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ABSTRACT
Today, continuous publishing of differentially private query results
is the de-facto standard. The challenge hereby is adding enough
noise to satisfy a given privacy level, and adding as little noise
as necessary to keep high data utility. In this context, we observe
that privacy goals of individuals vary significantly over time. For
instance, one might aim to hide whether one is on vacation only
during school holidays. This observation, named time-dependent
relevance, implies two effects which – properly exploited – allow to
tune data utility. The effects are time-variant sensitivity (TEAS) and
time-variant number of affected query results (TINAR). As today’s
DP frameworks, by design, cannot exploit these effects, we propose
Swellfish privacy. There, with policy collections, individuals can
specify combinations of time-dependent privacy goals. Then, query
results are Swellfish-private, if the streams are indistinguishable
with respect to such a collection.We propose two tools for designing
Swellfish-private mechanisms, namely, temporal sensitivity and a
composition theorem, each allowing to exploit one of the effects.
In a realistic case study, we show empirically that exploiting both
effects improves data utility by one to three orders of magnitude
compared to state-of-the-artw-event DP mechanisms. Finally, we
generalize the case study by showing how to estimate the strength
of the effects for arbitrary use cases.

KEYWORDS
differential privacy, streams, monitoring, privacy policies, data util-
ity, time-dependent relevance

1 INTRODUCTION
The digitization of everyday live goes along with the availabil-
ity of countless streams of personal data. Examples are locations
continuously recorded by smart phones, or power consumptions
recorded by smart meters. Monitoring these streams is expected to
lead to new insights, facilitating many new applications [20]. To
reduce data volume and to compensate individual bias, instead
of individual data, one often monitors the results of statistical
queries of the streams. Examples of such queries are Counts [9, 14],
Histograms [18, 23] and Sums [8].

However, disclosure even of query results may compromise the
privacy of individuals. This is mainly due to so-called differencing
attacks [7]. To avoid this, one aims to sanitize the query results.
Here, differential privacy [5] (DP) and its extensions [7, 12, 14, 16]
are the current gold standard. The idea is to give a provable statisti-
cal indistinguishability guarantee of the query results computed on
two databases that differ in two confidential patterns, i.e., sequences
of events. Examples for such patterns are trajectories or sequences

of physical activities.With a certain residual risk, it is not possible to
determine from the query results whether an individual performed
any confidential pattern. To achieve this, a privacy mechanism adds
a well-defined amount of noise to each query result, ensuring a
specific privacy level. Sanitizing query results is a balancing act
between adding enough noise to ensure privacy, and adding as little
noise as necessary to keep high data utility.

An important observation is that privacy goals of the same indi-
vidual tend to be different for different times. We dub this observa-
tion time-dependent relevance of privacy goals.
Example 1.1 (Time-Dependent Relevance). Suppose that a smart
meter records the power consumption every minute, and that one
aims to monitor the Sum of power consumed in a city. Now think of
an individual with two privacy goals: The first one is that he wants
to hide whether he took a shower in the morning. Second, he wants
to hide whether he cooked at lunch time or had (unhealthy) food
delivered. He does not aim to hide anything else.

In the example, the individual aims to hide two different appli-
ances, i.e., fractions of his power consumption, during two different
time periods of the day. We call such time periods relevance inter-
vals. DP-like frameworks for streams do not take this observation
into account so far. Instead, they would hide the worst case, i.e.,
all appliances all the time. – Time-dependent relevance of privacy
goals has two effects, time-variant sensitivity and time-variant num-
ber of affected query results. They allow to tune data utility beyond
designing new mechanisms for existing privacy definitions.
Example 1.2 (Time-Variant Sensitivity). The amount of power con-
sumed to warm up water for showering, and thus to be hidden in the
morning, is larger than the one needed for cooking at lunch time.

Example 1.3 (Time-Variant Number of Affected Query Results).
Taking a shower lasts 10 minutes at best, while cooking takes, say, at
least an hour.

Example 1.2 reveals that the fraction of the power consumption to
be hidden is smaller at lunch time than in the morning. Furthermore,
there is even nothing to hide in the evening and afternoon. This
is the time-variant sensitivity effect (TEAS effect). Example 1.3
indicates that there are fewer power-consumption values monitored
that are affected by the respective appliance usage in the morning
than at lunch time. This is the time-variant number of affected query
results effect (TINAR effect).

In this paper, we design and evaluate a privacy framework which
takes time-dependent relevance of privacy goals into account and
allows to exploit these effects. Related work does not do this by
design. It either is not designed for streams [3, 12, 16], or it cannot
exploit the effects [14]. This is because the level of abstraction
selected does not allow to model time-dependent privacy goals.



Challenges
Designing and evaluating the envisioned privacy framework is
challenging. It is not obvious how to define the building blocks a DP-
like framework consists of, like neighboring streams, utilization of
the privacy budget, and the composition theorem [14]. This already
holds for a single privacy goal and becomes even more challenging
when supporting combinations of multiple – possibly concurrent –
privacy goals, as we now explain.

Single Privacy Goal. Initially, taking time-dependent relevance
into account means that one needs a notion that lets individuals
specify when the framework must provide indistinguishability be-
tween which patterns. All building blocks of the framework must
be aware of this notion.

Combinations of Privacy Goals. Think of an individual who speci-
fies several pairs of patterns, each having a relevance interval. Then
the intervals can overlap. To illustrate, an individual specifies that
it should be hidden whether he took a shower anytime today, and,
additionally, whether he cooked at lunch time. So it must be pos-
sible to hide concurrent privacy goals. This affects the definition
of neighboring streams, the utilization of the privacy budget, and
the composition theorem. First, one must capture that neighboring
streams differ by pattern pairs from arbitrarily many concurrent
privacy goals. Second, concurrent goals must share the privacy
budget. Otherwise, they would be independent. Third, the query
results affected by the patterns are not consecutive in time. This
makes composition theorems based on rolling windows infeasible.

Contributions
We propose Swellfish privacy, a framework for continuous moni-
toring taking time-dependent relevance into account. We make the
following contributions:
• We define the concepts stream policies and policy collections.
A stream policy enables an individual to specify a privacy goal
together with a relevance interval. A policy collection allows to
specify several goals, possibly with different relevance intervals.
We define Swellfish privacy by using these concepts, including
an iterative definition of neighboring streams to allow for com-
binations of privacy goals.
• We prove that Swellfish privacy is a generalization of Blowfish
privacy [12] to the streaming setting.
• To design Swellfish-private mechanisms exploiting the effects,
we propose two tools. Each one corresponds to one effect. The
first tool, corresponding to the TEAS effect, is named temporal
sensitivity. The second tool, corresponding to the TINAR effect,
is a composition theorem. With these tools, we adjust existing,
and design new, mechanisms featuring different sampling and
budget allocation techniques.
• We design and perform a realistic case study from the area of
power consumption monitoring. We evaluate the utility of ex-
ploiting each effect in isolation and compare our mechanisms to
the state-of-the-art. The study reveals that exploiting the effects
improves data utility by up to three orders of magnitude, and
that our mechanisms feature the best utility.
• We show how to estimate the strength of the effects for arbitrary
use cases.

Individual t = 1 t = 2 t = 3 · · ·
i = 1 a1 = 1 a1 = 1 a1 = 1 · · ·

a2 = 0 a2 = 1 a2 = 1
i = 2 a1 = 0 a1 = 1 a1 = 0 · · ·

a2 = 0 a2 = 1 a2 = 1 · · ·
Result Q(Dt ) · · · · · · · · ·

D
1

pattern π

event

Figure 1: Continuous monitoring of query results.

2 PRELIMINARIES
In this section, we first recapitulate common notation on data
streams and stream prefixes from literature. We then give a brief
overview of privacy frameworks from literature. We recapitulate
the ϵ-differential privacy framework as a foundation for everything
that follows, as well as policy-driven frameworks. The latter im-
prove data utility by allowing individuals to specify their actual
privacy goals. However, both frameworks do not support infinite
streams. We then introducew-event differential privacy, the current
state-of-the-art privacy framework for streams. It in turn does not
support the specification of privacy goals.

2.1 Notation
Following [14] for most parts, we now introduce our notation. Let
I = {1, ..,n} be a set of individuals and A = {a1, ..,ak } a set of
activities, like physical activities or appliance usages. An activity
configuration is a function γ : A → U assigning each activity in
A a value in the universeU. Examples for universes are Boolean
values stating whether one performs an activity, or real numbers
stating the power consumption of the appliances. An event over A
is an aggregation, like Sum or the identity function of an activity con-
figuration. For an illustration, see Figure 1. There, the universeU
are Boolean values indicating whether one performed an activity.
Further, events are activity configurations, i.e., there is no aggrega-
tion. In contrast, in, say, power consumption streams, events are the
sums of the consumption values of the appliances. For an arbitrary
but fixed time stamp t , Dt = (Dt [1], ..,Dt [n]) is a static database
containing the event each individual i ∈ I performs at time t . A
query Q : Dt → Rdim maps a static database Dt to dim values
being monitored. Examples are histograms reflecting the number of
individuals per location (dim = number of bins), or the sums of the
power consumption values of individuals (dim = 1). A continuous
stream S = (D1,D2, · · · ) is an infinite sequence of continuously
collected static databases at equidistant time stamps. τ is the respec-
tive time resolution. All static databases in a stream contain events
over the same activity set A. The stream prefix Sp := (D1, ..,Dp )
of a stream S is a finite prefix of the stream of length p. If J = [t , t ′]
is an interval, the sub-stream S J is given by S J = (Dt , ..,Dt ′). A
pattern of length T is a finite sequence π = [π1, .., ,πT ] of events.
Static databases and streams may fulfill constraints on the events
and patterns contained in them. A monitoring system publishes the
results of a query over a stream continuously. Q(S) stands for the
application of Q to every static database of stream S , i.e.,

Q(S) = (Q(D1),Q(D2), · · · ).
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A privacy mechanismM is a randomizing function having as input
a static database or a stream prefix, and outputting a sanitized query
resultQ+η that fulfills a privacy definition, e.g., differential privacy.
Consequently, the output space Range(M) ofM equals the output
space of Q . In this paper, we aim at publishing Q(S) continuously
in a differentially private manner while taking time-dependent
relevance into account.

2.2 ϵ-Differential Privacy
Differential privacy (DP) [5] is the current state-of-the-art privacy
framework for static databases. The rationale is to hide all patterns
an individual can perform in a published query result. Formally, let
D be a static database, where each row corresponds to one individ-
ual. DP states that the output of a mechanism should be indistin-
guishable for any possible existing pair of neighboring databases.
Databases D, D ′ are neighbors if one obtains one from the other by
removing or adding all data of one individual, i.e., one row. A data
curator sets the desired privacy level ϵ . It usually lies between 0.1
and 1.0. A smaller value means better privacy.

Definition 2.1 (Differential Privacy [5]). A randomized mechanism
M gives ϵ-differential privacy if for all neighboring databases D and
D ′ and all R ∈ Range(M) holds,

Pr[M(D) = R] ≤ eϵ · Pr[M(D ′) = R].
To publish differentially private query results, the Laplace mecha-

nism [7] is frequently used. It adds noise that follows the zero-mean
Laplace distribution Lap(λ) to each of the dim outputs of a queryQ .
The scale λ = ∆Q

ϵ depends on the privacy budget ϵ as well as on
the global sensitivity ∆Q = maxD,D′ | |Q(D) − Q(D ′)| |1 of Q . The
latter is the maximum difference in the query results for neighbor-
ing databases. For instance, ∆Histogram = k , i.e., the maximum
number of activities one individual can perform concurrently.

2.3 Policy-Driven Privacy
Since DP is too strong in various use cases, and data utility is low,
policy-driven privacy frameworks [12, 16] have been proposed.
They are generalizations of DP, allowing individuals to specify
their privacy goals with policies. To define Swellfish privacy we rely
on the same idea, but generalize policies so that they feature time-
dependent relevance. To prepare this, we now review discriminative
secret pairs [12, 16], which are one building block of a privacy
policy [12] we review afterwards. Further, we introduce Blowfish
privacy [12], which Swellfish privacy will generalize.

2.3.1 Discriminative Secret Pairs. A secret is a statement of arbi-
trary nature on the values, e.g., events, in a database, which can or
cannot be true for a specific database. A discriminative secret pair
(s, s ′) is a tuple of two secrets s and s ′ that are mutually exclusive,
i.e., cannot both be true. It describes properties of databases an
adversary should not be able to distinguish between. An example is
(”Christine consumes 1kW at time t”, ”Christine consumes 5kW at
time t”). For more examples, we refer to [12, 16]. A privacy policy
contains a set P of discriminative secret pairs.

Particularly relevant in this paper are sets of discriminative se-
cret pairs defined by a distance measure and threshold [12]: If the
domain of the database is associated with a distance measured , such

Table 1: Comparison of privacy frameworks.

Framework Intra-Individual Inter-Individual
Static Setting
original DP [5] ✓ ✗

Policy-Driven [12, 16] ✓ ✓

Streaming Setting
w-event DP [14] ✓ in window of

size ≤ w
✗

Swellfish privacy ✓ within each rel-
evance interval

✓ within each rel-
evance interval

as the Manhattan distance, a distance-based set of discriminative
secret pairs based on threshold θ

Pd,θ = {(si (x), si (y))|d(x ,y) ≤ θ }

formalizes that an adversary should not be able to distinguish be-
tween all secrets si (x), si (y) about data values x ,y of individual i
that are close to each other. For example, he should not be able to
distinguish between events differing by at most θ activities.

2.3.2 Privacy Policies. A set of discriminative secret pairs P and
activitiesA are two of three inputs of a privacy policyϕ = (A, P ,C).
The third input C is auxiliary knowledge in the form of determin-
istic dependencies that an adversary may has about the values in
the database, possibly helping him to infer private information
from sanitized query results. One differs between intra- and inter-
individual dependencies [2, 19, 25], see Table 1. Intra-individual
constraints describe dependencies between values of one individ-
ual, while inter-individual constraints refer to values of different
individuals.

2.3.3 Blowfish Privacy. Blowfish privacy is given if an adver-
sary cannot distinguish between query results computed on two
databases that are neighboring with respect to a privacy policy.
This means that they differ in a minimal number of discriminative
secret pairs, see Definition 2.2. IfC = ∅, i.e., there are no constraints,
neighboring databases differ in one arbitrary secret pair. In conse-
quence, the policy-specific sensitivity is generally lower than the
global one needed in the DP framework. This in turn means that
one needs less noise to achieve the desired privacy level.

Definition 2.2 (Neighboring databases w.r.t. a policy [12]). Letϕ =
(A, P ,C) be a policy andD,D ′ two databases. Further, let T(D,D ′) ⊆
P be the set of discriminative secret pairs (s, s ′) so that secret s is true
in D, and secret s ′ is true in D ′, and ∆(D,D ′) = D1\D2 ∪ D2\D1.
Then D and D ′ are neighbors, i.e., D,D ′ ∈ N(ϕ), if
(1) they both fulfill the constraints in C ,
(2) T(D,D ′) , ∅
(3) there is no database D ′′ fulfilling C so that
• T (D,D ′′) ⊂ T (D,D ′), or
• T (D,D ′′) = T(D,D ′) and ∆(D ′′,D) ⊂ ∆(D ′,D).
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2.4 w-Event Differential Privacy
Differential privacy and Blowfish privacy are designed for static
databases. Applied to streams, DP would protect any, possibly in-
finitely long, pattern of one individual, which is unreasonable. To
counter this, thew-event differential privacy framework [14], the
current reference point for streams, has been proposed. In the fol-
lowing, we revieww-event differential privacy and sketch how to
design mechanisms that satisfy it. We will use the mechanisms as
competitors in our experiments.

The definition of w-event differential privacy is an adaptation
of Definition 2.1, providing indistinguishability ofw-neighboring
stream prefixes. Here,w-neighboring stream prefixes differ by any
pattern pair of length smaller than or equal to w , occurring any-
where in the stream. To designw-event mechanisms, an important
observation is Theorem 2.1 from [14]. It states that one can design
a w-event ϵ-differentially private mechanismM, by taking one
ϵt -differentially private mechanismMt for each time stamp t as a
sub-mechanism. If, in every rolling window of sizew , it holds that
the sum of the budgets ϵt does not exceed ϵ , the mechanismM is
w-event ϵ-differentially private. For instance, by leveraging Theo-
rem 2.1, one can design the Uniformmechanism [14]. It implements
each sub-mechanism with the Laplace mechanism, i.e.,Mt =MQ ,
with a budget of ϵt = ϵ

w each. That is, the privacy budget is split
uniformly over the time stamps in each rolling window.

Theorem 2.1 (Composition [14]). LetM be a mechanism that
takes as input a stream prefix Sp = (D1, ..,Dp ) and outputs R =
(r1, .., rp ). Assume that one can decomposeM into p sub-mechanisms
M1, ..,Mp , s.t.Mt (Dt ) = rt , eachMt has independent random-
ness and achieves ϵt - differential privacy. ThenM satisfiesw-event
differential privacy if

∀t ∈ [1,p] :
t∑

k=t−w+1
ϵk ≤ ϵ .

Literature proposes more sophisticated mechanisms as well [1, 9,
14, 18, 23, 24] that use sampling, possibly combined with dynamic
budget allocation and dynamic grouping, to improve data utility.
Here, sampling means that a mechanism publishes the current
(perturbed) statistics for some time stamps only. For the other ones,
it re-publishes the statistics from the last sampling time stamp. The
rationale is to save budget at non-sampling time stamps.

3 SWELLFISH PRIVACY
In this section, we propose Swellfish privacy. It is a framework
for differentially private continuous monitoring of infinite streams
that takes time-dependent relevance into account. We first intro-
duce three use cases and highlight their peculiarities. Second, we
propose our definition of Swellfish privacy and point out how it
hides combinations of privacy goals. Third, we show that Swellfish
privacy generalizes Blowfish privacy to the streaming setting.

3.1 Use Cases
In this section, we introduce three common use cases, namely,
physical activity, power consumption, and location monitoring. For
each of them, we illustrate how events, patterns and the monitored

stream look like. Second, the illustrations will reveal that the chal-
lenge of combining privacy goals manifests itself differently in the
use cases, so we discuss the consequences for Swellfish privacy.

3.1.1 Physical Activity Monitoring. In this use case, activities
a1, ..,ak ∈ A correspond to physical activities, like running or
eating. An event is an activity configuration γ : A → U = {1, 0}
assigning every activity a logical value, like in Figure 1. A pattern
is a sequence of such events, e.g., a jogging round. Here, one typi-
cally monitors histograms stating how many individuals performed
which activities. Generally, an individual can perform some, but
not all physical activities concurrently. For instance, one might sit
and eat, but not sit and run at the same time.

3.1.2 Power ConsumptionMonitoring. Here, activitiesa1, ..,ak ∈
A correspond to the usage of appliances, like the washing machine.
At time t , every appliance consumes a specific amount of power. An
activity configuration γ : A → U = R+0 assigns every appliance
an amount of power. An event is the sum over these values of an ac-
tivity configuration. Thus, Dt [i] =

∑
av ∈A

γt (av ) is the total power
consumed by residential unit i . As result, patterns to be hidden
are vectors of real numbers. Here, one monitors the sum of power
consumption values of all residential units in, say, a city. In such a
unit, several (possibly all) appliances run at the same time.

3.1.3 Location Monitoring. Here, activities a1, ..,ak ∈ A corre-
spond to visits of locations. As an individual is at one location at
a time, γ : A → U = {1, 0} is true for exactly one location. An
event is the location for which γ is true, and a pattern is a trajec-
tory represented by a sequence of locations. Here, one monitors
histograms stating how many individuals are at each location.

If privacy goals are relevant at the same time, one must hide
the combination of the respective patterns. However, the above
illustrations indicate that there are use-case specific constraints
limiting the space of activities, and therefore patterns that could
take place concurrently: In the power-consumption use case, there
are no such constraints, while with location monitoring, there
are no concurrent location visits. In the physical-activity use case,
some, but not all activities can be performed concurrently. In the
remainder, we therefore only consider events and patterns that
fulfill a set of use-case dependent event constraints Cγ ⊆ C .

3.2 Definition of Swellfish Privacy
In this section, we define Swellfish privacy. To this end, in Sec-
tion 3.2.1, we first propose our notion allowing individuals to spec-
ify multiple privacy goals. In Section 3.2.2, we define neighboring
stream prefixes so that the definition copes with concurrent privacy
goals. Section 3.2.3 contains our definition of Swellfish privacy. It
features the sharing of privacy budget between concurrent goals.

3.2.1 Notion for Specifying Privacy Goals. We now propose two
concepts our notion is built on, namely, stream policies and pol-
icy collections. First, stream policies are a deployment of general
policies [12, 16] (cf. Section 2.3) for the streaming setting. With
them, an individual can formalize a single privacy goal referring
to one relevance interval. Second, to allow for multiple, possibly
concurrent, privacy goals, we propose policy collections.
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Privacy Goal Stream Policy ϕ = (A, P ,C(J ), J )
Activities
A

Set of Discriminant Stream Policies P Cγ ⊆ C(J ) J

1. Physical Activity

Hide whether next Friday, one goes
jogging (= a1) for up to one hour
during working time, or not.

{jogging,
sitting, ..}

{sp j (π =
[
1 1 1 1
x1 x2 .. ..

]
, π ′ =

[
0 0 0 0
x1 x2 .. ..

]
) cf.

application
04/03/2020,
8 a.m. - 6
p.m.| ∀xt = (γt (a2), ..,γt (ak )), j ∈ JT }

2. Power Consumption
Hide whether one cooked with his
stove (=a1), that consumes 7.5 kW,
for up to one hour on lunch time
next Friday.

{stove,
dryer, ..}

{spj (π = [π1 =
∑

a∈A
γ1(a), ..,π4], π ′ = [π ′1 =

∑
a∈A

γ ′1(a), ..,π ′4] ∅ 04/03/2020,
11 a.m. - 1
p.m.| |πt − π ′t | ≤ 7.5 ∀t ,∀j ∈ JT }

3. Location Monitoring
Hide whether one does a side trip
to Pizza Hut (= a2), on ones 45 min.
jogging round in the city park (=
a1) next Saturday evening.

{city park,
Pizza Hut,
..}

{spj (π = [a1,a1,a1], π ′ = [a2,a1,a1]),
{γ | ⊕av ∈A
γ (av ) = 1}

04/05/2020,
5 p.m. - 8
p.m.

spj (π = [a1,a1,a1] π ′ = [a1,a2,a1]),
spj (π = [a1,a1,a1] π ′ = [a1,a1,a2])
| ∀ j ∈ JT }

Figure 2: Privacy goals and resulting stream policies assuming a time resolution τ = 15 min. of the underlying streams.

Stream Policies. So-called stream policies consist of pairs of se-
crets. A secret sij (π ) states that individual i performs pattern π at
time interval [j, j +T ]. Here, j is called the start time, and T := |π |
is the length of the pattern. To illustrate, consider the pattern

π =

[
a1 = 1 a1 = 0
a2 = 1 a2 = 1

]
of length T = 2. The columns represent the events and the rows
the activities configured in the event. Further, consider the example
stream in Figure 1. There, the secret si=2j=2(π ) is true, as the above
pattern starts at time j = 2. In contrast, the secret s21(π ) is not true.
In the remainder, in line with related work [12], we assume that
all secrets considered belong to the same individual i , and we omit
the superscript. Now, a discriminative stream secret pair spj (π ,π ′)
is a pair of two secrets, consisting of different, but equal-length,
patterns π ,π ′ with the same start time j. For readability, in the
remainder, secret pair, is short for discriminative stream secret pair.

Definition 3.1 (Discriminative Stream Secret Pair). A discrimina-
tive stream secret pair

spj (π ,π ′) := (sj (π ), sj (π ′))
is a tuple of two secrets having the same start time j and referring to
two equal-length patterns π , π ′.

Requiring the same start time makes sure that the secrets are
mutually exclusive, as unequal patterns differ in at least one event,
and one individual can perform only one event at a time. It is
possible to extend Swellfish privacy so that different start times are
allowed, as long the respective secrets are still mutually exclusive.

One secret pair may not be enough to specify a privacy goal. For
instance, one generally needs secret pairs for different start time
stamps. Namely, one may want to hide the occurrence of patterns
at any time during a relevance interval, and not only at a specific

one. In consequence, a set of secret pairs P belonging to different
pattern pairs π ,π ′ is one of four elements of a stream policy ϕ.

Definition 3.2 (Stream Policy). A stream policy ϕ = (A, P ,C(J ), J )
is a four-tuple containing a set of activities A, secret pairs P , a rel-
evance interval J , and deterministic constraints C(J ) on events in
interval J so that

P = {spj (π1,π ′1), · · · , spj (πq ,π ′q ), , · · · | ∀j ∈ JTq }
and all patterns πq ,π ′q fulfill C(J ). Here, JT ⊆ J is the interval that
begins at the same time stamp as J , but endsT −1 time stamps earlier.

The remaining elements are as follows: The set of activities A
contains the activities recorded in the stream. The relevance inter-
val J is the interval when the privacy goal must be satisfied. The
set of deterministic constraints C(J ) is the public knowledge an
adversary might have about the events having taken place during J
(cf. Section 2.3.3). In particular, it contains the event constraints
Cγ ⊆ C(J ). For convenience we assume that, if P contains a secret
pair belonging to the patterns π ,π ′, it must contain such a pair for
every possible start time stamp j ∈ JT .

In the remainder, our examples focus on power consumption, as
does our case study. In this use case, typical sets of secret pairs are
distance-based, cf. Section 2.3. See Figure 2 for an example. In the
streaming setting, they are defined as follows.

Definition 3.3 (Distance-Based Stream Policy). A distance-based
stream policy is a stream policy of the form

Pd,θT ={(spj (π ,π ′) | ∀j ∈ JT

and π ,π ′ with d(πt ,π ′t ) ≤ θt ∀t ∈ [1,T ]}.
There are two differences two the static setting: Threshold θ gener-
ally is a vector, and we use subscript T to represent the length of
the pattern contained in the policy.

5



Policy Collections. A policy collection is a set of stream policies
with possibly different relevance intervals.

Definition 3.4 (Policy Collection). A policy collection Φ is a set of
stream policies Φ = {ϕ1,ϕ2 · · · ,ϕ |Φ |} so that the policies contain the
same activities A and the same constraints for a given time stamp,.

In the remainder, we use the notion of relevant subsets of stream
policies of a policy collection.

Definition 3.5 (Relevance of Stream Policies and Time Stamps).
For a time stamp t , a stream policy ϕ is relevant if t ∈ J . Similarly,
time stamp t is relevant if there is at least one relevant policy at time
t . For a policy collection Φ, the set Φt ⊆ Φ contains all stream policies
from Φ that are relevant at time t .

While the definition of a policy collection appears to be straightfor-
ward, defining neighboring stream prefixes that are aware of policy
collections is more difficult.

3.2.2 Neighboring Stream Prefixes. Neighboring stream prefixes
are stream prefixes for which one must provide indistinguishability.
This means that one must perceive streams as neighbors if they are
neighbors with respect to a single policy, but also with respect to
several ones. The latter means that neighboring streams can differ
regarding one secret pair from each stream policy in a policy collec-
tion. However, not all combinations of secret pairs from different
stream policies can result in neighboring streams. It may hold that
two secrets from different policies cannot be true at the same time.
However, if they can be true, we argue that the individual intends to
hide the respective secret pair combination , i.e., the concatenation
of secrets from different policies. Secret pair combinations might
result in additional patterns to be hidden.

Example 3.1 (Combining Secret Pairs). Suppose that the secret pairs
spj1=1(π1,π ′1) and spj2=3(π2,π ′2) belong to different stream policies.
Further, let π ′1 = [loc1, loc7, loc3] and π2 = [loc3, loc5] be given. In
these patterns, the last location in π ′1 is equal to the first location in
π2. This means that the respective secrets can be true at the same time,
because spj1=1 starts at time j1 = 1, and spj2=3 at time j2 = 3. This in
turn means that the individual intends to hide the individual patterns,
as well as the pattern [loc1, loc7, loc3, loc5].
The following definition of neighboring stream prefixes ensures
that there is a pair of neighboring stream prefixes for every possible
combination of secret pairs.

Definition 3.6 (Neighboring Stream Prefixes w.r.t. a Policy Col-
lection). Let Φ be a policy collection. The stream prefixes Sp , S ′p are
neighbors with respect to Φ, i.e., Sp , S ′p ∈ N(Φ) iff there exists
(1) a sequence [ϕ0, ..,ϕk ] of stream policies from Φ containing each

stream policy at most once, and allowing to construct
(2) a sequence [S0p = Sp , .., S

l
p , .., S

k+1
p = S ′p ] of stream prefixes,

starting with Sp and ending with S ′p ,
so that for all 0 ≤ l ≤ k it holds that (Slp , Sl+1p ) ∈ N(ϕl ).
Example 3.2 (Neighboring Stream Prefixes). Consider Figure 3. It
contains a policy collection, together with stream prefixes. Assuming
that the stream policies belong to individual i = 1, it shows that
S5, S ′5 ∈ N(Φ) for Case (a) and (b). For instance, consider Case (a).
The stream prefixes S05 and S

1
5 are neighbors with respect to policy ϕ0,

as they differ by a pattern of length T = 1 consuming θ = 1 kW at
time stamp t = 3 ∈ J1. Similarly, S15 and S

2
5 are neighbors with respect

to policy ϕ1. Also observe that, due to constraints, the power values of
a second individual can change as well.

3.2.3 Swellfish privacy. We now define Swellfish privacy.
Definition 3.7 ((ϵ,Φ)-Swellfish privacy). LetM be a randomized
mechanism that has as input a stream prefix Sp of arbitrary size, Φ
be a policy collection, and ϵ > 0. The mechanismM gives (ϵ,Φ)-
Swellfish privacy iff

Pr [M(S J ) = R] ≤ eϵ · Pr [M(S ′J ) = R]
for every relevance interval J of a stream policy ϕ ∈ Φ.
Here, the semantics of the privacy budget ϵ is particularly interest-
ing. The definition says that one has budget ϵ for each relevance
interval. In consequence, if there is only one privacy goal, one has
budget ϵ for this goal. However, if several policies are relevant at
the same time t , they share the budget, meaning that the polices
depend on each other.

3.3 Relationship to Blowfish Privacy
In this section, we relate Swellfish privacy to Blowfish privacy [12],
before we discuss the relationship to other privacy frameworks
in the remainder. While Blowfish privacy is defined for the static
setting and allows for one policy only, Swellfish privacy is defined
for the streaming setting and allows for policy collections. However,
reduced to the static setting, Swellfish privacy is equivalent to
Blowfish privacy. To prove this, we show (1) that one can implement
(ϵ,ϕB )-Blowfish privacy with Swellfish privacy, and (2) vice versa.
To this end, we consider a definition of Swellfish privacy restricted
to a static database given in Definition 3.8.
Definition 3.8 (Static (ϵt ,Φt )-Swellfish privacy). LetMt be a ran-
domized mechanism that has as input a static database Dt . The
mechanismMt gives (ϵt ,Φt )-Swellfish privacy iff for all neighboring
databases (Dt ,D

′
t ) ∈ N(Φt ), and all R ∈ Range(M), holds

Pr [Mt (Dt ) = R] ≤ eϵ · Pr [Mt (D ′t )) = R].
We now show both directions separately.

Blowfish → Swellfish privacy. Given a Blowfish policy ϕB =
(A, P ,C), let ϕS = (A, P ,C, J ) with J = [t , t] be a stream pol-
icy. Both policies contain the same activities, constraints and set
of secret pairs. The relevance interval of ϕS is restricted to the
time stamp t , i.e., to one time stamp only. Then, providing (ϵt ,ΦS )-
Swellfish privacy for the policy collection ΦS = {ϕS } is equivalent
to providing (ϵt ,ϕB )-Blowfish privacy, as Φt = ΦS . As result, a
Swellfish private mechanism provides Blowfish privacy.

Swellfish→ Blowfish privacy. LetΦS be a policy collection.W.l.o.g.,
assume that at time t , the two stream policiesΦS,t = {ϕ,ϕ ′} are rele-
vant. Let st (π ), s ′t (π ′) any two secrets fromϕ,ϕ ′, that can be simulta-
neously true at time t . For each such two secrets, we construct a new
secret covering both of them, i.e., both are true. Then, the stream se-
cret pairs containing st (π ) and s ′t (π ′), we replace these secrets with
this new secret. By doing this for all stream secret pairs, we obtain
a new set of secret pairs PB , and policy ϕB = (A, PB ,C, J = [t , t]).
For this, it holds that, Swellfish neighbors (Dt ,D

′
t ) ∈ N(ΦS,t ) are

also Blowfish neighbors, i.e., (Dt ,D
′
t ) ∈ N(ϕB ).
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Given: Privacy Budget ϵ > 0 and
Policy Collection Φ = {ϕ0,ϕ1} with
ϕ0 = (A, Pd,θ=1T=1 ,C(J ), J1 = [2, 3]),
ϕ1 = (A, Pd,θ=2.2T=2 ,C(J ), J2 = [3, 6]).

· · · · · ·

S5
= S05

t = 1 2 3 4 5 6
i = 1 0.2 0.3 0.2 0.4 0.3 1.4
i = 2 0.4 0.4 0.3 1.1 1.3 1.5
· · · · · · · · · · · · · · · · · · · · ·
Sum(Dt ) 259 313 192 221 953 889

(S05 , S15) ∈ N(ϕ0)

S15
t = 1 2 3 4 5 6

i = 1 0.2 0.3 1.2 0.4 0.3 1.4
i = 2 0.4 0.4 0.3 1.1 1.3 1.5
· · · · · · · · · · · · · · · · · · · · ·
Sum(Dt ) 259 313 193 221 953 889

(S15 , S25) ∈ N(ϕ1)
(a)

S25
= S ′5

t = 1 2 3 4 5 6
i = 1 0.2 0.3 3.4 2.6 0.3 1.4
i = 2 0.4 0.4 0.3 1.1 1.3 1.5
· · · · · · · · · · · · · · · · · · · · ·
Sum(Dt ) 259 313 195.2 223.2 953 889︸              ︷︷              ︸

J1,
∑

TOP2 {ϵ2,ϵ3 }
ϵt ≤ ϵ︸                                   ︷︷                                   ︸

J2,
∑

TOP3 {ϵ3, · · · ,ϵ6 }
ϵt ≤ ϵ

(b)

S25
= S ′5

t = 1 2 3 4 5 6
i = 1 0.2 0.3 1.2 0.4 2.5 3.6
i = 2 0.4 0.4 0.3 1.1 1.3 1.5
· · · · · · · · · · · · · · · · · · · · ·
Sum(Dt ) 259 313 193 221 955.2 891.2︸              ︷︷              ︸

J1,
∑

TOP2 {ϵ2,ϵ3 }
ϵt ≤ ϵ︸                                   ︷︷                                   ︸

J2,
∑

TOP3 {ϵ3, · · · ,ϵ6 }
ϵt ≤ ϵ

Figure 3: Illustration of our iterative definition of neighboring stream prefixes.

4 MECHANISM DESIGN
After defining Swellfish privacy, we now design mechanisms pro-
viding it. We first provide two tools, each one allowing to exploit
one of the effects featured in the introduction. Second, we propose
concrete mechanisms, both baseline mechanisms and three new
mechanisms. In contrast to the baseline, the latter ones can exploit
the TEAS and TINAR effect.

4.1 Toolbox
Our aim is to design mechanisms that consist of independent
(ϵt ,Φt )-Swellfish private sub-mechanismsM1, ..,Mp , whereMt
outputs the private query result at time t . To facilitate this, the
first tool is the temporal sensitivity, allowing to exploit the TEAS
effect. With this, one can design sub-mechanisms based on Laplace
perturbation. The second tool is a composition theorem, allowing to
exploit the TINAR effect. It constrains how to distribute the privacy
budget among the sub-mechanisms.

4.1.1 Temporal Sensitivity. To provide Swellfish privacy, one
can add Laplace noise to the query results that is proportional to the
temporal sensitivity of the query, see Definition 4.1. Generally, for
every time stamp t , the temporal sensitivity is different, as different
policies may be relevant.

Definition 4.1 (Temporal Sensitivity). Let Φ be a policy collection.
For a query Q : D → Rdim, the temporal sensitivity at time t is

∆tQ (Φ) = max
(Sp,S ′p )∈N(Φ)

| |Q(Dt ) −Q(D ′t )| |1.

For illustration, see Example 4.1.

Example 4.1 (Temporal Sensitivity). Consider again the policy
collection from Figure 3. There, at time t = 3, in the worst case,
neighboring stream prefixes differ by |Sum(Dt ) − Sum(D ′t )| = 3.2
kW. The rationale is that both stream policies ϕ0 and ϕ1 featuring
thresholds 1.0 and 2.2 are relevant there. In contrast, at t = 4, the
temporal sensitivity is 2.2, as only policy ϕ1 is relevant. At t = 1, the
temporal sensitivity is 0, as no policy is relevant.

Theorem 4.1 states that adding noise that is proportional to the
temporal sensitivity at time t yields (ϵt ,Φt )-Swellfish privacy for a
specific time stamp t .

Theorem 4.1. Let t be an arbitrary, but fixed time stamp. The
mechanismMt given by

Mt (Dt ) = Q(Dt ) + Lap(
∆tQ (Φ)

ϵ
)

provides (ϵt ,Φt )-Swellfish privacy at time t .

Proof: As Swellfish privacy is equivalent to Blowfish privacy in
the static setting, this holds due to Theorem 5.1 from [12]. □
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4.1.2 Composition Theorem. Distributing the budget between
the sub-mechanisms is challenging due to concurrent privacy goals.
The rationale is that the time stamps affected by the goals are
generally not consecutive. To illustrate, consider Case (b) in Figure 3.
There, time stamps 3, 5 and 6 are affected, which are not consecutive.

Defining and Determining Goal-Affected Time Stamps. Given two
specific neighboring stream prefixes, we refer to a time stamp t
that is affected by any goal as goal-affected time stamp.
Definition 4.2 (Goal-Affected Time Stamp). Let Φ be a policy col-
lection, and Sp , S ′p ∈ N(Φ). A time stamp t is a goal-affected time
stamp iff Dt , D ′t .

For instance, in Figure 3, in both cases, time stamp t = 3 is a
goal-affected time stamp, but t = 2 is not. Nevertheless, differ-
ent neighboring streams may feature different goal-affected time
stamps. For instance, t = 4 in Case (a) in Figure 3 is a goal-affected
time stamp, but not in Case (b). Thus, to provide indistinguishability
for all possible neighboring stream prefixes, one must protect the
maximum number of goal-affected time stamps over all neighbor-
ing stream prefixes. For a given relevance interval J , we abbreviate
this number with δ (J ), i.e.,

δ (J ) = max
Sp,S ′p ∈N(Φ)

|{t | Dt , D ′t }|.

One can determine δ (J ) as follows. If during J only one policy
is relevant, δ (J ) is the length of the longest pattern in the policy.
Otherwise, one can determine an upper bound on δ (J ) with Algo-
rithm 1. It determines δ (J ) by using the length of the patterns of
all relevant policies, and the number of time stamps in which they
overlap. To illustrate the algorithm, consider Figure 3 and J = J2.
Here, the algorithm initializes δ0ϕ (J2) = 1 and δ1ϕ (J2) = 2 in Line 3
with the length of the respective patterns. As both policies overlap
at time t = 3 only, it increments both numbers in Line 5 by 1. As
result, δ (J2) = 2 + 1 = 3 .

Algorithm 1 determine δ (J )
1: procedure CalcDeltaJ(Φ, J )
2: for ϕ ∈ ΦJ do ▷ policies relevant during J
3: δϕ (J ) := max{|π | | spj (π ,π ′) ∈ P}
4: for ϕ ′ ∈ ΦJ ,ϕ

′ , ϕ, J ∩ J ′ , ∅ do ▷ overlap. policies
5: δϕ (J ) + = min{|J ∩ J ′ |,max{|π | | spj (π ,π ′) ∈ P ′}}
6: end for
7: δϕ (J ) = min{δϕ (J ), |J |}
8: end for
9: δ (J ) = max{δϕ (J ) | ϕ ∈ ΦJ }
10: end procedure

Protecting all Possible Goal-Affected Time Stamps. With this, we
arrive at Theorem 4.2, the composition theorem. The intuition is as
follows. For each relevance interval J , one must protect δ (J ) time
stamps in this interval. However, in case many stream policies over-
lap with each other, the goal-affected time stamps are distributed
arbitrarily over J . Therefore, the theorem presumes that they can
lie anywhere in the interval. However, as one knows that one has
to protect only δ (J ) time stamps, it is sufficient to make sure that
the budget consumed at any δ (J ) time stamps does not exceed ϵ .

Theorem 4.2 (Composition). LetM be a mechanism having
as input a stream prefix Sp = (D1, ..,Dp ), and outputting R =
(r1, .., rp ). Assume that we can decomposeM into p sub-mechanisms
M1, ..,Mp , s.t.Mt (Dt ) = rt , where eachMt has independent ran-
domness and achieves (ϵt ,Φt )- Swellfish privacy. ThenM satisfies
(ϵ,Φ)-Swellfish privacy if

∀ϕ ∈ Φ :
∑
ϵt ∈X

ϵt ≤ ϵ . (1)

X = TOPδ (J ){ϵt |t ∈ J } is the set of the highest δ (J ) budgets spent
during J .

Proof: Neighboring sub-streams S J and S ′J differ in at most δ (J )
time stamps. As (1) all mechanisms use independent randomness,
(2) are (ϵt ,Φt )-Swellfish private, and (3) Equation 1 holds, we have

Pr [M(S J ) = R]
Pr [M(S ′J ) = R]

(1)
= max
Y∈Pδ (J )(J )∩[1,p]

∏
t ∈Y

Pr [Mt (Dt ) = rt ]
Pr [Mt (D ′t ) = rt ]

(2)≤ max
Y∈Pδ (J )(J )∩[1,p]

∏
t ∈Y

eϵt

= max
Y∈Pδ (J )(J )∩[1,p]

exp(
∑
t ∈J

ϵt )
(3)≤ exp(ϵ).

Pδ (J )(J ) contains all sets from the power set of J of size δ (J ). □

4.2 Mechanisms Satisfying Swellfish privacy
In this section, we design mechanisms satisfying Swellfish privacy.
To this end, we first propose a baseline. Then we discuss how we
can do better than the baseline in terms of utility, by exploiting the
effects with the tools just introduced. In this context, we propose
three Swellfish-private mechanisms that feature different sampling
and budget allocation strategies and exploit both effects.

4.2.1 w-Event DP Baseline. Swellfish privacy differs from w-
event DP in the specification of privacy goals and inter-individual
constraints only (cf. Table 1). Thus, in the absence of inter-individual
constraints, a (w = max

ϕ∈Φ
|J |)-event private mechanism satisfies

Swellfish privacy.

Theorem 4.3. Let Φ be a policy collection where all C(J ) does
not contain any inter-individual constraint, ϵ > 0 and letM be a
w-event DP mechanism. Ifw ≥ max

(A,P,C(J ), J )∈Φ
|J |, thenM provides

(ϵ,Φ)-Swellfish privacy.

Proof: Let ϕ = (A, P ,C(J ), J ) ∈ Φ. Then, |J | ≤ |J ′ | = w where J ′
is the relevance interval that corresponds to

(A, P ,C(J ), J ) = argmax
(A,P,C(J ), J )∈Φ

|J |.

Let S J , S ′J be sub-streams of the stream prefixes Sp , S ′p , which differ
during interval J only. Then, Sp , S ′p are neighboring stream prefixes
forw ≥ |J |. AsM isw = |J ′ |-event differentially private, it follows
that

Pr [M(S J ) = R]
Pr [M(S ′J ) = R] =

Pr [M(Sp ) = R]
Pr [M(S ′p ) = R] ≤ exp(ϵ). □
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4.2.2 Improving the Baseline. However, due to the TEAS and
TINAR effect, we hypothesize that one can have a higher utility than
withw-event DP baseline in many cases. First,w-event mechanisms
scale Laplace noise proportionally to the global sensitivity, but the
temporal sensitivity ∆tQ (Φ) tends to be smaller if there are no inter-
individual constraints. Therefore, scaling Laplace noise with the
temporal sensitivity is expected to improve data utility. In particular,
this is the case for time stamps t where no policy is relevant, as
one can publish the true statistics there. From a correctness point
of view, one can in general replace the global sensitivity in any
w-event mechanism with the temporal one and obtains a Swellfish-
private mechanism. We use such mechanisms in our experimental
study to investigate the influence of the TEAS effect. However,
mechanisms using sampling and dynamic budget allocation may
presume that the sensitivity is constant over time. An example
is RescueDP [23] whose adaptive sampling component needs the
sensitivity of the next, so far unknown sampling point to calculate
the sampling point.

Second, the number of time stamps δ (J ) to be protected in a
relevance interval J might be different for each interval. So it may
be much smaller thanw . Therefore, distributing the budget in line
with our composition theorem should improve data utility further.
As the composition theorem is not constructive, there generally are
many possibilities to this end. However, as the budget-distribution
strategy of a mechanism typically builds on its sampling strategy,
we now propose Swellfish-private mechanisms featuring typical
sampling strategies. They range from pre-defined sampling rates
over permanent sampling to data-adaptive sampling, exploiting
both effects.

4.2.3 ProposedMechanisms. In general, a Swellfish-privatemech-
anismM consists of private sub-mechanismsMt , structured as
stated in Algorithm 2. Each mechanism publishes the true query re-
sults if there are no relevant policies. Otherwise, it decides whether
to sample the query results, and depending on this decision, per-
turbs the query results with some output perturbation budget ϵopt ,
or approximates the results with the perturbed query results rl of
the last sampling point l . The mechanisms that follow differ in the
procedures isSamplingPoint() and budgetAllocation(), that are
given as follows.

Algorithm 2 Swellfish Mechanism-Framework
1: procedureMt (ϵt ,Φ, l )
2: if |Φt | == 0 then return Q(Dt ) ▷ no relevant policies
3: else
4: if isSamplingPoint(t ) then ▷ poss. samp. budget ϵst
5: ϵ

op
t ← budgetAllocation(..)

6: rt = Q(Dt ) + Lap(∆
Q
t

ϵopt
) ▷ output perturbation

7: l = t ▷ ϵt = ϵst + ϵ
op
t

8: else rt = rl ▷ approximation, ϵt = ϵst
9: end if
10: end if
11: return rt
12: end procedure

Predefined-Rate Sampling with UnicornIS. The mechanism Uni-
cornIntervalSample (UnicornIS) samples at most once per relevance
interval, and assigns the full budget ϵopt = ϵ available to each rele-
vance interval to perturb the respective query result. Specifically,
the first sampling time stamp is t = 0, and the second time stamp
t ′ is the one for which Φt ′ ∩Φ0 = ∅ holds, i.e., the policies relevant
at time t = 0 are not relevant any more. So it is Swellfish-private by
design. As the mechanism samples infrequently, its error is domi-
nated by the approximation error at non-sampling time stamps. So
it is expected to perform well if the query results are constant over
time, or if the stream policies have short relevance intervals.

Permanent Sampling with UnicornPS. In case the query results
vary over time, sampling more frequently may improve utility. So
we propose the mechanism UnicornPermanentSample (UnicornPS)
that implements those two procedures as follows. First, it samples
every time stamp, i.e., isSamplingPoint() always returns true. Sec-
ond, budgetAllocation() features a budget-distribution strategy
that takes advantage of our composition theorem, cf. Algorithm 3.

This strategy is an ensemble of two sub-strategies targeting at
different distributions of policies over the lifetime of the stream.
The aim is to spent in each relevance interval the entire budget ϵ –
and not more (violating privacy) or less (non-optimal utility). Fur-
thermore, we aim to distribute the budget preferably homogeneous
over each relevance interval, to achieve constant high utility over
time. To achieve this, both sub-strategies target at different distri-
butions of stream policies over time. The first sub-strategy, named
uniform, distributes the budget uniformly over each relevance in-
terval, being is a baseline strategy from literature [9, 14]. With
respect to our aim, one sees that if there is only one relevant policy
during a relevance interval, it spends exactly budget ϵ available
for this interval. However, in case there is more than one relevant
policy, it spends never more, but mostly less than ϵ . The rationale
is that, in Line 16, for a given time stamp t , as final budget ϵopt , the
mechanism uses the minimum of all policies relevant at time t , to
not violate privacy. If this budget ϵopt is smaller than the policy-
specific budget ϵopt,ϕ , the mechanism spends less than ϵ budget in
the relevance interval of this policy. We say that, if ϵopt < ϵ

op
t,ϕ ,

policy ϕ is dominated by another policy. So, for dominated poli-
cies, we do not achieve the mentioned aim. To encounter this, we
propose the second sub-strategy, named absorb-and-distribute. It
spends the difference between the final budget ϵopt spent actually,
and policy-specific budget, at later time stamps where the policy is
not dominated anymore (budget absorption). To this end, it deter-
mines the remaining budget ϵoprm,ϕ that the mechanism can spend
during the remaining time stamps in the relevance interval, and
proposes to distribute this remaining budget uniformly among the
remaining time stamps in J . As spending budget does not affect pri-
vacy if the budget is not in TOPδ (J ), the smallest budget in TOPδ (J )
does not count when calculating the remaining budget.

Data-Adaptive SamplingwithUnicorn. Sampling every time stamp
might be a waste of budget if there are times where the query results
vary only slightly and the approximation error would be small. So
we propose the mechanism Unicorn that does data-adaptive sam-
pling, but uses the same budget allocation procedure as UnicornPS
already involving to distributed budget saved by non-sampling.
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In literature, there are two types of data-adaptive sampling. The
first one is dissimilarity-based sampling [14]. Here, one samples iff
the approximation error is higher than the expected perturbation
error. To decide this, one determines the dissimilarity between the
published value at the last sampling point and the current query
result. However, as one uses the actual query result for the sam-
pling decision, one must ensure that the procedure is private as
well. This costs a part of the privacy budget. The alternative is PID-
based sampling [9, 24] coming with no additional cost. Here, one
determines the next sampling time stamp by using a PID controller
known from electrical engineering. As mentioned, such a sampling
strategy contradicts with the temporal sensitivity. So we focus on
the first type of strategy, cf. Algorithm 4. In line with related work,
Unicorn spends ϵ

2 budget per relevance interval for the sampling
decision as well as for output perturbation. However, different splits
of the budget are possible.

Theorem 4.4. ThemechanismUnicornPS andUnicorn fulfill (ϵ,Φ)-
Swellfish privacy.

Proof: Intuitively, privacy of Unicorn holds for the following
reason: Given arbitrary δ (J ) time stamps in a relevance interval, at
these time stamps, themechanism spends at most ϵ2 for dissimilarity
perturbation, as well as for output perturbation. As UnicornPS uses
the same budget-allocation procedure, the following arguments
prove that it spends at most ϵ budget for output perturbation at
arbitrary δ (J ) time stamps in a relevance interval.
Formally, consider Unicorn, and let J be a relevance interval, and
X = TOPδ (J ){ϵt = ϵst + ϵ

op
t |t ∈ J }. We prove that (1)

∑
ϵt ∈X

ϵst ≤ ϵ
2

and (2)
∑

ϵt ∈X
ϵ
op
t ≤ ϵ

2 . Then, with (1), (2) and Theorem 4.2, the

claim follows. Equation (1) holds, as
∑

ϵt ∈X
ϵst ≤

∑
ϵt ∈X

0.5 · ϵ t
δ (J ) =

ϵ
2

in the procedure IsSamplingPoint(). Concerning ϵ
op
t , we discern

between the following cases: If there is only one relevant policy,
and the mechanism samples every time stamp, then the mecha-
nism uses sub-strategy 1 for budget allocation only. in consequence,
Equation (2) holds for the same reasons as Equation (1). Other-
wise, sub-strategy 2 distributes the saved or dominated budget over
the remaining time stamps. Here, Line 7 in budgetAllocation()
ensures Equation (2). □

5 CASE STUDY – POWER-CONSUMPTION
MONITORING

In this section, we evaluate Swellfish privacy experimentally in
the form of a case study. Its objectives are to quantify the utility
improvement of the TEAS and TINAR effect, and to compare the
utility of Swellfish-private mechanisms to w-event competitors
from literature, including the state-of-the-art. We first describe the
methodology, and second state and discuss the results.

5.1 Methodology
We perform an intrinsic evaluation, to quantify the effects, as well
as an extrinsic evaluation comparing our mechanisms with the
state-of-the-art. Our experiments rely on the use case of power-
consumption monitoring. In both evaluations, we aim at using (1) a
broad range of competitors, (2) real-world power consumption data

Algorithm 3 Budget allocation of UnicornPS (ϵop = ϵ) and Uni-
corn(ϵop = 0.5 · ϵ).
1: procedure budgetAllocation(t , ϵop,Φ)
2: ϵ

op
t = ∞

3: for ϕ ∈ Φt do
4: // Sub-Strategy 1 – uniform:
5: ϵ

op
t,c1 ← ϵop

δ (J )
6: // Sub-Strategy 2 – absorb-and-distribute:
7: ϵ

op
rm,ϕ ← ϵop − ∑

ϵopt ′ ∈X
ϵ
op
t ′

8: where X = TOPδ (J ){ϵopt |t ∈ J }
9: if no. sampling time stamps during J ≥ δ (J ) then
10: ϵ

op
rm,ϕ− = smallest pub. budget spent during J

11: end if
12: open_rel_ts← J .end − t + 1
13: ϵ

op
t,c2 ←

ϵoprm,ϕ
open_rel_ts

14: ϵ
op
t,ϕ ← max{ϵopt,c1; ϵ

op
t,c2}

15: end for
16: ϵ

op
t = min

ϕ∈Φt
{ϵopt,ϕ }

17: return ϵt
18: end procedure

Algorithm 4 Sampling Strategy of Unicorn.
1: procedure isSamplingPoint(t , ϵs ,Φ,Q)
2: ϵst = 0.5 · ϵ

maxϕ∈Φt δ (J )

3: dis← |Q(Dt ) − rl |+ Lap(∆
Q
t
ϵ st

)

4: ϵ
op
t ← budgetAllocation(t , ϵ,Φ), λ← ∆

Q
t

ϵopt
5: if dis > λ then
6: return True
7: else return False
8: end if
9: end procedure

streams featuring different query results over time and (3) realistic
policy collections of private households. In the remainder of this
section, we describe how we deal with these challenges.

5.1.1 Mechanism Selection. Selecting meaningful competitors
is challenging due to the wide range of existing w-event mech-
anisms. We select the mechanisms for our study as follows. For
reproducibility, the implementations are publicly available1.

Intrinsic evaluation. To evaluate the TEAS effect, we compare
mechanisms exploiting this effect with mechanisms that are iden-
tical on an algorithmic level, but use the the temporal sensitivity
instead of the global one. As mentioned, this is not possible for
every mechanism. As stated in Table 2, we use as competitors the
mechanisms Sample, Uniform, BD and BA proposed in the original
article on w-event DP [14]. While Uniform samples every time
stamp, Sample samples everyw-th time stamp, and BD and BA use

1https://git.scc.kit.edu/nb0387/swellfish-public
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Table 2: Mechanisms compared in the intrinsic evaluation.

TEAS Effect
w-event vs. Swellfish Implementation
Uniform [14] vs. TSUniform  use ∆Qt
Sample [14] vs. TSSample
BD [14] vs. TSBD
BA [14] vs. TSBA

TINAR effect
w-event vs. Swellfish
Uniform [14] vs. TINARUniform UnicornPS us-

ing ∆Q and Sub-
Strategy 1 only

Sample [14] vs. TINARSample UnicornIS
using ∆Q

dissimilarity-based sampling, but differ in the budget-allocation
strategy. The prefix ’TS’ indicates that the respective mechanism
uses the temporal sensitivity. As discussed, the composition theo-
rem is not constructive. This means that there is no general rule to
adapt a mechanism proposed in literature, such that it exploits the
TINAR effect. This makes it challenging to evaluate the influence
of this effect. However, we can design unbiased counterparts for
the Uniform and Sample mechanism. To this end, we keep the key
idea of their non-data adaptive budget distribution strategy, by
using adjustments of the mechanisms UnicornPS and UnicornIS,
see Table 2. No such unbiased mechanisms for BD and BA exist.

Extrinsic evaluation. Here, we compare (1) our proposed mecha-
nisms UnicornIS, UnicornPS and Unicorn to (2) the current state-of-
the-artw-event DP mechanism RescueDP [24] that cannot exploit
any effect, and (3) the best variant of thew-event mechanisms used
in the intrinsic evaluation. Preliminary experiments indicate that
UnicornPS, UnicornIS, TSBD and TSBA outperform their competi-
tors from Table 2. So to address (3), we include TSBD and TSBA in
our extrinsic evaluation.

5.1.2 Data Streams. We use the GEFCom 2012 data set [13]
already used in [8]. This real-world data consists of the summed-up
hourly power consumption values of 20 different US zones over 4.5
years (p = 152, 277). The zones have different average query results
over time. E.g., zones 4 and 8 have the smallest (0.5 and 3.77 MW)
consumption, while zone 18 has the highest one with 213.57 MW.

5.1.3 Generation of Policy Collections. Literature reveals that
there are no freely available policy collections, but proposes gener-
ators simulating usage patterns of appliances in private households.
As consequence, we use a such one to generate policy collections.
We use the one proposed in [11]. We generate 55 households ,
which is the number of households in a current project 2. Each
household results in one policy collection. For each household, each
appliance-usage pattern scheduled by the generator becomes one
stream policy. This means that we protect all appliance usages chal-
lenging our approach, as one needs to fulfill many privacy goals.
2esquire-projekt.de

Table 3: Statistics of generated policy collections.

Parametersw-event competitors

Parameter Value
Global sensitivity ∆Q 27.57
Window size per
policy collection Φ

w

103 104

Estimation of MAE Improvement of Uniform by Effect

Effect Calculation Value

TEAS effect �t
∆tQ
∆Q

10−2 10−1 100
TINAR effect �t maxϕ∈Φt δ (J )

w

The stream policy ϕ = (A, P ,C(J ), J ) per appliance usage is gener-
ated as follows: The set A of activities is given by the appliances
in the household, and we have no constraints (C(J ) = ∅). We set
P = Pd,θT , where threshold θ is the power an appliance consumes,
and T is the length of the respective appliance usage pattern. The
relevance interval J is 4 ·T time stamps long and is located around
the usage time scheduled by the generator. Multiple concatenated
patterns of one appliance result in one stream policy either. Ta-
ble 3 lists statistics of the resulting policy collections. It reveals
the window lengthw we have to use for ourw-event competitors,
and it illustrates the expected MAE improvement for mechanisms
sampling every time stamp. We set the global sensitivity of our
competitors to ∆Q = 27.57, which is the sum of consumption values
associated with all possible activities. For reproducibility, the policy
collections are publicly available3.

5.1.4 Statistical Soundness. As all mechanisms used in our study
are based on adding random noise, we repeat every experiment for
every combination of data stream, mechanism and policy collection
100 times to eliminate statistical bias. We measure data utility in the
usual way, using the mean absolute (MAE) and relative (MRE) error.
The higher the error is, the lower is the data utility. For brevity, we
focus on the MRE results – the key results are the same with both
metrics. We perform all experiments for ϵ = 1.0. We tested other
values as well and observed that the key results are equal.

5.2 Results
We now state and discuss the results of our experiments. As the pol-
icy collections feature different temporal sensitivities andmaximum
numbers of possible goal-affected time stamps, we use boxplots
displaying the distribution of error values among the collections.

5.2.1 Intrinsic Evaluation. Figures 4 and 5 show the decrease of
the MRE due to the TEAS and TINAR effect. A value of 1 means
that both mechanisms provide the same data utility. A smaller value
indicates a decrease of the MRE and a greater one an increase. The
zones are ordered by increasing average query result over time.
3https://git.scc.kit.edu/nb0387/swellfish-public

11

esquire-projekt.de


4 8 5 1 13 14 16 10 17 15 9 19 20 11 12 2 6 3 7 18

10−3

10−2

10−1

100100

10−1

10−3

zone (ascending order by average value of query result)

M
RE

de
cr
ea
se

TEAS Effect

Uniform vs. TSUniform Sample vs. TSSample BD vs. TSBD BA vs. TSBA

Figure 4: Results of the intrinsic evaluation – TEAS effect.
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Figure 5: Results of the intrinsic evaluation – TINAR effect.

TEAS Effect. We observe three key findings: (1) General large er-
ror decrease, (2) no decrease if a fixed sampling rate is used, and (3)
highest decrease for BD. Regarding (1), for all mechanisms except
Sample, the MRE decreases by one to three orders of magnitude.
The decrease becomes smaller for zones with higher power con-
sumption. This is expected, and in line with previous results [8].
Regarding (2), exploiting the TEAS effect does not influence the
utility of Sample. The rationale is as follows. Generally, mecha-
nisms profit from the TEAS effect at sampling time stamps only.
Sample samples every w-th time stamp only. In consequence, its
MRE is dominated by the approximation error at non-sampling
time stamps, which is nearly independent from the sensitivity used.
Regarding (3), BD profits most from the TEAS effect. As a result of
its budget-allocation strategy, BD samples at the beginning of each
window only. As the windows are long, it samples infrequently,
meaning that its MRE is also dominated by the approximation error.
While TSBA samples infrequently as well, it additionally publishes
true query results in the meantime, if the temporal sensitivity is
zero. This reduces the total approximation error significantly. How-
ever, though BA has the same sampling strategy as BD, BA profits
much less from the TEAS effect. By its design, after sampling, BA
has to skip various time stamps where it must not publish. Thus, it
cannot publish true query results at the skipped time stamps.

TINAR Effect. Considering Figure 5, we observe (1) an MRE de-
crease by an order of magnitude for the Uniform mechanism, but
(2) an increase of MRE for a few policy collections of Sample. This

means that, first, Uniform profits from the TINAR effect a lot. This
is expected, as it samples every time stamp with a reduced noise
scale. Furthermore, we observe a small MRE decrease for Sample
for most collections. This is because TINARSample samples more
often than Sample. However, it samples at most once per relevance
interval, which is rare, leading to a small improvement only. De-
spite this general MRE decrease, there is an increase of MRE for a
few policy collections. The rationale is that the time stamps where
TINARSample and Sample sample differ. As the sampling strategies
of both mechanisms is not data-adaptive, Sample may select the
better sampling time stamps, leading to a lower MRE.

5.2.2 Extrinsic Evaluation. Figure 6 shows the MRE of the com-
petitors (upper plot) and of Swellfish-framework mechanisms (bot-
tom plot). To assess the influence of sampling on mechanism utility,
we add the mechanism Unicorn* into our study. It is a non-private
variant of Unicorn featuring perfect sampling. In other words, it
uses the budget only for query result perturbation, i.e., ϵop = ϵ ,
and does not perturb the dissimilarity value in the procedure Is-
SamplingPoint(). We observe three key findings we now discuss:
(1) Best utility by mechanisms from Swellfish framework, (2) Uni-
cornIS is best for publishing small query results, and (3) marginal
difference in utility of Swellfish frameworkmechanisms performing
dynamic budget allocation. Regarding (1), in general, the competi-
tors from literature perform worse than our mechanisms except
for UnicornIS. This is expected, as they exploit only the TEAS
(TSBD, TSBA) or even none of the effects (RescueDP). Regarding
(2), considering our mechanisms only, we observe that UnicornIS
performs worst for all zones except for Zone 4, having the smallest
average query result. For this zone, it also performs better than
the competitors. As, additionally, the MRE of UnicornIS is almost
independent from the zone, this mechanism is suitable continuous
publishing query results that are small. Regarding (3), by comparing
UnicornPS with Unicorn and its non-private variant Unicorn*, we
observe small utility differences. This indicates that almost per-
fect sampling decisions yield only little utility improvement in the
Swellfish-framework.

Summing up, exploiting the TEAS and TINAR effect improves
the utility of adjusted existing mechanisms by orders of magni-
tude. Furthermore, it allows to design high-utility Swellfish-private
mechanisms. The results indicate that, to this end, a good budget
allocation is more important than a good sampling strategy.

12



4 8 5 1 13 14 16 10 17 15 9 19 20 11 12 2 6 3 7 18
10−5

10−1

103

10−1
100

10−3

zone (ascending order by average value of query result)

M
RE

Competitors

RescueDP (w -event DP) TSBD (TEAS effect) TSBA (TEAS effect)

4 8 5 1 13 14 16 10 17 15 9 19 20 11 12 2 6 3 7 18
10−5

10−1

103

10−1
100

10−3

zone (ascending order by average value of query result)

M
RE

Swellfish Mechanism-Framework

UnicornIS UnicornPS Unicorn Unicorn* (non-private)

Figure 6: Results of the extrinsic evaluation.

6 GENERALIZATION OF CASE STUDY
The results from the case study indicate that – in the power-con-
sumption use case – exploiting the effects improves data utility
from one to three orders of magnitude. However, it is natural to
ask what improvement to expect for other use cases. Abstractly, for
non-sampling mechanisms, we can estimate the MAE improvement
of TEAS knowing the average temporal sensitivity, i.e., predict the
improvement of TSUniform over Uniform.

Theorem 6.1. Given a policy collection Φ, the improvement of the
MAE of TSUniform over Uniform is given by

MAE TSUniform
MAE Uniform

= �t
∆tQ

∆Q
.

Proof: According to its definition, the mechanism Uniform adds
Laplace noise with scale λUt =

∆Q ·ϵ
w to the query result at time t .

Here, w = maxϕ∈Φ δ (J ). Similarly, TSUniform uses scale λTSUt =

∆tQ ·ϵ
w . As the scales equal the expected MAE, we obtain the claim

by dividing both scales. □

Similarly, knowing the average size of the maximum δ (J ) over
all stream policies, we can estimate the improvement of the TINAR
effect in isolation.

Theorem 6.2. Given a policy collection Φ, the improvement of the
MAE of TINARUniform over Uniform is given by

MAE TINARUniform
MAE Uniform

= �t
maxϕ∈Φt δ (J )

w
,

wherew = maxϕ∈Φ δ (J ).

Proof: By definition, the mechanism Uniform adds Laplace noise
with scale λUt =

∆Q ·ϵ
w to the query result at time t . Similarly,

TINARUniform uses scale λTIUt =
∆Q ·ϵ

maxϕ∈Φt
. As the scales equal the

expected MAE, we obtain the claim by dividing both scales. □

The respective values for the case study are given in Table 3. The
MAE values we obtained in our study are in line with them. We
now give an intuition regarding the expected temporal sensitivity
and number of goal-affected time stamps we expect in the loca-
tion and physical activity monitoring use case. To illustrate, the
TEAS effect tends to be high if the global sensitivity of the query is
high, and if there are few sensitive privacy goals. In the location-
monitoring use case, the global sensitivity equals 1, as there are
no concurrent activities. The temporal sensitivity is either 0 (no
relevant policy) or 1. Thus, one profits from the TEAS effect if there
are few relevant policies. However, one should expect a smaller
improvement than in the case study, as the difference between
global and temporal sensitivity is smaller. This is different in the
physical-activity-monitoring use case, as the global sensitivity is
given by the number of activities an individual can perform, and
we expect that an individual usually wants to hide only a few activ-
ities. Further, the TINAR effect is high if relevance intervals are –
compared to the number of goal-affected time stamps – long. An
example is hiding short trajectories in long relevance intervals.

7 RELATEDWORK
Related work proposes DP-based privacy frameworks to bound
the sensitivity, or number of protected time stamps, as well as
frameworks that focus on a specific use case.

13



Bounding Sensitivity. Bounding the sensitivity has been done be-
fore in the static setting. The smoothed sensitivity [21] is a smooth
upper bound on the local sensitivity and thus higher than our tem-
poral sensitivity. As discussed, Swellfish privacy is a generalization
of Blowfish [12] to streams. Following results from [12], in the ab-
sence of constraints, this also holds for Pufferfish privacy [15, 16].
Metric-based privacy [3] features distance-based policies. However,
all these approaches are defined for the static setting and do not
take time-dependent relevance into account.

Bounding Number of Protected Time Stamps. Bounding the num-
ber of time stamps one has to protect has been done before in the
streaming setting. However, event-level DP [6] hides only one event,
and w-event DP [14] hides all possible patterns anywhere in the
stream. Both frameworks cannot take time-dependent relevance
into account, lacking the notion of time-dependent goals. Much
work exists on designing neww-event mechanisms. The latest ones
exploit features of the streams, like small query results [24]. Many
of them use sampling [18, 24] and filtering [4, 24] techniques. We
can show that Swellfish privacy inherits post-processing immunity
from the DP framework, and therefore, filtering can be used. How-
ever, they are orthogonal to exploiting time-dependent relevance.
Thus, their evaluation is beyond the scope of this paper.

Use-Case Specific Frameworks. For the power-consumption use
case, specific frameworks that implement individual privacy goals
exist [10, 17, 22]. But they are not suitable for data streams or
focus on privacy goals and guarantees different from differential
privacy. Work that focuses on specifics of the location-monitoring
use case [1] and hides l-trajectories is applicable to streams, but
does not account for the time-dependent relevance problem.

8 CONCLUSIONS AND FUTUREWORK
In this paper, we consider the time-dependent relevance of privacy
goals when continuously publishing differentially-private query
results. To this end, we propose Swellfish privacy, a privacy frame-
work exploiting time-dependent relevance to increase utility by
exploiting two effects. The effects are the time-variant sensitiv-
ity and the time-variant number of affected query results, that
related work cannot exploit by design. In order to exploit them, our
notion of a policy collection allows individuals to specify combina-
tions of possibly concurrent time-dependent privacy goals. Then,
the iterative definition of neighboring databases, and the assign-
ment of the privacy budget to relevance intervals in the privacy
definition, ensures that privacy goals with overlapping relevance
intervals are hidden concurrently. To exploit the effects in privacy
mechanisms, we propose two tools. A realistic case study in the
power-consumption use case shows that adjusting existing mecha-
nisms so that they exploit the effects leads to one to three orders
of magnitude utility improvement. At the same time, designing
new mechanisms with the Swellfish mechanism framework yields
mechanisms outperforming such adjusted existing mechanisms sig-
nificantly. We generalize the study by specifying how to determine
the expected utility improvement of the effects given an arbitrary
policy collection.

We see various directions for future work. As usual, policy collec-
tions are presumed to be public knowledge. However, individuals

may deem their policy collections sensitive information. So we
will investigate how to keep them secure with appropriate encryp-
tion frameworks. Next, as our study reveals that budget alloca-
tion yields the highest utility improvement, we aim to investigate
budget-allocation strategies in more detail.
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