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Evaluation of measurement
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B Experimental determination of beam broadening using low-energy-STEM

B Comparison with theoretical models by Goldstein ['l and Gauvin/Rudinsky
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SrTiO;, Ge
B Preparation of wedge-shaped specimens
with defined thickness by FIB-milling (Fig. 1)
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Conclusions
@ Electron beam broadening was measured at low electron energies (15 to 30

sample thicknesses up to 900 nm
@ Electron beam broadening b can be well described by the Gauvin/Rudinsky

Procedure to measure beam broadening model with /' = 0.75 determined for R = 0.68
B Assumptions and definitions T o
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B Beam diameter b: diameter that contains 68% of all electrons 4 b = 0.11677%% 39437°7° |-—— e (%) Gl
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B Diameter of the incident electron beam « b — total beam diameter can be ® For plural scattering as in our work, H = 0.5 was expected. Simulations 2 Fig- 5

approximated by b however indicate that H increases with decreasing R.

B Measurement of transmitted intensity /., up to scattering angle 6 determined H = 075 is therefore consistent with small R = 0.68 in our work.

by HAADF detector as a function of the sample thickness (Fig. 2a)
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