(z) and x ∈ ipdomwTIME[FIRST]

(z)

is large.

Taking a closer look at rule PDFup
1 and rule PDFup

2 (and still writing
w for wTIME[FIRST]), I notice that

1. nodes y are propagated unconditionally from PDFw (z) to
PDFw (x) by PDFup

1 unless both x and z are in some common
<TIME cycle M.

2. if x, z are in some common <TIME cycle M, and the y ∈ PDFw (z)
originated from some application of rule PDFlocal under substi-
tution [y 7→ y, x 7→ y′] (i.e.: I have: ¬ y′ ∈ ipdomw (y) and
y →G y′) such that also y′ ∈ M, then y′ <TIME x and hence
(by Observation 9.3.3): x wTIME[FIRST] y′. But this means that I
can propagate y from PDFw (z) to PDFw (x) by rule PDFup

2 .

The resulting algorithm uses a map DF : N → N ↪→ Bool, where ↪→
indicates a partial map, and upon completion, y is in the wTIME[FIRST]-
postdominance frontier of z iff D [x] is defined for z:

z ∈ PDFwTIME[FIRST] (x) ⇔ z ∈ dom (D [x])

During computation (and writing w for wTIME[FIRST])

D [z] [y] = false indicates y ∈ PDFw (z)
D [z] [y] = true indicates y ∈ PDFw (z)

and y ∈ PDFw (x) for x ∈ ipdomw (z)

In other words: D [z] [y] indicates whether y is to be propagated.

Propagation follows ipdomwTIME[FIRST]
and hence: <TIME. But <TIME is

a pseudo forest, so it can be iterated by starting in leafs, and continu-
ing towards (and: within!) roots. This is either done explicitly, or im-

195

9 Timing Sensitive Control Dependence

plicitly by using a priority queue, with each node assigned a priority
based on a reverse depth first search starting in the roots. The priority
queue based Algorithm 11 even works for arbitrary node-numbering
(although then not necessarily efficiently).

Input : A CFG G = (N, E)
Input : Any numbering # : N →N

Input : Immediate postdominators ipdomw = ipdomwTIME[FIRST]

Input : The set NM of “border” nodes in <TIME
Data: A priority queue Q ordered by the numbering #

Output: PDFwTIME[FIRST] represented as a map DF : N → N ↪→ Bool

Q← ∅
for x ∈ N, y→G x, ¬ x ∈ ipdomw (y) do

DF [x] [y]← true
Q← Q∪ {x}

end
while Q 6= ∅ do

z← remove(Q) s.t. z# = maxz∈Q z#

for x ∈ ipdomw (z) , (y, true) ∈ DF [z] , ¬ x ∈ ipdomw (y) do
DFx,y ← DF [x] [y] (may be ⊥)
DF′x,y ← DFx,y ∨ (z /∈ NM)

assert DF′x,y 6= ⊥
if DF′x,y 6= DFx,y then

DF [x] [y]← DF′x,y
Q← Q∪ {x}

end
end

end
return DF

Algorithm 11: Computation of PDFwTIME[FIRST]

196

9.5 Soundness and Minimality of Timing Sensitive Control Dependence

9.5 Soundness and Minimality of Timing
Sensitive Control Dependence

I finish this chapter by making the empirical observation that timing
sensitive empirical control dependence →tscd is both sound and min-
imal with regard to clocked traces. Given any sequence

t = x0, x1, x2, . . .

its clocked sequence is just

t� = x0� [0] , x1� [1] , x2� [2] , . . .

For clocked traces t� (i.e.: sequences of clocked (pseudo)-edges in G),
the S-observable clocked trace t�

∣∣
S is defined by removing occurrences

of unobservable clocked (partial) edges in the obvious way (similar to
Definition 6.3.4 on page 80).

Observation 9.5.1 (Soundness of→tscd). Let G be any CFG, and M ⊆
N a set of nodes (the slicing criterion). Let S = (→tscd)

∗ (M) be the
timing sensitive backward slice w.r.t M. Then, for any inputs i, i′ such
that

i ∼S i′

I have
t�i
∣∣
S = t�i′

∣∣
S

Observation 9.5.2 (Minimality of→tscd). Let G be any CFG, and M ⊆
N a set of nodes (the slicing criterion). Let S = (→tscd)

∗ (M) be the
timing sensitive backward slice w.r.t M. Then, for any n ∈ S, n /∈ M
and S′ = S \ {n}, there exist inputs i, i′ such that

i ∼S′ i′

but:
t�i
∣∣
S′ 6= t�i′

∣∣
S′

197

9 Timing Sensitive Control Dependence

9.6 Timing Sensitive Control Dependence in
Graphs with Unique Exit Node

My algorithms for timing sensitive control dependence →tscd in arbi-
trary graphs from Section 9.4 are much more complicated than the cor-
responding algorithms for the computation of nontermination sensi-
tive control dependence →ntscd. For →ntscd, I just needed Algorithm 5
(page 50), and then could directly use Algorithm 1 (page 28). For
→tscd, on the other hand, I needed not only Algorithm 8 and the
more complicated variant Algorithm 11 of Algorithm 1, but also Al-
gorithm 10 for the computation of F.

The reason was that in graphs that are irreducible and lack a unique
exit node nx, the relation <TIME[FIRST] may not be transitive. There,
only the relation <TIME is guaranteed to be transitive. But what about
other graphs? For graphs with unique exit node nx, or reducible
graphs, Algorithm 10 is indeed not necessary, and the original Al-
gorithm 1 is adequate for the computation of→tscd.

This is true simply due to the following observations:

Observation 9.6.1. Let G be a CFG with unique exit node nx. Then

m wTIME n ⇐⇒ m wTIME[FIRST] n

Also (writing w for wTIME[FIRST]): ipdom∗w =w

Observation 9.6.2. Let G be a reducible CFG. Then

m wTIME n ⇐⇒ m wTIME[FIRST] n

Also (writing w for wTIME[FIRST]): ipdom∗w =w

198

9.6 Timing Sensitive Control Dependence in Graphs with Unique Exit Node

Then by Observation 9.2.2, Observation 9.2.4 and Observation 9.2.5,
wTIME[FIRST] admits an efficient PDF partitioning (Definition 3.2.7 on
page 25), and I can use Algorithm 1 on any transitive reduction

<TIME[FIRST] = <TIME

of
wTIME[FIRST] = wTIME

But such a reduction is computed by Algorithm 11.

Summary

• Timing sensitive control dependence →tscd can be ob-
tained by a modification of nontermination sensitive con-
trol dependence →ntscd.

• No timing sensitive analogue of nontermination sensitive
order dependence is necessary, not even in graphs with-
out unique exit node.

• An algorithm for timing sensitive control dependency can
be obtained by a modification of algorithms for nontermi-
nation sensitive control dependence.

• This algorithm is complicated for graphs without unique
exit nodes, but for graphs with unique exit node a simple
algorithm is sufficient.

199

10 Timing Dependence

As far as I’m concerned, if something is so complicated
that you can’t explain it in 10 seconds, then it’s
probably not worth knowing anyway.

(Bill Watterson — The Indispensable Calvin and Hobbes)

Timing sensitive control dependence n →tscd m conflates two kind of
dependencies:

• Decisions made at node n that decide whether node m is exe-
cuted at all (i.e.: nontermination sensitive control dependence)

• Decisions made at node n that decide when node m is executed
(i.e.: timing dependence).

Consider again the graph G repeated in Figure 10.1a. For example,
nodes 10 and 9 are both nontermination sensitively control dependent on
node 3 (since by always successor node 4, node 3 can prevent them
from ever executing). They are also timing dependent on the same node
3 (since when node 9 and 10 are executed is determined by how often
node 3 chooses successor node 4 before eventually choosing successor
node 9).

In contrast, node 5 is nontermination sensitively control dependent on
node 3, but not timing dependent on node 3, since whenever node
5 executes after node 3, exactly three units of time will have passed.

Also, node 8 is timing dependent on node 7, but not nontermination
sensitively control dependent on node 7.

In this chapter, I propose a new notion →td of timing dependence that
isolates the latter kind of dependence. By a reduction to timing sensi-
tive postdominance wTIME[FIRST], this chapter’s slogan will be

→td ≈ |N| × <TIME[FIRST]

201

10 Timing Dependence

1

2

10

36

4 9

1214

5

7

8

11

13

(a) A CFG

1

10

23

9

4

12 14

5

6

7

8

11

13

(b) Timing Dependence→td for the CFG

1

2

10

36 7 8

4 59

1214

11

13

(c) Its non-termination sensitive
control dependence →ntscd

1

2

10

3

6

7

4 5 9

12 148

11

13

(d) Its timing sensitive control depen-
dence→tscd

Figure 10.1: Timing Dependence

202

which expresses that timing dependence →td in a graph G = (N, E)
can be reduced to the computation of wGm

TIME[FIRST] (represented by its

transitive reduction <Gm
TIME[FIRST]) for some graph Gm derived from G,

for each node m ∈ N.

203

10 Timing Dependence

10.1 Timing Dependence

Definition 10.1.1. Let G be any CFG, and n, n′, m nodes in G. I say
that n′ timing-sensitively postdominates n at position k ∈ N on paths
towards m, and write

n′ wk in G
TIME[FIRST tow. m] n

iff on all G-paths starting in n that contain node m, n′ first appears at
time k. I omit “in G” whenever possible, and write

n′ w in G
TIME[FIRST tow. m] n

if this is the case for some k. Formally:

n′ wk in G
TIME[FIRST tow. m]

n ⇔ ∀π ∈ nΠG. m ∈ π → n′ ∈k
FIRST π

n′ w in G
TIME[FIRST tow. m]

n ⇔ n′ wk in G
TIME[FIRST tow. m]

n for some k ∈N

Proposition 10.1.1. Let G be any CFG, and n, n′, m nodes in G. Then
if m is unreachable in G from n, I have

n′ wk in G
TIME[FIRST tow. m] n for all k ∈ N

If, on the other hand, m is reachable from n in G, let

Gm = G→
∗m

m 6→

be the graph obtained from G by removing all nodes that cannot reach
m, and deleting all outgoing edges of m. Then n′ first appears at time
k in all maximal G-paths starting in n that contain node m iff n′ first
appears at time k in all maximal Gm-paths starting in n, i.e.:

n′ wk in G
TIME[FIRST tow. m] n ⇔ n′ wk in Gm

TIME[FIRST] n

204

10.1 Timing Dependence

To understand the upcoming definition of timing dependence →td,
imagine for a conditional node n that for all G-successors x, x′ of n I
have

n′ wk in G
TIME[FIRST tow. m]

x

and n′ wk in G
TIME[FIRST tow. m]

x′

for some other node n′.

Then even if the timing of a node m after the execution of n is not
constant, i.e.: even if I have

¬ m wG
TIME[FIRST] n

still any decision made at n cannot possibly influence the timing of
m, since the timing of the other node n′ after n is constant on paths
towards m, and I always must reach n′ before m. Hence any influence
on the timing of m must happen at or after n′.

Definition 10.1.2. Let G = (N, E) be any graph, and m 6= n ∈ N be
two nodes. Then m is timing dependent on n, and I write

n→G
td m

if there exists no node n′ such that for some k ∈N and all G-successors
x of n, on all maximal G-paths starting in x that contain node m, n′ first
appears at time k, i.e.:

n→G
td m ⇐⇒ ¬ ∃n′ ∈ N, k ∈N. ∀n→G x. n′ wk in G

TIME[FIRST tow. m] x

Observation 10.1.1. Timing dependence→td is in fact the timing sen-
sitive part of timing-sensitive control dependence →tscd, i.e.: for all
graphs G and sets of nodes M,

(→td ∪ →ntscd)∗ (M) = (→tscd)
∗ (M)

205

10 Timing Dependence

10.2 Computation of Timing Dependence

Note that for every m ∈ N, the graph

Gm = G→
∗m

m 6→

is a graph with unique exit node m, and hence:

wGm
TIME = wGm

TIME[FIRST]

An Algorithm for →td is available directly from the Algorithm 8 for
<TIME on page 190, Proposition 10.1.1, and the following observation:

Observation 10.2.1. Let G = (N, E) be any graph, and m 6= n ∈ N be
two nodes. Then

n→G
td m ⇐⇒ ¬ ∃n′ 6= n. n′ wGm

TIME[FIRST] n

⇐⇒ ¬ ∃n′ . n <Gm
TIME n′

for any transitive reduction <Gm
TIME of wGm

TIME.

By this observation, I require a computation of <Gm
TIME for every node

m ∈ N. Informally:

→td ≈ |N| × <TIME[FIRST]

Summary

• In timing sensitive control dependence →tscd, timing and
control dependence are entangled.

• “Pure” timing dependence→td can be obtained from tim-
ing sensitive control dependence →tscd.

206

11 Timing Stratification

Time, Dr. Freeman? Is it really that time
again? It seems as if you only just arrived.

(Valve — G-Man, Half-Life 2)

The two CFG in Figure 9.1 — repeated in Figure 11.1a and 11.1b —
were the canonical example of CFG with and with and without timing
leak. There, I assumed the set S = {m, mx} of observable nodes, and
that the traversal of each CFG edge n →G m took a unit amount 1u
of time. The second CFG G′ can be thought of as a stratification of the
first CFG G: G′ is obtained from G by adding two additional dummy
nodes (and corresponding edges) “on the right”1.

1 and if i was dealing with edge-labeled CFG, I would label the new edges with an
appropriate form of no-op

(a) A CFG G (b) A CFG G’ (c) Timing Cost C′ for G

Figure 11.1: Dependence of execution time of mx on n.

207

11 Timing Stratification

The same effect can be achieved by dropping the assumption that ev-
ery edge in the CFG has a uniform execution time 1, and instead
assume a timing cost model C, i.e.: a function

C : E→N+

mapping each edge (u, v) ∈ E of a CFG G = (N, E) to a strictly posi-
tive natural number C (u, v) > 0: the amount of time spent traversing
the edge u→G v. For example, I can stratify the CFG G in Figure 11.1a
by using the timing cost model

C′ (u, v) =

{
3 for (u, v) = (n, n′′)
1 otherwise

= 1
[(

n, n′′
)
7→ 3

]
shown in Figure 11.1c. Here, i assumed the initial timing cost model

C = 1 := (u, v) 7→ 1

Given an initial timing cost model C for some CFG G, a cost model
C′ ≥ C can be interpreted as a request for a compiler to insert appro-
priate additional nodes and “no-op”-edges to obtain a CFG G′ as in
the example, and otherwise keep the initial cost model C. However,
making the modified C′ explicit has the advantage of leaving the CFG
unmodified, making the development in this chapter much simpler.

In this chapter, I will demonstrate how any “common” CFG— i.e.: any
CFG that has a unique exit node nx, or otherwise at least is reducible
— can be stratified, in a precise sense which will justify the informal
slogan

Stratification + Timing Sensitivity = Nontermination Sensitivity

This stratification will be “global” in the sense that it will stratify the
timing at every conditional node n, independent of whether the choice
at n is relevant w.r.t. a given set S of observable nodes. In other words:
it will introduce some unnecessary (given some specific S) increase of

208

timing cost. Despite these two restrictions, this chapter 11 will serve
as the foundation of the application in chapter 12, in which I will
demonstrate how to transform out timing leaks in arbitrary CFG, and
also avoid unnecessary increase of timing cost.

209

11 Timing Stratification

11.1 Timing Sensitive Control Dependence for
Arbitrary CFG with Cost Model

It is straightforward to extend the relevant definitions and algorithms
for timing sensitive control dependence n →G

tscd m of CFG G with the
implicit timing cost model 1, to timing sensitive control dependence
n →G[C]

tscd m of CFG G with explicit timing cost model C. Essentially, I
merely need to replace (implicit) occurrences of the cost “1” of some
edge n→G m with “C (n, m)”.

Definition 11.1.1 (Generalization of Definition 9.1.1 on page 167). Let
G be any CFG, C a timing cost model for G, and n, m any nodes in G.
Given any path

π = m0, m1, m2, . . .

I say that m appears in π at time k iff m = mi and

k = ∑
0≤j<i

C
(
mj, mj+1

)

In this case, I write m ∈k[C] π.

If additionally, mi 6= m for all j < i, i say that m first appears in π at
time k, and write m ∈k[C]

FIRST π.

Furthermore, I say that m wk[C]
TIME[FIRST]-postdominates n in G iff on

all maximal G-paths starting in n, m first appears at time k. I omit “in
G” whenever possible, and say that m wC

TIME[FIRST]-post dominates n

iff m wk[C]
TIME[FIRST]-post dominates n for some k ∈N. Formally:

m wk[C] in G
TIME[FIRST] n ⇔ ∀π ∈ nΠG

MAX. m ∈k[C]
FIRST π

m wC in G
TIME[FIRST] n ⇔ ∀π ∈ nΠG

MAX. m ∈k[C]
FIRST π for some k ∈N

210

11.1 Timing Sensitive Control Dependence for Arbitrary CFG with Cost Model

Remark 11.1.1. Obviously, Definition 11.1.1 really is a generalization of
Definition 9.1.1, i.e.:

m wk
TIME[FIRST] n ⇐⇒ m wk[1]

TIME[FIRST] n

I define Timing sensitive control dependence for a CFG G with timing
cost model C just as expected, but I must not forget to account for the
timing cost of traversing an edge n→G nl or n→G nr in G.

Definition 11.1.2 (Generalization of Definition 9.1.2 on page 168). Let
G be any CFG, C a timing cost model for G, and n, m any nodes in
G. Then m is said to be timing sensitively control-dependent on n under
cost model C, written n →G[C]

tscd m or just n →C
tscd m, if there exists G

successors nl and nr of n, and some k ∈ N such that for the unique
kl , kr that satisfy

k = kl + C (n, nl) and k = kr + C (n, nr)

m wkl [C]
TIME[FIRST]-post dominates nl , but not: m wkr [C]

TIME[FIRST]-post dom-
inates nr.

Formally: n→C
tscd m ⇔

m wkl [C]
TIME[FIRST] nl and

¬ m wkr [C]
TIME[FIRST] nr

for some k ∈ N and nl , nr such that n →G nl and n →G nr, where
kl , kr are defined (given k, nl , nr) as above.

Remark 11.1.2. Obviously, Definition 11.1.2 really is a generalization of
Definition 9.1.2, i.e.:

n→tscd m ⇐⇒ n→1
tscd m

With the example of this generalization it still requires some care, but
is otherwise routine to generalize all remaining notions algorithms

211

11 Timing Stratification

from Chapter 9 to CFG and arbitrary timing cost model C. Specifically,
not only can I generalize definitions

m→tscd n to n→C
tscd m

and m wk
TIME[FIRST] n to m wk[C]

TIME[FIRST] n

but also: TFIRST to TC
FIRST

m wk
TIME n to m wk[C]

TIME n
T to TC

Fn to FC
n

F to FC

as well as algorithms 10 to FC
n and 8 to <C

TIME.

I can also generalize Algorithm 11 to PDFwC
TIME

, but this generalization
is not completely straight-forward. I describe it in Appendix E.

212

11.2 Timing-Stratification

11.2 Timing-Stratification

Given a CFG G and a timing cost model C for G, to what extend can
I hope to stratify the timing behavior of G? Ideally, I would want
all (otherwise) observably equivalent executions of G to also take the
same amount of time, but this is clearly impossible in the presence
of (unobservable) loops in G. The best I can hope to do is to find a
modified cost model C′ ≥ C such that for any observably equivalent
executions in which all loops execute the same number of times, the exe-
cutions also take the same total amount of time. But I already have
appropriate notions to characterize this difference:

• Timing-sensitive postdominance wTIME[FIRST] and timing sensi-
tive control-dependence→tscd are sensitive to all timing.

• Nontermination sensitive postdominance wMAX and nontermina-
tion sensitive control-dependence2 →ntscd are sensitive to possi-
ble non-termination (hence: sensitive to the number of times a
loop may execute), but otherwise insensitive to timing.

Definition 11.2.1. Let G be any CFG, and C′ a timing cost model for
G. Then i say that the timing of G under C′ is stratified if for all sets
M ⊆ N of nodes, the timing sensitive backwards slice of M under C′

is equal to the nontermination sensitive backward slice of M, i.e.:

(→ntscd ·∪ →ntsod)∗ =
(
→C′

tscd

)∗
The timing of all CFG in Figure 11.2 is stratified under their respective
cost model as shown. Note that in Figure 11.2a, I do not need to delay
the edge ne →G nr (for example, by setting C (ne, nr) = 4), because I
already have ne →ntscd nr due to the fact that continuing from nl , the
node nr not necessarily has to be executed. On the other (left) hand,
the delays at n and n′ stratify this “if . . . then if . . .” region.

2 and decisive order dependence →dod = →ntsod

213

11 Timing Stratification

2

(a) A CFG

1

1

1 11

1 1 1

1 1

1 1

1

2

1

(b) A CFG G

1

1

1 11

1 1 1

1 1

1 1

1

1

1

1

(c) A CFG G′

Figure 11.2: Some CFG with stratified timing cost model

In Figure 11.2b, the delay C (n′, m′) = 3 at edge n′ →G m′ is necessary,
but not in order to attempt to establish m′ wC,3

TIME[FIRST] n′, which does
not hold (and cannot hold for any C or any k, because ¬ m′ wMAX n′).
Instead, this delay is necessary to establish nx wC,k

TIME[FIRST] n′ for k = 7
and the unique exit node nx, which I must establish (for some k), since
nx wMAX n′. From an information flow point of view, I must establish
this and the other two delays because the execution (time) of nx might
be deemed observable.

On the other hand in Figure 11.2c, which is obtained from Figure 11.2b
by removing the edge mx →G nx, already the default timing cost
model 1 stratifies the CFG. This example is crucial for information
flow control, since removal of this edge certainly does not change any
observation if nx is unobservable3. In this case, I do not need to delay

3 except for the fact that one will observe the pseudo-edge (mx ,⊥) instead of (mx , nx),
but this does not inform an observer about the input to a given execution

214

11.2 Timing-Stratification

(a) 1 for G (b) C for G (c) C′ for G

Figure 11.3: Impossibility of Stratification of a CFG G

any edges! I will make use of this technique (removing certain edges,
depending on a given set of observable nodes) in Chapter 12.

Can I expect to find a stratification C′ for every arbitrary CFG (in the
sense of Definition 11.2.1)? Consider the CFG in Figure 11.3. It is easy
to see that n controls the order neither of m1, m2 nor of m′1, m′2, since,
for example, m1 always occurs before m2 (when starting in n). So for
M = {m1, m2} and M =

{
m′1, m′2

}
i have

n /∈ (→ntscd ·∪ →ntsod)∗ (M) = M
and n /∈ (→ntscd ·∪ →ntsod)∗ (M′) = M′

On the other hand, I have both n →tscd m1 and n →tscd m′1, so under
the default timing cost model 1:

n ∈
(
→1

tscd

)∗
(M) = M ∪ {n}

and n ∈
(
→1

tscd

)∗
(M′) = M′ ∪ {n}

Can I find some timing cost model to stratify G? I can certainly find
a cost model C such that ¬ n →C

tscd m1 (as shown in Figure 11.3b). I
can also find a different cost model C such that ¬ n →C

tscd m′1 (Fig-
ure 11.3c).

215

11 Timing Stratification

But I cannot find a cost model C′ such that both hold at the same
time, for this would require there to be some k = C′ (n, m1) such that
n wC′ ,k

TIME[FIRST] m1, and some k′ = C′
(
n, m′1

)
with n wC′ ,k′

TIME[FIRST] m′1.
In other words, a cost model C′ would need to simultaneously solve
the two following equations:

C′
(
n, m′1

)
+ C′

(
m′1, m′2

)
+ C′ (m′2, m1) − C′ (n, m1) = 0

−C′
(
n, m′1

)
+ C′ (m1, m2) + C′

(
m2, m′1

)
+ C′ (n, m1) = 0

But this is impossible, since all timing cost model are required to be
strictly positive (i.e.: C′ > 0).

216

11.3 An Algorithm for Timing Stratification

11.3 An Algorithm for Timing Stratification

I have just shown that it is impossible to find a stratification for every
CFG (and initial timing cost model C). Nevertheless, in this section I
will show an algorithm that will return a stratification when applied
to a CFG G in which no nodes are (indecisively, nontermination sen-
sitively) order dependent, i.e.: →G

ntsod = ∅. Note that this class of CFG
includes both of the following classes:

1. CFG that are reducible

2. CFG with unique exit node nx

The key to this algorithm is the observation that I can always stratify
such CFG by only delaying CFG-edges n →G n′ at conditional nodes
n ∈ COND. Given such a node n, I will usually delay some but not
all of its outgoing edges, going from C (n, n′) to C′ (n, n′) such that
C′ ≥ C. I urge the reader to confirm that all examples of stratified
CFG shown so far follow this scheme!

The next observation is equally important: whenever timing sensitive
post-dominance fails only due to timing, i.e.: whenever

m wMAX n
but ¬ m wC

TIME n

then this can inductively reduced to a timing cost model C′ ≥ C such
that for some G-successors nl , nr of n I have

m wkl [C′]
TIME nl and m wkr [C′]

TIME nr

but C′ (n, nl) + kl︸ ︷︷ ︸
=:Kl

< C′ (n, nr) + kr︸ ︷︷ ︸
=:Kr

Now the idea for my algorithm is obvious: in this case, just update C′

at (n, nl) to Kr − kl
C′ [(n, nl) 7→ Kr − kl]

217

11 Timing Stratification

The resulting Algorithm 12 is similar to Algorithm 8. The Algo-
rithm 20 (shown on page 398 in the appendix) that computes a least
common ancestor of two successor nodes of some node x is only ever
called if x has some nontermination sensitive immediate postdomina-
tor. It also computes a “correction” ∆C of the current timing model C′

such that the common ancestor z returned is a timing sensitive least
common ancestor under the timing model C′ + ∆C (where addition is
pointwise).

The computation in Algorithm 12 initializes the N-labeled pseudo-
forest < with a transitive reduction <C

TIME
4. It proceeds by updating

< and the timing cost model C′ until finally, < is (structurally) a tran-
sitive reduction of maximal-path5 postdominance wMAX, and (except for
self-edges) equal to the transitive reduction <C′

TIME under the updated
cost model C′. The computation always terminates.

Observation 11.3.1. Let G be a CFG such that no nodes are (indeci-
sively, nontermination sensitively) order dependent, i.e.: →G

ntsod = ∅.
Let C be any timing cost model of G, and C′ the timing cost model
computed by Algorithm 12. Then C′ ≥ C, and the timing of G is
stratified under C′.

Remember that for G be a CFG with unique exit node nx, I have
→G

ntsod = ∅. The same holds for reducible G.

4 which can be obtained from Algorithm 26 on page 415, which itself is just a minor
modification of Algorithm 8 on page 190

5 i.e.: nontermination sensitive, but not timing sensitive

218

11.3 An Algorithm for Timing Stratification

Input : A CFG G
Input : A initial timing cost model C
Data: A N labeled pseudo-forest <, represented as a map

IDOM : N ↪→ N ×N s.t. IDOM [n] = (m, k) iff n <k m
Output: A timing cost model C′ ≥ C
begin

C′ ← C
< ← <C

TIME
workset ← NCOND ← CONDG ∩ { n | n<MAXm for some m }
while workset 6= ∅ do

x ← remove(workset)(
z, k, ∆C

)
← lca< ({ (y, C′ (x, y)) | x →G y }) via alg. 20

if (z, k, ∆C) 6= ⊥ then
if (z, k) 6= IDOM[x] then

IDOM [x]← (z, k)
workset←
workset∪ {n ∈ NCOND | n 6= x, ∃n→G y. y <∗ x}

end
C′ ← C′ + ∆C

end
end

assert ∀n 6= m. ∀k. n <k m ⇔ n <
k[C′]
TIME m

assert ∀n 6= m. n <∗ m ⇔ m wMAX n
return C′

end
Algorithm 12: An efficient algorithm for the computation of a timing
stratification C′ ≥ C of some CFG with initial timing cost model C.
Here, y <∗ x means: x = y ∨ y <k1 . . . <kc x

219

11 Timing Stratification

Summary

• Up to a difference in cost model, timing sensitive control
dependence→tscd and nontermination insensitive control
dependence →ntscd are essentially the same, in a large
class of graphs.

• The timing model that witnesses this correspondence can
be computed by a simple algorithm.

220

Part III

Timing Sensitive
Software Security

Es ist nicht genug, zu wissen, man muß auch anwenden;
es ist nicht genug, zu wollen, man muß auch tun.

(Johann Wolfgang von Goethe — Wilhelm Meisters Wanderjahre)

221

12 Transforming Out Timing Leaks in
Arbitrary CFG

If we could perceive time as it really was — what reason
would grammar professors have to get out of bed?

(Rosalind and Robert Lutece — Bioshock Infinite)

When transforming out timing leaks, the general goal is — given a
program and some form of policy that specifies limits on the allowed
flow of information — to transform the program such that the trans-
formed program is secure with regard to the given policy. In existing
approaches (e.g.: in [Aga00; Mol+06; BRW06]) as well as in the ap-
proach I introduce in this chapter, this is only possible if the policy
allows information flow due to the number of execution of the pro-
grams loops. For example in a simple {L, H}-lattice based policy:
only if loop predicates whose execution time is L-observable do not
depend on H input.

The canonical example of such an approach is [Aga00]. There, the pol-
icy consists of a mapping from left-expressions (which, aside from pro-
gram variables, also consists of expressions obtained by dereferenc-
ing record-variables, or by indexing array-variables) to security levels
L and H. The transformation is syntax-tree-directed, and specified
relative to the result of an initial timing insensitive information flow
analysis, which in turn is specified in form of a security type system.
Specifically, the transformation will only successfully transform a loop
while e C if the type-system inferred the expression e to be of secu-
rity type L, and fail otherwise. For branches if e C1 else C2, timing is
harmonized by cross-copying parts of one branch into the other.

This somewhat analogous to my algorithm for the timing stratifica-
tion of CFG from Chapter 11. Imagine a security policy in form of
a mapping lvl that maps CFG-nodes to security levels L, H. I deem
a program secure if the timing-sensitive backwards-slice of L nodes
does not contain H nodes. Then timing stratification is

223

12 Transforming Out Timing Leaks in Arbitrary CFG

1. specified relative to the result of timing insensitive postdomina-
tors wMAX

1

2. successful only up to nontermination sensitive control depen-
dence →ntscd, because there is some node n with lvl (n) = H in
the timing-sensitive backwards slice of L nodes in the transformed
program2 if and only if such n is in the nontermination sensitive
backward slice of L nodes.

The two major differences are:

1. Instead of transforming the program (i.e.: the CFG), timing strat-
ification merely change the timing cost model C to C′ ≥ C. But
as said before, this then can be understood as a directive to a
compiler to insert additional skip/no-op instructions, according
to the difference C′ − C of the stratified timing cost model and
the original cost model.

2. Timing stratification is independent of the given information flow
policy. Instead, it anticipates all possible policies, by attempt-
ing to harmonize timing-sensitive slicing with nontermination
sensitive slicing for all slicing criteria M.

I will attack the second difference any minute now, by a simple CFG-
preprocessing. But first, I remark with regard to the first difference
that the approach [Aga00] and similar techniques (see, e.g., [MS15]
for a comparison) have the advantage that they do not require an ex-
plicit initial timing cost model C. Indeed, such a model may be hard
to get hold of for execution models with under-specified timing be-
havior (such as the Java Virtual Machine), or otherwise timing models
that are at least hard to obtain statically. Just think, for example, of
x86-machine code, and the effect of complex memory-cache hierar-
chies. The transformation in [Aga00] (and others) somewhat alleviate

1 since in Algorithm 12, i only try so stratify conditional nodes x for which there exists
a immediate wMAX-postdominator

2 i.e.: under the resulting timing cost model C′

224

this problem by cross-copying3 program segments, such that — if so re-
quired — both branches essentially execute the same code, and hence
can be hoped to have the similar timing behavior (or even the same
timing behavior, if the timing model is very simple). In contrast, my
approach makes use of the timing cost model C to gauge the execution
time of all branches, and equalize (stratify) their timing behavior arti-
ficially. I suspect — but did not try to establish empirically — that my
approach can lead to less runtime overhead in the transformed pro-
grams. But again: my approach does require an initial timing model
C.

Approaches in the tradition of [Aga00] are based on some form of
cross copying: If a branch condition is H-dependent, code mimicking
the behavior of the left branch is appended to the right branch, and
code mimicking the behavior of the right branch is appended to the
left branch. My approach instead is again based not on cross-copying,
but on the modification of static timing cost model C. To me it ap-
pears very difficult to even attempt to apply cross-copying or similar
techniques in arbitrary CFG, since these ideas explicitly rely on the
fact that the program model (syntax tree) is structured by definition
(specifically, it has no arbitrary jumps of control flow). Indeed note
that the approach in [Wu+18] which works not on the syntax tree but
on the CFG still requires the CFG to be of a particular structure. The
authors do claim an algorithm to transform CFG into this form by in-
serting new variables, and introducing new conditional nodes branching on
these new variables, but it is not clear to me whether their algorithm
works for arbitrary CFG. Nor is clear to me the extend to which their
method degenerates to the Böhm-Jacopini construction[BJ66] in the
general case. Presumably, it is possible to directly apply cross-copying
or similar techniques to reducible CFG which can be obtained by node
splitting. In general, however this may lead to exponential growth
[CFT03]. Though I did not attempt it, what may be possible is to ap-
ply cross-copying (or similar) techniques not to the CFG G, but to some

3 or similar

225

12 Transforming Out Timing Leaks in Arbitrary CFG

CFG G′ (M) dependent on the slicing criterion M4 that is “reducible
wherever it matters”, and then apply the cross-copying result back to
the original CFG G.

4 for example: G′ = GM 6→

226

12.1 An Naive Algorithm

12.1 An Naive Algorithm

My goal of this section is to give a first naive algorithm that — given an
arbitrary CFG, an arbitrary timing cost model C, and a slicing criterion
(i.e.: a set of nodes) M — finds a timing cost model C′ ≥ C such that
for this criterion M

(→ntscd ·∪ →ntsod)∗ (M) =
(
→C′

tscd

)∗
(M)

In that case I will say that C′ transforms out timing leaks relevant to M
of G under C up to timing leaks due to loops5.

My algorithm for transforming out timing leaks is merely an appli-
cation of the Algorithm 12 for timing stratification. It is based on
observations somewhat similar to those that lead to the reduction of
nontermination insensitive slicing with →ntiod and →nticd to nonter-
mination insensitive slicing with just →nticd in Section 7.4.

1. The Algorithm 12 for timing stratification only fails to compute a
timing cost model C′ such that the timing is stratified for all slic-
ing criteria, if there is some <TIME-cycle (remember the example
from Figure 11.3 on page 215).

2. But such <TIME-cycles (at least: those relevant to a given slicing
criterion M) can be broken by deleting in G all outgoing edges of
nodes m ∈ M.

3. Additionally, as exemplified in Figure 11.2c on page 214, delet-
ing such edges will eliminate the need to delay (some) edges
which during stratification were only delayed in anticipation of
arbitrary slicing criteria M.

The transformation then simply works by stratifying not the original
CFG G under the original timing cost model C, but instead the CFG
GM := GM 6→ obtained from G by removing all edges leaving M. The

5 remember that I cannot hope to transform out timing leaks due to loops

227

12 Transforming Out Timing Leaks in Arbitrary CFG

stratification is done under the restriction CM = C
∣∣
EM

of the original
cost model C to the edges EM still present in GM. The result is a
timing cost model C′M ≥ CM for GM, which can simply be extended
to a timing cost model C′ ≥ C for G by using the original timing cost
C (m, m′) for edges m→G m′ missing in GM.

Observation 12.1.1. Let G = (N, E) be an arbitrary CFG, M ⊆ N any
set of nodes (the slicing criterion), and C any timing cost model of G.

Then for GM := (N, EM) := GM 6→ and CM = C
∣∣
EM

, let C′M ≥ CM be
the result of running Algorithm 12 on GM under CM, and

C′ (n, m) :=

{
C′M (n, m) if n→GM m
C (n, m) otherwise

Then C′ transforms out timing leaks relevant to M of G under C up to
timing leaks due to loops, i.e.:

(
→G

ntscd ·∪ →G
ntsod

)∗
(M) =

(
→G[C′]

tscd

)∗
(M)

Remark 12.1.1. Remember that by Observation 7.2.1, I also have(
→G

ntscd ·∪ →G
ntsod

)∗
(M) =

(
→GM 6→

ntscd

)∗
(M)

228

12.2 A More Precise Algorithm

(a) A CFG without timing leak for
M = {m}

(b) Removal of Timing Leaks via Ob-
servation 12.1.1

Figure 12.1: Dependence of execution time of mx on n.

12.2 A More Precise Algorithm

The reduction from G to GM = GM 6→ works in the sense of Observa-
tion 12.1.1, but introduces unnecessary delays. The simplest example
is shown in Figure 12.1. There, the timing leaks transformation shown
in Figure 12.1b makes an unnecessary (relative to M = {m}) delay at
n. The transformation here delays an edge at the conditional node n
even though the node m is not even timing dependent on n.

Such unnecessary delays are avoided by the following Algorithm 13.
Apart from to the transition of G to GM, it is merely a small modi-
fication to Algorithm 12. The crucial difference is highlighted. The
algorithm only ever considers conditional nodes n such that n is in
the timing sensitive backward slice of M, but not in the nontermina-
tion sensitive backward-slice of M. For the example in Figure 12.1a,
which shows a CFG G with initial timing cost model C = 1, and slic-
ing criterion M = {m}, Algorithm 13 returns the unchanged model
C′ = C.

Observation 12.2.1. Let G = (N, E) be an arbitrary CFG, M ⊆ N any
set of nodes (the slicing criterion), and C any timing cost model of G.

229

12 Transforming Out Timing Leaks in Arbitrary CFG

Input : A CFG G = (N, E)
Input : A initial timing cost model C for G
Input : A slicing criterion M
Data: A N labeled pseudo-forest <, represented as a map

IDOM : N ↪→ N ×N s.t. IDOM [n] = (m, k) iff n <k m
Output: A timing cost model C′ ≥ C
begin

GM ← (N, EM) ← GM 6→
CM ← C

∣∣
EM

S ←
(
→GM [CM]

tscd

)∗
(M) \

(
→GM

ntscd

)∗
(M)

assert S =
(
→G[C]

tscd

)∗
(M) \

(
→G

ntscd ·∪ →G
ntsod

)∗
(M)

C′M ← CM

< ← <
GM [CM]
TIME

workset← NCOND ← COND ∩ { n | n<GM
MAX m for some m }∩S

while workset 6= ∅ do
x ← remove(workset)
(z, k, ∆C)← lca<

(
{ (y, C′ (x, y)) | x →GM y }

)
via alg. 20

if (z, k, ∆C) 6= ⊥ then
if (z, k) 6= IDOM[x] then

IDOM [x]← (z, k)
workset←
workset∪ {n ∈ NCOND | n 6= x, ∃n→G y. y <∗ x}

end
C′M ← C′M + ∆C

end
end
C′ ← C

∣∣
E\EM

∪ C′M
return C′

end
Algorithm 13: An efficient algorithm transforming out timing leaks,
given a slicing criterion M for in some CFG with initial timing cost
model C. Here, y <∗ x means: x = y ∨ y <k1 . . . <kc x

230

12.2 A More Precise Algorithm

Let C′ ≥ C be the result of running Algorithm 13 on G under C. Then
C′ transforms out timing leaks relevant to M of G under C up to timing
leaks due to loops, i.e.:

(
→G

ntscd ·∪ →G
ntsod

)∗
(M) =

(
→G[C′]

tscd

)∗
(M)

The timing leaks transformation C′ ≥ C obtained from running Algo-
rithm 13 on G under C is never worse than the timing stratification
C′′ for GM 6→ obtained from Algorithm 12 along the lines of Observa-
tion 12.1.1.

Observation 12.2.2. Let C′, C′′ as above. Then C′ ≤ C′′.

But is the timing leaks transformation C′ in some global sense op-
timal? I cannot answer this question for the reason that I did not
attempt formulate such a criterion! The only reason I know that Al-
gorithm 13 is never worse than Algorithm 12 is that both only ever
delay timing at conditional nodes n and their G-successors, and hence
both limit themselves to the same class of timing cost model transfor-
mations. But in general, there is no reason why a somehow globally
optimal transformation should not insert delays elsewhere, possibly
at join nodes. In such cases (say: C′′), an edge-wise comparison of
the resulting timing cost model can no longer be expected to yield
C′′ ≥ C′ or C′ ≥ C′′, even though one of these might intuitively be
better than the other.

Summary

• Given a set of observable nodes and fixed cost model C,
any non-loop timing leaks can be in principle be “trans-
formed out”.

231

13 Micro-Architectural Dependencies

And by the help of Microscopes, there is nothing so
small, as to escape our inquiry; hence there is a new
visible World discovered to the understanding.

(Robert Hooke — Micrographia)

Timing based attacks often rely on difference of timing behavior due
to micro-architectural state, which may in turn depend on private data.
Intuitively, given a concrete machine implementing a given (“higher-
level”, more abstract macro-architectural) execution semantics, micro-
architectural state is that part of the concrete machine which is “in-
visible” to the higher level execution semantics. For example, the
micro-architectural state of modern CPU includes the state of data-
and code caches or the state of the CPU’s instruction pipeline (fetch,
decode, execute, etc). The micro-architectural state of two different
CPU implementing the same instruction set architecture (i.e.: the same
macro-architectural semantic) may differ considerably. Consider, for
example, AMD and Intel CPUs implementing the x86 instruction set
architecture. Still ideally, a x86 program’s behavior is the same on
both AMD and Intel CPUs, except for the timing behavior1.

In this chapter, I will develop a new method for the dependence anal-
ysis of arbitrary micro-architectural state for single-threaded execu-
tion models, in form of a new notion n →µd m of micro-architectural

1 and, of course, difference of behavior due to multi-processing, which I do not cover
in this chapter

233

13 Micro-Architectural Dependencies

dependence between nodes n, m. After an introductory example in
Section 13.1, I introduce in Section 13.2 the necessary technical frame-
work, and those assumption on the micro-architectural state model
necessary for the dependency analysis. In Section 13.6, I define
micro-architectural dependence by a reduction to non-termination in-
sensitive control dependence →nticd. In Section 13.4, I discuss lim-
itations of my approach, and finally in Section 13.5 I explain how
micro-architectural dependence n →µd m and timing sensitive con-
trol dependence →tscd can be combined to obtain timing sensitive
slices that are sensitive to timing channels due to differences in micro-
architectural state.

As a running example, I will augment a simple “standard” semantics
for CFGs with a simple micro-architectural state, comprised of a sim-
ple one-level data cache. I try to make plausible — but give no formal
proof — that my method does indeed for work for arbitrary micro-
architectural state. For the example cache-semantics, I validated my
claims by extensive random testing.

234

13.1 Introduction

13.1 Introduction

Consider the control flow graph in Figure 13.1a on page 236. Its edges
are labeled with assignments and guards that refer to (cachable) vari-
ables a, b, . . ., and uncachable registers r1, r2,

I want to know whether the choice made at node n = 9 influences
the execution time of the reads of variables b and y at nodes 14, 15. I
assume a simple data cache of size four, with a least recently used evic-
tion strategy. The (micro-architectural) cache-state hence consists of a
list [x1, x2, x3, x4] of variables, with x1 being the most recently used,
and x4 the next to be evicted. In Figure 13.1b, I show — under an ab-
straction that considers cache state only — all possible executions of
the control flow graph, assuming an empty initial cache. For example,
the abstract node (9, [x, d, c, b]) represents all those concrete configura-
tions at control node 9 in which the concrete micro-architectural cache
contains cached values for the variables [x, d, c, b], in this order (with
arbitrary concrete macro-architectural state).

In the example, executions can reach the control node m = 15 at
cache states represented by either [b, y, c, x], or by [b, y, d, x]. Which
of these (abstract) cache states is reached is determined by the macro-
architectural choice made at n = 9. But it is easy to see that the
execution time of the read of y at node m = 15 does not depend on the
choice made at n = 9, since in both (classes of) executions that reach
node m = 15, the cache does contain the variable y, which is the only
cacheable variable accessed by the edge 15

r2 :=y−−−→ 16 at m.

For the read of variable b at node m = 14, on the other hand, one
class of executions reaches m in (14, [y, c, b, x]) (containing b), while
another class of executions reaches m in (14, [y, d, x, c]) (not containing
b). Whether the relevant variable b is in the cache at m = 14 (and
hence: the execution time of the read of b at m = 14) or not depends
here on the choice made at n = 9.

Now consider the read of c at node m = 21. Does its cache state
depend on the choice made right before at n′ = 16? There are

235

13 Micro-Architectural Dependencies

2

4

5

a := 1

6

b := 2

7

c := 3

8

d := 4

9

x := 24

10

(x ≤ 0)

11

¬ (x ≤ 0)

12

y := b + c

13

y := d + d

14

[r1] := b

15

16

[r2] := y

17

([r2] ≤ 3)

18

¬ ([r2] ≤ 3)

19

[r3] := a

20

[r3] := b

21

[r4] := c

3

22

(a) Control Flow Graph

(2,[])

(4,[])

(3,[c,a,y,b]) (3,[c,b,y,d])(3,[c,b,y,x])

(5,[a])

a := 1

(6,[b,a])

b := 2

(7,[c,b,a])

c := 3

(8,[d,c,b,a])

d := 4

(9,[x,d,c,b])

x := 24

(10,[x,d,c,b])

(x ≤ 0)

(11,[x,d,c,b])

¬ (x ≤ 0)

(12,[y,c,b,x])

y := b + c

(13,[y,d,x,c])

y := d + d

(14,[y,c,b,x]) (14,[y,d,x,c])

(15,[b,y,c,x])

[r1] := b

(15,[b,y,d,x])

[r1] := b

(16,[y,b,c,x])

[r2] := y

(16,[y,b,d,x])

[r2] := y

(17,[y,b,c,x])

([r2] ≤ 3)

(18,[y,b,c,x])

¬ ([r2] ≤ 3)

(17,[y,b,d,x])

([r2] ≤ 3)

(18,[y,b,d,x])

¬ ([r2] ≤ 3)

(19,[a,y,b,c])

[r3] := a

(19,[a,y,b,d])

[r3] := a

(20,[b,y,c,x])

[r3] := b

(20,[b,y,d,x])

[r3] := b

(21,[a,y,b,c]) (21,[a,y,b,d])(21,[b,y,c,x]) (21,[b,y,d,x])

(22,[c,a,y,b])

[r4] := c [r4] := c

(22,[c,b,y,x])

[r4] := c

(22,[c,b,y,d])

[r4] := c

(b) Cache Aware Abstract Executions

236

13.1 Introduction

four (abstract) cache states at m = 21. Two contain the variable c:
(21, [b, y, c, x]) and (21, [a, y, b, c]). The other two do not contain c:
(21, [a, y, b, d]) and (21, [b, y, d, x]). The cache states containing c are
reachable from configurations at control node n′ = 16. At the same
time: cache states not containing c are also reachable from configu-
rations at control node n′ = 16. But in fact, whether c is in cache
at m does not depend on the choice made at n′. To see this, note
that node n′ = 16 can be reached at two different cache states. The
first abstract configuration is (16, [y, b, c, x]). But whenever m = 21
is reached from this abstract configuration, c is in the cache (either
(21, [b, y, c, x]) or (21, [a, y, b, c])). The second abstract configuration at
which n′ = 16 can be reached is (16, [y, b, d, x]). But whenever m = 21
is reached from that configuration, c is not in the cache ((21, [a, y, b, d])
or (21, [b, y, d, x])).

On the other hand, the cache status of c at node m = 21 does depend on
the choice made earlier at n = 9. In this example this is necessarily so,
since the node n = 9 is the only other macro-architectural conditional
node in the control flow graph. But this is also directly evident by the
structure of the graph in Figure 13.1b.

Remark 13.1.1. With only a small modification of the program, the
cache status of c at m = 21 could have been independent from the
choice made earlier at n = 9. For example: had there been reads to
two additional variables (e.g: e, f) right before m = 21, then all cache
states at m would not have contained c. This is because these two
reads would have evicted c even from [b, y, c, x] (and [a, y, b, c]).

In summary, the choice made at n = 9 does influence the relevant
(micro-architectural) cache state at m ∈ {21, 14}. In fact for this micro-
architecture, these are the only micro-architectural dependencies in
this control flow graph G, i.e. I will later say:

→G
µd= {(9, 21), (9, 14)}

237

13 Micro-Architectural Dependencies

13.2 Control Flow Graphs

In this chapter, I will assume programs given in form of control flow

graphs, i.e. graphs (N, E) with labeled edges n l−→G m ∈ E. Labels l ∈ L
may be either assignments or guards. Assignments read and write
macro-architectural state σM (e.g.: values of program variables). Guards
evaluate macro-architectural state, and then either allow control flow
to pass, or not (without changing any macro-architectural state σM).

Definition 13.2.1. Formally, I assume some set ΣM of possible macro-
architectural states σM, and labels L = A∪G. For each label l I assume
a macro-architectural (concrete) interpretation lM of l such that for
a ∈ A, aM is a function

aM : ΣM → ΣM

and for g ∈ G, gM is a function

gM : ΣM → {false, true}

A control flow graph G = (N, E) is said to be (two-branch) determin-
istic (with regard to macro-architectural state) if

1. whenever n a−→G m, then this is the only edge leaving n in G

2. whenever n
g−→G m and n

g′−→ m′, then either m = m′ and g = g′,
or m 6= m′ and the interpretation (g′)M of the label g′ is the
negation of the interpretation gM of the label g: (g′)M = ¬ ◦ gM

and.

I assume all control flow graphs to be deterministic in this sense.

The macro-architectural small-steps semantics of control flow graph
G is then simply given by

n a−→G m σ′M = aM (σM)

(n, σM)→
(
m, σ′M

) Ass

238

13.2 Control Flow Graphs

n
g−→G m gM (σM) = true

(n, σM)→ (m, σM)
Guard

Later, it will be convenient to assume the macro-architectural to con-
sists of program variables v ∈ Var, and then assume some functions
use, def : L → 2Var, with which I can then define the use and def sets
of a node n ∈ N:

use (n) =
⋃

n
l−→Gm

use (l)

def (n) =
⋃

n
l−→Gm

def (l)

Definition 13.2.2. I assume a set Σµ of micro-architectural states
σµ ∈ Σµ. For each label l, I assume a (concrete) micro-architectural
interpretation lµ of l such that lµ is a function

lµ : ΣM × Σµ → Σµ

I also assume for each label l a (concrete) timing cost interpretation l�

of l such that l� is a function

l� : Σµ →N

that indicates how much time a transition along an edge labeled with
l will take in some micro-architectural state σµ.

The full small-steps semantics of a control flow graph G is then given
by

n a−→G m σ′M = aM (σM) σ′µ = aµ
(
σM, σµ

)
∆t = a�

(
σµ

)
(
n, σM, σµ, t

)
→
(

m, σ′M, σ′µ, t + ∆t
) Ass

239

13 Micro-Architectural Dependencies

n
g−→G m gM (σM) = true σ′µ = gµ

(
σM, σµ

)
∆t = g�

(
σµ

)
(
n, σM, σµ, t

)
→
(

m, σM, σ′µ, t + ∆t
) Guard

Note that this semantics is deterministic if G is (in the macro-
architectural sense), since only the macro-architectural state decides
which CFG edge is traversed.

Remark 13.2.1. The micro-architectural state will often (to some ex-
tend) track the macro-architectural state. For example, the micro-
architectural state of a data cache will include copies the value of
those (macro-architectural) variables that are currently cached. Hence
the concrete micro-architectural state space for a given program (i.e.:
for a control flow graph with designated initial node) can become ar-
bitrarily large.

But since my approach will require me to compute (a representation
of) all micro-architectural state of a given program, I require an abstract
representation σ#

µ of micro-architectural states (with a corresponding
abstract interpretation of labels l), which still allows me to assign a
definite timing cost to each label l.

Definition 13.2.3 (Abstract Micro-Architectural Semantics). Let α be a
(abstraction) function

α : Σµ → Σ#
µ

from (concrete) micro-architectural states σµ to some abstraction
α
(
σµ

)
in some set Σ#

µ of abstract micro-architectural states.

I write
γ(σ#

µ) = { σµ | α
(
σµ

)
= σ#

µ }

Recall that in the full concrete small-step semantic (Definition 13.2.2),
the choice which control flow graph edge to traverse next depends
only on the macro-architectural state. Also, given such a choice (e.g.:

n l−→G m), the concrete micro-architectural choice is deterministic.

240

13.2 Control Flow Graphs

The abstract micro-architectural small-steps semantics of a control
flow graph G is then just

n l−→G m α
(
σµ

)
= σ#

µ σ′µ = lµ
(
σM, σµ

)
α
(

σ′µ
)
= σ′#µ(

n, σ#
µ

)
l−→
(

m, σ′#µ

) Label

Even for a fixed choice n l−→G m, the abstract micro-architectural small-
steps semantics may be indeterministic. For example, σ′#µ may differ
for different σM. For an example, see Section 13.6.

Remark 13.2.2. In the data-cache example, a concrete cache σµ (map-
ping some program variables to values, and ordering these variables by
recency of use) can be abstractly represented by the list αcache

(
σµ

)
of

variables currently in the cache. Using a different abstraction, a con-
crete cache σµ can also be abstractly represented by the set α

use(m)
incache

(
σµ

)
of variables used at some node m that are in cache at state σµ.

In Figure 13.1b, I showed the abstract micro-architectural small-steps
semantics for the control flow graph in Figure 13.1a, for all abstract
configurations reachable from the abstract configuration (2, []). I used
the abstraction αcache.

Definition 13.2.4. A function

α� : Σµ → Σ�

µ

from (concrete) micro-architectural states σµ to some abstraction
α�
(
σµ

)
in some set Σ�

µ of abstract micro-architectural states is said
to respect timing cost for label l if

for all σµ, σ′µ with α�
(
σµ

)
= α�

(
σ′µ
)

I have:

l�
(
σµ

)
= l�

(
σ′µ
)

241

13 Micro-Architectural Dependencies

Remark 13.2.3. The abstraction αcache respects timing cost for all labels,
while the coarser abstraction α

use(m)
incache respects all labels at control flow

graph edges leaving m. This is because I assume that the time it takes
to access a variable x does only depend on whether x is currently
cached or not, but not on the concrete value of x (or its position in the
cache).

I require one property of abstractions α. Intuitively, the abstraction
must not conflate two different micro-architectural states σ1

µ and σ2
µ if

these may lead to different execution times from configurations con-
sisting of these two micro-architectural states. This is necessary be-
cause if whenever such micro-architectural states are conflated by α
i.e.:

α
(

σ1
µ

)
= α

(
σ2

µ

)
= σ#

µ

then these may introduce join nodes (m, σ#
µ) in the graph obtained from

the abstract micro-architectural semantics. But my notion of micro-
architectural dependencies will then judge this join node2 to be inde-
pendent from choices made before at conditional nodes (n, . . .) whose
successors have all joined in (m, σ#

µ), which is unsound if executions
continuing from there may have different timing behavior, possibly
due the actual choice made at n.

Definition 13.2.5. An abstraction function α is said to respect timing
cost for all possible execution if for any two micro-architectural states σ1

µ

and σ2
µ that are conflated by α, any two executions starting at full con-

crete configurations which differ only in these two micro-architectural
states are indiscernible “up to micro-architectural state”.

Formally: For all micro-architectural states σ1
µ and σ2

µ such that

α
(

σ1
µ

)
= α

(
σ2

µ

)

2 and following nodes

242

13.2 Control Flow Graphs

and all nodes n, macro-architectural states σM and points in time t ∈
N, whenever (

n, σM, σ1
µ, t
)
→ . . .→

(
m, σ1

M, σ1′
µ , t1

)
and

(
n, σM, σ2

µ, t
)
→ . . .→

(
m, σ2

M, σ2′
µ , t2

)
with no other occurrences of m in the transition sequences, then σ1

M =

σ2
M and t1 = t2, as well as α

(
σ1′

µ

)
= α

(
σ2′

µ

)
.

Remark 13.2.4. In Definition 13.2.5, σ1
M = σ2

M must already hold simply
due to the fact that both the choice of successor-nodes and the macro-
architectural successor state are independent from micro-architectural
state (and the fact that the control flow graph is assumed to be deter-
ministic). t1 = t2 must already hold if α respects timing cost for all
labels.

243

13 Micro-Architectural Dependencies

13.3 Micro-Architectural Dependencies

My ultimate goal is to define, given a control flow graph G = (N, E),
a binary relation→G

µd on nodes n, m ∈ N such that

n→G
µd m

if the (macro-architectural) choice made at n influences the timing be-
havior at node m, if m is executed (after n)3.

Since the timing behavior at node m depends (by Definition 13.2.2)
only on the micro-architectural state, I need to determine if the choice
made at n influences micro-architectural state at node m. In other
words: for those labels l at control flow graph edges m l−→ m′ leaving
m, I am interested in whether the choice made at n influences the
timing behavior l� of micro-architectural states σµ at m.

The general idea that I develop in this chapter is to define →G
µd in

terms of nontermination insensitive control dependence →nticd, but
not on the control flow graph G, but on a graph derived from the
abstract micro-architectural small steps semantics(

n, σ#
µ

)
l−→
(

n′, σ′#µ

)
as defined in Definition 13.2.3, and previously exemplified in Fig-
ure 13.1b on page 236.

The informal slogan

→G
µd ≈ |N| × →G#

nticd

3 The question whether m is executed at all after n, and whether this depends on the
choice made at n, is already answered by control dependence and related notions.

244

13.3 Micro-Architectural Dependencies

expresses that →G
µd can be obtained from |N| applications of

nontermination-insensitive control dependence →nticd on graphs G#
derived from G (and m ∈ N): One application for each node m ∈ N.

Definition 13.3.1. Fix some deterministic control flow graph G =
(N, E) and some (initial) node n0 ∈ N in G as well as some (initial)
concrete micro-architectural state σ0

µ ∈ Σµ.

Let N# be the set of configurations
(

n, σ#
µ

)
reachable from(

n0, α
(

σ0
µ

))
in the abstract micro-architectural small steps semantics

(Definition 13.2.3).

Then the graph Gα = (Nα, Eα) consists of the nodes

Nα = {
(

n, γ(σ#
µ)
)
|
(

n, σ#
µ

)
∈ N# } ⊆ N × 2Σµ

and L-labeled edges

Eα = {
(
(n, γ(σ#

µ)), l, (m, γ(σ′#µ))
)
| (n, σ#

µ) ∈ N#, (n, σ#
µ)

l−→ (m, σ′#µ) }

From now on, I assume Gα to be finite. Also from now on, I fix a
node m ∈ N in the control flow graph G, and let α� be an abstraction
coarser than α that respects timing cost for all labels l at edges leaving
m ∈ G.

I write M# = {(m, σ#
µ) ∈ N#} for the set of abstract configurations at

the fixed node m, and

M = { (m, γ(σ#
µ)) | (m, σ#

µ) ∈ M# }

for the set of corresponding nodes in Gα.

Then I define
Gα,m =

(
G→

∗M
α

)
M 6→

245

13 Micro-Architectural Dependencies

as the graph obtained from Gα by removing all nodes that cannot
reach M, and all edges leaving M. I also define the graph

Gα,m,α�

as the graph obtained from Gα,m by merging for each σ�µ ∈ Σ�
µ those

nodes (m, Σ) at m such that for all σµ ∈ Σ, σµ is represented in Σ�
µ by

σ�µ (i.e.: α�
(
σµ

)
= σ�µ).

In Figure 13.1b on page 236, I previously showed the graph Gα for
start node n0 = 2, α = αcache, and the initially empty cache σ0

µ. Now
in Figure 13.2a on page 247, I show the graph Gα,m,α� for m = 14 and

α� = α
use(m)
incache, and in Figure 13.2b I do the same for m = 21.

For example in Gα, I had two nodes (14, γ([y, c, b, x])) and
(14, γ([y, d, c, x])). On the other hand in Gα,14,α� , the abstraction

α� = α
use(14)
incache = α

{b}
incache

considers only whether the variable b is in the cache. Hence I there
have two nodes (14, {b}) and (14, {}).
Similarly in Gα, I had four nodes (21, γ([b, y, c, x])), (21, γ([a, y, b, c])),
(21, γ([a, y, b, d])) and (21, γ([b, y, d, x])). On the other hand in
Gα,21,α� , the abstraction

α� = α
use(21)
incache = α

{c}
incache

considers only whether the variable c is in the cache. Hence I there
have two nodes (21, {c}) and (21, {}).
Evidently, those nodes (m, Σ) for which m = 14, are control dependent
on the node (9, [x, d, c, b])) in Gα,14,α� , but no other node. Similarly,
those nodes (m, Σ) for which m = 21, are control dependent on the

246

13.3 Micro-Architectural Dependencies

(2,[])

(4,[])

(5,[a])

a := 1

(6,[b,a])

b := 2

(7,[c,b,a])

c := 3

(8,[d,c,b,a])

d := 4

(9,[x,d,c,b])

x := 24

(10,[x,d,c,b])

(x ≤ 0)

(11,[x,d,c,b])

¬ (x ≤ 0)

(12,[y,c,b,x])

y := b + c

(13,[y,d,x,c])

y := d + d

(14,{b}) (14,{})

(a) The Graph Gα,14,α�

(2,[])

(4,[])

(5,[a])

a := 1

(6,[b,a])

b := 2

(7,[c,b,a])

c := 3

(8,[d,c,b,a])

d := 4

(9,[x,d,c,b])

x := 24

(10,[x,d,c,b])

(x ≤ 0)

(11,[x,d,c,b])

¬ (x ≤ 0)

(12,[y,c,b,x])

y := b + c

(13,[y,d,x,c])

y := d + d

(14,[y,c,b,x]) (14,[y,d,x,c])

(15,[b,y,c,x])

[r1] := b

(15,[b,y,d,x])

[r1] := b

(16,[y,b,c,x])

[r2] := y

(16,[y,b,d,x])

[r2] := y

(17,[y,b,c,x])

([r2] ≤ 3)

(18,[y,b,c,x])

¬ ([r2] ≤ 3)

(17,[y,b,d,x])

([r2] ≤ 3)

(18,[y,b,d,x])

¬ ([r2] ≤ 3)

(19,[a,y,b,c])

[r3] := a

(19,[a,y,b,d])

[r3] := a

(20,[b,y,c,x])

[r3] := b

(20,[b,y,d,x])

[r3] := b

(21,{c}) (21,{})

(b) The Graph Gα,21,α�

247

13 Micro-Architectural Dependencies

same node (9, [x, d, c, b])) in Gα,21,α� , but no other node. This is just as
expected, since I had predicted:

→G
µd= {(9, 21), (9, 14)}

Let me now make some general observations for the nontermination

insensitive postdominance relation in w
G

α,m,α�
SINK in the graph Gα,m,α�

for a fixed node m.

• The transitive reduction <
G

α,m,α�
SINK is a forest. Its roots include the

nodes (m, Σ), i.e: those nodes (n′, Σ) with n′ = m. All roots are
singular nodes (i.e.: there are only trivial control-sinks).

• The conditional nodes (n, Σ) in Gα,m,α� correspond to either
conditional nodes n in G, or nodes at which the concrete
macro-architectural state σM may influence the abstract micro-
architectural successor state σ′#µ (see Section 13.6 for an exam-
ple).

• Because all outgoing edges of M were deleted in Gα,m, for each
node (n, Σn), at most one node (m, Σ) postdominates (n, Σn):∣∣∣∣{ (m, Σ) | (m, Σ) w

G
α,m,α�

SINK (n, Σn) }
∣∣∣∣ ≤ 1

• If some (m, Σ) postdominates some (n, Σn), then all concrete ex-
ecutions first reaching a state represented by (n, Σn), and then
next reaching a state at m, have the same timing behavior at m.
This is because all σµ ∈ Σ have the same timing behavior (see
Definition 13.2.4).

• Micro-architectural dependency are not meant to include “nor-
mal” control dependencies. Hence it is intentional that even if
some (m, Σ) postdominates some (n, Σn) in Gα,m,α� , choices at
n may still decide whether a concrete execution reaches m at
all (i.e.: m may still be control dependent on n in G). This is be-

248

13.3 Micro-Architectural Dependencies

cause Gα,m,α� only consists of nodes that “eventually” (in the
nontermination insensitively sense) must reach m (at some micro-
architectural state σµ). This was achieved by taking G→

∗M
α .

• If no node (m, Σ) postdominates a given node (n, Σn), but some
other node (n′, Σn′) does postdominate (n, Σn), i.e., if:

(n′, Σn′) w
G

α,m,α�
SINK (n, Σn)

(with n′ 6= m, n′ 6= n), then any decision made at n cannot
possibly influence the micro-architectural state at m, since all
concrete executions from states represented by (n, Σn) have then
joined again at a state represented by (n′, Σn′) before reaching m.

But this last remark just describes the converse of

→
G

α,m,α�

ntind =

(
→

G
α,m,α�

nticd

)∗
(see Definition 7.1.1 on page 122, and Observation 7.1.1). Hence I could
just define4

n→G
µd m ⇐⇒ ∃(n, Σn), (m, Σ) ∈ Nα,m,α� . (n, Σn)→

G
α,m,α�

ntind (m, Σ)

and obtain a sound notion of micro-architectural dependencies. But it
turns out that this notion would be too coarse, because it distinguishes
too many abstract states (n, Σn).

To see this, consider Figure 13.3b on page 251, which shows the graph
Gα,26,α� for the control flow graph G in Figure 13.3a. The question is
if m = 26 is micro-architecturally dependent on n = 10, i.e. if

10→G
µd 26

4 with a misuse of notation: the names n, m are not meant to be bound by ∃, but only
the names Σ, Σn

249

13 Micro-Architectural Dependencies

If I were to answer this directly by consulting Gα,26,α� , I would have to
affirm this, since I have

(10,)→
G

α,26,α�

nticd (18,)→
G

α,26,α�

nticd (26,) hence (10,)→
G

α,26,α�

ntind (26,)

But in reality, node n = 10 can not influence whether x is in cache
at node m = 26. This is because any concrete execution at a con-
crete configuration represented by (18, [a, z, d, c]) will make the same
choices as a concrete execution at a concrete configuration represented
by (18, [a, z, c, d])5: if (18, [a, z, d, c]) proceeds along the edge labeled
l = 0 ≤ r0 · r1 (to (19, [a, z, d, c])), then (18, [a, z, c, d]) will also pro-
ceed along an edge labeled l (to (19, [a, z, c, d])). But it is now easy to
see that (19, [a, z, c, d])) and (19, [a, z, d, c])) behave equivalently with
regard to the relevant cache state at m = 26, since from both these
abstract configuration, execution must reach a configuration at which
the relevant variable c is not in cache, i.e.:

(26, []) w
G

α,26,α�
SINK (19, [a, z, c, d])

and (26, []) w
G

α,26,α�
SINK (19, [a, z, d, c])

Similarly, for the other edge l′ = ¬ l at (18, [a, z, c, d]) and
(18, [a, z, d, c]), I have for their respective successors at 20:

(26, [x]) w
G

α,26,α�
SINK (20, [a, z, c, d])

and (26, [x]) w
G

α,26,α�
SINK (20, [a, z, d, c])

In other words, both successor configurations must reach node m = 26
at a configuration in which x is in the cache.

In summary: while the macro-architectural node n = 10 does indeed
influence in whether execution reaches node 18 at (18, [a, z, d, c]) or
at (18, [a, z, c, d]), this choice at n = 10 is irrelevant for the (timing

5 note the different order of c, d

250

13.3 Micro-Architectural Dependencies

2

4

3

5

6

7

[r0] := d

8

[r1] := e

9

d := [r0] + [r1]

10

[r0] := c

11

(0 ≤ [r0])

12

¬ (0 ≤ [r0])

13

[r0] := z

15

14

d := -[r0]

16

17

[r0] := z

18

[r1] := a

19

(0 ≤ [r0] · [r1])

20

¬ (0 ≤ [r0] · [r1])

21

22

[r0] := a

25

23

[r1] := x

24

a := [r0] + [r1]

26

27

[r0] := x

28

d := -[r0]

(a) A Control Flow Graph G

(2,[])

(4,[])

(5,[])

(6,[])

(7,[d])

[r0] := d

(8,[e,d])

[r1] := e

(9,[d,e])

d := [r0] + [r1]

(10,[c,d,e])

[r0] := c

(11,[c,d,e])

(0 ≤ [r0])

(12,[c,d,e])

¬ (0 ≤ [r0])

(13,[z,c,d,e])

[r0] := z

(15,[c,d,e])(14,[d,z,c,e])

d := -[r0]

(16,[d,z,c,e]) (16,[c,d,e])

(17,[z,c,d,e])

[r0] := z

(17,[z,d,c,e])

[r0] := z

(18,[a,z,c,d])

[r1] := a

(18,[a,z,d,c])

[r1] := a

(19,[a,z,c,d])

(0 ≤ [r0] · [r1])

(20,[a,z,c,d])

¬ (0 ≤ [r0] · [r1])

(19,[a,z,d,c])

(0 ≤ [r0] · [r1])

(20,[a,z,d,c])

¬ (0 ≤ [r0] · [r1])

(21,[a,z,c,d])(21,[a,z,d,c]) (22,[a,z,c,d])

[r0] := a

(22,[a,z,d,c])

[r0] := a

(25,[a,z,c,d])(25,[a,z,d,c]) (23,[x,a,z,c])

[r1] := x

(23,[x,a,z,d])

[r1] := x

(24,[a,x,z,c])

a := [r0] + [r1]

(24,[a,x,z,d])

a := [r0] + [r1]

(25,[a,x,z,c])(25,[a,x,z,d])

(26,{x})

(26,{})

(b) The Graph Gα,26,α�

251

13 Micro-Architectural Dependencies

relevant) micro-architectural state at node m = 26. In this sense (with
regard to node m = 26), (18, [a, z, d, c]) and (18, [a, z, c, d]) are equiv-
alent: if in a concrete configuration abstracted by (18, [a, z, d, c]) and
with macro-architectural state σM, the concrete execution proceeds to-
wards a configuration at m = 26 with x in cache, then any concrete
execution from a concrete configuration abstracted by (18, [a, z, c, d])
with the same macro-architectural state σM will also proceed towards
a configuration at m = 26 with x in cache.

What I need then is a general notion ≡ of equivalence between nodes
(n, Σn), (n, Σn′) in Gα,m,α� .

Intuitively, one might want to make use specifically of the fact that
in this example, the abstract cache states [a, z, d, c] and [a, z, c, d] are
in some sense equivalent at configurations with control flow graph
node n′ = 18. This can be done, but one has to be very careful to find
the correct equivalence here, since whether [a, z, c, d] and [a, z, c, d]
“behave equivalently” depends very much their position in, and the
structure of the control flow graph. Specifically: it depends on the
set of variables accessible between their position and nodes at m.
But these considerations are completely unnecessary, since I can eas-
ily read off the only kind of equivalence that matters to me directly
from the structure of Gα,m,α� . All that matters is whether “up to de-
cisions made at conditional nodes” (which are always independent of
micro-architectural state), two nodes must reach an equivalent micro-
architectural state at m. But this information is readily available in the

postdominance relation w
G

α,m,α�
SINK . I do not need to further inspect the

sets Σ at nodes (x, Σ) ∈ Nα,m,α� .

Definition 13.3.2. For a fixed control flow graph node m ∈ N, write
G# = (N#, E#) for Gα,m,α� . Let M = { (m, Σ) | (m, Σ) ∈ N# } be the
set of nodes in G# that represent a configuration at control flow graph
node m. Also note that whenever

(n, Σn)
l−→G# (x, Σx)

252

13.3 Micro-Architectural Dependencies

then also
(n, Σ′n)

l−→G# (x, Σ′x)

for some Σ′x. I.e.: for any G#-node (n, Σ′n) with the same G-node n,
but (possibly) different set Σ′n of abstract micro-architectural state, any
edge labeled l to some node with the G-node x is matched by some
edge also labeled l towards a node with the same G-node x.

Write E both for the following rule system, and the corresponding
monotone functional.

(n, Σn) ≡ (n, Σn)
Base

(m, Σ) wG#
SINK (n, Σn) (m, Σ) wG#

SINK (n, Σ′n)

(n, Σn) ≡ (n, Σ′n)
wSINK

n 6= m

∀l.
(
(n, Σn)

l−→G# (x, Σx) ∧ (n, Σ′n)
l−→G# (x, Σ′x) ⇒ (x, Σx) ≡ (x, Σ′x)

)
(n, Σn) ≡ (n, Σ′n)

Suc

Then define
G≡

α,m,α�

to be the graph obtained from G# = Gα,m,α� by merging all nodes
which cannot be distinguished by the rule system E, i.e.: by merging all
nodes equivalent w.r.t ≡, where

≡ = νE

is the greatest fixed point of E. Here, the greatest fixed point is to be
taken with respect to the subset order ⊆, and

> = {
(
(n, Σn), (n, Σ′n)

)
| (n, Σn) ∈ N#, (n, Σ′n) ∈ N# }

253

13 Micro-Architectural Dependencies

Rule Base states that every G#-node (n, Σn) is equivalent to itself. Rule
wSINK states that two G#-nodes (n, Σn) and (n, Σ′n) with a common con-
trol flow graph node n are equivalent if they are postdominated by
the same G#-node (m, Σm), with m being the fixed G-node for which
G# = Gα,m,α� . The last rule Suc states that two G#-nodes (n, Σn) and
(n, Σ′n) with a common control flow graph node n are equivalent if for
each label l, all l-successors with a common control flow graph node
x are equivalent.

Now finally, I can define micro-architectural dependencies.

Definition 13.3.3. Fix some deterministic control flow graph G =
(N, E) and some node n0 ∈ N in G as well as some (concrete) micro-
architectural state σ0

µ ∈ Σµ.

Let m ∈ N be some node in G, and let G≡
α,m,α�

be as in Definition 13.3.2.

Then I define for any node n ∈ N: 6

n→G
µd m ⇐⇒ ∃(n, Σn), (m, Σ) ∈ N≡

α,m,α� . (n, Σn)→
G≡

α,m,α�

ntind (m, Σ)

For each m ∈ N, computation of · →G
µd m is efficient. Specifically,

since the definition is of the form(
→(G≡#)M 6→

nticd

)∗
(M)

Lemma 7.1.1 from page 135 applies, and I need to compute neither
→ntind nor →nticd.

Also in my experiments, computation of G≡
α,m,α�

from Gα,m,α� using
a chaotic fixed point iteration in topological order is efficient, even
when using a naive explicit representation of the equivalence classes
in Gα,m,α�/ ≡.

6 where again, only Σn, Σ, but not m, n are meant to be bound by ∃

254

13.3 Micro-Architectural Dependencies

Of course in practice, computation of · →G
µd m is only feasible if the

computation of Gα is, from which then Gα,m,α� is easily obtained for
each m ∈ M.

255

13 Micro-Architectural Dependencies

13.4 Limitations of Micro-Architectural
Dependencies

The requirement of α respecting timing for all possible executions
(Definition 13.2.5) is quite strong. Obeying it will lead to huge graphs
Gα in some applications. In the micro-architectural cache architecture,
for some programs the computation is feasible only for relatively small
cache sizes.

By Definition 13.2.2, I assume that the execution time along an edge
labeled l depends on the micro-architectural state only. In many CPU
architectures, however, there exist instructions whose execution time
will depend on the actual value of some operand, which is intuitively
part of the macro-architectural. For example, the execution of trigono-
metric operations (sin, cos, . . .) and integer division div usually de-
pends on the actual value of the operand. To what extend is this a
limitation of my approach? I give three answers:

1. In principle, this is not a limitation at all, since the concrete
micro-architectural state σµ can always be modeled to include
the whole macro-architectural state.

2. However in practice — respecting timing for all possible execu-
tions — this does appear to be a severe limitation, since I will
then be forced to track the actual values of variables in the ab-
stract micro-architectural state σ#

µ.

3. Then again in practice, I can just ignore these particular kind of
execution time dependency in the micro-architectural dependency
graph →G

µd, and defer the obligation to account for these kind
of dependencies to the timing sensitive control dependence →tscd,
and data dependence →data. I can do this by a trivial modifica-
tion of the underlying control flow graph G. Consider an edge

n
r0 := x div y−−−−−−−−→G m, with m being the only G-successor of n. In-

256

13.4 Limitations of Micro-Architectural Dependencies

troducing two fresh nodes ml , mr, I can just replace this edge by
four new edges

n
r0 := x div y−−−−−−−−→G′ ml −→G′ m

and n
r0 := x div y−−−−−−−−→G′ mr −→G′ m

obtaining a new control flow graph G′, and assigning two differ-
ent costs to these edges in the underlying timing cost model C′

for G′. Then m will be timing sensitively control dependent on
n in G′ under C′

n→G′ [C′]
tscd m

and if n is data-dependent on some other node n′, then n′ will
be included in the backward slice of m, as required.

In the next section, I explain how a similar construction can be used
to integrate the micro-architectural dependencies n →G

µd m into a full
timing sensitive slice, in general.

257

13 Micro-Architectural Dependencies

13.5 Timing Dependence for Micro-Architectural
Dependencies

In a labeled control flow graph G = (N, E), a micro-architectural de-
pendency n →G

µd m indicates that the time some step at m takes to
execute may depend on a (macro-architectural) choice made at n. On
the other hand, a timing sensitive control dependence n →G

tscd m indi-
cates: when and if some node m is executed may depend on a choice
made at n. But that a step at node m may take different amount of time
at all is usually not encoded in the structure of the control flow graph,
and hence invisible to timing sensitive control dependence n→G

tscd m.
Recall the control flow graph G from Figure 13.1a, repeated in Fig-
ure 13.4a on page 259.

I previously found that

→G
µd= {(9, 21), (9, 14)}

But if I wanted to find out whether the execution of the whole pro-
gram depended on the choice made at n = 9, and did this by naively
applying timing sensitive control dependence7 to G, I might query the
timing-sensitive backward slice of the end node M = {3}, finding that(

→G
tscd ∪ →G

data

)∗
(M) = ∅

and erroneously conclude that the program has constant execution
time (specifically: is independent of choices at n = 9).

The solution, of course, is to make different timing behavior due to
micro-architectural state visible in the control flow graph, by mod-
ifying G at those nodes m at which execution may reach micro-
architectural states with different timing behavior. These nodes can

7 using, for example, the default timing cost model 1, or any timing cost model that
assigns some constant timing cost to each variable access

258

13.5 Timing Dependence for Micro-Architectural Dependencies

2

4

5

a := 1

6

b := 2

7

c := 3

8

d := 4

9

x := 24

10

(x ≤ 0)

11

¬ (x ≤ 0)

12

y := b + c

13

y := d + d

14

[r1] := b

15

16

[r2] := y

17

([r2] ≤ 3)

18

¬ ([r2] ≤ 3)

19

[r3] := a

20

[r3] := b

21

[r4] := c

3

22

(a) CFG G

2

4

(1)

3

5

(2) a := 1

6

(2) b := 2

7

(2) c := 3

8

(2) d := 4

9

(2) x := 24

10

(2) (x ≤ 0)

11

(2) ¬ (x ≤ 0)

12

(6) y := b + c

13

(6) y := d + d

14

(1) (1)

23

(2) [r1] := b

24

(10) [r1] := b

15

16

(3) [r2] := y

17

(1) ([r2] ≤ 3)

18

(1) ¬ ([r2] ≤ 3)

19

(11) [r3] := a

20

(3) [r3] := b

21

(1) (1)

25

(2) [r4] := c

26

(10) [r4] := c

22

(1)

(1) (1)

(1) (1)

(b) Micro-Architecture Aware CFG G′

259

13 Micro-Architectural Dependencies

be identified by inspection of Gα, by gathering for each G-node m all
Gα-nodes (

m, σ1
µ

#)
,
(

m, σ2
µ

#
)

, . . .

and then checking if for any outgoing labeled edge, there may be
different timing in the concrete semantics for any two σi

µ, σ
j
µ.

At such nodes m, I duplicate edges to fresh artificial nodes immedi-
ately behind m and its former successors. I call the resulting graph G′

the micro-architecture aware control flow graph for G.

Consider Figure 13.4b at page 259, which shows the result G′ of this
transformation, together with an explicit timing cost model C′. There,
a cache-miss is assumed to take 10 units of time, while a cache-hit
takes 2 units8. At node 14, the read from b takes either 2 or 10 units
of time, since b there might either be in the cache, or not.9 Hence in
G′, node 14 has two artificial successors: the read from b takes either
2 or 10 units of time, since b there might either be in the cache, or
not. On the other hand, node 15 still has only one successor, reached
with timing cost 3 = 2 + 1 (cache access plus register access), since
I found that there the variable y is always in cache (by inspection of
Figure 13.1b).

In G′, I now have (as desired) that node 21 is in the backward slice of
the exit node 3.

21 ∈
(
→G′ [C′]

tscd

)∗
({3})

Note that even if G is deterministic, G′ usually is not. This is no
problem, because I can still use the micro-architectural dependencies

8 memory writes are assumed to always take 2 units of times, and register accesses
take 1 unit of time

9 In the timing cost model C, the cost 11 = 10 + 1 that stems from one uncached
variable access plus one register access is split into two edges. I need to do this
because in my notion of graphs, there can be no multi-edges, and since I required
cost models C to be strictly positive.

260

13.5 Timing Dependence for Micro-Architectural Dependencies

→G
µd (and data dependence →dataG) from the original graph G, and

only use G′ for timing sensitive control dependence→G′ [C′]
tscd .

Observation 13.5.1 (Soundness of Micro-Architectural Dependence
for a Data Cache Micro-Architecture). Assume the micro-architecture
consisting of the fully associative data cache of size c ∈ N with least-
recently used eviction strategy, as used in the examples of this chap-
ter.10 As in the examples, choose the abstractions

α = αcache and α� = α
use(m)
incache

Let G = (N, E) be any deterministic labeled control flow graph, n0 ∈
N, and σ0

µ be the initially empty cache. Also let σ0
M be the initially

empty, partial mapping from variables in G to values, and let t0 = 0
be the starting time.

Assume – starting at n0 — a linear sequence of “initialization” nodes
ny with outgoing edges labeled y:=? for each variable y in G. Let
G′ = (N′, E′) be the micro-architecture aware control flow graph for
G, with associated timing cost model C′. Let m ∈ N′ be any non-
initialization node, and let

S =
(
→G′ [C′]

tscd ∪ →dataG′ ∪ →G
µd

)∗
({m})

be the micro-architectural, timing sensitive backwards slice of m.

Assume two inputs i1, i2 to G, i.e.: two mappings from variables y to
some initial value i1 (y) or i2 (y), respectively. Also assume i1, i2 to
coincide on all variables y for which the initialization node ny is in the
slice S.

Obtain G1 from G by replacing all labels y:=? at initialization nodes
ny by y:=i1 (y), and obtain G2 similarly.

10 for the purpose of gathering experimental evidence, I chose c ∈ {4, 8}.

261

13 Micro-Architectural Dependencies

Then the timed, micro-architectural execution sequences for G1 and
G2 (as defined by the full small-steps semantics in Definition 13.2.2)
starting in

(
n0, σ0

M, t0) coincide, after each removing all configurations
(n, σM, t) for which n /∈ S.

262

13.6 Arrays

13.6 Arrays

In the preceding sections, I (implicitly) made two simplifying assump-
tions: every program variable resides in a distinct memory block, and
the memory block of each variable access is statically known. This
allowed me to represent abstract caches by lists of variables. The
first assumption can easily be done away with: I merely need to re-
spect static, non-injective mapping from variables to memory blocks
(such that different variables can share a memory block), and then
represent abstract caches by lists of memory blocks. Assuming a set
B = {b0, b1, . . .} of memory blocks, an abstract cache σ′#µ is then just a
list of memory blocks For example: σ#

µ = [b5, b1, b7, b8].

The simplest setting in which the second assumption no longer holds
is one in which programs contain array accesses such as l = r := a[i]
with statically unknown indices. Since arrays can span multiple mem-
ory blocks, the abstract micro-architectural transition from an abstract
cache σ′#µ along a label l is no longer deterministic. Consider, for ex-
ample, the abstract cache σ#

µ = [b5, b1, b7, b8] and assume that each
memory blocks a size of 64 bytes. Assume that the byte-array a is
aligned with memory block b1, and assume that i is statically known

to be in the range 0 . . . 255. Then the control flow graph edge n l−→G m
will induce four abstract micro-architectural transitions:

(
n, σ#

µ

)
l−→ (m, [b1, b5, b7, b8]) for i ∈ 0 . . . 63 in σM(

n, σ#
µ

)
l−→ (m, [b2, b5, b1, b7]) for i ∈ 64 . . .127 in σM(

n, σ#
µ

)
l−→ (m, [b3, b5, b1, b7]) for i ∈ 128 . . .191 in σM(

n, σ#
µ

)
l−→ (m, [b4, b5, b1, b7]) for i ∈ 192 . . .255 in σM

The framework for micro-architectural dependencies from still ap-
plies, but as is introduces unnecessary imprecision. The reason is that

263

13 Micro-Architectural Dependencies

rule Suc on page 253 for the equivalence relation ≡ is too strict, which
results in the graph

G≡
α,m,α�

having a postdominance relation of too small a size.

Recall that rule Suc requires for two nodes (n, Σn) and (n, Σ′n) in the
graph Gα,m,α� that for all labels l, every l-transition from (n, Σn) is
matched by a l-transition from (n, Σ′n). In the example, this also re-
quires l-transitions corresponding to i ∈ 0 . . . 127 to be matched by
l-transitions corresponding to, e.g., i ∈ 192 . . . 255.

But it is enough to only require l-transitions corresponding to i ∈
0 . . . 127 to be matched by l-transitions corresponding to i ∈ 0 . . . 127,
and l-transitions corresponding to i ∈ 64 . . . 127 to be matched by
l-transitions corresponding to i ∈ 64 . . . 127, etc.

In order to do this, I first modify the abstract micro-architectural se-
mantics from Definition 13.2.3 on 240 to include in the transition labels
also that part of the macro-architectural state σM on which the micro-
architectural transition depends. Then rule Suc remains unmodified,
except that now the variable l must be read to range over pairs l0, σ#

M
of control flow graph labels l0 and abstractions of macro-architectural
states.

Definition 13.6.1 (Abstract Micro-Architectural Semantics, Modified).
In addition to α as in Definition 13.2.3, overload the name α to also
stand for a (abstraction) function

α : ΣM → Σ#
M

from (concrete) macro-architectural states σM to some abstraction
α (σM) in some set Σ#

M of abstract macro-architectural states. I de-
mand that the abstraction is compatible with the micro-architectural
label transition function lµ, i.e. that: for any σ1

M, σ2
M and σ1

µ, σ2
µ with

α
(
σ1

M

)
= α

(
σ2

M

)
and α

(
σ1

µ

)
= α

(
σ2

µ

)
I have

α
(

lµ
(

σ1
M, σ1

µ

))
= α

(
lµ
(

σ2
M, σ2

µ

))
264

13.6 Arrays

Then the modified abstract micro-architectural small-steps semantics
of a control flow graph G is just

n l−→G m α
(
σµ

)
= σ#

µ σ′µ = lµ
(
σM, σµ

)
α
(

σ′µ
)
= σ′#µ(

n, σ#
µ

) l,α(σM)−−−−→
(

m, σ′#µ

) Label

In the example, the relevant abstract macro-architectural states are
{“i ∈ 0 . . . 63”, . . .} ⊆ Σ#

M, and I have(
n, σ#

µ

)
l,“i∈0...63”−−−−−−−→ (m, [b1, b5, b7, b8])(

n, σ#
µ

)
l,“i∈64...127”−−−−−−−−→ (m, [b2, b5, b1, b7])(

n, σ#
µ

)
l,“i∈128...191”−−−−−−−−→ (m, [b3, b5, b1, b7])(

n, σ#
µ

)
l,“i∈192...255”−−−−−−−−→ (m, [b4, b5, b1, b7])

Remark 13.6.1. In order to limit the size of resulting transition relation,
in practice it is necessary to establish tight static bounds on index
variables such as i in r := a[i] whenever possible.

Summary

• Micro-architectural dependencies →µd expose timing
channels that arise due to the micro-architecture of the
executing CPU.

• They can be computed using nontermination insensitive
slices, and an additional greatest fixed point computation
that is driven by nontermination insensitive postdomi-
nance wSINK.

265

14 Cache Timing Attacks on AES256

Dazzle!

(Dazzle — Dota 2)

Cache timing attacks on implementations of cryptographic primitives
allow an attacker to recover cryptographic keys and/or plain text mes-
sages by observing only the execution time of encryption or decryp-
tion operations. Even if (during an computation of the cryptographic
operation) the flow of control is independent from keys and plain
text1, the execution time may depend on these due to the effects of
data caches. Differences in execution time can then be used to infer
keys (e.g., [Ber05; BM06]).

In this chapter, I employ micro-architectural dependencies to analyze
cache-based timing channels in implementations of the AES256 block
cipher. As expected, my analysis discovers timing channels in naive
substitution table based implementations. In two more sophisticated
implementations, my analysis can proofs the absence of cache based
timing channels.

1 i.e., even if these do not affect decisions at branch- and loop-predicates

267

14 Cache Timing Attacks on AES256

14.1 AES256 Encryption

A crucial operation during AES256 encryption is the “S-Box” substitu-
tion step, which substitutes values in the current computation state by
their value in a constant, publicly known substitution table. The most
natural default implementation is by simple array lookup, as shown in
Figure 14.6a. Here, state is an array with 16 entries that holds the cur-
rent encryption state, i.e.: the encrypted message. The array sbox is the
constant, publicly known substitution table with 256 entries. In this
implementation, the execution time is affected by the current state

(and hence: by plain text and key), because the value r2 affects which
part of the substitution table sbox is accessed. Since in common CPU
micro-architectures the array sbox will span multiple memory blocks2,
the value r2 in one iteration may influence whether the read of r3 in a
later iteration is served from the data cache or from the main memory,
and hence the execution time. In the micro-architecture aware control
flow graph, the exit node (i.e.: the total execution time) is timing sen-
sitively control dependent on the node corresponding to line 4, which
in turn is data dependent on the key and the plain text.

Additional timing dependencies, also due to micro-architectural de-
pendencies, exists. For example, there exists a dependency chain from
the exit node to the plain text input node via a micro-architectural de-
pendency from the node corresponding to line 4 in Figure 14.6a to the
node corresponding to line 5 in Figure 14.7a).

Figure 14.1a) shows the results of cache- and timing sensitive slicing
w.r.t the exit node of the default AES256 implementation, for differ-
ent assumed cache sizes. They were computed in my prototype im-
plementation of micro-architectural dependencies in the Haskell pro-
gramming language. The first column indicates the assumed cache
size, in number of cache-lines. For simplicity, each scalar program
variable was assumed to occupy a distinct memory block, while arrays
(all of size 256, with 8-bit entries) were assumed to span exactly four

2 i.e., regions of memory that are associated with the same cache line

268

14.1 AES256 Encryption

memory blocks. Cache lines are assumed to fit exactly one memory
block, effectively resulting in a cache line size of 64 bytes. The second
column shows the size of the abstract micro-architectural transition
graph Gα, measured in the number of nodes Nα. The third column
shows the size of the micro-architectural dependency relation. The
fourth column shows the size of the backward-slice (as described in
Observation 13.5.1 on page 261) of the control flow graphs exit node.
The next two column show execution time of the analysis, and the
required amount of memory. The last column indicates whether the
analysis could prove the absence of timing channels, i.e.: whether the
slice contain no key or plain-text input node.

The given computation time includes the whole analysis: computa-
tion of Gα and the micro-architectural aware control flow graph G′,
as well as data-dependencies, timing-sensitive control dependencies,
and micro-architectural dependencies, and slicing. The computation
time is dominated by the computation of the graphs

G≡
α,m,α�

required for micro-architectural dependencies. All times in this chap-
ter were measured on a high end “computation server” class PC with
an Intel Xeon Gold 6230 CPU at 2.10 GHz base frequency with 512GB
RAM.

For cache sizes of 12 cache lines or more, the analysis did not fin-
ish for this AES256 implementation. For 12 cache lines, computation
exhausted the maximal memory (500GB). I expect that an analysis im-
plementation more memory-efficient than my prototype Haskell im-
plementation is possible, but since the size of the graph Gα appears to
grow exponentially in the number of cache lines, I must expect this to
extend the range of testable cache sizes for this input program only by a
little.3

3 But on the other hand, the phase of “exponential” growth of Gα may end within reach
of a more efficient analysis-implementations. Just peek ahead to Figure 14.1b). There,
the same Haskell analysis is run for a different input program (concretely: a different

269

14 Cache Timing Attacks on AES256

Together, Figure 14.6, 14.7, 14.8, 14.9 , 14.10 and 14.11 form an im-
plementation of AES256 encryption for one block of plain text data.
Where applicable, the left subfigure shows the “naive” default imple-
mentation with an explicit “S-Box” substitution table sbox.

There are two common approaches to avoid cache timing channels
in AES256 implementations. The first approach is to employ “pre-
caching” of relevant cache lines. My Implementation of this approach
is shown in the right hand sides of the aforementioned figures, and ex-
plained in Section 14.2. The second approach is to avoid table lookup
depending on secret values altogether, by encoding the “S-Box” sub-
stitution in a constant time Boolean program (Figure 14.2 and Sec-
tion 14.3).

AES256 implementation). But for that program, the graphs Gα are much smaller, and
the growth appears to slow at 16 cache lines, and then stop at 32.

270

14.1 AES256 Encryption

c.l. |Nα| |µ d| |S| time (s) memory (kb) passed
2 1132 8 695 1 30 968 %

4 8349 39 695 3 35 040 %

6 89378 132 695 47 268 488 %

8 529225 324 695 396 2 097 396 %

10 2627483 463 695 20955 62 865 540 %

12 18444663 did not finish

(a) Default AES265 Implementation

c.l. |Nα| |µ d| |S| time (s) memory (kb) passed
2 1189 21 703 1 39 128 %

4 2901 66 717 3 36 152 %

6 6320 85 427 4 36 952 %

8 14570 50 62 5 65 780 X

10 21136 44 62 7 84 184 X

12 47593 96 72 30 229 676 X

14 110128 67 74 103 981 228 X

16 146792 101 58 166 1 814 764 X

18 149650 45 54 134 2 077 944 X

20 149696 18 44 90 1 919 220 X

22 149712 18 40 60 1 627 332 X

24 149718 18 40 60 1 921 264 X

26 149724 18 40 60 1 646 780 X

28 149736 18 40 60 2 101 312 X

30 149748 18 40 60 1 688 752 X

32 151009 18 40 60 1 961 124 X

. . .
100 151009 18 40 60 1 881 268 X

200 151009 18 40 60 1 511 584 X

500 151009 18 40 60 1 795 240 X

(b) With pre-caching

Figure 14.1: Cache- and Timing Dependencies

271

14 Cache Timing Attacks on AES256

14.2 Pre-Caching

For architectures with big data caches, pre-caching is easy: one simply
pre-caches all memory blocks associated with program data at the
start of the program. For very small data caches, on the other hand,
pre-caching must be employed more strategically, with respect not
only to the usage of cache-lines, but also to the actual cache size. I am
not aware of any automatic process to do this. But micro-architectural
and timing can automatically verify the correctness of manual pre-
caching for a given cache size.

In Figure 14.6 and 14.7, I surrounded access to the sbox and the skey

arrays4 by loads that pre-cache the corresponding array, and then after
the access establish a fixed position of all relevant memory blocks in
the assumed LRU cache order. In Figure 14.10, the additional loads
establish fixed cache-positions for the state memory blocks after the
key-expansion. In Figure 14.11, the first additional loads force vari-
ables wi near to the front of the LRU cache — which they are anyway,
if the if branch is not taken. Similarly, the next two additional loads
“emulate” the memory access taken in the first branch of the second
if statement. The last additional load pre-caches access to skey.

As can be seen from Figure 14.1b), my analysis can automatically
proof the absence of timing channels due to data caches, for micro-
architecture with 8 or more lines of data cache. For this program,
my analysis takes up to 166 seconds, and up to ≈ 2GB of mem-
ory. The reason that the analysis time decreases at 18 cache lines is
that my implementation can soundly skip the computation of the set
{ n | n →µd m } for those nodes m at which memory accesses always
take the same amount of time (Observation 14.2.1), as per the obser-
vation immediately below. But for larger caches, this can be true for
more nodes m.

4 the latter of which is holding the expanded round key

272

14.2 Pre-Caching

Observation 14.2.1. Let m be any node in the control flow graph G. If
for all two nodes (m, Σ), (m, Σ′) in the graph5 Gα at control node m
the rule

m l−→G m′

σµ ∈ Σ σ′µ ∈ Σ′
(
m, σM, σµ, 0

) l−→
(

m, σM, σ′µ, ∆t
)

(
m, σM, σ′µ, 0

)
l−→
(

m, σM, σ′µ, ∆t′
)

∆t = ∆t′

is admissible, then
{ n | n→µd m } = ∅

Micro-Architectural dependencies do not only confirm that the em-
ployed pre-caching is sufficient, but the also helped me to conclude
where it was necessary: I determined all additional loads in the pre-
caching AES256 by manual inspection of the graph Gα as well as
micro-architectural dependencies →µd, starting from the default im-
plementation and then iterating.

5 Definition 13.3.1 on page 245

273

14 Cache Timing Attacks on AES256

1 x0 := (state[0] & 128 ^ state[1] & 128 >> 1) ^ state[2] & ...
2 x1 := (state[0] & 64 << 1 ^ state[1] & 64) ^ state[2] & ...
3 ...
4 y14 := x3 ^ x5
5 y13 := x0 ^ x6
6 ...
7 t2 := y12 & y15
8 t3 := y3 & y6
9 ...

10 z0 := t44 & y15
11 z1 := t37 & y6
12 ...
13 t46 := z15 ^ z16
14 t47 := z10 ^ z11
15 ...
16 s0 := t59 ^ t63
17 s6 := t56 ^ ~t62
18 state[0] := ((s0 & 128 ^ s1 & 128 >> 1) ^ s2 & 128 >> 2) ^ ...
19 state[1] := ((s0 & 64 << 1 ^ s1 & 64) ^ s2 & 64 >> 1) ^ ...
20 ...

Figure 14.2: Constant Time: SUBct

14.3 Constant Time S-Box Substitution

In [BP10], the authors present a Boolean function that implements
“S-Box” substitution purely by Boolean operations on the (bit-
representation) of input. Figure 14.2 gives an idea. As expected, my
analysis proofs the absence of timing channels if in the default imple-
mentation, the array based “S-Box” substitution is replaced by that of
Figure 14.2. As can be seen from Figure 14.3 (with the same columns
as before in Figure 14.1), this holds for all assumed cache sizes.

274

14.3 Constant Time S-Box Substitution

c.l. |Nα| |µ d| |S| time (s) memory (kb) passed
2 3717 7 51 3 220 344 X

4 7062 27 60 5 285 832 X

6 18946 102 67 15 221 372 X

8 61399 156 64 57 275 576 X

10 195541 155 64 204 785 580 X

12 322495 146 63 304 1 321 208 X

14 419209 141 62 371 1 640 572 X

16 509983 137 60 431 1 957 040 X

18 580357 132 59 491 2 115 768 X

20 613723 125 58 492 2 178 216 X

22 647089 125 58 531 2 378 896 X

24 680455 125 58 542 2 521 324 X

26 713821 125 58 605 2 334 844 X

28 747187 125 58 598 2 816 188 X

30 780553 125 58 685 2 819 240 X

(c) Constant Time S-Box

Figure 14.3: Cache- and Timing Dependencies

275

14 Cache Timing Attacks on AES256

14.4 Validation

By Figure 14.1, I know that for the pre-caching implementation, exe-
cution time is independent from plain text and key for the assumed
cache sizes starting at 8 cache lines. Since in AES256 encryption, key
and plain-text are the programs only inputs, this implementation then
is indeed a constant time implementation for 8 cache lines. Using an
interpreter for the concrete micro-architectural, I validated these re-
sults for randomly chosen key and plain-text inputs. For such inputs,
encryption took 46578 units of time in the assumed timing model.

For the implementation with constant time “S-Box” substitution (Fig-
ure 14.3), this holds even for 2 cache lines. There, encryption takes a
constant 211189 units of time.

But to which extend is my analysis precise? By Figure 14.1, it cannot
proof the default “naive” implementation constant-time for any cache
size, and indeed it is not, as can be seen from Figure 14.4. It shows
the execution time histograms for 2 to 12 cachelines, for 1000 random
key and plain-text inputs. For the pre-caching implementation, my
analysis cannot proof constant-time for 2 to 6 cache lines, but only
for 8 and more cache lines. And indeed for cache-sizes 2 to 6, the
pre-caching implementation is not constant time, as can be seen from
Figure 14.5.

Summary

• Micro-architectural dependencies →µd can proof the ab-
sence of timing channels in AES256 implementations,
under the assumption of a simple data cache micro-
architectures.

• For one implementation, micro-architectural dependen-
cies can only be computed for small assumed cache sizes.

276

14.4 Validation

53,200 53,700
0

100

200

(a) 2 Cache Lines

46,700 47,200
0

100

200

(b) 4 Cache Lines

40,350 40,850
0

100

200

(c) 6 Cache Lines

35,700 36,200
0

100

200

(d) 8 Cache Lines

33,350 33,850
0

100

200

(e) 10 Cache Lines

31,850 32,350
0

100

200

(f) 12 Cache Lines

Figure 14.4: Execution Time: Default Implementation

65,670 66,170
0

100

200

(a) 2 Cache Lines

58,570 59,070
0

100

200

(b) 4 Cache Lines

50,170 50,670
0

100

200

(c) 6 Cache Lines

Figure 14.5: Execution Time: With pre-caching

1
2 for r1 : [0, 1 .. 15]
3 r2 := state[r1]
4 r3 := sbox[r2]
5 state[r1] := r3
6 end
7

(a) Default: SUBdef

load sbox[0,64,128,192]
for r1 : [0, 1 .. 15]
r2 := state[r1]
r3 := sbox[r2]
state[r1] := r3

end
load sbox[0,64,128,192]

(b) With pre-caching: SUBpc

Figure 14.6: AES256: S-Box substitution

277

14 Cache Timing Attacks on AES256

1
2 for r1 : [0, 1 .. 15]
3 r2 := state[r1]
4 r4 := (r1 + 0)
5 r3 := skey[r4]
6 r2 := (r2 ^ r3)
7 state[r1] := r2
8 end
9

(a) Default: ADDROUNDdef
o

load skey[0,64,128,192]
for r1 : [0, 1 .. 15]
r2 := state[r1]
r4 := (r1 + 0)
r3 := skey[r4]
r2 := (r2 ^ r3)
state[r1] := r2

end
load skey[0,64,128,192]

(b) With pre-caching: ADDROUNDpc
o

Figure 14.7: AES256: Adding the Round Key

1 shiftRowsTmp := state[1]
2 state[1] := state[5]
3 state[5] := state[9]
4 state[9] := state[13]
5 state[13] := shiftRowsTmp
6 shiftRowsTmp := state[2]
7 state[2] := state[10]
8 state[10] := shiftRowsTmp
9 shiftRowsTmp := state[6]

10 state[6] := state[14]
11 state[14] := shiftRowsTmp
12 shiftRowsTmp := state[15]
13 state[15] := state[11]
14 state[11] := state[7]
15 state[7] := state[3]
16 state[3] := shiftRowsTmp

(a) SHIFT

Figure 14.8: AES256: Shifting Rows

278

14.4 Validation

1 MIX0
2 MIX4
3 MIX8
4 MIX12

(a) MIX

1 a0 := state[o + 0]
2 a1 := state[o + 1]
3 a2 := state[o + 2]
4 a3 := state[o + 3]
5 b0 := (a0 << 1) ^ (27 & ((a0 >> 7) * 255))
6 b1 := (a1 << 1) ^ (27 & ((a1 >> 7) * 255))
7 b2 := (a2 << 1) ^ (27 & ((a2 >> 7) * 255))
8 b3 := (a3 << 1) ^ (27 & ((a3 >> 7) * 255))
9 r0 := (((b0 ^ a1) ^ b1) ^ a2) ^ a3

10 r1 := (((a0 ^ b1) ^ a2) ^ b2) ^ a3
11 r2 := (((a0 ^ a1) ^ b2) ^ a3) ^ b3
12 r3 := (((a0 ^ b0) ^ a1) ^ a2) ^ b3
13 state[o + 0] := r0
14 state[o + 1] := r1
15 state[o + 2] := r2
16 state[o + 3] := r3

(b) MIXo

Figure 14.9: AES256: Mixing Columns

1 EXPAND
2
3 ADDROUND0
4 for r5 : [1, 2 .. 13]
5 SUB
6 SHIFT
7 MIX
8 ADDROUNDr5 << 4

9 end
10 SUB
11 SHIFT
12 ADDROUND14 << 4

(a) Default

1 EXPAND
2 load state[0,64,128,192]
3 ADDROUND0
4 for r5 : [1, 2 .. 13]
5 SUB
6 SHIFT
7 MIX
8 ADDROUNDr5 << 4

9 end
10 SUB
11 SHIFT
12 ADDROUND14 << 4

(b) With pre-caching

Figure 14.10: AES256: Main Loop

279

14 Cache Timing Attacks on AES256

1 n := 1
2 for i : [0, 1 .. 31]
3 skey[i] := key[i]
4 end
5 for o : [32, 36 .. 236]
6 w0 := skey[o−4]
7 w1 := skey[o−3]
8 w2 := skey[o−2]
9 w3 := skey[o−1]

10 if (o % 32 == 0) then
11 rotateTmp := w0
12 w0 := w1
13 w1 := w2
14 w2 := w3
15 w3 := rotateTmp
16 SUB4
17 w0 := w0 ^ rcon[n]
18
19 n := n + 1
20 end
21 if (o % 32 == 16) then
22 SUB4
23
24
25
26 end
27
28 skey[o+0] := skey[o−32]^w0
29 skey[o+1] := skey[o−31]^w1
30 skey[o+2] := skey[o−30]^w2
31 skey[o+3] := skey[o−29]^w3
32 end

(a) Default: EXPANDdef

.

n := 1
for i : [0, 1 .. 31]
skey[i] := key[i]

end
for o : [32, 36 .. 236]
w0 := skey[o−4]
w1 := skey[o−3]
w2 := skey[o−2]
w3 := skey[o−1]
if (o % 32 == 0) then
rotateTmp := w0
w0 := w1
w1 := w2
w2 := w3
w3 := rotateTmp
SUB4
w0 := w0 ^ rcon[n]
load w1, w2, w3
n := n + 1

end
if (o % 32 == 16) then

SUB4
else
load w0, w1, w2, w3
load sbox[0,64,128,192]

end
load skey[0,64,128,192]
skey[o+0] := skey[o−32]^w0
skey[o+1] := skey[o−31]^w1
skey[o+2] := skey[o−30]^w2
skey[o+3] := skey[o−29]^w3

end

(b) With pre-caching: EXPANDpc

Figure 14.11: AES256: Expanding the Session Key

280

15 Approximate Cache Dependencies

Das eigentliche Problem ist es ja nur, die richtigen
Definitionen zu finden. Alles andere ist danach meist trivial.

(Joachim Cuntz (paraphrasiert) — Vorlesung Analysis III)

In the application of micro-architectural dependencies for simple data
caches in Chapter 14, the computation of micro-architectural depen-
dencies was practical for the two “constant time” AES256 implemen-
tations. But for the naive default AES256 implementation, the analysis
was impractical for even moderate cache sizes (Figure 14.1a). The rea-
son was that the size of the intermediate graph Gα appeared to grow
exponentially in the assumed cache size.

To alleviate this problem, in this section I develop an approxima-
tion to micro-architectural dependencies →µd specifically for a sim-
ple cache architecture with least recently used eviction strategy. Since
this approximation is best understood as an analogue of traditional
data dependencies →data in labeled control flow graphs, I first review
their definition in (Section 15.1). Then in Section 15.2, I introduce
local cache-cache dependencies, which are those dependencies analog
to the dependencies implicit in the def and use sets of standard data
dependence. In Section 15.3, I describe dependencies from macro-
architectural states to cache state (local state-cache dependencies). Then
in Section 15.4, I describe the cache state analogue of a standard data
dependence slice. Finally in Section 15.5, I show how this can be used
to obtain an approximation to micro-architectural dependencies →µd

for cache micro-architectures.

281

15 Approximate Cache Dependencies

15.1 Data Dependence

Intuitively, a node m in a labeled control flow graph G is directly
standard data dependent on a node n via variable x if a definition of
variable x at node n may reach a use of variable x at node m. In this
case, I write n x−→data m. Conversely, a use of x at node m is not
directly data dependent on a definition of x at node n if on all control
flow paths from n to m, this definition of x is “killed” by another
definition of x at some other intermediate node.

Data dependence is typically computed “value-insensitively”. If I un-
derstand the control flow graph to be an abstraction of all possible
executions of the represented program, then each control flow graph
node n abstractly represents all concrete configurations with control
state n, but otherwise arbitrary variable states σ (e.g.: arbitrary map-
pings σ : V →N, for some set of program variables V, and a domain
N of variable values). For standard data dependence, no attempts are
made to consider only those concrete states σ at n which are possible
in actual execution of the program, and no attempt is made to inter-
pret the expressions used to define variables.1 All that is considered
are the corresponding use and def sets at control flow edges.2

Under this abstraction, data dependence can then simply be computed
from the use and def sets by a standard (forward) data flow analysis.
There implicitly, at each control flow edge labeled with l that is leaving
a node n, every variable x ∈ def(l) is considered to locally depend on
every variable y ∈ def(l). This is an approximation, since, for exam-
ple, in the assignment x := a * 0, the variable x does semantically not
depend on a. Another example is the assignment x := a * b, in which
the local dependence of variable x on variable a as approximated by
def and use sets does not hold semantically in programs for which
σ(b) = 0 for all σ at node n.

1 For example, an assignment x := a * b is treated no differently than x := a + b.
2 For example: use(x := a * b) = use(x := a + b) = {a,b}, and

def(x := a * b) = {x}.

282

15.2 Local Cache-Cache Dependencies

15.2 Local Cache-Cache Dependencies

In order to obtain an approximation to micro-architectural dependen-
cies →µd for simple data cache micro-architectures, I use a new no-
tion of local cache-cache dependencies that can be thought of as an
analogue of the local dependencies implicit in def and use sets for
standard data dependence.

For reasonably precise results, I need for every control flow graph
node n an approximation of all possible cache states at n. Similar to
Section 13.6 earlier, a concrete cache state σµ for a data cache with
k cache lines is just a list of memory blocks with up to k entries.
The next-to-be-evicted memory appears at the end. For example,
[b5, b1, b7, b8] represents a cache with memory blocks bi ∈ B, and
block b8 the next to be evicted.

Abstract Caches

In this chapter, I use a cache abstraction similar to that from [Doy+15].
An abstract cache state σ#

µ is a mapping from memory blocks to a set
of possible positions in the concrete cache, i.e.: a mapping

σ#
µ : B→ 2K

where the set K = {0, . . . , k− 1} ∪ {∞} is comprised of natural num-
bers < k, and the symbol ∞ which indicates that a corresponding
memory block may be not in the cache. I write Σµ for the set of all
such mappings σ#

µ. A mapping from control flow graph nodes n to
abstract caches σ#

µ(n) such that σ#
µ(n) soundly approximates all con-

crete caches possible at n is then available by abstract interpretation of

control flow graph edges n l−→G m, and a forward data flow analysis.

283

15 Approximate Cache Dependencies

In an abstract cache state σ#
µ, the possible positions of two memory

blocks are not necessarily disjunct. For example, the abstract cache σ#
µ

with
b0 b1 b2

{0, 1} {0, 1} {1, 2, ∞}
indicates that memory block b0 is guaranteed to be in the cache, and
may be in the 0th or the 1st position in the concrete cache. The same
holds for b1, while memory block b2 is indicated to be either in the 1st
or 2nd position in the concrete cache, or not in the cache at all.

The set of all concrete caches represented by this abstract cache then
is

[b0, b1, b2], [b0, b1], [b1, b0, b2], [b1, b0]

Note that by the constraint that any concrete cache position cannot
contain two memory blocks, here the 0th and 1st position really must
contain either b0 or b2, but never b2.

In order to define notions of dependencies between memory blocks
in abstract cache states, I do not defer to this (“precise”) no-
tion of concretization. Instead I use an approximate notion I call
pseudo-concretization. The advantage is that with regard to pseudo-
concretizations, these dependencies can be computed efficiently (as
later described in Observation 15.2.1 and Observation 15.3.1).

By pseudo-concretization I mean the Cartesian product of the con-
cretization of each individual memory block, i.e., for each abstract
cache σ#

µ the set of functions

σpseudo : B→ K

that are compatible with σ#
µ:

σpseudo (b) ∈ σ#
µ (b)

284

15.2 Local Cache-Cache Dependencies

for every b ∈ B. For the previous example abstract cache σ#
µ, this set

is (with each row specifying one pseudo-concretization σpseudo):

b0 b1 b2

0 0 1
0 0 2
0 0 ∞
0 1 1

. . .
1 0 1

. . .
1 1 1

. . .

The LRU eviction strategy can be naturally extended to pseudo-
concretizations σpseudo, by assigning to each control flow graph label
l a function lµ that maps macro-architectural state σM and a pseudo-
cache state σpseudo to a successor pseudo-cache state σ′pseudo.

Local Cache-Cache Dependencies

When slicing w.r.t standard data dependence, due to the local depen-
dence of (for example) variable x on variable y in an assignment such
as x := y * 5, variable x “inherits” all dependencies of variable y. The
following definition formalizes a similar idea for caches.

Definition 15.2.1 (Local Cache-Cache Dependence). Let σ#
µ be an ab-

stract cache state, and l control flow graph edge label. Let b ∈ B be
any memory block, and b′ 6= b be a memory block that may be ac-
cessed by label l. Then I say that b is locally cache-cache dependent

285

15 Approximate Cache Dependencies

on b′ in σ#
µ via transition l if there exists pseudo-concretizations σ1

pseudo

and σ2
pseudo of σ#

µ and some macro-architectural state σM with

σ1
pseudo(b) 6= σ1

pseudo(b
′) and σ2

pseudo(b) 6= σ2
pseudo(b

′)

such that

(a) σ1
pseudo and σ2

pseudo coincide on all memory blocks except b′, and

(b) σ1′
pseudo(b) 6= σ2′

pseudo(b),

where
σ1′

pseudo = lµ
(

σM, σ1
pseudo

)
σ2′

pseudo = lµ
(

σM, σ2
pseudo

)
are the pseudo-concrete caches arising from transition along edge l.

In that case, I write
b′ l−→local[σ#

µ] b

For example, in the abstract cache σ#
µ

b b′ x
{1} {0, 2} {0, 2}

and a CFG edge labeled l = r := b’ for a variable b’ residing in

block b′, I do have b′ l−→local[σ#
µ] b. This is because in the (pseudo)-

concrete cache with b′ in position 0 and block x in position 2, the
transition along l does not change the cache state (of any block), while
in the pseudo-concrete cache with block b′ in position 2 and block x in
position 0, transition along l does change the cache state (specifically:
of block b, but also of block x), by putting b′ in position 0, and moving
block b from position 1 to position 2.

286

15.2 Local Cache-Cache Dependencies

On the other hand, in the abstract cache σ#
µ

b b′ . . .

{3} {0, 2} . . .

I do not have b′ l−→local[σ#
µ] b for this label l = r := b’.

I can equip the set K of abstract cache positions with an ordering ≤ by
defining a ≤ ∞ for all a ∈ K, and use the order ≤ on natural numbers
otherwise. With this, local cache-cache dependency can be simplified
as follows:

Observation 15.2.1. Let l, b, b′ and σ#
µ as in Definition 15.2.1. Let

b′min = mina∈σ#
µ(b′) a b′max = maxa∈σ#

µ(b′) a

Then

b′ l−→local[σ#
µ] b ⇐⇒ b′min < a < b′max for some a ∈ σ#

µ(b)

287

15 Approximate Cache Dependencies

15.3 Local State-Cache Dependence

Local cache-cache dependencies from the previous section capture
how dependencies from one memory block b′ transfer to dependen-
cies on other memory blocks b′. Now I formally define how depen-
dencies of memory blocks initially arise from choices due to macro-
architectural state.

These dependencies arise whenever at a labeled control flow graph

edge n l−→G m and an abstract cache state σ#
µ, the macro-architectural

state σM “chooses” which of multiple possible memory blocks b′ is ac-
cessed. The canonical example is an array access r2 := a[r1] at which
the value of register r1 chooses which one of those several memory
blocks over which the array a spans is actually accessed.3 If then the
resulting cache location of a memory block b depends on the choice
made by the macro-architectural state σM, I say that there is a local
state-cache dependence to b via l. The formal definition is:

Definition 15.3.1 (Local State-Cache Dependence). Let σ#
µ be an ab-

stract cache state, and l a control flow graph edge label. Let b ∈ B be
any memory block. For each macro-architectural state σM, let b′(σM)
be the memory block accessed during transition along l from σM. Let
B′ be the set of all such memory blocks b′.

Then I say that in the abstract cache state σ#
µ, block b is locally state-

cache dependent (on the macro-architectural state) via l if there ex-
ists a pseudo-concretization σpseudo of σ#

µ and two macro-architectural
states σ1

M and σ2
M relevant to b and σpseudo such that

σ1′
pseudo(b) 6= σ2′

pseudo(b)

3 For simplicity, I assume that “dynamically” (i.e.: in the concrete semantics), for
each label l at most one memory block is accessed. For example, I assume that
no assignment like r3 := a[r1] + b[r2] occur, but instead only assignments like
r3 := a[r1]; r3 := r3 + b[r2].

288

15.3 Local State-Cache Dependence

where
σ1′

pseudo = lµ
(

σ1
M, σpseudo

)
σ2′

pseudo = lµ
(

σ2
M, σpseudo

)
are the pseudo-concrete caches arising from transition along edge l

By σ1
M and σ2

M being relevant to b and σpseudo I mean that block b must
be accessed in the transition along l one of the macro-architectural
states σi

M, or

1. b′(σ1
M) = b or b′(σ2

M) = b, or

2. for both i ∈ {1, 2}

σpseudo(b′(σi
M)) = ∞ or σpseudo(b′(σi

M)) 6= σpseudo(b)

For local state-cache dependencies involving b, l and σ#
µ, I write

l−→choice[σ#
µ] b

and later also n l−→choice[σ#
µ] b if n l−→G m and σ#

µ appears at n.

Just as before for local cache-cache dependencies, local state-cache de-
pendencies for a memory block b are determined by the possible cache
positions of certain memory blocks b′:

Observation 15.3.1. Let l, b, B′ and σ#
µ as in Definition 15.3.1.

First, observe that if l never accesses any memory block b′, or accesses
the same memory block for every macro-architectural state σM, then b
does not depend on any choice (of memory block).

Let for all b′ ∈ B′:

b′min = mina∈σ#
µ(b′) a b′max = maxa∈σ#

µ(b′) a

289

15 Approximate Cache Dependencies

Then l−→choice[σ#
µ] b ⇐⇒

b1
min < a < b2

max for some a ∈ σ#
µ(b) and some b1, b2 ∈ B′ with b1 6= b2,

or b ∈ B′ and B′ is not a singleton set

290

15.4 Transitive Cache Dependencies

15.4 Transitive Cache Dependencies

Local state-cache dependence from Section 15.3 “creates” dependen-
cies of memory blocks on macro-architectural state, while local cache-
cache dependence from Section 15.2 describes how dependencies from
one memory block must be locally propagated to other memory
blocks.

From the following rules, I obtain for each control flow graph node
m and each memory block b at node m the set of all other nodes n
on which b depends, in the sense that the macro-architectural state
at node n may (transitively) influence the position of block b in the
cache at node m. The resulting relation →cache can be considered an
analogue of the transitive closure of standard data dependence →data.

Definition 15.4.1. For every control flow graph node n, let σ#
µ(n) be a

sound approximation of all concrete cache states at n.4

A dependency of some memory block b is said to be killed in some
abstract cache state σ#

µ if σ#
µ(b) is a singleton.

I write→cache for the least solution→ of the rule system

n l−→G m n l−→choice[σ#
µ(n)] b

n→ (m, b)
CHOICE

n→ (m, b) m l−→G m′ σ#
µ(m

′)(b) is not a singleton

n→ (m′, b)
TRANS

n→ (m, b′)

m l−→G m′ b′ l−→local[σ#
µ(m)] b σ#

µ(m
′)(b) is not a singleton

n→ (m′, b)
LOCAL

4 This is easily obtained by in standard data flow framework, by an abstract interpre-
tation of the micro-architectural semantics for control flow graph edge labels l.

291

15 Approximate Cache Dependencies

Then for memory block b and control flow graph nodes m and n, I say
that at m, memory block b depends on n if

n→cache (m, b)

292

15.5 Approximate Cache Dependencies

15.5 Approximate Cache Dependencies

I want to use transitive cache dependencies n →cache (m, b) to ob-
tain an approximation of micro-architectural dependencies as defined
in Chapter 13. Transitive cache dependencies n →cache (m, b) cap-
ture dependencies arising from macro-architectural choices at array
accesses like r2 := a[r1], but they do not capture influence arising
from macro-architectural choices at conditional control flow graph
nodes. In order to obtain a sound approximation, I hence need to
respect (nontermination insensitive) control dependencies.

Definition 15.5.1. Let σ#
µ be an abstract cache state, and l control flow

graph edge label. Let b ∈ B be any memory block. Then I say that b
may be modified in σ#

µ by transition l if b may be accessed by label l, or
if there exists a memory block b′ that may be accessed by label l, and
some cache positions

a ∈ σ#
µ(b) and

a′ ∈ σ#
µ(b′)

with a < a′.

In that case, I write

l−→mod[σ#
µ] b

and also n l−→mod[σ#
µ] b if n l−→G m and σ#

µ appears at n.

Definition 15.5.2. Let n, m be two nodes in control flow graph G. Let
B be the set of cache lines b that may be accessed along control flow

graph edges m l−→G m′ such that in σ#
µ(n), cache line b is not either

guaranteed to be in the cache, or guaranteed to be not in the cache,
i.e.:

¬
(

∞ /∈ σ#
µ(n)(b) ∨ σ#

µ(n)(b) = {∞}
)

293

15 Approximate Cache Dependencies

and write
Gm = G→

∗m
m 6→

Then I say that m is approximately cache micro-architecture depen-
dent on n, and write n→#

µd m, if

n ∈ (→Gm
nticd)

∗ (N′) for N′ = { n′ | n′ →cache (m, b), b ∈ B }
or n ∈ (→Gm

nticd)
∗ (N′) \ N′ for N′ = { n′ | n′ l−→mod[σ#

µ(n′)] b, b ∈ B }

Remark 15.5.1. Note that since (micro-architectural) cache state can de-
pend on macro-architectural choices, but macro-architectural choices
cannot depend on cache-state, I need not consider an iterated slice

(→Gm

nticd ∪ →cache)
∗ (m)

or similar.

Approximate cache micro-architecture dependency really is a sound
approximation of micro-architecture dependence for cache micro-
architectures:

Observation 15.5.1.

n→µd m =⇒ n→#
µd m

294

15.6 Improving the Precision

15.6 Improving the Precision

By rule TRANS for the computation of transitive cache dependencies
→cache in the previous section, a dependency n → (m, b) is only ever

“killed” along a control flow graph edge m l−→G m′ if the approxima-
tion σ#

µ(m′)(b) is a singleton set. But consider the following program,
assuming that the array a spans 4 memory blocks, and also assume
a cache size of k = 4.

ra1 := a[r1]; rx := x; ry := y; ra2 := a[r2]; ru := u; rv := v;

Assume that scalar variables u,v,x,y reside in distinct memory blocks.
Then the choice5 at the first access ra1 := a[r1]; to array a cannot
possibly influence the position of any memory block corresponding to
array a at the end of the program: Due to the accesses to the four
scalar variables, the first choice is followed by four memory accesses
to distinct memory blocks. Hence for a cache of size 4, the first choice
must have been “evicted” by the end of the program. Only the sec-
ond choice at ra2 := a[r2]; impacts the position of memory blocks
corresponding to array a at the end of the program.

But the approximations σ#
µ(m)(a) of memory blocks a in the span

of array a are never a singleton in between the first choice and the
end of the program. Hence by the rules from the previous section, the
dependency from the first choice is never killed.

In my prototype implementation, in order to obtain more precise
transitive cache dependencies, I track for each dependency its “age”,
and then kill dependencies after traversal of control flow graph edges

m l−→G m′ not only if the approximation of b at m′ is a singleton, but
also if since it’s creation, the dependency must have been evicted by k
accesses to other memory blocks that each must have pushed block b
towards the back of the cache. Observation 15.5.1 still holds.

5 due to the value of r1

295

15 Approximate Cache Dependencies

15.7 Approximation in AES256 Implementations

In order to evaluate the loss of precision in the approximation Obser-
vation 15.5.1, I applied it to the three AES256 implementations from
Chapter 14. The results are shown in Figure 15.1, 15.2 and 15.3.

As expected for the “naive” default Implementation, the approxima-
tion can report possible timing channels not only for cache sizes up to
10 cache lines, also for much bigger assumed cache sizes. The more
precise analysis previously (in Figure 14.1 on page 271) could not be
run for cache sizes bigger than 10 cache lines.

For the pre-caching implementation, the approximate analysis can
proof absence of timing channels only for 10, 14 or more cache lines.
The more precise analysis could show this also for 8 and 12 lines.

For the implementation with constant time “S-Box” computation, the
approximate analysis can proof absence of timing channels for all as-
sumed cache sizes.

The running time and memory requirements for all analysis runs were
negligible for small cache sizes, but become more significant for high
number of cache lines in the implementation with constant time “S-
Box” computation (Figure 15.3).

296

15.7 Approximation in AES256 Implementations

c.l.
∣∣µ# d

∣∣ |S| time (s) memory (kb) passed
2 29 695 1 34 812 %

4 126 695 1 33 780 %

6 558 695 1 38 964 %

8 639 695 1 40 936 %

10 617 695 1 35 836 %

12 529 695 1 38 908 %

14 507 695 1 42 928 %

16 557 695 1 68 588 %

18 557 695 1 80 824 %

20 557 695 1 76 776 %

22 311 695 1 75 764 %

24 311 695 1 75 744 %

26 311 695 1 76 780 %

28 311 695 1 75 772 %

30 311 695 1 94 152 %

32 311 695 1 90 108 %

. . .
100 251 695 1 97 224 %

200 251 695 1 96 152 %

500 251 695 2 94 256 %

1000 251 695 2 95 176 %

2000 251 695 3 90 052 %

Figure 15.1: Default AES265 Implementation

297

15 Approximate Cache Dependencies

c.l.
∣∣µ# d

∣∣ |S| time (s) memory (kb) passed
2 63 703 1 37 864 %

4 219 717 1 40 916 %

6 292 717 1 39 956 %

8 175 705 1 38 856 %

10 260 73 1 40 928 X

12 337 432 1 38 560 %

14 304 79 1 41 956 X

16 296 79 1 46 020 X

18 316 83 1 42 924 X

20 316 83 1 48 008 X

22 32 40 1 44 004 X

24 32 40 1 50 132 X

26 32 40 1 44 156 X

28 32 40 1 42 912 X

30 32 40 1 48 012 X

32 32 40 1 47 020 X

. . .
100 32 40 1 51 180 X

200 32 40 1 51 000 X

500 32 40 1 51 232 X

1000 32 40 1 50 996 X

2000 32 40 1 50 140 X

Figure 15.2: With pre-caching. Imprecision is highlighted.

298

15.7 Approximation in AES256 Implementations

c.l.
∣∣µ# d

∣∣ |S| time (s) memory (kb) passed
2 17 52 3 206 760 X

4 77 60 3 205 764 X

6 260 67 3 230 316 X

8 222 65 3 290 620 X

10 208 64 3 254 976 X

12 208 64 3 267 264 X

14 206 63 3 226 104 X

16 176 60 3 256 996 X

18 176 60 3 272 384 X

20 162 59 3 241 628 X

22 148 58 3 247 804 X

24 148 58 4 297 940 X

26 148 58 4 289 680 X

28 148 58 4 248 796 X

30 148 58 4 249 816 X

32 148 58 4 269 252 X

. . .
100 148 58 15 1 995 740 X

200 157 57 47 5 969 956 X

500 157 57 103 5 969 836 X

1000 157 57 194 5 962 748 X

2000 157 57 376 5 962 720 X

Figure 15.3: Constant Time S-Box

299

15 Approximate Cache Dependencies

15.8 Related Work

Both the generic micro-architectural dependencies from Chapter 13,
as well as (LRU data-cache specific) approximate cache dependencies
from this chapter extend standard dependency graphs to realize a tim-
ing sensitive static information flow analysis sensitive to timing ef-
fects due to the (modeled) CPU micro-architecture. To the best of my
knowledge, these two are the first such analyses based on dependency
graphs.

The perhaps best-known static analysis for cache based timing chan-
nels is the CacheAudit system[Doy+15]. Based on approach of counting
the set of possible observations (e.g., [KRB09]), CacheAudit also allows
for the quantification of information leaks. With respect to timing leaks,
CacheAudit counts the number of different possible execution times in
a sound approximation of all possible execution paths. This approxi-
mation relies on a sound approximation not only of the possible cache
state, but also of macro-architectural (e.g., heap and register) state. In
order to obtain useful approximations of the possible execution times
in all possible execution paths, the analysis must be able to statically
bound the number of executions of each loop. In contrast, neither my
generic micro-architectural dependencies, nor my approximate cache
dependencies requires such a bound6. Two principal advantages of
CacheAudit over my approaches is a) that it provided a quantification
of information leakage for insecure program, and b) it can quantify
information leakage not only for timing based attackers (i.e.: those
who observe the total execution time), but also access based attackers
(who monitor the access time of individual statements in their own pro-
grams running in parallel to the attacked program, in a shared cache
environment), and trace based attackers who can monitor the sequence
of cache hit and miss events. On the other hand, my approach pro-
vides not a quantification, but an explanation of timing leaks, in form

6 Arguably, this is not a crucial advantage of my approach, since in the most relevant
class of programs, i.e.: implementation of cryptographic programs, such bounds can
usually be inferred or provided

300

15.8 Related Work

of the involved micro-architectural dependencies (as well as standard
control- and data-dependencies). In Chapter 14, I used these depen-
dencies to derive a pre-caching AES256 implementation that did not
require all involved memory blocks to be in the data cache at all times,
but instead also works (i.e.: is without timing leaks) for smaller data
cache sizes.

Aside from a LRU caches, the CacheAudit system also implements
FIFO and pseudo-LRU replacement strategies. These also immediately
fall into my generic micro-architectural framework, but would require
new analogues of Observation 15.3.1 and Observation 15.2.1 for ap-
proximate cache dependencies.

Other approaches to static timing sensitive information flow analy-
sis sensitive to cache effects are based on product programs result-
ing from self-composition (e.g., [Alm+16]), or symbolic execution
([Cha+19; Bro+19]). A short bibliography to approaches not based
on static program analysis can be found, e.g, in [Doy+15], chapter 8.

Summary

• Micro-architectural dependencies for simple data cache
micro-architectures can be approximated by an analogue
of data dependencies.

• The approximation is reasonably precise, and allows for
the analysis of large modeled cache sizes.

301

16 Timing Sensitivity in Concurrent
Programs

Never tell me the odds!

(Han Solo — Star Wars)

In [Gif12] and [GS15], the authors present dependency graph based
algorithms for static information flow control in concurrent programs.
The underlying security criterion is Low Security Observational De-
terminism, which requires any two executions to be completely indis-
tinguishable by a “low” observer (who can only observe execution of
certain “low” program points).

For many applications, this criterion is prohibitively strict, since even
most simple programs without any secret input at all do not fulfill it.
Consider the programs in Figure 16.1. Statements printl indicate (ob-
servable) output on a low channel l. The program on the left can
have the observable trace [42, 17] or [17, 42] and hence is LSOD only
if one assumes a deterministic scheduler, and not LSOD otherwise.
The program on the right is not LSOD even for (some) deterministic
schedulers (assume, for example, a round-robin scheduler).

The static checks in [Gif12] and [GS15] — if they succeed — guar-
antee LSOD for any scheduler. The authors also give static checks
for a Relaxed notion of LSOD. Both notions imply Probabilistic
Noninterference.

In [Bre+16] and [Bis+18b], we improved on both these static checks.
There, we assume the scheduler to be

1. program-state independent, i.e.: a scheduling decision does not
depend on, e.g., the state of variables, or the program counter of
the threads to be scheduled.

2. stateless, i.e.: there is no other (scheduler-internal) state on
which scheduling decision may depend

303

16 Timing Sensitivity in Concurrent Programs

1 void main():
2 fork thread_1();
3 fork thread_2();
4 void thread_1():
5 printl(42);
6 void thread_2():
7 printl(17);

1 void main():
2 l := readl;
3 fork thread_1();
4 fork thread_2();
5 void thread_1():
6 if (l < 10) {skip; skip; skip}
7 printl(42);
8 void thread_2():
9 if (l >= 10) {skip; skip; skip}

10 printl(17);

Figure 16.1: Some Programs

3. probabilistic, in the sense that a scheduling decision may be ran-
dom, with some underlying distribution.

We called such schedulers probabilistic. The canonical probabilistic
scheduler is the uniform scheduler, which chooses one of the current n
threads, each with probability 1/n. Other probabilistic schedulers are
possible. For example, given a static assignment of priority to (classes
of) threads, a probabilistic scheduler may (after normalization) chose
a given thread with probability pi, where pi is the probability of the
class which the ith thread belongs to. All empirical results in this
chapter are based on the uniform scheduler.

In this chapter, after reviewing probabilistic non-interference (Sec-
tion 16.1) and a short general discussion of timing leaks (Section 16.2),
I first review in Section 16.3 the improved relaxed LSOD criterion as
described in [Bis+18b]. That section also includes formal definition of
all auxiliary notions required in this chapter.

Then in Section 16.4, I describe the statistical test I used to empirically
validate all of this chapters criteria for probabilistic noninterference. In
Section 16.5, I explain how the criterion from Section 16.3 can be “less
precise” than even Giffhorns original LSOD criterion from [Gif12] and
[GS15].

Finally in Section 16.6, I propose a new criterion for probabilistic non-
interference, based on timing dependence→td as defined in Section 10.1.

304

16.1 Probabilistic Noninterference

16.1 Probabilistic Noninterference

Probabilistic Noninterference is based on the probability Pi (t) of a
given trace t to occur under input i to the given program. Given an
otherwise deterministic program semantic, this probability is deter-
mined by the probabilistic scheduler. I sidestep any issues of actual
existence of such a probability measure for a given program by simply
demanding that for any given program, there exists a maximal length
k ∈ N such that for any input i, any trace t for input i is at most of
length k. This will coincide with my empirical observations, which
will be based on programs in a (concurrent) For language, i.e.: a lan-
guage in which all loops will execute a number of times fixed at the
beginning of the loop.1 A less clumsy treatment of this issue can be
found in [Bis+18a].

For a fixed probabilistic scheduler, a given program, and any input i
to this program, let Pi be the corresponding probability measure. Let
T (i) be the set of possible traces for input i. Assume then a relation
∼L on traces t, such that t ∼L t′ if t, t′ are deemed (low)-observational
equivalent, and write [t]L for the equivalence class of t. Assume a
similar relation ∼L on inputs.

Definition 16.1.1 (Definition 6, [Bis+18b]). Let i, i′ be inputs; let Θ =
T(i) ∪ T(i′). Probabilistic Noninterference holds iff

i ∼L i′ =⇒ ∀t ∈ Θ. Pi([t]L) = Pi′([t]L)

Remark 16.1.1. Requiring all traces of a program to be of maximal size
k also sidesteps any issues of finding an appropriate relation t ∼L t′.
For example, in [GS15] and [Bis+18b], its definition is non-trivial in
order to account for differences of two traces due to infinite delay. Also
remember my development of a related notion in Section 6.6.

1 i.e.: the language allows statements like For h C, which executes h iterations of C,
where h is the value of the variable h upon reaching the statement. In a concur-
rent setting, such statements are implemented using a fresh thread instance local loop
counter variable.

305

16 Timing Sensitivity in Concurrent Programs

16.2 Observability of Internal Timing Leaks

All criteria in [Gif12; GS15; Bre+16] and [Bis+18b] assume a (exter-
nally!) timing insensitive notion of observation. For example, in the
program on the left of Figure 16.1, the observer is assumed to really
observe either [42, 17] or [17, 42]. He is assumed to not, for example,
observe timed traces such as [42�[3], 17�[4]] or [17�[3], 42�[4]].

Similarly in the program on the right of Figure 16.1. Assume, for a
moment, that the read l := readl in line 2 was not from a L (public)
channel, but from H (secret) channel. Note that here, if the observer
did observe timed traces, he might easily conclude from observing,
e.g, [42�[4], 17�[10]] that l < 10 must not have been true, since in
executions in which l < 10 does hold, 42 can not be observed at time
4, but only as early as time 7 (assuming a simple timing model that
takes one unit of time to evaluate each expression and statement). He
would be able to directly observe an external timing leak.

But also when observing the untimed traces [42, 17], an observer will
(tentatively2) infer that l < 10 was less likely to have held than not,
since in the class of executions in which l < 10, the observation [17, 42]
is significantly more likely than the observation [42, 17], while in the
class of executions in which not l < 10, the observation [17, 42] is sig-
nificantly less likely than the observation [42, 17].

Here, the delay of printl(42) due to l < 10 caused an internal tim-
ing leak, made visible to the server by the concurrent execution of
printl(42) and printl(17). The statement printl(17) was also delayed
(due to l >= 10), but the program would still have not been probabilis-
tically noninterferent even without line this delay in 9.

In this chapter, I too assume a (externally!) timing insensitive notion
of observation. But as I have just shown, I still have to be sensitive

2 The observer would gain even more confidence in his conclusion that l < 10, if it
possible for him to observe multiple executions of this program (with input a priori
unknown to him, but known to him to be constant).

306

16.2 Observability of Internal Timing Leaks

to internal timing, since this concurrency can make this visible even to
timing-insensitive observers.

307

16 Timing Sensitivity in Concurrent Programs

16.3 The RLSOD Criterion

In this section, I review the (improved) relaxed LSOD criterion from
[Bis+18b]. There, we also described its derivation from the criteria in
[GS15], which I do not repeat here.

In addition to control- and data-dependence, the criterion is based on
the following new notions required in concurrent programs:

1. The May Happen in Parallel relation m1 MHP m2.

2. Inter-Thread dependencies n x−→inter m, a form of concurrent data
dependencies (along variable x), based on either MHP, or a May
Happen in Before relation MHB.

3. The common dynamic ancestor cda (m1, m2) of two nodes.

The May Happen in Parallel Relation

Consider a deterministic labeled control flow graph G = (N, E) with

labels l as in Section 13.2, together with a binary relation
spawn−−−→ on

N of spawn edges. For simplicity, assume G to consist of a numbered
set of disconnected parts called threads, and each jth thread with an
(entry) node nj, i.e. a node nj such that all nodes m in thread j are
reachable from nj, but with no G-predecessors. Also assume that G
consists of trivial control sinks only3, and assume that spawn-edges

n
spawn−−−→ m only enter entry nodes m = nj for some thread (number) j.

I call the 0th thread with entry node n0 the main thread.

Aside from the global variable state σ and thread instance local variable
state σι, I also assume a global state i for input-channels. Labels a ∈
A then also include operations that operate on input- and output-
channels. For example: labels for read statements that consume from

3 such that →G
nticd alone is an appropriate notion of control-dependence, and →ntiod is

not needed

308

16.3 The RLSOD Criterion

i the next value available at some channel (yielding i′), and labels for
print statements.

The single-threaded small step semantics then is

n a−→G m (σ′, σ′ι , i′) = aM (σ, σι, i)

(n, σ, σι, i) a−→
(
m, σ′, σ′ι , i′

) State

n
g−→G m gM (σ, σι) = true

(n, σ, σι, i)
g−→ (m, σ, σι, i)

Guard

while the full concurrent semantics then is

(nι, σ, σι, i) l−→
(
mι, σ′, σ′ι , i′

)
([(n1, σ1), ...,(nι, σι), (nι+1, σι+1),..., (nk, σk)], σ, i)

ι,l−→([(n1, σ1), ...,(mι, σ′ι),(n
′
1, ε), ..., (n′K, ε),(nι+1, σι+1),..., (nk, σk)], σ′, i′)

where n′1, . . . , n′K are the nodes n′j such that nι
spawn−−−→ n′j, and ε is some

fixed initial thread-instance local state.

A configuration κ = ([(n1, σ1), . . . , (nk, σk)], σ) is said to be at n if
n = nι for some ι. A configuration may contain multiple instances of a
thread j, i.e.: multiple nodes nι such that nι is in the jth disconnected
part of G.

Given an initial state σ0 and input i0, a node n may happen in parallel
to node m if there is a sequence(

[n0], σ0, i0
)
−→ −→ ([(n1, σ1), . . . , (nk, σ1)], σ, i)

such that n = nι, m = nι′ with ι 6= ι′. This notion is symmetric.

309

16 Timing Sensitivity in Concurrent Programs

I assume some sound, symmetric approximation MHP of this notion,
i.e. a symmetric relation MHP such that if n may happen in parallel m,
then n MHP m.

Remark 16.3.1. Lacking a notion of procedures, this notion of MHP is
(vacuously) not calling-context sensitive. It is also not thread-context
sensitive, i.e.: it does not differentiate between two occurrences of a
single node n in some configuration κ based on the sequences of spawn
nodes used to insert these occurrences into κ. This information would
be readily available at configurations if my semantics was based, for
example, on execution trees[Gaw+11]. It can also be approximated by
thread invocation analysis[Gif12].

Also, if I used execution trees, I could define a more refined may con-
currently happen before relation. Intuitively, a node n may concurrently
happen before m if a configuration at n may happen before a configura-
tion at m, with m occurring in a “different” thread instance than that of
the occurrence of n, unless the thread instance of m was (transitively)
spawned by the thread instance of n (and after n).

This is difficult to define in my semantics. I don’t want do consider
a node n to concurrently happen before m only because in some se-
quence is first at n and then at m, because this may also be the case
simply because m follows n in a single thread instance.

But note that since my semantics lacks any form of synchronization, my
may happen in parallel notion approximates a proper may concurrently
happen before notion, since if n may concurrently happen before m, then
certainly also n may happen in parallel to node m. Just consider the
execution sequence in which the thread instance of n remains at n,
and only nodes from other thread instances are chosen to proceed,
until m is reached from these other thread instances.

Inter-Thread Dependence

Intuitively, the value of a variable x defined at node n may be read
at a node m in a thread instance different than that of n, if n may

310

16.3 The RLSOD Criterion

concurrently happen before m. As just argued, I can substitute may
concurrently happen before by may happen in parallel, and use its static
approximation MHP.

Definition 16.3.1. For nodes n, m,

n x−→inter m ⇐⇒ x ∈ def (n) ∩ use (m) and n MHP m
and n −→inter m ⇐⇒ ∃x.n x−→inter m

Inter-thread dependence n x−→inter m does not account for the flow of
data from a definition at node n to those nodes m that are (transitively)
spawned from the thread instance in which n occured. An example
is the definition l := readl; of variable l in the right hand side of
Figure 16.1 in line 2, to its use if (l < 10) in line 6.

In order to account for such flows, I need — in this chapter — standard

data dependence→data to include flow along spawn-edges
spawn−−−→, i.e.:

for G = (N, E), I use the data dependence relation for

Gspawn :=
(

N, E∪ spawn−−−→
)

In the standard data-flow framework used to compute →dataGspawn
,

then, definitions flow along edges n
spawn−−−→ m unmodified (i.e.: the

transformer is the identity function).

Remark 16.3.2. Inter-Thread dependence n x−→inter m is called interfer-
ence dependence in [Kri98] and [Gif12].

Common Dynamic Ancestors

In [Bre+16] and [Bis+18b], we introduced the notion of common
dynamic ancestors of two nodes m1, m2. A motivating example is
shown in Figure 16.2.

Here — somewhat similar to Figure 16.1 (right) — the observ-
able statements printl(17) and printl(42) are delayed by the loop

311

16 Timing Sensitivity in Concurrent Programs

1 void main():
2 h := readh;
3 for h { skip; }
4 skip;
5 fork thread_1();
6 fork thread_2();
7 void thread_1():
8 printl(42);
9 void thread_2():

10 printl(17);

Figure 16.2: The need for common dynamic ancestors

for h { skip; } at line 3, which executes h skip statements. A (ex-
ternally) timing sensitive observer would learn the input to h by the
execution time of the print statements.

What its not similar to Figure 16.1 (right) is that here in Figure 16.2,
both printl(17) and printl(42) are delayed by the same amount of time.
A (externally) timing insensitive observer will observe either [42, 17]
or [17, 42], but neither observation will allow him to infer anything
about the secret input value h. Even by repeatedly observing execu-
tions of this program, he will observe [42, 17] roughly 2/3 of the time4,
and [17, 42] roughly 1/3 of the time, independent of the value of h. In
fact, after the delay at line 3, any execution of this program must
first pass the skip statement at line 4 before reaching any of the two
print statements that otherwise could have made the delay visible ex-
ternally. The skip statement is a common dynamic ancestor of the two
print statements.

Definition 16.3.2 (Common dynamic ancestor, [Bis+18b]). Let n, m, c ∈
N be nodes in G = (N, E), and n0 the entry node of the main thread.

Remember that Gspawn is the graph G together with
spawn−−−→ edges.

4 since thread_1 is forked first

312

16.3 The RLSOD Criterion

1. c is a common dominator for m1, m2, written c wCDOM (m1, m2),
if c dominates both m1 and m2 in Gspawn, i.e.: if

c wGspawn

DOM m1 and c wGspawn

DOM m2

2. c is a common dynamic ancestor for m1, m2, written c wCDA
(m1, m2), if

c wCDOM (m1, m2)

and neither c MHP m1

nor c MHP m2

3. If c wCDA (m1, m2) and ∀c′ wCDA (m1, m2) . c′ wGspawn

DOM c, then c
is called an immediate common dynamic ancestor. I then write
c = icda (m1, m2).

Classification

Based on these three notions specific for concurrent programs, and ex-
isting notions of program dependence, in [Bis+18b] we then defined
an improved, relaxed LSOD criterion for probabilistic noninterference.
In the context of this chapter, I define the concurrent program depen-
dence graph to be

→cpdg = →G′
nticd ∪ →dataGspawn ∪ −→inter ∪

spawn−−−→

Here, I treat spawn edges m
spawn−−−→ m′ as dependencies in order to

propagate control-dependencies n →G
nticd m from m to m′, since if m

is control-dependent on n, then n also decides whether the thread
starting in m′ executes. In order to make sure that in fact then all
nodes in the thread starting in m′ are dependent on n, I compute
control dependence not in the graph G, but in the graph G′ obtained

313

16 Timing Sensitivity in Concurrent Programs

from G by adding an edge from each start node nj of the jth thread to
each exit node in thread j.

Then, given some information flow lattice L, we defined the classifica-
tion of nodes in G with regard to the (user provided) information flow
specification ucl (the “user classification”) to be the least solution of
the rule system RLSOD, as follows:

Definition 16.3.3.

m ∈ I
cl (m) w ucl (m)

INPUT
n→cpdg m

cl (m) w cl (n)
CPDG

m1 MHP m2
c = icda (m1, m2) c→∗Gspawn n →∗Gspawn mi i ∈ {1, 2}

cl (mi) w cl (n)
CDA

The specification ucl is given as a partial map from nodes to L. The
domain of ucl is assumed to be partitioned into sets of input nodes I
and of output nodes O. Nodes m in the domain of ucl are specified
to be observable at all levels l w ucl (m). Specifically for the lattice
L2 = L @ H, nodes m with ucl (m) = L are observable at all levels,
while nodes m with ucl (m) = H are observable only at level H.

A program is then deemed secure at level l ∈ L by the RLSOD criterion
(with respect to the specification ucl) if it admits the criterion rule

m ∈ I ∪O ucl (m) v l
cl (m) v l

RLSOD

Remark 16.3.3. If in the rule system RLSOD we instead use the subset-
lattice on nodes N and the specification uclN (m) = {m}, then for each
m the solution cl (m) is a form of backward slice of m.

314

16.3 The RLSOD Criterion

16.3.1Observations

In order to connect judgments of the rule RLSOD to probabilistic non-
interference, I need make concrete the notion ∼L of equivalence of
traces, and the notion i ∼L i′ of equivalence of inputs.

Here, an input i is a map from a fixed set of input-channels cI to
streams of values. I also assume a fixed set of output-channels cO.

I extend specifications ucl to channels, i.e.: I demand that ucl maps
all input-channels cI and all output-channels cO to some security level
l ∈ L.

Two inputs l, l′ then are l-equivalent, and I write i ∼l i′ iff i and i′

coincide on input-channels classified v l, i.e. iff

i
(

cI
)

= i′
(

cI
)

for all input-channels cI such that ucl
(
cI) = l′ for some l′ v l.

In need to define observations on execution-traces t, i.e.: observations
of sequences

. . . −→ ([. . . , (nι, σι), . . .], σ, i) ι,λ−→
(
[. . . , (n′ι , σ′ι), . . .], σ′, i′

)
−→ . . .

in the full concurrent semantics. I demand that the specification ucl
for nodes is undefined for nodes n,5 unless n has an outgoing control

flow graph edge n λ−→ m with λ being either an input-statement or an
output-statement, i.e. a label of the form:

x := readcI; on channel c = cI with def (λ) = {x}, use (λ) = ∅
or printcO(x); on channel c = cO with def (λ) = ∅, use (λ) = {x}

In this case, I demand ucl (n) = ucl (c).

5 i.e.: n is unobservable for any observer

315

16 Timing Sensitivity in Concurrent Programs

The l-observable subtrace tl of t then is the sequence

. . . −→ (σuse, nι, λ, σ′def) −→ . . .

containing only those configurations for which ucl (nι) v l. Here, σuse
and σ′def are suitable projections of (σι, σ) to any variables use (λ)
printed via label λ, and of (σ′ι , σ′) to the set def (l) of any variables
read from input i via label λ, respectively.

Writing t ∼l t′ whenever tl = t′l , we showed in [Bis+18b] that program
deemed secure with respect to a specification ucl are probabilistically
noninterferent.

Theorem 16.3.1 (Corollary 1 in [Bis+18b]). Let G be a program’s la-
beled control flow graph, and ucl a specification G in the security
lattice L = L @ H. Then if the least solution cl of rule system RLSOD
admits the rule RLSOD, probabilistic noninterference holds for G.

Consider again the program on the left of Figure 16.1. It is not low-
security observational deterministic, but it is probabilistically nonin-
terferent at level L. This is trivially so, since there is no node classified
H. The same holds for the program on the right of Figure 16.1.

For Figure 16.2, the immediate common ancestor of the two print
statements is the skip statement in line 4. But no node between this
statement and the print statements is (transitively) dependent on the
H input in line 2. Hence the program passes the RLSOD criterion, and
is probabilistically noninterferent.

316

16.4 A Statistical Test for Probabilistic Noninterference

16.4 A Statistical Test for Probabilistic
Noninterference

In order to facilitate the development of improvements to the RLSOD
classification rules, I implemented an ad hoc statistical test for proba-
bilistic noninterference. It consists of

1. A random program generator for a minimal concurrent lan-
guage For.

2. A compiler from For abstract syntax trees into control flow

graphs G and spawn edges
spawn−−−→.

3. An ad hoc statistical test that for two given inputs i, i′ attempts
to determine whether i, i′ form a counter-example to the sup-
position that G is probabilistically noninterferent, by repeatedly
executing G under inputs i and i′ until such a determination can
be made with confidence.

The language of For statements is made up from

• bounded integer valued program variables, which are either
global or thread local, and have names in Var

• arithmetic expressions EArithmetic (over program variables)
EBoolean (over arithmetic expressions), with integer constants
from Int.

• (static) thread identifiers T, with a designated main thread main.

Statements For n c implement loops with constant number of iter-
ations, while the number of iterations of statements For x c is de-
termined by the value of variable x immediately before the loop-
statements execution. A For-program P then is a map P : T → For
from thread identifiers to For-commands.

The compiler from For-programs P to labeled control flow graphs im-
plements a immediate, non-optimizing, syntax-tree directed transla-

317

16 Timing Sensitivity in Concurrent Programs

tion. Loops For n c and For x c are both implemented as control
flow graph cycles, using fresh thread-local variables as loop counters.

The interpreter for control flow graphs is a direct implementation of
the concurrent semantic from Section 16.3.

Given a labeled control flow graph G (obtained from a For-program)
and two L-equivalent inputs i, i′, the ad hoc statistical tests must de-
termine (with high confidence) whether inputs i, i′ are a counterexam-
ple to the supposition that probabilistic noninterference holds for this
program, i.e. whether or not it holds that

∀t ∈ Θ. Pi([t]L) = Pi′([t]L) (16.1)

for the set Θ = T(i) ∪ T(i′) of traces possible under i, i′.

In order to be applicable to automated tests of (many) randomly gen-
erated programs, the statistical test must be two-sided. By this I mean
that, given a set of n ∈ N randomly sampled executions of the pro-
gram under input i, as well as a set of n randomly sampled executions
of the program under input i′, the test would ideally

1. Determine (with high confidence) that Equation 16.1 holds, i.e.:
reject the null hypothesis

H 6=0 : Pi 6= Pi′

2. or determine (with high confidence) that Equation 16.1 does not
hold, i.e.: reject the null hypothesis

H=
0 : Pi = Pi′

3. or, if it can do neither, “request” more samples (i.e.: more execu-
tions of the program under both i and i′) until it can.

But for principal reasons, I cannot expect a statistical test to ever reject
H 6=0 , even if I observe minimal (or even no) differences in the observed

318

16.4 A Statistical Test for Probabilistic Noninterference

empirical distributions P̂i and P̂i′ , because such an observation can al-
ways also be explained equally well by two actual underlying distribu-
tions Pi and Pi′ that do differ, but only by some infinitesimal amount
ε > 0. A nonsignificant difference must not be confused with significant
homogeneity[Wel10]. Hence all I can hope to do is to reject a modified
null-hypothesis

1. H≥ε
0 : Pi differs from Pi′ by at least ε, in some metric

Remark 16.4.1. Although presumably possible, I did not use a modified
dual null hypothesis in the second test, i.e.: I did not need to replace
the null-hypothesis H=

0 by some null-hypothesis

2. H<ε
0 : Pi differs from Pi′ by less than ε, in some metric

In theory, keeping H=
0 has the disadvantage that together with H≥ε

0 , it
“logically consistent” to simultaneously reject H=

0 and H≥ε
0 . In practice,

this rarely a problem if I choose a very small epsilon, and require very
high confidence (1− α).

I treat Pi (and similarly: Pi′) as a multinomial distribution over all possi-
ble observations of the program under inputs i, i′ (i.e: over all possible
equivalence classes [t]L ∈ Θ/∼L), represented by a vector

Pi = (pi,1 , . . . , pi,j , . . .)

with ∑j pi,j = 1, and pi,j being the probability of the jth equivalence
class [t]L of L-equivalent traces6 under input i.

The standard approach to reject H=
0 in this setting is (some variant

of) Pearson’s Chi-square test. In my setting, however, this test is in-
appropriate, because it requires a “large” number of observations in
each bin, i.e.: for each j, it requires a large number of observations of
the jth equivalence class of traces in the empirical observation P̂i. In
particular, the often cited requirement of “at least five” observations
each is not met for many programs. Also, the “number of bins”, i.e.:

6 in a fixed, but arbitrary ordering of these equivalence classes

319

16 Timing Sensitivity in Concurrent Programs

the number |Θ/∼L| of different possible L-observations are usually
high. Hence instead of a Chi-square test, I use a recent test for such
sparse and high-dimensional multinomial distributions due to Plunkett
and Park[PP18], which is based on (an unbiased estimator of) the Eu-
clidean distance between Pi and P′i .

For the rejection of the null hypothesis H≥ε
0 , I use a goodness of fit test

due to Wellek ([Wel10], Section 9.1). The distance between two multi-
nomial distributions Pi, Pi′ there is defined as the Eucledian distance

0 ≤ d(Pi, Pi′) =
√

∑
j
|pi,j − pi′ ,j|2 ≤ 1

between the corresponding vectors. The null hypothesis hence for-
mally is:

1. H≥ε
0 : d(Pi, Pi′) ≥ ε

Remark 16.4.2. Unlike Plunkett’s and Park’s test, Wellek’s test is a one
sample test. It is originally designed for the test of goodness-of-fit
of distributions Pi, Pi′ , based on one empirical distribution (say: P̂i′ ,
obtained from sampling the a priori unknown distribution Pi′) and
one fully specified reference distribution (say: Pi), i.e.: one a priori fully
specified vector (pi,1, . . . , pi,j , . . .).

Strictly speaking, what I need is a two-sample test, i.e.: a test for
goodness-of-fit based on two empirical distributions. I shoehorn
Wellek’s test into my situation by employing Wellek’s test twice, each
time treating one of the two empirical distributions (say: P̂i) as the ref-
erence distribution (i.e: by assuming P̂i = Pi). I then reject the null
hypothesis H≥ε

0 only if both these two instances of Wellek’s test do so.

Presumably, a proper two-sample goodness-of-fit test is possible by
basing the test-statistics on the “two-sample”-variance estimator σ̂2

k
(from [PP18], Equation 9), instead of the “one-sample”-variance esti-
mator v2

n (from [Wel10], Equation 9.8), but I did not pursue this.

Definition 16.4.1. The full ad hoc test for probabilistic noninterference
for L-equivalent inputs i, i′ to a given program works as follows:

320

16.4 A Statistical Test for Probabilistic Noninterference

1. Choose confidence level α (say: ≤ 0.05), maximal distance ε (say:
< 0.01), and an initial value k (say: ≥ 10).

2. Sample L-observations of executions of G both for input i and
for input i′ to obtain a number n = 2k of total samples, each.

3. If both H≥ε
0 is rejected by the test due to Wellek, and H=

0 is re-
jected by the test due to Plunkett/Park, then report failure.

4. If H=
0 is rejected by the test due to Plunkett/Park, then finish

and report that G is not probabilistically noninterferent, with the
pair (i, i′) being a counterexample.

5. If H≥ε
0 is rejected by the test due to Wellek, then finish and report

that the pair (i, i′) is no counterexample to the claim that G is
probabilistically noninterferent.

6. Otherwise, increment k by one and continue at step 2.

In my automated experiments, I chose α = 0.0000001, ε = 0.009, and
initialized k = 12 (such that initially, n = 4096).

The step 3 is not essential, and could have been left out. If triggered,
it indicates evidence for a very small, but non-zero difference

0 < d(Pi, Pi′) < ε

Step 3 could as well just report that G is not probabilistically noninter-
ferent (as is done in step item 4). I inserted step 3 merely to determine
frequency of situation described in Remark 16.4.1. In my automated
experiments, I did indeed observe such a situation, but only once for
20000 randomly generated programs (and runs of the statistical test).

The doubling of sample size in each iteration due to step 6 is meant to
reduce the probability of type I errors of either test, in lieu of proper
sequential hypothesis testing.

By running this ad hoc test for two low-equivalent inputs i, i′ and
20000 randomly generated For-programs for which the RLSOD crite-

321

16 Timing Sensitivity in Concurrent Programs

rion claims probabilistic noninterference, I was able to validate Theo-
rem 16.3.1.

Observation 16.4.1 (Empirical validation of Corollary 1 in [Bis+18b]).
For at least 20000 randomly generated For-programs P (only counting
those programs P such that the RLSOD-criterion claims probabilistic
noninterference), manual inspection of all those program P for which
the ad hoc test from Definition 16.4.1

• failed (via step item 3), or
• reported a counter-example (via step item 4)

revealed those P to be in fact probabilistically noninterferent7.

For my choice of α, ε and initial number of samples n = 2k as above,
the ultimately required number of samples is n = 212 = 4096 for
the majority of programs, but (rarely) goes up as high as n = 218 =
262144. At the same time, false claims of counterexamples are rare. I
observed just thirteen in total.

If I choose instead a confidence level of, e.g., α = 0.01, then such errors
become more common (on the order of roughly one per 100 checked
programs).

In total I manually inspected 13 reported programs, all of which
turned out to be probabilistically noninterferent, just as was claimed
by the RLSOD-criterion in each case.

Efficiency of the Statistical Test

I designed the ad hoc empirical test to gain confidence in the correct-
ness of the RLSOD-criterion from Section 16.3, before the correctness

7 i.e.: manual inspection revealed those to be a type I error of the Plunkett/Park test,
erroneously rejecting the null hypothesis H=

0

322

16.4 A Statistical Test for Probabilistic Noninterference

proof from [Bis+18b] was available. I also use this test to check my
new timing dependence based criterion coming up in Section 16.6.

But I can gain confidence in correctness by such a test only if I
have confidence that the whole process of generating random For-
programs and then testing the generated program on one pair (i, i′) of
L-equivalent inputs is indeed capable of exposing faulty criteria.

One could argue that what really needed to be done was to run the sta-
tistical tests for all pairs (i, i′) of L-equivalent inputs, which of course
is infeasible if not impossible8. But in practice, even using two fixed
inputs i, i gives counterexample for faulty criteria relatively quickly.
For example, when I tried to validate the unsound criterion obtained
from RLSOD by omitting the rule CDA, the 232th randomly gener-
ated program exposed this unsoundness. This program — which is
not probabilistically noninterferent, but accepted by this unsound cri-
terion — is shown in Figure 16.3 (left). Here, the order of the two
observable reads in line 8 and line 19 is influenced by the secret value
read in line 2.

8 This is different from the situation in Section 6.3, 6.6 and 9.5, in which due to the sim-
plicity of the underlying notion of input, I was able to exhaustively test all equivalent
pairs i, i′ of inputs.

323

16 Timing Sensitivity in Concurrent Programs

1 void main():
2 z := readh;
3 y := readl1;
4 a := 0;
5 fork thread_2();
6 z := z;
7 a := readh;
8 z := readl1;
9 void thread_2():

10 if (z*y <= 0)
11 skip;
12 else
13 skip;
14 for z {
15 b := y * a;
16 }
17 y := readh;
18 fork thread_3();
19 b := readl2;
20 void thread_3():
21 for 2 {
22 printl(1);
23 }
24 x := −z;
25 x := y * z;

Figure 16.3: A randomly generated Example for the necessity of rule CDA

324

16.5 Imprecision of the RLSOD criterion

16.5 Imprecision of the RLSOD criterion

The example from Figure 16.2 on page 312 demonstrates how proba-
bilistic noninterference is a less prohibitive notion of information flow
security than low security observational determinism, which requires
any executions for low-equivalent input to be observational indistin-
guishable (or in other words, it requires deterministic low observa-
tions).

Definition 16.5.1. Let i, i′ be inputs; let Θ = T(i)∪ T(i′). Low Security
Observational Determinism holds iff

i ∼L i′ =⇒ ∀t, t′ ∈ Θ. t ∼L t′

Since the example from Figure 16.2 is not low security observational
deterministic, any sound static criterion for LSOD must reject it. On
the other hand, this example is probabilistically noninterferent, and
the RLSOD criterion (from Definition 16.3.3 on page 314) is indeed
precise enough to accept it, hence for this instance, the RLSOD for
probabilistic noninterference are an improvement over the previous
LSOD criterion from [Gif12] and [GS15], which have to (and do) reject
it.

In this section, I will first show that the RLSOD do not improve on the
LSOD criterion on every program. I will then — by employing timing
dependence→td — provide a criterion for probabilistic non-interference
that improves on both the LSOD criterion and the RLSOD criterion.
The new criterion will accept every program accepted by either of two
previous others.

Giffhorns LSOD Criterion

First, I quickly review the LSOD criterion from [Gif12; GS15], in a style
of presentation similar to that of the RLSOD criterion. Remember that
the RLSOD criterion consisted of a rulesystem RLSOD of which the

325

16 Timing Sensitivity in Concurrent Programs

least solution cl is then submitted to a check RLSOD, and the program
is deemed probabilistically noninterferent if cl admits the rule RLSOD.

In order to facilitate comparison with the RLSOD-criterion, I also
present Giffhorns LSOD criterion in this form, but I then require two
(simple) rule systems:

1. LSOD[cl] whose least solution clLSOD : N → L simply indicates
the security level of nodes in the backward slice of each node.

2. LSOD[R] whose least solution R ⊆ N is the set of nodes (poten-
tially) influenced by a data race.

In order to present LSOD[R], I need the notion of interference-write
dependence.

Definition 16.5.2 ([Gif12], Definition 5.15). For nodes n, m,
interference-write-dependence via a variable x between n, m is defined
as

n x←→iw m ⇐⇒ x ∈ def (n) ∩ def (m) and n MHP m
and n←→iw m ⇐⇒ ∃x.n x←→iw m

I also define interference-read dependence as follows9

n x−→ir m ⇐⇒ x ∈ def (n) ∩ use (m) and n MHP m
and n −→ir m ⇐⇒ ∃x.n x−→ir m

And ultimately, n, m are said to be in a data race if

n↔race m ⇐⇒ n←→iw m ∨ n −→ir m

9 This is just a repetition of Definition 16.3.1 from page 311 of interference dependence
−→inter, but only because that definition is based on the may happen in parallel notion,
when in different settings it would have better been defined on a may happen before
notion. Also see Remark 16.5.1

326

16.5 Imprecision of the RLSOD criterion

Remark 16.5.1. Unlike interference dependence x−→inter, interference
write dependence x←→iw is symmetric. If instead of a (symmetric) ap-
proximation MHP of may happen in parallel behavior, I had a (asymmet-
ric) approximation MHB of may concurrently happen before behavior, I
would need to demand n MHB m ∧ m MHB n in the definition of

x←→iw.

Similarly, I would then need to demand n MHB m ∧ m MHB n in
the definition of interference-read dependence n x−→ir m, while the
definition of interference dependence n x−→inter m would just demand
n MHB m.

Definition 16.5.3 ([Bis+18b], Definition 12; following [GS15]). The rule
system LSOD[cl] is:

m ∈ I
clLSOD (m) w ucl (m)

INPUT
n→cpdg m

clLSOD (m) w clLSOD (n)
CPDG

Definition 16.5.4 ([Bis+18b], Definition 12; following [GS15]). The rule
system LSOD[R] is:

m1 ↔race m2

m2 ∈ R
RACE

n ∈ R n→cpdg m

m ∈ R
CPDG

Note that LSOD[R] is independent from the user classification ucl.

In the lattice L2 = {L v H}, a program is then judged low (L) obser-
vationally deterministic by the LSOD-criterion if (given the least solu-
tions clLSOD and R of these rule systems), the following three rules are
admissible:

m ∈ O ucl (m) v L

clLSOD (m) v L
LSOD1

m ∈ O ucl (m) v L

m /∈ R
LSOD2

m1, m2 ∈ I ∪O ucl (m1) , ucl (m2) v L

¬ m1 MHP m2
LSOD3

327

16 Timing Sensitivity in Concurrent Programs

Note that the propagation of non-low input along→cpdg is completely
separated (within clLSOD) from the propagation of races along →cpdg
(within R). Also completely separated is the treatment of order conflicts
in rule LSOD3, which depends neither on clLSOD nor on R. Violations
of rule LSOD3 between two L-visible nodes, are always violations of
low security observational determinism.

Contrasting these rules with the RLSOD rules, I note that

1. Rules INPUT and CPDG from rule system LSOD[cl] are the same
as rules INPUT and CPDG from rule system RLSOD.

2. RLSOD has no rule corresponding to rule LSOD3. This is because
order conflicts prohibited by rule LSOD3 are only violations of
probabilistic non-interference if the probability of one of the two
nodes (say: m1) occuring before the other (m2) is influenced by
non-low input.

3. In LSOD[R], any race m1 ↔race m2 is propagated along→cpdg, no
matter if the probability of m1 occuring before m2 in the m1 ↔race
m2 was ever influenced by some non-low input.

In contrast, in rule CDA from RLSOD, two nodes m1, m2 with
undetermined execution order (as witnessed by the approxima-
tion m1 MHP m2) lead to propagation of a level h w L only if
previously some node n10 has been determined to be influenced
by non-L input.

These considerations might lead one to belief that the RLSOD crite-
rion is strictly “more precise” than the LSOD criterion, in the sense
that whenever LSOD criterion accepts a given program, then also will
the RLSOD criterion. But this is not so, in general. Consider the ex-
ample on the left of Figure 16.4. It has only one possible low obser-
vation (a single output of 42), and hence is not only probabilistically
noninterferent, but even low security observationally deterministic.
The LSOD criterion is precise enough to detect this, since the →cpdg-

10 subject to the common dynamic ancestor condition

328

16.5 Imprecision of the RLSOD criterion

backwardslice of the only L-output contains no high input (hence con-
dition LSOD1 is fulfilled), and the program contains no race (hence
condition LSOD2 is fulfilled). There is only one L-observable node n
(at the print statement), hence there is no visible order-conflict, and
condition LSOD3 is fulfilled, too.

But the RLSOD criterion rejects this program. To see why, acknowledge
that for the nodes corresponding to lines 4 and 5, cl (4) , cl (5) = H by
→cpdg (i.e.: by rule CPDG). Also, I have cl (7) w cl (4) due to rule
CDA, because line 4 can happen after the execution of the common
dynamic ancestor c = 3 = icda (7, 9), but before 7.

This particular kind of imprecision in the RLSOD criterion could be
argued to be of not too much practical impact, for it requires a parallel
thread without L observable output; had there been any L-observable
output in thread 2, then the RLSOD criterion would have rightfully
rejected the program, since then the delay due to loop in line 4 would
have influenced the relative execution time of that output in thread 2,
and the printl(42) statement in line 7.

But also consider the example on the right of Figure 16.4, which is
obtained from the example on the left by adding such a L-observable
output to thread 2, and also replacing the loop in the main thread by
a simple assignment. This example on the right is not low security
observationally deterministic, but it is probabilistically noninterferent.
Yet, the RLSOD criterion rejects it, by the same argument as for the
example on the left.

In order to obtain a criterion for probabilistic noninterference more
precise than the RLSOD-criterion, I propose to separate two kinds of
influence of high input on low observations, which were conflated in
the RLSOD-criterion:

1. The influence of high input on values at other nodes m, and on
whether other nodes m are executed or not, as captured by the
concurrent program dependence graph.

329

16 Timing Sensitivity in Concurrent Programs

1 void main():
2 h := readh;
3 fork thread_2();
4 for h {
5 skip;
6 }
7 printl(42);
8 void thread_2():
9 skip;

1 void main():
2 h := readh;
3 fork thread_2();
4
5 h2 := h
6
7 printl(42);
8 void thread_2():
9 printl(17);

Figure 16.4: Imprecision of the RLSOD-criterion

2. The influence of high input on the relative execution order of pairs
(m1, m2) of nodes11.

I will do this by use of two classifications cl�

1. A map cl� : N → L, from nodes n to security levels cl� (n), and

2. a partial map cl� : N × N ↪→ L, from pairs (m1, m2) of nodes to
security levels cl� (m1, m2)

instead of just one classifications cl.

11 which — lacking methods of synchronization — is possible in my program model only
due to delay depending on high input

330

16.6 Timing Sensitivity for Probabilistic Noninterference

16.6 Timing Sensitivity for Probabilistic
Noninterference

Consider the program from Figure 16.5. It is not probabilistically non-
interferent, which can be argued as follows:

1. The value h of the secret input influences the length of the delay
in line 8.

2. The length of the delay in line 8 influences the relative execu-
tion time of the two assignments to delay2, i.e.: it influences the
probability of the assignment delay2 := 0 occuring before the
assignment delay2 := 1000, as opposed to vice versa.12.

3. The read of variable delay2 in line 11 sees the assign-
ment delay2 := 0 if that was executed after the assign-
ment delay2 := 1000. Otherwise, it sees the assignment
delay2 := 1000. But since the relative execution time of these
two assignments was influenced by the value h (via the length
of the delay in line 8), then so is the value of delay2 in line 11.

4. The length of the delay in line 11 influences the relative execu-
tion time of the two publicly observable print statements.

Before I can present the rules that rigorously capture this kind of rea-
soning, I need to extend the notion of timing dependence from Chap-

ter 10 to take into account spawn edges
spawn−−−→. The intuition here is

that if for a spawn edge m
spawn−−−→ m′, the node m is timing dependent

on a node n in the control flow graph G, (i.e.: if n→G
td m), then also the

timing of all nodes reachable from the entry node m′ of the spawned
thread depends on n.

12 Line 8 also delays both the print(42) statement and the print(17) statement, but
it delays them both by the same amount. Line 8 does not directly influence the relative
execution time of these two print statements.

331

16 Timing Sensitivity in Concurrent Programs

1 void main():
2 delay1 = 0;
3 h := readh;
4 if (h >= 0) {
5 delay1 := 1000;
6 }
7 fork thread_2();
8 for delay1 { skip; }
9 delay2 := 0;

10 fork thread_3();
11 for delay2 { skip; }
12 printl(42);

13
14
15
16
17
18
19
20 void thread_2():
21 delay2 := 1000;
22
23 void thread_3():
24 printl(17);

Figure 16.5: Interdependence of cl� (m) and cl� (m1, m2).

Definition 16.6.1. Given an (multi-threaded, labeled) control flow
graph G = (N, E) and spawn edges

spawn−−−→ connecting nodes from G, a

node m is timing dependent on a node n in Gspawn =
(

N, E∪ spawn−−−→
)

,

and I write n→Gspawn

timing m or just n→timing m iff:

n→G
td m

or n→G
td m′

spawn−−−→ m′′ →∗Gspawn m for some nodes m′, m′′

Definition 16.6.2. The classification cl� (·) : N → L and the classifica-
tion cl� (·, ·) N×N ↪→ L are the least solution to the mutually recursive
rule system TIMING consisting of rules

m ∈ I
cl� (w)ucl (m)

INPUT
n→cpdg m

cl� (m) w cl� (n)
CPDG

m1
x−→inter m m2

x−→inter m m1 MHP m2

cl� (m) w cl� (m1, m2)
RACE1

m1
x−→inter m m2

x−→data m m1 MHP m2

cl� (m) w cl� (m1, m2)
RACE2

and the rule

332

16.6 Timing Sensitivity for Probabilistic Noninterference

m1 MHP m2 c = icda (m1, m2)
c→∗Gspawn n →∗Gspawn mi n→timing mi i ∈ {1, 2}

cl� (m1, m2) w cl� (n)
CDA

Here, cl� (·, ·) is defined on the set

{ (m1, m2) | m1 MHP m2 ∧ ucl m1 v l ∧ ucl m2 v l }
∪ { (m1, m2) | ∃x. m1

x←→iw m2 }

of pairs (m1, m2) of nodes that are either both l ∈ L observable and
may happen in parallel, or are interference-write dependent.

A program is then judged probabilistically noninterferent at level l ∈
L by the TIMING-criterion if (given the least solution cl� of the rule
system TIMING), the following two rules are admissible:

m ∈ O ucl (m) v l
cl� (m) v l

TIMING1

m1 MHP m2 m1, m2 ∈ O ∪ I ucl (m1) , ucl (m2) v l
cl� (m1, m2) v l and cl� (m1, m2) v l

TIMING2

Replaying the argument at the beginning of this chapter, in which
I showed that the example from Figure 16.5 is not probabilistically
noninterferent,

1. was an instance of rule CPDG,

2. was an instance of rule CDA,

3. was an instance of rule RACE2 and

4. was an instance of rule CDA.

In the solution cl� I have both cl� (12) = L and cl� (24) = L for the
two L-observable print statements, indicating that the values printed

333

16 Timing Sensitivity in Concurrent Programs

by these statements do not depend on high input, and whether these
statements are executed (and: how often) also does not depend on
high input. Rule TIMING1 is fulfilled. On the other hand, I do have
cl� (12, 14) = H, indicating that the relative execution order of these
two print statements may depend on high input. The rule TIMING2 is
not fulfilled. The program is rejected by the TIMING timing criterion,
which could not prove it to be probabilistically noninterferent.

I claim that the TIMING criterion is sound, i.e.: that any program ac-
cepted by the TIMING criterion (given some user classification ucl) is
probabilistically noninterferent with regard observations at every se-
curity level l ∈ L, as defined in Subsection 16.3.1. For the simple
lattice L = {L v H}, I gathered empirical evidence in support of
this claim by use of the statistical test for probabilistic noninterference
(Definition 16.4.1 from 320).

Observation 16.6.1 (Soundness of the TIMING criterion, empirical).
For at least 20000 randomly generated For-programs P (only counting
those programs P such that the TIMING-criterion claims probabilistic
noninterference), manual inspection of all those program P for which
the ad hoc test from Definition 16.4.1

• failed (via step item 3), or
• reported a counter-example (via step item 4)

revealed those P to be in fact probabilistically noninterferent

Since the statistical test may take considerable time (roughly between
5 and 100 seconds for the randomly generated programs), I used in
Observation 16.6.1 the same randomly generated programs as before
in the empirical validation of the RLSOD criterion (Observation 16.4.1).
Those programs that required manual inspection all also passed the
RLSOD criterion, so these were the same 13 programs as before.

The two programs from Figure 16.4 are probabilistically noninterfer-
ent and accepted by the TIMING criterion, but not by the RLSOD crite-

334

16.6 Timing Sensitivity for Probabilistic Noninterference

rion. In general, the TIMING-criterion is more precise than the RLSOD
criterion.

Observation 16.6.2 (Precision of the TIMING criterion, relative to the
RLSOD criterion). Let cl be the least solution to the rule system RLSOD
(Definition 16.3.3) and cl� be the least solution to the rule system
TIMING (Definition 16.6.2).

Then
cl� (m) v cl (m)

and cl� (m1, m2) v cl (m1) t cl (m2)

for all nodes m, and all pairs (m1, m2) in the domain of cl�. Conse-
quently in the lattice L2 = {L v H}13, if the RLSOD criterion holds at
level l, then also does the TIMING criterion.

Remark 16.6.1. Specifically, the two inequations in Observation 16.6.2
hold for the “slicing” subset-lattice L = (2N ,⊆), when initializing
each node n with ucl (n) = {n}.

13 and more generally: all “linear” lattices, in which l1 t l2 ∈ {l1, l2}

335

16 Timing Sensitivity in Concurrent Programs

Summary

• For concurrent programs with probabilistic schedulers,
probabilistic non-interference the appropriate security
property.

• In line with previous research, the execution time is con-
sidered externally unobservable.

• Still, the relative execution time of memory accesses in
concurrent threads makes internal differences in timing
externally observable.

• The LSOD criterion, the RLSOD criterion, and the
new TIMING criterion guarantee probabilistic non-
interference.

• I substantiate this claim by extensive random testing.

• In these tests, probabilistic non-interference is validated
by a statistical test.

• The LSOD criterion is very strict. The RLSOD criterion
more liberal in some, but not all cases.

• The new TIMING criterion, based on timing dependence
→td, is more liberal than both the LSOD criterion and the
RLSOD criterion.

336

17 Timing Sensitivity with JOANA

“Our product is still totally DeepArcher?”
“Which is ...”
“Like ‘departure’, only you pronounce it DeepArcher?”
“Zen thing,” Maxine guesses.
“Weed thing.”

(Thomas Pynchon — Bleeding Edge)

In Chapter 16, I introduced the new TIMING criterion for concurrent
programs. I presented it for control flow graphs in a simple imperative
language. But the TIMING criterion can be also be used for the analysis
of concurrent programs more complex languages. In fact, I applied
the TIMING criterion to a simple case study in the Java programming
language, using an implementation in the JOANA1 system. In this
section I show that here, too, the TIMING criterion can improve on the
RLSOD criterion.

The JOANA system[HS09; Sne+14] implements information flow anal-
yses for Java programs. For the analysis of sequential programs,
JOANA provides an (interprocedural) program dependence graph
(“system” dependence graph), consisting of control and data depen-
dencies as well summary dependencies which allow calling-context
sensitive slicing. Such slices can be used for the verification of (se-
quential) non-interference[Was10]. The JOANA program dependence

1 As explained by Jürgen Graf: “JOANA means Java Object-sensitive ANAlysis in case
you wondered :)”

337

17 Timing Sensitivity with JOANA

Figure 17.1: The JOANA System

graph for Java programs are described in detail in [Ham09; Gra16].
Slicing Algorithm are described in [Ham09; Gif12]. For concurrent
programs, the JOANA program dependence graph is extended with
interference dependencies to form the concurrent program depen-
dence graph, as described in the same two theses. Also described
there are algorithms for slicing of concurrent programs. The imple-
mentation of the LSOD criterion and the computation of precise may-
happen-in-parallel information in JOANA is described in [Gif12].

Martin Mohr, Simon Bischof and I implemented the RLSOD crite-
rion and my TIMING criterion based on JOANA dependency graphs.
Immediate common ancestors icda (m1, m2) and timing dependence
n→timing m are implemented as described in Chapter 16 (specifically:
they are calling-context insensitive). On the other hand, dependencies
due to the concurrent program dependence graph n →cpdg m are
computed calling-context sensitively, i.e.: rule CPDG is replaced by an
iterated two phase slice (see, e.g., [Gif12]).

338

17.1 Precision of the TIMING criterion for Java

17.1 Precision of the TIMING criterion for Java

In a case study in [Bis+18b], we applied the JOANA implementa-
tion of the RLSOD criterion to a concurrent Java implementation of a
small client/server application. We used the framework for the cryp-
tographic verification of Java Programs due to [KTG12; Küs+14]. In
this framework, the concrete implementation of cryptographic prim-
itives (e.g., encryption and decryption) are replaced by idealized im-
plementations, in which the content of encrypted messages does not
depend on the content of plain-text messages. Non-interference of the
idealized implementation, together with conventional cryptographic
assumptions, then imply computational indistinguishability for the
system with a real implementation of cryptographic primitives.

In the case study from [Bis+18b], the goal was to prove that a client’s
choice between two possible plain text messages remains secret to an
attacker who observes the network communication between the clients
and the server. This is a simplification of a verification goal in e-voting
systems. There, the clients choose between two or more alternative
candidates, but only the server is allowed to learn the vote (by de-
cryption of the message). The client’s choice is modeled as the input
to a variable secret_bit, resulting in a corresponding user classifica-
tion ucl (·) = H. In the JOANA system, this is achieved by annotating
the corresponding Java code with a @Source annotation. We also an-
notated the private key used for decryption of messages with such an
annotation. The attackers observation capabilities are modeled by a
@Sink annotation at the method Network.sendMessage(...).

Using the classification cl for the RLSOD criterion inferred by
JOANA, and then additional manual inspection, we concluded that
any possible information leak must be due to the execution time of
the Encryptor.encrypt() method. But we could not conclude from
RLSOD criterion the that the execution time must be independent from
the variable secret_bit.

339

17 Timing Sensitivity with JOANA

On the other hand, the JOANA implementation of the TIMING crite-
rion for the same program reports no violation of probabilistic non-
interference due to the variable secret_bit.2 The critical code is

for(int i=0; i<msg1.length; ++i) {
msg[i] = (secret_bit ? msg1[i] : msg2[i]);

}

in which the plain text message is chosen according to secret_bit.
The RLSOD criterion must compute ucl (n) = H for the correspond-
ing control flow graph nodes n in the loop body, and then by rule CDA
also conclude ucl (m) = H also for the node m corresponding to net-
work communication at Network.sendMessage(...). But the TIMING
criterion does not propagate the classification cl� (n) = H to the rela-
tive timing of any two nodes (m1, m2). To see this, consider the CDA
rule for TIMING. There, nodes mi are not timing dependent on any
node n in the loop body. Specifically, they are not timing dependent
on the choice node implicit in the expression

secret_bit ? msg1[i] : msg2[i]

2 Although just like the RLSOD criterion, it does report a violation due to the private
encryption key.

340

17.2 Scalability of the TIMING criterion for Java

17.2 Scalability of the TIMING criterion for Java

In the case study from the previous section, the program consisted of
550 lines of code in 16 classes. Since the JOANA analyses are whole pro-
gram analyses, the code was analyzed together with used components
of the Java standard libraries. The total analysis used 2713 megabytes
RAM and finished within 2.9 seconds. This includes the computation
of the JOANA concurrent program dependence graph, may happen
in parallel information, and the computation of the TIMING criterion.
The latter took a total of 297 milliseconds, of which the computation of
timing dependencies n →timing m required 108 milliseconds, and the
computation of the control flow graph “chops” implicit in the TIMING
classification rule CDA took 97 milliseconds.

In order to give an idea of the scalability of the TIMING criterion, I also
applied it to the Apache FtpServer[Fou19]. In addition to the Java stan-
dard libraries, the analyzed core of this program makes use of 125818
lines of library source code, and consists of 20645 lines of code3. The
total analysis used 87 gigabytes RAM and finished within 10996 sec-
onds (≈ 3h03m). The computation of the TIMING criterion took a
total of 9844 seconds (≈ 2h44m), of which the computation of timing
dependencies n →timing m required 4306 seconds (≈ 1h11m), while
the computation of the control flow graph “chops” implicit in the
TIMING classification rule CDA took 5343 seconds (≈ 1h29m). Within
the remaining time (1152 seconds), the computation of the concurrent
program dependence graph (including summary edges) graph took
640 seconds, and the may-happen-in-parallel information required 197
seconds.

The Privacy Crash Cam is a system developed at the KASTEL Com-
petence Center for Applied Security Technology. I ran the TIMING
criterion on its web-service component, which makes available crash-
incident related videos from car dash-cams to various stakeholders
(drivers, other parties involved in an car-accident, law-enforcement).

3 all as counted by the cloc utility[Dan18], ignoring comments

341

17 Timing Sensitivity with JOANA

total TIMING →timing “chops” other →cpdg MHP
apache 10 996s 9 844s 4 306s 5 343s 1 152s 640s 197s
pcc 121 549s 103 304s 25 278s 77 066s 18 245s 9 112s 3 870s

Figure 17.2: Run Time of TIMING Based Analysis for Concurrent Java in JOANA

In addition to the Java standard libraries, this web service component
makes use of 495607 lines of library source code, and consists of 2894
lines of code. The analysis used 305 gigabytes RAM. See Figure 17.2
for times required for the analysis.

All times in this chapter were measured on a high end “computation
server” class PC with an Intel Xeon Gold 6230 CPU at 2.10 GHz base
frequency with 512GB RAM.

Summary

• An implementation of the new TIMING criterion for con-
current Java is available in the JOANA system.

• In a simple case study, it improves in precision on the
RLSOD criterion of the JOANA system.

• The computation of the TIMING criterion is feasible for a
concurrent server application of ≈ 100 000 lines of code.

342

18 Summary and Future Work

Arrakis teaches the attitude of the knife — chopping off what’s
incomplete and saying: “Now, it’s complete because it’s ended here.”

(Frank Herbert — Dune)

In this thesis, I introduced timing sensitive control dependence →tscd

as a natural modification to nontermination sensitive control depen-
dence→ntscd. For control flow graphs with unique exit node (also: for
all reducible graphs), I can compute →tscd using the generalized con-
trol dependence Algorithm 1. For such graphs, timing sensitive post-
dominance wTIME[FIRST] is transitive, and I can computed it by a mod-
ification of an algorithm for nontermination sensitive postdominance
wMAX. I used timing sensitive control dependence to support a static in-
formation flow analysis for concurrent programs, and an information
flow analysis sensitive to timing channels due to micro-architectural
effects. For the first analysis, I provided a practical implementation
for Java programs in the JOANA system. For the second, I provided a
prototype implementation for programs with variables and arrays.

No work is ever truly finished, and mine is no exception. In the fol-
lowing, I want to mention some possible avenues for future work on
further improvements of my results.

Calling-Context Sensitivity In the JOANA analysis for concurrent
Java programs, neither timing dependence →timing, nor the classifi-
cations cl� are computed calling-context sensitively. I suspect that

343

18 Summary and Future Work

calling-context timing dependence could be achieved, possibly by en-
riching control flow graphs with timing sensitive “control flow sum-
mary edges”: Whenever in a called procedure, timing sensitive post-
dominance is established between exit and entry node (for some k),
equip corresponding call-sites with a “summary” edge with timing
cost k. Otherwise, equip call sites with a summary edge with timing
cost >, to be handled appropriately.

Weakening of Timing Sensitivity Timing sensitive control depen-
dence n →tscd m holds unless all successor of a branch node n reach
node m after exactly k units of time. Is it possible (and useful?) to con-
sider not only exact matches of time, but also approximate matches?
Possibly, by computing intervals [kmin, kmax] of timing costs instead of
just one value k?

“Declassification” of Timing Leaks Pragmatically, a user of timing
sensitive analysis will want to ignore timing in selected parts of the
program. Perhaps this is possible by allowing him to axiomatically
introduce additional edges in the transitive reduction <TIME[FIRST] of
timing sensitive postdominance? Note that if this is done at nodes n
with no current successor in <TIME[FIRST], it remains a pseudo-tree.
Such timing declassifications could also be provided by an auxiliary
more costly but more precise sound analysis of the relevant program
part.

Micro-Architectural / Cache Dependencies for real Architectures
In order to be practically useful, (approximate) cache dependencies
must be computed for the actual binaries run on actual hardware, us-
ing a “usefully realistic” cache model of that hardware. I expect my
analysis to work practically unchanged for common instruction set ar-
chitectures. But it will only be useful together with a precise analysis
of memory accesses, i.e.: for each machine operation l, a “as small as
possible” static approximation of those memory blocks that may be

344

accessed by l, which in turn will require a precise analysis of values
in, e.g., registers used as offsets in relative address accesses.

New Algorithm for Micro-Architectural dependencies Micro-
Architectural dependencies first compute the full (sometimes huge)
graph Gα, starting from some initial cache state. Is it possible instead
to compute, for each node m, only a relevant part of Gα by going
backwards from m?

Approximate Cache Dependencies I introduced approximate cache
dependencies only for LRU caches. But I expect similar notions to be
possible also for, e.g., pseudo LRU caches.

A More Efficient TIMING Criterion As stated, the rule CDA in the
TIMING Criterion require the computation of numerous “control flow
chops”. I strongly suspect that the explicit computation of these chops
can be avoided by use of an appropriate data structure.

345

Appendices

A Proofs

Very deep. You should send that in to the Reader’s
Digest. They’ve got a page for people like you.

(Douglas Adams — The Hitchhiker’s Guide to the Galaxy)

349

A Proofs

A.1 Nontermination (In-)Sensitive Control
Dependence in Arbitrary Graphs

Proof of Lemma 3.2.1 on page 20: If x 6= y, then x A y w y. Also, let
x′ A w y. Then x′ w x by transitivity.

For EQw2 , I only need to show ipdomw (x) ⊆ ipdomw (y). Now, for
any x′ ∈ ipdomw (x), I have x′ A w x w y. Also, for any y′ such that
y′ 1-w y, I have y′ A w y w x. Because x′ ∈ ipdomw (x), I conclude
y′ w x′, and hence x′ ∈ ipdomw (y).

For EQw3 , assume x 6= y. Then y A x w z. Also, if y′ A w z, then
y′ w x w y because x ∈ ipdomw (z).

Proof of Lemma 3.2.2 on page 22:

1. PDFlocal
w (x) ⊆ PDFw (x) because x w x.

2. PDFup
w (z) ⊆ PDFw (x) for x ∈ ipdomw (z):

Let y ∈ PDFup
w (z). I have ¬ x 1-w y by definition. Also, from

y ∈ PDFw (z) I obtain some s such that y→G s and z w s. From
x 1-w z and due to reflexivity I am done, because x w z w s.

3. I show for any x, s such that (x, s) ∈ ipdom∗w that the rule

¬ x 1-w y y→G s x w s

y ∈ PDFlocal
w (x) ∨ y ∈

⋃
{z | x∈ipdomw(z)}

PDFup
w (z)

is admissible, by induction on (x, s) ∈ ipdom∗w.

I x = s.

Let y be as in the rule’s premise. Then y ∈ PDFlocal
w (x) by

definition.

350

A.1 Nontermination (In-)Sensitive Control Dependence in Arbitrary Graphs

II x ∈ ipdomw (z) and (z, s) ∈ ipdom∗w for some z ∈ N.
Let y be as in the rule’s premise, i.e.:

¬ x 1-w y y→G s x w s
In order to exploit the induction hypothesis, I want to show:
¬ z 1-w y z w s

In order to obtain a contradiction, assume z 1-w y. From x ∈
ipdomw (z), I also have x 1-w z, i.e.:

x A w z A w y

which contradicts ¬ x 1-w y, due to the transitivity of w.

Also, z w s because ipdom∗w =w.

Now, from the induction hypothesis, either:

i. I have y ∈ PDFlocal
w (z),

in which case I show y ∈ PDFup
w (z) as follows:

First, I conclude y ∈ PDFw (z) as before.

Also, let x′ ∈ ipdomw (z). Then x w x′ and x′ w x′. Assume
x 6= x′, because otherwise immediately ¬ x′ 1-w y. If I had
x′ 1-w y, then:

x A x′ A w y, i.e., via reflexivity, x A x′ w y,

in contradiction with the choice of y.

or

ii. I obtain a node z′ such that z ∈ ipdomw (z′) and y ∈
PDFup

w (z′)

In this case, I need to show: y ∈ PDFup
w (z).

351

A Proofs

• By definition of PDFup
w (z′), and because z ∈ ipdomw (z′),

I have ¬ z 1-w y.

• From y ∈ PDFup
w (z′) I have y ∈ PDFw (z′) by definition.

Hence: z′ w s′ for some s′ such that y →G s′. Because
z ∈ ipdomw (z′), this means that

z A w z′ w s′

This shows z w s′ due to transitivity, and hence: y ∈
PDFw (z).

• It remains to show for arbitrary x′ ∈ ipdomw (z):
¬ x′ 1-w y. But this follows just as it did in case i.

Proof of Lemma 3.2.3 on page 23: Given y→G x, I show

x 1-w y ⇐⇒ x ∈ ipdomw (y)

Assume x 1-w y, and let let x′ be any node such that x′ 1-w y If x′ 6= y,
then x′ w x by x′ w y (transitivity) and rule CL→G . If x′ = y, let v be
some node such that y A v w y. Then, by rule CL→G I have v w x,
and hence x′ = y w x, as well, which proofs x ∈ ipdomw (y).

The reverse implication follows directly from the definitions.

Proof of Lemma 3.2.4 on page 25: Given y ∈ PDFw (z), I show

x ∈ ipdomw (y) ⇐⇒ ∃x′ ∈ ipdomw (z) . x′ 1-w y

The implication =⇒ is trivial, given the assumption on x.

352

A.1 Nontermination (In-)Sensitive Control Dependence in Arbitrary Graphs

For the reverse implication ⇐= let x′ as provided. Because both x, x′

are in ∈ ipdomw (z), I obtain x w x′ and then — regardles whether
x = x′ or not —

x 1-w y

From this, if also y w x, I immediately conclude x ∈ ipdomw (y) from
EQw1 . Otherwise, because ipdom∗w =w, I obtain via Observation 3.2.1
nodes w, v such that

w ∈ ipdomw (v) and v w y and x w w w x and ¬ v w x
but also, because of EQw3

x ∈ ipdomw (v)

If z = v, I conclude z = y, because otherwise: z A y w y, i.e.: z 1-w y,
in contradiction to y ∈ PDFw (z). This shows x ∈ ipdomw (y). This is
also true if v = y.

This means I still have to show x ∈ ipdomw (y) if z 6= v and y 6= v.
From y ∈ PDFw (z), I obtain a node s such that y →G s and z w s.
From CL→G and v w y I conclude v w s. Now, I can use NoJoin
to infer that either z ∈ ipdomw (v) or v ∈ ipdomw (z). But if z ∈
ipdomw (v), then

z A v w y, i.e.: z 1-w y

in contradiction to y ∈ PDFw (z). If, on the other hand, v ∈
ipdomw (z), specifically: v 1-w z, but then v w x because x ∈
ipdomw (z), in contradiction to the choice of v.

353

A Proofs

A.2 Postdominator Pseudoforests

Proof of Theorem 5.1.1 on page 41: First, i show wPOST ⊆ νP. By the
co-induction proof principle, I have to show

wPOST ⊆ P (wPOST)

So let m wPOST p. The case p = m is trivial, so assume p 6= m. I
know that ∀p →G x. x wPOST m by definition of m wPOST p, so:
(m, p) ∈ P (wPOST).

Now, let me show wPOST ⊇ νP, by assuming ¬m wPOST p, and show-
ing (m, p) /∈ νP.
There must be some path p →π

G nx to the unique exit node nx such
that m /∈ π. Specifically, m 6= p, so I cannot use rule Pself to validate
(m, p) ∈ νP. Let x be the successor of p in π, so that π = p, x, π′.
Then I can only validate (m, p) ∈ νP if I can validate (m, x) ∈ νP.
But I now have a shorter path x →x,π′

G nx such that m /∈ x, π′, so by
iterating I eventually find that I cannot validate (m, p) ∈ νP at all.

Proof (Sketch) of Theorem 5.1.2 on page 42: The proof for wSINK is similar
to the proof of Theorem 5.1.1. For µD ⊆ wMAX, by the induction proof
principle I have to show:

D (wMAX) ⊆ wMAX

i.e. I have to show:

whenever ∀p→G x. m wMAX x and p→∗G m then also m wMAX p

for m 6= x, but this follows directly from the definition. For
wMAX ⊆ µD, I assume m wMAX n. Let m 6= n, because otherwise I
have (m, n) ∈ µD by rule Dself. Because of m wMAX n, all paths from n
to m in which m occurs only once (at the end) are cycle-free. Let π be
such a path with maximal length among all such paths. Also denote
by πx for each successor x of n a path with maximal length among all

354

A.2 Postdominator Pseudoforests

such paths from x to m. Then all πx are certainly shorter than π, and
inductively I can assume m wMAX x for all such x. But then (m, n) ∈ µD
by rule Dsuc.

Proof of Lemma 5.2.2 on page 45: If both v w z and z w v i’m done by
rule EQw1 . So by symmetry, it is enough to show

¬z w v =⇒ v ∈ ipdomwMAX
(z)

So let >MAX be any transitive reduction of wMAX, and assume ¬z w v
(i.e., even: ¬z A v). From v wMAX s and because <MAX is a pseudo forest,
i know that there is exactly one sequence

v>MAX . . . >MAXs

such that v appears exactly once. But since ¬z A v and z wMAX s, i
know that z must appear in between, i.e. (since v 6= z) i have:

v>∗MAXv′>MAXz>∗MAXs

I also have — because x ∈ ipdomwMAX
(z) — some x′ s.t.

x′>∗MAXx>∗MAXx′>MAXz

But since <MAX is a pseudo forest, i have x′ = v′, and also: v must lay
on the cycle x′>∗MAXx>∗MAXx′, i.e.:

v′>∗MAXv>∗MAXv′>MAXz

A.2.1 Proof of Correctness of the Workset implementation
of Algorithm 5

On order to provide — apart from the empirical evidence – proof of
correctness, I need some terminology. I want to express that any node

355

A Proofs

n for which I have not already determined its successor (if any) in
<MAX, either is still in the workset, or will be put there eventually.

Definition A.2.1. Let workset ⊆ CONDG and < be some pseudo-forest.
Then the set of nodes accessible from workset is defined as the least
fixed point of the rule system

n ∈ workset

n ∈ workset∗

w ∈ workset∗ n ∈ CONDG n→G y y <∗ w
n ∈ workset∗

Also, i define

<workset = < ∪
{
(w, m)

∣∣∣ w ∈ workset∗, m ∈ ipdomwMAX
(w)

}
and write <∗workset for (<workset)

∗.

Proof (Sketch): The algorithm establishes and then upholds the follow-
ing invariants for < (represented by IMDOM) and workset:

m wMAX n ⇐⇒ n <∗workset m

n < m =⇒ m ∈ ipdomwMAX
(n)

IMDOM [n] = ⊥ ∧ ∃m 6= n.m wMAX n =⇒ n ∈ workset∗

Obviously, upon termination, I have <workset = <.

Also, the algorithm always terminates: Observe that the choice a ∈
lca< (S) made by Algorithm 3 is such that <-cycles, once established,
remain stable, i.e.:

356

A.2 Postdominator Pseudoforests

• whenever IMDOM [x] is about to be updated from some z 6= ⊥
to z′, i have: ¬z′ <∗ x

Also, once IMDOM [x] = z 6= ⊥, future changes of IMDOM [x] to z′ are
only possible if x is just outside some <-cycle Z, and z, z′ are in that
cycle, i.e.: z <∗ z′ <∗ z.

But there cannot be an infinite number of such changes, since
this would require there to be some nodes x1 6= x2

1, xi /∈ Z,
ipdomwMAX

(xi) = Z such that

• ∃x2 →G y2. y2 <∗ x1

• ∃x1 →G y1. y1 <∗ x2

But from y2 <∗ x1 i obtain a path

y2, . . .︸ ︷︷ ︸
π2

, x1 in G with x1 /∈ π2, and also: π2 ∩ Z = ∅,

since if I had such a z, I would also have a cycle πz = z, . . . , z′, . . . , z in
G (for any z′ ∈ Z) with x1 /∈ πz, because ¬ z <∗ x1 (and: ¬ z′ <∗ x1)
and hence ¬ x1 wMAX z (and ¬ x1 wMAX z′). But this contradicts y2 <∗ x1.
Similarly, I obtain a path

y1, . . .︸ ︷︷ ︸
π1

, x2 in G with x2 /∈ π1, and also: π2 ∩ Z = ∅.

But then, the concatenation of these paths form a G cycle without
nodes from Z, in contradiction with ipdomwMAX

(xi) = Z.

1 or: a sequence x1, . . . , xn in a similair situaion

357

A Proofs

A.3 Order Dependence

Proof of Lemma 6.1.2 on page 67: Assume n→dod (m1, m2).

(i) I show m2 wMAX m1. Let π1 = m1, . . . be a maximal path. Let nl be
some successor of n in accord with clause (b) of Definition 6.1.2.
By definition (clause (a)) I obtain a path πn = n, nl , . . . , m1, and
nl was chosen s.t. ¬m2 ∈ πn. Again by clause (a), any extension
π of πn to a maximal path πnπ must contain m2 (in it’s extension
π), and I am done (i.e.: m2 ∈ π) for π = π1.

(ii) First, i show m wMAX m1. Assume the opposite. Then I have
a maximal path π1 = m1, . . . with m /∈ π1. I note that, since
m2 wMAX m1 (see (i)), I have

π1 = m1, . . . , m2, π′1 with m /∈ π′1 (A.1)

From m /∈ π1 I infer that

∀πn = n, . . . , m1. m ∈ πn (A.2)

since otherwise I had a maximal path πn = n, . . . , π1 with m /∈
πn, in contradiction to m wMAX n. Specifically, since n 6= m, given
nl as in clause (b), for any path

πl = nl , . . . , m1

with only one appearance of m1, I have m ∈ πl and m2 /∈ πl .
Then, given nr as in clause (c), for any path

πr = nr, . . . , m2

with only one appearance of m2 I have m1 /∈ πr and m /∈ πr,
since if I had m ∈ πr, I’d have a path nr, . . . , m, . . . , m1 that does
not contain m2, in contradiction of clause (c).
Now, since m1 wMAX n and m1 6= n, any maximal extension π =
πrπ′ to πr must contain m1. But because of (A.2), any such

358

A.3 Order Dependence

extension must also contain m, and it must appear in π′, which
contradicts (A.1), because πrπ′1 is a maximal extension to πr.

m1 wMAX m then is obvious from (i), due to the fact that m1 6= m2,
and hence the set {m | m wMAX m1 } form a cycle (remember
that for any transitive reduction >MAX of wMAX, the graph <MAX is a
psuedo-forest).

(iii) I show ¬ m1 →∗G n. Assume the opposite. Given nl as in clause
(b), for any path

πl = nl , . . . , m1

with only one appearance of m1 I have m2 /∈ πl . From m1 →∗G n,
I infer that any maximal path starting in m1 must contain m2
before n since otherwise, I would have a cycle

nl , . . . , m1, . . . , n,nl

not containung m2, contradicting m2 wMAX n (clause (a)).

But with m1 →∗G n and m2 →∗G m1 (see (i)) I also have m2 →∗G n,
and likewise infer that any maximal path starting in m2 must
contain m1 before n. But then, any maximal path starting in m1
must be of the form

m1, . . . , m2, . . . , m1, . . . , m2, . . .︸ ︷︷ ︸
n/∈

contradicting m1 →∗G n.

359

B Nontermination (In-)Sensitive
Control Dependence

All your life people will tell you things. And
most of the time, probably ninety-five percent
of the time, what they’ll tell you will be wrong.

(Michael Crichton — The Lost World)

361

B Nontermination (In-)Sensitive Control Dependence

B.1 Analysis of previous Algorithms

Ranganath et al. propose Algorithm 14 for the computation of→ntscd1.
Their algorithm works by computing — for each x ∈ N, n ∈ CONDG –
the set

S [x, n] = { n→G m | x wSINK m }
of edges n →G m starting in n such that every maximal path starting
in m contains x. The authors also write tnm for the edge n→G m.

2

5

7

10

1211

3

15

I added to their algorithm the highlighted
parts, which are missing in [Ran+07]. In order
to see that these are indeed necessary, consider
the graph depicted on the right. Note that it
has the unique exit node nx = 3, and that
15 is standard (and hence also both nonter-
mination sensitively and insensitively) control-
dependent on 5, so we also expect 5→ntscd 15.
Specifically, we need S [15, 5] = {t5,7}.

If the highlighted parts are missing, the se-
quence n ∈ [3, 7, 10, 11, 12, 15, 5] is a possible it-
eration order. I cannot learn that t5,7 ∈ S[15, 5]
before I learn that both t10,11, t10,12 ∈ S[15, 10],
which I do in the iteration n = 12. I do
not learn t5,7 ∈ S[15, 5] at that iteration be-
cause I did not (and must not!) learn that
t5,7 ∈ S[12, 5]. But I do not learn t5,7 ∈ S[15, 5] in iteration n = 15
(because 15 is not a conditional node, and not 15 →G 15) or n = 5
(trivially), either.
If, on the other hand, in iteration n = 12 I put p = 10 in the workset, I
learn t5,7 ∈ S[15, 5] from |S[15, 12]| = |{11, 12}| = 2 in a later iteration
n = 10.

1 For purposes of comparison only, I temporarily adapt adapt their choice of variable
naming.

362

B.1 Analysis of previous Algorithms

Input : A CFG G = (N, E)
Output: A map NTSCD such that NTSCD[n] = {m | n→ntscd m}
begin

for n ∈ CONDG, n→G m do
S[m, n]← {tnm}
workset← workset ∪ {m}

end
while workset 6= ∅ do

n← remove(workset)
if {m | n→G m} = {m} then

for p ∈ CONDG, S[n, p] \ S[m, p] 6= ∅ do
S[m, p]← S[m, p] ∪ S[n, p]

workset← workset∪ {m} ∪ {p}
end

end
if {m | n→G m} = {m1, m2, . . .} then

for m ∈ N do
if |S[m, n]| = |{x | n→G x}| then

for p ∈ CONDG \ {n} , S[n, p] \ S[m, p] 6= ∅ do
S[m, p]← S[m, p] ∪ S[n, p]

workset← workset∪ {m} ∪ {p}
end

end
end

end
end
for n ∈ N, m ∈ CONDG do

if 0 < |S[m, n]| < |{x | n→G x}| then
NTSCD[m]← NTSCD[m] ∪ {n}

end
end

end
Algorithm 14: An Algorithm for →ntscd. The highlighted parts were
missing in [Ran+07], but are crucial for correctness.

363

B Nontermination (In-)Sensitive Control Dependence

Is Algorithm 14 as given here now in fact correct? For now, I can at
least make use of a trusted algorithm for wPOST-control dependence,
and validate the second implication of Theorem 4.1.1 empirically:

Observation B.1.1. Let NTSCD be computed via Algorithm 14, ans G
be a CFG with unique exit node. Then

n→cd m =⇒ m ∈ NTSCD[n]

Indeed with the previously missing workset updates in place, Algo-
rithm 14 is a standard workset implementation of a least fixed point
computation:

Observation B.1.2. Algorithm 14 computes the least fixed point of the
monotone functional implicit in the rule system S4 below:

p→G x
(p, x) ∈ S [x, p]

Ssuc
4

{m | n→G m} = {m} (p, x) ∈ S [n, p]
(p, x) ∈ S [m, p]

Slin
4

n 6= p |S [m, n]| = |{y | n→G y}| (p, x) ∈ S [n, p]
(p, x) ∈ S [m, p]

S4cond

Here, S is understood to be a map (N × CONDG)→ 2E.

Lemma B.1.1. S4 is sound, i.e.

S4 (p, x) ∈ S [m, p] =⇒ m wMAX x

But S4 also is complete (i.e.: the reversed implication holds for edges
p →G x) because any fact m wMAX x necessarily has a finite proof (in
S4).

Proof (Sketch): Soundness follows directly by induction. For complet-
ness, I assume m wMAX p. For conditional nodes p 6= m this means:
m wMAX x for all x s.t. p →G x. Then either m appears on all the lin-
ear segments starting in x — in which case rule Ssuc

4 and Slin
4 suffice,

364

B.1 Analysis of previous Algorithms

and I stop with a finite proof —, or there exists successors x of p such
that from x I can reach the next conditional node p′ without visiting
m. For such x, I continue to search for proofs that m wMAX p′. This
search must eventually come to an end, because otherwise, I would
have found a sequence p, p′, . . . , p′ of conditional nodes such that m
does not necessarily appear on every paths π through p, p′, . . . , p′, and
I could construct a maximal path π, π, . . . without m, in contradiction
of the assumption m wMAX p.

Ranganath et al. also claim an algorithm for the computation of→nticd.
I repeat it — together with the fixes w.r.t workset management I pro-
posed for Algorithm 14 — as Algorithm 15. In contrast to Algo-
rithm 14, that algorithm is not correct, and there appears to be not ob-
vious fix. First observe that — if we allow the additional highlighted
lines, and then again read it as a work-set algorithm that computes the
least fixed point of some monotone functional — Algorithm 15 differs
from Algorithm 14 only by adding the rule

p→G m (p, x) ∈ S [p, p]
(p, x) ∈ S [m, p]

Sself
5

to the rule system S4. Let the resulting system be denoted by S5.

365

B Nontermination (In-)Sensitive Control Dependence

Input : A CFG G = (N, E)
Output: A map NTICD such that NTICD[n] = {m | n→ntscd m}
begin

for n ∈ CONDG, n→G m do
S[m, n]← {tnm}
workset← workset ∪ {m}

end
while workset 6= ∅ do

n← remove(workset)
if {m | n→G m} = {m} then

. . . same as Algorithm 14 . . .
end
if {m | n→G m} = {m1, m2, . . .} then

. . . same as Algorithm 14 . . .
end

if |S[n, n]| > 0 then
for n→G m, m 6= n, S[n, n] \ S[m, n] 6= ∅ do

S[m, n]← S[m, n] ∪ S[n, n]

workset← workset∪ {m} ∪ {p}
end

end

end
for n ∈ N, m ∈ CONDG do

if 0 < |S[m, n]| < |{x | n→G x}| then
NTICD[m]← NTICD[m] ∪ {n}

end
end

end
Algorithm 15: An incorrect Algorithm for →nticd. Only the framed
part is new (w.r.t. Algorithm 14). The highlighted parts were missing
in [Ran+07]. The algorithm is incorrect no matter if these are present
or not.

366

B.1 Analysis of previous Algorithms

1

2

5

8

12

(a) Unsoundness.

1

3

42

15

(b)→nticd requires circular reasoning.

Figure B.1: Problems with Algorithm 15.

Unfortunately, this rule is not even sound, i.e. it does not hold that

S5 (p, x) ∈ S [m, p] =⇒ m wSINK x

In order to see this, consider the CFG in Figure B.1a. Note that I expect
from a solution S:

S [1, 1] = {(1, 2)} but not: (1, 2) ∈ S [8, 1]

because any (sink-bound) path from 2 does contain 1, but there is the
sink-bound path 2, 1, 5 from 2 which does not contain 8. But rule Sself

5
allows me to infer just that!

This problem with rule system S5 does not yet necessarily lead to
wrong results in the resulting map NTICD. However, a much more
serious problem is examplified in Figure B.1b. Here, Algorithm 15
computes

S [42, 1] = {(1, 42)} and concludes: 1→nticd 42

while in reality:

S [41, 1] = {(1, 42) , (1, 3)} and ¬ 1→nticd 42

367

B Nontermination (In-)Sensitive Control Dependence

To see that in fact (1, 3) ∈ S [42, 1] (i.e.: 42 wSINK 3), just note that {42}
is the only control sink.

Can Algorithm 15 be fixed by adding another rule to S5? To answer
this, I explain how I fail to infer (1, 3) ∈ S [42, 1] using Algorithm 15
(i.e.: how I fail to infer S5 (1, 3) ∈ S [42, 1] in the rule system S5). If
I am to infer S5 (1, 3) ∈ S [42, 1], I need either to infer S5 (1, 3) ∈
S [1, 1] via rule Sself

5 , or

|S [42, n]| = |{y | n→G y}| and (1, 3) ∈ S [n, 1]

for some n ∈ CONDG, n 6= 1. Since (in order to apply rule S4cond)
attempting to infer S5 (1, 3) ∈ S [15, 1] is pointless , I am left with
n = 3, and I am required to show S5 (3, 42) ∈ S [42, 3] (trivial) and
S5 (3, 1) ∈ S [42, 3]. Then, I need either to infer S5 (3, 1) ∈ S [3, 3]
via rule Sself

5 , or∣∣S [42, n′
]∣∣ = ∣∣{y

∣∣ n′ →G y
}∣∣ and (3, 1) ∈ S

[
n′, 3

]
for some n′ ∈ CONDG, n′ 6= 3. Since attempting to infer S5 (3, 1) ∈
S [15, 3] is pointless, I am left with n′ = 1, and I am required to show
S5 (1, 42) ∈ S [42, 1] (trivial) and S5 (1, 3) ∈ S [42, 1].

In summary, I need to complete one of the following proof trees:

(a)

?

(1, 3) ∈ S [1, 1]

(1, 3) ∈ S [42, 1]

. . .

?

(3, 1) ∈ S [3, 3]

(3, 1) ∈ S [42, 3]
. . .

(1, 3) ∈ S [42, 1]

(b)

368

B.1 Analysis of previous Algorithms

. . .

?

. . . (1, 3) ∈ S [42, 1] . . .

(3, 1) ∈ S [42, 3]
. . .

(1, 3) ∈ S [42, 1]

(c)

The last proof tree (c) is circular, so at most the first two are feasible.
But attempting S5 (1, 3) ∈ S [1, 1], the only sensible rule is S4cond
with n = 3, which requires me to infer S5 (3, 1) ∈ S [1, 3] (trivial)
and S5 (3, 42) ∈ S [1, 3], which I cannot because it is false. Similarly,
attempting S5 (3, 1) ∈ S [3, 3], I have to use S4cond with n = 1,
but this requires me to infer S5 (1, 3) ∈ S [3, 1] (trivial) and S5
(1, 42) ∈ S [3, 1], which I cannot.

I have demonstrated how the rule system S5 is incapable of finitely
proving (1, 3) ∈ S [42, 1], and thus how Algorithm 15 is incorrect.
How can I find a correct algorithm? Refocus on the last “circular”
proof tree (c), and recall how I argued for the completeness of S4 w.r.t
wMAX: I demonstrated that whenever m wMAX x, I could find a finite
proof of this in S4. Now, wSINK differs from wMAX in that it disregards
infinite loops such as the loop such as 1 →G 3 →G 1. In particular,
considering sink-bound paths starting in x instead of maximal paths
starting in x, whenever ¬m wSINK x, I must be able to find a finite
disproof, disregarding loops on paths towards x. This suggests that
we should believe (1, 3) ∈ S [42, 1] since, as considering the circular
proof tree (c), it cannot be finitely disproven, i.e.: we should define
S co-inductively, by taking the greatest fixed point of some monotone
functional (implicit in some rule-system).

Is the rule system S4 (or: S5) a suitable rule system for the computation
of →nticd when read as a co-inductive definition of S? Not quite, since
it suffers from three problems.

1. It does not enforce that from (p, x) ∈ S [m, p], it follows that:
x →∗G m.

369

B Nontermination (In-)Sensitive Control Dependence

1

3

4

5

(a)

6

16

8

13

17

(b)

1

3

4 5

(c)

Figure B.2:

2. Following the graph structure (from n to m along n →G m) in
rules S4cond and Slin

4 one step a time is too liberal, allowing too
many “self-justifications”.

3. The requirement n 6= p in S4cond is too strict (while, as i have
shown, Sself

5 , is too liberal).

The problem 1 is demonstrated in the CFG from Figure B.2a. I can-
not finitely disprove in S4 the following assertions, of which only the
highlighted is true w.r.t →nticd, and all the other assertions (p, x) ∈
S [m, p] are false because ¬ x →∗G m.

(3, 4) , (3, 5) ∈ S [1, 3]
(1, 3) , (1, 4) ∈ S [1, 1]

(1, 3), (1, 4) ∈ S [3, 1]

(3, 4) , (3, 5) ∈ S [3, 3]

370

B.1 Analysis of previous Algorithms

as demonstrated by the following partial derivation trees consistent
with S

(1, 3) , (1, 4) ∈ S [1, 1] (3, 4) ∈ S [1, 3]

(3, 4) ∈ S [1, 3]

(3, 4) , (3, 5) ∈ S [1, 1] (3, 5) ∈ S [1, 3]

(3, 5) ∈ S [1, 3]

(3, 4) , (3, 5) ∈ S [1, 3] (1, 3) ∈ S [3, 1]
Ssuc

4

(1, 3) ∈ S [1, 1]

(3, 4) , (3, 5) ∈ S [1, 3] (1, 4) ∈ S [3, 1]

(1, 4) ∈ S [1, 1]

(3, 4) , (3, 5) ∈ S [3, 3] (1, 4) ∈ S [3, 1]

(1, 4) ∈ S [3, 1]

Ssuc
4 (1, 3) ∈ S [3, 1] (1, 4) ∈ S [3, 1] (3, 4) ∈ S [1, 3]

(3, 4) ∈ S [3, 3]

From such a S, I would have to conclude: ¬1→nticd 3, when in reality
(1, 3) ∈ S [3, 1] but not (1, 4) ∈ S [3, 1], and hence 1→nticd 3.

The problem 2 is demonstrated in Figure B.2b. I cannot finitely dis-
prove in S4 the following false assertions

(17, 8) ∈ S [16, 17]
(17, 8) ∈ S [6, 17]

as demonstrated by the following partial derivation trees consistent
with S

Slin
4

(17, 8) ∈ S [6, 17]

(17, 8) ∈ S [16, 17]

371

B Nontermination (In-)Sensitive Control Dependence

Slin
4

(17, 8) ∈ S [16, 17]

(17, 8) ∈ S [6, 17]

which is valid even if I — in the light of the previous example — , also
require

(p, x) ∈ S [m, p] =⇒ x →∗G m (B.1)

But then I can disprove, e.g., (17, 13) ∈ S [6, 17] in “S4 + (B.1)”, and
falsely conclude 17→nticd 6 (what holds here is: 17→nticd 8→nticd 6).

Note that the problem with rule Slin
4 here is that it allows me to “self-

validate” the cycle (17, 8) ∈ S [6, 17] , S [8, 17] for paths starting in the
edge 17 →G 8 without requiring me to validate that from node 8 (i.e:
the “next” conditional after 17 for paths starting in 17 →G 8), any
sink-path reaches that cycle. Similarly, Slin

4 allows me to validate an
assertion (p, x) ∈ S [m, p] using any other conditional node n (reach-
able from x), without requiring me to validate∣∣S [m, n′

]∣∣ = ∣∣{y
∣∣ n′ →G y

}∣∣
for those conditional nodes n′ “in between” x an m.

The problem 3 is demonstrate in Figure B.2c. Here, I can disprove the
following true fact in S4:

(3, 5) ∈ S [4, 3]

and erroneously conclude 3→nticd 4.

372

B.2 Duality of Nontermination (In-)Sensitivity

B.2 Duality of Nontermination (In-)Sensitivity

Discussing the example in Figure B.1b, I concluded that for the com-
putation of →nticd, I need to characterize S co-inductively, rather than
inductively. I then proceeded by explaining why the rule set S4 is not
suitable for such a characterization. Now in this section, I will propose
a rule system S3 (and also write S3 for the corresponding monotone
functional) such that

• for S = νS3
S [m, p] = { p→G x | m wSINK x }

and at the same time:

• for S = µS3

S [m, p] = { p→G x | m wMAX x }

Informally:

nontermination insensitivity = greatest fixed point
nontermination sensitivity = least fixed point

Before I introduce this system S3 of rules, I go on a short detour in
which I explain this correspondence from the point of view of safety
and liveness properties. It is well-known that liveness properties cor-
respond to least fixed-points, while safety-properties correspond to
greatest fixed points. In fact, adopting the standard definitions of live-
ness and safety to executions I obtain:

Definition B.2.1 ([AS85]). A set S ⊆ Nω (of sequences called inifinite
traces) is called a safety property iff a violation of it is finitely observ-
able and irremediable, i.e. iff whenever π /∈ S for some inifinite trace
π, there already exists some finite prefix π0 of π such that:

• for all infinite traces π′ = π0 . . . ∈ Nω extending π0: π′ /∈ S

373

B Nontermination (In-)Sensitive Control Dependence

Definition B.2.2 ([AS85]). A set L ⊆ Nω (of inifinite traces) is called
a liveness property iff it is always possible (and possibly infinite), i.e.
iff for any finite trace π0, there already exists some infinite extension
π′ = π0 . . . of π0 such that

• π′ ∈ L

Note that in this terminology, traces are in fact only arbitrary se-
quences of nodes, not necessarily corresponding to proper paths in
some graph G.

Definition B.2.3. I write x N ⊆ Nω for the set of infinite traces starting
in x. Moreover, let G = (N, E) be some CFG, and x →∗G m. Then i
define

ΠG
SINK [x, m] ={
π ∈ x N

∣∣ ¬ (π has a prefix π0 = x . . . n with m /∈ π0,¬ n→∗G m
)}

ΠG
MAX [x, m] =

{π ∈ x N | ¬ (m /∈ π)}

Intuitively, any trace π /∈ ΠG
SINK [x, m] is a counterexample to the

claim that node x nontermination insensitively postdominates node
m, while any maximal trace π /∈ ΠG

MAX [x, m] is a counterexample to
the claim that node x nontermination sensitively postdominates node
m. Also intuitively, ΠG

SINK [x, m] is a safety property, since I can just
expose the prefix π0 obtained by definition. ΠG

MAX [x, m] is trivially a
liveness property, since any finite sequence of nodes can be extended
to include m (what’s not clear is whether this can be done with a
proper path in some graph G, i.e.: whether this liveness property holds
in G).

In order to establish this formally, I make a technical modification to
the underlying graph G.

374

B.2 Duality of Nontermination (In-)Sensitivity

Observation B.2.1. Let G0 = (N, E) be some CFG, x, m ∈ N some
nodes, x →∗G m, and define

G = (N, E ∪ { (nx, nx) | nx is an exit node })

Then the maximal paths in G are exactly the infinite paths, and

1. ΠG
SINK [x, m] is a safety property.

2. ΠG
MAX [x, m] is a liveness property.

3. ∀π ∈ xΠSINK. m ∈ π ⇐⇒ xΠG ∩ Nω ⊆ ΠG
SINK [x, m]

4. ∀π ∈ xΠMAX. m ∈ π ⇐⇒ xΠG ∩ Nω ⊆ ΠG
MAX [x, m]

Proof (Sketch): 1. Let π /∈ ΠG
SINK [x, m]. The case π /∈ x N is trivial,

so i can assume some prefix π0 = x . . . n of π s.t. m /∈ π0 and
¬ n →∗G m. But this then also holds for every π′ extending π0,
so π′ /∈ ΠG

SINK [x, m].

2. This is trivially true.

3. First, I show the implication⇒.

Let π = x . . . be some infinite path starting in x. If it is a sink
path, then m ∈ π, hence π ∈ ΠG

SINK [x, m]. Otherwise, let let
π0 = x . . . n of π be any prefix of π. I can always extend this
in G to obtain a sink-bound path π′ starting with π0. But then
m ∈ π′, so either m ∈ π0, or n→∗G m.

Turning to the implication⇐, assume xΠG ∩Nω ⊆ ΠG
SINK [x, m],

and π ∈ xΠSINK. Let π0 = x . . . n be some prefix of π s.t. n ∈ S,
with S being the sink that π is bound for. Then either m ∈ π0,
and I am done, or n→∗G m. But then m ∈ S, and m ∈ π, because
a sink-bound path visits every m ∈ S infinitely often.

4. Trivial, given that the maximal paths in G are exactly the infinite
paths.

375

B Nontermination (In-)Sensitive Control Dependence

But, again informally,

liveness = least fixed point
safety = greatest fixed point

which is made somewhat more explicit in the setting of the modal µ
calculus (see, e.g., [BS07]). So the fact that →nticd is obtainable via
greatest fixed points, and →ntscd via least fixed points is — a posteriori
— perhaps not so surprising, while perhaps the fact that it is obtained
from a single functional is.

Remark B.2.1. My characterization of wMAX as liveness-, and wSINK as
safety property is unusual, since the definitions involve the predicate
n→∗G m, which is a property of the graphs G structure, while liveness-
, safety properties usually only involve predicates on the graphs nodes
(i.e.: states).

Note also that i did not characterize →nticd or →nticd as trace prop-
erties. They presumably are not trace properties, but 2-hyper-
properties[CS10].

Returning form this diversion, I will now finally define the rules
S3. First, I need a concept already implicit in the argument for
Lemma B.1.1.

Definition B.2.4. Given any node x, it’s next conditional node

nextCOND [x] = ε n. n ∈ CONDG, x →π
G n, π ∩ CONDG = {n}

is the (if any!) unique conditional node n that is reachable from x
without first reaching another conditional node.

The set of nodes on the path to the next conditional node from x (or
just the nodes linearly following x if there is no such node) is:

nextCOND [x] =

{
{m | x →π

G n, π cycle-free, m ∈ π } nextCOND [x] = n
{m | x →∗G m } nextCOND [x] = ⊥

376

B.2 Duality of Nontermination (In-)Sensitivity

Similarly,

prevCOND [x] = { p | p ∈ CONDG, p→π
G x, π ∩ CONDG = {p} , π 6= x }

is the set of set of conditional nodes p that can reach x (in at least one
step) without first reaching another conditional node.

Observation B.2.2. Note that for conditional nodes x ∈ CONDG

• nextCOND [x] = x, but

• not necessarily x ∈ prevCOND [x].

Remark B.2.2. Both nextCOND, nextCOND and prevCOND can easily
and (simultaneously) be computed in O (|CONDG| × |N|) steps, but
in practice usually not much more than O (|CONDG|).

Now, I can state S3:

Definition B.2.5. With S3 I denote both the rule system below, and the
corresponding monotone functional.

p→G x m ∈ nextCOND [x]

(p, x) ∈ S [m, p]
−−−−−−−−−−−−−−−−−−−−−−−−Slin

3

x →∗G m
p→G x n = nextCOND [x] |S [m, n]| = |{y | n→ y}|

(p, x) ∈ S [m, p]
−−Scond

3

Here, again, S is understood to be a map (N × CONDG)→ 2E.

Observation B.2.3. With regard to the least fixed point, S3 is equivalent
to S4:

µS3 = µS4

377

B Nontermination (In-)Sensitive Control Dependence

Remark B.2.3. This is also obvious: Slin
3 subsumes Ssuc

4 and Slin
4 , but

limits its applicability to nodes n in regions directly behind x. But this
is no limitation w.r.t µS4, since there, any finite derivation along linear
segments of G starting with an edge p →G x at Ssuc

4 and continuing
with Slin

4 have to end at the next conditional node nextCOND [x], anyway.

With regard to Slin
3 , first note that the requirement m →∗G x is vacu-

ously true in the least fixed point of S4. Also, w.r.t least fixed points of
S4, dropping the requirement n 6= p does not change anything, since
for n = p, this rules then requires (p, x) ∈ S [m, p] in order to derive
(p, x) ∈ S [m, p].
Moreover, for n = nextCOND [x], I immediately have (p, x) ∈ S [n, p] via
Slin

3 , so I can drop that requirement in Scond
3 .

Finally, S = µS4 has the property that whenever I can proof (p, x) ∈
S [m, p] with S4cond, then I can already proof

|S [m, n]| = |{y | n→ y}|

for all conditional nodes n reachable from x (without using (p, x) ∈
S [m, p]), so limiting myself to n = nextCOND [x] does not inhibit my
power. Also, for S = µS4 I never invoke S4cond with n unreachable
from x.

378

B.3 New Algorithms

B.3 New Algorithms

In this section, I will provide the — to the best of my knowledge –
first correct algorithm for the computation of →nticd. Before I proof
that it really is enough to compute the greatest fixed point of S3 (The-
orem B.3.1), I will first provide the Algorithm 16.

Observation B.3.1. Let S be computed by Algorithm 16. Then

S = νS3

Remark B.3.1. The initialization is correct because for any S consistent
with S3, (p, x) ∈ S [m, p′] implies p = p′, x →∗G m and p →G x —
hence, I need not start the iteration as high as > = (p, x) 7→ E. The
work-set is managed correctly, since any refutation of (n, y) ∈ S [m, n]
may invalidate at most those assertions (p, x) ∈ S [m, p] for which
n = nextCOND [x] (see Scond

3), but then it is enough to re-inspect those
(m, p) s.t. p ∈ prevCOND [n]2. In fact, I only need to re-inspect (m, p)
the first time i refute any (n, y) ∈ S [m, n]. So in Algorithm 16, I can
strengthen the highlighted check S′mp ⊂ S [m, p] by replacing it with

|S [m, p]| = |{x | p→G x}| ∧ S′mp ⊂ S [m, p]

in order to reduce the number of iterations.

Incidentally, since the relevant lattice
(
v, N × CONDG ↪→ 2E) is con-

structed from subset-lattice
(
⊆, 2E), the greatest fixed point computa-

tion S = νS3 can be replaced by a least fixed computation on the dual
(monotone) functional

S3 (S) [m, p] = S3

(
(m′, p′) 7→ S [m′, p′]

)
[m, p] (B.2)

2 note the reversal of varibale names n, p w.r.t the algorithms source code

379

B Nontermination (In-)Sensitive Control Dependence

Input : A CFG G = (N, E)
Input : Maps nextCOND and nextCOND
Output : A map NTICD such that NTICD[n] = {m | n→nticd m}
Data: A map S from pairs of nodes to sets of nodes
Data: A workset workset ⊆ N × CONDG
Notation: |n| for |{ x | n→G x }|
begin

for p ∈ CONDG, p→G x, x →∗G m do
S[m, p]← S[m, p] ∪ {(p, x)}

end
for p ∈ CONDG, p→∗G m do

workset← workset∪ {(m, p)}
end
while workset 6= ∅ do

(m, p)← remove(workset)
S′mp ← { (p, x) | p→G x, m ∈ nextCOND [x] }

∪ { (p, x) | p→G x, n = nextCOND [x] , |S[m, n]| = |n| }
assert S′mp ⊆ S[m, p]

if S′mp ⊂ S[m, p] then
workset← workset∪ { (m, n) | n ∈ prevCOND [p] }

end

end
for n ∈ N, m ∈ CONDG do

if 0 < |S[m, n]| < |n| then
→nticd[m]← →nticd[m] ∪ {n}

end
end

end
Algorithm 16: A correct algorithm for →nticd. The highlighted check
can be optimized.

380

B.3 New Algorithms

where for sets X ⊆ { (p, x) | p→G x } I denote with X its complement
w.r.t. { (p, x) | p →G x }. If I extend this notion of complement to
maps S : N × CONDG ↪→ 2E via

S [m, p] = S [m, p]

then definition (B.2) just reads:

S3 (S) = S3
(
S
)

The following lemma is easily shown along the lines of, e.g. [Fri02],
Lemma 20.9.

Lemma B.3.1. The greatest fixed point of S3 is dual to the least fixed
point of S3, i.e.:

νS3 = µS3

The rule system corresponding to S3 is:

p→G x ¬x →∗G m

(p, x) ∈ S [m, p]
−−−−−−−−−−−−−−−−−−−S3

unreach

p→G x ¬m ∈ nextCOND [x] n = nextCOND [x] |S [m, n]| 6= 0

(p, x) ∈ S [m, p]
−−S3

cond

To understand the following Lemma, recall the safety-property

{π ∈ x N | ¬ (π has a prefix π0 = x . . . n such that m /∈ π0,¬ n→∗G m)}

from Definition B.2.3 that characterized m wSINK x.

381

B Nontermination (In-)Sensitive Control Dependence

Lemma B.3.2. For S = µS3,

(p, x) ∈ S [m, p] ⇐⇒ ∃n, π0.m /∈ π0 ∧ x →π0
G n ∧ ¬n→∗G m

Proof (Sketch): For the implication =⇒ , proceed by induction on the

derivation of (p, x) ∈ S [m, p]. Case S3
unreach is trivial. For case S3

cond,
from |S [m, n]| 6= 0 obtain some n →P y s.t. — from the induction

hypothesis — there exists n′, π′0 with y →π′0
G n′, m /∈ π′0, but not:

n′ →∗G m. But then immediately for

π0 = x, . . .︸︷︷︸
linear

, n, y, π′0

I have: m /∈ π0, and not: n′ →∗G m.

For the implication ⇐ , assume m /∈ π0 ∧ x →π0
G n ∧ ¬n →∗G m.

In all but the trivial cases, let p′ ∈ prevCOND [n] be the conditional
node immediately preceding n in π0, and x′ the node succeeding that
occurrence of p′ in π0. Then — since there are no conditional nodes in
G between p′ and n — also ¬p′ →∗G m, and hence (p′, x′) ∈ S [m, p′]

by rule S3
unreach. But then (p, x) ∈ S [m, p] by following the path

π0 backwards, applying S3
cond at each segment p′′ →G x′′, n′′ =

nextCOND [x′′].

I immediately obtain:

Theorem B.3.1. The rule system S3 is correct w.r.t it’s greatest fixed
point, and →nticd. Specifically, let S = νS3. Then

(p, x) ∈ S [m, p] ⇐⇒ x wSINK m

Proof: The proof that

∃n, π0.m /∈ π0 ∧ x →π0
G n ∧ ¬ n→∗G m ⇐⇒ ¬ x wSINK m

382

B.3 New Algorithms

is just as the proof that ΠSINK [x, m] characterizes x wSINK m in Ob-
servation B.2.1. But then the theorem follows immediately from
Lemma B.3.2 and Lemma B.3.1.

Remark B.3.2. A machine checked proof of Theorem B.3.1 using the Is-
abelle/HOL proof assistant[NWP02] was prepared by Simon Bischof.
Bischofs proof does not invoke the dual functional S3, and directly in-
vokes co-inductive proof principles (while my proof of Lemma B.3.2
is purely inductive).

Observation B.3.2. Let S be computed by Algorithm 22. Then for all
relevant m, p:

(νS3) [m, p] = S [m, p]

383

C A Slicing Algorithm using
C-Edges

I don’t even know what I was running for —
I guess I just felt like it.

(J.D. Salinger — The Catcher in the Rye)

Whenever a CFG G has no non-trivial control-sink, the corresponding
pseudo-forests <SINK are proper forests1. Then by Observation 6.7.4,

→G
ntiod = ∅

and I can obtain control slices for arbitrary M from→G
nticd. In the special

case that there is only one exit node nx, I have →G
nticd = →G

cd, and by an
algorithm[SG95] based on DJ-Graphs, any backward-slice(

→G
nticd

)∗
(M) (C.1)

can be computed in linear time from <SINK without the construction of
→G

nticd.

In this section, I will demonstrate that the technique from [SG95] to
compute Equation C.1 can be generalized to arbitrary CFG with (pos-
sibly) multiple exit nodes nx, n′x, . . . and control-sinks.2

The original algorithm is presented with the application of placing
φ-nodes in CFG with unique entry node ne. It presupposes the dom-
inance-tree, and computes the iterated dominance frontiers of sets M
of variable definitions by considering join-edges n→J m, where

n→J m ⇔ n→G m ∧ ¬n ADOM m
⇔ n→G m ∧ n 6= idom (m)

1 i.e.: <SINK is free of cycles
2 but i make no formal claim about the worst-case running time of this generalization

385

C A Slicing Algorithm using C-Edges

1

2

10

36

4 9

1214

5

7

8

11

13

(a) A CFG, with→C bold

1 2

3

9

4

5

6

7

8

11

10 13

12 14

(b) <SINK ∪ →C, with→C bold

Figure C.1: Conditional Edges→C

In contrast, my application is backward-control-slicing in arbitrary
CFG. I presuppose the pseudo forest <SINK, and compute the iterated
postdominance frontiers of sets M of slicing criteria by considering
conditional-edges n→C m, where3

n→C m ⇔ n→G m ∧ m /∈ ipdomwSINK
(n)

That is, my setting is obtained from the original by

1. as usual, considering CFG with edges→G flipped, and then

2. generalizing to arbitrary CFG, by going from wPOST to wSINK.

3 it is not, in general, the case that n→C m ⇔ n→G m ∧ ¬m wSINK n

386

C A Slicing Algorithm using C-Edges

I recall the example CFG from Figure 5.1a and the corresponding
pseudo-forest <SINK in Figure C.1. Conditional edges n →C m are bold
in Figure C.1a, and have also been added to Figure C.1b.

In order to derive a generalized algorithm for the computation of
Equation C.1, I will now present the appropriate generalizations of
the relevant properties from [SG95]. I will require the following nota-
tion:

Definition C.0.1. The set of wSINK-ancestors of m is

wSINK ↑+ (m) = {m′′ | m′′ wSINK m′, m′ ∈ ipdomwSINK
(m) }

i.e.:, for a transitive, reflexive reduction >SINK of wSINK

= {m′′ | m<+
SINKm′′ }

similarily:
wSINK ↑∗ (m) = {m′′ | m′′ wSINK m }

= {m′′ | m<∗SINKm′′ }

The following observation is to be understood as a generalization of
the (key) Lemma 3.1 in [SG95]:

Observation C.0.1. Let G be any CFG, and n 6= m. Then

n→nticd m ⇐⇒ n→C m0 and m wSINK m0 and ¬ m wSINK n

for some node m0. With regard to any corresponding pseudo-forest <SINK :

n→nticd m ⇐⇒ n→C m0<
∗
SINKm and ¬ n<∗SINKm

for some node m0.

Up to the flipping of edges in G, the authors in [SG95] assume a
unique exit node nx, and hence can assume <SINK to be a proper tree,
which allows them to presuppose for each node n it’s level lvl (n),
defined as its distance from the root.

387

C A Slicing Algorithm using C-Edges

Lemma C.0.1 ([SG95], Lemma 3.1, after flipping edges in G). Let G be
a CFG with unique exit node nx, and n 6= m. Then n→cd m iff there
exists a node m0 in the sub-tree rooted in m with conditional edge
n→C m0 and lvl (n) ≤ lvl (m).

So in my generalization,

m0 in the sub-tree rooted in m became m0<
∗
SINKm

lvl (n) ≤ lvl (m) became ¬ n<∗SINKm

By Observation C.0.1, I can compute

(→nticd)
∗ (M)

by following (→C ∪ <SINK)-paths backwards from nodes m ∈ M, dis-
regarding reached nodes n in accord with the condition ¬ n<∗SINKm. In
the special case of a unique exit node nx, there is an efficient algorithm
to do this because by keeping a (never increasing) current tree level l,

1. no candidate node n ever needs to be visited twice (even if there
paths from n to multiple nodes m, m′, . . . ∈ M),

2. the algorithm only ever needs to consider nodes n such that
lvl (n) ≤ l, which — unlike ¬ n<∗SINKm — is a O (1) check!

So in order to devise an algorithm for the general case, I need a gen-
eralized notion of the “pseudo-forest level” of nodes n that allows me
to replace checks ¬ n<∗SINKm by a comparison of pseudo-forest levels.

Recall that in pseudo-forests <, roots are either single nodes {r}, or
<-cycles R. So the following definition generalizes the notion of tree-
level:

Definition C.0.2. For any pseudo forest < and any node n, let Rn ⊆ N
be the root of the pseudo-tree of n. Then I define

lvl< (n) = min
π=n,...,r r∈Rn

|π| ≥ 1

388

C A Slicing Algorithm using C-Edges

I also define the level of the <-successor of n:

lvl<next (n) =

{
lvl (n′) if n < n′

0 if there is no such n′

Note that for “most” nodes, lvl<next (n) = lvl< (n)− 1, i.e.:

lvl<next (n) < k ⇐⇒ lvl< (n) ≤ k

In a backward-traversal of (→C ∪ <SINK), I obviously cannot “jump
trees by” following <SINK. Also, as a consequence of the following Ob-
servation C.0.2, whenever I reach a candidate node n by backwards-
following a conditional edge n→C m0 <∗SINKm:

1. n cannot be in any proper <SINK-cycle (and specifically: ¬ n ∈ Rm)

2. if n is in a different pseudo tree than m0 and m, then {n} is a
root, i.e.: ¬ n<+

SINKm′ for any node m′, and lvl<SINK (n) = 1.

3. if n 6= m is in the same pseudo-tree as m0 and m, then ¬ n<∗SINKm
iff lvl<SINK

next (n) < lvl<SINK (m).

But this just means that regardless whether the edge n →C m0 jumps
trees or not, I can simply test lvl<SINK

next (n) < lvl<SINK (m).

Observation C.0.2. Let G be any CFG with corresponding pseud-
forest <SINK. Then whenever n→C m,

wSINK ↑∗ (m) ⊃ wSINK ↑+ (n)

and m /∈ wSINK ↑+ (n)

Note that the inequation is strict. For n that do have some immedi-
ate wSINK-dominator, this can be understood to mean that conditional
edges n →C m “never advance toward the root of n”, but remain in
the same tree. If n does not have any immediate wSINK-dominator, Ob-

389

C A Slicing Algorithm using C-Edges

servation C.0.2 makes no restriction, and n→C m may “jump between
pseudo-trees”.

In the example Figure C.2 on page 393, I show a two-tree pseudo-
forest <SINK and highlight for some n the set Mn of nodes m that “are
allowed” by Observation C.0.2.

In Algorithm 17, I write just lvl for lvl<SINK and lvlnext for lvl<SINK

next .
Unlike the original algorithm for the special case with unique exit
node nx, my general algorithm cannot proceed with a never-increasing
global current level, because I will sometimes discover new trees n via
an edge n →C m0. Instead, I hold fast to a current node m — se-
lected from the priority-queue Q — whose sub-tree I explore, noting
edges n→C m0 en passant. The check m′0 /∈ Visited ensures that I never
explore a node more than once.

Observation C.0.3. Let G be any CFG, M any set of nodes, and N be
computed by Algorithm 17. Then

N = (→nticd)
∗ (M)

I derived Algorithm 17 by generalizing the algorithm from [SG95] for
classical (post-)dominance, which is a nontermination-insensitive no-
tion. But Algorithm 17 works just as well for nontermination sensitive
postdominance:

Observation C.0.4. Let G be any CFG, M any set of nodes, and N be
computed by Algorithm 17, with input >MAX instead of >SINK. Then

N = (→ntscd)∗ (M)

Closing this section, let me note that since control-sinks do not con-
tribute to (→nticd)

∗, it was to be expected that the original algorithm
could be generalized to pseudo-trees. What may not have been obvi-
ous is my generalization to (pseudo)-forests. I also fully expect that
the algorithm does not only work for wSINK and wMAX, but for a gen-
eral class of “postdominance like” relations w. It would be interesting

390

C A Slicing Algorithm using C-Edges

Input : A set M of nodes (the slice criteria)
Input : A transitive reduction >SINK of wSINK

Input : The conditional edges→C
Output: The set (→nticd)

∗ (M)
N← M
Q← M
Visited← ∅
while Q 6= ∅ do

m← remove(Q) s.t. lvl (m) = maxm∈Q lvl (m)
if m /∈ Visited then

M0 ← {m}
while M0 6= ∅ do

m0 ← remove(M0)
for n→C m0, n /∈ N, lvlnext (n) < lvl (m) do

N← N∪ {n}
Q← Q∪ {n}

end

for m’0<SINKm0, m’0 /∈ Visited do
M0 ← M0 ∪ {m’0}

end
Visited← Visited∪ {m0}

end
end

end
return N

Algorithm 17: Computation of (→nticd)
∗ (M) via→C

391

C A Slicing Algorithm using C-Edges

to check if, for example, the conditions for admiting an efficient PDF
partitioning (Definition 3.2.7 on page 25) are already sufficient.

392

C A Slicing Algorithm using C-Edges

Fi
gu

re
C

.2
:T

he
re

gi
on

M
n

su
ch

th
at

n
→

C
m

is
no

t
pr

oh
ib

it
ed

by
O

bs
er

va
ti

on
C

.0
.2

393

D Algorithm Variants

An algorithm must be seen to be believed, and the best way
to learn what an algorithm is all about is to try it.

(Donald Knuth — The Art of Computer Programming Vol. 1)

A slightly more efficient variant of Algorithm 3 is shown in Algo-
rithm 18. Whenever it is known that the pseudo-forest < is cycle-free,
the checks n′ ∈ ßn and m′ ∈ ßm can be omitted.

Algorithm 19 is an algorithm for the computation of a pseudoforest
<MAX. It maintains a work-queue of nodes with fixed iteration order,
instead of a work set.

Algorithm 20 and 21 compute a cost demand, i.e.: costs such that after
adding them to the timing cost of edged towards nodes n0, m0, the
returned node is a timing sensitive least common ancestor of n0, m0.

395

D Algorithm Variants

Input : A pseudo-forest <, represented as a map
IMDOM : N ↪→ N s.t. IMDOM [n] = m iff n < m.

Input : Nodes m0, n 0
Output : A least common ancestor of n 0, m0, or ⊥ if there is

none.
begin

return lca (n 0, m0)
end
Function lca (π n , πm)

Input : A <-path π n = n 0, . . . , n ending in n
Input : A <-path πm = m0, . . . , m ending in m
if m ∈ π n then return m
switch IMDOM[n] do

case ⊥ do return lin[π n] (πm)
case n’ do

if n’ ∈ π n then
return lin[π n] (πm)

end
return lca(πm , π n n’)

end
end

end
Function lin[π n] (πm)

Input : A <-path πm = m0, . . . , m ending in m
Implicit : A <-path π n = n 0, . . . , n ending in n
switch IMDOM[m] do

case ⊥ do return ⊥
case m’ do

if m’∈ π n then return m’
if m’∈ πm then return ⊥
return lin(πmm’)

end
end

end
Algorithm 18: A least common ancestor algorithm variant of Algo-
rithm 3

396

D Algorithm Variants

Input : A CFG G
Data: A pseudo-forest < represented as a map IMDOM : N ↪→ N s.t.

IMDOM [n] = m iff n < m
Output: A transitive reduction <MAX of wMAX

begin
for x ∈ N, {z | x →G z} = {z} , z 6= x do

IMDOM [x]← z
end
MAXIMALup
return IMDOM

end
Procedure MAXIMALup

workqueue← CONDG
oldest← ⊥
while workqueue 6= ∅ do

x ← removeFront(workqueue)
assert IMDOM[x] = ⊥
if oldest = x then

return
end
if oldest = ⊥ then

oldest← x
end
a← lca ({ y | x →G y })

z←
{
⊥ if a = ⊥ ∨ a = x
a otherwise

if z 6= ⊥ then
IMDOM [x]← z
oldest← ⊥

end
else

pushBack (workqueue, x)
end

end
end
Algorithm 19: An efficient algorithm for the computation of some
<MAX.

397

D Algorithm Variants

Input : A N labeled pseudo-forest <, represented as a map
IDOM : N ↪→ N ×N s.t. IDOM [n] = (m, k) iff n <k m

Input : Numbers kn0 , km0 ∈N and nodes n0, m0 such that some
<MAX-least common ancestor exists

Output : A triple (a, k, ∆C) such that ∆C is a map with
(a, k) = lca< ((n0, kn0 + ∆C[n0]) , (m0, km0 + ∆C[m0])), or
⊥ if no such triple exists

begin
return lca ((n0, kn0 , [n0 7→ kn0]) , (m0, km0 , [m0 7→ km0]))

end
Function lca (πn, πm)

Input : A cycle-free <-path πn = n0, . . . , n ending in n,
represented by a tuple (n, kn, KSn) where KSn is a
map on the nodes n appearing in πn s.t.
kn = KSn [n] and for any such n

KSn [n] = kn0 + ∑i ki for n0 <k1 . . . <kc n in πn
Input : A <-path πm = m0, . . . , m likewise
if m ∈ πn then let ∆C = |km −KSn [m]| in

if km = KSn [m] then return (m, [n0 7→ 0, m0 7→ 0])
if km < KSn [m] then return (m, [n0 7→ 0, m0 7→ ∆C])
if km > KSn [m] then return (m, [n0 7→ ∆C, m0 7→ 0])

end
switch IDOM[n] do

case ⊥ do return lin[πn] (πm)
case (n’, k) do

if n’ ∈ πn then return lin[πn] (πm)
return lca(πm, πn’) where πn’ = (n’, kn + k, KSn [n’ 7→ kn + k])

end
end

end
Algorithm 20: A least common ancestor algorithm that computes a tim-
ing cost demand, continued in Algorithm 21

398

D Algorithm Variants

Function lin[πn] (πm)
Input : A <-path πm = m0, . . . , m ending in m, represented

as in Algorithm 20
Implicit : A <-path πn = n0, . . . , n ending in n, likewise
switch IDOM[m] do

case ⊥ do return ⊥
case (m’, k) do let km’ = km + k in

if m’ ∈ πn then let ∆C = |km’ −KSn [m’]| in
if km’ = KSn [m’] then return (m’, [n0 7→ 0, m0 7→ 0])
if km’ < KSn [m’] then return (m’, [n0 7→ 0, m0 7→ ∆C])
if km’ > KSn [m’] then return (m’, [n0 7→ ∆C, m0 7→ 0])

end
if m’ ∈ πm then return ⊥
return lin(πm’) where πm’ = (m’, km’, KSm [m’ 7→ km’])

end
end

end
Algorithm 21: A least common ancestor algorithm that computes a tim-
ing cost demand (continued from Algorithm 20)

399

D Algorithm Variants

D.1 Another Algorithm for →nticd

Owing to Lemma B.3.1, I can give another work-set algorithm (Algo-
rithm 22) for the computation of →nticd. I use a variant prev→COND of
prevCOND that — along with predecessor-conditional nodes n of some
node p — also gives me the node(s) x s.t. n→G x →∗G p.

400

D.1 Another Algorithm for →nticd

Input : A CFG G = (N, E)
Input : Maps nextCOND and prev→COND
Output : A map NTICD such that NTICD[n] = {m | n→nticd m}
Data: A map S from pairs of nodes to sets of nodes
Data: A workset workset ⊆ N × CONDG × N
begin

for p ∈ CONDG, p→G x, ¬ x →G m do
S[m, p]← S[m, p] ∪ {(p, x)}

end
for p ∈ CONDG, m ∈ N, |S[m, p]| 6= 0, (n, x) ∈ prev→COND [p] do

workset← workset∪ {(m, n, x)}
end
while workset 6= ∅ do

(m, p, x)← remove(workset)
if ¬m ∈ nextCOND [x] and ¬ (p, x) ∈ S[m, p] then

if |S[m, p]| = 0 then
workset← { (m, n, x′) | (n, x′) ∈ prev→COND [p] }

end
S[m, p]← S[m, p] ∪ {(p, x)}

end

end

for n ∈ N, m ∈ CONDG do
if 0 < |S[m, n]| < |{x | n→G x}| then
→nticd[m]← →nticd[m] ∪ {n}

end
end

end
Algorithm 22: A least fixed point algorithm for →nticd.

401

D Algorithm Variants

D.2 Efficient lca< via Postorder Numbers

In Algorithm 5 and Algorithm 6, the intersection of the postdomi-
nance sets of all successors of x of a conditional node p, i.e. the com-
putation of the set of nodes m s.t. m w p via the rule (see: Theo-
rem 5.1.2)

∀p→G x. m w x p→∗G m
m w p

Dsuc

was replaced by it’s abstraction in <, i.e. by the computation of

lca< ({ x | p→G x })

In [CHK01], the algorithm for the computation of dominance in
graphs with unique entry node ne similarly computes the set of nodes
m s.t. m wDOM p (by considering all predecessors x of join-nodes p),
but employs one additional abstraction:

There, the least common ancestor lca< ({ x | x →G p }) is also com-
puted by following paths in < and terminating once the path πn =
n0, . . . , n from one predecessor n0 joins the path πm from another pre-
decessor m0 (as is done by Algorithm 3), but the check n ∈ πm is
replaced by an (arithmetic) comparison of the nodes’ postorder num-
bers.

In this subsection, i will demonstrate how this very technique can be
adapted to the computation of <SINK.

First, i observe that the phase SINKup in Algorithm 6 can be replaced
by a depth-first traversal in the reversed graph G−1. Remember that i
need to compute an approximation >0 of >SINK, i.e. a pseudo-forest >0
such that

>∗0 ⊇ wSINK

402

D.2 Efficient lca< via Postorder Numbers

Observation D.2.1. Let G = (N, E) be any CFG, S1, . . . , Sn its sinks,
and S =

⋃
Si. Choose a distinct node si for each Si. Also choose for

each Si a fixed ordering n1, . . . , nk of each Si.

Let F ⊆ N × N be the depth-first forest obtained from a search in
G−1, iteratively starting from the fixed nodes si, and let

<0 =
⋃

i
{
(

nj, n(j+1 mod k)

)
| nj ∈ Si }

∪ { (m, n) | (n, m) ∈ F, m /∈ S }

Then
>∗0 ⊇ wSINK

With regard to the precision of this >0 compared with hat computed
by phase SINKup in Algorithm 6, experiments with randomly gener-
ated graphs suggest that the result of SINKup is for most graphs more
precise than that of the depth first search (if measured by the cardi-
nality of >∗0) and leads to quicker termination of phase SINKdown; but
this is not true for every graph G.

Next i observe that, given a post-order numbering # : N → N+ of the
depth-first search as obtained in Observation D.2.1, the lca< (n, m) of
any approximation < of wSINK with which that numbering is compatible
can be computed using arithmetic comparisons:

Definition D.2.1. Let < be a pseudo-forest with cycles Si, and S =⋃
i

Si.

A numbering1 # : N →N is called compatible with < if

1. for n /∈ S and n < m: n# < m#

2. for n ∈ Si and n < m: m = sj+1 mod k

1 i.e.: an injective map

403

D Algorithm Variants

given that n = sj and Si = s1, . . . , sk ordered by the numbering
#.

Observation D.2.2. In the situation of Definition D.2.1, and given
n0, m0 ∈ N, Algorithm 23 computes a number a# such that a ∈
lca< (n, m), or 0 if lca< (n, m) = ∅.

Proof (Sketch): Upon terminating with a# 6= 0, the algorithm has fol-
lowed two strictly ascending2 sequences π#

n = n#
0, . . . , n# and π#

m =
m#

0, . . . , m# such that n# = m# and n0 < . . . < n and m0 < . . . < m,
i.e.: n0 <∗ a ∧ m0 <∗ a. Also, since πn, πm are disjunct up to m = n,
a < a′ for any other common ancestor of n0, m0. If, on the other hand,
the algorithm terminates with 0, then — up to symmetry — either

• n# = 0, m# 6= 0, i.e.: π#
n = n#

0, . . . , n′#, 0 and π#
m = m#

0, . . . , m#

with πn ∩ πm = ∅ and n′ < x for no x ∈ N, or

• π#
n = n#

0, . . . , n# and π#
m = m#

0, . . . , m# with m < m′, m′# ≤ m#

and n# > m#. But because # is compatible, m# = maxm0<∗x x# =
s#

k , with sk ∈ Si. Since n# > m#, there is no node s ∈ Si s.t.
n0 <∗ s, and with πn ∩πm = ∅, it follows that lca< (n0, m0) = ∅.

Ordering each sinks nodes by #, any approximation <0 obtained
via Observation D.2.1 is obviously compatible with the correspond-
ing post-order numbering #. If i am to use Algorithm 23 in an
algorithm phase similiar to SINKdown, compatibility has to be up-
held — but this is simply to the fact that initially, if n <∗0 m and
n /∈ S, not only n# < m# (compatibility), but also n →G m. Since
for a = lca< ({ x | n→G x }) as computed by Algorithm 23 i have
∀x.x# ≤ a#, i retain n# < a# whenever i update < at n with such a
least common ancestor of the successors of n.

Empirical Observation D.2.1. Let G be any CFG. Then Algorithm 24
terminates with a result <SINK s.t. >SINK is a transitive reduction of wSINK.

2 due to compatibility

404

D.2 Efficient lca< via Postorder Numbers

Implicit : A pseudo-forest < with cycles Si, represented as a map
ISDOM# : N→N s.t. ISDOM# [n#] = m# iff n < m,
and ISDOM# [n#] = 0 if there is no such m, for a
postorder numbering # : N →N+ compatible with <.

Input : Postorder Numbers Nodes m#
0, n #

0 of Nodes m0, n 0
Output : The Postorder Number of a least common ancestor of

n 0, m0, or 0 if there is none.
Function lca# (n #, m#)

Input : A Postorder Number n # such that π n = n 0, . . . , n
is a <-path ending in n

Input : A Postorder Number m# such that πm = m0, . . . , m
is a <-path ending in m

if m# = 0 ∨ n # = 0 then return 0
if n # > m# then

m′# ← ISDOM[m#]

if m′# ≤ m# then
return 0 (m′ ∈ πm)

end

else return lca#
(

n #, m′#
)

end
if n # = m# then return n #

if n # < m# then
n ′# ← ISDOM[n #]

if n ′# ≤ n # then
return 0 (n ′ ∈ π n)

end

else return lca#
(

n ′#, m#
)

end
end
Algorithm 23: A least common ancestor algorithm for nodes represented
by their postorder number

405

D Algorithm Variants

Input : A CFG G
Data : A pseudo-forest <, represented as a map ISDOM# : N→N

s.t. ISDOM# [n#] = m# iff n < m, and ISDOM# [n#] = 0 if
there is no such m

Output: A transitive reduction <SINK of wSINK

begin
{S1, . . . , Sn} ← {Sk | Sk ∈ scc (G) ,¬ ∃s→G n. s ∈ Sk ∧ n /∈ Sk}
S← ⋃

Si
for 1 ≤ i ≤ n do

si ← any node in Si
end
let <0 be obtained by a depth first search in G−1 (see:
Observation D.2.1), compatible with post-order numbering #

for n <0 m do
ISDOM# [n#]← m#

end
SINK#

down
return ISDOM

end
Procedure SINK#

down
repeat

changed← false
for x ∈ COND do

a# ← lca# ({ y# | x →G y }
)

z# ←

0 if a# = 0
s#

i if a ∈ Si

a# otherwise
if z# 6= ISDOM# [x#] then

ISDOM# [x#]← z#

changed← true
end

end
until ¬changed

end
Algorithm 24: An Algorithm for the computation of some <SINK.

406

D.2 Efficient lca< via Postorder Numbers

The fixed point iteration in Algorithm 24 is the most naive imple-
mentation possible. Several worklist based optimizations are possible.
Again, one can also make use of the fact that once ISDOM# [x#] = 0, x
no longer needs to be considered. As is, Algorithm 24 can be read as
a strict generalization3 of the algorithm in [CHK01].

3 after the transition from G to G−1

407

E Generalizations for CFG with
Timing Cost Model

This is a real frickin’ embarrassment.

(Scout — Teamfortress 2)

In Subsection 9.4.3, I described an algorithm (Algorithm 11) for
the computation of the timing sensitive postdominance frontier
PDFwTIME[FIRST] for CFG under the (implicit) uniform timing cost model
1 which assigns a duration of 1 unit of time to each edge n→G m.

The algorithm was derived from Observation 9.2.3 on page 176 for

w = wTIME[FIRST] = w1

TIME[FIRST]

via a corresponding least fixed point characterization in Figure 9.5 on
page 178.

I did not justify why it is enough to take the least fixed of rule system
in Figure 9.5. In fact, Observation 9.2.3 merely characterizes, for each
node x, PDFwTIME[FIRST] (x) in terms of some sets PDFup

wTIME[FIRST]
(x, z),

and hence ultimately: in terms of PDFwTIME[FIRST] (z) of some nodes z.
In other words: it is — in general — merely a mutually recursive system
of equations, and Algorithm 11 merely states that PDFwTIME[FIRST] is
some solution of this system, but — a priori — not necessarily the
least.

Consider the CFG in Figure E.1a under the default timing cost 1.

For w = wTIME[FIRST], I have

ipdomwTIME[FIRST]
(m) = ipdomwTIME[FIRST]

(w) = {m, w}

409

E Generalizations for CFG with Timing Cost Model

(a) A CFG G

1

1

21

1

(b) A CFG GC with timing cost C

Figure E.1: The need for a modification of Algorithm 11.

and so from Observation 9.2.3 i merely obtain

PDFw (m) = PDFlocal
w (m)︸ ︷︷ ︸

= {v}

∪ . . . ∪ PDFup
w (m, m)∩ v′w︸ ︷︷ ︸
⊆ PDFw(m)

and PDFw (w) = PDFlocal
w (w)︸ ︷︷ ︸
= ∅

∪ . . . ∪ PDFup
w (m, m)∩ v′w︸ ︷︷ ︸
⊆ PDFw(w)

Note that the inequation PDFup
w (m, m)∩ v′w ⊆ PDFw (m) is already

due to the definition

PDFup
w (m, m) = { y ∈ PDFw (m) | ¬ m 1-w y }

of PDFup
w (m, m).

At the same time I observe — by manual inspection of G — that m
is timing sensitively dependent on n (i.e.: n ∈ PDFw (m)). Since in
the equation for PDFw (m), n does not appear left from the ellipsis . . .,
and the term on the right of the ellipsis is not “productive” (it is, after
all, a subset of PDFw (m)) in a least fixed point computation, the node

410

E Generalizations for CFG with Timing Cost Model

n must “reach” PDFw (m) via some term in the ellipsis. And indeed
it does: realizing that n ∈ PDFw (n′′), and that m ∈ ipdomw (n′′), but
¬ n′′ ∈ ipdomw (m), the node n reaches PDFw (m) via

PDFw (m) = . . . ∪ PDFup
w (n′′, m) ∪ . . .

In summary, everything is fine for PDFwTIME[FIRST] = PDF1
wTIME[FIRST]

.

Even though the equation for PDFw (m) is (syntactically) not fully
productive whenever m ∈ ipdomw (m) (i.e.: when m is in a non-trivial
<TIME cycle M), nevertheless all y ∈ PDFw (m) are provided either by
PDFlocal

w (m′) for some m′ ∈ M, or by PDFw (n′) for some node n′ /∈ M
such that m ∈ ipdomw (n′).

In contrast, things are not generally fine for PDFC
wTIME[FIRST]

for arbitrary
timing cost model C. Both Observation 9.2.3, and the simplifications
Observation 9.2.4 and Observation 9.2.5 of PDFlocal

w and PDFup
w do hold

even for w = wC
TIME[FIRST] and arbitrary G, C. But for PDFC

wTIME[FIRST]
, it

is no longer enough to simply take the least fixed point of this system
of equations.

Consider the CFG and the timing cost model C shown in Figure E.1b.
Up to intermediate nodes v′, n′, n′′, this is essentially the same CFG as
before.

Again, I have

ipdomwC
TIME[FIRST]

(m) = ipdomwC
TIME[FIRST]

(w) = {m, w}

and so from Observation 9.2.3 I obtain gain, for w = wC
TIME[FIRST],

PDFw (m) = PDFlocal
w (m)︸ ︷︷ ︸

= {v}

∪ . . . ∪ PDFup
w (m, m)∩ v′w︸ ︷︷ ︸
⊆ PDFw(m)

and PDFw (w) = PDFlocal
w (w)︸ ︷︷ ︸
= ∅

∪ . . . ∪ PDFup
w (m, m)∩ v′w︸ ︷︷ ︸
⊆ PDFw(w)

411

E Generalizations for CFG with Timing Cost Model

I observe — again by manual inspection, this time of CFG GC under
timing cost model C – that m is timing sensitively dependent on n
under timing cost model C (i.e.: n ∈ PDFw (m)).

But can I obtain n ∈ PDFw (m) by a least fixed point iteration? In other
words, can I obtain n ∈ PDFw (m) purely from the center ellipsis . . .
for m? First, I must observe that

m /∈ ipdomwC
TIME[FIRST]

(v) = ipdomwC
TIME[FIRST]

(n) = {w}

In other words: now there exists no node n′′ outside of M = {m, w}
such that m ∈ ipdomwC

TIME[FIRST]
(n′′). Also, w ∈ M is not timing sensi-

tively control dependent on n under cost model C: ¬ n ∈ PDFw (w).

The full equation for m thus reads: PDFw (m) =

PDFlocal
w (m)︸ ︷︷ ︸

= {v}

∪ PDFup
w (w, m)∩ v′m︸ ︷︷ ︸
⊆ PDFw(w)

∪ PDFup
w (m, m)∩ v′m︸ ︷︷ ︸
⊆ PDFw(m)

which is not productive for n ∈ PDFw (m), so I can not obtain
PDFw (m) as a least fixed point of the implied functional (nor as the
least fixed point from the simplified rule system Figure 9.5).

I did not investigate whether PDFw can be obtained as the greatest
fixed point of Figure 9.5 or some related system. Instead I observe that
nodes n missing in the least fixed point computation for PDFw (m)
must always be nodes at the border NM of the <C

TIME-cycle M that m is
part of. This means that I can compute PDFw as a least fixed point, if
I augment the rule system Figure 9.5 with the additional rule

y→G y′

¬ x ∈ ipdomw (y) x ∈ M M ∈M y ∈ NM x w y′

y ∈ PDFw (x)
PDF

where M denotes the set of non-trivial <C
TIME-cycles. The rule is di-

rectly derived from the definition of PDFw, but restricted to a small

412

E Generalizations for CFG with Timing Cost Model

subset of pairs x, y of nodes. Note that since x ∈ M, the condition
x w y′ can be replaced by

y′ ∈ M ∨ y′ < . . . < n ∧ x ∈ ipdomw (n) for some n

where
< := { (n, m) | n <C,k

TIME m, m /∈ M }
is obtained from <C

TIME by deleting all edges into M.

The resulting Algorithm 25 differs from Algorithm 11 only by addition
of the highlighted lines.

413

E Generalizations for CFG with Timing Cost Model

Input : A CFG G = (N, E)
Input : Any numbering # : N →N

Input : Immediate post dominators ipdomw = ipdomwC
TIME[FIRST]

Input : The transitive reduction <C
TIME of transitive timing sensitive

postdominance under timing cost model C
Input : The set M of <C

TIME-cycles M
Input : The set NM of corresponding “border” nodes in <C

TIME, and
NM =

⋃
M∈M NM

Data: A priority queue Q ordered by the numbering #

Output: PDFwC
TIME[FIRST]

represented as a map DF : N → N ↪→ Bool

Q← ∅
for M ∈M, |M| > 1 do

for y ∈ NM, x ∈ M \ ipdomw (y) , ∃y′. y→G y′ ∧ x w y′ do
DF [x] [y]← false

end
end
for x ∈ N, y→G x, ¬ x ∈ ipdomw (y) do

DF [x] [y]← true
Q← Q∪ {x}

end
while Q 6= ∅ do

z← remove(Q) s.t. z# = maxz∈Q z#

for x ∈ ipdomw (z) , (y, true) ∈ DF [z] , ¬ x ∈ ipdomw (y) do
DFx,y ← DF [x] [y]
DF′x,y ← DFx,y ∨ (z /∈ NM)

if DF′x,y 6= DFx,y then
DF [x] [y]← DF′x,y
Q← Q∪ {x}

end
end

end
return DF

Algorithm 25: Computation of PDFwC
TIME[FIRST]

414

E Generalizations for CFG with Timing Cost Model

Input : A CFG G
Input : A timing cost model C for G
Data: A N labeled pseudo-forest <, represented as a map

IDOM : N ↪→ N ×N s.t. IDOM [n] = (m, k) iff n <k m
Output: A transitive reduction >C

TIME of wC
TIME

begin
for x ∈ N, {z | x →G z} = {z} do

IDOM [x]←
(

z, C (x, z)
)

end
TIMEup
return IDOM

end
Procedure TIMEup

workset← CONDG
while workset 6= ∅ do

x ← remove(workset)

(z, k)← lca<
(
{
(

y, C (x, y)
)
| x →G y }

)
assert (z, k) 6= IDOM[x] ⇒ (z, k) 6= ⊥
assert (z, k) 6= IDOM[x] ⇒ IDOM[x] = ⊥
if (z, k) 6= IDOM[x] then

workset← workset∪ {n ∈ COND | n 6= x, ∃n→G y. y <∗ x}
IDOM [x]← (z, k)

end
end

end
Algorithm 26: An efficient algorithm for the computation of <C

TIME.
Here, y <∗ x is taken to mean: x = y ∨ y <k1 . . . <kc x

415

Bibliography

Ahenny (adj.) — The way people stand when
examining other people’s bookshelves.

(Douglas Adams — The Deeper Meaning of Liff)

[Aga00] Johan Agat. “Transforming out Timing Leaks”. In: Pro-
ceedings of the 27th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. POPL ’00. Boston,
MA, USA: ACM, 2000, pp. 40–53. isbn: 1-58113-125-9. doi:
10.1145/325694.325702.

[Alm+16] Jose Bacelar Almeida et al. “Verifying Constant-Time
Implementations”. In: 25th USENIX Security Symposium
(USENIX Security 16). Austin, TX: USENIX Association,
Aug. 2016, pp. 53–70. isbn: 978-1-931971-32-4.

[Amt08] Torben Amtoft. “Slicing for modern program structures:
a theory for eliminating irrelevant loops”. In: Information
Processing Letters 106.2 (2008), pp. 45–51. issn: 0020-0190.
doi: https://doi.org/10.1016/j.ipl.2007.10.002.

[AS85] Bowen Alpern and Fred B. Schneider. “Defining liveness”.
In: Information Processing Letters 21.4 (1985), pp. 181–185.
issn: 0020-0190. doi: https://doi.org/10.1016/0020-
0190(85)90056-0.

[Ask+08] Aslan Askarov et al. “Termination-Insensitive Noninter-
ference Leaks More Than Just a Bit”. In: Computer Se-
curity - ESORICS 2008. Ed. by Sushil Jajodia and Javier
Lopez. Berlin, Heidelberg: Springer Berlin Heidelberg,
2008, pp. 333–348. isbn: 978-3-540-88313-5.

[Bar+10] Richard W. Barraclough et al. “A trajectory-based strict
semantics for program slicing”. In: Theoretical Computer
Science 411.11 (2010), pp. 1372–1386. issn: 0304-3975. doi:
https://doi.org/10.1016/j.tcs.2009.10.025.

417

http://dx.doi.org/10.1145/325694.325702
http://dx.doi.org/https://doi.org/10.1016/j.ipl.2007.10.002
http://dx.doi.org/https://doi.org/10.1016/0020-0190(85)90056-0
http://dx.doi.org/https://doi.org/10.1016/0020-0190(85)90056-0
http://dx.doi.org/https://doi.org/10.1016/j.tcs.2009.10.025

Bibliography

[BB05] David Brumley and Dan Boneh. “Remote timing attacks
are practical”. In: Computer Networks 48.5 (2005). Web Se-
curity, pp. 701–716. issn: 1389-1286. doi: https://doi.
org/10.1016/j.comnet.2005.01.010.

[Ber05] Daniel J. Bernstein. Cache-timing attacks on AES. Tech. rep.
2005.

[Bis+18a] Simon Bischof et al. “Illi Isabellistes Se Custodes Egre-
gios Praestabant”. In: Principled Software Development: Es-
says Dedicated to Arnd Poetzsch-Heffter on the Occasion of
his 60th Birthday. Ed. by Peter Müller and Ina Schaefer.
Springer International Publishing, 2018, pp. 267–282. doi:
10.1007/978-3-319-98047-8_17.

[Bis+18b] Simon Bischof et al. “Low-Deterministic Security For
Low-Nondeterministic Programs”. In: Journal of Computer
Security 26 (2018), pp. 335–366. doi: 10.3233/JCS-17984.

[Bis19] Simon Bischof. Isabelle Theories about NTxCD. 2019. url:
https://pp.ipd.kit.edu/~bischof/ntxcd.html (visited
on 12/13/2010).

[BJ66] Corrado Böhm and Giuseppe Jacopini. “Flow Diagrams,
Turing Machines and Languages with Only Two Forma-
tion Rules”. In: Commun. ACM 9.5 (May 1966), pp. 366–
371. issn: 0001-0782. doi: 10.1145/355592.365646.

[BM06] Joseph Bonneau and Ilya Mironov. “Cache-Collision Tim-
ing Attacks Against AES”. In: Cryptographic Hardware and
Embedded Systems - CHES 2006. Ed. by Louis Goubin and
Mitsuru Matsui. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2006, pp. 201–215. isbn: 978-3-540-46561-4.

[BP10] Joan Boyar and René Peralta. “A New Combinational
Logic Minimization Technique with Applications to Cryp-
tology”. In: Experimental Algorithms. Ed. by Paola Festa.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010,
pp. 178–189. isbn: 978-3-642-13193-6.

418

http://dx.doi.org/https://doi.org/10.1016/j.comnet.2005.01.010
http://dx.doi.org/https://doi.org/10.1016/j.comnet.2005.01.010
http://dx.doi.org/10.1007/978-3-319-98047-8_17
http://dx.doi.org/10.3233/JCS-17984
https://pp.ipd.kit.edu/~bischof/ntxcd.html
http://dx.doi.org/10.1145/355592.365646

Bibliography

[BP96] Gianfranco Bilardi and Keshav Pingali. “A Framework for
Generalized Control Dependence”. In: Proceedings of the
ACM SIGPLAN 1996 Conference on Programming Language
Design and Implementation. PLDI ’96. Philadelphia, Penn-
sylvania, USA: ACM, 1996, pp. 291–300. isbn: 0-89791-795-
2. doi: 10.1145/231379.231435.

[Bre+16] Joachim Breitner et al. “On Improvements Of Low-
Deterministic Security”. In: Principles of Security and Trust
- 5th International Conference, POST 2016, Held as Part of
the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2016, Eindhoven, The Netherlands, April 2-8,
2016, Proceedings. Ed. by Frank Piessens and Luca Viganò.
Vol. 9635. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2016, pp. 68–88. doi: 10.1007/978-3-
662-49635-0_4.

[Bro+19] R. Brotzman et al. “CaSym: Cache Aware Symbolic Execu-
tion for Side Channel Detection and Mitigation”. In: 2019
IEEE Symposium on Security and Privacy (SP). May 2019,
pp. 505–521. doi: 10.1109/SP.2019.00022.

[BRW06] Gilles Barthe, Tamara Rezk, and Martijn Warnier. “Pre-
venting Timing Leaks Through Transactional Branching
Instructions”. In: Electronic Notes in Theoretical Computer
Science 153.2 (2006). Proceedings of the Third Work-
shop on Quantitative Aspects of Programming Languages
(QAPL 2005), pp. 33–55. issn: 1571-0661. doi: https://
doi.org/10.1016/j.entcs.2005.10.031.

[BS07] Julian Bradfield and Colin Stirling. “12 Modal mu-
calculi”. In: Handbook of Modal Logic. Ed. by Patrick Black-
burn, Johan Van Benthem, and Frank Wolter. Vol. 3.
Studies in Logic and Practical Reasoning. Elsevier, 2007,
pp. 721–756. doi: https://doi.org/10.1016/S1570-
2464(07)80015-2.

[CFT03] Larry Carter, Jeanne Ferrante, and Clark Thomborson.
“Folklore Confirmed: Reducible Flow Graphs Are Ex-
ponentially Larger”. In: Proceedings of the 30th ACM

419

http://dx.doi.org/10.1145/231379.231435
http://dx.doi.org/10.1007/978-3-662-49635-0_4
http://dx.doi.org/10.1007/978-3-662-49635-0_4
http://dx.doi.org/10.1109/SP.2019.00022
http://dx.doi.org/https://doi.org/10.1016/j.entcs.2005.10.031
http://dx.doi.org/https://doi.org/10.1016/j.entcs.2005.10.031
http://dx.doi.org/https://doi.org/10.1016/S1570-2464(07)80015-2
http://dx.doi.org/https://doi.org/10.1016/S1570-2464(07)80015-2

Bibliography

SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages. POPL ’03. New Orleans, Louisiana, USA:
ACM, 2003, pp. 106–114. isbn: 1-58113-628-5. doi: 10 .
1145/604131.604141.

[CH02] Koen Claessen and John Hughes. “Testing Monadic Code
with QuickCheck”. In: SIGPLAN Not. 37.12 (Dec. 2002),
pp. 47–59. issn: 0362-1340. doi: 10.1145/636517.636527.

[Cha+19] Sudipta Chattopadhyay et al. “Quantifying the Informa-
tion Leakage in Cache Attacks via Symbolic Execution”.
In: ACM Trans. Embed. Comput. Syst. 18.1 (Jan. 2019). issn:
1539-9087. doi: 10.1145/3288758.

[CHK01] Keith D. Cooper, Timothy J. Harvey, and Ken Kennedy.
“A simple, fast dominance algorithm”. In: Software Practice
& Experience (2001).

[Cor20] Oracle Corporation. Code Tools: jmh. 2020. url: https://
github.com/AlDanial/cloc (visited on 02/11/2020).

[CR06] Feng Chen and Grigore Roşu. “Parametric and
Termination-Sensitive Control Dependence”. In: Static
Analysis. Ed. by Kwangkeun Yi. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006, pp. 387–404. isbn:
978-3-540-37758-0.

[CS10] Michael R Clarkson and Fred B Schneider. “Hyperproper-
ties”. In: Journal of Computer Security 18.6 (2010), pp. 1157–
1210.

[Cyt+91] Ron Cytron et al. “Efficiently Computing Static Single As-
signment Form and the Control Dependence Graph”. In:
ACM Trans. Program. Lang. Syst. 13.4 (Oct. 1991), pp. 451–
490. issn: 0164-0925. doi: 10.1145/115372.115320.

[Dan+05] Sebastian Danicic et al. “Static program slicing algorithms
are minimal for free liberal program schemas”. In: The
Computer Journal 48.6 (2005), pp. 737–748.

420

http://dx.doi.org/10.1145/604131.604141
http://dx.doi.org/10.1145/604131.604141
http://dx.doi.org/10.1145/636517.636527
http://dx.doi.org/10.1145/3288758
https://github.com/AlDanial/cloc
https://github.com/AlDanial/cloc
http://dx.doi.org/10.1145/115372.115320

Bibliography

[Dan+11] Sebastian Danicic et al. “A unifying theory of control
dependence and its application to arbitrary program
structures”. In: Theoretical Computer Science 412.49 (2011),
pp. 6809–6842. issn: 0304-3975. doi: https://doi.org/
10.1016/j.tcs.2011.08.033.

[Dan18] Al Danial. Cloc. 2006 - 2018. url: https://github.com/
AlDanial/cloc (visited on 02/07/2020).

[Doy+15] Goran Doychev et al. “CacheAudit: A Tool for the Static
Analysis of Cache Side Channels”. In: ACM Trans. Inf.
Syst. Secur. 18.1 (June 2015). issn: 1094-9224. doi: 10 .
1145/2756550.

[EM17] Martin Erwig and Ivan Lazar Miljenovic. fgl: Martin
Erwig’s Functional Graph Library. https : / / hackage .
haskell.org/package/fgl. 2001–2017.

[Erw01] Martin Erwig. “Inductive graphs and functional graph
algorithms”. In: Journal of Functional Programming 11.5
(2001), pp. 467–492. doi: 10.1017/S0956796801004075.

[Fou19] The Apache Software Foundation. Apache FtpServer. 2019.
url: https://mina.apache.org/ftpserver-project/
download_1.1.1.html (visited on 02/07/2020).

[FOW87] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren.
“The Program Dependence Graph and Its Use in Opti-
mization”. In: ACM Trans. Program. Lang. Syst. 9.3 (July
1987), pp. 319–349. issn: 0164-0925. doi: 10.1145/24039.
24041.

[Fri02] Carsten Fritz. “Some Fixed Point Basics”. In: Automata
Logics, and Infinite Games: A Guide to Current Research.
Ed. by Erich Grädel, Wolfgang Thomas, and Thomas
Wilke. Berlin, Heidelberg: Springer Berlin Heidelberg,
2002, pp. 359–364. isbn: 978-3-540-36387-3. doi: 10.1007/
3-540-36387-4_20.

421

http://dx.doi.org/https://doi.org/10.1016/j.tcs.2011.08.033
http://dx.doi.org/https://doi.org/10.1016/j.tcs.2011.08.033
https://github.com/AlDanial/cloc
https://github.com/AlDanial/cloc
http://dx.doi.org/10.1145/2756550
http://dx.doi.org/10.1145/2756550
https://hackage.haskell.org/package/fgl
https://hackage.haskell.org/package/fgl
http://dx.doi.org/10.1017/S0956796801004075
https://mina.apache.org/ftpserver-project/download_1.1.1.html
https://mina.apache.org/ftpserver-project/download_1.1.1.html
http://dx.doi.org/10.1145/24039.24041
http://dx.doi.org/10.1145/24039.24041
http://dx.doi.org/10.1007/3-540-36387-4_20
http://dx.doi.org/10.1007/3-540-36387-4_20

Bibliography

[Gaw+11] Thomas Martin Gawlitza et al. “Join-Lock-Sensitive For-
ward Reachability Analysis for Concurrent Programs with
Dynamic Process Creation”. In: Verification, Model Check-
ing, and Abstract Interpretation. Ed. by Ranjit Jhala and
David Schmidt. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2011, pp. 199–213. isbn: 978-3-642-18275-4.

[Gif12] Dennis Giffhorn. “Slicing of Concurrent Programs and
its Application to Information Flow Control”. PhD the-
sis. Karlsruher Institut für Technologie, Fakultät für Infor-
matik, 2012.

[GM03] Roberto Giacobazzi and Isabella Mastroeni. “Non-
Standard Semantics for Program Slicing”. In: Higher-Order
and Symbolic Computation 16.4 (Dec. 2003), pp. 297–339.
issn: 1573-0557. doi: 10.1023/A:1025872819613.

[Gra16] Jürgen Graf. “Information Flow Control with System De-
pendence Graphs – Improving Modularity, Scalability and
Precision for Object Oriented Languages”. PhD thesis.
Karlsruher Institut für Technologie, Fakultät für Infor-
matik, Nov. 2016. doi: 10.5445/IR/1000068211.

[GS15] Dennis Giffhorn and Gregor Snelting. “A new algorithm
for low-deterministic security”. In: International Journal
of Information Security 14.3 (2015), pp. 263–287. doi: 10.
1007/s10207-014-0257-6.

[Ham09] Christian Hammer. “Information Flow Control for Java -
A Comprehensive Approach based on Path Conditions in
Dependence Graphs”. ISBN 978-3-86644-398-3. PhD the-
sis. Universität Karlsruhe (TH), Fak. f. Informatik, July
2009.

[Hec20] Martin Hecker. Properties for: Timing Sensitive Dependency
Analysis and its Application to Software Security. 2020. url:
https://pp.ipd.kit.edu/~hecker/dissertation/ (vis-
ited on 03/03/2010).

422

http://dx.doi.org/10.1023/A:1025872819613
http://dx.doi.org/10.5445/IR/1000068211
http://dx.doi.org/10.1007/s10207-014-0257-6
http://dx.doi.org/10.1007/s10207-014-0257-6
https://pp.ipd.kit.edu/~hecker/dissertation/

Bibliography

[HS09] Christian Hammer and Gregor Snelting. “Flow-sensitive,
context-sensitive, and object-sensitive information flow
control based on program dependence graphs”. In: In-
ternational Journal of Information Security 8.6 (Dec. 2009),
pp. 399–422. issn: 1615-5270. doi: 10.1007/s10207-009-
0086-1.

[HU73] Matthew S. Hecht and Jeffrey D. Ullman. “Analysis of a
Simple Algorithm for Global Data Flow Problems”. In:
Proceedings of the 1st Annual ACM SIGACT-SIGPLAN Sym-
posium on Principles of Programming Languages. POPL ’73.
Boston, Massachusetts: ACM, 1973, pp. 207–217. doi: 10.
1145/512927.512946.

[Jus+11] Seth Just et al. “Information Flow Analysis for Javascript”.
In: Proceedings of the 1st ACM SIGPLAN International Work-
shop on Programming Language and Systems Technologies
for Internet Clients. PLASTIC ’11. Portland, Oregon, USA:
ACM, 2011, pp. 9–18. isbn: 978-1-4503-1171-7. doi: 10.
1145/2093328.2093331.

[Koc+19] Paul Kocher et al. “Spectre Attacks: Exploiting Specula-
tive Execution”. In: 40th IEEE Symposium on Security and
Privacy (S&P’19). 2019.

[KRB09] B. Köpf, A. Rybalchenko, and M. Backes. “Automatic Dis-
covery and Quantification of Information Leaks”. In: 2009
30th IEEE Symposium on Security and Privacy (SP). Los
Alamitos, CA, USA: IEEE Computer Society, May 2009,
pp. 141–153. doi: 10.1109/SP.2009.18.

[Kri98] Jens Krinke. “Static Slicing of Threaded Programs”. In:
Proceedings of the 1998 ACM SIGPLAN-SIGSOFT Work-
shop on Program Analysis for Software Tools and Engineer-
ing. PASTE ’98. Montreal, Quebec, Canada: ACM, 1998,
pp. 35–42. isbn: 1-58113-055-4. doi: 10 . 1145 / 277631 .
277638.

423

http://dx.doi.org/10.1007/s10207-009-0086-1
http://dx.doi.org/10.1007/s10207-009-0086-1
http://dx.doi.org/10.1145/512927.512946
http://dx.doi.org/10.1145/512927.512946
http://dx.doi.org/10.1145/2093328.2093331
http://dx.doi.org/10.1145/2093328.2093331
http://dx.doi.org/10.1109/SP.2009.18
http://dx.doi.org/10.1145/277631.277638
http://dx.doi.org/10.1145/277631.277638

Bibliography

[KTG12] Ralf Küsters, Tomasz Truderung, and Jürgen Graf. “A
Framework for the Cryptographic Verification of Java-like
Programs”. In: Computer Security Foundations Symposium
(CSF), 2012 IEEE 25th. IEEE Computer Society, June 2012.

[Küs+14] Ralf Küsters et al. “Extending and Applying a Framework
for the Cryptographic Verification of Java Programs”. In:
Proc. POST 2014. LNCS 8424. Springer, 2014, pp. 220–239.

[Lip+18] Moritz Lipp et al. “Meltdown: Reading Kernel Memory
from User Space”. In: 27th USENIX Security Symposium
(USENIX Security 18). 2018.

[LKL18] Jean-Christophe Léchenet, Nikolai Kosmatov, and Pascale
Le Gall. “Fast Computation of Arbitrary Control Depen-
dencies”. In: Fundamental Approaches to Software Engineer-
ing. Ed. by Alessandra Russo and Andy Schürr. Cham:
Springer International Publishing, 2018, pp. 207–224. isbn:
978-3-319-89363-1.

[Lor+14] Steffen Lortz et al. “Cassandra: Towards a Certifying App
Store for Android”. In: Proceedings of the 4th ACM Work-
shop on Security and Privacy in Smartphones & Mo-
bile Devices. SPSM ’14. Scottsdale, Arizona, USA: ACM,
2014, pp. 93–104. isbn: 978-1-4503-3155-5. doi: 10.1145/
2666620.2666631.

[LT79] Thomas Lengauer and Robert Endre Tarjan. “A Fast Algo-
rithm for Finding Dominators in a Flowgraph”. In: ACM
Trans. Program. Lang. Syst. 1.1 (Jan. 1979), pp. 121–141.
issn: 0164-0925. doi: 10.1145/357062.357071.

[Mil17] Ivan Lazar Miljenovic. fgl-arbitrary: QuickCheck support for
fgl. https : / / hackage . haskell . org / package / fgl -
arbitrary. 2015–2017.

[Mol+06] David Molnar et al. “The Program Counter Security
Model: Automatic Detection and Removal of Control-
Flow Side Channel Attacks”. In: Information Security and
Cryptology - ICISC 2005. Ed. by Dong Ho Won and Se-

424

http://dx.doi.org/10.1145/2666620.2666631
http://dx.doi.org/10.1145/2666620.2666631
http://dx.doi.org/10.1145/357062.357071
https://hackage.haskell.org/package/fgl-arbitrary
https://hackage.haskell.org/package/fgl-arbitrary

Bibliography

ungjoo Kim. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2006, pp. 156–168. isbn: 978-3-540-33355-5.

[Mou+15] Leonardo de Moura et al. “The Lean Theorem Prover (Sys-
tem Description)”. In: Automated Deduction - CADE-25. Ed.
by Amy P. Felty and Aart Middeldorp. Cham: Springer
International Publishing, 2015, pp. 378–388. isbn: 978-3-
319-21401-6.

[MS15] Heiko Mantel and Artem Starostin. “Transforming Out
Timing Leaks, More or Less”. In: Computer Security – ES-
ORICS 2015. Ed. by Günther Pernul, Peter Y A Ryan, and
Edgar Weippl. Cham: Springer International Publishing,
2015, pp. 447–467. isbn: 978-3-319-24174-6.

[NP19] Barak Naveh and Stephane Popinet. JGraphT: A Java
Library of Graph Theory Data Structures and Algorithms.
https://jgrapht.org/. 2003–2019.

[NWP02] Tobias Nipkow, Markus Wenzel, and Lawrence C. Paul-
son. Isabelle/HOL: A Proof Assistant for Higher-order Logic.
Berlin, Heidelberg: Springer-Verlag, 2002. isbn: 3-540-
43376-7.

[PC90] A. Podgurski and L. A. Clarke. “A formal model of pro-
gram dependences and its implications for software test-
ing, debugging, and maintenance”. In: IEEE Transactions
on Software Engineering 16.9 (Sept. 1990), pp. 965–979. issn:
0098-5589. doi: 10.1109/32.58784.

[PP18] Amanda Plunkett and Junyong Park. “Two-sample test for
sparse high-dimensional multinomial distributions”. In:
TEST (July 2018). issn: 1863-8260. doi: 10.1007/s11749-
018-0600-8.

[Ran+07] Venkatesh Prasad Ranganath et al. “A New Foundation
for Control Dependence and Slicing for Modern Program
Structures”. In: ACM Trans. Program. Lang. Syst. 29.5 (Aug.
2007). issn: 0164-0925. doi: 10.1145/1275497.1275502.

425

https://jgrapht.org/
http://dx.doi.org/10.1109/32.58784
http://dx.doi.org/10.1007/s11749-018-0600-8
http://dx.doi.org/10.1007/s11749-018-0600-8
http://dx.doi.org/10.1145/1275497.1275502

Bibliography

[SG95] Vugranam C. Sreedhar and Guang R. Gao. “A Linear
Time Algorithm for Placing Φ-nodes”. In: Proceedings of
the 22Nd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. POPL ’95. San Francisco, Cal-
ifornia, USA: ACM, 1995, pp. 62–73. isbn: 0-89791-692-1.
doi: 10.1145/199448.199464.

[Sne+14] Gregor Snelting et al. “Checking Probabilistic Noninter-
ference Using JOANA”. In: it - Information Technology 56
(Nov. 2014), pp. 280–287. doi: 10.1515/itit-2014-1051.

[Tar72] Robert Tarjan. “Depth-First Search and Linear Graph
Algorithms”. In: SIAM Journal on Computing 1.2 (1972),
pp. 146–160. doi: 10.1137/0201010.

[Tea17] The Coq Development Team. The Coq Proof Assistant, ver-
sion 8.7.0. Version 8.7.0. Oct. 2017. doi: 10.5281/zenodo.
1028037.

[Was10] Daniel Wasserrab. “From Formal Semantics to Verified
Slicing - A Modular Framework with Applications in Lan-
guage Based Security”. PhD thesis. Karlsruher Institut für
Technologie, Fakultät für Informatik, Oct. 2010.

[Wei81] Mark Weiser. “Program Slicing”. In: Proceedings of the 5th
International Conference on Software Engineering. ICSE ’81.
San Diego, California, USA: IEEE Press, 1981, pp. 439–
449. isbn: 0-89791-146-6.

[Wel10] Stefan Wellek. Testing Statistical Hypotheses of Equivalence
and Noninferiority. 2nd ed. Boca Raton, FL, USA: CRC
Press, 2010. isbn: 978-1-4398-0819-1.

[Wol95] Michael Joseph Wolfe. High Performance Compilers for Par-
allel Computing. Ed. by Carter Shanklin and Leda Ortega.
Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 1995. isbn: 0805327304.

426

http://dx.doi.org/10.1145/199448.199464
http://dx.doi.org/10.1515/itit-2014-1051
http://dx.doi.org/10.1137/0201010
http://dx.doi.org/10.5281/zenodo.1028037
http://dx.doi.org/10.5281/zenodo.1028037

Bibliography

[Wu+18] Meng Wu et al. “Eliminating Timing Side-channel Leaks
Using Program Repair”. In: Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and
Analysis. ISSTA 2018. Amsterdam, Netherlands: ACM,
2018, pp. 15–26. isbn: 978-1-4503-5699-2. doi: 10.1145/
3213846.3213851.

[XZ07] Bin Xin and Xiangyu Zhang. “Efficient Online Detection
of Dynamic Control Dependence”. In: Proceedings of the
2007 International Symposium on Software Testing and Anal-
ysis. ISSTA ’07. London, United Kingdom: ACM, 2007,
pp. 185–195. isbn: 978-1-59593-734-6. doi: 10 . 1145 /
1273463.1273489.

427

http://dx.doi.org/10.1145/3213846.3213851
http://dx.doi.org/10.1145/3213846.3213851
http://dx.doi.org/10.1145/1273463.1273489
http://dx.doi.org/10.1145/1273463.1273489

Bibliography

Beppu (n.) — The triumphant slamming shut
of a book after reading the final page.

(Douglas Adams — The Deeper Meaning of Liff)

428

	Zusammenfassung
	Abstract
	Symbols
	Introduction
	Contributions

	Methodology
	Dependency Analysis in Arbitrary Graphs
	Control Dependence in Arbitrary Graphs
	Generalized Control Dependence
	An Algorithm for Generalized Control Dependence
	Related Work

	Nontermination (In-)Sensitive Control Dependence
	Nontermination (In-)Sensitive Control Dependence in Arbitrary Graphs

	Postdominator Pseudoforests
	Fixed-Point Characterizations for Postdominance
	Nontermination Sensitive Pseudoforests
	Nontermination Insensitive Pseudoforests
	Reduction to Postdominance Trees

	Order Dependence
	Decisive Order Dependence
	Nontermination Sensitive Order Dependence
	Soundness of Nontermination Sensitive Slices
	Weak Order Dependence
	Soundness of Nontermination Insensitive Slices
	A Trace-Based Notion of Infinite Delay
	Nontermination Insensitive Order Dependence
	Soundness of Nontermination Insensitive Order Dependence

	Slicing
	Nontermination Insensitive Slicing
	Nontermination Sensitive Slicing
	Weak Order Control Slices
	Weak Control Closures
	The Role of for Nontermination Insensitive Slices

	Performance Benchmarks
	Nontermination Sensitive Postdominance
	Nontermination Insensitive Postdominance
	Generalized Postdominance Frontiers
	Control Slices
	Nontermination Insensitive Order Dependence
	Nontermination Insensitive Slices
	Timing Sensitive Algorithms

	Timing Sensitive Dependency Analysis
	Timing Sensitive Control Dependence
	Timing Sensitive Control Dependence
	Timing Sensitive Post Postdominance Frontiers
	Transitive Timing Sensitive Postdominance
	Algorithms for Timing Sensitive Control Dependence
	Soundness and Minimality of Timing Sensitive Control Dependence
	Timing Sensitive Control Dependence in Graphs with Unique Exit Node

	Timing Dependence
	Timing Dependence
	Computation of Timing Dependence

	Timing Stratification
	Timing Sensitive Control Dependence for Arbitrary CFG with Cost Model
	Timing-Stratification
	An Algorithm for Timing Stratification

	Timing Sensitive Software Security
	Transforming Out Timing Leaks in Arbitrary CFG
	An Naive Algorithm
	A More Precise Algorithm

	Micro-Architectural Dependencies
	Introduction
	Control Flow Graphs
	Micro-Architectural Dependencies
	Limitations of Micro-Architectural Dependencies
	Timing Dependence for Micro-Architectural Dependencies
	Arrays

	Cache Timing Attacks on AES256
	AES256 Encryption
	Pre-Caching
	Constant Time S-Box Substitution
	Validation

	Approximate Cache Dependencies
	Data Dependence
	Local Cache-Cache Dependencies
	Local State-Cache Dependence
	Transitive Cache Dependencies
	Approximate Cache Dependencies
	Improving the Precision
	Approximation in AES256 Implementations
	Related Work

	Timing Sensitivity in Concurrent Programs
	Probabilistic Noninterference
	Observability of Internal Timing Leaks
	The RLSOD Criterion
	A Statistical Test for Probabilistic Noninterference
	Imprecision of the RLSOD criterion
	Timing Sensitivity for Probabilistic Noninterference

	Timing Sensitivity with JOANA
	Precision of the TIMING criterion for Java
	Scalability of the TIMING criterion for Java

	Summary and Future Work
	Proofs
	Nontermination (In-)Sensitive Control Dependence in Arbitrary Graphs
	Postdominator Pseudoforests
	Order Dependence

	Nontermination (In-)Sensitive Control Dependence
	Analysis of previous Algorithms
	Duality of Nontermination (In-)Sensitivity
	New Algorithms

	A Slicing Algorithm using C-Edges
	Algorithm Variants
	Another Algorithm for
	Efficient `39`42`"613A``45`47`"603Alca< via Postorder Numbers

	Generalizations for CFG with Timing Cost Model

