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Abstract

Directed acyclic graphs are widely used to model the data flow and execution
dependencies of streaming applications. Efficient parallelization of such graphs
requires acyclic partitioning of the dependency graph. However, normal graphs are
not always capable of precisely modelling such dependencies. Thus, we consider
directed acyclic hypergraphs (DAHs). In this work, we present the first n-level
hypergraph partitioning algorithm for directed acyclic hypergraphs. Moreover, we
show (i) that our algorithm beats the current state of the art for directed acyclic
graph partitioning in terms of solution quality on realistic instances, (ii) that n-level
algorithms are superior to single level algorithms, and (iii) that our algorithm
improves on the makespan of a parallelized image streaming application.

Zusammenfassung

Gerichtete azyklische Graphen werden häufig zur Modellierung von Datenflüssen
und Ausführungsabhängigkeiten von Datenflussapplikationen genutzt. Eine effizi-
ente automatische Parallelisierung solcher Anwendung erfordert eine azyklische
Partitionierung der Abhängigkeitsgraphen. Allerdings ist eine präzise Modellierung
der Abhängigkeiten mit herkömmlichen Graphen nicht immer möglich. Deswe-
gen betrachten wir in dieser Arbeit gerichtete azyklische Hypergraphen (DAHs)
und präsentieren den ersten n-Stufen Algorithmus zur azyklischen Partitionierung
solcher Hypergraphen. Unsere Ergebnisse bestehen aus drei Beiträgen: wir zei-
gen, dass (i) unser Algorithmus häufig bessere Partitionen als der aktuell beste
Algorithmus auf praxisnahen gerichteten azyklischen Graphen findet, (ii) unser
n-Stufen Algorithmus auf gerichteten azyklischen Hypergraphen besser abschnei-
det als ein einstufiger Algorithmus und (iii) unser Algorithmus eine effizientere
Parallelisierung für eine echte Datenflussapplikation ermöglicht.
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1 Introduction

Directed acyclic hypergraphs (DAHs) are a generalized concept of directed acyclic
graphs (DAGs) where each hyperedge can contain an arbitrary number of tails and
heads. The acyclic hypergraph partitioning problem is to partition the hypernodes of
a DAH into a fixed number of blocks of roughly equal size such that the correspond-
ing quotient graph is acyclic while minimizing an objective function on the partition.

The problem is motivated by a recent paper on graph partitioning with acyclicity
constraint by Moreira et al. [42] who use directed acyclic graphs to model the data
flow and execution dependencies of image streaming applications. The imaging
applications are executed on embedded processors with limited thermal budget
and memory. To cope with these constraints, the application is distributed over
multiple processors that process the data one after another. Data dependencies
between parts of the application are modeled as a directed dependency graph.
To distribute the application, the dependency graph is partitioned into the same
number of blocks as there are processors available. Since edges between blocks
correspond to interprocessor communication, the goal is to find a partition that
minimizes the weighted edge cut of the partition. However, this is merely an
imprecise approximation of the real objective function, which is to minimize the
number of blocks containing neighbors of a node: say that one could choose between
two partitions. One partition places all successors of a node into one other block,
whereas the other partition splits them over two other blocks. When using a
directed graph to model the data dependencies and the weighted edge cut objective
function, both partitions are seen as equal, although the first option requires less
interprocessor communication since the image has to be transferred to only one
other processor, i.e., only once. This problem is illustrated in Figure 1.1: while the
partitions shown in Figure 1.1a and 1.1b have different edge cuts, they behave the
same in practice. Directed acyclic hypergraphs allow for a better model, since a
single hyperedge can contain an arbitrary number of hypernodes. The connectivity
metric then counts the number of blocks connected by a hyperedge. Using this
model, both partitions are rated the same, as shown in Figure 1.1c and 1.1d.

This application leads to a lot of preexisting work on the directed acyclic
graph partitioning problem, but to the best of our knowledge, none concern the
directed acyclic hypergraph partitioning problem.
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1 Introduction

(a) Edge cut: 2 (b) Edge cut: 1 (c) Connectivity: 1 (d) Connectivity: 1

Figure 1.1: Model of an application divided into three subapplications (nodes) executed
on two PEs (dashed line). Two partitions are proposed, one shown in
Figures 1.1a and 1.1c, the other one shown in Figures 1.1b and 1.1d. Since
in both cases, the result of one subapplication has to be sent to one other
PE, both partitions perform equally good in practice and should therefore
have the same cost. Figures 1.1a and 1.1b model the application using a
DAG using the edge cut metric, which rates the partitions differently. In
Figure 1.1c and 1.1d, the problem is modeled as a DAH using the connectivity
metric, which puts the same cost to both partitions.

1.1 Problem Statement

To the best of our knowledge, there are currently no partitioning algorithms for
directed acyclic hypergraphs in existing literature and therefore, it is not possible
to use the DAH model in the described application domain. We close this gap
by presenting the first algorithm for acyclic HGP in this thesis. Our algorithm
can only handle hypergraphs where each hyperedge contains at most one head.
This is sufficient to model the data flow and execution dependencies of an image
streaming application, and also for a range of other applications [6, 7].

1.2 Contribution

We have three main contributions: first and foremost, and to the best of our
knowledge, we present the first algorithm for acyclic hypergraph partitioning
by adapting techniques for DAG partitioning recently introduced by Herrmann
et al. [25, 26] and Moreira et al. [42, 43]. We compare out algorithm on DAG
instances with preexisting DAG partitioning algorithms to show an improvement
of 10% on average. Second, we evaluate our algorithm on DAH instances. Since
there are no preexisting algorithms that we could include in our benchmark set,
we compare our algorithm with simpler heuristics and show that our n-level
algorithm produces partitions with 64% lower connectivity on average than a
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1.3 Structure of Thesis

simple single-level k-way search with topological ordering for initial partitioning.
Finally, we evaluate the impact of our improved DAH model on an image streaming
application described in Ref. [42]. We show that our approach not only yields
an improved model of the transfer costs, but also improves the makespan of such
applications by up to 22% over the DAG model.

1.3 Structure of Thesis

The remaining content of this thesis is structured as follows. In Chapter 2, we
introduce fundamental definitions from graph theory and give a precise formula-
tion of the acyclic hypergraph partitioning problem. Chapter 3 follows with a
broad overview on the current state-of-the-art graph and hypergraph partitioning
techniques as well as recent approaches for solving the acyclic graph partitioning
problem. This is the work that we build upon when developing our acyclic hyper-
graph partitioner. The main content of this thesis is described in Chapter 4 and
Chapter 5, where we present our approach to the acyclic hypergraph partitioning
problem and perform an extensive experimental evaluation and comparison to
previous work. Finally, we conclude our work in Chapter 6.

3
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2 Fundamentals
This chapter introduces general definitions that are used throughout this thesis.
We start by defining undirected and directed graphs before generalizing them to
undirected and directed hypergraphs. After defining those fundamental concepts, we
give a precise formulation of the directed acyclic graph and hypergraph partitioning
problems. Whenever possible, we use the notation introduced in Ref. [2, 4, 55].

2.1 General Definitions

An undirected weighted graph G = (V,E, c, ω) consists of finite sets V and E and
weight functions c and ω. When talking about multiple graphs, we also use V (G)
and E(G) to denote the node and edge set of a particular graph. The elements
of V are called nodes and the elements of E are called edges. We define n := |V |
and m := |E|. While the elements of V are arbitrary and of no further interest,
E may only contain two-subsets of V . In other words, all edges e ∈ E have
the form e = {u, v} with u, v ∈ V and u 6= v. Figure 3.3a illustrates a simple
undirected graph. We say that two nodes u and v are adjacent or connected if
{u, v} ∈ E and two edges e1 and e2 are adjacent if e1 ∩ e2 6= ∅. A node u and
an edge e are incident if u ∈ e. The neighborhood Γ(u) of a node u is the set of
nodes adjacent to it. Its size d(u) := |Γ(u)| is the degree of u. The maximum
degree ∆(G) := maxu∈V d(u) is the highest degree occurring in G. The node weight
function c : V → R>0 assigns non-negative weights to the nodes of G. Analogously,
the edge weight function ω : E → R>0 assigns non-negative weights to the edges of
G. The weight functions are extended to sets of nodes and edges by summing over
the elements of the set, i.e., c(V ′) = ∑

v∈V ′ c(v) for V ′ ⊆ V and ω(E ′) = ∑
e∈E′ ω(e)

for E ′ ⊆ E. If every node or every edge of a graph has the same weight, we say that
the graph has unit node weights or unit edge weights and assume that c(V ) = n or
ω(E) = m, respectively. A matching M ⊆ E in a graph is a set of non-incident
edges. Maximal matchings are a particular type of matchings with the property
that there exists no edge e ∈ E such that M ∪ {e} is also a matching.

The concept of directed graphs puts an order on the elements of each edge. More
precisely, in a directed graph each edge is a pair (u, v) of some nodes u, v ∈ V with
u being the tail of the edge and v being its head. In this case, e is directed from u
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2 Fundamentals

(a) Undirected
graph.

(b) Directed graph. (c) Undirected
hypergraph.

(d) Directed hyper-
graph.

Figure 2.1: (a) An undirected graph where dots represent nodes and lines represent
edges. (b) A directed graph. The Arrow of each edge points towards its
head. (c) An undirected hypergraph. Hyperedges are drawn using closed
polygons. (d) A directed acyclic hypergraph.

to v. In a directed graph, each node has predecessors Γ−(u) := {v | (v, u) ∈ E}
and successors Γ+(u) := {v | (u, v) ∈ E}. The degree d(u) := d+(u) + d−(u) of u
is the sum of its out degree d+(u) := |Γ+(u)| and its in degree d−(u) := |Γ−(u)|.
A directed cycle C = (v1, . . . , vk, vk+1 = v1) in a directed graph is a sequence of
nodes such that (vi, vi+1) ∈ E for 1 ≤ i ≤ k and vi 6= vj for 1 ≤ i, j ≤ k, i 6= j. A
directed graph that does not contain any cycles is said to be acyclic and referred to
as a directed acyclic graph or DAG for short. Figure 3.3b shows a simple directed
acyclic graph. When talking about DAGs, we refer to nodes with in-degree 0 as
sources and nodes with out-degree 0 as sinks of the graph. A subgraph G′ ⊆ G
of a DAG G is a DAG that with G′(V ) ⊆ G(V ) and G′(E) ⊆ G′(V ) × G′(V ).
The induced subgraph G[V ′] ⊆ G for some V ′ ⊆ G(V ) is the subgraph of G with
(G[V ′])(V ) = V ′ and (G[V ′])(E) = G(E) ∩ (V ′ × V ′).

A topological ordering τ : V → [n] of the nodes of a directed graph is an order
such that for every edge (u, v) ∈ E, τ(u) < τ(v) holds. We use [n] to denote
the set {1, . . . , n}. As shown in Theorem 2.1.2, the existence of a topological
ordering characterizes directed acyclic graphs.

Lemma 2.1.1. (Source: [8, Proposition 1.4.2].) Let G = (V,E) be a DAG. Then
G contains a node v with in degree d−(v) = 0.

Proof. Let P = (v1, . . . , vk) be a path of maximal length in G. Since G is acyclic,
v1 cannot have a predecessor in P and since P is maximal, it also cannot have
a predecessor outside of P . Therefore, v1 cannot have any predecessors, i.e.,
d−(v1) = 0.

Theorem 2.1.2. (Source: [8, Proposition 1.4.3].) A directed graph is acyclic if
and only if there exists a topological order of the nodes of the graph.

Proof. Let G = (V,E) be a directed acyclic graph. By Lemma 2.1.1, G0 := G has
a node v0 with in degree zero. Set τ(v0) = 0 and move on to G1 := G0 − v. Since
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2.1 General Definitions

removing a node from an acyclic graph keeps the graph acyclic, G1 again contains
a node v1 with in degree 0 and we can set τ(v1) = 1 and so on. By induction, this
constructs a topological order τ of G.

For the other direction, let τ be a topological ordering and assume thatG contains
a cycle C = (v1, . . . , vk, vk+1 = v1). Then τ(v1) < τ(v2) < · · · < τ(vk) < τ(v1), a
contradiction.

We now generalize the concept of graphs to hypergraphs by allowing edges to
contain an arbitrary number of nodes. More formally, an undirected weighted
hypergraph H = (V,E, c, ω) consists of a finite set of hypernodes V and a finite
set of hyperedges E, where each hyperedge e ∈ E is a non-empty subset of V , i.e.,
e ⊆ V . Hyperedges are also referred to as nets and the hypernodes contained in a
net are its pins. Figure 2.1c illustrates a simple hypergraph. For a hypernode u, we
define its set of incident hyperedges I(u) := {e ∈ E | u ∈ e}, and its neighborhood
Γ(u) := {v | {u, v} ⊆ e for some e ∈ E}. The size of a net is its cardinality |e|. A
hypergraph where every edge has the same cardinality r is said to be r-uniform. In
particular, a 2-uniform undirected hypergraph is an undirected graph. Analogously
to undirected graphs, c : V → R>0 assigns each hypernode a non-negative hypernode
weight and ω : E → R>0 assigns each hyperedge a non-negative hyperedge weight.

The generalized version of directed graphs are directed hypergraphs. A directed
hypergraph is an undirected hypergraph where each hyperedge e ∈ E is divided
into a set of tails eT ⊆ e and heads eH ⊆ e that fulfill eT ∪ eH = e and eT ∩ eH =
∅. Note that in this thesis, we only consider directed hypergraphs where each
hyperedge contains at most one head pin and an arbitrary number of tail pins,
i.e., hypergraphs with |eH | = 1 for all e ∈ E. The predecessors of a hypernode
u are Γ−(u) := {v | v ∈ eT , u ∈ eH for some e ∈ E} and its successors are
Γ+(u) := {v | u ∈ eT , v ∈ eH for some e ∈ E}. In a directed hypergraph, a cycle C
of length k is a sequence of hypernodes, C = (v1, . . . , vk, vk+1 = v1), such that for
every i = 1, . . . , k, there exists some hyperedge e ∈ E with vi ∈ eT and vi+1 ∈ eH .
Furthermore, we require that vi 6= vj for i 6= j, 1 ≤ i, j ≤ k. Analogously to
directed acyclic graphs, we refer to directed hypergraphs that do not contain
any cycles as directed acyclic hypergraph or DAH for short. This definition of
directed acyclic hypergraphs can be seen as an extension of Berge-acyclicity [10] to
directed hypergraphs: Consider a bipartite graph G that contains one node for each
hypernode and one node for each hyperedge of the hypergraph. For each e ∈ E(H),
add edges (u, e) for u ∈ eT and (e, v) for v ∈ eH to G. Then G is acyclic if and only if
H is acyclic. An example for a directed acyclic hypergraph is shown in Figure 2.1d.

Note that given a directed hypergraph H, another way to construct a directed
graph G that is equivalent to the hypergraph in regards to the acyclicity constraint
is to replace each hyperedge e with a directed, bipartite graph from eT to eH . G is

7



2 Fundamentals

(a) DAH (b) DAG

Figure 2.2: By replacing each directed hyperedge of the DAH (Figure 2.2a) with a
bipartite graph from the tails of the hyperedge to its heads, we get a DAG
(Figure 2.2b) that is acyclic if and only if the DAH is acyclic. Moreover, a
partition of the DAH is acyclic if and only if the corresponding partition of
the DAG is acyclic.

acyclic if and only if H is acyclic and an acyclic partition of G is also an acyclic
partition of H and vice-versa. Figure 2.2 shows an example of this transformation.

2.2 Problem Formulation

As we did in the previous section, we start this section by defining the
graph partitioning problems for undirected graphs. Then, we introduce it
for directed acyclic graphs before stating both definitions for undirected
and directed acyclic hypergraphs.

Given a graph G = (V,E), the k-way graph partitioning problem asks for a
partition of V into k blocks Π(V ) := {V1, . . . , Vk} such that V = ⋃

1≤i≤k Vi and
Vi∩Vj = ∅ for i 6= j. The weight of each block is limited by the imbalance parameter
ε ≥ 0 and might not be zero: we demand that 0 < c(Vi) ≤ Lmax := (1 + ε)d c(V )

k
e for

all 1 ≤ i ≤ k. This ensures that each block has roughly the same weight for small
values of ε. The goal is to find a partition that minimizes an objective function.
In this thesis, we only consider the edge cut objective defined by∑

e∈cut
ω(e),

where cut contains all edges with endpoints in two different blocks.
For directed acyclic graphs, we need the concept of the quotient graph. Given a

directed acyclic graph G = (V,E) with partition Π(V ) = {V1, . . . , Vk}, the quotient
graph is a directed graph with one node vi for each block Vi and an edge (vi, vj)
if G contains an edge (v′i, v′j) with v′i ∈ Vi and v′j ∈ Vj. The quotient graph can
also be seen as the graph resulting from G when contracting all nodes within a

8



2.2 Problem Formulation

block. With this in mind, the graph partitioning problem for directed acyclic
graphs is the same as before, but extended by the acyclicity constraint, i.e., the
constraint that the partition’s quotient graph must be acyclic.

Finally, we define undirected and directed acyclic hypergraphs. Given an
undirected hypergraphs H = (V,E), a k-way partition Π(V ) = {V1, . . . , Vk} of
H is a partition of V fulfilling the same conditions as before. For u ∈ V , we
set b[u] to the block containing u, i.e., b[u] = i if and only if u ∈ Vi. Moreover,
we define the connectivity set of a hyperedge e with Λ(e) := {Vi | Vi ∩ e 6= ∅}
and the connectivity of a hyperedge e with λ(e) := |Λ(e)|. Two blocks Vi, Vj ∈ Π
are adjacent if there is a hyperedge e ∈ E with Vi ∩ E 6= ∅ and Vj ∩ E 6= ∅. A
hypernode u and a block Vi are adjacent if u /∈ Vi but there exists a hyperedge
e with u ∈ e and e ∩ Vi 6= ∅. The most prominent objective functions in
hypergraph partitioning are the cut and connectivity objectives. Given a partition
Π(V ) = {V1, . . . , Vk}, the former one is defined as∑

e∈cut
ω(e),

where cut contains all hyperedges that are cut, i.e., have λ(e) > 0. The con-
nectivity metric is defined as the sum∑

e∈cut
(λ(e)− 1)ω(e).

In other words, a hyperedge that only contains hypernodes from one block does
not contribute to the connectivity metric whereas an edge containing hypern-
odes from two different blocks contributes one and so on. Note that both met-
rics are equal to the ordinary edge cut metric used in graph partitioning for
2-uniform hypergraphs. This allows us to compare our algorithm to the current
state-of-the-art for DAG partitioning later on.

The quotient graph Q of a partitioned directed acyclic hypergraph H again
contains a node vi for each block Vi and an edge (vi, vj) if H contains an hyperedge
e with tail pins in Vi and head pins in Vj. More formally, V (Q) := Π and
E(Q) := {(Vi, Vj) | ∃e ∈ E(H) : eT ∩ Vi 6= ∅ and eH ∩ Vj 6= ∅}. The hypergraph
partitioning problem for directed acyclic hypergraphs is the same as before, but
with the further restriction that the resulting quotient graph must also be acyclic.

Both graph partitioning problems are NP-complete [30, 42] and there are no
constant factor approximation algorithms [5, 42]. Since the corresponding hy-
pergraph partitioning problems are generalized versions of them, they are also
NP-complete. In practice, we must therefore focus on good heuristics to find
high-quality partitions of large graphs.

9
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3 Related Work
The general graph partitioning problem has been studied for a long time and
subsequently, there is an enormous amount of preexisting literature. For a broad
overview, we refer to existing literature [14, 58]. More specialized literature focuses
on hypergraph partitioning and acyclic graph partitioning. In this chapter, we give
a brief introduction to each topic. We start by giving a general introduction to
graph partitioning. Afterwards, we introduce hypergraph partitioning by briefly
presenting the core components of KaHyPar [2, 4, 27, 54, 55] and PaToH [15].
Finally, we discuss recent approaches for acyclic graph partitioning introduced
by Moreira et al. [42, 43] and Herrmann et al. [25, 26].

3.1 Multilevel Graph Partitioning

Most recent graph partitioning algorithms employ the multilevel paradigm first
introduced by Hendrickson and Leland [24]. Note that this scheme isn’t lim-
ited to ordinary node-based graph partitioning, but has been applied successfully
to a wide range of problems, such as sequential and distributed edge partition-
ing [38, 57], graph drawing [39] and even support-vector machines [56]. We also
make heavy use of this scheme in this thesis. Therefore, we give a brief intro-
duction to multilevel graph partitioning algorithms in this section. We start by
outlining the multilevel partitioning scheme. Afterwards, we present the refine-
ment algorithm by Fiduccia and Mattheyses (FM algorithm) [23] since we use
this algorithm as a basis for our own refinement algorithm.

Outline. Multilevel graph partitioning typically consists of three phases, namely
coarsening, initial partitioning and uncoarsening or refinement. The whole process
is depicted in Figure 3.1. During coarsening, the algorithm constructs a hierarchy
of roughly log(n) coarser graphs by contracting matchings or clusters. Both
variants can be implemented efficiently. For instance, Birn et al. [12] present an
efficient 2-approximative parallel matching algorithm with linear running time (on
a single core) and low I/O complexity. Meyerhenke et al. [40] present a clustering
algorithm using size-constrained label propagation which also has linear running
time. Contracting a set S ⊆ V of nodes works as follows: remove all nodes in S from

11
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input graph

initial partitioning

final partition

coarsening
uncoarsening
refinement

. . .

. . .. . .

. . . log(n) levels

Figure 3.1: Multilevel partitioning scheme: coarsening, initial partitioning and uncoars-
ening with refinement.

the graph and insert a new node s with node weight c(s) = c(S) and neighborhood
Γ(s) = ⋃

u∈S Γ(u). If this process creates parallel edges e1, . . . , em, they are merged
into one edge e with accumulated edge weight ω(e) = ω({e1, . . . , em}). After roughly
log(n) levels of coarser graphs, the coarsening algorithm decides that the graph is
small enough and terminates. We use the following terminology when referring to
different graphs of the hierarchy: the finest graph is the input graph, i.e., the graph
without any contractions. When contracting the finest graph, we get a series of
coarser graphs. The smallest graph is referred to as the coarsest graph. The next
phase computes a partition for the coarsest graph. This partition is referred to as
initial partition. Since the coarsest graph is small compared to the input graph, the
initial partitioning can be relatively slow without affecting the overall running time
much. During uncoarsening, the partition of a coarser graph is projected onto the
finer graph. This is done by assigning all nodes that were contracted into one node
to that nodes partition in the coarser graph. After each projection, a refinement
algorithm improves the the current partition. The most prominent refinement
algorithms are variants of the algorithm by Fiduccia and Mattheyses (FM) [23] or
the one by Kernighan and Lin (KL) [35]. Since we use the FM algorithm as basis
of our own refinement algorithm, we elaborate on it in the following paragraph.
Once refinement on the finest level was executed, the algorithm terminates.

The intuition of multilevel graph partitioning is based on the following observa-
tions: first, projecting a partition from a coarser level onto a finer level preserves the
edge cut. Thus, the final edge cut is at least as low as the edge cut of the initial par-
tition, assuming that the refinement algorithm guarantees no worsening. The other
observation is that the multilevel scheme allows a more global view on the partition
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landscape compared to a single-level algorithm. During the coarser levels of the
graph hierarchy, the refinement algorithm considers to move chunks of nodes (since
a single node on the coarsest graph corresponds to many nodes on the finest graph),
allowing a global view. During finer levels, refinement performs fine-grained moves.

Fiduccia–Mattheyses Algorithm. The FM algorithm [23] is a linear-time local
search heuristic originally proposed as a 2-way refinement algorithm. The algorithm
alternates between both blocks and moves the node with the highest gain (i.e.,
the change in the objective caused by the move) from the current block to the
other one. To do that, the algorithm maintains two priority queues, one for each
block. The queues are initialized with all nodes belonging to the corresponding
block, with priority equal to their gain value. This allows an implementation with
amortized linear running time when using bucket queues as priority queues; for
details, see Ref. [23]. Once a node was moved, it is excluded from the rest of
the current pass of the algorithm. The pass terminates as soon as one priority
queue runs empty. Then, the algorithm undos moves in reverse order until the
best partition observed during refinement is restored.

While Fiduccia and Mattheyses move all nodes during a pass of one iteration,
Karypis and Kumar [34] reduce its running time significantly by only considering
boundary nodes for movement and stopping the search after a constant number
of fruitless moves, i.e., moves that did not yield an improved partition. Moreover,
they extended the original 2-way FM algorithm to a k-way refinement algorithm
using only a single global priority queue while maintaining the linear running
time. Osipov and Sanders [47] present an adaptive stopping criterion (instead
of a constant number of fruitless moves) based on a random walk model. The
criterion terminates the current pass as soon as further improvements become
unlikely. Moreover, Osipov et al. [52] introduce a highly localized version of the
FM algorithm called multi-try FM. Instead of initializing a pass of the algorithm
with all border nodes, they choose to repeatedly initialize it with only a single
node. The intuition behind this improvement is that it allows the algorithm to find
localized improvements before the partition gets trashed at other places.

For hypergraph partitioning, Akhremtsev et al. [2] implement a variant of the
FM algorithm that maintains k priority queues, one for each block, and uses an
extension of the adaptive stopping criterion introduced by Osipov and Sanders [47].
Each priority queue contains all hypernodes that can be moved to the corresponding
block, i.e., that are in another block but adjacent to it, with the gain value as
priority. Similar to multi-try FM [52], their FM implementation is highly localized
and gets repeatedly initialized with only a couple of hypernodes. Since calculating
and updating gain values on hypergraphs is expensive, they implement several novel
techniques to improve the performance of their FM algorithm. First and foremost,
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they cache gain values across multiple passes to prevent having to calculate the
same gain value multiple times. Secondly, they exclude large hyperedges since those
bottleneck the gain value calculation and are unlikely to change their connectivity.

3.2 Undirected Hypergraph Partitioning

In this section, we briefly introduce hypergraph partitioning by presenting two algo-
rithms for undirected hypergraph partitioning, namely KaHyPar [2,4,27,28,55] and
PaToH [15]. We present KaHyPar because it computes the best partitions out of all
publicly available HGP algorithms on a large collection of hypergraph instances [54]
and we use it as a framework to implement our own algorithms. PaToH is generally
one of the fastest HGP algorithm [54] and we use it during initial partitioning in
our of our experiments. For an in-depth introduction to high-quality hypergraph
partitioning and KaHyPar, we refer to the doctoral thesis of Sebastian Schlag [54].

3.2.1 KaHyPar

Many recent hypergraph partitioners [15, 21, 32, 59] and graph partitioners [29,
33, 50, 52] use the multilevel paradigm first introduced by Hendrickson and Le-
land [24] with roughly log(n) levels to partition an undirected hypergraph or
undirected graph. KaHyPar uses an extreme version of this paradigm known
as the n-level multilevel graph partitioning paradigm that was first introduced
by Osipov and Sanders with KaSPar [47].

Like multilevel algorithms for graph partitioning, KaHyPar constructs a hierarchy
of coarser graphs by contracting pairs of hypernodes during coarsening. Contracting
a pair (u, v) of hypernodes works as follows: remove both hypernodes from the
hypergraph and replace them by a new hypernode w with hypernode weight
c(w) = c(u) + c(v). Add w to every hyperedge that contained u or v. If this
process yields parallel hyperedges e1, . . . , ek, the parallel hyperedges are replaced
by a single hyperedge e with hyperedge weight ω(e) = ω({e1, . . . , ek}). In contrast
to the normal multilevel paradigm, KaHyPar stores the resulting hypergraph after
every single pair contraction in a hierarchy of coarser hypergraphs, giving the
paradigm its name. At some point, the coarsening algorithm decides that the
hypergraph is small enough and terminates. KaHyPar then computes an initial
partition for the coarsest hypergraph. During uncoarsening, the hierarchy is unrolled
and the hypernodes get uncontracted in reverse order. After each uncontraction
operation, a localized refinement algorithm tries to improve the connectivity of
the partition around the uncontracted hypernodes. Once all hypernodes were
uncontracted, the partitioning process is complete.
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KaHyPar implements various algorithms for each phase. For coarsening, KaHy-
Par rates pairs of adjacent hypernodes according to the heavy-edge rating func-
tion [55] and contracts the pair with the highest rating next. For initial partitioning,
it implements several algorithms including random hypernode assignment, breath-
first search and greedy hypergraph growing to obtain an initial k-way partitioning us-
ing recursive bisection. Finally, KaHyPar implements several refinement algorithms,
namely localized 2-way FM refinement [55], localized k-way FM refinement [2] and
2-way flow based refinement algorithms [27]. Further techniques outside the n-level
paradigm include the detection of community structures to guide the coarsening al-
gorithm [28] and a memetic algorithm [4]. For more details on the various component
as well as a general introduction to hypergraph partitioning, we refer to Ref [54].

3.2.2 PaToH

PaToH [15] is a multilevel hypergraph partitioning algorithm with roughly log(n)
levels by Çatalyürek and Aykanat that originated from sparse-matrix vector mul-
tiplication. It optimizes the connectivity objective and uses recursive bisection
to obtain a k-way partition. During coarsening, PaToH constructs a hierarchy of
coarser hypergraphs using either a matching based hierarchical clustering algorithm
or a hierarchic-agglomerative clustering algorithm. Then, it obtains an initial par-
tition on the coarsest hypergraph using greedy hypergraph growing. Refinement is
done using a variant of the 2-way FM algorithm that only keeps border hypernodes
in its priority queues. After every mode, the algorithm updates the gain values of its
adjacent hypernodes, removes hypernodes that are no longer boundary hypernodes
from its priority queue and adds those that became border nodes due to the move.

3.3 Acyclic Graph Partitioning

Research on acyclic graph partitioning dates back multiple decades, although early
work only considers simple heuristics to partition the graph. Two approaches
make use of a maximum-fanout-free cone clustering [16] of the graph, a technique
commonly used to make circuits sparser. Kocan et al. [37] cluster the graph and
greedily join the relatively small clusters into blocks to obtain a final partition. Cong
et al. [19] obtain an initial partition based on a topological ordering of the graph,
then cluster it and use a variant of the FM algorithm with cycle detection to improve
the partition on the clustered graph. In a subsequent work, Cong et al. [17] improve
on their initial research by presenting FLARE, a 2-level partitioning algorithm using
edge separability-based circuit clustering [18] and scheduled 2-way FM refinement.
These approaches are superseded in terms of solution quality by recent multilevel

15



3 Related Work

algorithms from Herrmann et al. [25, 26] and Moreira et al. [42, 43]. The former
presents new coarsening algorithms to produce acyclic coarser graphs and shows
how to use a pre-existing undirected graph partitioner to obtain an initial partition
of a DAG. The latter introduces more sophisticated k-way refinement algorithms
and an evolutionary algorithm. To the best of our knowledge, the latest work of
Herrmann et al. [25] is the current state-of-the-art in terms of solution quality. Since
we make use of these techniques, we present them in detail in the following sections.

3.3.1 Initial Partitioning

In contrast to the classic multilevel partitioning scheme, both Herrmann et al.
and Moreira et al. compute the initial partition of the DAG on the finest level of
the graph hierarchy, i.e., before computing the coarser graphs. Moreira et al.
do this because their coarsening algorithm might create cycles in the graph,
making it potentially impossible to obtain a balanced initial partition otherwise.
Herrmann et al. tried both variants but report better results for computing
the initial partition on the input graph.

Moreira et al. [42] use a simple greedy heuristic to obtain an initial k-way partition
of the input DAG that fulfills the acyclic constraint. To be more precise, they
compute a topological order τ of the DAG and assign nodes τ−1(i ·dn

k
e), . . . , τ−1((i+

1) · dn
k
e − 1) to block i, i = 0, . . . , k − 1. While the resulting partition is acyclic

and balanced, the heuristic ignores its edge-cut.
Herrmann et al. [26] propose a more sophisticated heuristic for computing initial

bipartitions that makes use of pre-existing undirected graph partitioners such as
METIS [33]. The algorithm is outlined in Figure 3.2: first, they treat the DAG as
undirected graph and use the pre-existing undirected graph partitioner to obtain
an initial bipartition. The resulting bipartition is balanced and optimizes the
correct objective, but does generally violate the acyclic constraint. Therefore,
additional work is required to restore the constraint.

3.3.2 Coarsening

Moreira et al. [43] use sized-constrained label propagation [40] to identify clusters
and contract them. In regards to the acyclic property of the directed graph, they con-
tract arbitrary sets of nodes which can cause the coarser graph to become cyclic, al-
though this is unproblematic when calculating the initial partition before coarsening.

Herrmann et al. [26] present a novel coarsening algorithm that computes
an acyclic coarser graph. On a high level, the algorithm computes a clus-
tering of the graph while avoiding forbidden edges, i.e., edges that might

16



3.3 Acyclic Graph Partitioning

(1) (2) (3)

(4)(5)(6)

Figure 3.2: Obtaining an initial partition using a pre-existing initial partitioner: Treat the
(1) directed input graph as (2) undirected graph and (3) use a pre-existing
graph partitioner to partition the undirected graph. The (4) resulting
partition might violate the acyclic constraint, which (5) can be restored by
moving nodes. Those movements might imbalance the partition, requiring
(6) a final re-balance step.

induce a cycle when contracted. Afterwards, it simultaneously contracts
all clusters to obtain the coarser graph.

To identify forbidden edges, they introduce the concept of toplevel
values as outlined in Definition 3.3.1.

Definition 3.3.1. (Toplevel of a node. Source: [26].) Let G = (V,E) be a DAG.
The toplevel of a node v ∈ V , denoted by top[v], is the length of a longest path from
any source in G to v. In particular, sources s of the graph have toplevel top[s] = 0.

Observe that the contraction of an edge e = (u, v) induces a cycle in the coarser
graph if and only if the graph contains an u-v-path avoiding e. Theorem 3.3.2
states conditions that are sufficient to identify such edges.

Theorem 3.3.2. (Source: [26].) Let G = (V,E) be a DAG and C = {C1, . . . , Ck}
be a clustering of V . If C is such that

• for any clustering Ci and for all u, v ∈ Ci, |top[u]− top[v]| ≤ 1, and
• for two different clusters Ci and Cj and for all u ∈ Ci and v ∈ Cj, either

(u, v) /∈ E, or top[u] 6= top[v]− 1,
then contracting all clusters in C yields an acyclic coarser graph.
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t+ 1

t

t+ 2

(a) Contracting the cluster induces
a cycle of length 2. The cluster is
forbidden by the first condition
since the head of the red edge
has toplevel > t+ 1.

t+ 1

t
(b) Contracting both clusters induces a cycle of length 2.

The clustering is forbidden by the second condition
since the red edges connect nodes with toplevel
difference ≤ 1 from different clusters.

Figure 3.3: Cyclic formations prevented by the (a) first and (b) second condition of
Theorem 3.3.2.

The first condition prevents the formation of cycles that only contain one of the
contracted clusters, while the second condition prevents the formation of cycles con-
taining multiple contracted clusters. An example for each case is given in Figure 3.3.

Initially, all nodes are in their own cluster. The algorithm iterates over all nodes
still in a singleton cluster and tries to add it to one of the neighboring clusters. A
node can only be added to a cluster if it does not violate the criteria formulated
in Theorem 3.3.2. The algorithm then selects the best neighboring cluster based
on some rating function such as the edge weight and adds the node to the cluster.
If no neighboring clusters are viable, the node stays in its singleton cluster.

3.3.3 Refinement

Moreira et al. [42] describe simple k-way refinement algorithms that move nodes
with the highest gain values, where the gain value of a move is the change of the
objective function on the partition caused by it. Since arbitrary node movements
can cause the partition to become cyclic, they propose several restrictions on the set
of potential movements and suggest the use of an online cycle detection algorithm.
For the following paragraphs, let Π = {V1, . . . , Vk} be the acyclic k-way partition
with quotient graph Q and let τ : Q(V )→ [k] be a topological order of the quotient
graph. They propose the following restrictions on possible target blocks of a node.

The simple move heuristic only considers to move a node in block τ−1(i) to
blocks τ−1(i− 1) (if the node does not have predecessors in its current block) and
τ−1(i+ 1) (if the node does not have successors in its current block). Observe that
a simple move does not change the topological order of the quotient graph. The
advanced move heuristics determines the highest block τ−1(a) (in the topological
order) containing a predecessor of a node and the lowest block τ−1(b) containing
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a successor. Then, the viable target blocks are τ−1(a), τ−1(a + 1), . . . , τ−1(b −
1), τ−1(b). An advanced move might add a new edge to the quotient graph, but the
topological order is preserved. Global moves consider all target blocks. Whenever
a global move would introduce a new edge in the quotient graph, they use Kahn’s
algorithm [31] to determine whether the move creates a cycle in the quotient
graph. Although Kahn’s Algorithm has linear running time, this approach is
viable since the size of the quotient graph is usually small.

Both Moreira et al. [42] and Herrmann et al. [26] suggest the use of the 2-way
FM algorithm. Moreira et al. schedule the FM algorithm on pairs on blocks to
refine a k-way partition, whereas Herrmann et al. use recursive bisection and only
consider bipartitions. In 2-way refinement, there is no need for cycle detection
since all moves are simple moves. Therefore, it is easy to identify movable nodes.

3.4 Memetic Algorithms

Memetic algorithms are inspired by the theory of evolution and were first introduced
by Pablo Moscato [44]. For a broad introduction to memetic algorithms, we
refer to the work by Moscato and Cotta [45]. Here, we only summarize the
metaheuristic briefly. The basic building blocks of memetic algorithms are mutation,
recombination, local search, a fitness function, and a population of individuals (i.e.,
solutions to the optimization problem). Initially, the algorithm produces individuals
that form the initial population. Then, mutation and recombination operations
are repeated until the population converges or the time limit is exceeded. Both
operations produce offsprings that form the next generation of individuals. If the
population is full, old individuals have to be evicted to make room for the new
ones. To chose which individuals to evict, the fitness function is used. In general,
individuals with low fitness are most likely to evicted from the population. The
operations to produce offsprings work as follows. Mutation selects on individual
and changes it, for example by applying local search to it. Recombination selects
two individuals and combines them, forming the offspring.

KaHyPar also includes a memetic algorithm [4], which uses natural combine
operations provided by the multilevel partitioning scheme. Since we use this
implementation as starting point for our own memetic algorithm, we briefly describe
its core components. The algorithm first produces a population of high-quality
hypergraph partitions obtained using KaHyPar-C [28]. For mutation, it selects a
random individual and iterates coarsening and local search using random seeds.
For recombination, it selects two individuals using tournament selection [41] and
combines them using the following operation: Coarsen the graph, but only contract
pairs of hypernodes that are in the same blocks in both individuals. This ensures
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that either individual can be used as initial partition on the coarsest hypergraph.
They use the better one and proceed with unrolling the hypergraph hierarchy
while improving the partition using local search. When inserting a new offspring
into the population, it evicts the individual most similar to the new offspring to
ensure a diverse population. Furthermore, KaHyPar implements more sophisticated
mutation and recombination operations to produce a more diverse population.

Besides undirected hypergraph partitioning, memetic algorithms have been ap-
plied successfully to a broad field of problems, including graph partitioning [53] and
clustering [11], node separators [53], and the territory design problem [1]. Recently,
Moreira et al. [43] proposed a memetic algorithm for the DAG partitioning problem.
For more applications and trends, we refer to recent surveys [36,46] on the subject.
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Our hypergraph partitioner with acyclicity constraint is based on KaHyPar [2,4,55],
a state-of-the-art hypergraph partitioner. To cope with the acyclicity constraint,
we extend KaHyPar with directed hypergraphs and implement new algorithms
for coarsening, initial partitioning, and the refinement of directed hypergraphs
and acyclic partitions. We start this chapter with an outline that summarizes
the interaction between each component of our DAH partitioner. The following
subchapters then explore each component in detail.

Outline. Just like Moreira et al. [42, 43] and Herrmann et al. [25, 26], we start
the partitioning process by computing an initial partition of the hypergraph on
the input hypergraph. In this phase, we consider two alternatives: partitioning
via topological order and partitioning via a pre-existing undirected hypergraph
partitioner. Once the initial partition has been obtained, we run a 2-way refinement
algorithm on the initial partition, followed by a V-cycle structured as follows. For
coarsening, we use our acyclic coarsening algorithm described in Chapter 4.2.2.
Since the hypergraph is already partitioned, the coarsening algorithm does not
contract pairs of hypernodes in different blocks. This ensures that the initial
partition can be projected onto the coarsest hypergraph of the n-level hypergraph
hierarchy. The contracted hypernodes are then uncontracted. After each uncon-
traction, we run our 2-way refinement algorithm initialized with the uncontracted
hypernodes. Once we obtained a k-way partition, we run a V-cycle with our k-way
refinement algorithm presented in Chapter 4.2.3. The whole algorithm is also
outlined in Figure 4.1. To further improve the result of our multilevel algorithm,
we introduce an evolutionary algorithm in Chapter 4.4.

4.1 Data Structure for Directed Hypergraphs

In memory, KaHyPar represents hypergraphs as undirected bipartite graphs stored
in an adjacency array [55]. The bipartite graph contains one node for each hypernode
and one for each hyperedge. The nodes representing hypernodes have outgoing edges
to the nodes representing incident hyperedges and analogously, nodes representing
hyperedges are connected to nodes representing their pins.
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We extend this format by introducing a head counter h for each hypernode and
each hyperedge of the bipartite graph. For hyperedges, h stores the number of
head pins and for hypernodes u, it stores the number of hyperedges that contain
u as a head pin. During hypergraph construction, we ensure that head pins are
placed first in the adjacency array of a hyperedge and likewise, we ensure that
hyperedges containing a head pin u are placed first in the adjacency array of u.
This allows us to effectively iterate over only the heads or tails of a hyperedge.

4.2 n-Level Acyclic Hypergraph Partitioning

Recall that KaHyPar uses the n-level hypergraph partitioning scheme [47] described
in Chapter 3.2.1 to obtain hypergraph partitions of high quality. We use this imple-
mentation and exchange the algorithms used for initial partitioning, coarsening and
refinement with our own. These algorithms are presented in the following sections.

4.2.1 Initial Partitioning
This section describes our approaches for obtaining an initial partition of the
directed acyclic hypergraph. Each algorithm starts with an unpartitioned directed
acyclic hypergraph H = (V,E) and produces a partition of V into blocks V1, . . . , Vk

for a fixed number of blocks k. Recall that depending on the configuration, H
could refer to the input hypergraph or the coarsened hypergraph, i.e., the output
of the coarsening algorithm described in Chapter 4.2.2.

Initial Partitioning via Topological Ordering. Recall that Moreira et al. [42]
compute their initial partition based on a topological ordering of the graph. We
implement the same approach for directed acyclic hypergraphs to obtain an initial
k-way partition. First, we calculate a topological ordering of the nodes of the hy-
pergraph using Kahn’s algorithm [31] adapted for directed hypergraphs (Algorithm
1). Using the topological order, our algorithm greedily assigns nodes to blocks until
they are full. More precisely, it assigns the first nodes to the first block until its
weight exceeds d c(V )

k
e before it assigns the next nodes to block two and so on. Note

that this approach always produces a balanced initial partition for hypergraphs
with unit node weight. For weighted hypergraphs, it might produce an initial
partition violating the balance constraint due to the greedy assignment of nodes
to blocks. In this case, the refinement step must balance the partition.

Initial Partitioning via Undirected Partitioning. This algorithm is based on the
initial partitioning algorithm for DAG partitioning presented by Herrmann et al. [26]
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proceed recursively

0-block 1-block

2-way multilevel refinement

k-way partition
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extract blocks
initial bisection
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Figure 4.1: High-level overview over our algorithm with all components. First, we obtain
an initial partition using recursive bisection. For each bisection step, we use
one of the initial partitioning algorithms. Then, we improve the partition
using our 2-way refinement algorithm. Once the hypergraph is partitioned
into k blocks, we run one V-cycle with our k-way refinement algorithm.
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Algorithm 1: Kahn’s algorithm [31] for DAHs.
Data: DAH H = (V,E).
Result: Topological ordering τ of H.

1 i← 0
2 while exists v ∈ V with d+(v) = 0 do
3 τ(i) = v
4 H ← H − v
5 i← i+ 1
6 return τ

described in Chapter 3.3.1. Given a DAH, we compute an initial bipartition of
the hypergraph as follows. First, we turn the DAH into an undirected hypergraph
by merging the tails and heads of each hyperedge. Note that due to our data
structure, this is merely a conceptual step and does not require any actual work.
Next, we pass the undirected hypergraph to a preexisting hypergraph partitioner
that minimizes the connectivity metric to obtain an initial bipartition. We use
KaHyPar-MF [27] and PaToH [15]. To the best of our knowledge, KaHyPar-MF
regularly finds partition with the lowest connectivity metric out of all hypergraph
partitions while PaToH is the fastest one. This bipartition is the projected onto the
original DAH. In general, the resulting bipartition violates the acyclicity constraint
and therefore, we must perform further steps to make it acyclic.

The algorithm to make the bipartition acyclic is shown in Algorithm 2. On a
high level, we select one edge in the quotient graph that we want to remove and
move hypernodes from one block to the other one accordingly. Denote the two
blocks by V1 and V2 and assume that we want to remove the quotient graph edge
from V1 to V2. We start a breadth-first search at every hypernode in V1 that has
successors in V2. The search only scans successors in V2 and moves every node
from V2 to V1. Once the search has completed, no hypernode in V1 has successors
in V2 and therefore, the quotient graph edge from V1 to V2 is removed.

The resulting acyclic partition might become imbalanced due to the movements
from one block to the other one. To cope with this problem, we run an additional
balancing step afterwards. This step simply moves hypernodes from the overloaded
block to the underloaded block. Note that cannot move arbitrary hypernodes while
keeping the bipartition acyclic. More precisely, if we have an acyclic bipartition with
blocks V1 and V2 and a quotient graph edge from V1 to V2, we can only moves hyper-
nodes in V1 that have no successors in V1. In an effort the keep the connectivity of
the bipartition low, we sort the movable hypernodes in the overloaded block by their
gain value using a priority queue. The whole process in depicted in Algorithm 4.
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Algorithm 3 puts it all together: first, it obtains a bipartition violating the
acyclic constraint. Then, it runs Algorithm 2 and Algorithm 4 twice, once removing
the quotient graph edge from V1 to V2 and once removing the reverse edge. Finally,
it selects the bipartition with the lower connectivity and returns it. We run this
algorithm twice; once as depicted, and then a second time using predecessors instead
of successors in Algorithm 2. We then select the best partition out of all options.

We also considered to skip the balancing step by using an asymmetric number
of further bisections to split the resulting two blocks: after bisecting a block B
(that should ultimatly be split into k blocks) of weight c(B) into smaller blocks
B1 and B2, we set k1 := dk · c(B1)

c(B) e − 1 and k2 := bk · c(B2)
c(B) c − 1 and continue by

splitting Bi into ki blocks, i = 1, 2. Once the algorithm obtained all k blocks, we
use the hard rebalancing algorithm described in Chapter 4.3.2 to ensure a balanced
k-way partition. However, since initial experiments did not show an improvement
over Algorithm 3, we did not pursue this approach any further.

Algorithm 2: Subroutine FixCyclic(·) referenced in Algorithm 3: moves
nodes to make a bipartition acyclic.

Data: Cyclic bipartition (V1, V2) of DAH H = (V,E).
Result: Acyclic bipartition.

1 S := new Stack()
2 for u ∈ V1 with Γ+(u) ∩ V2 6= ∅ do S := S ∪ {u}
3 while S 6= ∅ do
4 u := S.pop()
5 for v ∈ Γ+(u) ∩ V2 do
6 S := S ∪ {v}
7 V1 := V1 ∪ {v}
8 V2 := V2 \ {v}

9 return (V1, V2)

Algorithm 3: Initial partitioning algorithms that makes use of a preexisting
hypergraph partitioner HG(·, ·) for undirected hypergraphs.

Data: DAH H = (V,E).
Result: Bipartition V = V1∪̇V2.

1 (V1, V2) := HG(H, k) // partition as undirected hypergraph
2 (V ′1 , V ′2) := Balance(FixCyclic(V1, V2)) // break (V1, V2)
3 (V ′′1 , V ′′2 ) := Balance(FixCyclic(V2, V1)) // break (V2, V1)
4 return min{(V ′1 , V ′2), (V ′′1 , V ′′2 )} // select bipartition with lower connectivity
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Algorithm 4: Subroutine Balance(·) referenced in Algorithm 3: moves
nodes from the overloaded block to the underloaded one to balance the
bipartition.

Data: Imbalanced acyclic bipartition (V1, V2) of DAH H = (V,E). Let V1
be the overloaded and V2 be the underloaded block and assume that
the quotient graph edge goes from V1 to V2.

Result: Acyclic balanced bipartition.
1 Q := new PriorityQueue()
2 for u ∈ V1 do
3 if Γ+(u) ∩ V1 = ∅ then
4 Q.insert(Gain(u), u)

5 while c(V1) > (1 + ε)d c(V )
2 e do

6 u := Q.deleteMax()
7 V1 := V1 \ {u}
8 V2 := V2 ∪ {u}
9 UpdateGainValues(Q) // update gain values of neighbors of u in Q

10 UpdateMovableHypernodes(Q) // remove/add hypernodes from/to Q
11 return (V1, V2)

4.2.2 Coarsening

The coarsening phase iteratively selects a set of hypernodes and contracts them,
yielding a hierarchy of n levels of coarser hypergraphs. When contracting pairs of
hypernodes, the hypergraph can become cyclic as illustrated in Figure 4.2. We
explore two types of coarsening algorithms: the first one is the coarsening algorithm
already implemented in KaHyPar-K. It selects pairs of hypernodes to be contracted
without constraints in regards to keeping the directed hypergraph acyclic. The
second approach restricts the algorithm implemented in KaHyPar-K to pairs of
hypernodes that can be contracted safely while keeping the hypergraph acyclic.
This approach is based on the acyclic clustering by Herrmann et al. [26] presented
in Chapter 3.3.2 and described in the rest of this chapter.

When contracting a pair of hypernodes that are both pins of the same hy-
peredge, but one is one of the hyperedge’s tails and the other one is one of the
hyperedge’s heads, it is not obvious whether the resulting hypernode should be a
tail or a head of the hyperedge. Recall that in this thesis, we focus on directed
hypergraphs where each hyperedge contains at most one head. For those instances,
whenever one of the contraction partners is a head of a hyperedge e, the resulting
hypernode is also a head of e. For the more general case, we propose two differ-
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u1

u2

u3

u1 u3

Figure 4.2: Acyclic directed hypergraph with three hypernodes u1, u2, u3 on the left.
Contracting the hyperedge {u1, u2} yields the cyclic hypergraph on the right.

ent solutions. First, one could exclude such pairs altogether, i.e., only contract
pairs of hypernodes that have the same role in all shared hyperedges. We ran
some initial experiments with this setting and observed that it seemed to decrease
partition quality. Hence, we did not pursue it further. As an alternative solution
(that we did not implement), we propose to introduce mixed pins and leave it
to the refinement algorithms to treat them appropriately.

Acyclic Hypergraph Coarsening. The algorithm is based on Theorem 4.2.2,
which identifies pairs of hypernodes that may not be in the same cluster.

Definition 4.2.1. (Mixed-level and single-level clusters.) Let H = (V,E) be a
DAH and C = {C1, . . . , Ck} be a clustering of V such that for each Ci ∈ C and for
all u, v ∈ Ci, |top[u]− v[v]| ≤ 1. We refer to clusters Ci where all u, v ∈ Ci have
top[u] = top[v] as single-level clusters and clusters Cj that contain at least one
pair of nodes u, v ∈ Cj with |top[u]− top[v]| = 1 as mixed-level clusters.

Theorem 4.2.2. (Based on Theorem 3.3.2.) Let H = (V,E) be a DAH and
C = {C1, . . . , Ck} be a clustering of V , such that

• for any clustering Ci and for all u, v ∈ Ci, |top[u]− top[v]| ≤ 1, and
• for two different mixed-level clusters Ci and Cj and for all u ∈ Ci and
v ∈ Cj, either (u, v) 6∈ E or |top[u]− top[v]| > 1.

Then the coarser hypergraph H ◦ C is acyclic.

Proof. First, recall that a DAH can be seen as a DAG by replacing each hyperedge
e with a directed bipartite graph from eT to eH . This transformed graph is acyclic
if and only if the DAH is acyclic. Hence, we can proof the theorem based on graphs
rather than hypergraphs.

Let G be the corresponding DAG. Assume that G ◦ C contains a cycle. By
Theorem 3.3.2, the cycle must contain at least one single-level cluster Ci. Moreover,
since the nodes of Ci have the same toplevel, the cycle must have length at least 2.
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Let Ci−1 be the predecessor and Ci+1 be the successor of Ci in the cycle. Let t be
the lowest toplevel of nodes in Ci−1. Then the toplevel of nodes in Ci and Ci+1 is
at least t+ 1, which forbids a path from Ci+1 to Ci−1, a contradiction.

Note that the difference between Theorem 3.3.2 and Theorem 4.2.2 lies in the
distinction between single-level and mixed-level clusters: the second condition
must only hold for pairs of mixed-level clusters. Since adjacent nodes in DAGs
always have different toplevels, the clustering algorithm by Herrmann et al. [25]
only produces mixed-level clusters. In contrast, DAHs might contain adjacent
hypernodes with the same toplevel, justifying this distinction.

Based on this theorem, our clustering algorithm works as follows. We start on
the input hypergraph and compute all toplevels, then start the clustering process.
Generally, we only consider putting hypernodes in the same cluster whose toplevel
differs by at most one, i.e., we only build clusters that do not violate the first
condition of Theorem 4.2.2. Since the second condition is a fairly strong restriction,
we follow Herrmann et al. [25] and opt to allow clusters violating the condition.
Instead, whenever we add a hypernode that a cluster that would violate the second
condition of the theorem, we run a cycle detection subroutine to ensure that the
operation does not induce a cycle in the coarser hypergraph. Once the clustering
has been computed, we contract pairs of hypernodes placed in the same cluster
pair by pair, yielding one coarser graph after each contraction. If the coarser
hypergraph after the last contraction is still too large, we repeat the algorithm.
We stop it once one the hypergraph is small enough (i.e., has less than 180 · k
hypernodes, the same stopping criterion used in KaHyPar [2]) or one repetition
of the algorithm could not find any more non-singleton clusters.

More precisely, our algorithm works as follows. At the beginning of the algorithm,
all hypernodes are in their own singleton cluster. For each hypernode u that is still
in a singleton cluster, we rate each neighbor using the heavy-edge metric already
implemented in KaHyPar. We select the highest rated neighbor v whose cluster
can include u without violating the first condition from Theorem 4.2.2. If all
hypernodes in v’s cluster have the same toplevel as u, we know that we can safely
add u to v’s cluster without inducing a cycle in the coarser hypergraph. Otherwise,
we temporarily add u to v’s cluster and search the hypergraph for edges violating
the second condition in Theorem 4.2.2, then check whether they induce a cycle
in the contracted hypergraph. To be more precise, let the toplevel of hypernodes
in v’s cluster be t and t + 1. We maintain a queue of hypernodes that are to be
processed. Initially, the queue contains all hypernodes in v’s cluster with toplevel t.
For each hypernode x in the queue, we explore its successors. Whenever we scan a
successor y that is in another cluster, we add all hypernodes from y’s cluster with
toplevel t to the queue. If y is in v’s cluster, but x is not, the search found a cycle
in the coarsened hypergraph. At this point, we abort the search, remove u from
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v’s cluster and move on to the next hypernode. If the search does not find a cycle,
we leave u in v’s cluster and move on. Once the clusters are found, we contract
hypernodes in the same cluster pair by pair to obtain a n-level clustering.

4.2.3 Refinement

2-way FM Refinement. On a high level, the 2-way FM refinement algorithm
moves hypernodes with the highest gain values between the blocks of a bipartition
while making sure to only consider movements that keep the partition acyclic. Over
the course of the algorithm, it keeps track of the best bipartition. Once a stopping
criterion decides that the refinement is unlikely to find a further improvement
of the bipartition, it rollbacks to the best partition found.

More precisely, the algorithm uses two priority queues (one for each block)
to keep track of hypernodes and their gain values. Each priority queue contains
movable hypernodes in the corresponding block and their gain value, i.e., the
change in the connectivity metric when moving the hypernode to the other block.
A hypernode is movable if and only if it can be moved to the other block without
causing the partition to become cyclic. During 2-way refinement, this is easy to
decide: denote the blocks of the bipartition by V1 and V2 and assume that V2 is the
successor of V1 in the quotient graph. Then a hypernode in V1 can be moved to
V2 if and only if it does not have any successors in V1. Analogously, a hypernode
in V2 can be moved to V1 if and only if it does not have any predecessors in V2.
Therefore, it is sufficient to keep track on the number of successors or predecessors
that a hypernode has in the same block. We implement this using a simple array
that we compute once at the start of the uncoarsening phase and then update it
appropriately after every uncontraction operation or movement. In particular, we
can use this counter to decide whether new hypernodes become movable (counter
becomes zero) or unmovable (counter becomes nonzero) after a movement. We
then insert those hypernodes into the appropriate priority queue or remove them.

Initially, the priority queues are empty. After uncontracting a hypernode, the
resulting hypernodes and their partners are inserted into the priority queues if they
are movable. If none of those are movable, the refinement step is skipped and the
next hypernode is uncontracted. Otherwise, the algorithm pulls the hypernode
with the highest gain value from the priority queue. The hypernode is only moved
to the other block if that does not violate the balance constraint. Nonetheless, the
hypernode is marked and therefore excluded from the rest of this refinement round.
If the node was moved, all unmarked movable neighbors are inserted into their corre-
sponding priority queue and the gain values of all affected hypernodes are updated.

Once the stopping criteria decides that any further improvement of
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the partition if unlikely or both priority queues are empty, the algorithm
reverts to the best partition found.

k-way FM Refinement. The k-way FM refinement aims to improve a given
k-way partition and is based on the k-way FM refinement algorithm implemented
in KaHyPar [2]. The algorithm maintains k priority queues, one queue for each
block. Each queue holds hypernodes that can be moved to the block, with the
priority being the gain value of the respective move. Viable target blocks for a
hypernode depends on the configuration of the refinement algorithm; we consider
two alternatives, namely the use of advanced moves and global modes, described
in the following paragraph. We limit the set of movable hypernodes to border
hypernodes. The algorithm always performs the best move across all priority
queues and after the stopping criterion is reached, the best partition found during
the process is restored. Similar to the refinement algorithm of Moreira et al. [42],
we consider the following alternatives for viable moves.

Advanced Moves. In this configuration, we only consider hypernode movements
that can never create a cycle in the quotient graph. Let τ : Q(V ) → [k] be a
topological order on the quotient graph Q. For a hypernode u ∈ V , let a be the
maximum index such that τ−1(a) contains a predecessor of u and let b be the
minimum index such that τ−1(b) contains a successor of u, i.e., a = max{τ(b[v]) |
v ∈ Γ−(u)} and τ(b) = min{τ(b[v]) | v ∈ Γ+(u)}. Note that a ≤ τ(b[u]) ≤ b since
τ is a topological ordering. We then only consider blocks τ−1(a), . . . , τ−1(b) as
viable target blocks for u. This ensures that moving u can never create a cycle
in the quotient graph. We therefore do not need any cycle detection algorithm.
Since we only need to quotient graph to compute the initial topological ordering,
we do not need to keep it up-to-date during refinement.

Global Moves. This configuration considers all adjacent blocks as viable target
blocks for a hypernode movement. In particular, it computes gain values for
movements that might create a cycle in the quotient graph. Therefore, we must use
a cycle detection algorithm to prevent those movements. Initially, we considered the
use of advanced online cycle detection algorithms [9, 49], but eventually, we settled
on Kahn’s algorithm [31] since cycle detection did not prove to be a bottleneck
in our final implementation. After executing a move, we use the cycle detection
algorithm to scan the quotient graph for any cycles. If the move created one, we
reverse it, mark the hypernode and remove it from all priority queues. Since the
quotient graph might change after every movement, we must keep it up-to-date.
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4.3 Larger Imbalances on Coarse Levels

In graph partitioning, temporarily allowing larger imbalances on coarse levels is
a well-known technique to improve the resulting partition quality. For instance,
Meyerhenke et al. [40] relax the balance constraint on the coarsest level by a
constant offset, then narrow it down linearly while unrolling the graph hierarchy
until the desired balance constraint is enforced on the finest level of the hierarchy.
Previously, Walshaw and Cross [61] formalized this idea and adjusted the allowed
imbalance on a given level more carefully, trying to prevent the balance constraint
from shrinking too rapidly and therefore losing partition quality. In general, this
technique is based on the intuition that a larger imbalance on the coarse levels of
the graph hierarchy gives the refinement algorithm more freedom to build partitions
that would otherwise be unreachable due to the strict balance constraint. In acyclic
DAH partitioning, the partition landscape is even more fractioned than in ordinary
graph partitioning due to the additional acyclicity constraints. Hence, we try this
technique to further improve the quality of our partitioning algorithm.

Outline. We run the k-way FM refinement algorithm on the coarsest level of the
hypergraph hierarchy using a looser imbalance factor ε′ > ε, producing a partition
that violates the ε-balance constraint. During the uncoarsening and refinement
phase, we then gradually improve the balance of the partition until we end with an
ε-balanced partition on the finest level. To be more precise, we linearly lower ε′ to
ε, i.e., use εi = (ε′ − ε)/(n− n0 + i) after the i-th uncontraction operation, where
n0 denotes the number of hierarchies. To improve the balance of the partition, we
use a soft rebalancing algorithm that moves hypernodes based on their gain value
to improve the balance while not increasing the connectivity metric. If this step
is unable to sufficiently improve the balance of the partition, we follow up with a
hard rebalancing algorithm that moves hypernodes from overloaded blocks at the
cost of increasing the connectivity metric. After balance is restored, we run the
k-way FM refinement algorithm from Chapter 4.2.3 initialized with all hypernodes
that were touched during the balancing step and the uncontracted hypernodes.

4.3.1 Soft Rebalance

The soft rebalancing algorithm is a version of the FM algorithm that only per-
forms Advanced Moves. It accepts a partition if it lowers the imbalance of the
partition while not increasing its connectivity.

The priority queues are organized as suggested by Träff [60]. We use one priority
queue for each block as well as one priority queue for each hypernode. The queue

31



4 Acyclic Hypergraph Partitioning

corresponding to a hypernode contains an entry for each block that the hypernode
can be moved to with its corresponding gain value as priority. The queue corre-
sponding to a block contains all movable hypernodes in that block indexed by their
highest possible gain value, i.e., the maximal key in their hypernode priority queue.

The queues are initialized with all movable hypernodes at the start of the
uncoarsening and refinement phase. After each uncontraction operation, one round
of the algorithm is executed. A round of the soft rebalancing algorithm works
as follows. It enables all priority queues that belong to overloaded blocks and
pulls the hypernode with the maximal gain across all queues. The target of the
move is determined by the maximal element in the hypernode priority queue.
If the move reduces the imbalance of the partition, the hypernode is moved to
the target block, the priority queues and gains are updated accordingly and the
hypernode is inserted into the priority queue of the target block. If the hypernode
was not moved, the inviable target block is removed from the hypernode’s priority
queue and is re-inserted into the block’s priority queue.

The round terminates if the improved balance of the partition meets the
current imbalance factor or a certain number of moves was performed with-
out producing a viable partition. The algorithm then reverts hypernode move-
ments until the last accepted partition.

4.3.2 Hard Rebalance

Since the algorithm described in the last section is not guaranteed to sufficiently
improve the balance of the partition, we also present an algorithm that always
succeeds at the cost of a higher connectivity metric. The hard rebalancing algorithm
selects an overloaded block and an underloaded block. It then moves nodes
along subsequent blocks in the topologically ordered quotient graph from the
overloaded block to the underloaded block. The blocks are selected such that
the sum of the gain values of all movements is maximal.

More precisely, the algorithm keeps two priority queues for each block, for a
total of 2k priority queues. One queue contains all hypernodes that can be moved
to the previous block while the other one contains all hypernodes movable to the
next block. The priorities are the corresponding gain values. Let τ : Q(V )→ [k] be
a topological ordering of the quotient graph Q. Moving hypernodes from one block
τ−1(i) to block τ−1(j) with i < j involves moving one hypernode from block τ−1(i)
to block τ−1(i+ 1), one from τ−1(i+ 1) to τ−1(i+ 2) and so on. We therefore select
a pair of an overloaded and an underloaded block such that the sum of the gain
values of all of those moves is maximal among all possible (overloaded, underloaded)
pairs of blocks. Note that this is not a precise approach to find the best pair of
blocks, since moves might change the gain values of subsequent moves, although
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our experiments indicate that it is a good approximation in practice. After moving
a hypernode, we insert it into the priority queue of its new block (if it is still
movable) and update gain values of adjacent hypernodes.

This algorithm can always restore the balance of a DAH partition.
To see this, we need Lemma 4.3.1.

Lemma 4.3.1. Let H be a DAH with an acyclic k-way partition Π, and topological
ordering τ : Π→ [k] of the quotient graph. Then every block τ−1(i), 1 < i ≤ k has
at least one hypernode movable to block τ−1(i−1) and every block τ−1(j), 1 ≤ j < k
has at least one hypernode movable to block τ−1(j + 1).

Proof. Recall that a H can be seen as a DAG G by replacing each hyperedge e
with a directed bipartite graph from eT to eH . This transformed graph is acyclic if
and only if the DAH is acyclic. Hence, we can prove the statement for DAGs rather
than DAHs. Let 1 < i ≤ k. Consider the block-induced subgraph G′ := G[τ−1(i)].
Since G is a DAG, so is G′ and we can use Lemma 2.1.1 to see that G′ contains
a node u ∈ τ−1(i) with indegree zero in G′. Moving this node to block τ−1(i− 1)
does not create a backward edge in the quotient graph with respect to τ , proving
the first statement of the lemma. The second statement follows analogously.

Moreover, observe that the topological ordering of the k-way partition does
not change during the coarse of the algorithms: Since we only move hypernodes
between subsequent blocks, the moves can only create new quotient graph edges
between subsequent blocks. Hence, since the topological ordering is static during
the course of the algorithm, and since we always have movable hypernodes, the
algorithm can always perform movements until the desired balance is reached.

However, this is only true when working on a DAH. If the hypergraph contains
cycles, it might fail when a block has no movable hypernodes. While our input
hypergraphs are always acyclic, one of the coarsening algorithms described in
Chapter 4.2.2 might produce cyclic coarser hypergraphs. In this case, we simply
stop the rebalancing step and try again after uncontracting the next hypernode.
Since the finest hypergraph is acyclic, the algorithm succeeds eventually.

4.4 Memetic Acyclic Hypergraph Partitioning

In Chapter 3.4, we referenced memetic algorithms as a successful metaheuristic
for high-quality graph and hypergraph partitioning. Now, we present a memetic
algorithm for the DAH partitioning problem. We use the memetic algorithm
already implemented in KaHyPar [4] as framework and exchange its building
blocks for mutation, recombination and generating the initial partition with new
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algorithms. From a metaheuristic point of view, the algorithm remains unchanged.
Hence, we follow the description from Ref. [4] closely.

Population. The memetic algorithm starts by generating the initial population P .
The population consists of individuals, which are always ε-balanced k-way partitions
of the input hypergraphs. We generate the initial individuals using our multilevel
algorithm introduced in previous chapters. The size of P is choosing dynamically
by measuring the time tI it takes to generate one individuals, i.e., the running
time of our multilevel algorithm: |P| := max(3,min(50, δ · (t/tI))), where δ is
a configuration parameter that we set to 0.15.

The fitness of an individual is its connectivity, since that is the objective that
we want to optimize. An individual with lower connectivity is fitter than one with
higher connectivity. The initial population is evolved over several generational
cycles using the steady-state paradigm [20]: We generate only a single offspring
per generation. When inserting a new individual I1 into the population, we evict
an old one I2 based on similarity: the difference between both individuals is
defined as d(I1, I2) := |D(I1)	D(I2)|, where D(I) is a multi-set that contains each
hyperedge e ∈ E exactly λ(e) − 1 times and 	 is the symmetric difference. In
other words, we consider two individuals to be somewhat similar if all hyperedges
have roughly the same connectivity in both partitions.

Recombination Operator. For recombination, we select parents using binary
tournament selection [41]: First, we select two individuals at random and choose the
fitter one as first parent P1. Then, we repeat the process to select the second parent
P2. We then run a modified V-cycle to combine both parents. During coarsening, we
only allow the contraction of two hypernodes u and v if they are in the same block
in both P1 and P2, i.e., if b1[u] = b1[v] and b2[u] = b2[v]. This allows us to use P1 or
P2 as initial partition once coarsening has terminated. We apply the fitter one of
both parents as initial partition. Finally, we unroll the graph hierarchy and improve
the partition using our k-way refinement algorithm. Note that this recombination
operator produces offsprings that are at least as good as the better of both parents.

Mutation Operations. We implement two mutation operations. The first one
starts by selecting a random individual I, then perform a modified V-cycle that
works as follows. During coarsening, it only contracts pairs of hypernodes u
and v that are in the same block in I, i.e., b[u] = b[v]. On the coarsest level
of the graph hierarchy, I is used as initial partition and the graph hierarchy is
unrolled and improved using our k-way refinement algorithm. This operation
produces an offspring that is at least as good as I. The second mutation op-
eration also selects a random individual I1, then generates a new individual I2
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as described earlier. Next, both individuals get recombined, but we always use
I2 as initial partition. This operator can therefore produce offsprings that are
worse than the individual selected from the population.
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5 Experimental Evaluation
In this chapter, we evaluate the performance of our algorithm and the influence
of various components on solution quality. We start by presenting our methodol-
ogy, the systems used for evaluation and the benchmark setup. We then present
our main results by comparing our algorithm to previous DAG partitioning ap-
proaches in Chapter 5.1. For these experiments, we only use DAG instances,
since the other algorithm cannot cope with hypergraphs. Afterwards, we compare
our memetic multilevel algorithm to simpler approaches for DAH partitioning in
Chapter 5.2 and evaluate the impact of DAH partitioning on an image stream-
ing application in Chapter 5.3. Finally, we evaluate the influence of the acyclic
coarsening algorithm and present partitioning approaches that did not prove to
be beneficial in Chapter 5.2.2 and Chapter 5.2.1, respectively.

Methodology and Setup. We implement all algorithms described in Chapter 4
in the KaHyPar hypergraph partitioning framework [2, 4, 27, 28, 54, 55]. We use
mlDHGP to refer to our multilevel algorithm and memDHGP for our memetic multilevel
algorithm. The code is written in C++ and compiled using g++ 9.1 using -O3
-march=native as compile flags. Our implementation is based on the KaHyPar
version from march 20191. The source code of our preliminary version is available at
github.com/danielseemaier/kahypar/tree/HyperDAG, and we plan to integrate
our algorithm into the next release of KaHyPar available at kahypar.org.

We ran our experiments on two different machines. Machine A is a single
node from the HPC cluster bwUniCluster equipped with two Intel Xeon E5-2670
Octa-Core (Sandy Bridge) processor clocked at 2.6 GHz, 64 GB main memory,
20 MB L3-Cache and 8x256 KB L2-Cache. Machine B has two Intel Xeon E5-
2650 v2 Octa-Core (Sandy Bridge) clocked at 2.6 GHz, 128 GB main memory,
20 MB L3-Cache and 8x256 KB L2-Cache.

Performance Profiles. We use performance profiles [22] to compare the solution
quality of different algorithms. The plots show one curve for each algorithm included
in the comparison. The x-axis shows τ ∈ [1, 100] and the y-axis shows the fraction

1Commit hash 84c7e7c523701efb0e51752053656e34d206cf4c, repository github.com/
SebastianSchlag/kahypar.
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5 Experimental Evaluation

of instances for which each algorithm computed a partition that is within a factor of
τ of the best partition computed by any algorithm for that instance. In particular,
τ = 1 shows the fraction of instances for which each algorithm computed the best
partition (i.e., partition with the lowest connectivity). A value of 0.8 on the y-axis
for τ = 1 shows that the algorithm computed the best result on 80% of all instances
and a value of 1 for τ = 1.1 reveals that the algorithm computes partitions within
a factor of 1.1 of the partition of the best algorithm on every instance.

Instances. We use three sets of graphs for our experimental evaluation. The first
set of graphs are deduced from the PolyBench Benchmark Suite [51]. Those graphs
were kindly provided to us in DAG format by Herrmann et al. and were also used
for evaluation in previous papers on DAG partitioning [25, 26, 43]. Next, we use
graphs from the ISPD98 Circuit Benchmark Suite [3]. These instances contain one
node for each cell and a directed edge from the source of a net to each of its sinks.
In case the resulting instance does not form a DAG, i.e., contains cycles, we do
the following: We gradually add directed edges and skip those that would create
a cycle. We use these instances for our main experiments. Some of our initial
experiments use DAGs based on the circuits from the ISCAS85 Combinational
Benchmark Circuits [13]. Those DAGs contain one node for each logic gate and a
directed edge from the output of a logic gate to the input of another logic gate.
Basic properties of these instances are provided in Table 5.1.

To conduct experiments on hypergraphs, we transform all DAGs into DAHs
using the row-net model on their adjacency matrices: A hypergraph contains one
hypernode for each node in the DAG and a hyperedge for each node u with outgoing
edges. The head of the hyperedge is u and the tails are the successors of u.

When evaluating the impact of DAH partitioning on an image streaming appli-
cation, we use DAGs modeling the data flow of an advanced imaging algorithm [48]
and transform them into DAHs. This transformation works differently from the
previous description and is described in Chapter 5.3.

5.1 DAG Model

We start our experimental evaluation by comparing our algorithm to the current
state-of-the art on DAG partitioning. Note that the comparison is possible even
though previous algorithms optimize the edge-cut on DAGs, whereas our algorithm
optimizes the connectivity metric on DAHs since both objectives are equal for
2-uniform hypergraphs. The comparisons includes the algorithm by Herrmann
et al. [25] and the one by Moreira et al. [43]. We name the former algorithm HOUKC
(first letters of the authors last names), the latter one Moreira (last name of the first
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Graph n m Ref. Graph n m Ref.
PolyBench ISPD98

2mm 36 500 62 200 [51] ibm01 13 865 42 767 [3]
3mm 111 900 214 600 [51] ibm02 19 325 61 756 [3]
adi 596 695 1 059 590 [51] ibm03 27 118 96 152 [3]
atax 241 730 385 960 [51] ibm04 31 683 108 311 [3]
covariance 191 600 368 775 [51] ibm05 27 777 91 478 [3]
doitgen 123 400 237 000 [51] ibm06 34 660 97 180 [3]
durbin 126 246 250 993 [51] ibm07 47 830 146 513 [3]
fdtd-2d 256 479 436 580 [51] ibm08 50 227 265 392 [3]
gemm 1026 800 1 684 200 [51] ibm09 60 617 206 291 [3]
gemver 159 480 259 440 [51] ibm10 74 452 299 396 [3]
gesummv 376 000 500 500 [51] ibm11 81 048 258 875 [3]
heat-3d 308 480 491 520 [51] ibm12 76 603 392 451 [3]
jacobi-1d 239 202 398 000 [51] ibm13 99 176 390 710 [3]
jacobi-2d 157 808 282 240 [51] ibm14 152 255 480 274 [3]
lu 344 520 676 240 [51] ibm15 186 225 724 485 [3]
ludcmp 357 320 701 680 [51] ibm16 189 544 648 331 [3]
mvt 200 800 320 000 [51] ibm17 188 838 660 960 [3]
seidel-2d 261 520 490 960 [51] ibm18 201 648 597 983 [3]
symm 254 020 440 400 [51]
syr2k 111 000 180 900 [51]
syrk 594 480 975 240 [51]
trisolv 240 600 320 000 [51]
trmm 294 570 571 200 [51]

ISCAS85
c432 196 336 [13] c2670 1 426 2 075 [13]
c499 243 408 [13] c3540 1 719 2 936 [13]
c880 443 729 [13] c5315 2 485 4 386 [13]
c1355 587 1 064 [13] c6288 2 448 4 800 [13]
c1908 913 1 497 [13] c7552 3 719 6 144 [13]

Table 5.1: Basic properties of DAG instances.
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author), our own multilevel algorithm mlDHGP+X, and our own memetic algorithm
memDHGP+X, where X ∈ {KaHyPar, PaToH} is the undirected hypergraph partitioner
used during initial partitioning. Whenever we omit +X, we default to KaHyPar since
it showed the best results. When using +KaHyPar, we invoke KaHyPar using the
newest configuration available2 and when using +PaToH, we invoke it using the
default configuration. To run the HOUKC algorithm on our benchmark set, we use the
implementation publicly available on the first author’s website3. Since the author’s
implementation of Moreira belongs to Intel and is therefore not publicly available,
we refrain from running it on our benchmark set and opt to use the numbers provided
in Ref. [43]. We have therefore no data for this algorithm on the ISPD98 instances,
but can still compare it to the other algorithms on the PolyBench instances.

We partition each graph in our benchmark set 5 times for different values of
k ∈ {2, 4, 8, 16, 32} and use ε = 3% as imbalance parameter. These values were
chosen because they were also used in previous work on DAG partitioning [25,43].
Each algorithm gets allocated 8 hours (except for adi, for which we give all solvers
24 hours) for each instance of our benchmark set. We run them on a single core
of Machine A. While the memetic algorithms take the time limit as an input
parameter, non-memetic algorithms do not. We therefore run them repeatedly
using random seeds until the time limit exceeds.

The effect of the undirected hypergraph partitioner used during initial par-
titioning and of our memetic component is summarized in Figure 5.1. As we
can see in Figure 5.1a, using a state-of-the undirected hypergraph partitioner
pays off: With KaHyPar, our algorithm computes the same or a better solution
on 65% out of all instances (PolyBench and ISPD98), whereas the same is only
true for 45% out of all instances when using it with PaToH. Hence, we will only
consider memDHGP+KaHyPar and mlDHGP+KaHyPar in the rest of the experiments.
Moreover, Figure 5.1b summarizes the influence of our memetic component. We
observe the memDHGP computes a strictly better partition on 65% out of all in-
stances compared to repeated runs using random seeds (i.e., mlDHGP) with the
largest improvement made on 2mm with k = 8 (10%) and ibm01 with k = 2 (8%).
Based on these observations, we conclude that our memetic algorithm is more
effective than repeated restarts of our multilevel algorithm.

Next, we compare our algorithm to HOUKC and Moreira. The best edge cuts found
by each algorithm are compared in Figure 5.2. Detailed results with per- instance
edge cuts are available in Tables A.1–A.4. We observe that memDHGP+KaHyPar
outperforms the other algorithms on both the PolyBench and ISPD98 instances.
Looking at Figure 5.2a, we see that it computes the best partition on over 82% of

2github.com/SebastianSchlag/kahypar/blob/master/config/km1_kahypar_mf_jea19.
ini

3people.bordeaux.inria.fr/julien.herrmann
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(a) Influence of initial partitioning algorithm
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(b) Influence of memetic algorithm on Poly-

Bench and ISPD98 DAGs.

Figure 5.1: Influence of the algorithm used for undirected initial partitioning and of our
memetic algorithm on PolyBench and ISPD98 DAGs.

all PolyBench instances, while HOUKC and Moreira only compute the best partition
on 25% and 14%, respectively. Moreover, memDHGP+KaHyPar is within a factor
of 1.1 of the best algorithm on over 95%, whereas the other algorithms are only
within a factor of 1.1 of the best algorithm on 51% and 22%, respectively. The
ISPD98 instances reveal a similar observation: Here, memDHGP+KaHyPar computes
the best solution on over 87% instances compared to HOUKC. The average improved
to the previous state-of-the art HOUKC is 11.1% (PolyBench instances) and 9.7%
(ISPD98 instances). The best improved is observed on the graph covariance from
the PolyBench instances with k = 2: While HOUKC computed an edge cut of 34 307,
our algorithm finds a partition with an edge cut of 11 281.

We finish this chapter by taking a look at the running times of mlDHGP+KaHyPar
and HOUKC in Figure 5.2c. Note that we exclude Moreira from this comparison
since we did not run their code ourself and the authors did not report per-instance
running times for their algorithm. As can be seen in the figure, mlDHGP+KaHyPar is
slower than HOUKC by several orders of magnitude. This has several reasons: HOUKC
uses METIS [33] during initial partition rather than KaHyPar, only uses 2-way
refinement, uses a multilevel scheme with only log(n) levels rather than n levels, and
only supports DAGs and no DAHs. Computing and updating gain values is faster
when optimizing the edge cut objective on graphs than the connectivity objective
on hypergraph. In particular, due to the acyclicity constraint, edge cut gain values
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Figure 5.2: Performance and running time of DAG partitioners on PolyBench and ISPD98
DAGs.

never change when moving nodes between the blocks of a bipartition of a normal
graph. Hence, HOUKC does not need to update gain values during 2-way refinement.

5.2 DAH Model

After establishing the state-of-the art for DAG partitioning, we move on the DAH
instances. For these experiments, we use the PolyBench and ISPD98 instances
transformed into DAHs as described above, but exclude the adi graph from the
PolyBench instances since it is too large to be partitioned by our algorithm within
a reasonable time frame. We use the same values for k and ε as before. Since
we are not aware of any other algorithms for DAH partitioning, we compare the
performance of our algorithm to simpler heuristics, namely TopoOrdPartRB and
TopoOrdPartKWay. The former one partitions the graph using recursive bisection.
For each bisection, it uses Kahn’s algorithm to compute a topological order of the
graph, splits the graph based on that, and then uses our 2-way refinement algorithm
to improve the bisection. The latter one again uses Kahn’s algorithm to compute a
topological order, but then directly splits the graph into k blocks and improves it
using our k-way refinement algorithm. We also test these heuristics with multilevel
refinement and name those algorithms mlTopoOrdPartRB and mlTopoOrdPartKWay.
Finally, we use those partitions as input to our memetic algorithm and name
the result memTopoOrdPartRB and memTopoOrdPartKWay. As before, we give the
memetic algorithm 8 hours time and use Machine A to perform these experiments.

The results are shown in Figure 5.3 and Table 5.2 with detailed per-instance
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Figure 5.3: Comparison of memDHGP and mlDHGP to simpler approaches.

results available in Tables B.1–B.4. Looking at the performance profile shown in
Figure 5.3a, we observe that memDHGP outperforms the simpler heuristics, com-
puting the best result on almost 90% out of all instances, whereas the second
best approach, memTopoOrdPartRB, only computes the best result on less than
15% out of all instances. On average, memDHGP computes partitions with 20%
lower connectivity than memTopoOrderPartRB. We can therefore conclude that
using a high quality undirected hypergraph partitioner during initial partition-
ing improves the overall result significantly.

Focusing on Figure 5.3b and Table 5.2, we see that using recursive bisection gives
significantly better results than using direct k-way partitioning. Looking at the
single-level algorithms TopoOrderPartRB and TopoOrderPartKWay, the approach
using recursive bisection is 10% better on average than direct k-way. This advantage
increases when looking at the multilevel algorithms: Here, recursive bisection
improves partitions by 49%. We believe that this is due to the fact that the
k-way search space is much more fractured than the 2-way search space due to
the acyclicity constraint. Moreover, we observe that the multilevel algorithms are
better than the single-level algorithms; this is expected as the multilevel component
adds a more global view to the optimization landscape.

43



5 Experimental Evaluation

Algorithm gmean
TopoOrderPartRB 16 571
mlTopoOrderPartRB 9 128
memTopoOrderPartRB (8h) 8 071
TopoOrderPartKWay 18 161
mlTopoOrderPartKWay 13 605
memTopoOrderPartKWay (8h) 10 643
mlDHGP 7 244
memDHGP (8h) 6 526

Table 5.2: Geometric mean solution quality of the best results out of multiple repetitions
for different algorithms on PolyBench and ISPD98 instances (as DAHs).

5.2.1 Influence of Larger Imbalances on Coarse Levels

Next, we evaluate the influence of allowing a larger imbalance on coarse levels. This
algorithm is described in Chapter 4.3. We executed the experiment on Machine B
and used the ISCAS85 and PolyBench DAHs with k = 2, 4, 8, 16, 32, ε = 3% = 0.03
(maximum imbalance of the resulting partition) and various values for ε′ (imbalance
on the coarsest level of the hypergraph hierarchy).

The result of this experiments is summarized in Figure 5.4. In our initial
experiment, we obtained an initial k-way partition using a topological ordering of
the DAH, i.e., using mlTopoOrdKWay from the previous chapter. We then ran a
V-cycle with larger imbalance on coarse levels as described in Chapter 4.3. The
result of this run can be seen in Figure 5.4a. We observe that using ε′ = 20%
computed the best partition on more than on third out of all instances, whereas the
configuration that does not allow a larger imbalance on coarse levels (ε′ = ε = 3%)
only computes the best partition on 28% out of all instances. Moreover, when
using ε′ = 7%, the computed partition is within a factor of 1.1 of the best partition
on 74% out of all instances, whereas the same can only be said for 54% out
of all instances when not allowing a larger imbalance on coarse levels. Based
on this, it seems that this techniques can improve a partition computed using
mlTopoOrdKWay on ISCAS85 instances. However, as we have seen in the previous
chapter, mlTopoOrdKWay computes partitions of low quality while mlDHGP computes
much better partitions. Hence, we repeated the same experiment with mlDHGP
instead of mlTopoOrdKWay. With this configuration, we see in Figure 5.4b that
ε′ ∈ {7%, 20%} no longer compute better partitions, but worsen the overall result.
The same observation applies when partitioning the PolyBench instances, as can
be seen in Figure 5.4c. Here, we see that not allowing larger imbalances on coarse
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Figure 5.4: Influence of larger imbalance on coarse levels for ISCAS85 and PolyBench
DAHs and various values for ε′.

levels computes the best partition on most instances and generally outperforms all
other configurations, and partition quality decreases with increasing values of ε′.

In our experiments, we observed that almost all balance improvements stem from
our hard rebalancing algorithm that decreases partition quality. This decrease in
partition quality outweighs the improvement found during the initial k-way refine-
ment with larger imbalance on the coarsest level and all improvements found during
uncoarsening. We think that this is due to the observation that k-way refinement
and our soft rebalancing algorithm are too restricted by the acyclicity constraint.

5.2.2 Influence of Acyclic Coarsening

In this experiment, we evaluate the influence of our acyclic coarsening algorithm
presented in Chapter 4.2.2 by comparing it to the coarsening algorithm that
is already implemented in KaHyPar [2]. We used Machine B to execute this
experiment. The instances are ISPD98 DAHs that were partitioned into k =
2, 4, 8, 16, 32 blocks with maximum imbalance ε = 3%.

The average connectivity using the acyclic coarsening is 16 086, whereas the
coarsening algorithm already implemented in KaHyPar yields an average connec-
tivity of only 20 915. Hence, the acyclic coarsening algorithm produces partitions
with 23% lower connectivity on average. This improvement can also be seen in
Figure 5.5: With acyclic coarser hypergraphs, we compute strictly better partitions
on almost all instances. Using the coarsening algorithm that is already implemented
in KaHyPar, we only get within a factor of 1.1 of the partition computed using
the acyclic coarsening algorithm on 10% out of all instances. We believe that this
is due to the fact that hypernodes in a cycle cannot be moved to another block
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Figure 5.5: ISPD98 instances partitioned using the acyclic coarsening algorithm and
the one that is already implemented in KaHyPar and does not keep the
hypergraph acyclic.

without violating the acyclicity constraint, therefore restricting the refinement
algorithm. Judging from this experiment, we conclude that acyclic coarsening
algorithms are necessary to obtain high-quality acyclic DAH partitions. This was
already observed by Herrmann et al. [25] for the DAG case.

5.3 Impact on Streaming Application

The experiment described in this chapter was conducted by Merten Popp. The
author of this thesis only implemented the transformation of DAGs into DAHs.

To evaluate the impact of our DAH partitioning algorithm on image streaming
applications, we integrate the algorithm into a toolchain implementing the Local
Laplacian filter that was also used to evaluate earlier work on DAG partitioning
[42, 43]. The filter is an edge-aware image processing filter using concepts of
Gaussian pyramids and Laplacian pyramids as well as a point-wise remapping
function to enhance image details without creating artefacts. For more details
on the image processing algorithm see Ref. [48].

The toolchain implementing the algorithm invokes our algorithm on a DAG
structured as depicted in Figure 5.6a. The DAG consists of compute nodes and
output nodes. Compute nodes correspond to parts of the filter application and
have the size of the program as node weight. Output nodes are merely conceptual
and have node weight zero. Each compute node can have an arbitrary number
of output nodes as successors; the edge from compute node to output node has
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(a) DAG model: Nodes with nonzero weight
are compute nodes, nodes with zero weight
are output nodes. One compute node can
have multiple output nodes. The weight
of edges from output nodes to compute
nodes correspond to the amount of data
that has to be transferred. Note that all
outgoing edges from an output node have
the same weight.

c(u)

c(v3)

c(v2)

c(v1)
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(b) DAH model: Each output node is replaced
by a single hyperedge that models the
data transfer.

Figure 5.6: Structure of the data dependency and execution flow graphs, once as DAG
(Figure 5.6a) and once as DAH (Figure 5.6b). The DAGs are kindly pro-
vided to us by Moreira et al. and we perform the transformation to the
corresponding DAHs ourself.

edge weight zero. The successors of output nodes are other compute nodes, which
depend on the output of the preceding compute node. All outgoing edges from an
output node have the same edge weight, namely the size of the compute node’s
output. To benefit from DAH partitioning, we transform the supplied DAG into
a DAH as depicted in Figure 5.6b. Each output node is replaced with a single
hyperedge that has the same hyperedge weight as its outgoing edges. The head of
the output hyperedge is the preceding compute node and its tails are the succeeding
compute nodes. This DAH is then partitioned using memDHGP with a time limit
of 10 minutes and the final partition is projected back onto the original DAG by
placing output nodes into the same block as its preceding compute node.

The filtering algorithm is configurable by parameter K, the number of levels
that the image pyramids have. A higher value for K improves the filters result,
but also increases the size of the DAG (DAH). To evaluate our algorithm, we use
values K ∈ {4, 5, 6, 7}, resulting in a DAG with at most n = 752 and m = 862 for
K = 7. We compare the impact of DAH partitioning to Moreira, the algorithm
previously used in the toolchain. The result is illustrated by Figure 5.7. By looking
at Figure 5.7a, we observe that DAH partitioning generally results in a lower
makespan compared to DAG partitioning. The best improvement is a reduction
in makespan by 22%, observed on the largest filtering algorithm, i.e., K = 7.
Figure 5.7b hints that this improvement is in part due to a more accurate modeling
of transfer costs. The figure compares the edge cuts reported by the respective
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Figure 5.7: Impact of the DAH model with improved partitioning results on image
streaming applications: Lower makespan and more accurate modeling of the
transfer cost.

algorithms (i.e., the estimated transfer cost) to the actual transfer costs. We
observe that the DAH model indeed estimates the transfer cost much better than
the DAG model, confirming our initial hypothesis. Based on this, we conclude that
the DAH model is better suited than the DAG model in this application domain.
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6 Conclusion
Motivated by the shortcomings of the DAG model for representing dataflow and
execution dependencies in image streaming applications, we presented the first hy-
pergraph partitioning algorithm for directed acyclic hypergraphs that can cope with
the acyclicity constraint. We implemented our novel algorithm using the hypergraph
partitioning framework KaHyPar and ran extensive experiments to benchmark its
components and to compare it to the previous state-of-the art on DAG partitioning.

Indicated by our experimental evaluation, we observed that our n-level par-
titioning algorithm improved on the current state-of-the-art algorithm for DAG
partitioning: Compared to previous algorithms, we computed the best partitions on
82% out of all instances in our benchmark set and improved the edge cut by 10%
on average. Based on this, we concluded that our algorithm can be seen as the new
state-of-the art for DAG partitioning in terms of partitioning quality. Since there are
no previous algorithms for DAH partitioning, we compared our algorithms to more
simple heuristics and showed significant improvements. Compared to direct k-way
partitioning based on a topological ordering with single-level FM refinement, we
showed that our memetic algorithm could lower the connectivity of the resulting par-
tition by 64% on average. Getting back to the problem that motivated our work, we
showed that acyclic DAH partitioning allows a significantly more efficient paralleliza-
tion of image streaming applications on embedded devices, improving the makespan
of an advanced image filter by 22%. We could therefore conclude that our algorithm
outperforms previous DAG partitioner that were used in the application domain.

6.1 Future Work

We have left several paths for future extensions and improvements. First, our
current implementation can only handle DAHs where every hyperedge has at
most one head. This limitation could be lifted with changes to the coarsening or
refinement step. Secondly, since k-way local search is a bottleneck of our algorithm,
future work could work towards parallelized refinement algorithms. Lastly, we
plan to integrate our algorithm into the next KaHyPar release.
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A Detailed DAG Results
Table A.1: Detailed per instance results on the ISPD98 benchmark set [3]. HOUKC refers to the algorithm

developed by Herrmann et. al. [25]. mlDHGP + X refers to our multilevel algorithm and memDHGP
+ X refers to our memetic algorithm with X as undirected hypergraph partitioner for initial
partitioning. The Best column reports the best edge cut found during 8 hours of individual runs.
For mlDHGP + X, the Average column reports the average edge cut of 5 individual runs and the
Best column reports the best edge cut found during 8 hours. For memDHGP + X, the Best column
reports the best result found after running for 8 hours. The Overall Best column shows the best
cut found by any tool with the following identifiers: H: HOUKC, N: one of the new approaches. In
general, lower is better.

HOUKC mlDHGP memDHGP mlDHGP memDHGP Overall
with KaHyPar with PaToH Best

Graph K Average Best (8h) Average Best (8h) Best (8h) Average Best (8h) Result Solver

ibm01

2 3 175 2 752 3 235 2 428 2 255 2 730 2 290 2 255 N
4 6 092 5 099 5 434 5 028 4 848 5 325 4 841 4 841 N
8 7 449 6 880 8 026 7 240 6 958 8 268 6 639 6 639 N

16 10 555 8 603 9 131 8 135 8 028 8 870 7 627 7 627 N
32 12 652 11 119 10 909 10 086 9 572 11 107 9 404 9 404 N

ibm02

2 8 540 4 708 8 772 3 262 5 873 8 806 8 599 3 262 N
4 13 264 11 375 12 290 11 374 11 497 12 317 11 400 11 374 N
8 17 832 16 591 17 557 16 522 16 253 17 520 16 387 16 253 N

16 24 856 23 002 21 708 20 209 19 727 22 128 20 455 19 727 N
32 30 407 29 082 26 379 25 263 24 264 26 659 25 393 24 264 N

ibm03

2 14 601 13 687 15 278 12 584 11 870 14 265 12 051 11 870 N
4 21 802 20 077 20 652 18 622 17 757 18 840 17 835 17 757 N
8 26 051 24 361 25 370 21 494 20 579 22 975 20 699 20 579 N

16 30 776 27 238 29 885 24 637 24 006 28 097 23 837 23 837 N
32 33 439 31 034 32 134 27 309 27 093 30 035 27 085 27 085 N

ibm04

2 9 518 9 108 9 727 8 508 8 237 9 727 8 237 8 237 N
4 14 226 13 190 12 668 11 512 10 970 12 358 10 944 10 944 N
8 18 508 16 683 18 677 16 983 16 298 18 811 15 878 15 878 N

16 25 885 22 874 24 363 22 800 21 812 24 298 21 373 21 373 N
32 30 512 27 107 27 882 26 486 25 078 28 127 25 680 25 078 N

ibm05

2 8 360 5 882 7 494 5 478 5 830 7 285 6 979 5 478 N
4 17 040 13 278 14 932 10 740 10 710 15 035 11 885 10 710 N
8 23 170 19 480 19 618 16 076 15 980 19 803 15 934 15 934 N

16 29 747 25 590 25 512 22 049 20 771 24 914 21 604 20 771 N
32 34 495 30 721 29 437 27 465 27 582 30 155 26 899 26 899 N

ibm06

2 14 049 12 736 12 664 11 804 11 341 12 832 11 285 11 285 N
4 23 206 20 317 21 641 19 097 18 197 21 705 18 374 18 197 N
8 30 875 26 980 25 402 23 202 22 455 25 155 22 263 22 263 N

16 34 069 30 848 29 421 27 435 26 384 29 793 27 263 26 384 N
32 38 243 36 197 32 781 31 310 30 839 32 826 30 597 30 597 N

ibm07

2 16 341 15 855 15 738 15 356 13 681 16 003 12 965 12 965 N
4 26 842 23 522 22 608 21 583 20 499 22 273 20 348 20 348 N
8 29 702 27 069 26 935 25 655 24 464 27 186 24 586 24 464 N

16 36 633 33 606 31 746 30 788 29 808 32 195 29 797 29 797 N
32 43 083 40 205 36 959 35 901 34 648 37 017 34 665 34 648 N

ibm08

2 25 139 24 481 24 418 22 381 22 079 24 384 21 925 21 925 N
4 52 118 38 711 41 350 38 644 38 495 41 402 38 330 38 330 N
8 84 639 81 587 50 063 49 238 48 429 50 043 47 124 47 124 N

16 96 107 88 135 88 727 87 323 85 996 89 513 86 083 85 996 N
32 109 264 96 746 93 556 92 591 90 779 94 172 90 660 90 660 N

ibm09

2 19 509 15 084 17 233 12 661 12 305 16 307 12 127 12 127 N
4 28 408 25 120 26 143 23 342 22 557 26 184 20 892 20 892 N
8 36 168 31 734 33 276 30 411 29 654 34 341 30 168 29 654 N

16 42 373 39 154 39 712 37 301 35 902 39 529 34 707 34 707 N
32 50 041 45 987 45 226 41 007 40 701 45 131 39 887 39 887 N
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A Detailed DAG Results

Table A.2: Detailed per instance results on the ISPD98 benchmark set [3]. HOUKC refers to the algorithm
developed by Herrmann et. al. [25]. mlDHGP + X refers to our multilevel algorithm and memDHGP
+ X refers to our memetic algorithm with X as undirected hypergraph partitioner for initial
partitioning. The Best column reports the best edge cut found during 8 hours of individual runs.
For mlDHGP + X, the Average column reports the average edge cut of 5 individual runs and the
Best column reports the best edge cut found during 8 hours. For memDHGP + X, the Best column
reports the best result found after running for 8 hours. The Overall Best column shows the best
cut found by any tool with the following identifiers: H: HOUKC, N: one of the new approaches. In
general, lower is better.

HOUKC mlDHGP memDHGP mlDHGP memDHGP Overall
with KaHyPar with PaToH Best

Graph K Average Best (8h) Average Best (8h) Best (8h) Average Best (8h) Result Solver

ibm10

2 24 983 24 073 24 310 21 575 21 328 22 560 21 310 21 310 N
4 38 620 35 083 39 383 33 217 36 352 39 288 32 101 32 101 N
8 49 646 44 820 47 827 40 423 39 202 46 082 38 238 38 238 N

16 63 960 54 164 55 610 50 854 49 632 56 129 49 892 49 632 N
32 69 990 65 302 64 229 61 838 59 914 64 105 59 180 59 180 N

ibm11

2 19 224 16 926 21 879 14 374 13 578 15 748 13 318 13 318 N
4 36 346 26 539 26 919 22 750 21 623 24 724 21 310 21 310 N
8 39 755 32 812 32 816 30 401 28 563 33 247 28 477 28 477 N

16 52 698 45 779 40 706 38 055 39 294 43 773 37 257 37 257 N
32 63 925 57 699 50 612 47 999 47 331 52 963 47 930 47 331 N

ibm12

2 29 359 27 238 30 315 27 860 27 365 29 620 27 688 27 238 H
4 50 457 47 922 49 225 44 108 42 728 49 591 46 107 42 728 N
8 60 024 53 785 57 394 52 487 51 425 57 046 50 955 50 955 N

16 72 429 65 979 66 486 62 965 61 186 67 160 61 484 61 186 N
32 84 328 76 066 73 872 70 503 68 739 73 252 68 712 68 712 N

ibm13

2 30 698 19 008 21 700 17 161 17 484 22 151 17 659 17 161 N
4 39 781 29 198 39 288 31 700 32 060 38 609 26 500 26 500 N
8 54 061 39 453 55 253 42 881 44 535 47 765 41 596 39 453 H

16 71 208 60 006 65 263 55 070 49 820 65 962 49 993 49 820 N
32 89 053 76 762 81 831 72 262 74 997 81 416 70 987 70 987 N

ibm14

2 33 205 31 988 51 511 48 338 48 140 52 065 49 670 31 988 H
4 55 342 49 972 69 320 64 838 62 888 70 364 66 680 49 972 H
8 76 297 68 992 68 051 62 718 60 929 67 598 56 972 56 972 N

16 96 638 80 591 79 801 74 705 73 224 80 029 73 861 73 224 N
32 104 543 96 677 91 692 89 688 87 904 92 823 86 504 86 504 N

ibm15

2 74 713 71 593 66 301 63 603 63 136 82 679 67 804 63 136 N
4 105 577 95 911 97 786 87 849 92 812 96 479 88 349 87 849 N
8 146 984 123 993 123 403 112 014 113 564 124 884 108 619 108 619 N

16 169 587 153 693 136 151 135 061 124 709 143 941 133 614 124 709 N
32 191 476 174 057 158 765 154 660 149 558 160 815 148 763 148 763 N

ibm16

2 55 871 52 980 51 699 48 222 48 063 50 167 45 371 45 371 N
4 108 576 93 874 98 471 93 941 91 481 99 729 89 976 89 976 N
8 130 302 117 375 129 900 115 437 119 439 126 431 114 458 114 458 N

16 162 743 148 626 147 987 136 916 134 387 142 235 132 412 132 412 N
32 181 924 172 909 166 347 158 854 157 879 164 966 153 490 153 490 N

ibm17

2 75 860 57 177 70 331 59 100 59 470 61 401 56 895 56 895 N
4 100 287 89 849 121 023 78 692 77 889 121 175 107 211 77 889 N
8 151 126 141 679 152 455 124 639 126 610 147 848 130 307 124 639 N

16 182 272 166 847 171 507 153 812 155 789 165 498 150 026 150 026 N
32 211 541 198 404 188 792 167 274 173 762 194 056 182 853 167 274 N

ibm18

2 37 123 34 949 35 907 33 434 33 394 36 651 33 277 33 277 N
4 63 000 53 948 64 540 53 190 53 237 58 432 48 482 48 482 N
8 92 636 78 164 86 580 76 686 75 728 81 435 70 558 70 558 N

16 121 219 108 744 107 824 93 018 88 959 113 181 98 976 88 959 N
32 144 219 132 289 124 788 111 650 110 816 128 875 119 170 110 816 N

Mean 41189 36205 37 828 33 459 33 007 37 382 33 088
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Table A.3: Detailed per instance results on the PolyBench benchmark set [51]. HOUKC refers to the algorithm
developed by Herrmann et. al. [25]. Moreira refers to the algorithm developed by Moreira
et al. [43]. mlDHGP + X refers to our multilevel algorithm and memDHGP + X refers to our memetic
algorithm with X as undirected hypergraph partitioner for initial partitioning. For HOUKC, the
Average column reports the better average from Table A.1 and Table A.2 in [25] and the Best
column reports the best edge cut found during 8 hours of individual runs or the best edge cut
reported in [25], if that is lower (marked with a star). For mlDHGP + X, the Average column
reports the average edge cut of 5 individual runs and the Best column reports the best edge cut
found during 8 hours. For memDHGP + X, the Best column reports the best result found after
running for 8 hours. The Overall Best column shows the best cut found by any tool with the
following identifiers: H: HOUKC, N: one of the new approaches, M: Moreira et. al. In general,
lower is better.

HOUKC Moreira et. al. mlDHGP memDHGP mlDHGP memDHGP Overall
with KaHyPar with PaToH Best

Graph K Average Best (8h) or [25] Average Best Average Best (8h) Best (8h) Average Best (8h) Result Solver

2mm

2 200 200 200 200 200 200 200 200 200 200 H,M,N
4 2 160 946 947 930 1 065 930 930 1 006 930 930 M,N
8 5 361 2 910 7 181 6 604 2 819 2 576 2 465 5 563 5 110 2 465 N

16 11 196 8 103 13 330 13 092 7 090 5 963 5 435 7 881 6 632 5 435 N
32 15 911 12 708 14 583 14 321 11 397 10 635 10 398 12 228 11 012 10 398 N

3mm

2 1 000 800 1 000 1 000 800 800 800 1 000 1 000 800 H,N
4 9 264 2 600 38 722 37 899 2 647 2 600 2 600 2 600 2 600 2 600 H,N
8 24 330 7 735 58 129 49 559 8 596 6 967 6 861 14 871 9 560 6 861 N

16 37 041 21 903 64 384 60 127 23 513 19 625 19 675 28 021 23 967 19 675 N
32 46 437 36 718 62 279 58 190 34 721 30 908 31 423 38 879 34 353 31 423 N

adi

2 142 719 *134 675 134 945 134 675 138 433 138 057 138 279 138 520 138 329 134 675 H,M
4 212 938 210 979 284 666 283 892 213 255 212 709 212 851 213 390 212 564 210 979 H
8 256 302 229 563 290 823 290 672 253 885 252 271 253 206 254 282 252 376 229 563 H

16 282 485 271 374 326 963 326 923 281 068 277 337 280 437 281 751 276 958 271 374 H
32 306 075 305 091 370 876 370 413 309 930 303 078 299 387 309 757 302 157 302 157 N

atax

2 39 876 32 451 47 826 47 424 39 695 24 150 23 690 45 130 43 450 23 690 N
4 48 645 43 511 82 397 76 245 50 725 42 028 39 316 50 144 47 486 39 316 N
8 51 243 48 702 113 410 111 051 54 891 48 824 47 741 52 163 49 450 47 741 N

16 59 208 52 127 127 687 125 146 68 153 50 962 51 256 53 256 51 191 51 191 N
32 69 556 57 930 132 092 130 854 66 267 54 613 56 051 56 773 54 536 54 536 N

covariance

2 27 269 4 775 66 520 66 445 4 775 4 775 4 775 5 893 5 641 4 775 H,N
4 61 991 *34 307 84 626 84 213 12 362 11 724 11 281 13 339 12 344 11 281 N
8 74 325 *50 680 103 710 102 425 24 429 21 460 21 106 51 984 41 807 21 106 N

16 119 284 99 629 125 816 123 276 62 011 60 143 58 875 65 302 59 153 58 875 N
32 121 155 94 247 142 214 137 905 76 977 73 758 72 090 80 464 74 770 72 090 N

doitgen

2 5 035 3 000 43 807 42 208 3 000 3 000 3 000 3 000 3 000 3 000 H,N
4 37 051 9 000 72 115 71 082 11 029 9 000 9 000 28 317 27 852 9 000 H,N
8 51 283 36 790 76 977 75 114 36 326 34 912 34 682 42 185 38 491 34 682 N

16 62 296 50 481 84 203 77 436 51 064 48 992 50 486 50 993 48 193 48 193 N
32 68 350 59 632 94 135 92 739 59 159 58 184 57 408 57 208 55 721 55 721 N

durbin

2 12 997 12 997 12 997 12 997 12 997 12 997 12 997 12 997 12 997 12 997 H,M,N
4 21 566 *21 566 21 641 21 641 21 556 21 557 21 541 21 556 21 541 21 541 N
8 27 519 27 518 27 571 27 571 27 511 27 508 27 509 27 511 27 509 27 509 N

16 32 852 32 841 32 865 32 865 32 869 32 824 32 825 32 852 32 825 32 825 N
32 39 738 39 732 39 726 39 725 39 753 39 717 39 701 39 753 39 701 39 701 N

fdtd-2d

2 6 024 4 381 5 494 5 494 5 233 4 756 4 604 6 318 6 285 4 381 H
4 15 294 11 551 15 100 15 099 11 670 9 325 9 240 11 572 10 232 9 240 N
8 23 699 19 527 33 087 32 355 17 704 15 906 15 653 17 990 15 758 15 653 N

16 32 917 28 065 35 714 35 239 25 170 22 866 22 041 24 582 22 003 22 003 N
32 42 515 39 063 43 961 42 507 32 658 30 872 29 868 32 682 29 772 29 772 N

gemm

2 4 200 4 200 383 084 382 433 4 200 4 200 4 200 4 768 4 690 4 200 H,N
4 59 854 12 600 507 250 500 526 12 600 12 600 12 600 13 300 12 600 12 600 H,N
8 116 990 33 382 578 951 575 004 70 827 31 413 30 912 188 172 175 495 30 912 N

16 263 050 224 173 615 342 613 373 185 872 164 235 148 040 202 920 194 017 148 040 N
32 330 937 277 879 626 472 623 271 270 909 265 771 258 607 280 849 275 188 258 607 N

gemver

2 20 913 *20 913 29 349 29 270 22 725 19 485 19 390 20 317 18 930 18 930 N
4 40 299 35 431 49 361 49 229 38 600 35 021 33 324 37 632 34 328 33 324 N
8 55 266 43 716 68 163 67 094 50 440 44 253 43 276 47 799 42 548 42 548 N

16 59 072 54 012 78 115 75 596 53 819 48 618 48 182 53 775 46 563 46 563 N
32 73 131 63 012 85 331 84 865 58 898 53 581 54 953 59 210 52 404 52 404 N

gesummv

2 500 500 1 666 500 500 500 500 500 500 500 H,M,N
4 10 316 1 500 98 542 94 493 5 096 1 500 1 500 1 548 1 500 1 500 N
8 9 618 4 021 101 533 98 982 25 535 3 500 3 500 3 640 3 500 3 500 N

16 35 686 11 388 112 064 104 866 30 215 7 500 7 500 7 883 7 500 7 500 N
32 45 050 28 295 117 752 114 812 31 740 15 620 16 339 16 144 15 500 15 500 N

heat-3d

2 9 378 8 936 8 695 8 684 8 930 8 640 8 640 9 242 8 936 8 640 N
4 16 700 15 755 14 592 14 592 15 355 14 642 14 592 16 304 14 865 14 592 M,N
8 25 883 24 326 20 608 20 608 23 307 21 190 21 300 25 462 23 074 20 608 M

16 42 137 *41 261 31 615 31 500 38 909 38 053 35 909 40 148 37 659 31 500 M
32 64 614 60 215 51 963 50 758 55 360 53 525 51 682 54 621 50 848 50 758 M
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Table A.4: Detailed per instance results on the PolyBench benchmark set [51]. HOUKC refers to the algorithm
developed by Herrmann et. al. [25]. Moreira refers to the algorithm developed by Moreira
et al. [43]. mlDHGP + X refers to our multilevel algorithm and memDHGP + X refers to our memetic
algorithm with X as undirected hypergraph partitioner for initial partitioning. For HOUKC, the
Average column reports the better average from Table A.1 and Table A.2 in [25] and the Best
column reports the best edge cut found during 8 hours of individual runs or the best edge cut
reported in [25], if that is lower (marked with a star). For mlDHGP + X, the Average column
reports the average edge cut of 5 individual runs and the Best column reports the best edge cut
found during 8 hours. For memDHGP + X, the Best column reports the best result found after
running for 8 hours. The Overall Best column shows the best cut found by any tool with the
following identifiers: H: HOUKC, N: one of the new approaches, M: Moreira et. al. In general,
lower is better.

HOUKC Moreira et. al. mlDHGP memDHGP mlDHGP memDHGP Overall
with KaHyPar with PaToH Best

Graph K Average Best (8h) or [25] Average Best Average Best (8h) Best (8h) Average Best (8h) Result Solver

jacobi-1d

2 646 400 596 596 440 400 400 491 423 400 H,N
4 1 617 1 123 1 493 1 492 1 188 1 046 1 044 1 250 1 128 1 044 N
8 2 845 2 052 3 136 3 136 2 028 1 754 1 750 2 170 1 855 1 750 N

16 4 519 3 517 6 340 6 338 3 140 2 912 2 869 3 355 2 982 2 869 N
32 6 742 5 545 8 923 8 750 4 776 4 565 4 498 4 910 4 587 4 498 N

jacobi-2d

2 3 445 *3 342 2 994 2 991 3 878 3 000 2 986 3 942 3 129 2 986 N
4 7 370 7 243 5 701 5 700 7 591 5 979 5 881 7 528 6 245 5 700 M
8 13 168 12 134 9 417 9 416 10 872 9 295 8 935 11 753 10 492 8 935 N

16 21 565 18 394 16 274 16 231 15 605 14 746 13 867 15 889 14 736 13 867 N
32 29 558 25 740 22 181 21 758 20 597 19 647 18 979 21 653 19 530 18 979 N

lu

2 5 351 4 160 5 210 5 162 4 160 4 160 4 160 4 160 4 160 4 160 H,N
4 21 258 12 214 13 528 13 510 12 720 12 214 12 214 16 091 15 992 12 214 H,N
8 53 643 34 074 33 307 33 211 42 963 33 873 33 954 41 113 38 318 33 211 M

16 105 289 81 713 74 543 74 006 81 224 74 400 74 448 83 980 75 150 74 006 M
32 156 187 141 868 130 674 129 954 125 932 122 977 121 451 131 850 127 904 121 451 N

ludcmp

2 5 731 5 337 5 380 5 337 5 337 5 337 5 337 5 337 5 337 5 337 H,N
4 22 368 15 170 14 744 14 744 18 114 16 889 17 560 26 606 17 113 14 744 N
8 60 255 41 086 37 228 37 069 46 268 37 688 37 790 52 980 39 362 37 069 N

16 106 223 86 959 78 646 78 467 89 958 76 074 80 706 96 275 85 572 78 467 N
32 158 619 144 224 134 758 134 288 130 552 125 957 127 454 136 218 131 161 127 454 N

mvt

2 21 281 16 768 24 528 23 091 23 798 16 584 16 596 32 856 20 016 16 596 N
4 38 215 29 229 74 386 73 035 41 156 29 318 30 070 52 353 42 870 29 229 H,N
8 46 776 39 295 86 525 82 221 50 853 36 531 35 471 60 021 55 460 35 471 N

16 54 925 48 036 99 144 97 941 58 258 41 727 42 890 65 738 59 194 42 890 N
32 62 584 54 293 105 066 104 917 58 413 45 958 46 122 69 221 64 611 46 122 N

seidel-2d

2 4 374 3 401 4 991 4 969 4 036 3 578 3 504 4 206 3 786 3 401 H,N
4 11 784 10 872 12 197 12 169 11 352 10 645 10 404 11 480 10 604 10 404 N
8 21 937 20 711 21 419 21 400 19 954 18 528 17 770 20 309 18 482 17 770 N

16 38 065 33 647 38 222 38 110 29 930 27 644 27 583 30 329 28 348 27 583 N
32 58 319 51 745 52 246 51 531 41 256 38 949 38 175 42 291 39 058 38 175 N

symm

2 26 374 21 963 94 357 94 214 22 000 21 840 21 836 29 871 26 134 21 836 N
4 59 815 42 442 127 497 126 207 41 486 38 290 37 854 65 111 57 620 37 854 N
8 91 892 69 554 152 984 151 168 69 569 58 084 60 644 82 865 75 151 60 644 N

16 105 418 89 320 167 822 167 512 90 978 83 703 85 508 96 932 89 445 85 508 N
32 108 950 97 174 174 938 174 843 110 495 104 376 100 337 108 814 104 592 97 174 H

syr2k

2 4 343 900 11 098 3 894 900 900 900 900 900 900 H,N
4 12 192 3 048 49 662 48 021 3 150 2 978 2 909 16 589 9 991 2 909 N
8 28 787 12 833 57 584 57 408 12 504 9 969 10 154 21 427 19 507 10 154 N

16 29 519 24 457 59 780 59 594 25 054 21 626 21 828 26 120 23 588 21 828 N
32 36 111 31 138 60 502 60 085 33 424 31 236 29 984 31 358 29 340 29 340 N

syrk

2 11 740 3 240 219 263 218 019 3 240 3 240 3 240 3 439 3 240 3 240 H,N
4 56 832 9 960 289 509 289 088 10 417 10 119 9 970 89 457 80 801 9 960 H
8 112 236 30 602 329 466 327 712 83 000 46 130 58 876 107 220 101 516 30 602 H

16 179 042 147 058 354 223 351 824 117 357 113 122 111 635 150 363 135 615 111 635 N
32 196 173 173 550 362 016 359 544 158 590 154 818 154 921 182 222 175 999 154 921 N

trisolv

2 336 280 6 788 3 549 280 279 279 308 279 279 N
4 828 827 43 927 43 549 823 821 821 865 823 821 N
8 2 156 1 907 66 148 65 662 2 112 1 893 1 895 2 035 1 897 1 895 N

16 6 240 5 285 71 838 71 447 8 719 4 125 4 108 4 358 4 240 4 108 N
32 13 431 *13 172 79 125 79 071 16 027 8 942 8 784 9 210 8 716 8 716 N

trmm

2 13 659 3 440 138 937 138 725 3 440 3 440 3 440 3 440 3 440 3 440 H,N
4 58 477 14 543 192 752 191 492 14 942 12 622 12 389 35 964 35 824 12 389 N
8 92 185 49 830 225 192 223 529 65 303 46 059 45 053 67 011 61 045 45 053 N

16 128 838 103 975 240 788 238 159 92 172 79 507 80 186 96 421 87 275 80 186 N
32 153 644 131 899 246 407 245 173 120 839 115 460 112 267 120 753 113 205 112 267 N

Mean 25777 17897 44 923 43 200 18 887 15 988 16 095 20 308 18 642
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B Detailed DAH Results
Table B.1: Detailed per instance results on the ISPD98 benchmark suite [3]. mlDHGP refers to our algorithm

with KaHyPar as undirected hypergraph partitioner for initial partitioning. memDHGP refers to our
memetic algorithm that uses mlDHGP equipped with KaHyPar as undirected hypergraph partitioner
for initial partitioning to build an initial population. The Best column reports the best edge cut
found during 8 hours of individual runs. For mlDHGP, the Average column reports the average
edge cut of 5 individual runs. For memDHGP, the Best column reports the best result found after
running for 8 hours. In general, lower is better.

mlDHGP memDHGP TopoOrderPartRB TopoOrderPartKWay
Hypergraph K Average Best (8h) Average Best (8h) Average Best (8h)

ibm01

2 838 629 877 659 1 267 660
4 1 835 1 427 2 035 1 684 4 921 2 615
8 2 923 2 136 3 512 2 670 6 513 4 153

16 3 764 3 049 4 584 3 710 8 271 6 032
32 4 774 4 013 5 626 4 706 9 894 6 652

ibm02

2 2 222 1 869 2 629 1 990 3 048 2 319
4 4 391 3 247 5 296 4 017 7 520 5 185
8 6 898 5 674 8 561 6 677 11 208 9 485

16 9 787 8 481 10 678 9 300 14 195 12 709
32 12 545 11 448 13 773 12 362 18 141 14 596

ibm03

2 3 782 2 242 3 772 2 862 4 306 2 932
4 5 955 4 231 6 335 4 748 8 661 6 746
8 7 679 5 911 8 478 6 771 12 510 10 131

16 9 179 7 386 10 278 8 601 15 725 12 304
32 10 051 8 496 12 271 10 116 18 507 14 162

ibm04

2 3 080 717 4 448 3 044 5 252 3 204
4 5 232 2 467 6 175 3 707 9 871 6 086
8 7 239 5 339 9 919 7 304 13 859 9 917

16 9 415 7 343 11 868 10 029 17 680 12 584
32 11 129 9 259 13 795 11 947 21 342 16 273

ibm05

2 4 630 3 954 4 799 4 232 4 952 4 248
4 7 629 5 930 9 574 7 222 11 693 7 933
8 10 434 8 612 13 292 10 339 17 575 11 821

16 13 095 11 285 16 394 13 566 21 884 16 613
32 15 371 13 837 18 577 15 938 25 750 20 079

ibm06

2 4 486 2 730 5 624 3 839 7 027 4 279
4 8 189 5 858 8 789 6 648 14 557 11 971
8 10 203 8 281 11 483 9 590 19 122 15 012

16 12 720 10 157 14 123 11 751 23 880 20 591
32 15 155 12 179 17 588 14 851 30 019 24 375

ibm07

2 5 355 3 680 8 273 3 871 8 831 4 602
4 10 343 6 250 11 463 7 130 16 176 11 691
8 12 386 8 993 13 861 9 482 21 580 16 862

16 13 927 11 870 17 289 14 109 27 718 23 060
32 16 880 14 264 20 418 17 595 34 122 26 761

ibm08

2 12 865 9 344 11 639 9 331 12 536 11 281
4 18 373 16 860 18 385 15 454 22 071 20 504
8 22 238 20 526 21 703 20 013 28 396 24 835

16 25 572 23 100 27 093 25 072 34 302 30 639
32 29 667 27 425 31 907 29 150 40 661 34 423

ibm09

2 5 593 3 357 11 804 9 159 13 130 9 651
4 10 610 6 416 18 274 13 852 21 028 17 693
8 12 053 8 726 20 346 16 942 26 819 21 107

16 14 987 11 588 22 256 20 090 33 138 28 843
32 17 802 14 449 25 313 22 858 39 478 34 857
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B Detailed DAH Results

Table B.2: Detailed per instance results on the ISPD98 benchmark suite [3]. mlDHGP refers to our algorithm
with KaHyPar as undirected hypergraph partitioner for initial partitioning. memDHGP refers to our
memetic algorithm that uses mlDHGP equipped with KaHyPar as undirected hypergraph partitioner
for initial partitioning to build an initial population. The Best column reports the best edge cut
found during 8 hours of individual runs. For mlDHGP, the Average column reports the average
edge cut of 5 individual runs. For memDHGP, the Best column reports the best result found after
running for 8 hours. In general, lower is better.

mlDHGP memDHGP TopoOrderPartRB TopoOrderPartKWay
Hypergraph K Average Best (8h) Average Best (8h) Average Best (8h)

ibm10

2 12 129 8 288 11 717 8 315 17 445 11 372
4 18 728 11 809 15 691 12 922 24 176 18 224
8 22 141 16 401 22 146 18 837 36 282 28 691

16 24 929 20 199 27 168 24 613 49 440 39 218
32 30 100 26 238 33 799 30 462 59 161 51 361

ibm11

2 10 669 6 550 10 943 7 618 13 320 8 190
4 16 257 10 447 18 761 15 073 25 457 20 894
8 17 992 12 341 23 071 18 430 36 747 29 617

16 20 197 16 198 27 404 23 673 42 915 35 907
32 23 409 19 767 30 592 27 495 50 761 43 688

ibm12

2 15 449 11 349 14 881 10 588 14 858 12 725
4 20 307 15 652 20 215 16 538 23 398 18 847
8 23 036 18 126 24 916 21 053 36 501 31 499

16 28 437 23 367 30 176 26 434 48 537 35 157
32 34 536 27 911 38 183 33 930 62 718 53 703

ibm13

2 11 893 8 695 12 790 8 284 19 262 10 593
4 14 791 10 285 21 166 12 883 43 564 34 438
8 21 405 14 330 32 543 21 452 58 298 48 381

16 25 313 16 761 35 524 28 945 70 447 58 881
32 29 676 26 017 43 126 37 405 92 014 81 315

ibm14

2 24 379 14 713 15 305 14 219 21 228 18 308
4 30 912 21 613 24 657 21 539 38 520 33 361
8 36 370 30 710 36 889 32 478 49 762 44 724

16 42 321 35 598 44 721 40 298 63 893 58 170
32 48 741 43 979 53 609 48 580 78 351 72 065

ibm15

2 27 810 19 804 28 396 24 432 38 193 29 247
4 44 069 33 151 52 804 46 517 79 810 74 511
8 51 886 38 306 65 971 57 918 102 738 93 440

16 58 961 49 687 74 815 68 546 119 898 105 971
32 66 287 56 374 82 252 75 762 141 076 129 211

ibm16

2 25 941 11 494 26 062 19 608 34 882 30 835
4 46 933 36 124 50 521 45 089 80 648 61 926
8 57 761 45 328 61 132 55 221 97 002 89 035

16 67 904 58 471 72 549 64 470 114 337 105 134
32 80 591 69 325 83 631 77 873 135 371 127 061

ibm17

2 36 934 32 507 27 629 25 282 36 665 29 655
4 47 186 39 301 42 638 37 519 64 506 53 945
8 62 896 54 230 61 043 55 706 86 830 78 413

16 74 427 65 672 77 867 70 777 109 982 101 743
32 86 597 80 152 93 864 87 711 129 758 121 273

ibm18

2 21 296 16 338 20 830 18 825 24 096 18 409
4 36 235 28 131 33 642 31 101 50 926 39 056
8 49 742 38 947 45 337 41 406 73 198 65 903

16 57 312 47 532 60 672 55 461 94 165 84 746
32 67 770 58 061 76 324 69 222 114 532 104 020

Mean 16 151 12 245 18 344 15 030 26 839 21 246
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Table B.3: Detailed per instance results on the PolyBench benchmark set [51]. mlDHGP refers to our algorithm
with KaHyPar as undirected hypergraph partitioner for initial partitioning. memDHGP refers to our
memetic algorithm that uses mlDHGP equipped with KaHyPar as undirected hypergraph partitioner
for initial partitioning to build an initial population. The Best column reports the best edge cut
found during 8 hours of individual runs. For mlDHGP, the Average column reports the average
edge cut of 5 individual runs. For memDHGP, the Best column reports the best result found after
running for 8 hours. In general, lower is better.

mlDHGP memDHGP TopoOrderPartRB TopoOrderPartKWay
Hypergraph K Average Best (8h) Average Best (8h) Average Best (8h)

2mm

2 212 200 224 200 344 210
4 633 608 905 840 1 618 750
8 1 376 1 320 1 608 1 440 3 169 1 433

16 2 239 2 153 2 695 2 248 4 691 2 630
32 3 796 3 624 4 562 3 934 7 015 4 229

3mm

2 800 800 1 112 805 1 564 1 090
4 2 419 2 000 3 155 2 480 5 036 3 566
8 3 950 3 540 5 940 4 689 9 374 5 653

16 6 264 5 999 9 099 7 537 12 996 8 123
32 9 234 8 861 12 719 11 483 19 224 12 516

atax

2 9 206 460 460 460 14 644 5 829
4 9 438 4 943 7 162 1 719 24 248 19 462
8 22 036 17 127 20 110 9 291 27 736 20 983

16 30 917 28 378 29 675 24 167 46 152 29 036
32 43 936 41 981 40 637 39 098 52 265 46 790

covariance

2 2 930 2 590 3 343 3 160 3 190 3 059
4 6 058 5 705 5 361 5 265 7 029 5 681
8 8 834 8 238 9 660 9 092 12 815 10 472

16 13 406 12 758 13 917 13 480 19 825 16 529
32 17 605 17 210 20 211 19 833 29 596 24 640

doitgen

2 400 400 3 134 2 927 3 444 2 283
4 1 200 1 200 3 652 3 600 6 760 3 114
8 2 892 2 800 5 301 4 613 11 254 5 405

16 6 001 5 800 7 263 6 949 15 725 8 243
32 9 566 9 192 11 405 11 221 20 172 14 876

durbin

2 349 349 349 349 352 349
4 1 024 1 020 1 023 1 020 1 033 1 020
8 2 361 2 339 2 362 2 344 2 375 2 344

16 5 030 4 996 5 027 5 000 5 047 5 018
32 10 374 10 364 10 366 10 358 10 396 10 378

fdtd-2d

2 2 650 1 756 3 491 3 490 3 491 3 490
4 5 549 3 960 10 473 4 294 10 474 4 269
8 7 755 6 351 13 745 8 673 24 366 8 120

16 10 971 8 959 19 112 13 681 34 855 15 108
32 14 110 12 759 24 248 18 726 42 703 22 036

gemm

2 4 200 4 200 6 179 4 758 5 989 4 506
4 12 600 12 600 18 908 14 781 18 579 14 581
8 20 931 19 714 39 528 39 290 41 055 35 135

16 33 978 31 355 63 139 63 139 77 882 76 501
32 52 721 50 300 89 660 89 660 117 319 115 717

gemver

2 2 577 480 1 824 480 4 800 2 947
4 5 341 2 070 6 705 4 576 8 081 5 851
8 10 615 8 305 10 522 8 357 15 511 9 673

16 13 432 12 474 13 263 12 618 20 260 14 005
32 17 250 16 576 16 823 16 362 25 050 21 086

gesummv

2 350 250 518 501 523 500
4 975 750 927 760 1 191 1 051
8 1 394 1 250 1 539 1 515 2 128 2 053

16 2 247 2 246 2 600 2 582 5 403 2 971
32 3 526 3 428 3 644 3 454 4 689 4 295

heat-3d

2 1 280 1 280 1 347 1 280 1 358 1 280
4 3 843 3 840 3 947 3 840 4 190 3 840
8 9 427 8 777 9 222 8 960 9 776 8 960

16 15 406 14 509 16 496 14 325 19 799 14 313
32 21 102 19 382 22 727 20 483 28 957 21 080
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B Detailed DAH Results

Table B.4: Detailed per instance results on the PolyBench benchmark set [51]. mlDHGP refers to our algorithm
with KaHyPar as undirected hypergraph partitioner for initial partitioning. memDHGP refers to our
memetic algorithm that uses mlDHGP equipped with KaHyPar as undirected hypergraph partitioner
for initial partitioning to build an initial population. The Best column reports the best edge cut
found during 8 hours of individual runs. For mlDHGP, the Average column reports the average
edge cut of 5 individual runs. For memDHGP, the Best column reports the best result found after
running for 8 hours. In general, lower is better.

mlDHGP memDHGP TopoOrderPartRB TopoOrderPartKWay
Hypergraph K Average Best (8h) Average Best (8h) Average Best (8h)

jacobi-1d

2 401 400 412 402 411 402
4 926 793 1 245 1 206 1 279 1 206
8 1 587 1 467 2 900 2 814 3 053 2 793

16 2 634 2 423 6 213 3 900 6 676 3 349
32 3 992 3 786 8 788 5 540 13 680 4 753

jacobi-2d

2 1 008 1 008 1 053 1 008 1 049 1 008
4 3 524 2 981 3 093 3 024 3 129 3 024
8 5 786 4 995 7 184 6 978 7 419 6 837

16 8 198 7 215 13 070 9 282 15 715 8 992
32 11 312 10 326 16 921 14 002 24 070 11 587

lu

2 3 327 3 221 2 966 2 776 3 644 3 190
4 5 922 5 735 6 219 5 898 9 635 9 181
8 10 218 9 831 10 971 10 837 20 432 18 592

16 15 319 15 145 15 735 15 152 27 899 27 673
32 22 034 21 652 23 252 22 984 36 568 36 178

ludcmp

2 2 952 2 887 3 020 2 917 4 364 3 878
4 7 546 7 468 7 631 7 479 11 193 10 758
8 12 568 12 494 12 557 12 322 22 516 22 189

16 18 211 17 933 20 093 19 412 31 115 30 422
32 25 273 24 491 26 447 26 164 42 154 42 154

mvt

2 446 404 3 247 558 11 174 468
4 1 069 818 2 988 1 664 14 887 8 545
8 2 425 1 648 6 860 4 187 20 852 14 909

16 2 851 2 586 13 203 10 041 32 053 23 345
32 6 288 4 295 14 809 10 009 40 295 34 690

seidel-2d

2 838 838 996 935 1 275 938
4 2 582 2 473 2 775 2 672 3 349 2 784
8 4 668 4 274 6 020 5 403 7 265 4 905

16 7 247 6 580 10 166 9 045 14 873 9 157
32 10 869 9 966 15 649 13 240 26 383 15 662

symm

2 836 820 2 915 2 346 2 946 2 808
4 2 630 2 540 4 963 4 370 7 034 6 031
8 6 257 6 107 9 023 8 862 11 819 9 618

16 10 721 10 445 13 520 13 251 20 199 19 794
32 15 672 15 282 18 851 18 594 33 848 32 173

syr2k

2 900 880 1 139 900 1 356 900
4 1 938 1 820 2 327 1 978 3 062 1 994
8 3 834 3 372 3 913 3 198 6 010 3 763

16 5 579 4 967 5 868 5 294 10 551 5 354
32 7 912 7 590 8 621 7 520 16 163 9 684

syrk

2 3 240 3 240 3 393 3 376 3 854 3 240
4 7 390 7 320 10 083 10 079 10 431 9 482
8 13 566 13 202 13 924 13 924 19 379 17 118

16 20 121 19 674 31 052 30 851 30 102 28 704
32 28 222 27 446 42 805 42 805 47 622 46 759

trisolv

2 279 279 280 279 283 280
4 620 595 777 600 643 581
8 1 088 1 054 1 260 1 133 1 366 1 289

16 1 788 1 742 2 008 1 808 2 622 2 420
32 2 783 2 683 3 347 3 020 4 420 3 984

trmm

2 2 704 1 844 3 755 3 579 4 113 3 440
4 6 226 5 673 7 311 7 167 11 452 8 793
8 10 082 9 914 13 669 13 484 19 559 12 482

16 16 173 15 472 20 933 20 933 30 026 20 348
32 22 126 21 437 27 168 27 168 42 503 41 895

Mean 4 447 3 900 5 698 4 853 8 247 6 045
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