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AN ASYMPTOTIC REPRESENTATION FORMULA FOR

SCATTERING BY THIN TUBULAR STRUCTURES AND AN

APPLICATION IN INVERSE SCATTERING∗

YVES CAPDEBOSCQ† , ROLAND GRIESMAIER‡ , AND MARVIN KNÖLLER‡

Abstract. We consider the scattering of time-harmonic electromagnetic waves by a penetrable
thin tubular scattering object in three-dimensional free space. We establish an asymptotic repre-
sentation formula for the scattered wave away from the thin tubular scatterer as the radius of its
cross-section tends to zero. The shape, the relative electric permeability and the relative magnetic
permittivity of the scattering object enter this asymptotic representation formula by means of the
center curve of the thin tubular scatterer and two electric and magnetic polarization tensors. We
give an explicit characterization of these two three-dimensional polarization tensors in terms of the
center curve and of the two two-dimensional polarization tensor for the cross-section of the scattering
object. As an application we demonstrate how this formula may be used to evaluate the residual and
the shape derivative in an efficient iterative reconstruction algorithm for an inverse scattering prob-
lem with thin tubular scattering objects. We present numerical results to illustrate our theoretical
findings.

Key words. electromagnetic scattering, Maxwell’s equations, thin tubular object, asymptotic
analysis, polarization tensor, inverse scattering
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1. Introduction. In this work we study time-harmonic electromagnetic waves
in three dimensional free space that are being scattered by a thin tubular object. We
assume that this object can be described as a thin tubular neighborhood of a smooth
center curve with arbitrary, but fixed, cross-section, possibly twisting along the center
curve. Assuming that the electric permittivity and the magnetic permeability of the
medium inside this scatterer are real valued and positive, we discuss an asymptotic
representation formula for the scattered field away from the thin tubular scattering
object as the radius of its cross-section tends to zero. The goal is to describe the
effective behaviour of the scattered field due to a thin tubular scattering object. Our
primary motivation is the application of this result to inverse problems or shape
optimization.

Various low volume expansions for electrostatic potentials, as well as elastic and
electromagnetic fields are available in the literature, (see, e.g., [1, 5, 7, 8, 12, 14, 18,
22, 24, 25, 28]). The framework we use in this work was first introduced in [18, 19, 21]
for electrostatic potentials. The very general low volume perturbation formula for
time-harmonic Maxwell’s equations in bounded domains from [1, 28] can be extended
to the electromagnetic scattering problem in unbounded free space as considered in
this work using an integral equation technique developed in [4, 9]. Applying this
result to the special case of thin tubular scattering objects, the first observation is
that the scattered field away from the scatterer converges to zero as the diameter of
its cross-section tends to zero. We consider the lowest order term in the corresponding
asymptotic expansion of the scattered field, which can be written as an integral over
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the center curve of the thin tubular scattering object in terms of (i) the dyadic Green’s
function of time-harmonic Maxwell’s equations in free space, (ii) the incident field,
and (iii) two effective polarization tensors. The range of integration and the electric
and magnetic polarization tensors are the signatures of the shape and of the material
parameters of the thin tubular scattering object in this lowest order term.

The main contribution of this work is a pointwise characterization of the eigenval-
ues and eigenvectors of these polarization tensors for thin tubular scattering objects.
We show that in each point on the center curve the polarization tensors have one
eigenvector corresponding to the eigenvalue 1 that is tangential to the center curve.
Since polarization tensors are symmetric 3 × 3-matrices, this implies that there are
other two eigenvectors perpendicular to the center curve. We prove that in the plane
spanned by these two eigenvectors the three-dimensional polarization tensors coincide
with the corresponding two-dimensional polarization tensors for the cross-section of
the thin tubular scattering object. This extends an earlier result from [13] for straight
cylindrical scatterers with arbitrary cross-sections of small area. The asymptotic rep-
resentation formula for the scattered field together with this pointwise description
of the polarization tensors yields an efficient simplified model for scattering by thin
tubular structures.

For the special case, when the cross-section of the thin tubular scattering object is
an ellipse, explicit formulas for the two-dimensional polarization tensors of the cross-
section are available, which then gives a completely explicit asymptotic representation
formula for the scattered field. We will exemplify how to use this asymptotic repre-
sentation formula in possible applications by discussing an inverse scattering problem
with thin tubular scattering objects with circular cross-sections. The goal is to recover
the center curve of such a scatterer from far field observations of a single scattered
field. We make use the asymptotic representation formula to develop an inexpensive
iterative reconstruction scheme that does not require to solve a single Maxwell system
during the reconstruction process. A similar method for electrical impedance tomog-
raphy has been considered in [29] (see also [13] for a related inverse problem with thin
straight cylinders). Further applications of asymptotic representation formulas for
electrostatic potentials as well as elastic and electromagnetic fields with thin objects
in inverse problems, image processing, or shape optimization can, e.g., be found in
[2, 3, 16, 23, 27, 38].

The outline of this paper is as follows. After providing the mathematical model
for electromagnetic scattering by a thin tubular scattering object in the next section,
we summarize the results on the general asymptotic analysis from [1, 28] for the special
case of thin tubular scattering objects in Section 3. In Section 4 we state and prove
our main theoretical result concerning the explicit characterization of the polarization
tensor of a thin tubular scattering object. As an application of these theoretical
results, we discuss an inverse scattering problem with thin tubular scattering objects
in Section 5, and in Section 6 we provide numerical examples.

2. Scattering by thin tubular structures. We consider time-harmonic elec-
tromagnetic wave propagation in the unbounded domain R3 occupied by a homoge-
nous background medium with constant electric permittivity ε0 > 0 and constant
magnetic permeability µ0 > 0. Accordingly, the wave number k at frequency ω > 0 is
given by k = ω

√
ε0µ0, and an incident field (Ei,H i) is an entire solution to Maxwell’s

equations

(2.1) curlEi − iωµ0H
i = 0 , curlH i + iωε0E

i = 0 in R
3 .
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We assume that the homogeneous background medium is perturbed by a thin
tubular scattering object, which shall be given as follows. Let BR(0) ⊆ R3 be a ball
of radius R > 0 centered at the origin, and let Γ ⋐ BR(0) be a simple (i.e., non-
self-intersecting but possibly closed) curve with C3 parametrization by arc length
pΓ : (−L,L) → R

3. Assuming that p′
Γ(s) × p′′

Γ(s) 6= 0 for all s ∈ (−L,L), the
Frenet-Serret frame (tΓ,nΓ, bΓ) for Γ is defined by

(2.2) tΓ(s) := p′
Γ(s) , nΓ(s) :=

p′′
Γ(s)

|p′′
Γ(s)|

, bΓ(s) := tΓ(s)× nΓ(s) , s ∈ (−L,L) .

For any θ ∈ C1([−L,L]) let

(2.3) Rθ(s) :=

[
cos(θ(s)) − sin(θ(s))
sin(θ(s)) cos(θ(s))

]
∈ R

2 , s ∈ (−L,L) ,

be a two-dimensional parameter-dependent rotation matrix, which will be used to
twist the cross-section around the curve Γ while extruding it along the curve in the
geometric description of the thin tubular scattering object.

The tubular neighborhood theorem (see, e.g., [43, Thm. 20, p. 467]) shows that
there exists a radius r > 0 sufficiently small such that the map

(2.4) rΓ : (−L,L)×B′
r(0) → R

3 , rΓ(s, η, ζ) := pΓ(s)+
[
nΓ(s) bΓ(s)

]
Rθ(s)

[
η
ζ

]
,

where B′
r(0) ⊆ R2 is the disk of radius r centered at the origin, defines a local

coordinate system around Γ. We denote its range by

(2.5) Ωr :=
{
rΓ(s, η, ζ)

∣∣ s ∈ (−L,L) , (η, ζ) ∈ B′
r(0)

}
.

Given 0 < ℓ < L and 0 < ρ < r/2 we consider a cross-section D′
ρ ⊆ B′

ρ(0) that is just
supposed to be measurable, and accordingly we define a thin tubular scattering object
by

(2.6) Dρ :=
{
rΓ(s, η, ζ)

∣∣ s ∈ (−ℓ, ℓ) , (η, ζ) ∈ D′
ρ

}

(see Figure 1 for a sketch). In the following we call

K :=
{
pΓ(s)

∣∣ s ∈ (−ℓ, ℓ)
}

the center curve ofDρ, and the parameter ρ is called the radius of the cross-sectionD′
ρ

of Dρ, or sometimes just the radius of Dρ.

Remark 2.1. The definition (2.6) does not cover thin tubular scattering objects
Dρ with closed center curves K. However, the results established in the Theorems 3.1
and 4.1 below remain valid in this case, and the proofs can actually be simplified
because one does not have to take into account the ends of the tube. ♦

We suppose that the medium inside the thin tubular scattering object has con-
stant electric permittivity ε1 > 0 and constant magnetic permeability µ1 > 0. Ac-
cordingly, the permittivity and permeability distributions in the entire domain are
given by

(2.7) ερ(x) :=

{
ε1 , x ∈ Dρ ,

ε0 , x ∈ R3 \Dρ ,
and µρ(x) :=

{
µ1 , x ∈ Dρ ,

µ0 , x ∈ R3 \Dρ .
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Fig. 1: Sketch of a thin tubular scattering object Dρ with cross-section D′
ρ ⊆ B′

r(0).

We also use the notation εr := ε1/ε0 and µr := µ1/µ0 for the relative electric permit-
tivity and the relative magnetic permeability, respectively. The electromagnetic field
(Eρ,Hρ) in the perturbed medium satisfies

(2.8) curlEρ − iωµρHρ = 0 , curlHρ + iωερEρ = 0 in R
3 .

Rewriting this total field as a superposition

(Eρ,Hρ) = (Ei,H i) + (Es
ρ,H

s
ρ)

of the incident field (Ei,H i) and a scattered field (Es
ρ,H

s
ρ), we assume that the

scattered field satisfies the Silver-Müller radiation condition

(2.9) lim
|x|→∞

(
√
µ0H

s
ρ(x)× x− |x|√ε0Es

ρ(x)) = 0

uniformly with respect to all directions x̂ := x/|x| ∈ S2.
In the following we will work with the electric field only. Eliminating the magnetic

field from the system (2.1) gives

(2.10a) curlcurlEi − k2Ei = 0 in R
3 ,

while (2.8) reduces to

(2.10b) curl
( 1

µρ

curlEρ

)
− ω2ερEρ = 0 in R

3 ,

and (2.9) turns into

(2.10c) lim
|x|→∞

(curlEs
ρ(x)× x− ik|x|Es

ρ(x)) = 0 .

Remark 2.2. Throughout this work, Maxwell’s equations are always to be under-
stood in weak sense. For instance, Eρ ∈ Hloc(curl;R

3) is a solution to (2.10b) if and
only if

∫

R3

( 1

µρ

curlEρ · curlV − ω2ερEρ · V
)
dx = 0 for all V ∈ H0(curl;R

3) .
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Standard regularity results yield smoothness of Eρ and Es
ρ in R3 \ BR(0) for some

R > 0 sufficiently large, and the entire solution Ei is smooth throughout R3. In
particular the Silver-Müller radiation condition (2.10c) is well defined. ♦

Lemma 2.3. Suppose that the incident field Ei ∈ Hloc(curl;R
3) satisfies (2.10a).

Then there exists a constant ρ0 > 0 depending only on R, ω, ε0 and µ0 such that
for all 0 < ρ < ρ0 the scattering problem (2.10b)–(2.10c) has a unique solution
Eρ ∈ Hloc(curl;R

3). Furthermore, the scattered field Es
ρ has the asymptotic behaviour

Es
ρ(x) =

eik|x|

4π|x|
(
E∞

ρ (x̂) +O(|x|−1)
)

as |x| → ∞

uniformly in x̂ = x/|x|. The vector function E∞
ρ is called the electric far field pattern.

Proof. The unique solvability follows, e.g., by combining the arguments in [35,
Sec. 10.3] with the uniqueness result [10, Thm. 3.1]. The far field expansion is, e.g.,
shown in [35, Cor. 9.5].

3. The asymptotic perturbation formula. We derive an asymptotic pertur-
bation formula for the scattered electric field Es

ρ and the electric far field pattern E∞
ρ

as the radius ρ of the cross-section D′
ρ of the scattering object Dρ in (2.6) tends to

zero relative to the wave length λ = 2π/k. Expansions of this type are available in
the literature for time-harmonic electromagnetic fields (see, e.g., [1, 8, 9, 28]). How-
ever, the existing results for Maxwell’s equations are either formulated on bounded
domains, or for scattering problems on unbounded domains but with different geo-
metrical assumptions on the scattering objects than considered in this work. In the
following we combine a result for boundary value problems with scatterers of very
general geometries from [1, 28] and an integral equation technique developed in [4, 9]
to arrive at an asymptotic perturbation formula that applies to our setup.

We consider a sequence of radii (ρn)n ⊆ (0, r/2) converging to zero, a sequence
of measurable cross-sections D′

ρn
⊆ B′

ρn
(0), n ∈ N, and a two-dimensional parameter

dependent rotation matrix Rθ ∈ C1([−L,L],R2×2) as in (2.3). Then

(3.1) |D′
ρn
|−1χD′

ρn
converges in the sense of measures to µ′ as n→ ∞ ,

where µ′ is the two-dimensional Dirac measure with support in 0. Recalling (2.2)
we denote by κ(s) := |p′′

Γ(s)| the curvature of Γ and by τ(s) := −∂bΓ

∂s
(s) · nΓ(s) the

torsion of Γ at pΓ(s). A short calculation (see Appendix A) shows that the Jacobian
determinant of the local coordinates rΓ from (2.4) is given by

(3.2) JΓ(s, η, ζ) := detDrΓ(s, η, ζ) = 1− κe′1 · Rθ(s)

[
η
ζ

]

for s ∈ (−L,L) and (η, ζ) ∈ B′
r(0), where e′1 = (1, 0)⊤ ∈ R2. Since Γ is a C3 curve,

we have κmax := ‖κ‖C(−L,L) < ∞, and it has, e.g., been shown in [33, Thm. 1] that
the radius r > 0 from (2.4) must satisfy rκmax < 1. In particular, |JΓ| = JΓ > 0.
Using the notation

∇′
η,ζu :=

[
∂u
∂η

∂u
∂ζ

]⊤
and div′η,ζv :=

∂vη

∂η
+
∂vζ

∂ζ

for the two-dimensional gradient and the two-dimensional divergence with respect
to (η, ζ), we obtain (see Appendix A for details) that the three-dimensional gradient
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satisfies, for s ∈ (−L,L) and (η, ζ) ∈ B′
r(0),

(3.3) ∇u(rΓ(s, η, ζ)) = J−1
Γ (s, η, ζ)

(
∂u

∂s
+
(
τ +

∂θ

∂s

)
(s)

[
ζ
−η

]
· ∇′

η,ζu

)
tΓ(s)

+
[
nΓ(s) bΓ(s)

]
Rθ(s)∇′

η,ζu .

We note that

|Dρn | =
∫ ℓ

−ℓ

∫

D′

ρn

JΓ(s, η, ζ) d(η, ζ) ds = 2ℓ|D′
ρn
|
(
1 +O(κmaxρn)

)
,

and accordingly we obtain from (3.1) that, for any ψ ∈ C(BR(0)),

∫

BR(0)

ψ |Dρn |−1χDρn
dx

=
|D′

ρn
|

|Dρn |

∫ ℓ

−ℓ

1

|D′
ρn
|

∫

B′

r(0)

χD′

ρn
(η, ζ)ψ(rΓ(s, η, ζ))JΓ(s, η, ζ) d(η, ζ) ds

→ 1

2ℓ

∫ ℓ

−ℓ

∫

B′

r(0)

ψ(rΓ(s, η, ζ)) dµ
′(η, ζ) ds =

1

2ℓ

∫ ℓ

−ℓ

ψ(pΓ(s)) ds

as n→ ∞. This means that

(3.4) |Dρn |−1χDρn
converges in the sense of measures to µ as n→ ∞ ,

where µ is the Borel measure given by

(3.5)

∫

BR(0)

ψ dµ =
1

2ℓ

∫

K

ψ ds for any ψ ∈ C(BR(0)) .

The following theorem describes the asymptotic behavior of the scattered electric
field Es

ρn
and of the electric far field pattern E∞

ρn
as the radius ρn of the scattering

object Dρn tends to zero. The matrix function

G(x,y) := Φk(x− y)I3 +
1

k2
∇xdivx(Φk(x− y)I3) , x 6= y ,

where I3 ∈ R3 is the identity matrix and Φk(x−y) := eik|x−y|/(4π|x−y|) denotes the
fundamental solution of the Helmholtz equation, is called the dyadic Green’s function
for Maxwell’s equations (see, e.g., [35, p. 303]).

Theorem 3.1. Let K ⋐ BR(0) be a simple C3 center curve, and let r > 0 such
that the local parametrization in (2.4) is well defined. Let (ρn)n ⊆ (0, r/2) be a
sequence of radii converging to zero, and let (D′

ρn
)n be a sequence of measurable

cross-sections with D′
ρn

⊆ B′
ρn
(0) for all n ∈ N. Suppose that (Dρn)n ⊆ BR(0) is

the corresponding sequence of thin tubular scattering objects as in (2.6), where the
cross-section twists along the center curve subject to a parameter dependent rotation
matrix Rθ ∈ C1([−L,L],R2×2). Denoting by (ερn)n and (µρn)n permittivity and
permeability distributions as in (2.7), let Es

ρn
be the associated scattered electric field

solving (2.10) for some incident electric field Ei. Then there exists a subsequence,
also denoted by (Dρn)n, and matrix valued functions Mε,Mµ ∈ L2(K,R3×3) called
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electric and magnetic polarization tensors, respectively, such that

(3.6) Es
ρn
(x) =

|Dρn |
2ℓ

(∫

K

(µr − 1)curlxG(x,y)Mµ(y)curlEi(y) ds(y)

+

∫

K

k2(εr − 1)G(x,y)Mε(y)Ei(y) ds(y)

)
+ o(|Dρn |)

for x ∈ R3 \BR(0). Furthermore, the electric far field pattern satisfies

(3.7) E∞
ρn
(x̂) =

|Dρn |
2ℓ

(∫

K

(µr − 1)ike−ikx̂·y(x̂× I3)M
µ(y)curlEi(y) ds(y)

+

∫

K

k2(εr − 1)e−ikx̂·y(x̂× (I3 × x̂)
)
M

ε(y)Ei(y) ds(y)

)
+ o(|Dρn |)

for x̂ ∈ S2. The subsequence (Dρn)n and the polarization tensors Mε and Mµ are
independent of the incident electric field Ei. The terms o(|Dρn |) in (3.6) and (3.7) are
such that ‖o(|Dρn |)‖L∞(∂BR(0))/|Dρn | and ‖o(|Dρn |)‖L∞(S2)/|Dρn | converge to zero
uniformly for all Ei satisfying ‖Ei‖H(curl;BR(0)) ≤ C for some fixed C > 0.

Proof. An analysis similar to [9, 4], using the asymptotic perturbation formula
for the Maxwell boundary value problem from [1, 28] instead of [8], and applying (3.5)
gives the result.

All components of the leading order terms in the asymptotic representation for-
mulas (3.6) and (3.7), except for the polarization tensors Mε,Mµ ∈ L2(K,R3×3), are
either known explicitly or can be evaluated straightforwardly. The polarization ten-
sors are defined as follows (see [18, 21, 28]). Let γ ∈ {ε, µ}. For ξ ∈ S2 and n ∈ N let

W
(ξ)
ρn ∈ H1

0 (BR(0)) be the corrector potentials satisfying

(3.8) div
(
γρn∇W (ξ)

ρn

)
= −div

(
(γρn − γ0)ξ

)
in BR(0) , W (ξ)

ρn
= 0 on ∂BR(0) .

Then, considering the subsequence (Dρn)n from Theorem 3.1, the polarization ten-
sor Mγ is uniquely determined by

(3.9)
1

2ℓ

∫

K

ξ ·Mγξψ ds =
1

|Dρn |

∫

Dρn

|ξ|2ψ dx+
1

|Dρn |

∫

Dρn

(
ξ ·∇W (ξ)

ρn

)
ψ dx+o(1)

for all ψ ∈ C(BR(0)) and any ξ ∈ S2. Similar notions of polarization tensors appear
in various contexts. The term was introduced by Polya, Schiffer and Szegö [39, 40],
and they have been widely studied in the theory of homogenization as the low volume
fraction limit of the effective properties of the dilute two phase composites (see, e.g.,
[32, 34, 36]). For the specific form considered here, it has been shown in [18, 21] that
the values of the functions Mγ are symmetric and positive definite in the sense that,
for a.e. x ∈ K,

(3.10) M
γ
ij(x) = M

γ
ji(x) , 1 ≤ i, j ≤ 3 ,

and

(3.11) min
{
1,
γ0(x)

γ1(x)

}
≤ ξ ·Mγ(x)ξ ≤ max

{
1,
γ0(x)

γ1(x)

}
for every ξ ∈ S2 .
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Analytic expressions for Mγ have been derived for several basic geometries such as,
e.g., when (Dρn)n is a family of diametrically small ellipsoids (see [6]), a family of
thin neighborhoods of a hypersurface (see [15]), or a family of thin neighborhoods of
a straight line segment (see [13]). In the next section we extend the result from [13] to
thin neighborhoods of smooth curves of (Dρn)n as in (2.6), and we derive a spectral
representation of the polarization tensor in terms of the center curve K and the
two-dimensional polarization tensor of the cross-sections (D′

ρn
)n. In [13, 23, 29], the

authors expressed interest such a characterization of the polarisation tensor for thin
tubular objects for various applications. Therewith, the leading order terms in the
asymptotic representation formulas (3.6) and (3.7) can be evaluated very efficiently.

Remark 3.2. The characterization of the polarization tensor Mγ ∈ L2(K;R3×3)
in (3.9) remains valid when the domain BR(0) in (3.8) is replaced by Ωr from (2.5)
(see [21, Rem. 1]). The regularity results that are used in the proof of [21, Lmm. 1]
are applicable because Ωr is C2 away from the ends of the tube and convex in a
neighborhood of the ends of the tube. This will be used in Section 4 below. ♦

4. The polarization tensor of a thin tubular scattering object. Let γ ∈
{ε, µ}. We assign a two-dimensional polarization tensor mγ ∈ R

2×2 to the sequence
of cross-sections (D′

ρn
)n of the scattering objects (Dρn)n as follows. Let

γ′ρn
(η, ζ) :=

{
γ1 , (η, ζ) ∈ D′

ρn
,

γ0 , (η, ζ) ∈ B′
r(0) \D′

ρn
,

i.e., γ′ρn
is just the electric permittivity or the magnetic permeability distribution

associated to the cross-section D′
ρn
. For each ξ′ ∈ S1 we denote by w

(ξ′)
ρn ∈ H1

0 (B
′
r(0))

the unique solution to

div′η,ζ
(
γ′ρn

∇′
η,ζw

(ξ′)
ρn

)
= −div′η,ζ

(
(γ1 − γ0)χD′

ρn
ξ′
)

in B′
r(0) ,(4.1a)

w(ξ′)
ρn

= 0 on ∂B′
r(0) ,(4.1b)

and accordingly we define mγ ∈ R2×2 (possibly up to extraction of a subsequence) by

(4.2) ξ′ ·mγξ′ ψ(0) =
1

|D′
ρn
|

∫

D′

ρn

|ξ′|2ψ dx′+
1

|D′
ρn
|

∫

D′

ρn

(
ξ′ ·∇′

η,ζw
(ξ′)
ρn

)
ψ dx′+o(1)

for all ψ ∈ C(B′
r(0)) and any ξ′ ∈ S1.

The following theorem is the main result of this section.

Theorem 4.1. Let K ⋐ BR(0) be a simple C3 center curve, and let r > 0 such
that the local parametrization in (2.4) is well defined. Let (ρn)n ⊆ (0, r/2) be a
sequence of radii converging to zero, and let (D′

ρn
)n be a sequence of measurable

cross-sections with D′
ρn

⊆ B′
ρn
(0) for all n ∈ N. Suppose that (Dρn)n ⊆ BR(0) is

the corresponding sequence of thin tubular scattering objects as in (2.6), where the
cross-section twists along the center curve subject to a parameter dependent rota-
tion matrix Rθ ∈ C1([−L,L],R2×2). Denoting by (γρn)n a parameter distribution as
in (2.7), let Mγ be the polarization tensor corresponding to the thin tubular scatter-
ing objects (Dρn)n from (3.9) (defined possibly up to extraction of a subsequence).
Denoting by mγ the polarization tensor corresponding to the cross-sections (D′

ρn
)n

from (4.2) (defined possibly up to extraction of a subsequence), the following point-
wise characterization of Mγ holds for a.e. s ∈ (−ℓ, ℓ):
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(a) The unit tangent vector tΓ(s) is an eigenvector of the matrix Mγ(pΓ(s)) corre-
sponding to the eigenvalue 1, i.e.,

(4.3) tΓ(s) ·Mγ(pΓ(s))tΓ(s) = 1 for a.e. s ∈ (−ℓ, ℓ) .
(b) Let ξ′ ∈ S1, and let ξ ∈ C1(K,S2) be given by ξ(s) :=

[
nΓ(s) bΓ(s)

]
ξ′ ∈ S2 for

all s ∈ (−ℓ, ℓ). Then,

(4.4) ξ(s) ·Mγ(pΓ(s))ξ(s) = ξ′ ·
(
Rθ(s)m

γR−1
θ (s)

)
ξ′ for a.e. s ∈ (−ℓ, ℓ) .

Since the polarization tensor Mγ(pΓ(s)) is symmetric, the first part of the the-
orem implies that there are two more eigenvalues in the plane orthogonal to tΓ(s),
which is spanned by nΓ(s) and bΓ(s). The second part of the theorem says that in
this plane the polarization tensor Mγ(pΓ(s)) coincides with the polarization tensor
Rθ(s)m

γR−1
θ (s) of the twisted two-dimensional cross-sections.

The proof of Theorem 4.1 relies on the following proposition, which extends the
characterization of the polarization tensor Mγ in (3.9) from constant vectors ξ ∈ S2

to vector-valued functions ξ ∈ C1(Ωr, S
2).

Proposition 4.2. Let ξ ∈ C1(Ωr, S
2), and denote by W

(ξ)
ρn ∈ H1

0 (Ωr) the corre-
sponding solution to (3.8). Then the polarization tensor Mγ satisfies

1

2ℓ

∫

K

ξ ·Mγξψ ds =
1

|Dρn |

∫

Dρn

|ξ|2ψ dx+
1

|Dρn |

∫

Dρn

(
ξ · ∇W (ξ)

ρn

)
ψ dx+ o(1)

for all ψ ∈ C(Ωr).

Proof. We denote by (e1, e2, e3) the standard basis of R3, and we consider ξ =∑3
i=1 ξiei ∈ C1(Ωr, S

2). Let W
(ξ)
ρn ∈ H1

0 (Ωr) be the corresponding solutions to (3.8),

and let W
(ej)
ρn , 1 ≤ j ≤ 3, be the solutions to (3.8) with ξ = ej . Then, using (3.9) we

find that

1

2ℓ

∫

K

ξ(x)·Mγ(x)ξ(x)ψ(x) ds(x) =

3∑

i,j=1

1

2ℓ

∫

K

ei ·Mγ(x)ej
(
ξiξjψ

)
(x) ds(x)

=

3∑

i,j=1

1

|Dρn |

∫

Dρn

ei · ej
(
ξiξjψ

)
(x) dx

+

3∑

i,j=1

1

|Dρn |

∫

Dρn

ei · ∇W (ej)
ρn

(x)
(
ξiξjψ

)
(x) dx+ o(1)

=
1

|Dρn |

∫

Dρn

|ξ(x)|2ψ(x) dx+
1

|Dρn |

∫

Dρn

ξ(x) · ∇W (ξ)
ρn

(x)ψ(x) dx

− 1

|Dρn |

∫

Dρn

ξ(x) ·
(
∇W (ξ)

ρn
−

3∑

j=1

ξj∇W (ej)
ρn

)
(x)ψ(x) dx+ o(1) .

Applying Hölder’s inequality gives

(4.5)

∣∣∣∣
∫

Dρn

ξ ·
(
∇W (ξ)

ρn
−

3∑

j=1

ξj∇W (ej)
ρn

)
ψ dx

∣∣∣∣

≤ C|Dρn |
1
2

∥∥∥∇W (ξ)
ρn

−
3∑

j=1

ξj∇W (ej)
ρn

∥∥∥
L2(Ωr)

.
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To finish the proof, we show that the right hand side of (4.5) is o(|Dρn |) as n→ ∞.
We note that (3.8) gives

div
(
γρn∇

(
W (ξ)

ρn
−

3∑

j=1

ξjW
(ej)
ρn

))

= −div
(
(γρn − γ0)ξ

)
−

3∑

j=1

div
((
γρn∇W (ej)

ρn

)
ξj
)
−

3∑

j=1

div
(
γρnW

(ej)
ρn

∇ξj
)
.

Furthermore,

3∑

j=1

div
((
γρn∇W (ej)

ρn

)
ξj
)
= −

3∑

j=1

div
(
(γρn − γ0)ej

)
ξj +

3∑

j=1

γρn∇W (ej)
ρn

· ∇ξj ,

and rewriting ξ =
∑3

j=1 ξjej we obtain that

div
(
(γρn − γ0)ξ

)
=

3∑

j=1

div
(
(γρn − γ0)ej

)
ξj +

3∑

j=1

(γρn − γ0)ej · ∇ξj .

Accordingly, W
(ξ)
ρn −∑3

j=1 ξjW
(ej)
ρn ∈ H1

0 (Ωr) satisfies

div
(
γρn∇

(
W (ξ)

ρn
−

3∑

j=1

ξjW
(ej)
ρn

))

= −
3∑

j=1

(γρn − γ0)ej · ∇ξj −
3∑

j=1

γρn∇W (ej)
ρn

· ∇ξj −
3∑

j=1

div
(
γρnW

(ej)
ρn

∇ξj
)
.

Now let r
(1)
ρn , r

(2)
ρn , r

(3)
ρn ∈ H1

0 (Ωr) be the unique solutions to

div(γρn∇r(1)ρn
) = −

3∑

j=1

div(γρnW
(ej)
ρn

∇ξj) in Ωr , r(1)ρn
= 0 on ∂Ωr ,(4.6a)

div(γρn∇r(2)ρn
) = −

3∑

j=1

γρn∇W (ej)
ρn

· ∇ξj in Ωr , r(2)ρn
= 0 on ∂Ωr ,(4.6b)

div(γρn∇r(3)ρn
) = −

3∑

j=1

(γρn − γ0)(ej · ∇ξj) in Ωr , r(3)ρn
= 0 on ∂Ωr .(4.6c)

The uniqueness of solutions to the Dirichlet problem implies that

W (ξ)
ρn

−
3∑

j=1

ξjW
(ej)
ρn

= r(1)ρn
+ r(2)ρn

+ r(3)ρn
,

and we have the following estimates for r
(1)
ρn , r

(2)
ρn , and r

(3)
ρn . Using the well-posedness

of (4.6a) and (B.2b) we find that

‖r(1)ρn
‖H1(Ωr) ≤ C

∥∥∥
3∑

j=1

γρnW
(ej)
ρn

∇ξj
∥∥∥
L2(Ωr)

≤ Cmax
j

‖∇ξj‖L∞(Ωr)‖W (ej)
ρn

‖L2(Ωr)

≤ C‖ξ‖C1(Ωr)|Dρn |
3
4 .
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Similarly, using Poincare’s inequality, the weak formulation of (4.6b), Hölder’s in-
equality, Sobolev’s embedding theorem (see, e.g., [26, p. 158]), and (B.2c) we obtain
that

‖r(2)ρn
‖2H1(Ωr)

≤ C
∣∣∣
∫

Ωr

γρn∇r(2)ρn
· ∇r(2)ρn

dx
∣∣∣ = C

∣∣∣
∫

Ωr

3∑

j=1

γρn

(
∇W (ej)

ρn
· ∇ξj

)
r(2)ρn

dx
∣∣∣

≤ C
∥∥∥

3∑

j=1

γρn∇W (ej)
ρn

∥∥∥
L

6
5 (Ωr)

max
j

‖∇ξj‖L∞(Ωr)‖r(2)ρn
‖L6(Ωr)

≤ C|Dρn |
5
6 ‖ξ‖C1(Ωr)‖∇r(2)ρn

‖L2(Ωr) ≤ C|Dρn |
5
6 ‖ξ‖C1(Ωr)‖r(2)ρn

‖H1(Ωr) .

For the third term r
(3)
ρn we note that, using Poincare’s inequality, the weak formulation

of (4.6c), Hölder’s inequality, and Sobolev’s embedding theorem,

‖r(3)ρn
‖2H1(Ωr)

≤ C
∣∣∣
∫

Ωr

γρn∇r(3)ρn
· ∇r(3)ρn

dx
∣∣∣ = C

∣∣∣
∫

Ωr

(γρn − γ0)

3∑

j=1

(ej · ∇ξj)r(3)ρn
dx

∣∣∣

≤ C‖γρn − γ0‖
L

6
5 (Ωr)

max
j

‖∇ξj‖L∞(Ωr)‖r(3)ρn
‖L6(Ωr)

≤ C|Dρn |
5
6 ‖ξ‖C1(Ωr)‖∇r(3)ρn

‖L2(Ωr) ≤ C|Dρn |
5
6 ‖ξ‖C1(Ωr)‖r(3)ρn

‖H1(Ωr) .

Accordingly,

∥∥∥W (ξ)
ρn

−
3∑

j=1

ξjW
(ej)
ρn

∥∥∥
H1(Ωr)

≤ C‖ξ‖C1(Ωr)|Dρn |
3
4 ,

and, using (B.2b),

∥∥∥∇W (ξ)
ρn

−
3∑

j=1

ξj∇W (ej)
ρn

∥∥∥
L2(Ωr)

≤
∥∥∥∇W (ξ)

ρn
−∇

( 3∑

j=1

ξjW
(ej)
ρn

)∥∥∥
L2(Ωr)

+
∥∥∥

3∑

j=1

W (ej)
ρn

∇ξj
∥∥∥
L2(Ωr)

≤ C‖ξ‖C1(Ωr)|Dρn |
3
4 + ‖W (ej)

ρn
‖L2(Ωr) max

j
‖∇ξj‖L∞(Ωr) ≤ C‖ξ‖C1(Ωr)|Dρn |

3
4 .

Next we prove the first part of Theorem 4.1.

Proof of Theorem 4.1(a). Let ξ ∈ C1(Ωr) be defined by ξ(x) := tΓ(s) for any
x = rΓ(s, η, ζ) ∈ Ωr. Using Proposition 4.2 we find that, for any ψ ∈ C1(Ωr),

(4.7)
1

2ℓ

∫ ℓ

−ℓ

tΓ(s) ·Mγ(pΓ(s))tΓ(s)ψ(pΓ(s)) ds

=
1

|Dρn |

∫

Dρn

ψ(x) dx+
1

|Dρn |

∫

Dρn

(
ξ(x) · ∇W (ξ)

ρn
(x)

)
ψ(x) dx+ o(1) .

Working in local coordinates, recalling (3.2)–(3.3), and integrating by parts we obtain
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that
∣∣∣∣
∫

Dρn

(
ξ(x) · ∇W (ξ)

ρn
(x)

)
ψ(x) dx

∣∣∣∣

=

∣∣∣∣
∫ ℓ

−ℓ

∫

D′

ρn

(W (ξ)
ρn

∂s
(rΓ(s, η, ζ))

+
(
τ +

∂θ

∂s

)
(s)

[
ζ
−η

]
· ∇′

η,ζW
(ξ)
ρn

(rΓ(s, η, ζ))
)
ψ(rΓ(s, η, ζ)) d(η, ζ) ds

∣∣∣∣

≤
∣∣∣∣
[∫

D′

ρn

W (ξ)
ρn

(rΓ(s, η, ζ))ψ(rΓ(s, η, ζ)) d(η, ζ)

]ℓ

s=−ℓ

∣∣∣∣

+

∣∣∣∣
∫

D′

ρn

∫ ℓ

−ℓ

W (ξ)
ρn

(rΓ(s, η, ζ))
∂

∂s
ψ(rΓ(s, η, ζ)) ds d(η, ζ)

∣∣∣∣

+

∣∣∣∣
∫ ℓ

−ℓ

∫

D′

ρn

(
τ +

∂θ

∂s

)
(s)

[
ζ
−η

]
· ∇′

η,ζW
(ξ)
ρn

(rΓ(s, η, ζ))ψ(rΓ(s, η, ζ)) d(η, ζ) ds

∣∣∣∣ .

Using the interior regularity estimate [26, Thm. 8.24] and (B.2b) gives

‖W (ξ)
ρn

‖L∞(Ωr) ≤ C
(
‖W (ξ)

ρn
‖L2(Ωr) + ‖(γρn − γ0)ξ‖L4(Ωr)

)
≤ C|Dρn |

1
4 .

Therefore, using (B.2a)–(B.2b),

∣∣∣∣
∫

Dρn

(
ξ(x) · ∇W (ξ)

ρn
(x)

)
ψ(x) dx

∣∣∣∣

≤ C|D′
ρn
|‖W (ξ)

ρn
‖L∞(Dρn ) + C|Dρn |

1
2 ‖W (ξ)

ρn
‖L2(Dρn ) + Cρn|Dρn |

1
2 ‖∇W (ξ)

ρn
‖L2(Ωr)

≤ C|Dρn ||Dρn |
1
4 + C|Dρn |

1
2 |Dρn |

3
4 + Cρn|Dρn |

1
2 |Dρn |

1
2 = o(|Dρn |) .

Inserting this estimate into (4.7), using (3.4)–(3.5), and letting n→ ∞, we obtain
that

1

2ℓ

∫ ℓ

−ℓ

tΓ(s) ·Mγ(pΓ(s))tΓ(s)ψ(pΓ(s)) ds =
1

2ℓ

∫ ℓ

−ℓ

ψ(pΓ(s)) ds .

Since ψ ∈ C1(Ωr) was arbitrary, this implies (4.3).
Recalling the symmetry ofMγ(pΓ(s)) in (3.10) and the polarization tensor bounds

(3.11) shows that 1 is either the maximal or minimal eigenvalue of Mγ(pΓ(s)) for a.e.
s ∈ (−ℓ, ℓ), and that tΓ(s) is the corresponding eigenvector.

Next we prove the second part of Theorem 4.1.

Proof of Theorem 4.1(b). Let ξ′ ∈ S1, and let ξ ∈ C1(Ωr,R
3) be defined by

ξ(x) :=
[
nΓ(s) bΓ(s)

]
ξ′ for any x = rΓ(s, η, ζ) ∈ Ωr ,

and let W
(ξ)
ρn ∈ H1

0 (Ωr) be the corresponding solution to (3.8).

The main idea of this proof is to approximate ∇W (ξ)
ρn by the gradient of a product

of functions involving the solution w
(R−1

θ
ξ′)

ρn ∈ H1
0 (B

′
r(0)) of (4.1) with ξ′ replaced

by R−1
θ ξ′. To do so we first introduce a modified corrector potential w̃

(R−1

θ ξ′)
ρn ∈
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H1
0 (B

′
r(0)) as the unique solution to

div′η,ζ

(
(I2+Ator)γ

′
ρn
∇′

η,ζw̃
(R−1

θ ξ′)
ρn

)
= −div′η,ζ

(
(γ1 − γ0)χD′

ρn
R−1

θ ξ′
)
in B′

r(0),(4.8a)

w̃
(R−1

θ ξ′)
ρn = 0 on ∂B′

r(0),(4.8b)

where, for s ∈ (−L,L) and (η, ζ) ∈ B′
r(0),

(4.9) Ator(s, η, ζ) := J−2
Γ (s, η, ζ)

(
τ +

∂θ

∂s

)2

(s)

[
ζ2 −ηζ
−ηζ η2

]
.

The term Ator will be used to account for the twisting of the cross-sections along the
center curve K in the estimates below. We note that for any s ∈ (−ℓ, ℓ) the matrix
Ator(s) is symmetric and positive semi-definite, and therefore (4.8) has a unique so-

lution. Both w
(R−1

θ
ξ′)

ρn and w̃
(R−1

θ
ξ′)

ρn depend on the parameter s ∈ (−L,L) although
we do not indicate this through our notation.

We define

W̃ (ξ)
ρn

(rΓ(s, η, ζ)) := fρn(s)J
−1
Γ (s, η, ζ)w̃

(R−1

θ ξ′)
ρn (η, ζ)

for s ∈ (−L,L) and (η, ζ) ∈ B′
r(0), where fρn ∈ C1([−L,L]) is a cut-off function

satisfying

0 ≤ fρn ≤ 1 , fρnχ(−ℓ,ℓ) = χ(−ℓ,ℓ) ,(4.10a)
∥∥∥∂fρn

∂s

∥∥∥
L2((−L,L))

≤ C|D′
ρn
|− 1

8 , ‖fρn(1 − χ(−ℓ,ℓ))‖L2((−L,L)) ≤ C|D′
ρn
| 18(4.10b)

(see [13, Lmm. 3.6]). Using Proposition 4.2 we find that, for any ψ ∈ C1(Ωr),

1

2ℓ

∫ ℓ

−ℓ

ξ(s)·Mγ(pΓ(s))ξ(s)ψ(pΓ(s)) ds

=
1

|Dρn |

∫

Dρn

ψ dx+
1

|Dρn |

∫

Dρn

(
ξ · ∇W (ξ)

ρn

)
ψ dx+ o(1)

=
1

|Dρn |

∫

Dρn

ψ dx+
1

|Dρn |

∫

Dρn

(
ξ · ∇W̃ (ξ)

ρn

)
ψ dx

+
1

|Dρn |

∫

Dρn

(
ξ ·

(
∇W (ξ)

ρn
−∇W̃ (ξ)

ρn

))
ψ dx+ o(1) .

(4.11)

We consider the three integrals on the right hand side of (4.11) separately. Re-
calling (3.2) and (3.3) we obtain that
∫

Dρn

(
ξ · ∇W̃ (ξ)

ρn

)
ψ dx

=

∫ ℓ

−ℓ

∫

D′

ρn

(
ξ′ ·

(
Rθ∇′

η,ζ

(
J−1
Γ w̃

(R−1

θ ξ′)
ρn

))
(s, η, ζ)

)
ψ(rΓ(s, η, ζ))JΓ(s, η, ζ) d(η, ζ) ds

=

∫ ℓ

−ℓ

∫

D′

ρn

((
R−1

θ (s)ξ′
)
· ∇′

η,ζw̃
(R−1

θ ξ′)
ρn (η, ζ)

)
ψ(rΓ(s, η, ζ)) d(η, ζ) ds

+O
(
|Dρn |

1
2

∥∥w̃(R−1

θ ξ′)
ρn

∥∥
L2(D′

ρn
)

)
,
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and applying (B.2b) and Lemma B.2 gives

∫

Dρn

(
ξ · ∇W̃ (ξ)

ρn

)
ψ dx

=

∫ ℓ

−ℓ

∫

D′

ρn

((
R−1

θ (s)ξ′
)
· ∇′

η,ζw
(R−1

θ ξ′)
ρn (η, ζ)

)
ψ(rΓ(s, η, ζ)) d(η, ζ) ds

+O
(
|Dρn |

1
2

∥∥∇′
η,ζw

(R−1

θ ξ′)
ρn −∇′

η,ζw̃
(R−1

θ ξ′)
ρn

∥∥
L2(Dρn )

)
+ o(|Dρn |)

=

∫ ℓ

−ℓ

∫

D′

ρn

((
R−1

θ (s)ξ′
)
· ∇′

η,ζw
(R−1

θ ξ′)
ρn (η, ζ)

)
ψ(rΓ(s, η, ζ)) d(η, ζ) ds+ o(|Dρn |) .

Accordingly, using (4.2) we obtain for the first two terms in (4.11) that

1

|Dρn |

∫

Dρn

ψ dx+
1

|Dρn |

∫

Dρn

(
ξ · ∇W (ξ)

ρn

)
ψ dx

=
1

|Dρn |

∫ ℓ

−ℓ

(∫

D′

ρn

ψ(rΓ(s, η, ζ)) d(η, ζ)

+

∫

D′

ρn

((
R−1

θ (s)ξ′
)
· ∇′

η,ζw
(R−1

θ ξ′)
ρn (η, ζ)

)
ψ(rΓ(s, η, ζ)) d(η, ζ)

)
ds+ o(1)

→ 1

2ℓ

∫ ℓ

−ℓ

ξ′ ·
(
Rθ(s)m

γR−1
θ (s)

)
ξ′ψ(pΓ(s)) ds

(4.12)

as n→ ∞.
For the last integral on the right hand side of (4.11) we find, using Hölder’s

inequality, that

∣∣∣∣
∫

Dρn

(
ξ ·

(
∇W (ξ)

ρn
−∇W̃ (ξ)

ρn

))
ψ dx

∣∣∣∣ ≤ C‖ξ‖L∞(Ωr)|Dρn |
1
2

∥∥∇W (ξ)
ρn

−∇W̃ (ξ)
ρn

∥∥
L2(Ωr)

.

To finish the proof, we will show that ‖∇W (ξ)
ρn −∇W̃ (ξ)

ρn

∥∥
L2(Ωr)

is o
(
|Dρn |

1
2

)
as n→ ∞.

Then (4.4) follows from (4.11) and (4.12). This is done in Lemma 4.3 below.

Lemma 4.3. Let ξ′ ∈ S1, and let ξ ∈ C1(Ωr, S
2) be given by

ξ(rΓ(s, η, ζ)) :=
[
nΓ(s) bΓ(s)

]
ξ′ for any x = rΓ(s, η, ζ) ∈ Ωr .

Let W
(ξ)
ρn ∈ H1

0 (Ωr) be the corresponding solution to (3.8), and define

(4.13) W̃ (ξ)
ρn

(rΓ(s, η, ζ)) := fρn(s)J
−1
Γ (s, η, ζ)w̃

(R−1

θ ξ′)
ρn (η, ζ)

for s ∈ (−L,L) and (η, ζ) ∈ B′
r(0), where fρn ∈ C1([−L,L]) is a cut-off functions

satisfying (4.10), and w̃
(R−1

θ
ξ′)

ρn ∈ H1
0 (B

′
r(0)) solves (4.8). Then,

∥∥∇W (ξ)
ρn

−∇W̃ (ξ)
ρn

∥∥
L2(Ωr)

= o
(
|Dρn |

1
2

)
.

In the proof of Lemma 4.3 we use the following technical result, which can be
shown using the same arguments as in the proof of [13, Lmm. 3.4].
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Lemma 4.4. Let ξ′ ∈ S1, and let w̃
(R−1

θ ξ′)
ρn ∈ H1

0 (B
′
r(0)) be the solution to (4.8).

Then, for a.e. s ∈ (−ℓ, ℓ),

(4.14)

∥∥∥∥
∂

∂s

(
∇′

η,ζw̃
(R−1

θ ξ′)
ρn

)∥∥∥∥
L2(B′

r(0))

≤ C|D′
ρn
| 12 ,

∥∥∥∥
∂w̃

(R−1

θ ξ′)
ρn

∂s

∥∥∥∥
L2(B′

r(0))

≤ C|D′
ρn
| 34 .

Proof of Lemma 4.3. Recalling (3.8) we note that W
(ξ)
ρn ∈ H1

0 (Ωr) fulfills

(4.15)

∫

Ωr

γρn∇W (ξ)
ρn

· ∇ψ dx = −
∫

Ωr

(γρn − γ0)ξ · ∇ψ dx

for all ψ ∈ H1
0 (Ωr). Furthermore, recalling (3.2) and (3.3) we find that W̃

(ξ)
ρn =

fρnJ
−1
Γ w̃

(R−1

θ ξ′)
ρn satisfies

∫

Ωr

γρn∇W̃ (ξ)
ρn

· ∇ψ dx

=

∫ L

−L

∫

B′

r(0)

γρn

(
∇′

η,ζW̃
(ξ)
ρn

· ∇′
η,ζψ +

(
tΓ · ∇W̃ (ξ)

ρn

)(
tΓ · ∇ψ

))
JΓ d(η, ζ) ds

=

∫ L

−L

∫

B′

r(0)

γρn

(
χ(−ℓ,ℓ)

(
w̃

(R−1

θ ξ′)
ρn ∇′

η,ζJ
−1
Γ + J−1

Γ ∇′
η,ζw̃

(R−1

θ ξ′)
ρn

)
· ∇′

η,ζψ

+ (1 − χ(−ℓ,ℓ))
(
fρnw̃

(R−1

θ ξ′)
ρn ∇′

η,ζJ
−1
Γ + fρnJ

−1
Γ ∇′

η,ζw̃
(R−1

θ ξ′)
ρn

)
· ∇′

η,ζψ

+
(
w̃

(R−1

θ ξ′)
ρn

(
tΓ ·∇(fρnJ

−1
Γ )

)
+fρnJ

−1
Γ

(
tΓ ·∇w̃(R−1

θ ξ′)
ρn

))(
tΓ ·∇ψ

))
JΓ d(η, ζ) ds.

(4.16)

Using (3.3) once more we further decompose the last term on the right hand side
of (4.16) to obtain

(
tΓ · ∇w̃(R−1

θ ξ′)
ρn

)(
tΓ · ∇ψ

)
= J−2

Γ

∂w̃
(R−1

θ
ξ′)

ρn

∂s

∂ψ

∂s
+Ator∇′

η,ζw̃
(R−1

θ ξ′)
ρn · ∇′

η,ζψ

+
∂w̃

(R−1

θ ξ′)
ρn

∂s

(
d′
tor · ∇′

η,ζψ
)
+
∂ψ

∂s

(
d′
tor · ∇′

η,ζw̃
(R−1

θ ξ′)
ρn

)
,

where Ator has been defined in (4.9) and

d′
tor(s, η, ζ) :=

(
τ +

∂θ

∂s

)
(s)J−1

Γ (s, η, ζ)

[
ζ
−η

]
, s ∈ (−L,L) , (η, ζ) ∈ B′

r(0) .
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Accordingly,

∫

Ωr

γρn∇W̃ (ξ)
ρn

· ∇ψ dx

=

∫ ℓ

−ℓ

∫

B′

r(0)

(I2 +Ator)γρn∇′
η,ζw̃

(R−1

θ ξ′)
ρn · ∇′

η,ζψ d(η, ζ) ds

+

∫ L

−L

∫

B′

r(0)

γρn

(
χ(−ℓ,ℓ)w̃

(R−1

θ ξ′)
ρn ∇′

η,ζJ
−1
Γ · ∇′

η,ζψ

+ (1−χ(−ℓ,ℓ))
(
fρnw̃

(R−1

θ
ξ′)

ρn ∇′
η,ζJ

−1
Γ +fρnJ

−1
Γ (I2+Ator)∇′

η,ζw̃
(R−1

θ
ξ′)

ρn

)
·∇′

η,ζψ

+ w̃
(R−1

θ ξ′)
ρn

(
tΓ · ∇(fρnJ

−1
Γ )

)(
tΓ · ∇ψ

)
+ fρnJ

−3
Γ

∂w̃
(R−1

θ ξ′)
ρn

∂s

∂ψ

∂s

+ fρnJ
−1
Γ

(
∂w̃

(R−1

θ ξ′)
ρn

∂s

(
d′
tor ·∇′

η,ζψ
)
+
∂ψ

∂s

(
d′
tor ·∇′

η,ζw̃
(R−1

θ ξ′)
ρn

)))
JΓ d(η, ζ) ds .

(4.17)

Now let v ∈ H1
0 (B

′
r(0)) satisfy

div′η,ζ
(
(I2 +Ator)γ

′
ρn
∇′

η,ζv
)
= −div′η,ζ

(
JΓ(γ

′
ρn

− γ′0)
(
R−1

θ ξ′
))

in B′
r(0) .

Using (3.2) we find that

div′η,ζ
(
(I2 +Ator)γ

′
ρn
∇′

η,ζv
)
= −div′η,ζ

(
(γ′ρn

− γ′0)
(
R−1

θ ξ′
))

+ div′η,ζ

(
κ
(
e′1 · Rθ

[
η
ζ

])
(γ′ρn

− γ′0)
(
R−1

θ ξ′
))
.

(4.18)

Together with (4.1) and the uniqueness of solutions to the Dirichlet problem this

implies that w̃
(R−1

θ ξ′)
ρn = v − v1, where v1 ∈ H1

0 (B
′
r(0)) satisfies

div′η,ζ
(
(I2+Ator)γ

′
ρn
∇′

η,ζv1
)
= −div′η,ζ

(
κ
(
e′1 ·Rθ

[
η
ζ

])
(γ′ρn

−γ′0)
(
R−1

θ ξ′
))

in B′
r(0) .

Using (B.2a) we obtain the estimate

‖∇′
η,ζv1‖L2(B′

r(0))
≤ Cκmaxρn |D′

ρn
| 12 .

Accordingly (4.18) and (3.3) give

∫ ℓ

−ℓ

∫

B′

r(0)

(I2 +Ator)γρn∇′
η,ζw̃

(R−1

θ ξ′)
ρn · ∇′

η,ζψ d(η, ζ) ds

=

∫ ℓ

−ℓ

∫

B′

r(0)

(I2 +Ator)γρn∇′
η,ζv · ∇′

η,ζψ d(η, ζ) ds+ o
(
|Dρn |

1
2 ‖∇ψ‖L2(Ωr)

)

= −
∫ ℓ

−ℓ

∫

B′

r(0)

JΓ(γρn− γ0)
(
R−1

θ ξ′
)
·∇′

η,ζψ d(η, ζ) ds+ o
(
|Dρn |

1
2 ‖∇ψ‖L2(Ωr)

)

= −
∫

Ωr

(γρn − γ0)ξ · ∇ψ dx+ o
(
|Dρn |

1
2 ‖∇ψ‖L2(Ωr)

)
.

(4.19)
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Combining (4.15), (4.17) and (4.19) we find that, for all ψ ∈ H1
0 (Ωr),

∫

Ωr

γρn

(
∇W (ξ)

ρn
−∇W̃ (ξ)

ρn

)
· ∇ψ dx

= −
∫ L

−L

∫

B′

r(0)

γρn

(
χ(−ℓ,ℓ)w̃

(R−1

θ ξ′)
ρn ∇′

η,ζJ
−1
Γ · ∇′

η,ζψ

+ (1−χ(−ℓ,ℓ))
(
fρnw̃

(R−1

θ ξ′)
ρn ∇′

η,ζJ
−1
Γ +fρnJ

−1
Γ (I2+Ator)∇′

η,ζw̃
(R−1

θ ξ′)
ρn

)
·∇′

η,ζψ

+ w̃
(R−1

θ ξ′)
ρn

(
tΓ · ∇(fρnJ

−1
Γ )

)(
tΓ · ∇ψ

)
+ fρnJ

−3
Γ

∂w̃
(R−1

θ ξ′)
ρn

∂s

∂ψ

∂s

+ fρnJ
−1
Γ

(
∂w̃

(R−1

θ ξ′)
ρn

∂s

(
d′
tor ·∇′

η,ζψ
)
+
∂ψ

∂s

(
d′
tor ·∇′

η,ζw̃
(R−1

θ ξ′)
ρn

)))
JΓ d(η, ζ) ds

+ o
(
|Dρn |

1
2 ‖∇ψ‖L2(Ωr)

)
.

(4.20)

Now let gρn ∈ C1([−L,L]) be a cut-off function satisfying

0 ≤ gρn ≤ 1 , supp(gρn) = [−ℓ, ℓ] , gρnχ(− ℓ
2
, ℓ
2
) = χ(− ℓ

2
, ℓ
2
) ,(4.21a)

∥∥∥∂gρn

∂s

∥∥∥
L2((−L,L))

≤ C|D′
ρn
|− 1

8 ,
∥∥fρn(1− gρn)

∥∥
L2((−L,L))

≤ C|D′
ρn
| 18 ,(4.21b)

where fρn denotes the cut-off function from (4.10) (see [13, Lmm. 3.6] for a similar
construction). Integrating by parts shows that the last term in the integral on the
right hand side of (4.20) satisfies

−
∫ L

−L

∫

B′

r(0)

γρnfρn

∂ψ

∂s

(
d′
tor · ∇′

η,ζw̃
(R−1

θ ξ′)
ρn

)
d(η, ζ) ds

=

∫ L

−L

∫

B′

r(0)

ψ
∂

∂s

(
γρnfρngρn

(
d′
tor · ∇′

η,ζw̃
(R−1

θ ξ′)
ρn

))
d(η, ζ) ds

−
∫ L

−L

∫

B′

r(0)

γρnfρn(1− gρn)
(
d′
tor · ∇′

η,ζw̃
(R−1

θ ξ′)
ρn

)∂ψ
∂s

d(η, ζ) ds .
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Combining this with (4.20) and choosing ψ =W
(ξ)
ρn − W̃

(ξ)
ρn this implies that

∥∥∇W (ξ)
ρn

−∇W̃ (ξ)
ρn

∥∥2
L2(Ωr)

≤ C

(∥∥∥χ(−ℓ,ℓ)w̃
(R−1

θ ξ′)
ρn ∇′

η,ζJ
−1
Γ

∥∥∥
L2(Ωr)

+
∥∥∥(1− χ(−ℓ,ℓ))fρnw̃

(R−1

θ ξ′)
ρn ∇′

η,ζJ
−1
Γ

∥∥∥
L2(Ωr)

+
∥∥∥(1− χ(−ℓ,ℓ))fρnJ

−1
Γ (I2 +Ator)∇′

η,ζw̃
(R−1

θ ξ′)
ρn

∥∥∥
L2(Ωr)

+
∥∥∥w̃(R−1

θ ξ′)
ρn

(
tΓ · ∇

(
fρnJ

−1
Γ

))∥∥∥
L2(Ωr)

+
∥∥∥fρnJ

−3
Γ

∂w̃
(R−1

θ ξ′)
ρn

∂s

∥∥∥
L2(Ωr)

+
∥∥∥fρnJ

−1
Γ

∂w̃
(R−1

θ ξ′)
ρn

∂s
d′
tor

∥∥∥
L2(Ωr)

+
∥∥∥γρnfρn(1 − gρn)

(
d′
tor · ∇′

η,ζw̃
(R−1

θ ξ′)
ρn

)∥∥∥
L2(Ωr)

)∥∥∇W (ξ)
ρn

−∇W̃ (ξ)
ρn

∥∥
L2(Ωr)

+ C
∥∥∥ ∂
∂s

(
γρnfρngρnJ

−1
Γ

(
d′
tor · ∇′

η,ζw̃
(R−1

θ ξ′)
ρn

))∥∥∥
L2(Ωr)

∥∥W (ξ)
ρn

− W̃ (ξ)
ρn

∥∥
L2(Ωr)

+ o
(
|Dρn |

1
2

∥∥∇W (ξ)
ρn

−∇W̃ (ξ)
ρn

∥∥
L2(Ωr)

)
.

(4.22)

From (4.15), (4.13), (4.8), and (B.2b) we immediately obtain that

∥∥W (ξ)
ρn

− W̃ (ξ)
ρn

∥∥
L2(Ωr)

≤ C|Dρn |
3
4 .

Next we estimate the remaining eight terms on the right hand side of (4.22) separately.
For the first term we obtain, using (B.2b), that

∥∥∥χ(−ℓ,ℓ)w̃
(R−1

θ ξ′)
ρn ∇′

η,ζJ
−1
Γ

∥∥∥
2

L2(Ωr)
≤ C

∥∥∥w̃(R−1

θ ξ′)
ρn

∥∥∥
2

L2(B′

r(0))
≤ C|Dρn |

3
2 .

Similarly, using (4.10) and (B.2b) we find for the second term on the right hand side
of (4.22) that

∥∥∥(1− χ(−ℓ,ℓ))fρn w̃
(R−1

θ ξ′)
ρn ∇′

η,ζJ
−1
Γ

∥∥∥
2

L2(Ωr)
≤ C

∥∥∥w̃(R−1

θ ξ′)
ρn

∥∥∥
2

L2(B′

r(0))
≤ C|Dρn |

3
2 .

Applying (4.10) and (B.2a) the third term on the right hand side of (4.22) can be
estimated by

∥∥∥(1− χ(−ℓ,ℓ))fρnJ
−1
Γ (I2 +Ator)∇′

η,ζw̃
(R−1

θ ξ′)
ρn

∥∥∥
2

L2(Ωr)

≤ C
∥∥(1− χ(−ℓ,ℓ))fρn

∥∥2
L2((−L,L))

∥∥∥∇′
η,ζw̃

(R−1

θ ξ′)
ρn

∥∥∥
2

L2(B′

r(0))

≤ C|D′
ρn
| 14 |D′

ρn
| ≤ C|Dρn |

5
4 .

For the fourth term on the right hand side of (4.22) we obtain, using (3.3), (4.10),
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and (B.2b) that
∥∥∥w̃(R−1

θ ξ′)
ρn

(
tΓ · ∇

(
fρnJ

−1
Γ

))∥∥∥
2

L2(Ωr)

=

∫ L

−L

∫

B′

r(0)

∣∣∣w̃(R−1

θ ξ′)
ρn

∣∣∣
2∣∣∣J−2

Γ

∂fρn

∂s
+ fρn

(
tΓ · ∇J−1

Γ

)∣∣∣
2

JΓ d(η, ζ) ds

≤ C
∥∥∥w̃(R−1

θ ξ′)
ρn

∥∥∥
2

L2(B′

r(0))

(∥∥∥∂fρn

∂s

∥∥∥
2

L2(−L,L)
+ C

)
≤ C|D′

ρn
| 32 |D′

ρn
|− 1

4 ≤ C|Dρn |
5
4 .

Using (4.14) we obtain for the fifth and sixth term on the right hand side of (4.22)
that

∥∥∥fρnJ
−3
Γ

∂w̃
(R−1

θ ξ′)
ρn

∂s

∥∥∥
L2(Ωr)

≤ C|D′
ρn
| 32 ,

∥∥∥fρnJ
−1
Γ

∂w̃
(R−1

θ ξ′)
ρn

∂s
d′
tor

∥∥∥
2

L2(Ωr)
≤ C|D′

ρn
| 32 .

Applying (4.21) and (B.2a) we find for the seventh term on the right hand side of
(4.22) that

∥∥∥γρnfρn(1 − gρn)
(
d′
tor · ∇′

η,ζw̃
(R−1

θ ξ′)
ρn

)∥∥∥
L2(Ωr)

≤ C‖γρnfρn(1− gρn)‖L2(Ωr)

∥∥∥∇′
η,ζw̃

(R−1

θ ξ′)
ρn

∥∥∥
L2(B′

r(0))
≤ C|D′

ρn
| 18 |D′

ρn
| 12 .

Finally, combining (4.21), (4.10), (B.2a), and (4.14) shows that
∥∥∥ ∂
∂s

(
γρnfρngρnJ

−1
Γ

(
d′
tor · ∇′

η,ζw̃
(R−1

θ ξ′)
ρn

))∥∥∥
L2(Ωr)

≤ C

(∥∥∥ ∂
∂s

(
γρnfρngρnJ

−1
Γ

)∥∥∥
L2(Ωr)

∥∥∥d′
tor · ∇′

η,ζw̃
(R−1

θ ξ′)
ρn

∥∥∥
L2(Ωr)

+
∥∥∥ ∂
∂s

(
d′
tor · ∇′

η,ζw̃
(R−1

θ
ξ′)

ρn

)∥∥∥
L2(Ωr)

)
≤ C

(
|D′

ρ|−
1
8 |D′

ρ|
1
2 + |D′

ρ|
1
2

)
≤ C|D′

ρ|
3
8 .

This ends the proof.

Remark 4.5. Combining Theorems 3.1 and 4.1 gives almost explicit asymptotic
representation formulas for the scattered electric fieldEs

ρn
away from the scatterer and

for its far field pattern E∞
ρn

as n → ∞. All components of these formulas, except for
the polarization tensors mε,mµ ∈ R2×2 of the cross-sections (D′

ρn
)n can be evaluated

straightforwardly.
If we assume some more regularity and consider sequences of cross-sections

D′
ρn

= ρnB
′ , 0 < ρn < r/2 , n ∈ N ,

for some Lipschitz domain B′ ⊆ B′
1(0) then the following integral representation for

mγ , γ ∈ {ε, µ}, is well known (see, e.g., [22, 6]). Introducing

γ̃′(x′) :=

{
γ1 , x′ ∈ B′ ,

γ0 , x′ ∈ R2 \B′ ,

the polarization tensor mγ = (mγ
i,j)i,j ∈ R2×2 corresponding to the cross-sections

(D′
ρn
)n satisfies

(4.23) mγ
ij = δij +

1

|B′|

∫

B′

∂w̃j

∂x′i
(x′) dx′ , 1 ≤ i, j ≤ 2 ,
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where δij denotes the Kronecker delta and w̃j ∈ H1
loc(R

2) denotes the unique solution
to the transmission problem

∆w̃j = 0 in R
2 \ ∂B ,(4.24a)

w̃j

∣∣+
∂B

− w̃j

∣∣−
∂B

= 0 ,(4.24b)

γ0
∂w̃j

∂ν

∣∣∣
+

∂B
− γ1

∂w̃j

∂ν

∣∣∣
−

∂B
= −(γ0 − γ1)νj ,(4.24c)

w̃j(x
′) → 0 as |x′| → ∞ .(4.24d)

In particular the limit in (4.2) is uniquely determined and thus no extraction of a
subsequence is required in the Theorems 3.1 and 4.1 for this class of cross-sections.
Given any specific example for B′, the functions ṽj , j = 1, 2, can be approximated by
solving the two-dimensional transmission problem (4.24) numerically, and then the
polarization tensor mγ can be evaluated by applying a quadrature rule to the two-
dimensional integral in (4.23). Therewith, the representation formulas (3.6) and (3.7)
yield a very efficient tool to evaluate the scattered electric field due to a thin tubular
scattering object and its electric far field pattern.

Explicit formulas for mγ are, e.g., available when B′ is an ellipse (cf., e.g., [6, 17])
or a washer (see [20]). In the latter case, the thin tubular scatterer would correspond
to a thin pipe. In the special case when B′ is a disk we have that

mγ = 2
γ0

γ1 + γ0
I2 ,

where I2 ∈ R2 denotes the identity matrix. ♦

We will provide numerical results and discuss the accuracy of the asymptotic
perturbation formula established in Theorems 3.1 and 4.1 for some specific examples in
Section 6 below. Before we do so, we consider an application and utilize the asymptotic
perturbation formula to develop an efficient iterative reconstruction method for an
inverse scattering problem with thin tubular scattering objects. This is the topic of
the next section.

5. Inverse scattering with thin tubular scattering objects. We consider
the inverse problem to recover the shape of a thin tubular scattering object Dρ as
in (2.6) from observations of a single electric far field pattern E∞

ρ due to an incident

field Ei. We restrict the discussion to the special case, when the cross-section of the
scatterer is of the form D′

ρ = ρB′, where B′ = B1(0)
′ is the unit disk. We assume

that ρ > 0 is small with respect to the wave length, and that this radius as well as
the material parameters ε1 and µ1 of the scattering object are known a priori. In this
case the explicit formulas for the polarization tensors mε,mµ ∈ R2×2 of the cross-
section from Remark 4.5 can be used in the reconstruction algorithm, and a possible
twisting the cross-section along the base curve does have to be taken into account.
Accordingly, the inverse problem reduces to reconstructing the center curve K of the
scattering object Dρ from observations of the electric far field pattern E∞

ρ .
We suppose that the incident field is a plane wave, i.e.,

(5.1) Ei(x) = Aeikθ·x , x ∈ R
3 ,

with direction of propagation θ ∈ S2 and polarization A ∈ C3 \ {0} satisfying A ⊥ θ.
Other incident fields are possible without significant changes. The corresponding
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solution to the direct scattering problem (2.10) defines a nonlinear operator

Fρ : K 7→ E∞
ρ ,

which maps the center curve K of the scattering object Dρ onto the electric far field
pattern E∞

ρ . In terms of this operator the inverse problem consists in solving the
nonlinear and ill-posed equation

(5.2) Fρ(K) = E∞
ρ

for the unknown center curveK. In the following we will develop a suitably regularized
iterative reconstruction algorithm for this inverse problem.

Introducing the set of admissible parametrizations,1

P :=
{
p ∈ C3([0, 1],R3)

∣∣ p([0, 1]) is simple and p′(t) 6= 0 for all t ∈ [0, 1]
}
,

we identify center curves of thin tubular scattering objects as in (2.6) with their
parametrizations, and we denote for any p ∈ P the leading order term in the asymp-
totic perturbation formula (3.7) by

(5.3) Ẽ∞
ρ (x̂) := (kρ)2π

(
−
∫ 1

0

(µr − 1) eik(θ−x̂)·p(s) (x̂× I3)M
µ
p(s)(θ ×A) |p′(s)| ds

+

∫ 1

0

(εr − 1) eik(θ−x̂)·p(s) (x̂× (I3 × x̂))Mε
p(s)A |p′(s)| ds

)
, x̂ ∈ S2 .

Here, Mγ
p := Mγ ◦ p, γ ∈ {µ, ε}, is the parametrized form of the polarization tensor

for the thin tubular scatterer. The parametrized unit tangent vector field tp = p′/|p′|
along p ∈ P can always be completed to a continuous orthogonal frame (tp,np, bp).
For instance, if p′(t)× p′′(t) 6= 0 for all t ∈ [0, 1], then we can choose

tp =
p′

|p′| , np =
(p′ × p′′)× p′

|(p′ × p′′)× p′| , bp = tp × np .

The spectral characterization of Mγ
p from Theorem 4.1 together with the explicit

formula for the polarization tensor of a disk in Remark 4.5 shows that, for γ ∈ {ε, µ},

M
γ
p(s) = Vp(s)M

γVp(s)
⊤ , s ∈ [0, 1] ,

where Mγ := diag(1, 2/(γr + 1), 2/(γr + 1)) ∈ R3×3 and the matrix-valued func-
tion Vp := [tp,np, bp] ∈ C1([0, 1],R3×3) contains the components of the orthogonal
frame (tp,np, bp) as its columns.

Assuming that the radius ρ > 0 of the thin tubular scattering object Dρ is suffi-
ciently small such that the last term on the right hand side of the asymptotic pertur-
bation formula (3.7) can be neglected, we approximate the nonlinear operator Fρ by
the nonlinear operator

Tρ : P → L2(S2,C3) , Tρ(p) := Ẽ∞
ρ .

1We drop the assumption that the center curve of the scatterer is parametrized by arc-length for
the numerical realization reconstruction algorithm.
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Accordingly, we consider the nonlinear minimization problem

(5.4)
‖Tρ(p)−E∞

ρ ‖2L2(S2)

‖E∞
ρ ‖2

L2(S2)

→ min

to approximate a solution to the inverse problem (5.2). We note that due to the
asymptotic character of (3.7) the minimum of (5.4) will be non-zero even for exact
far field data. Below we will apply a Gauß-Newton method to a regularized version
of (5.4), and thus we require the Fréchet derivative of the operator Tρ.

5.1. The Fréchet derivative of Tρ. The following lemma concerning the Fré-
chet derivative of the map p 7→ Mγ

p has been established in [29, Lmm. 4.1].

Lemma 5.1. The map p 7→ Mγ
p is Fréchet differentiable from P to C([0, 1],R3×3),

and its Fréchet derivative at p ∈ P is given by h 7→ (Mγ
p,h)

′ with

(Mγ
p,h)

′ = V ′
p,hM

γV ⊤
p + VpM

γ(V ′
p,h)

⊤ ,

where the matrix-valued function V ′
p,h is defined columnwise by

V ′
p,h :=

1

|p′|
[
(h′ · nΓ)nΓ + (h′ · bΓ)bΓ, −(h′ · nΓ)tΓ, −(h′ · bΓ)tΓ

]
.

Next we consider the Fréchet derivative of the mapping Tρ.

Theorem 5.2. The operator Tρ : P → L2(S2,C3) is Fréchet differentiable and
its Fréchet derivative at p ∈ P is given by T ′

ρ(p) : C
3([0, 1],R3) → L2(S2,C3),

(5.5) T ′
ρ(p)h = (kρ)2π

(
−(µr − 1)

3∑

j=1

T ′
ρ,µ,j(p)h+ (εr − 1)

3∑

j=1

T ′
ρ,ε,j(p)h

)

with

T ′
ρ,µ,1(p)h =

∫ 1

0

ik
(
(θ − x̂) · h(s)

)
(x̂× I3)M

µ
p(s)(θ ×A)eik(θ−x̂)·p(s)|p′(s)| ds ,

T ′
ρ,µ,2(p)h =

∫ 1

0

(x̂× I3)(M
µ
p,h)

′(s)(θ ×A)eik(θ−x̂)·p(s)|p′(s)| ds ,

T ′
ρ,µ,3(p)h =

∫ 1

0

(x̂× I3)M
µ
p(s)(θ ×A)eik(θ−x̂)·p(s)p

′(s) · h′(s)

|p′(s)| ds ,

and

T ′
ρ,ε,1(p)h =

∫ 1

0

ik
(
(θ − x̂) · h(s)

)(
x̂× (I3 × x̂)

)
M

ε
p(s)Ae

ik(θ−x̂)·p(s)|p′(s)| ds ,

T ′
ρ,ε,2(p)h =

∫ 1

0

(x̂×
(
I3 × x̂)

)
(Mε

p,h)
′(s)Aeik(θ−x̂)·p(s)|p′(s)| ds ,

T ′
ρ,ε,3(p)h =

∫ 1

0

(
x̂× (I3 × x̂)

)
M

ε
p(s)Ae

ik(θ−x̂)·p(s)p
′(s) · h′(s)

|p′(s)| ds .

Proof. The Fréchet derivative and the Fréchet differentiability of Tρ can be es-
tablished using Taylor’s theorem along the lines of [29, Thm. 4.2], where a similar
operator has been considered in the context of an inverse conductivity problem. The
proof is therefore omitted.
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5.2. Discretization and regularization. In the reconstruction algorithm we
use interpolating cubic splines with not-a-knot conditions at the end points of the
spline to discretize center curves K parametrized by p ∈ P . Given a non-uniform
partition

(5.6) △ := {0 = t1 < t2 < · · · < tn = 1} ⊆ [0, 1] ,

we denote corresponding not-a-knot splines by p△. The space of all not-a-knot splines
with respect to △ is denoted by P△ 6⊆ P .

Since the inverse problem (5.2) is ill-posed, we add two regularization terms to
stabilize the minimization of (5.4). The functional Ψ1 : P△ → R is defined by

Ψ1(p△) :=

∫ 1

0

|κ(s)|2 ds ,

where

κ(s) :=
|p′

△(s)× p′′
△(s)|

|p′
△(s)|3 , s ∈ [0, 1] ,

denotes the curvature of the curve parametrized by p△. We add α2
1Ψ1 with a regular-

ization parameter α1 > 0 as a penalty term to the left hand side of (5.4) to prevent
minimizers from being too strongly entangled.

Furthermore, we define another functional Ψ2 : P△ → R by

Ψ2(p△) :=
n−1∑

j=1

∣∣∣ 1

n− 1

∫ 1

0

|p′
△(s)| ds−

∫ tj+1

tj

|p′
△(s)| ds

∣∣∣
2

.

Adding α2
2Ψ2 with a regularization parameter α2 > 0 as a penalty term to the left

hand side of (5.4) promotes uniformly distributed control points along the spline and
therefore prevents clustering of control points during the minimization process.

Adding both quadratic regularization terms α2
1Ψ1 and α2

2Ψ2 to the left hand side
of (5.4) gives the regularized nonlinear output least squares functional

(5.7) Φ : P△ → R , Φ(p△) :=

∥∥Tρ(p△)−E∞
ρ

∥∥2
L2(S2)∥∥E∞

ρ

∥∥2
L2(S2)

+ α2
1ψ1(p△) + α2

2ψ2(p△) ,

which we will minimize iteratively.

5.3. The reconstruction algorithm. We assume that 2N(N−1) observations
of the far field E∞

ρ ∈ C∞(S2,C3) are available on an equiangular grid of points

(5.8) yjl :=
[
sin θj cosϕl, sin θj sinϕl, cos θj

]⊤
, j = 1, ..., N − 1 , l = 1, ..., 2N ,

on S2 with θj = jπ/N and ϕl = (l − 1)π/N for some N ∈ N. Accordingly, we
approximate the L2(S2)-norms in the cost functional Φ from (5.7) using a composite
trapezoid rule in horizontal and vertical direction. This yields an approximation ΦN

that is given by

(5.9) ΦN (p△) :=

∑N−1
j=1

∑2N
l=1

π2

N2 sin(θj)
∣∣(Tρ(p△)−E∞

ρ

)
(yjl)

∣∣2
∑N−1

j=1

∑2N
l=1

π2

N2 sin(θj)
∣∣E∞

ρ (yjl)
∣∣2

+ α2
1Ψ1(p△) + α2

2Ψ2(p△) .



24 Y. CAPDEBOSCQ, R. GRIESMAIER, AND M. KNÖLLER

We denote by #”x ∈ R3n the vector that contains the coordinates of the control
points x(1), . . . ,x(n) of a not-a-knot spline p△. We approximate all integrals over the
parameter range [0, 1] of p△ in (5.9) using a composite Simpson’s rule withM = 2m+1
nodes on each subinterval of the partition △. Accordingly, we can rewrite ΦN in the
form

(5.10) ΦN (p△) = |PN ( #”x)|2 ,

where PN : R3n → RQ and Q = 12N(N−1)+3((M −1)(n−1)+1)+(n−1). Storing
real and imaginary parts separately, 12N(N − 1) entries of PN ( #”x) correspond to the
normalized residual term in (5.9), 3((M − 1)(n − 1) + 1) entries correspond to the
penalty term Ψ1, and n− 1 entries correspond to the penalty term Ψ2. Consequently,
we obtain a real-valued nonlinear least squares problem, which is solved numerically
using the Gauß-Newton algorithm with a golden section line search (see, e.g., [37]).

In addition to the Fréchet derivative of the operator Tρ this also requires the
Fréchet derivatives of the mappings ψ1 : P → R,

ψ1(p) := κ ,

and ψ2,j : P → R,

ψ2,j(p) :=
1

n− 1

∫ 1

0

|p′(s)| ds−
∫ tj+1

tj

|p′(s)| ds ,

j = 1, . . . , n− 1, corresponding to the penalty terms Ψ1 and Ψ2 in (5.7), respectively.
A short calculation shows that at p ∈ P these are given by ψ′

1(p) : C
3([0, 1],R3) → R,

(5.11) ψ′
1(p)h =

h′′

|p′|2 − 2(p′)⊤h′

|p′|4 p′′ − (p′′)⊤p′

|p′|4 h′

−
( (p′′)⊤h′

|p′|4 +
(h′′)⊤p′

|p′|4 − 4((p′′)⊤p′)((p′)⊤h′)

|p′|6
)
p′ ,

and ψ′
2(p) : C

3([0, 1],R3) → R,

(5.12) ψ′
2,j(p)h =

1

n− 1

∫ 1

0

(p′)⊤h′

|p′| ds−
∫ tj+1

tj

(p′)⊤h′

|p′| ds , j = 1, . . . , n− 1 .

In Algorithm 5.1 we describe the optimization scheme that is used to mini-
mize |PN |2 from (5.10). Here we denote the Jacobian of PN by JPN . The algorithm
uses the following heuristic stopping criterion. If the optimal step size s∗ℓ determined
by the line search in the current iteration is zero and if the value of the objective
functional |P ( #”xℓ)|2 is dominated by the normalized residual term in (5.9), then the
algorithm stops. However, if the optimal step size s∗ℓ determined by the line search is
zero but the value of the objective functional |P ( #”xℓ)|2 is dominated by the contribu-
tion of one of the two regularization terms α2

jΨj(p△,ℓ), j ∈ {1, 2}, then we conclude
that in order to further improve the reconstruction, the corresponding regulariza-
tion parameter should be reduced. In this case we replace αj by

αj

2 and restart the
iteration using the current iterate for the initial guess.

The fact that not a single partial differential equation has to be solved during
the reconstruction process makes this algorithm extremely efficient, when compared
to traditional iterative shape reconstruction methods for inverse scattering problems
for Maxwell’s equations (see, e.g., [31, 30]).
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Algorithm 5.1 Reconstruction of a thin tubular scattering object

Suppose that Ei (i.e., k, θ, A), ρ, εr, µr, and E∞
ρ are given.

1: Choose an initial guess #”x0 =
[
x(1), . . . ,x(n)

]
for the control points of a

cubic not-a-knot spline p△,0 ∈ P△ approximating the unknown center
curve K of Dρ.

2: Initialize the regularization parameters α1, α2 > 0, and a maximal step
size smax > 0 for the line search.

3: for ℓ = 0, 1, ..., ℓmax do

4: Use the Fréchet derivatives T ′
ρ, ψ

′
1, ψ

′
2,1, . . . , ψ

′
2,n−1 in (5.5), (5.11)

and (5.12) to evaluate the Jacobian JPN of PN from (5.10), which is then
used to compute the Gauß-Newton search direction

∆ℓ := −
(
J⊤
PN

( #”xℓ)JPN ( #”xℓ)
)−1

J⊤
PN

( #”xℓ)PN ( #”xℓ) .

5: Use the golden section line search to compute

s∗ℓ = argmins∈[0,smax] ΦN

(
#”xℓ + s∆ℓ

)
.

6: if s∗ℓ > 0 then

7: Update the reconstruction, i.e.,

#”xℓ+1 = #”xℓ + s∗ℓ∆ℓ and ℓ = ℓ+ 1 .

8: else if s∗ℓ = 0 and the value of |P ( #”xℓ)|2 is dominated by the contri-
bution of α2

jΨj(p△,ℓ), j ∈ {1, 2}, in (5.9) then
9: Reduce the corresponding regularization parameter, i.e.,

αj = αj/2 .

10: else if s∗ℓ = 0 and the value of |P ( #”xℓ)|2 is dominated by the residual
term in (5.9) then

return

11: end if

12: end for

13: The entries of #”xℓ are the coefficients of the reconstruction p△,ℓ of the
unknown center curve K of Dρ.

6. Numerical results. To further illustrate our theoretical findings we provide
numerical examples. We discuss the accuracy of the approximation of the electric far

field patternE∞
ρ by the leading order term Ẽ∞

ρ in (5.3), and we study the performance
of the regularized Gauß-Newton reconstruction scheme as outlined in Algorithm 5.1.

Recalling that the electric permittivity and the magnetic permeability in free
space are given by

ε0 ≈ 8.854× 10−12 Fm−1 and µ0 = 4π × 10−7Hm−1 ,

we consider in all numerical tests an incident plane wave Ei as in (5.1) at frequency
f = 100 MHz with direction of propagation θ = 1√

3
[1,−1, 1]⊤ and polarization A =
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Fig. 2: Center curvesK (solid blue) ofDρ in Examples 6.1 (left), 6.2 (center), and 6.3 (right).
Plots also show projections of K onto coordinate planes (solid black).

[−1, i, 1 + i]⊤. Accordingly, the wave number is given by k = ω
√
ε0µ0 ≈ 2.1, where

ω = 2πf denotes the angular frequency, and the wave length is λ ≈ 3.0.
We focus on three different examples for thin tubular scattering objects.

Example 6.1. In the first example Dρ is a thin torus, where the center curve K
is a circle parametrized by p = (p1, p2, p3)

⊤ ∈ P with

p1(s) = cos(2πs) + 1 , p2(s) = sin(2πs) + 1 , p3(s) = −1 , s ∈ [0, 1] ,

as shown in Figure 2 (left). The cross-section D′
ρ is a disk of radius ρ > 0, and

the material parameters of the scattering object are described by the relative electric
permittivity εr = 2.5 and the relative magnetic permeability µr = 1.6. ♦

Example 6.2. In the second example the scattering object Dρ is a thin tube with
a center curve parametrized by p = (p1, p2, p3)

⊤ ∈ P with

p1(s) = 2
cos(2πs)

1 + sin(2πs)2
, p2(s) = 4

cos(2πs) sin(2πs)

1 + 2 sin(2πs)2
, p3(s) = 4s2 , s ∈ [0, 1] ,

as shown in Figure 2 (center). The cross-section D′
ρ is a disk of radius ρ > 0, and the

material parameters of the scattering object in this example are described by relative
electric permittivity εr = 1.0 and the relative magnetic permeability µr = 2.1, i.e.,
there is no permittivity contrast. ♦

Example 6.3. In the third example the scattering object Dρ is a thin tube with
a center curve that is a two-turn helix parametrized by p = (p1, p2, p3)

⊤ ∈ P with

p1(s) = cos(4πs) , p2(s) = sin(4πs) , p3(s) = 6s , s ∈ [0, 1] ,

a shown in Figure 2 (right). The cross-section D′
ρ is a disk of radius ρ > 0, and the

material parameters of the scattering object in this example are described by relative
electric permittivity εr = 2.1 and the relative magnetic permeability µr = 1.0, i.e.,
there is no permeability contrast. ♦

6.1. The accuracy of the asymptotic representation formula. We discuss
the accuracy of the approximation of the electric far field pattern E∞

ρ by the lead-

ing order term Ẽ∞
ρ in the asymptotic perturbation formula (3.7). To quantify the
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Fig. 3: Relative difference RelDiff between E∞
ρ and the leading order term Ẽ∞

ρ in (6.1)
as a function of the number of subsegments in the spline approximation p△ of the center
curve K for Examples 6.1 (left), 6.2 (center), and 6.3 (right) with radius ρ = 0.03.

approximation error we consider the relative difference

(6.1) RelDiff :=
‖Ẽ∞

ρ −E∞
ρ ‖L2(S2)

‖E∞
ρ ‖L2(S2)

.

Since the exact far field pattern E∞
ρ is unknown, we simulate accurate reference

far field data E∞
ρ using the C++ boundary element library Bempp (see [42]). For

this purpose, we consider an integral equation formulation of the electromagnetic
scattering problem (2.10) that is based on the multitrace operator. The corresponding
implementation in Bempp is described in detail in [41].

To evaluate RelDiff numerically, we approximate the vector fields Ẽ∞
ρ and E∞

ρ

on the equiangular grid on S2 from (5.8) with N = 10, and accordingly we discretize
the L2-norms in (6.1) using a composite trapezoid rule in horizontal and vertical
direction. We discuss the following two questions:

(i) How many spline segments and how many quadrature points per spline seg-
ment are sufficient in the approximation p△ of the center curve K that is

used to evaluate Ẽ∞
ρ numerically, to obtain a reasonably good approxima-

tion of E∞
ρ ?

(ii) How small does the radius ρ > 0 of the thin tubular scattering object Dρ have

to be in order that the leading order term Ẽ∞
ρ in the asymptotic perturbation

formula (3.7) is a sufficiently good approximation of E∞
ρ ?

Concerning the first question, we consider the scattering objects in Examples 6.1,
6.2, and 6.3 with radius ρ = 0.03, and we evaluate reference far field data E∞

ρ using
Bempp as described above. In the corresponding Galerkin boundary element dis-
cretization we use a triangulation of the boundary of the scatterer ∂Dρ with 26698
triangles for Example 6.1, 62116 triangles for Example 6.2, and 62116 triangles for
Example 6.3. Then we consider a sequence of increasingly fine equidistant parti-

tions △ of [0, 1] as in (5.6), we evaluate Ẽ∞
ρ from (5.3), and we study the decay of the

relative difference RelDiff from (6.1) as a function of the number of subsegments of
the spline approximations p△ of the center curves K. We approximate the integrals
in (5.3) using a composite Simpson’s rule with a fixed number of M = 11 nodes on
each subinterval of △. The results of these tests are shown in Figure 3. In each
example the relative error decreases quickly until it reaches its minimum value. Due
to the asymptotic character of the expansion (3.7), and due to numerical error in the
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Fig. 4: Relative difference RelDiff (solid blue) between E∞
ρ and the leading order term Ẽ∞

ρ

in (6.1) as a function of the radius ρ of the thin tubular scatterer Dρ for Examples 6.1 (left),
6.2 (center), and 6.3 (right). For comparison the plot contains a line of slope 2 (dashed red).

numerical approximation of E∞
ρ obtained by Bempp, we do not expect the relative

error RelDiff to decay to zero. A relatively low number of spline segments suffices in
all three examples to obtain less than 2% relative difference. Of course this number
depends on the shape of the center curve. We note that while the simulation of E∞

ρ

using Bempp is computationally quite demanding, the evaluation of Ẽ∞
ρ using (5.3)

is simple and extremely fast.
Concerning the second question from above we again generate reference far field

data E∞
ρ for the thin tubular scattering objects in Examples 6.1–6.3 using Bempp,

but now for a whole range of radii

ρ ∈ {0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.12, 0.14, 0.16, 0.18, 0.2} .

Here we use increasingly fine triangulations of the boundaries of the scatterers ∂Dρ.

We also evaluate the approximations Ẽ∞
ρ for these values of ρ using 29 spline seg-

ments in the spline approximations p△ of the center curves K. In Figure 4 we show
plots of the relative difference RelDiff as a function of ρ (solid blue) for these three
examples. For comparison these plots contain a line of slope 2 (dashed red). The rel-
ative error decays approximately of order O(ρ2). We note that our theoretical results
in Theorem 3.1 do not predict any rate of convergence.

6.2. Reconstruction of the center curve K using Algorithm 5.1. We
return to the inverse problem and apply Algorithm 5.1 to reconstruct the center
curves K of the thin tubular scattering objects Dρ in Examples 6.1–6.3 from obser-
vations of a single electric far field pattern E∞

ρ . In all three examples the radius of
the scattering object Dρ is ρ = 0.03. The previous examples show that E∞

ρ is well

approximated by Ẽ∞
ρ in this regime. We assume that the plane wave incident field Ei

(i.e., the wave number k, the direction of propagation θ, and the polarization A), the
shape and the radius of the cross-sections D′

ρ of the scattering objects (i.e., in partic-
ular ρ) and the material parameters of the scattering objects (i.e., the relative electric
permittivity εr and the relative magnetic permeability µr) are known a priori.

We simulate the far field data E∞
ρ for each of the three examples using Bempp,

where we use triangulations of the boundaries of the tubes ∂Dρ with 26698 triangles
for Example 6.1, 62116 triangles for Example 6.2, and 62116 triangles for Example 6.3.
The values of E∞

ρ are evaluated on the equiangular grid on S2 from (5.8) withN = 10.
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Fig. 5: Reconstruction of the toroidal scatterer from Example 6.1. The top-left plot shows
the initial guess, and the bottom-right plot shows the final reconstruction.

We choose the following parameters in Algorithm 5.1:
• We use n = 30 control points (i.e. 29 spline segments) in the spline approxi-
mation p△ of the unknown center curve K.

• We initialize the regularization parameters in step 2 by α1 = 0.2 and α2 = 0.9.
• We choose smax = 1 in the golden section line search in step 5 and we termi-
nate each line search after a fixed number of 10 steps.

The results are shown in Figures 5–7. Here, the top-left plots show the initial
guess, and the bottom-right plots show the final reconstruction. The remaining four
plots show intermediate approximations of the iterative reconstruction procedure.
Each plot contains the exact center curve K (solid blue) and the current approxi-
mation p△,ℓ of the reconstruction algorithm after ℓ iterations (solid red with stars).
Furthermore, we have included projections of these curves onto the three coordinate
planes to enhance the three-dimensional perspective.

Example 6.4. We consider the setting from Example 6.1. The initial guess is a
straight line segment connecting the points [0, 2, 0]⊤ and [1, 2, 0]⊤. The reconstruction
algorithm stops after 35 iterations. The initial guess, some intermediate steps and
the final result of the reconstruction algorithm are shown in Figure 5. The final
reconstruction is very close to the exact center curve K. ♦

Example 6.5. We consider the setting from Example 6.2. The initial guess is a
straight line segment connecting the points [2, 0, 0]⊤ and [2, 2, 0]⊤. The reconstruction
algorithm stops after 168 steps. The initial guess, some intermediate steps and the
final result of the reconstruction algorithm are shown in Figure 6. Again the final
reconstruction is very close to the exact center curve K. ♦



30 Y. CAPDEBOSCQ, R. GRIESMAIER, AND M. KNÖLLER

Fig. 6: Reconstruction of the thin tubular scatterer from Example 6.2. The top-left plot
shows the initial guess, and the bottom-right plot shows the final reconstruction.

Example 6.6. We consider the setting from Example 6.3. The initial guess is a
straight line segment connecting the points [0,−1, 1]⊤ and [0,−2, 1]⊤. The recon-
struction algorithm stops after 87 steps. The initial guess, some intermediate steps
and the final result of the reconstruction algorithm are shown in Figure 7. As in the
previous examples, the final reconstruction is very close to the exact center curveK. ♦

In all three examples Algorithm 5.1 provides accurate approximations to the cen-
ter curve K of the unknown scattering object Dρ. However, a suitable choice of the
regularization parameters α1 and α2, and an initial guess p△ sufficiently close to the
unknown center curve K are crucial for a successful reconstruction.

In our final example we study the sensitivity of the reconstruction algorithm to
noise in the far field data.

Example 6.7. We repeat the previous computations but we add 30% complex-
valued uniformly distributed error to the electric far field patterns E∞

ρ that have been
simulates using Bempp. We use the same initial guesses and the same initial values
for the regularization parameters α1 and α2 as in Examples 6.4–6.6. The three plots
in Figure 8 show the exact center curves (solid blue), the final reconstructions (solid
red with stars), and the projections of these curves onto the coordinate planes. The
reconstruction algorithm stops after 42 iterations for Example 6.4, after 128 iterations
for Example 6.5, and after 81 iterations for Example 6.6, respectively. Despite the
relatively high noise level, the final reconstructions are still very close to the exact
center curves K.

We note that Algorithm 5.1 incorporates all available a priori information about
the radius ρ and the shape of the cross-section of the unknown scatterer, and its
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Fig. 7: Reconstruction of the helical scatterer from Example 6.3. The top-left plot shows
the initial guess, and the bottom-right plot shows the final reconstruction.

Fig. 8: Reconstructions from noisy data with 30% uniformly distributed additive noise.

material parameters εr and µr. Furthermore it reconstructs a relatively low number of
control points corresponding to the spline approximation p△ of the center curve K of
the unknown thin tubular scattering object Dρ. We also have carefully regularized the
output least squares functional Φ in (5.7). This might explain the good performance
of the reconstruction algorithm even for rather noisy far field data. ♦

Conclusions. The scattered electromagnetic field due to a thin tubular scat-
tering object in homogeneous free space can be approximated efficiently using an
asymptotic representation formula in terms of the dyadic Green’s function of the
background medium, the incident electromagnetic field, and two polarization tensors
that encode the shape and the material parameters of the thin tubular scatterering
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object. In this work we have shown that, for a thin tubular scattering object with a
fixed cross-section that possibly twists along the center curve, these three-dimensional
polarization tensors can be computed from the parametrization of the center curve
and the two-dimensional polarization tensors of the cross-section.

For sufficiently regular cross-sections these two-dimensional polarization tensors
can be approximated by solving a two-dimensional transmission problem for the
Laplace equation. For ellipsoidal cross-sections explicit formulas are available. This
gives a very efficient tool to analyze and simulate scattered fields due to thin tubular
structures.

We have applied these results to develop an efficient iterative reconstruction
method to recover the center curve of a thin tubular scattering object from far field
observations of a single scattered field. Our numerical examples illustrate the ac-
curacy of the asymptotic perturbation formula and the performance of the iterative
reconstruction method.

Appendix A. Local coordinates.

In this section we derive the Jacobian determinant JΓ and compute the gradient
in the local coordinate system rΓ from (2.4). The Frenet-Serret formulas state that
the Frenet-Serret frame (tΓ,nΓ, bΓ) from (2.2) satisfies

∂tΓ
∂s

= κnΓ ,
∂bΓ
∂s

= −τnΓ ,
∂nΓ

∂s
= τbΓ − κtΓ .

Therewith we find that

∂rΓ
∂s

(s, η, ζ) = tΓ(s)
(
1− κ(s)

[
1 0

]
Rθ(s)

[
η
ζ

])

+
[
nΓ(s) bΓ(s)

]([ 0 −τ(s)
τ(s) 0

]
Rθ(s) +

∂Rθ

∂s
(s)

)[
η
ζ

]
,

∂rΓ
∂η

(s, η, ζ) =
[
nΓ(s) bΓ(s)

]
Rθ(s)

[
1
0

]
,

∂rΓ
∂ζ

(s, η, ζ) =
[
nΓ(s) bΓ(s)

]
Rθ(s)

[
0
1

]
.

Accordingly,

JΓ(s, η, ζ) := detDrΓ(s, η, ζ) = 1− κ(s)
[
1 0

]
Rθ(s)

[
η
ζ

]
.

Furthermore, applying the chain rule we obtain that

∂u ◦ rΓ
∂s

(s, η, ζ) = ∇u(s, η, ζ) ·
(
tΓ(s)

(
1− κ(s)

[
1 0

]
Rθ(s)

[
η
ζ

])

+
[
nΓ(s) bΓ(s)

] ([ 0 −τ(s)
τ(s) 0

]
Rθ(s) +

∂Rθ

∂s
(s)

)[
η
ζ

])
,

∂u ◦ rΓ
∂η

(s, η, ζ) = ∇u(s, η, ζ) ·
([

nΓ(s) bΓ(s)
]
Rθ(s)

[
1
0

])
,

∂u ◦ rΓ
∂ζ

(s, η, ζ) = ∇u(s, η, ζ) ·
([

nΓ(s) bΓ(s)
]
Rθ(s)

[
0
1

])
.

Using the orthogonal decomposition

∇u = (tΓ · ∇u)tΓ + (nΓ · ∇u)nΓ + (bΓ · ∇u)bΓ
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and the notation

∇′
η,ζu ◦ rΓ :=

[
∂u◦rΓ

∂η
∂u◦rΓ

∂ζ

]⊤

for the two-dimensional gradient with respect to (η, ζ), we find that the gradient
satisfies

∇u(rΓ(s, η, ζ))

= J−1
Γ (s, η, ζ)

(
∂u ◦ rΓ
∂s

(s, η, ζ) +
(
τ +

∂θ

∂s

)
(s)

[
ζ
−η

]
·
(
∇′

η,ζu ◦ rΓ
)
(s, η, ζ)

)
tΓ(s)

+
[
nΓ(s) bΓ(s)

]
Rθ(s)

(
∇′

η,ζu ◦ rΓ
)
(s, η, ζ) .

Appendix B. Some estimates. In the following we collect some estimates
that are used in the proof of Proposition 4.2 (see also [18] for (B.2a)–(B.2b)).

Lemma B.1. Suppose D ⊆ Ω ⊆ Rd, d = 2, 3, let γ0, γ1 > 0, and let γ ∈ L∞(Ω)
be defined by

γ :=

{
γ1 , x ∈ D ,

γ0 , x ∈ Rd \D ,

Given F ∈ L∞(Ω,Rd), we denote by w ∈ H1
0 (Ω) the unique solution to

(B.1) div(γ∇w) = div(χDF ) in Ω , w = 0 on ∂Ω .

Then, there exist constants C,Cp > 0 such that

‖∇w‖L2(Ω) ≤ C|D| 12 ‖F ‖L∞(D) ,(B.2a)

‖w‖L2(Ω) ≤ C|D| 34 ‖F ‖L∞(D) ,(B.2b)

‖w‖W 1,p(Ω) ≤ Cp|D| 1p ‖F ‖L∞(D) , 1 < p < 2 .(B.2c)

Proof. Using the weak formulation of (B.1) and Hölder’s inequality we find that

‖∇w‖2L2(Ω) ≤ C

∫

Ω

χDF · ∇w dx ≤ C|D| 12 ‖∇w‖L2(Ω)‖F ‖L∞(D) .

This gives (B.2a).
Let z ∈ H1

0 (Ω) be the unique solution to

(B.3) div(γ0∇z) = −w in Ω , z = 0 on ∂Ω .

Elliptic regularity results (see, e.g., [26, Thm. 8.13]) show that ‖z‖H3(Ω) ≤ C‖w‖H1(Ω),
and Sobolev’s embedding theorem (see, e.g., [26, p. 158]) gives

‖∇z‖L∞(Ω) ≤ C‖z‖H3(Ω) .

Using the weak formulations of (B.3) and (B.1) we find that

‖w‖2L2(Ω) =

∫

Ω

γ0∇z · ∇w dx =

∫

Ω

χDF · ∇z dx+

∫

Ω

(γ0 − γ)∇z · ∇w dx

≤
(
‖χDF ‖L1(Ω) + ‖(γ0 − γ)∇w‖L1(Ω)

)
‖∇z‖L∞(Ω)

≤ C
(
|D|‖F ‖L∞(D) + |D| 12 ‖∇w‖L2(Ω)

)
‖w‖H1(Ω) .
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Applying Poincare’s inequality and (B.2a) this shows (B.2b).
Next we note that

div(γ0∇w) = div(χDF ) + div
(
(γ0 − γ)∇w

)
.

If 1 < p < 2, then the right hand side is in W−1,p(Ω), and since −div(γ0∇·) is an
isomorphism from W 1,p

0 (Ω) to W−1,p(Ω) (see, e.g., [11, p. 40]), we find using Hölder’s
inequality and (B.2a) that

‖w‖W 1,p(Ω) ≤ Cp‖χDF ‖Lp(Ω) + Cp‖(γ0 − γ)∇w‖Lp(Ω)

≤ Cp|D| 1p ‖F ‖L∞(D) + Cp|D| 1p− 1
2 ‖∇w‖L2(Ω) ≤ Cp|D| 1p ‖F ‖L∞(D) .

This gives (B.2c).

The next lemma is used in the proof of Theorem 4.1 (b).

Lemma B.2. Let 0 < ρ < r/2 and let D′
ρ ⊆ B′

ρ(0) be open, where B′
ρ(0) ⊆ R2

denotes the disk of radius ρ around zero. Suppose that A0, A1 ∈ C0,1(B′
r(0),R

2×2)
are symmetric and

c−1 ≤ ξ′ · Aj(x
′)ξ′ ≤ c for all x′ ∈ B′

r(0) , ξ
′ ∈ S2 , and j = 1, 2 ,

with some constant c > 0, and let F ∈ C0,1(B′
r(0),R

2). We define Aρ, Ãρ ∈
C0,1(B′

r(0),R
2×2) by

Aρ(x
′) :=

{
A1 , x′ ∈ Dρ ,

A0 , x′ ∈ B′
r(0) \Dρ ,

and Ãρ(x
′) :=

{
A1(0) , x′ ∈ Dρ ,

A0(0) , x′ ∈ B′
r(0) \Dρ ,

and we consider the unique solutions wρ, w̃ρ ∈ H1
0 (B

′
r(0)) to

div(Aρwρ) = div(χDρF ) in B′
r(0) , wρ = 0 on ∂B′

r(0) ,(B.4a)

div(Ãρw̃ρ) = div(χDρF ) in B′
r(0) , w̃ρ = 0 on ∂B′

r(0) .(B.4b)

Then,

(B.5)
∥∥∇wρ −∇w̃ρ

∥∥
L2(B′

r(0))
= o(|Dρ|

1
2 ) as ρ→ 0 .

Proof. Using (B.4a) we find that

div(Ãρ∇wρ) = div(χDρF (0))+div
(
χDρ(F−F (0))

)
+div

(
(Ãρ−Aρ)∇wρ

)
in B′

r(0) .

Therefore, introducting Ω′ := B′
ρ1/4(0) we can write wρ = w̃ρ + v1 + v2 + v3, where

v1, v2, v3 ∈ H1
0 (B

′
r(0)) are the unique solutions to

div(Ãρv1) = div
(
χDρ(F − F (0))

)
in B′

r(0) , v1 = 0 on ∂B′
r(0) ,(B.6a)

div(Ãρv2) = div
(
χΩ′(Ãρ −Aρ)∇wρ

)
in B′

r(0) , v2 = 0 on ∂B′
r(0) ,(B.6b)

div(Ãρv3) = div
(
(1− χΩ′)(Ãρ −Aρ)∇wρ

)
in B′

r(0) , v3 = 0 on ∂B′
r(0) .(B.6c)

Using (B.2a) and the Lipschitz continuity of F we find that

(B.7) ‖∇v1‖L2(B′

r(0))
≤ C‖F − F (0)‖L∞(D′

ρ)
|D′

ρ|
1
2 ≤ Cρ|D′

ρ|
1
2 = o(|D′

ρ|
1
2 ) .
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Similarly, the well-posedness of (B.6b), (B.2a), and the Lipschitz continuity of A0

and A1 show that

‖∇v2‖L2(B′

r(0))
≤ C

∥∥(Ãρ −Aρ)χΩ′

∥∥
L∞(B′

r(0))
‖∇wρ‖L2(B′

r(0))

≤ C
(
‖A1 −A1(0)‖L∞(D′

ρ)
+ ‖A0 −A0(0)‖L∞(Ω′)

)
|D′

ρ|
1
2

≤ C
(
ρ+ ρ

1
4

)
|D′

ρ|
1
2 = o(|D′

ρ|
1
2 ) .

(B.8)

Next let hρ ∈ C1([0, r]) be a cut-off function satisfying

0 ≤ hρ ≤ 1 , χ
(0, ρ

1
2 )
hρ = 0 ,(B.9a)

χ
(ρ

1
4 , 1)

hρ = χ
(ρ

1
4 , 1)

,
∥∥∥∂hρ
∂t

∥∥∥
L∞((0, r))

≤ Cρ−
1
4 .(B.9b)

(see [13, Lmm. 3.6] for a similar construction). Using the weak formulation of (B.4a)
and integrating by parts shows that

0 =

∫

D′

ρ

F · ∇(h2ρwρ) dx
′ =

∫

B′

r(0)

Aρ∇wρ · ∇(h2ρwρ) dx
′

=

∫

B′

r(0)

Aρ∇wρ ·
(
hρ∇(hρwρ) + hρwρ∇hρ

)
dx′

=

∫

B′

r(0)

Aρ∇(hρwρ) · ∇(hρwρ) dx
′ −

∫

B′

r(0)

Aρw
2
ρ∇hρ · ∇hρ dx′ .

Accordingly,

‖∇(hρwρ)‖2L2(B′

r(0))
≤ C‖∇hρ‖2L∞(B′

r(0))
‖wρ‖2L2(B′

r(0))
,

and applying (B.9) and (B.2b) gives

‖∇(hρwρ)‖L2(B′

r(0))
≤ Cρ−

1
4 |D′

ρ|
3
4 ≤ C|D′

ρ|−
1
8 |D′

ρ|
3
4 = o(|D′

ρ|
1
2 ) ,

where we used that D′
ρ ⊆ B′

ρ(0) and thus |D′
ρ| ≤ πρ2. Combining (B.6b) with (B.2a)

we obtain that

(B.10) ‖v2‖L2(B′

r(0))
≤ C‖∇wρ‖L2(B′

r(0)\Ω′) ≤ C‖∇(hρwρ)‖L2(B′

r(0))
= o(|D′

ρ|
1
2 ) .

Finally, (B.7), (B.8), and (B.10) give (B.5).
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