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CRISPR/Cas systems enable gene editing through the induction of site-specific
DNA double-strand breaks (DSB). However, the nature of the induced modi-
fication highly depends on the mechanism used for DNA DSB repair. Non-
homologous end joining (NHEJ)-mediated targeted mutagenesis induced by
CRISPR/Cas is an already standardly applied tool, which can lead to various
different kinds of mutations at a specific genomic site. Nevertheless, precise
genome modification using homologous donor sequences is still challenging
in plants. Applications depending on the less frequent homologous recombi-
nation (HR) require further improvements to create an attractive and efficient
tool for general application in plants. Focusing on this issue, we developed the
in planta gene targeting (ipGT) system, which is based on the simultaneous
excision of a stably integrated, homologous donor sequence and the induction
of a DSB within the target site. In recent years, several improvements were
achieved enhancing gene targeting (GT) frequencies. After the successful ap-
plication of Streptococcus pyogenes Cas9 (SpCas9) and Staphylococcus aureus
Cas9 (SaCas9) for ipGT, we were able to further improve the system using
Lachnospiraceae bacterium Casl12a (LbCas12a), which also enables cleavage
in T-rich regions. Most recently, we tested an improved, temperature-tolerant
version of LbCasl2a (ttLbCas12a) for ipGT and were able to further increase
GT efficiencies. Here, we describe the experimental procedure of the recently
published ipGT system using ttLbCasl2a in Arabidopsis thaliana in detail.
© 2020 The Authors.

Basic Protocol 1: Construction of CRISPR/ttLbCas12a expression vector to
analyze ipGT efficiencies
Basic Protocol 2: Achieving heritable GT plants
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INTRODUCTION

Gene targeting (GT) is a precise method to modify genomic DNA by the use of a template
DNA based on the DSB repair mechanism of homologous recombination (HR) (Puchta,
Dujon, & Hohn, 1996). However, common CRISPR/Cas-mediated targeted mutagenesis
relies on the error-prone non-homologous end joining (NHEJ) repair mechanism leading
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Figure 1 Outline of the in planta gene targeting system (Fauser et al., 2012). The ipGT system
is based on the DSB induction within the target locus and the excision of the HR donor sequence.
The HR donor contains the desired mutation, which should be integrated in the target locus and
silent mutations to avoid cleavage within the donor molecule. The released HR donor can be used
as a template for HR to repair the induced DSB. After a successful repair, the desired mutation is
integrated into the plant genome.

to site-specific insertions and deletions that cannot be predefined like GT modifications
(Schindele, Dorn, & Puchta, 2020). In the case of GT, the integration of exactly defined
modifications is feasible by using a donor sequence for HR containing the desired mod-
ification flanked by homologous regions to the target locus. For obtaining successful GT
events, the DSB has to be repaired via HR using this donor sequence. To prevent the
unintended cleavage of the repair template, additional silent mutations within the donor
sequence are provided. In plants, HR frequencies are limited and thus GT efficiencies are
low (Huang & Puchta, 2019). Therefore, we set up the ipGT system (see Fig. 1), in which
the targeting nuclease not only induces the DSB within the target but also excises and
thus activates the integrated donor sequence in order to elevate GT frequencies (Fauser
et al., 2012).

As CRISPR/Cas systems became a well-established and easy to handle programmable
tool, they also became an auspicious tool for ipGT. The field of CRISPR/Cas is rapidly
evolving and since the first adaptation of SpCas9, several new CRISPR/Cas systems and
orthologues were adopted for their use in eukaryotes. We originally applied SpCas9 for
ipGT in Arabidopsis with moderate success (Schiml, Fauser, & Puchta, 2014), but over
the last years we started to test other nucleases. After showing that SaCas9 is more effi-
cient than SpCas9 for NHEJ-mediated targeted mutagenesis in plants, we demonstrated
that SaCas9 also improves ipGT efficiencies (Steinert, Schiml, Fauser, & Puchta, 2015;
Wolter, Klemm, & Puchta, 2018). In particular, egg-cell specific expression of Cas pro-
teins and the screening for the most efficient transgenic line turned out to be decisive for
successful GT (Miki, Zhang, Zeng, Feng, & Zhu, 2018; Wolter et al., 2018). Recently,
Cas12a was shown to be an efficient nuclease that also allows the targeting of T-rich sites
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(Zetsche et al., 2015). With LbCas12a, as most efficient ortholog in plants, another in-
crease of GT frequency was accomplished (Wolter & Puchta, 2019). However, a problem
for using LbCas12a is its temperature sensitivity. The enzyme has highly efficient cutting
activities at 37°C but not at 22°C, which is required for plant cultivation. Therefore, our
group developed a temperature-tolerant version of LbCasl2a (ttLbCasl2a) to enhance
cutting efficiencies at lower temperatures (Malzahn et al., 2019; Schindele & Puchta,
2020). Just recently, we were able to demonstrate that ttLbCas12a outperformed the na-
tive enzyme in ipGT at 22°C by 2.4-fold and at 28°C by 1.7-fold (Merker, Schindele,
Huang, Wolter, & Puchta, 2020).

In this protocol, we focus on basic steps of the experimental procedure for using
ttLbCas12a for ipGT in Arabidopsis thaliana, including the identification of the target
site, design of the guide and HR donor sequence, the cloning of the T-DNA, the evalua-
tion of the guide efficiency and the procedure of obtaining heritable GT plants.

CONSTRUCTION OF CRISPR/ttLbCas12a EXPRESSION VECTOR TO
ANALYZE ipGT EFFICIENCIES

In this protocol, we describe the procedure to create ttLbCasl2a constructs for ipGT in
detail (see Fig. 2).

This protocol includes two steps: (1) Preparation and design; (2) Generation of the T-
DNA.

Materials

Aatll for the integration of the HR donor sequence

Pacl for the integration of the HR donor sequence

Plasmids (see recipe)

ddH,0O

Bbsl for the integration of the annealed oligonucleotides

Ligase for any conventional cloning step

Escherichia coli, any standard cloning strain (e.g., NEB5a) for all cloning steps
except for propagation of the destination vector before gateway cloning, where a
ccdB-resistant strain has to be used
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Figure 2 Overview of the screening strategy of ipGT to identify positive GT plants. The constructs are trans-
ferred into A. thaliana via floral dip method. The plants are cultivated until maturity to harvest the T1 seeds. The
T1 seeds are sown out to select for primary transformants. The primary transformants are transferred to soil
to grow until maturity to harvest T2 seeds. Approximately 100 T2 seeds are sown out on GM-medium for pre-
screening. The pre-screening determines the positive pools. Each plant of each positive pool is then analyzed

separately for GT events. The result is confirmed via sequencing.
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Table 1 Used Oligonucleotides

Oligonucleotides Sequence (5'-3")

M13-fw TGTAAAACGACGGCCAGT
SS42 TCCCAGGATTAGAATGATTAGG
SS102 CACCATGTTATCACATCAATCC

Ampicillin-containing LB plates for colony selection

Primers for PCR screening (see Table 1)

LB medium for E. coli

Plasmid preparation kit

Gateway LR Clonase II for the transfer of the programmed guide to the binary
vector

TE buffer for Gateway reactions

Proteinase K to stop Gateway reactions

Spectinomycin-, rifampicin- and gentamicin-containing YEB plates for colony
selection

Agrobacterium tumefaciens, any standard transformation strain (e.g., GV3101)

DNA polymerase for E. coli and A. tumefaciens colony PCRs

dNTPs for E. coli and A. tumefaciens colony PCRs

YEB medium for A. tumefaciens

Arabidopsis thaliana plants, wild-type (ecotype Columbia-0) or mutant

Preparation and design

1.

Identification of the target site: Search for a potential target site with a protospacer
adjacent motif (PAM; 5’-TTTV-guide-3’) in the selected target locus in close prox-
imity to the desired modification. Avoid sequences containing a set of five or more
Ts as this is the termination sequence for RNA polymerase III.

Design of the HR donor: use 600 to 800 bp homologies on both flanks of the cleav-
age site. For excision of the HR donor, add the gRNA target sequence including the
PAM to both ends of the donor sequence. To avoid Casl2a activity on the donor
site, include silent mutations either in the PAM (preferred) or in the spacer sequence
(nucleotides 4-7 proximal to the PAM are most vulnerable to mismatches). Addi-
tionally, add restriction sites (Aarll and Pacl) on the end of the HR donor, as they
are required for inserting the HR donor sequence into your T-DNA (see Critical
Parameters).

Generate your HR donor sequence: methods to generate your HR donor are overlap
extension PCRs, Gibson assembly, site-directed mutagenesis PCRs, or gene synthe-
sis.

Generation of the T-DNA: creating the entry vector

4,

5.

6.

Order oligonucleotides for your target sequence. For ttLbCasl2a the sequence
should be 23-25 nt downstream of the PAM. Add “AGAT” at the 5’ end on the for-
ward oligonucleotide and “GGCC” at the 5" end on the reverse-complement oligonu-
cleotide to ensure spacer integration into the gRNA expression cassette.

Dilute the oligonucleotides in ddH,O to a final concentration of 2 pmol/ul for each
oligonucleotide in a total volume of 50 pl. Mix and incubate for 5 min at 95°C using
a thermal cycler. Incubate another 20 min at room temperature for annealing of the
oligonucleotides.

Digest the entry vector with Bbsl to prepare it for the integration of the annealed
oligonucleotides. Purify the digested vector (e.g., by using a common DNA purifi-
cation Kit) and dilute to a final concentration of 5 ng/l.
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10.
11.

Set up a ligation reaction (see a-e) and incubate as recommended by the manufac-
turer information.

a. 2 ul digested entry vector

b. 3 ul annealed oligonucleotides
c. 1 ul T4 ligase buffer

d. 1 ul T4 ligase

e. 3 ul ddH,O

Transform the ligation product into E. coli for amplification.

Select for colonies on ampicillin-containing LB plates. Screen colonies by colony
PCR using M13-fw and the reverse-complement oligonucleotide as primers (see
Table 1).

Cultivate transformed colonies in liquid LB-amp medium.

Purify the plasmids (e.g., by using a common plasmid preparation kit) and validate
them by sequencing with primer SS42 (see Table 1).

Generation of the T-DNA: creating the expression vector

12.

13.

14.
15.

16.
17.
18.

19.
20.
21.

22.

23.
24,

25.

Set up areaction (see a-d) to transfer the validated gRNA expression cassette to pDe-
EC-ttLbCas12 and pDe-ttLbCas12a by Gateway cloning in a total volume of 10 pl
and incubate for 2 to 3 hr at room temperature. pDe-EC-ttLbCas12a is for the GT
construct. pDe-ttLbCas12a is for evaluating the cleavage activity within the chosen
target.

a. 200 ng entry vector

b. 150 ng destination vector

c. 1 yl LR Clonase IT

d. Fill up to 10 pl with TE buffer

Stop the Gateway reaction after incubation by adding 1 pl proteinase K and incubate
10 min at 37°C using a heating block.

Transform the Gateway reaction into E. coli for amplification.

Select for colonies on spectinomycin-containing LB plates. Screen for correct
colonies by colony PCR using SS42/SS102 as primers (see Table 1).

Cultivate transformed colonies in liquid LB-spec medium.
Purify the plasmids and validate them by a restriction digestion.

Insert your HR donor sequence into the pDe-EC-ttLbCas12a vector via a restriction
digestion with Aatll and Pacl.

Screen for correct clones by a suitable colony PCR and restriction digestion.
Validate the correctness of your final construct by full sequencing.

Transform your correct construct into A. tumefaciens (Wirth, Friesenegger, &
Fiedler, 1989).

Select for colonies on spectinomycin-, rifampicin- and gentamicin-containing YEB
plates. Validate the positive colonies by colony PCR using SS42/SS102.

Cultivate one correct colony in liquid YEB-spec-rif-gent medium.

Transform the final construct in A. thaliana via the floral dip method (Clough &
Bent, 1998).

Harvest the T1 seeds after maturation.
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ACHIEVING HERITABLE GT PLANTS

In this protocol, we describe the procedure to obtain heritable GT plants following
A. thaliana transformation (see Fig. 2).

This protocol includes two steps: (1) Generating primary transformants; (2) Obtaining
heritable GT plants.

Materials

T1 seeds (see Basic Protocol 1)

DNA polymerase for screening of GT plants

dNTPs for screening of GT plants

Gentamicin-containing GM plates for selecting transgenic plants

Additional reagents and equipment for extracting DNA via the rapid DNA
extraction method (see Edwards, Johnstone, & Thompson, 1991)

Generating primary transformants

1.

Sow seeds of the transformation on GM medium containing gentamicin to select for
transgenic plants harboring the T-DNA.

Let the seeds maturate for 2 weeks at 22°C in a growth chamber.

For GT: Pick at least 40 T1 plants containing pDe-EC-ttLbCas12a and transfer them
to soil until maturity.

For cleavage activity: Extract DNA from 20 primary transformants contain-
ing the pDe-ttLbCasl2a construct via the rapid DNA extraction method (see
Edwards etal., 1991). Analyze the mutagenesis efficiency by e.g., TIDE (see Critical
Parameters).

Extract DNA from one leaf of each plant and set up a suitable PCR to verify the
presence of your construct.

Obtaining heritable GT plants

6.
7.
8.
0.
10.
11.

12.

13.
14.
15.
16.
17.

Harvest the seeds of each T1 plant separately.

Sow about 100 seeds per line on GM medium.

Let the seeds maturate for 2 weeks at 22°C.

Extract DNA from one leaf of 100 plants per line as a pool.

Screen for positive GT events using a suitable PCR (see Critical Parameters).

Extract DNA from each plant of the positive identified T1 pools separately after
another week of growth.

Analyze the T2 plants separately for heritable GT via PCR and confirm it by se-
quencing (see Critical Parameters).

Transfer positive T2 plants to soil and cultivate them to maturity.
Harvest seeds from each positive T2 line separately.

Sow T3 seeds on GM medium.

Screen for loss of the T-DNA via PCR.

Confirm successful GT events to ensure stable inheritance.
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REAGENTS AND SOLUTIONS
Plasmids

The plasmids are all freely available directly from the authors. The full sequence
information is available at www.botanik.kit.edu/crispr.

pDe-EC-ttLbCas12a is the binary vector for a stable Agrobacterium tumefaciens-
mediated A. thaliana transformation. The binary vector confers spectinomycin re-
sistance to bacteria and gentamicin resistance to plants. It contains the A. thaliana
codon-optimized ttLbCas12a ORF under the control of an egg-cell specific promoter
(EC1.1/1.2 promoter). It is also a Gateway destination vector with a ccdB gene
flanked by respective attachment sites for transferring the gRNA expression cassette
to the binary vector. Restriction sites for inserting the HR donor sequence are located
within the multiple cloning site.

pEn-RZ-Lb-Chimera is a Gateway entry vector containing an empty gRNA. Via
TyplIS restriction enzymes, annealed oligonucleotides can be integrated to create
a programmed gRNA. The gRNA is under the control of the Arabidopsis U6-26 pro-
moter and flanked by the hammerhead (5) and hepatitis delta virus (3’) ribozyme.
The expression cassette is flanked by respective Gateway attachment sites to enable
the transfer of the gRNA into the destination vector. The entry vector confers ampi-
cillin resistance to bacteria.

pDe-ttLbCas12a is identical to pDe-EC-ttLbCas12a except for the expression of

ttLbCas12a, which is controlled by the constitutive PcUBI 4-2 promoter.

COMMENTARY

Critical Parameters

For a successful application of ipGT, the
design should be well considered. The most
crucial point is the design of the donor se-
quence. The length of the homologies can
vary, and larger homologies can increase HR
frequencies. We recommend at least a size
of 600 bp of homology for each end. Spe-
cial attention is required for inserting silent
mutations to avoid cleavage within the donor
molecule. Here, the amino acid sequence must
remain unchanged, but the silent mutation
must be well-chosen to ensure ttLbCas12a is
not able to induce a DSB. We recommend a
modification of the PAM sequence as one mu-
tation is usually enough to guarantee no cleav-
age. For choosing a suitable mutation in the
PAM sequence, we recommend checking Gao
etal. (2017).

To optimize the experimental success, we
suggest testing cleavage activity first. This can
be done by the determination of the efficiency
of mutation induction by NHEJ at the respec-
tive site. For this, we recommend using TIDE
analysis to find an optimal guide RNA. By us-
ing more efficient guides, HR frequencies can
be increased.

For the screening of GT events via PCR,
suitable primers should be selected. One
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primer should bind outside of the homology
region and the other should only bind to the
template mutation. This way, amplification of
the T-DNA donor template is prevented and
only the amplification of true positive GT
events is feasible. Since this is a critical key
point in applying ipGT, proper analysis of suit-
able primers and cycle numbers should be per-
formed.

Troubleshooting

If problems occur in one of the steps men-
tioned above, the troubleshooting guide might
help (see Table 2).

Understanding Results

GT efficiencies should be presented as
the average of positive GT lines in ratio to
the total number of analyzed lines. The ipGT
system was successfully applied with this
protocol and the average GT efficiency that
was accomplished using ttLbCas12a is 1.34%.

Time Considerations

Before starting the experiments, we rec-
ommend sufficient time for preparation and
design. The general time required for per-
forming the ipGT experiment itself to obtain
a targeted homozygous Arabidopsis line is
approximately 6 to 9 months.
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Table 2 Troubleshooting Guide for ipGT

Problem

Possible cause

Solution

Generation of the
T-DNA: creating the
entry vector

Generation of the
T-DNA: creating the
expression vector

No colonies

No positive
colonies

No colonies

Restriction
enzyme did not
cleave

Ligation did not
work

Wrong selection
media

Mixture of
digested and
undigested
plasmid

Gateway reaction
did not work

Increase incubation time of the
digestion
Use a larger digestion volume

Increase incubation time of the
ligation

Use a larger ligation volume
Adjust the incubation temperature

Ensure using
ampicillin-containing LB medium
See “Restriction enzyme did not
cleave”

Purify digested plasmids via gel
and repeat ligation

Increase incubation time of the
gateway reaction

Ensure the correct quantity of
used constructs

Validate the sequence of the
attachment sites of the entry and
destination vector via sequencing

No positive Utilized wrong E. Ensure not to use the
colonies coli strain ccdB-resistant strain
Generating primary No primary A. thaliana Ensure to follow Clough & Bent
transformants transformants transformation (1998) Check the OD before
did not work transformation
Wrong selection Ensure using
media gentamicin-containing GM
medium for selection
No cleavage Poor spacer Ensure that the target locus
activity design contains the PAM sequence
Ensure that the spacer sequence
does not contain the PAM
sequence
Ensure the spacer is not
containing a set of T's
Low cleavage Weak spacer Test other gRNA target sequences
activity
Obtaining heritable GT No GT event Weak spacer Test other gRNA target sequences
plants
Cleaved donor Ensure to integrate silent
sequence mutations in the donor sequence
to completely avoid cleavage
No released Ensure that the PAM sequence is
donor sequence located at the ends of the donor
sequence
Ensure that the gRNA target
sequence is located at the end of
the donor sequence
Low number of Scale up the number of analyzed
positive lines plants
8 of 9
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