
KIT – The Research University in the Helmholtz Association www.kit.edu

PASAR
Planning as Satisfiability

with Abstraction Refinement

Master Thesis
Karlsruhe Institute of Technology

Department of Informatics
Institute of Theoretical Informatics,

Algorithmics II

Nils Froleyks

January 30, 2020

Supervisors: Prof. Dr. Peter Sanders
Dr. Tomáš Balyo
M.Sc. Dominik Schreiber

Abstract
We present a new algorithm for the satisficing (non-optimal) classical planning prob-
lem. The presented planner participated in the Sparkle Planning Challenge 2019 and
won a considerable share (22.13%) of the first prize.
We combine SAT-based planning with forward state space search using the principles
of counterexample-guided abstraction refinement (CEGAR). A state-of-the-art SAT
solver is used to solve an abstraction of the planning task at hand. As an abstraction,
we use an incomplete encoding where interference between actions is ignored. With a
graph-theoretic test we determine whether the solution found by the SAT solver can
be directly transformed into a plan. If it can be transformed, we realize an encoding
allowing the application of many actions in parallel (exist-step semantics) in a very
compact manner, without imposing a fixed order on the actions. If the transformation
is not possible, we use the solution to define a heuristic function that is used during
a state space search. If the search fails to find a plan within a very short timeout,
the abstraction is refined.
To increase the synergy between SAT solving and forward search, both can learn new
actions and add them to the problem. This allows the SAT solver to make big jumps
in the search space, while the forward search benefits from the SAT solver’s ability
to solve combinatorially hard problems.
Using benchmark domains from recent international planning competitions, we com-
pare our approach with various state-of-the-art planners from the fields of SAT-based
planning and heuristic search. On almost all tested domains we can match the per-
formance of the best tested solvers and on some domains we outperform the entire
competition.

Zusammenfassung
PASAR ist ein neuer Algorithmus für das nicht optimale klassische Planungsproblem.
Bei der Sparkle Planning Challenge 2019 hat PASAR einen nennenswerten Anteil
(22.13%) des ersten Platzes erlangt.
Durch gegenbeispielgetriebene Abstraktionsverfeinerung werden Aussagenlogik ba-
sierte Planung und Vorwärtssuche im Zustandsraum kombiniert. Ein SAT-Solver wird
eingesetzt um eine Abstraktion des Planungsproblems zu lösen. Als Abstraktion wird
eine unvollständige Kodierung verwendet, bei der Konflikte zwischen Aktionen zu-
nächst nicht beachtet werden. Durch einen graphentheoretischen Test kann bestimmt
werden, ob die Lösung, die der SAT-Solver gefunden hat, direkt in einen Plan um-
gewandelt werden kann. Wenn dieser Schritt erfolgreich ist, konnte ∃-step Semantik
mit einer sehr kompakten Kodierung umgesetzt werden, ohne den Aktionen dabei
eine festgelegte Reihenfolge aufzuerlegen. Wenn nicht verwenden wir die Lösung da-
zu eine heuristische Funktion zu definieren. Diese wird während einer anschließen-
den Zustandsraumsuche verwendet, um den voraussichtlichen Nutzen einer Aktion
zu bestimmen. Hat die Suche innerhalb eines sehr geringen Zeitrahmens keinen Plan
gefunden, wird die Abstraktion verfeinert.
Um die Zusammenarbeit der Suche und des SAT-Solvers zu stärken, können beide
neue Aktionen lernen und dem Planungsproblem hinzufügen. Dem SAT-Solver wird es
dadurch möglich große Sprünge im Suchraum zu machen, während die Zustandsraum-
suche von der Fähigkeit des SAT-Solver profitiert, kombinatorisch schwere Probleme
zu lösen.
Wir vergleichen PASAR mit anderen aktuellen Planern, sowohl SAT basierte als auch
heuristische Suchen. Der Vergleich zeigt, dass PASAR auf fast allen Testdomänen die
Leistung der besten getesteten Planer erreicht und sie in manchen Fällen übertrifft.

Acknowledgments
First, I would like to thank Prof. Peter Sanders for providing the funds that enabled
me to visit the Symposium on Combinatorial Search in the years 2017 and 2019
to present my work. In addition, he provided the computing power that made the
evaluation of our work possible.
Together with my supervisors Dr. Tomáš Balyo and Dominik Schreiber, I went
through a strenuous but very productive research phase that led to our publication
[FBS19] at SoCS 2019. Together we developed interesting and successful solutions
to the challenges we encountered during the design of the planner presented in this
thesis.
I would also like to thank Marvin Williams, who worked on a similar topic during
this time. Way more than a rubber duck; our exchanges on topics ranging from the
finer points of SAT encodings to efficient C++ helped me a lot.

Teile dieser Arbeit wurde bereits auf der SoCS 2019 veröffentlicht [FBS19].

Hiermit versichere ich, dass ich diese Arbeit selbständig verfasst und keine anderen,
als die angegebenen Quellen und Hilfsmittel benutzt, die wörtlich oder inhaltlich
übernommenen Stellen als solche kenntlich gemacht und die Satzung des Karlsruher
Instituts für Technologie zur Sicherung guter wissenschaftlicher Praxis in der jeweils
gültigen Fassung beachtet habe.

Karlsruhe, den 30. Januar 2020

Nils Froleyks

Contents

1 Introduction 1
1.1 Methods and Results . 3
1.2 Structure of the Thesis . 4

2 Preliminaries 5
2.1 Classical Planning . 5
2.2 Planning as State Space Search . 7
2.3 Planning as Satisfiability . 8

2.3.1 Boolean Satisfiability Problem 8
2.3.2 Incremental SAT Solving . 8
2.3.3 Encoding Planning as SAT . 9
2.3.4 Parallel Plans . 10
2.3.5 Makespan Scheduling . 12

2.4 Counterexample-Guided Abstraction Refinement 12

3 Related Work 15

4 Our Planner: PASAR 19
4.1 Encoding . 20
4.2 SAT Solver . 20
4.3 Decoding SAT Models . 21
4.4 Ordering Action Sets . 23
4.5 Forward Search . 24
4.6 Refining Abstractions . 25
4.7 Additional Features . 28

4.7.1 Same Makespan Limit . 29
4.7.2 Interleaving Search . 29

5 Experimental Evaluation 31
5.1 Implementation Details . 31

5.1.1 Grounding . 31
5.1.2 Greedy Best-First Search . 32

5.2 Experimental Setup . 34
5.2.1 Environment . 34

vii

5.2.2 Test Instances . 34
5.2.3 Variance . 35

5.3 Parameter Evaluation . 35
5.3.1 Basic Encodings . 36
5.3.2 SAT-Based Planning with CEGAR 39
5.3.3 Search . 44
5.3.4 PASAR . 45

5.4 Comparison . 49
5.4.1 Tuning Set . 50
5.4.2 Validation Set . 53

6 Conclusion 55
6.1 Summary . 55
6.2 Future Work . 55

A Complexity of Planning 57

B Reevaluating SAT Solvers 59

C Test Sets 61
C.1 IPC-Set . 61
C.2 Sparkle-Set . 62

Bibliography 63

1 Introduction

The construction of technical systems that can perform tasks autonomously has been
a popular field of research for a long time. Difficulties arise when the tasks to be
performed or the environments in which they must be carried out are too diverse to
anticipate all eventualities. These environments can be physical or purely virtual.
Automated planning – the problem of finding a sequence of actions that can be
performed to achieve a given goal – is one aspect of designing such systems. The
problem of automated planning is very generic and universal, therefore a broad range
of application domains are interested in the development of automated planners,
including robotics for industrial applications [RP12], spacecraft control [Fuk+97] and
transportation & logistics [Flo+13].
Despite the research that has been conducted since the seventies, computing power is
still a limiting factor in many applications. Current research focuses on finding ways
to make the planning process as efficient as possible.
Newly developed planners are evaluated in competitions such as the International
Planning Competition (IPC) or the Sparkle Planning Challenge. The latter aims to
create the best possible portfolio of current planners each year. An earlier version of
the planner presented in this thesis participated in 2019 and contributed 22.13% to
the final portfolio.1 2

The most common approach to planning is to define a graph that represents all states
the environment can be in, and which connects two states when the actor can perform
an action to transition between them. Then some form of heuristic search is used to
find a path to a state that fulfills the goal. If a path is found, it can be interpreted
as a plan for the original task.
An alternative approach is to use Boolean variables and the basic logical operators:
∨,∧,¬ to encode the planning problem. Then, one of the highly efficient SAT solvers
developed in recent years is used to find a satisfying assignment to the variables. This
assignment can be decoded into a plan to reach the goal.
The performance of these general approaches is highly dependent on the planning
domain which they are applied to. While current sophisticated heuristic searches
tend to solve more instances overall, there are a number of domains where SAT-based

1http://ada.liacs.nl/events/sparkle-planning-19/results.html
2Despite not supporting conditional effects and therefore failing on a third of the tested instances
by default.

1

http://ada.liacs.nl/events/sparkle-planning-19/results.html

1 Introduction

approaches dominate. This is one of the reasons for the popularity of portfolios in
planning competitions. In this work we will go beyond a simple portfolio and combine
the two approaches in such a way that they can benefit from each other’s strengths.

Planning Domains The diversity in the application of planners is also reflected in
the benchmark domains commonly used in planning competitions. A great variety
of tasks has representative planning domains; from planning how a robot bartender
should prepare cocktails and snacks for children with gluten intolerance, over choosing
a route for a hike, to editing the human genome.
Throughout this thesis we will use a planning task from the Trucking domain as an
example. In this domain, a fleet of trucks must deliver packages between cities.

Example 1. Trucking. In our example there are two trucks (T1, T2) and two packages
(P1, P2). T1 is at city A and T2 at city B. The packages are also at city B. They
must be delivered to city C. There are roads connecting cities (A,B) and (B,C). The
example is illustrated in figure 1.1. The trucks can pickup packages, move between
the cities and drop the packages again.
It would be easy enough to describe the road network as a graph and write a program
to solve the problem. We add two restrictions: the trucks can only transport one
package at a time, and we only have one-way streets connecting the cities. So T2 for
example may only move to city C. Now we would need to implement considerable
changes to our program. If we want to solve problems with more cities and more
trucks, we might need to find a faster algorithm and so on. Instead of writing a
specialized program, we can encode our trucking problem as a planning task and
then solve it with an automatic planner.

 A B C

Figure 1.1: An Instance of the trucking problem.

2

1.1 Methods and Results

1.1 Methods and Results
The planner we designed is a hybrid of a SAT-based planning approach and a forward
state space search.
The problem of solving the planning task within a limited number of steps is encoded
into a SAT formula. Interference between actions is not taken into account by the
encoding. Therefore, any number of actions can be executed in the same step as long
as each action is applicable. A SAT solver is used to solve the formula. If it succeeds
within its time limit, we will proceed to the next step. If this is not the case, the
formula for a higher number of steps is generated and the SAT solver is called again.
Since the used encoding is incomplete, the applied actions cannot necessarily be
ordered into a sequential plan. Whether a step can be ordered is determined by a
simple graph-theoretic test: for each step a graph of the actions is constructed and
their interferences are inserted as edges. A topological ordering of the graph is a valid
application order for the actions.
If all steps can be ordered, we found a valid plan. If not, a greedy best-first search
(GBFS) is started to find a path from the initial state to a goal state. The heuristic
function is based on the distance to the states which would be visited if the steps
could be executed without interference. If no plan is found within a very short time
limit, clauses are added to the formula to prevent the observed interferences from
occurring again. The SAT solver is called again and the cycle repeats.
A number of improvements to this initial approach have been identified and imple-
mented:

Refinement Strategy The clauses to prevent interferences are added to all steps.
Therefore, the SAT solver might be forced to change a solution to a step that pre-
viously could be ordered. We investigate different ways to generate clauses to limit
this effect.

Sparsification The SAT solver may use unnecessary actions to reach the goal. Those
actions can cause interferences and thus prevent the ordering of a step. Another
related problem is that the heuristic function used by the GBFS is over-defined: the
heuristic is based on the distance to complete states, while only a small subset of
the state is relevant for the plan. A sparsification routine is executed to reduce the
number of actions wherever possible and to identify the relevant subsets of the states.

Same Makespan Limit The complexity of some planning tasks arises solely from
interference between actions. Ignoring interference makes the planning task trivial.
We recognize this and trigger a fallback mechanism that adds more interference to
the encoding where necessary.

3

1 Introduction

Interleaving Search For some planning tasks not a single formula can be solved. In
these cases we essentially spend all of our time computing a heuristic function. These
instances are not necessarily hard, on the contrary, many of them can be solved in a
fraction of a second by a simple forward search. We have added the option to split the
computation time between the SAT solver and a simple GBFS that uses the distance
to the goal as heuristic until the first formula is solved.
With above improvements, our planner is very competitive. Thorough evaluation on
the IPC domains of the last years shows that PASAR can compete with SAT-based
planners (Madagascar [Rin14]) and heuristic searches (Fast Downward [Hel06]). On
many domains it matches the performance of the best tested solver and on some
domains it even outperforms its competition. Furthermore, the strength of PASAR
seems to differ from current heuristic search algorithms. Therefore, it might be ad-
vantageous to include PASAR in a portfolio of state-of-the-art solvers.

1.2 Structure of the Thesis
In chapter 2 we introduce the classical planning problem and define our notation
for planning tasks. In addition, we introduce basic planning algorithms and the
concept of counterexample-guided abstraction refinement. In chapter 3 we give a
brief overview of previous work on planning algorithms in general and the use of
CEGAR in planning in particular. Afterwards we will introduce our planner PASAR
in chapter 4. In chapter 5 we will evaluate the effect of different aspects of our
algorithm and compare it with other well known planners. Finally, we conclude this
work in chapter 6 and give some ideas for future work on the topic.

4

2 Preliminaries

This chapter introduces the problem of classical planning and defines our formal-
ism for planning tasks. Planning as a state space search is introduced and the ba-
sics of SAT-based planning are explained. Finally, we give a short introduction to
counterexample-guided abstraction refinement.

2.1 Classical Planning

There are different forms of the planning problem. We will deal with classical planning
as described by Ghallab, Nau, and Traverso [GNT16] and presented below.
Planning is the problem of finding a sequence of actions – a plan – that transforms
the world from some initial state to a goal state. The world is described by a set of
finite-domain variables and is:
Fully-observable The value of every variable is known.
Deterministic The exact effects of executing an action are known.
Static The world only changes as a result of the actions in our plan.
We assume that actions are instantaneous, and we therefore only need to deal with
their sequencing. Actions have preconditions that determine the states of the world
in which they can be applied and effects that determine how the world is changed
after an action is executed.
We use multi-valued planning tasks [Hel06] based on SAS+ [BN95], instead of the
classical STRIPS formalism [FN71] using propositional logic. Note that we devi-
ate slightly from multi-valued planning tasks by not distinguishing between prevail-
conditions and preconditions. Besides that, we do not handle conditional effects at
the moment.
A planning task Π is defined as a tuple Π = (X,O, sI , sG) where

• X = {x1, . . . , xn} is a finite set of state variables with finite domains dom(xi)
for i = 1, . . . , n. A (partial) state is a set of assignments of the form xi = v
where xi ∈ X and v ∈ dom(xi) and each variable is assigned at most once. In
a complete state each variable is assigned exactly one value. E is the set of all
states and S ⊆ E is the set of all complete states.
– A state s fulfills a state p iff p ⊆ s.

5

2 Preliminaries

– An assignment xi = v is called inconsistent with a state s iff xi = v′ ∈ s
and v 6= v′. Two states are called inconsistent if one of their assignments
is inconsistent with the other state.

– Given two states s, e ∈ E, we can get a new state by applying e to s.
The resulting state s′ is the union of the state s and e, except for the
assignments in s that are inconsistent with e.

s′ = s⊕ e := s ∪ e \ {xi = v ∈ s | xi = v is inconsistent with e}

• O ⊆ E × E is a finite set of actions. Each action a ∈ O is a pair of states
(pre(a), eff(a)) where pre(a) is the set of preconditions of a and eff(a) is the set
of effects of a.

• sI ∈ S is the (complete) initial state.
• sG ∈ E is a partial state and every state that fulfills sG is a goal state.

This allows the execution of actions and plans to be defined as follows:
• An action a is applicable in state s if pre(a) is fulfilled in s.
• execute(a, s) := s⊕ eff(a) is defined if action a is applicable in state s.
• A plan P of length k for a given planning task Π is a sequence of actions P =
〈a1, . . . , ak〉 such that sG ⊆ execute(ak, execute(ak−1 . . . execute(a2, execute(a1, sI)) . . .)).

As we deviate from the classic STRIPS formalism, we show that the problems we are
dealing with are still just as hard. More precisely, we prove that the word problem
for the language PlanMin = {〈Π, N〉 ∈ Ψ∗ | A plan of length N or less exists for
the planning task Π.} is PSPACE-complete in Appendix A.

Example 2. Trucking as planning. To describe our trucking problem as a planning
task, we first have to describe the world completely with variables.

• xT1 and xT2 are the locations of the trucks with
dom(xT1) = dom(xT2) = {LA, LB, LC}.

• xP1 and xP2 are the locations of the packages with
dom(xP1) = dom(xP2) = {LA, LB, LC , T1, T2}.

• xe1 and xe2 are Boolean variables that indicate whether the trucks are empty
or not.

Additionally, we have the constant Boolean variables xr(u,v) for u, v ∈ {A,B,C} to
describe the roads the trucks can drive through. Constant means that they cannot
change their value during the planning process (they are not affected by any action).
We can use the variables to describe the initial state
sI = {xT1 = LA, x

T2 = LB, x
P1 = LB, x

P2 = LB, x
e1 = true, xe2 = true} ∪R.

In R all road-variables are set to false except xr(A,B) and xr(B,C) which are set to
true.

6

2.2 Planning as State Space Search

Note that every variable is assigned a value and sI is therefore a complete state. The
goal is described by the partial state sG = {xP1 = LC , x

P2 = LC}.
O consists of three kinds of actions. For each i, j ∈ {1, 2} and `, `′ ∈ {A,B,C} we
have:
• pickup(Ti, Pj, L`) = ({xTi = L`, x

Pj = L`, x
ei = true}, {xPj = Ti, x

ei = false})
• move(Ti, L`, L`′) = ({xTi = L`, x

r(`,`′) = true}, {xTi = L`′})
• drop(Ti, Pj, L`) = ({xTi = L`, x

Pj = Ti}, {xPj = L`, x
ei = true})

A possible plan for this planning task consists of the following seven actions:
P = 〈 pickup(T2, P1, B),move(T2, B, C), drop(T2, P1, C),move(T1, A,B),

pickup(T1, P2, B),move(T1, B, C), drop(T1, P2, C) 〉

2.2 Planning as State Space Search

The simplest approach to planning is a forward state space search. We can represent
the state space of a planning task as a directed graph G = (V,E). The nodes are all
complete states (V = S) and we have an edge from state u to state v, if an action
can be executed in u that leads to v: E = {(u, v) | u, v ∈ V, ∃a ∈ O : pre(a) ∈ u and
u⊕ eff(a) = v}.
The edges are labeled with the corresponding action. A path from the initial state
to a goal state can be interpreted as a plan. Note that multiple actions can connect
two nodes.
Although easy to define, the graph can be huge even for a simple planning problem.
Consider trucking example 2 again. If we were dealing with 15 cities and 10 trucks,
each delivering 5 packages, the size of S would already exceed the highest estimates
for the number of particles in the observable universe.1

In addition to the large search space and the possibly long plans, we may have to
deal with high branching factors. Depending on the domain, some instances from the
IPC -set may exceed a branching factor of 18 000 , i.e. up to 18 thousand actions may
be applicable in a single state.
A number of different graph search algorithms have been explored for planning. For
a detailed introduction we refer to the work of Ghallab, Nau, and Traverso [GNT16].
For non-optimal planning, greedy best-first search (GBFS) is the most common ap-
proach [GNT16]. GBFS is a depth-first search, which explores the best successor of
the current node according to some heuristic function next. Pseudo-code for a GBFS
in the context of planning and a discussion of some important implementation details
are given in section 5.1.2.

1∼ 1510 × (15 + 10)50 × 210 > 1080 (https://www.popularmechanics.com/space/a27259)

7

https://www.popularmechanics.com/space/a27259

2 Preliminaries

2.3 Planning as Satisfiability

Besides state space search, SAT-based planning algorithms have proven to be very
successful. In the following we will introduce the basics.

2.3.1 Boolean Satisfiability Problem

The Boolean Satisfiability Problem (SAT) is the problem of deciding whether a given
Boolean formula can be satisfied with a truth assignment to the variables. It was the
first problem to be proven to be NP-complete by Cook [Coo71] and Levin.
A Boolean variable can take one of two values: true or false. A literal is a Boolean
variable a or its negation: a. A clause is the disjunction (OR) of a finite number
of literals, e.g., (a ∨ b ∨ c). A Boolean formula (in conjunctive normal form) is the
conjunction (AND) of a finite number of clauses, e.g., (a ∨ b ∨ c) ∧ (a ∨ c).
Given an assignment of truth values to the variables; a formula is satisfied if all of
its clauses are satisfied. A clause is satisfied if at least one of its literals is satisfied.
A positive literal (a) is satisfied if the value of its variable is true and a negative
literal is satisfied if the value is false. A satisfying assignment is called a model of
the formula.
SAT solvers determine the satisfiability of a formula and return a model if possible.

2.3.2 Incremental SAT Solving

In a lot of applications (including planning), a SAT solver will solve not just a single
formula, but a sequence of incrementally generated SAT formulas.
The idea of incremental SAT solving is to add the ability to expand a formula that
the SAT solver has already tried to solve. The advantage over just solving a new
formula every time is that the SAT solver can reuse what has already been learned
in previous runs.
In incremental SAT solving, clauses can be added to a formula but never removed.
For this reason assumptions are added. A set of assumptions A consists only of
literals. When the SAT solver is called, it tries to find a model that satisfies the
formula, while all assumptions in A hold. Unlike clauses, assumptions can be added
and removed at will. Note that we can only assume literals, not clauses. However,
this is no limitation. If we want to add a clause C that we plan to remove later, we
add it to the formula with a new toggle variable: (T ∨ C). Additionally, we add the
literal T to the assumptions. If we want to remove the clause C, we simply remove
the literal T from the set of assumptions. The SAT solver can satisfy the clause by
assigning true to the variable T .

8

2.3 Planning as Satisfiability

2.3.3 Encoding Planning as SAT

The basic idea of solving planning as SAT [KS92] is to encode the planning problem
Π up to a certain number of steps N as a Boolean formula Fi in such a way that Fi

is satisfiable if and only if there is a plan with i steps or less. Additionally, a valid
plan must be constructible from a model of Fi.

N := 0 →
Π →

UNSAT:
N++

SAT:
1 -2 3 -4 5. . .

(1 ∨ 2)∧
(2 ∨ 3 ∨ 7)∧
. . .

1. a4
2. a6
3. a3
. . .

Plan

SAT
Solver

Decode
Encode

for n steps

Figure 2.1: Planning as Satisfiability.

In a standard SAT encoding we have state and action variables for each timestep
t = 1, . . . , N . For each action ai ∈ O a Boolean variable at

i is introduced, which
indicates the execution of ai in timestep t. For each state variable xi ∈ X and each
value vj ∈ dom(xi) we introduce st

i,j. In each timestep one of the st
i,j will be set per

variable to encode its value (one-hot encoding). To reduce the number of variables
needed, we only introduce one variable st

i if | dom(xi)| = 2.
The following constraints are encoded:
(i) The values of state variables in the first step are consistent with the initial state.

∀xi ∈ X :
∧

vj∈dom(xi)

s0

i,j if xi = vj ∈ sI

s0
i,j otherwise

(ii) The values of the state variables in the last step are consistent with the goal
conditions. If an incremental SAT solver is used, the literals are added to the
assumptions, not the formula, so that they can be removed if the makespan is
increased.

∀xi = vj ∈ sG : sN
i,j

(iii) In each step t each state variable assumes exactly one value from its respective
domain. For variables with domain size two, the clauses are not necessary.

∀xi ∈ X : ∨
vj∈dom(xi) st

i,j

∀xi ∈ X : ∧
vj ,vk∈dom(xi) st

i,j ∨ st
i,k

9

2 Preliminaries

(iv) When an action is executed in step t, its preconditions are satisfied in step t
and its effects are fulfilled in step t+ 1.

∀ak ∈ O, ∀xi = vj ∈ pre(a) : at
k ⇒ st

i,j

∀ak ∈ O, ∀xi = vj ∈ eff(a) : at
k ⇒ st+1

i,j

(v) If the value of a state variable changes between steps t and t + 1, then there
must be an action in step t causing this change by one of its effects (frame
axioms). We introduce the value support for this: the value support VSupp
maps each assignment to the set of actions that have this assignment as an
effect: a ∈ VSupp(v = x)⇔ (v = x) ∈ eff(a).

∀xi ∈ X, ∀vj ∈ dom(xi) : st
i,j ⇒ st+1

i,j

∨
ak∈VSupp(xi=vj)

at
k

(vi) At most one action is executed in each step t.∧
ai,aj∈O,

i 6=j

at
i ∨ at

j

Essentially we are solving PlanMin instances encoded as SAT until we find one that
is satisfiable. Note that we create variables and clauses for each t ∈ [1, . . . , N]. In the
PlanMin instance N is encoded logarithmically, so our SAT encoding is exponential.
Since SAT is in NP and PlanMin is PSPACE-hard, we cannot expect to do better.
An encoding that could be computed in polynomial time would imply PSPACE =
NP.
The presented encoding is called sequential since only one action may be executed in
each step and the actions are therefore in a fixed order. We can relax constraint (vi)
to allow multiple actions to be executed in parallel.

2.3.4 Parallel Plans

A parallel plan is a sequence of action sets, one for each step. It can be advantageous
to allow the execution of several actions in one step, since longer plans can be found
by solving smaller formulas. A parallel plan is only used to represent one or more
sequential plans and does not suggest that actions can actually be physically executed
in parallel. The length of a parallel plan is called makespan.
We must ensure that the actions executed in each step can be ordered into at least
one sequential plan. If the clauses encoding constraint (vi) are simply omitted, this
is no longer the case. A satisfiable formula does not even imply the existence of a
plan. Consider the planning problem described in example 2. Encoding it using only

10

2.3 Planning as Satisfiability

the constraints (i) to (v) for two steps yields a satisfiable formula. By decoding the
model, we obtain the actions performed in each step:

1 {pickup(T2, P1, LB), pickup(T2, P2, LB),
move(T2, LB, LC)}

2 {drop(T2, P1, LC), drop(T2, P2, LC)}

 A B C

Figure 2.2: An invalid parallel plan: a truck can only load one package at a time.

The state after executing the first step cannot be reached (see figure 2.2), because
there are several packages in the same truck. The two pickup actions are applicable
in the initial state, however, there is no way to arrange the actions into a sequential
plan without one destroying the preconditions of the other.
We introduce two semantics for parallel plans based on [RHN06]: a parallel plan
satisfies the ∀-step semantics if every possible ordering of the actions within each
step results in a valid plan.
We can still achieve higher parallelism. Consider step 1 from the invalid plan example
but with only one of the pickup actions: only one of the two possible orderings results
in a valid plan, because pickup(T, P, LB) requires the location of the truck to be LB

and move(T, LB, LC) changes the location to LC .
The even more general ∃-step semantics also allow parallel execution of actions as
long as there is any ordering of action within each step that leads to a valid plan.

11

2 Preliminaries

2.3.5 Makespan Scheduling

Up to this point, we have suggested that in order to find a plan, one checks all formulas
F0, F1, F2, . . . until a formula can be solved. This is called sequential scheduling and
is indeed very common: “for instance the GraphPlan algorithm [Blum and Furst
1997] and planning as satisfiability [Kautz and Selman 1996] and related approaches
[Rintanen 1998; Kautz and Walser 1999; Wolfman and Weld 1999; van Beek and
Chen 1999; Do and Kambhampati 2001], have without exception adopted a sequential
strategy for plan search” – Rintanen, Heljanko, and Niemelä [RHN06].
Sequential scheduling always finds the plan with the minimum makespan. However,
this generally does not correspond to any practically interesting optimality criterion,
especially in the case of parallel plans.2 When it comes to finding any plan, we want
to select a makespan for which the formula can be solved in the shortest possible
time. An important observation in this context is that “the satisfiability tests for the
last unsatisfiable formulae are often much more expensive than for the first satisfiable
formulae” [RHN06]. The makespan for the first satisfiable formula is not a function
of the problem size, but varies greatly between different domains and cannot be
calculated efficiently. However, selecting a makespan that is too high will result in
a large formula and increase the probability that the SAT solver gets lost in a part
of the search space that does not contain a solution. Different scheduling algorithms
that decide how much time the SAT solver spends on each formula have been studied.
See Rintanen, Heljanko, and Niemelä [RHN06] for more details.

2.4 Counterexample-Guided Abstraction Refinement

Counterexample-guided abstraction refinement (CEGAR) was first proposed by Clarke
et al. [Cla+00] for the purpose of model checking, i.e. to check whether a model of a
system meets a given specification. The idea is to start with a coarse abstraction of
the model and refine it iteratively only where necessary to combat the state explosion
problem for larger applications.
In the context of model checking, CEGAR starts by automatically generating an
initial abstraction that has the following property: the abstraction fulfilling the spec-
ification implies that the original model also meets the specification.
If the abstraction does not match the specification, an abstract counterexample is gen-
erated. The next step is to check whether the abstract counterexample corresponds to
at least one actual counterexample. If this is the case, the counterexample is returned
showing that the model does not meet the specification. If no actual counterexample

2This is the opinion of the author. In the IPC-4 and IPC-5, a plan was considered optimal if it
fulfilled ∀-step semantics with a minimal makespan.

12

2.4 Counterexample-Guided Abstraction Refinement

can be identified, the abstract counterexample is called spurious. In this case the
abstraction is refined to eliminate the spurious counterexample.
As both automated planning and model checking have a combinatorial search space,
CEGAR has also been adopted in planning approaches. To avoid confusion, we will
explain some technical terms we use when talking about CEGAR in connection with
planning. When using model checking e.g. for the application of software verification,
the goal is to find a counterexample e.g. a sequence of instructions that leads to an
index out-of-bounds exception, or to prove that no such sequence exists. For planning,
the equivalent of a counterexample is a plan i.e. a sequence of actions leading to a
goal state. Proving that there is no plan may be interesting but is rarely the focus of
building a planner. Instead of abstract counterexamples, we will talk about abstract
plans and use the term counterexample only in the context of refining an abstraction.

13

2 Preliminaries

14

3 Related Work

This chapter presents an overview of both forward search and SAT-based planners
and an attempt to combine them. In addition, we discuss the previous use of CEGAR
in connection with planning.

Heuristic Search Currently the most successful planners use some kind of heuristic
search. An early example of such a planner is Fast-Forward [Hof01]. Fast-Forward in-
troduced the relaxed graphplan heuristic (delete relaxation). This heuristic estimates
the cost to reach the goal from a visited state by constructing a relaxed plan from
the visited state to the goal. In the relaxed plan, the negative or delete effects of
actions are ignored.1 The performance of this heuristic and thus also of Fast-Forward
depends strongly on the interaction of the subgoals and thus the planning domain.
One of the more recent and very successful planners is Fast Downward [Hel06]. Varia-
tions of Fast Downward performed very well in recent planning competitions, winning
the Satisficing and Cost-bounded track of the IPC 2018 [Sei18] and dominating the
leaderboard (depending on the test set2) in the Sparkle Planning Challenge 2019
[Sei19].
The success of the Fast Downward planning system is the result of several factors.
Basic operations are implemented very efficiently, such as the successor generation,
which allow a forward search to quickly generate the set of applicable actions.
But most important for the performance of Fast Downward is the causal graph heuris-
tic. To compute it efficiently, the critical information of the planning task is compiled
into domain transition graphs and a causal graph in a preprocessing or knowledge
compilation step. The computation of the heuristic is strongly connected to hier-
archy, which is often encountered in planning problems. Indeed, the computation
requires that the causal graph is acyclic, which corresponds to a strict hierarchical
structure in the planning task. The computations mentioned all rely on first trans-
lating a planning task into a multi-valued representation, which makes many of the
implicit constraints of a propositional planning task explicit.

1The equivalent in our formalism would be that variables can assume multiple values at once and
that they retain all the values assigned to them.

2http://ada.liacs.nl/events/sparkle-planning-19/leaderboard.html

15

http://ada.liacs.nl/events/sparkle-planning-19/leaderboard.html

3 Related Work

SAT-based Planning SAT-based planning follows a fundamentally different ap-
proach than heuristic search-based planning. Kautz and Selman [KS92] introduced
the idea of encoding a planning task into a sequence of Boolean formulas and then
solving it with a SAT solver. Since then a lot of work has been put into improving this
method. For example, many increasingly compact and efficient encodings have been
developed: Kautz and Selman [KS92] originally proposed a sequential encoding. This
was replaced by parallel plans without action interference, later formalized as ∀-step
semantics [RHN06]. For the fourth and fifth international planning competition, the
objective of the newly introduced optimal track was to find parallel plans that meet
∀-step semantics and have a minimal number of steps.
Rintanen, Heljanko, and Niemelä [RHN06] proposed to relax the constraints on par-
allelism and introduced ∃-step semantics to reduce the number of SAT solver calls
necessary to find a plan. ∃-step semantics allow the parallel execution of actions
if they can be ordered into a sequential plan. Wehrle and Rintanen [WR07b] later
expanded on that idea by relaxing ∃-step semantics, allowing actions to be executed
in a step where they are initially not applicable. Balyo [Bal13] further relaxed the
constraints by allowing effects of the actions applied in one step to cancel each other
out.
Another approach to encoding a planning task builds on the work of Blum and Furst
[BF97]. They introduced planning graphs in which both assignments and actions are
represented by nodes in alternating layers. Kautz and Selman [KS99] were the first
to combine the potential of SAT solvers with graph-based planning in their solver
Blackbox. It constructs the planning graph for a number of layers, encodes it into a
Boolean formula and uses a SAT solver to solve it. If the SAT solver dismisses the
formula as unsolvable, the number of layers in the planning graph is increased.
Besides enhanced encodings, different SAT solver schedules [RHN06] and using incre-
mental SAT solving [GB17] had an impact on the performance of SAT-based planning.
Besides his theoretical work, Rintanen also implemented Madagascar [Rin14]. This
SAT-based planner uses a non-incremental SAT solver that was specifically written
for this application. On the one hand, it has the advantage of using a heuristic that is
specialized for planning [Rin12] and other specializations. On the other hand it lacks
some important features that have been developed for SAT solvers in recent years.
Modern SAT solvers are based on the method of Conflict-Driven Clause Learning
(CDCL). For a good introduction we refer to Biere et al. [Bie+09]. The core principle
is to use a specialised heuristic to choose a variable and assign a truth value to it.
This assignment is propagated through all clauses. The process is repeated until
either a model or a conflict is found. Learned conflicts are remembered for the rest
of the solving procedure. The popular SAT solvers Glucose [AS09], MiniSAT [ES03],
Lingeling [Bie17] and PicoSAT [Bie08] are all based on CDCL. The internal SAT
solver Madagascar uses is also based on CDCL.

16

Unifying SAT-based planning and forward search The only planner that explicitly
combines SAT-based planning and forward search is CO-PLAN [RGP08]. It deals
with optimal planning and was designed after the sixth international planning com-
petition introduced action costs for the optimal track. It attempts to build on the
success of the descendants of Blackbox, that dominated the optimal track in previous
competitions.
CO-PLAN starts in the same way Blackbox does: it constructs the planning graph,
encodes it into a Boolean formula and solves it with a SAT solver to get a step-optimal
parallel plan. It then uses the cost of this plan to bound a complete forward search
in the state space.

CEGAR in planning Counterexample-guided abstraction refinement (CEGAR) was
originally introduced by Clarke et al. [Cla+00] for the purpose of model checking. It
has been applied to optimal classical planning by Seipp [Sei12]. They proposed an
online heuristic that uses CEGAR to improve its accuracy during search.
The paper “Counterexample-guided Planning” by Chatterjee et al. [Cha+05] used
CEGAR for planning in adversarial and probabilistic environments with perfect in-
formation. This model differs form classical planning both in the problems that can
be described and the approaches to solving it.
To the best of our knowledge, we are the first to introduce the CEGAR paradigm to
SAT-based planning.

17

3 Related Work

18

4 Our Planner: PASAR
PASAR is a hybrid between a SAT-based planning algorithm and a forward state
space search. We try to combine the strength of both approaches. A graph-based
search can quickly explore large parts of the state space and is able to find very long
plans. Whereas a sophisticated SAT solver can far surpass it in solving combinatori-
ally hard problems that are smaller in size.
We use a SAT solver to find a model for an abstraction of the planning task. Such
a solution cannot necessarily be decoded into a plan. Instead, we use it to define a
heuristic function that is used during a state space search. If the search does not find
a plan, we use the information collected to refine our abstraction.
To increase synergy, both the search and the SAT solver can learn new actions and
add them to the problem.
The outline of the algorithm is depicted in figure 4.1. In the following we will discuss
the different components.

SAT
SolverEncode Decode

OrderSearchRefine

N := 0 →
Π →

1. a6, a4
2. a3, . . .
3. a6
. . .

Abstract
Plan

1. a4
2. a6
3. a3
. . .

Plan

1. a4
2. a6
3. a3
. . .

Plan

(2∨3∨7) ∧. . .

UNSAT:
N++

(2 ∨ 3 ∨ 7) ∧ (3 ∨ 5) ∧. . .

Counterexample

SAT:
1 -2 3 -4. . .

Failure

Success Success

Failure

Figure 4.1: PASAR.

19

4 Our Planner: PASAR

4.1 Encoding
To obtain the encoding for our abstraction, we make two changes to the standard
encoding presented in the introduction. First, we omit the at-most-one-constraint
(vi) for the actions.
Therefore, any set of actions may be executed in one step as long as their preconditions
hold and the effects are fulfilled in the next state. As we explained in section 2.3.4,
a model of the SAT formula cannot be decoded into a valid plan in all cases. The
encoding is therefore incomplete.
Second, we want to use incremental SAT solving to allow the SAT solver to use actions
learned during the planning process. For new actions, we will need to add clauses to
ensure that their preconditions are fulfilled and that their effects hold (iv) – we can
simply add these. Additionally, we have to modify the frame axioms (v). Otherwise,
new actions could not change the value of a variable because they were not part of the
originally computed value support for that assignment. To make the frame-clauses for
each assignment xi = vj removable, we add a new variable T 0

i,j during initial creation.
We use the same variable T 0

i,j for each timestep t. The literal T 0
i,j is added to the set

of assumptions A that are activated before starting the SAT solver.

st
i,j ⇒ st+1

i,j

∨
ak∈VSupp(xi=vj)

at
k ∨ T 0

i,j

If the value support for an assignment xi = vj is updated, we remove the literal T k
i,j

for the highest possible k from A and add the literal T k
i,j. Then the frame-clause with

the new value support is added, using a new variable T k+1
i,j . The literal T k+1

i,j is added
to A to activate the clause.
Many abstractions can be used in our planner as long as they can be refined by
simply adding additional clauses. We will focus on the clauses dealing with action
interference, as they generally contribute most to the size of the formula – even when
a linear size encoding is used. We will realize ∃-step semantics by the way in which
we order abstract plans. Furthermore, we will do so without imposing a fixed order
on the actions, as is common when encoding ∃-step semantics. Rintanen, Heljanko,
and Niemelä [RHN06] presented two encodings without a fixed order. However, they
deemed them impractical because of their size and did not present experimental
results for them.

4.2 SAT Solver
We use IPASIR, a generic interface for incremental SAT solving [Bal+16]. A number
of popular SAT solvers support IPASIR; we tested Glucose [AS09], MiniSAT [ES03],

20

4.3 Decoding SAT Models

Lingeling [Bie17] and PicoSAT [Bie08].

Makespan scheduling We discussed makespan scheduling before in section 2.3.5.
The same principles apply even if we only solve an abstraction. We use a constant
timeout for each formula and increase our makespan N exponentially similar to Rin-
tanen [Rin14]: N := max(N + 1, γN), where γ > 1 is a constant that controls the
exponential makespan-increase.
Instead of a timeout, it is also possible to limit the number of conflicts (CDCL1) that
may occur. This is not supported in the IPASIR interface and can currently only
be used with Glucose and MiniSAT. For testing purposes this option is preferred,
because a timeout based on wall time can lead to a higher variance in runtimes.
After some (very high) makespan is reached, we use an infinite timeout. If the SAT
solver is complete, this guarantees the completeness of PASAR, since the abstraction
eventually approaches a standard SAT encoding.

4.3 Decoding SAT Models
Unlike traditional SAT-based planning, a model for a formula cannot be decoded into
an actual plan. Instead, it is decoded into an abstract plan consisting of a sequence
of states and intermediate action sets. See figure 4.2 for an illustration.
The action sets will be ordered into a sequential plan where possible and the states
from the abstract plan will be used to define a heuristic for the search phase.

S0 S1

A0

Si Si+1

Ai

... Sk−1 Sk

Ak−1

...
Ak−2Ai+1

Figure 4.2: An abstract plan. S0 is the initial state and Sk is a goal state. Each action in
Ai is applicable in state Si and executing all actions in Ai results in the state
Si+1.

Sparsification This step is not strictly necessary, but can be advantageous as a
preprocessing step for the following phases of our algorithm.
The states in our abstract plan are complete. We want to identify the subsets of the
states that are actually relevant for reaching the goal. Additionally, a SAT solver may
be inclined to set a lot of action variables to true to satisfy the formula. Therefore,
an abstract plan may contain a lot of actions that are not necessary to reach the goal.

1Conflict-Driven Clause Learning is a technique used in SAT solvers. For an introduction to the
topic we refer to Biere et al. [Bie+09]. For our purposes, it is sufficient to understand the number
of conflicts as a metric similar to explored nodes in a graph search.

21

4 Our Planner: PASAR

1 Procedure Sparsification(Π = (X,O, sI , sG), P = 〈S0, A0, . . . , Ak−1, Sk〉)
2 Sk = sG

3 for i = (k − 1), . . . , 0 do
4 r = Si+1
5 for a ∈ ai do
6 if eff(a) ∩ r 6= ∅ then
7 r = r \ eff(a)
8 Si = Si ∪ pre(a)
9 else

10 Ai = Ai \ a
11 end
12 end
13 Si = Si ∪ r
14 end

Algorithm 1: Abstract plan sparsification routine.

A sparsification routine is executed to identify the relevant subsets of the states and
action sets. Algorithm 1 is illustrated in figure 4.3.

A0 Ak−1Ak−2Ak−3

. . .

Figure 4.3: Sparsification of an abstract plan: The states are represented as ellipses. The
relevant assignments are colored green. The actions between the states are
pointed at by their precondition and point at their effects. We iterate over
the actions from top to bottom.

Starting with the final state Sk, we move backwards along the abstract plan and keep
only the assignments and actions that are relevant for the plan. For the final state
sk the relevant assignments are sG. We then iterate over the actions leading to this
state and consider their effects: if the action has a relevant effect, we keep the action
and remove its effects from the set of relevant assignments r that have not yet been
fulfilled. The subset of relevant assignments for the next (towards the initial) state
consists of the relevant assignments that could not be fulfilled in this step and the
preconditions of the actions we retained. On a conceptual level, this procedure is
similar to the backwards search that is used to extract a plan from a planning graph
[BF97].

22

4.4 Ordering Action Sets

The result of the sparsification depends on the order in which we iterate over the
action sets. To get a better result with fewer actions in the action sets or fewer
assignments in the states, a problem similar to finding a hitting set can be solved
here. We have left this to future work.
It is not entirely obvious that the relevant subsets of states we assign in line 13 are
actually subsets of the state. For the preconditions we add, we can rely on the clauses
in our encoding that enforce the fulfillment of preconditions. For an assignment in
the set of unfulfilled preconditions r we know that it is necessary either for the goal
or for the application of a following action and that no subsequent action has it as
an effect; thus, it must already be part of the state because the frame axioms are
encoded.

Step Reduction After the sparsification, we check if each set of actions Ai is nec-
essary to reach the goal. More specifically, we try to remove Ai and si+1 from the
abstract plan and execute the remaining plan. All subsequent steps where an action
in an action set is no longer applicable are removed in the same way. If all goals are
still satisfied in the end, the shortened abstract plan is kept and we try to remove
the next step. Conceptually, we contract the action sets into single actions and then
execute a greedy action elimination algorithm [NM10].

4.4 Ordering Action Sets
The action sets in the abstract plan already constitute a valid parallel plan, if and
only if the action set in each step can be ordered into a sequential plan to get from
one (partial) state to the next. Checking whether an action set can be ordered can
be done efficiently with a simple graph-theoretic test: an action set can be ordered if
and only if the disabling graph for the actions is cycle-free. The disabling graph2 G
for a set of actions A is defined as:

G = (A, {(a1, a2) ∈ A2 | a1 6= a2, pre(a1) is inconsistent with eff(a2)})

A directed edge (a1, a2) indicates that a1 requires a precondition that is removed by
a2; in other words, a1 must be applied before a2. Actions that induce a cycle in the
disabling graph are called interfering. If an action set contains no interfering actions,
any topological ordering is a valid plan to get from one step to the next.
After an abstract plan is found, we construct the disabling graph for the action set
in each step and try to find a topological ordering by using a DFS that tracks the

2This definition differs slightly from the definition introduced by Rintanen, Heljanko, and Niemelä
[RHN06]. First, this work does not deal with conditional effects and disabling graphs are only
used for actions that are applicable in the same state. Second, the edges are inverted because we
came up with the idea independently and the authors do not want to get confused while writing.

23

4 Our Planner: PASAR

departure time of the nodes [Tar76]. If all steps can be ordered, ∃-step semantics are
fulfilled and we can order the action sets into a sequential plan.

Learning actions Even if not all action sets can be ordered, we can still benefit
from those that can. If we succeed in ordering an action set, the action sequence is
contracted into a single action and added to the planning task. The action sequence
is saved as a witness for the correctness of the added action.
If at any point a plan for the actual planning task is found, the actions that were not
part of the original planning task are recursively replaced by their witnesses until we
return a plan that contains only original actions.
Adding learned actions can be advantageous because they directly transition from
one partial state in the abstract plan to another. For the SAT solver, they have the
additional advantage that the same original action can be applied several times in
one step. They can also be used by the search algorithm in the next phase.

4.5 Forward Search
This phase is optional. We can switch off the search completely and are left with a
CEGAR approach to SAT-based planning – we call this configuration pure PASAR.
It simply extends the formula if an action set cannot be ordered. Eventually, the
abstraction is refined enough that one of the abstract plans can be ordered completely.
In the search phase, a greedy best-first search is started on the space of complete
states. The goal is to find a plan from one partial state to the next where the plan
proposed by the SAT solver cannot be ordered. But the search is not forced to visit a
state that may actually be unreachable. If the search reaches a specified time limit or
exceeds a specified number of nodes it is allowed to explore, it returns unsuccessfully
and the abstraction is refined. More details on the implementation of our GBFS can
be found in section 5.1.2.

Heuristic Function To guide the search along a similar path through the search
space as suggested by the abstract plan, we use a heuristic function based on guide
states. The guide states H = s0, . . . , sk are the partial states of the abstract plan.
To estimate the gain of executing an action a in the current state s we iterate over
the guide states and the effects of the action. An effect is considered beneficial if
it establishes a new assignment that is part of the guide state, and detrimental if
it destroys an already fulfilled assignment that is part of the guide state. For more
details, see section 5.1.2.
To encourage the search to move forward, we only consider guide states that follow
the latest visited guide state in the abstract plan. In addition, we assign more weight

24

4.6 Refining Abstractions

to the guide states closer to the goal. How strongly the search is encouraged to focus
on the guide states that are closer to the goal is controlled by a constant γ ≥ 1.

gain(a, s,H) =
k∑

i=lastV isited+1
γi

∑
x=v∈eff(a)

1, if x = v 6∈ s, x = v ∈ si

−1, if ∃u ∈ dom(x) : v 6= u, x = u ∈ s, x = u ∈ si

0, otherwise

If we did not execute the sparsification routine before, the gain function would mainly
compute the distance to parts of the guide states that are not actually relevant to
the plan, and it would be less likely that the search would actually visit a state that
fulfills a guide state.
The search can use the learned actions that have been added to the problem and
is encouraged by the heuristic to do so: learned actions have a high heuristic value
because they directly transition a complete state that fulfills a guide state to a com-
plete state that fulfills the next one in the current abstract plan. Previously learned
actions are usually still useful to reach the goal.
In addition, the search can learn actions: if a guide state is visited and the path from
the last guide state visited is sufficiently long, the plan from one guide state to the
next is contracted into a single action and added to the planning task. Those plans
can be thousands of actions long and allow the SAT solver to make jumps in the
search space that it otherwise could not.

4.6 Refining Abstractions

If the search does not find a plan within the time limit, the abstraction is refined. The
action sets that we could not order or skip during the search show that the abstract
plan is spurious and serve as a counterexample. For each step t, clauses are added to
the formula to prevent interfering actions from being used in the same action set of
the next abstract plan the SAT solver finds.
Many encodings have been proposed for SAT-based planning that differ only in the
way they deal with action interference. All of them could be used to refine our
abstraction. We have implemented three. For all of them we iterate over the action
sets in the counterexample and construct the (cyclic) disabling graph. Different
clauses are added depending on the chosen refinement strategy:

Foreach The standard quadratic-size encoding to deal with interference. Each edge
(a1, a2) in the disabling graph is added as a clause at

1∨at
2. Clauses for cycles of length

two are only added once.

25

4 Our Planner: PASAR

Cycle Break This refinement strategy identifies a subset of the clauses Foreach adds
that is sufficient to prevent all cycles. Each action in the disabling graph is assigned a
rank. The rank is assigned by the same algorithm based on DFS departure times we
used when ordering action sets in section 4.4. We then iterate over all edges (a1, a2)
and generate clauses that prevent the execution of the actions in the same step if
rank(a1) < rank(a2). Essentially, we add clauses for all back edges that are defined
by the spanning tree constructed by the DFS. Figure 4.4 illustrates the process.

0
1

2

34

Figure 4.4: Illustration of the Cycle Break refinement strategy. The rank assigned to
each node is given. Clauses are generated for the highlighted edge only.

Cordless Cycles This encoding has not been used as a normal encoding before. It
would implement ∃-step semantics without imposing a fixed order on the actions, but
the number of clauses can be exponential in the number of actions. The advantage
over asymptotically smaller encodings [RHN06] is that no auxiliary variables are
necessary. Since we do not need to generate clauses for all actions, but only for the
(normally small) action sets, the asymptotically exponential size is not important.
Given a disabling graph G = (V,E) we identify all sets of nodes C ⊆ V that induce
a cordless cycle in G. A cord is an edge that connects two non-neighbouring nodes of
a cycle. For each step the clause ∨

ai∈C a
t
i is added, ensuring that at least one action

in each cycle must not be executed. Figure 4.5 shows that an exponential number of
clauses may be necessary.
It is sufficient to add clauses for cordless cycles only: consider a cycle with a cord.
The cord skips a number of nodes of the cycle. Replacing them with the cord results
in a smaller cycle. Recursive repetition yields a cordless cycle whose nodes are a
subset of the original cycle. Therefore, the clause for the original cycle would in no
way restrict the solution.
The advantage of this refinement strategy over the Foreach strategy and to a lesser
extend the Cycle Break strategy is that clauses added to prevent a flaw in one step
cannot force the SAT solver to change an action set that can be ordered in another
step.

Example 3. Trucking with PASAR. Let us return one last time to the trucking
problem presented in example 1. The encoding can be solved for makespan two.
Decoding it gives us the action sets of the abstract plan:

26

4.6 Refining Abstractions

Figure 4.5: Graph with an exponential number of cordless cycles.

1 {pickup(T2, P1, LB), pickup(T2, P2, LB), move(T2, LB, LC)}

2 {drop(T2, P1, LC), drop(T2, P2, LC)}

Figure 4.6 is an attempt to depict the states in the abstract plan after the execution
of the sparsification routine. The sparsification does not remove any action.

Next we try to order the action sets. The disabling graph for the first action set is
shown in figure 4.7. It cannot be ordered because the two pickup actions interfere
with each other. The disabling graph for the second action set does not contain any
edges.

Since we have not found a plan yet, the search is started. For this example we assume
that it failed and did not visit a guide state. The next step is to refine the abstraction.
The first action set is the counterexample. Different clauses are added depending on
the chosen refinement strategy. The Cordless Cycles strategy would identify the
cycle of length two involving the two pickup actions and add a clause to ensure that
at most one of the actions is executed in the same step. In this example, Cycle Break
would generate the same clauses.

The SAT solver determines that with this clause added for each step, the formula
for makespan two can no longer be solved. Increasing the makespan to three yields
the following abstract plan. In this abstract plan all action sets can be ordered and
PASAR returns a valid plan.

1 {pickup(T2, P1, LB), move(T2, LB, LC), move(T1, LA, LB)}

2 {drop(T2, P1, LC), pickup(T1, P2, LB), move(T1, LB, LC)}

3 {drop(T1, P2, LC)}

27

4 Our Planner: PASAR

 A B C

Figure 4.6: In the final state only the box positions (the goal) are relevant. The two
drop actions in the second action set satisfy both. Their preconditions are the
location of the boxes in the truck and the position of the truck itself. In the
first step the relevant assignments are the box and truck positions being LB

and the truck being empty.

T2 = LB

move

T2, LB, LC

pickup

T2, P1, LB

e2 = true

pickup

T2, P2, LB
T2 = LB

Figure 4.7: Disabling graph for the first action set. The edges are labeled with the
precondition that is disabled.

4.7 Additional Features

To build a competitive planner, we have implemented some additional features that
significantly improve performance.

28

4.7 Additional Features

4.7.1 Same Makespan Limit

For some planning tasks PASAR solves and refines the abstraction again and again
without having to increase the makespan. This indicates that the abstraction does
not represent enough of the complexity of the original problem. In order to limit
the number of refinement iterations in such cases, we introduce a fallback mechanism
that is triggered as soon as a certain number of refinement steps are executed without
increasing the makespan. In such a case, we apply our refinement strategy to all ac-
tions, thus switching directly to the final SAT encoding instead of slowly approaching
it.

4.7.2 Interleaving Search

For some planning tasks not even the first abstraction can be solved. In these cases
we essentially spend our entire computation time calculating a heuristic. We have
added the option to run a greedy best first search with the goal of the planning task
as the only guide state before the SAT solver finds an initial solution. The runtime
is spent alternating between the SAT solver and the search until one succeeds.

29

4 Our Planner: PASAR

30

5 Experimental Evaluation

In this chapter we will first describe some implementation details. We continue by
evaluating the various features of our planner and tune their parameters. Finally, we
compare the final configuration with other well known planners.
The source code for our planner is available at GitHub.1

5.1 Implementation Details

Our algorithm is implemented using C++ and compiled with g++ v.7.4.0 using full
optimization flags (-03).
The speed of the code that generates encodings, decodes SAT models or performs
similar tasks is not critical to the performance of our planner. Relevant are the
performance of the used SAT solver, the grounding procedure and the speed of the
forward search. Out of these, we only implemented the search ourselves.

5.1.1 Grounding

Planning tasks are usually defined in the human-readable Planning Domain Definition
Language (PDDL). Grounding refers to the process of translating a planning task
defined in a high-level language like PDDL to an expanded representation better
suited for most planning techniques. We use Fast Downward [Hel06] to ground PDDL
problem files into multi-valued planning tasks and then make some simplifications
to obtain our internal representation. The explicit mutex information2, sometimes
generated by Fast Downward is encoded for the SAT solver.
Since we use a smaller timeout for our experiments than the 30 minutes Fast Down-
ward was tuned for, the invariant generation is limited to 10 seconds. This is sug-
gested by the authors of Fast Downward.3

1https://github.com/Froleyks/pasar.git
2http://www.fast-downward.org/TranslatorOutputFormat#mutex
3http://www.fast-downward.org/IpcPlanners

31

https://github.com/Froleyks/pasar.git
http://www.fast-downward.org/TranslatorOutputFormat#mutex
http://www.fast-downward.org/IpcPlanners

5 Experimental Evaluation

1 Procedure GBFS(Π = (X,O, sI , sG))
2 plan = 〈〉
3 visited = {sI} // Hash Set
4 A = getApplicableActions(sI)
5 s = sI

6 while sG 6⊆ s do
7 sort(A, s) // sort actions by their gain
8 for a ∈ A do
9 s′ = apply(a, s)

10 if s′ 6∈ visited then
11 plan.append(a)
12 visited.insert(s′)
13 A = updateApplicableActions(A, a, s′)
14 s = s′

15 break
16 end
17 end
18 if no action was appended to the plan then
19 a = plan.pop()
20 s = apply(a−1, s) // undo changes caused by a
21 A = updateApplicableActions(A, a−1, s′)
22 end
23 end
24 return plan

Algorithm 2: Greedy Best First Search (GBFS).

5.1.2 Greedy Best-First Search

Implementing a forward search in the context of planning presents a number of chal-
lenges. This section describes how we address them, without being specific to PASAR.
First, we explain why we use gain values instead of a heuristic value for states. Then
we explain how we implement state expansion (successor generation) and finally we
describe how our hash function is defined. The pseudo-code for a GBFS in the context
of planning is specified in algorithm 2.

Heuristic Since we only compare direct successors of a state, we can use a gain-
function to calculate how beneficial it is to execute an applicable action a in the
current state s. We do this instead of the more common approach of computing
heuristic values for states, because this way only the effects of a have to be considered.
The number of effects of an action is typically much smaller than the number of state
variables. An effect is considered beneficial if it establishes a new assignment that is

32

5.1 Implementation Details

part of the goal, and detrimental if it destroys an already fulfilled assignment.

gain(a, s, sG) =
∑

x=v∈eff(a)

1, if x = v 6∈ s, x = v ∈ sG

−1, if ∃u ∈ dom(x) : v 6= u, x = u ∈ s, x = u ∈ sG

0, otherwise

Note that we compute the gain of all actions and sort them before we check if the
state that is reached by it was visited before. This check is realized with a hash set
and although some work has been put into optimizing this step, the computation of
the gain-function is typically still much cheaper than the table lookup.

Tie Breaking To break ties, we add pseudo-random noise to the gain-values. This
prevents a bias from developing in the search trajectory based on the order of the
actions in memory. The effect of adding noise is explicitly evaluated in section 5.3.3.

State Expansion An important implementation detail is the updateApplicableActions
routine in line 13. The easiest way to implement it is to iterate over all actions in O
and check if they are applicable. This would take quite a long time, as the number
of actions tends to be high4 and the routine has to be executed for each visited state.
A more efficient way is to precompute the action support.
The action support ASupp maps each assignment to the set of actions that have this
assignment as a precondition: a ∈ ASupp(v = x)⇔ (v = x) ∈ pre(a).
With the action support, we do not have to check for each action inO if it is applicable.
An action a′ that is applicable in the new state s′ was already applicable in s or all
missing preconditions were fulfilled by the effects of a. Therefore, only the previously
applicable actions and the action supports of each assignment in eff(a) need to be
checked.

Hash Function To ensure that the search does not explore the same state twice, a
hash set is used to store each visited state (see line 10 in algorithm 2).
Most planning tasks have a lot of Boolean state variables and a few variables with
larger domains, which are referred to as multi-value variables in the following. For
reasons of space and access speed it is important to store the values of the variables
in a compact way. To store Boolean variables we use single bits (std::vector<bool>
does that in our implementation of C++) and for multi-valued variables we use a small
data type that fits the domain size.
The hash function is defined on this representation of a state. For the Boolean vari-
ables std::hash is used, since it has an efficient specialization for std::vector<bool>.

4The maximum in the IPC -set exceeds one million and the average is approximately 28K.

33

5 Experimental Evaluation

For the multi-valued variables Zobrist hashing [Zob70] is used. The results are com-
bined using an exclusive or operation (XOR).
The compact representation is not optimal for every operation we want to perform.
For example, computing heuristic values requires random access to the values of a few
variables. Random read access to std::vector<bool> can be very slow. Therefore,
we also maintain an expanded representation in which each Boolean variable is stored
as a byte.

5.2 Experimental Setup
Our experiments are based on the agile track of the International Planning Compe-
tition. The runtime is limited to 300 seconds and the memory is limited to 15 GB.
The quality of the discovered plans is ignored. Instead, we will focus on the number
of instances solved and the score for each planner. The score5 of a configuration or
planner on a task solved in T seconds is defined as:

score(T) =
1, if T ≤ 1

1− log(T)
log(300) , if 1 < T ≤ 300

The score for a task that is not solved within the time limit is 0. The score of a
planner for a domain or an entire test set is the sum of the scores for each task.

5.2.1 Environment

The tests are run on an AMD EPYC 7551P 32-Core processor. 256 GB of DDR3
RAM are available. The computer runs Ubuntu 18.04.3 LTS with the Linux kernel
4.15.0-72-generic.
Up to 16 instances of our planner are run in parallel. To limit memory and runtime,
we use the runlim tool.6

The same test setup is used for the other planners we tested, with exception of Fast
Downward. Since runlim does not work properly with Fast Downward, we used the
command line options provided by the planner to limit memory.

5.2.2 Test Instances

We use two test sets for our experiments. The IPC -set consists of 571 planning tasks
from the satisficing and optimal tracks of the International Planning Competitions

5This metric is used to rank the planners competing in the agile track of the IPC
https://ipc2018-classical.bitbucket.io/#tracks

6http://fmv.jku.at/runlim/

34

https://ipc2018-classical.bitbucket.io/#tracks
http://fmv.jku.at/runlim/

5.3 Parameter Evaluation

2014 and 2018. We do not include any of the benchmarks that have conditional
effects, as our planner is not yet equipped to deal with them. We use this test set for
an internal comparison of different configurations of PASAR.
In addition, we use the sparkle-set for a final comparison of PASAR with other plan-
ners. It consists of the 70 benchmarks without conditional effects used in the Sparkle
Planning Challenge 2019. As there is no overlap in the domains used in the two
test sets, we avoid an unfair advantage for our planner when comparing it to the
competition. That being said, the parameters of our planner are tuned to the time
and memory limits used in the experiment, while the other solvers do not have this
potential advantage.
The exact domains used and the number of planning tasks in each domain can be
found in the Appendix C. Unless otherwise specified, the IPC -set is used for the
experiments.
Instead of repeating the grounding step for each experiment, we grounded each plan-
ning task only once and saved the result. The grounding was performed with the same
time and memory limits as described above. The time needed for grounding a plan-
ning task is added to the total runtime of our planner whenever we do a comparison
to other planners.

5.2.3 Variance

We did not run all our experiments several times to measure the variance. Our
algorithm is deterministic if none of the timeouts based on wall time is used, so we
do not expect any significant variance. Also, the test sets are quite large.
Nevertheless, we ran our final configuration five times on the IPC-set (sparkle-set)
and measured the standard deviation of the runtime on each instance. The average
standard deviation over the test set was 0.16 (0.73) seconds and the maximum was
measured at 4.92 (4.67) seconds for an instance with an average runtime of 106 (180)
seconds.

5.3 Parameter Evaluation

PASAR exposes a lot of parameters that influence its performance.
We tried automatic parameter tuning with ParamILS [Hut+09] without success. We
used version 2.3.8, running 16 diversified instances of FocusedILS in parallel for 10
days. All configurations found during this time performed significantly worse than
the default configuration we started with. This may be because the parameter space
is too large, the test instances are ill-suited for this purpose or simply because of the
limited time available.

35

5 Experimental Evaluation

We will introduce the different features of PASAR one by one and evaluate their
influence on the performance of our planner. As a baseline, we start with standard
SAT encodings and compare them with a basic version of our algorithm without
forward search. We then evaluate the search on its own and as a part of PASAR.
Finally, we evaluate the contribution of the different features to the performance of
our final configuration.

5.3.1 Basic Encodings

First, we evaluate standard encodings and the different SAT solvers that we can use
to establish a baseline for our experiments.

SAT Solvers We start with a standard SAT encoding that implements ∀-step se-
mantics for our multi-valued formalism as a baseline. PASAR supports any SAT
solver that implements the IPASIR interface. We compare the two that support
limiting the number of conflicts, namely Glucose [AS09] and MiniSAT [ES03]. The
number of conflicts per makespan is limited to 20000. The makespan for the first
formula we solve is 5, and we increase the makespan by a factor of 1.2. See section
4.2 for more details.
The results are shown in figure 5.1 using a Cactus-plot. It shows how many planning
tasks are solved by each SAT solver over time. Details on this type of plot can be
found in [BDG17]. In addition, the legend shows the score of each solver.
Glucose will be used for the next experiments, as it clearly outperformed its prede-
cessor MiniSAT.
SAT solvers will be used slightly differently in our algorithm. The formulas will
contain fewer clauses of size two (for which many SAT solvers are optimized) and
more emphasis will be placed on solving a formula that is only slightly different from
the last one solved. We reevaluate the SAT solver for the use with different versions
of PASAR in Appendix B. There we also test the two SAT solvers Lingeling and
PicoSAT. The results do not change significantly and Glucose still performs very well.

Refinement Strategy Every refinement strategy introduced in section 4.6 induces
a normal encoding when being applied to the set of all actions. The Foreach strategy
induces the same well known encoding we used in the last experiment, while the other
two are more novel. Figure 5.2 shows how many instances are solved with each of
them over time.
While the Cycle Break encoding initially outperforms the Cordless Cycle encod-
ing, the latter ultimately solves more instances within the time limit and achieves a
higher score. This can be attributed to the higher parallelism the encoding allows.

36

5.3 Parameter Evaluation

0 50 100 150 200
Number of solved Instances

0

50

100

150

200

250

300

tim
e

[s]

[135.83] MiniSAT
[145.70] Glucose

Figure 5.1: Comparison of SAT solvers on a classical ∀-encoding for planning tasks.

On easier planning tasks, proportionally more time is spent on proving that the
formulas are unsatisfiable for the lower makespans. Proving that a formula is not
satisfiable is generally easier if the formula is more constrained. This may explain the
initial advantage of Cycle Break.
Figures 5.3a and 5.3b compare the two encodings with the Foreach encoding using
scatter plots. This type of plot is used to compare the performance of two algorithms
on the same instance. Marks in the margins represent instances that can be solved
by one algorithm, but not by the other. For more information we refer to [BDG17].
Since Cycle Break generates a subset of the clauses generated by Foreach, it is not
surprising that their performance is similar on many instances. However, in some
cases Cycle Break has a clear advantage due to the higher parallelism and smaller
formulas. Cordless Cycle does not perform as well as Foreach on a number of
instances. This can again be explained by the fact that it takes longer to dismiss
formulas for lower makespans because they are less constrained. Within the time
limit Cordless Cycle still solves many more instances.

37

5 Experimental Evaluation

0 50 100 150 200 250
Number of solved Instances

0

50

100

150

200

250

300

tim
e

[s]

[145.70] Foreach
[156.06] Cycle Break
[159.55] Cordless Cycle

Figure 5.2: Comparison of the encodings induced by each refinement strategy.

0 100 200 300
Cycle Break [s]

0

50

100

150

200

250

300

Fo
re

ac
h

[s]

(a) Cycle Break encoding.

0 100 200 300
Cordless Cycle [s]

0

50

100

150

200

250

300

Fo
re

ac
h

[s]

(b) Cordless Cycle encoding.

Figure 5.3: Comparison of encodings to the Foreach encoding.

38

5.3 Parameter Evaluation

5.3.2 SAT-Based Planning with CEGAR
The most basic version of our algorithm is a CEGAR approach to SAT-based plan-
ning, which we have introduced as pure PASAR in section 4.5. Pure PASAR simply
finds a model for an encoding without action interference, tries to order the action
sets and adds interferences to the encoding where it failed to order the actions.

Sparsification Before we compare the different refinement strategies, we evaluate
the effect of sparsification on the performance of pure PASAR. The results are shown
in figure 5.4. Since the states of the abstract plan are not used in the current config-
uration, the only effect is that actions could be removed from the action sets, making
it more likely that they can be ordered.
A few instances are solved more slowly or not at all. This can be attributed to the
fact that the performance of SAT solvers is influenced by the order of clauses. This
effect is relevant enough that benchmark formulas in SAT competitions are shuffled
before solving [LS04].
In general, sparsification is beneficial; increasing the score from 127.21 to 140.83. We
will enable it in the following experiments.

0 50 100 150 200 250 300
Without Sparsification [s]

0

50

100

150

200

250

300

W
ith

Sp
ar

sifi
ca

tio
n

[s]

Figure 5.4: Comparison of pure PASAR using the Foreach refinement strategy with and
without sparsification.

39

5 Experimental Evaluation

Refinement Strategy Compared to normal SAT-based planning, the formulas that
have to be solved during the CEGAR approach are much smaller, especially in com-
parison to encodings that allow similar parallelism. Table 5.1 compares the number
of clauses generated to avoid interference by the normal encoding with the number
of clauses added to the formula by pure PASAR for each refinement strategy.
A comparison of the normal encodings shows that Foreach always generates the most
clauses and Cycle Break the least. The differences in the number of clauses added
are not as significant. Whenever an action set can be ordered, ∃-step semantics are
fulfilled and the refinement strategy is not used. If the ordering of an action set fails,
all refinement strategies must prevent the interfering actions from being used again
in the same step. The only difference between them is the effect they have on the
other actions in the set and in other sets. Cycle Break and Cordless Cycle still
perform significantly better than Foreach.
Interesting are the domains floortile, ged, snake and visitall. For planning tasks from
these domains, the first abstract plan can always be ordered, so no additional clauses
are added. In general, the number of clauses added is small. For Cycle Break and
Cordless Cycle, the maximum percentage of clauses added per domain is less than
1.5%. The maximum is reached on openstacks.
However, when it comes to the total number of instances solved, pure PASAR per-
forms significantly worse than the normal encodings. Details are given in table 5.2.
One reason for this is the added overhead of refining the formula and restarting the
SAT solver. Another important factor is that the formula is less constrained. In
many cases, this leads to the SAT solver taking longer to dismiss a formula that is
unsolvable for a particular makespan.

Same Makespan Limit To recover some of the lost instances, we introduced the
same-makespan-limit in section 4.7.1. For these tests the same-makespan-limit is set
to 10. The results are shown in figure 5.5.
With the same-makespan-limit enabled Cycle Break outperforms the Cordless Cycle
refinement strategy. One reason for this could be that the computation of the poten-
tially exponential number of clauses to be added for the fallback can take a significant
amount of time. In figure 5.6 the results of combining the Cordless Cycles refinement
strategy with different fallback mechanisms are shown.
The combination of Cordless Cycle with Cycle Break performs the best out of
these options but Cycle Break on its own still reaches a higher score. We will stick
to Cycle Break as the refinement strategy for the rest of our experiments.
In table 5.3 different values for the same-makespan-limit are compared. While the
differences are not that significant, we will stick to a same-makespan-limit of 10.

40

5.3 Parameter Evaluation

Foreach Cycle Break Cordless Cycle
Domain Clauses Added Clauses Added Clauses Added
OPT
childsnack (15) 410 769 7 303 402 789 1 802 402 807 1 933
data-network (18) 528 273 22 462 185 21 480 199 20
floortile (20) 21 650 0 8 099 0 17 392 0
ged (20) 331 319 0 251 313 0 305 207 0
hiking (8) 445 581 1 169 276 259 1 099 366 806 1 249
openstacks (4) 446 036 6 509 425 604 6 251 435 812 6 509
organic-synth. (6) 2 055 660 1 908 1 739 213 1 796 1 770 619 1 840
petri-net-alig. (1) 64 213 119 30 842 32 30 850 32
snake (3) 22 395 449 0 22 219 787 0 22 306 698 0
termes (1) 97 978 130 50 000 324 93 414 120
tetris (12) 5 303 957 850 3 141 504 472 4 213 040 746
transport (13) 1 372 481 25 1 034 763 11 1 134 861 10
visitall (17) 79 693 0 78 799 0 79 239 0

SAT
childsnack (5) 790 562 11 549 777 696 1 902 777 717 1 086
floortile (20) 37 588 0 14 196 0 31 076 0
hiking (3) 14 496 650 4 409 8 754 254 5 191 11 719 410 2 154
organic-synth. (6) 2 158 055 7 711 1 693 523 7 015 1 736 098 9 008
tetris (2) 4 338 438 886 2 575 573 1 146 3 434 294 890
thoughtful (4) 342 199 276 293 930 556 320 478 176
Average (173) 2 932 450 2 256 2 327 912 1 454 2 613 475 1 356

Table 5.1: Comparison of the number of clauses generated by the normal encoding to
prevent action interference to the number of clauses added by pure PASAR for
the different refinement strategies. Only instances solved using every refinement
strategy are considered. The number of solved instances per domain is given
in parentheses. All values are the arithmetic mean over all solved instances in
the domain. The domains are split in test instances from the optimal and the
satisficing tracks. See C.1 for more details.

41

5 Experimental Evaluation

Configuration Solved Score
PASAR Foreach 188 140.82
PASAR Cycle Break 197 145.82
PASAR Cordless Cycle 197 147.12
Foreach 219 144.70
Cycle Break 236 155.05
Cordless Cycle 241 158.55

Table 5.2: Comparison of pure PASAR to the normal encoding for each refinement strat-
egy. The table is sorted by the number of solved instances. According to the
score the normal Foreach encoding performs worse than the other two refine-
ment strategies when used with PASAR.

0 50 100 150 200
Number of solved Instances

0

50

100

150

200

250

300

tim
e

[s]

[141.83] Foreach
[146.83] Cycle Break
[148.13] Cordless Cycle
[156.90] SML Cordless Cycle
[159.94] SML Foreach
[165.58] SML Cycle Break

Figure 5.5: Effects of enabling the same-makespan-limit for each refinement strategy.

42

5.3 Parameter Evaluation

0 50 100 150 200
Number of solved Instances

0

50

100

150

200

250

300

tim
e

[s]

[156.24] Foreach
[156.90] Cordless Cycle
[163.76] Cycle Break

Figure 5.6: Combining Cordless Cycle with different fallback mechanisms after the
same-makespan-limit is reached.

SML Solved Score
5 226 163.19
9 226 162.97

10 231 164.58
11 229 163.04
15 224 163.19
30 222 161.59

Table 5.3: Comparison of different values for the same-makespan-limit, using pure PASAR
with the Cycle Break refinement strategy.

43

5 Experimental Evaluation

5.3.3 Search

Next, we will evaluate the forward search on its own. Implementation details are
explained in section 5.1.2. The results of the experiment are shown in figure 5.7. A
sobering observation is that even a simple DFS outperforms the best configuration of
pure PASAR that we have found. Besides that, the benefit of random tie breaking is
astounding.
In PASAR the search will be used differently; it will only be allowed to explore a few
nodes before it is restarted. Therefore, it will not be able to close many states. The
experiment shows that this does not affect the performance too much, which is not
surprising since the number of states the search can close is dwarfed by the size of
the search space.

0 50 100 150 200 250 300 350
Number of solved Instances

0

50

100

150

200

250

300

tim
e

[s]

[169.16] DFS
[276.14] GBFS
[316.73] Restart
[328.13] GBFS-PRN

Figure 5.7: Comparison of basic forward search algorithms. DFS is an unguided depth
first search. GBFS is a greedy best-first search that uses the distance to
the goal as a heuristic function. GBFS-PRN is the same algorithm with the
addition of a pseudo-random noise to break ties. Restart does the same as
GBFS-PRN, but the search restarts (after clearing the visited table) from the
initial state after exploring 20000 states.

44

5.3 Parameter Evaluation

5.3.4 PASAR

Combining the SAT-based aspects and the forward search of PASAR introduces a
number of new parameters. Of particular interest are the parameters that control
how the resources are shared between the SAT solver and the forward search.
For the following experiments the search is enabled and the number of nodes it is
allowed to explore is limited to 20000. The algorithm now completely follows the
outline shown in figure 4.1.

Sparsification Now that the search is enabled, the sparsification does not only help
with ordering action sets, but also influences the heuristic function that the search
uses. We evaluate the effects of sparsification once again in figure 5.8. With spar-
sification enabled, 23 additional instances are solved. The few lost instances are
randomly distributed over the domains and can be attributed to the influence the
order of clauses has on SAT solvers.

0 50 100 150 200 250 300
Without Sparsification [s]

0

50

100

150

200

250

300

W
ith

Sp
ar

sifi
ca

tio
n

[s]

Figure 5.8: Evaluating the effect of sparsification on full PASAR.

45

5 Experimental Evaluation

Interleaving Search Even with the sparsification, PASAR can only achieve a score
of 246.69, which is significantly less than the score of 327.13 the greedy best-first
search achieves on its own. In table 5.4 we investigate the connection between solving
the first abstraction of a planning task and solving the complete problem.
For a few domains the first abstraction is easy to solve, but solving the planning
task is still hard (SAT-data-network, SAT-hiking, SAT-barman, OPT-barman). This
indicates that the abstraction for these planning tasks does not sufficiently reflect
the actual difficulty of the problem. In contrast, we have the domains SAT-visitall,
SAT-transport and especially snake from both tracks; for these planning tasks, even
the first abstraction is rarely solved. The GBFS on the other hand solves them almost
instantly. This suggests a fairly long minimal plan (and abstract plan) length and
the existence of many valid plans for the planning tasks. Although we use exponen-
tial makespan scheduling, SAT solvers are not equipped to deal with formulas that
exceed a certain size. In these cases, PASAR essentially spends its entire runtime
on computing a heuristic that is never used. To address this problem we have in-
troduced interleaving search in section 4.7.2. Enabling it increases the performance
considerably (see figure 5.9).

0 50 100 150 200 250 300 350 400
Number of solved Instances

0

50

100

150

200

250

300

tim
e

[s]

[247.69] Sparsification
[382.16] Interleave

Figure 5.9: Evaluation of the effect of interleaving search.

46

5.3 Parameter Evaluation

Domain abst. PASAR GBFS tmax[s]
OPT
barman (14) 14 0 2 148.19
childsnack (20) 20 20 0 —
data-network (20) 20 20 20 1.88
floortile (20) 20 20 0 —
ged (20) 20 20 20 0.02
hiking (20) 20 16 20 3.97
openstacks (20) 20 20 20 0.13
organic-synth. (20) 20 9 11 108.30
petri-net-alig. (20) 18 17 20 43.05
snake (20) 4 4 20 0.13
termes (20) 11 5 9 206.12
tetris (17) 17 17 17 0.69
tidybot (20) 20 19 13 0.32
transport (20) 17 14 20 0.18
visitall (20) 17 17 20 0.01
SAT
barman (20) 20 0 0 —
childsnack (20) 20 19 0 —
data-network (20) 20 3 15 219.99
floortile (20) 20 20 0 —
ged (20) 0 0 10 187.34
hiking (20) 17 3 20 135.72
openstacks (20) 20 20 20 0.44
organic-synth. (20) 17 2 5 42.07
snake (20) 0 0 20 0.51
termes (20) 2 0 3 70.08
tetris (20) 20 20 20 0.43
thoughtful (20) 5 5 5 236.89
transport (20) 0 0 20 8.11
visitall (20) 0 0 20 0.25
Sum (571) 419 310 370 —

Table 5.4: The number of instances per domain is given in parentheses after the domain
name. The first column shows the number of planning tasks for which PASAR
can solve the first abstraction and the next column lists how many planning
tasks are actually solved. GBFS gives the number of instances the greedy-best
first search can solve on its own, and the last column shows the maximum time
the GBFS took to solve an instance for each domain. In this column values are
highlighted which are considered to be particularly low compared to the effort
required to solve the first abstraction. In the other columns, an entry is marked
if it has reached the maximum possible value.

47

5 Experimental Evaluation

Search Limit The search limit is the number of nodes the search is allowed to
explore before it returns unsuccessfully and the abstraction is refined. Using too low
a search limit prevents the search from closing states and requires that the abstraction
is refined enough to guide the search almost perfectly. It also limits the length of the
plans that can be found. However, learned actions can be used by the search to extend
its reach. Choosing a search limit that is too high slows down the refinement of the
abstraction, and in the worst case, turns PASAR into a not particularly sophisticated
forward search.
Different search limits are compared in table B.1. Allowing the search to explore up
to 4 million nodes has a negative impact on the performance, both in terms of solved
instances and the score the planner achieves. A less extreme increase of the search
limit allows PASAR to solve some more instances but also reduces the score. In figure
5.10, configuration A which solves the most instances is compared to configuration B
which achieves the best score. For a number of instances, the time to solve does not
change. These are solved within a few refinement steps. The instances that require
more refinement steps are solved much more slowly. We will stick to a lower search
limit of 20000 for our final configuration to preserve what makes PASAR novel.

Search
Limit Solved Score

4000000 427 362.47
A 800000 444 369.56

600000 443 370.23
400000 443 372.75

100 424 376.33
B 20000 437 381.15

0 50 100 150 200 250 300
B [s]

0

50

100

150

200

250

300

A
[s]

Figure 5.10 & Table 5.5: Comparison of different search limits.

Contribution We give a final overview of the contribution of each feature to the
performance of PASAR in figure 5.11.

48

5.4 Comparison

0 50 100 150 200 250 300 350 400
Number of solved Instances

0

50

100

150

200

250

300

tim
e

[s]

[131.11] Pure
[146.83] Spars
[165.93] SML
[247.69] Search
[382.16] Inter

Figure 5.11: The features of our final configuration of PASAR are enabled one after the
other. Pure uses the Cycle Break refinement strategy and no additional fea-
tures. Then, the sparsification is enabled and then the fallback after reaching
the same-makespan-limit. Search starts the search after an abstraction has
been solved. Inter additionally starts a search before the first abstraction
has been solved.

5.4 Comparison
In this section we will compare the performance of our final configuration to other
well known planners.
We include

• Fast-Forward FF [Hof01], which dominated in the beginning of planning com-
petitions,

• Fast Downward FD [Hel06] in its LAMA 2011 configuration, which we patched
to return after finding a plan instead of optimizing it, and

• Madagascar [Rin14] a SAT-based planner which uses its own integrated SAT
solver, both in its default configuration with ∃-step semantics (M-E) and a
configuration utilizing ∀-step semantics (M-FE).

49

5 Experimental Evaluation

Grounding In the previous experiments we ignored the time needed to ground the
planning tasks to a multi-valued representation. In the following experiments, the
grounding is performed during the measured runtime.

5.4.1 Tuning Set

The number of instances the planners have solved over time is presented in figure
5.12 using a cactus plot, and the number of solved instances per domain is given
in table 5.6. Regarding the number of instances solved, Fast Downward is the only
competition. For the first 10 seconds it has a very small advantage, after that PASAR
is significantly faster. This also results in a higher score for PASAR. Regarding the
number of solved instances, Fast Downward can catch up within the time limit.
A look at the performance for each domain (especially the harder ones from the
satisficing track) shows that we accomplished our goal of combining the strength
of SAT-based and forward search based planning algorithms on most domains. On
floortile and childsnack, Madagascar has a clear advantage over the forward searches
and PASAR can easily match it. On the domains visitall, openstacks, petri-net-
alignment, and data-network Fast Downward outperforms the SAT-based approach.
PASAR can match it as well.
PASAR outperforms both approaches on the domains tetris, hiking and especially
transport and snake. There are also domains where PASAR does not perform well;
especially barman. On ged and, to a lesser extend, on organic-synthesis, every planner
tested except for Fast-Forward solves more instances.
Overall, PASAR solves nearly as many instances as Fast Downward and solves more
domains completely. It also achieved the highest score of all tested planners.
Figure 5.13 shows a scatter plot that directly compares the performance of Fast
Downward and PASAR on the same instance. It suggests that it would be beneficial
to combine the two in a portfolio. The simplest portfolio possible, running each
planner for half of the time available, can solve 93% of the planning tasks in the
IPC -set.

50

5.4 Comparison

Domain FF M-FE M-E FD PASAR
OPT
barman (14) 6 14 14 14 0
childsnack (20) 3 20 15 15 20
data-network (20) 20 20 20 20 20
floortile (20) 0 20 20 8 20
ged (20) 20 20 20 20 20
hiking (20) 14 10 9 20 20
openstacks (20) 3 20 20 20 20
organic-synth. (20) 0 12 12 17 10
petri-net-alig. (20) 0 1 14 20 19
snake (20) 10 15 15 13 20
termes (20) 7 0 1 18 5
tetris (17) 0 15 17 17 17
tidybot (20) 19 16 20 19 20
transport (20) 20 20 20 20 20
visitall (20) 18 20 20 20 20
SAT
barman (20) 0 0 4 19 0
childsnack (20) 0 17 7 5 19
data-network (20) 4 4 4 11 12
floortile (20) 1 20 20 2 20
ged (20) 4 14 12 20 4
hiking (20) 6 4 6 16 20
openstacks (20) 0 2 0 20 20
organic-synth. (20) 0 7 7 9 4
snake (20) 3 7 7 3 20
termes (20) 0 0 0 13 2
tetris (20) 5 5 8 14 20
thoughtful (20) 12 5 5 15 5
transport (20) 0 0 0 10 20
visitall (20) 0 0 0 20 20
Sum (571) 175 308 317 438 437
Score 141.6 225.76 236.42 309.63 314.36

Table 5.6: Number of solved instances for each domain in the IPC -set.

51

5 Experimental Evaluation

0 50 100 150 200 250 300 350 400
Number of solved Instances

0

50

100

150

200

250

300

tim
e

[s]

[142.60] FF
[226.76] M-FE
[237.42] M-E
[310.63] FD
[315.36] PASAR

Figure 5.12: Comparison of the planners on the IPC -set.

0 50 100 150 200 250 300
FD [s]

0

50

100

150

200

250

300

PA
SA

R
[s]

Figure 5.13: Comparison between Fast Downward and PASAR.
52

5.4 Comparison

5.4.2 Validation Set

In the previous experiment, PASAR may have had an unfair advantage because we
used the IPC -set to tune our planner. Therefore we repeat the experiment on the
sparkle-set. The results are presented in figure 5.14 and table 5.7.
Fast Downward failed to ground 7 out of the 10 planning tasks in the ChairGame
domain within the time limit. These instances are therefore lost to PASAR and Fast
Downward itself. Fast-Forward only runs out of memory grounding 3 of the planning
tasks. Solving the ground representation seems to be easy.
The planning tasks in Pipegrid are combinatorially complex and not too large. There-
fore, the SAT-based approaches perform well. In contrast, PASAR is not able to solve
a single abstraction for the tasks in Parking and the interleaving search with its basic
heuristic is not successful either, while Fast Downward solves all instances.
The pizza domain seems to be hard for all tested planners. PASAR solves the two
smallest instances. When solving the other planning tasks in the domain, the same-
makespan-limit is reached and generating all interference clauses is sufficient to ex-
haust the available memory. Overall, PASAR again achieves the highest score.

Domain M-FE M-E FD FF PASAR
Agricola (10) 0 1 5 0 6
ChairGame (10) 3 3 3 7 3
Parking (10) 2 3 10 3 0
Pipegrid (10) 9 10 0 0 10
Termes (10) 0 0 5 0 1
UTC-distribution (10) 10 10 10 10 10
pizza (10) 0 0 0 0 2
Sum (70) 24 27 33 20 32
Score 14.51 16 16.16 16.23 17.62

Table 5.7: Number of solved instances for each domain in the IPC -set.

53

5 Experimental Evaluation

0 5 10 15 20 25 30
Number of solved Instances

0

50

100

150

200

250

300

tim
e

[s]

[15.51] M-FE
[17.00] M-E
[17.16] FD
[17.23] FF
[18.62] PASAR

Figure 5.14: Comparison of the planners on the sparkle-set.

54

6 Conclusion

We conclude the thesis with a brief summary of our results and give an overview of
possible future work to extend PASAR.

6.1 Summary

In this thesis we built a hybrid planner that combines SAT-based planning and search-
ing in the state space in a novel way. We demonstrated how incremental SAT solvers
can be used interactively in planning. A number of challenges in our theoretical
approach have been identified and addressed.
In addition, we have introduced two new SAT encodings for the classical planning
problem which deal with action interference in a novel way.
Thorough evaluation of PASAR on a broad range of commonly used benchmark
domains has been conducted. It shows that PASAR can compete with SAT-based
planners and heuristic searches. On many domains it matches the performance of the
best tested solvers and on some domains it even outperforms the competition.
A previous version of this planner competed in the Sparkle Planning Challenge 2019.
Although it had a significant contribution to the final portfolio, it did not perform
well on its own. Our evaluation suggests that we mended this shortcoming, while
retaining what made the previous version novel and relevant for use in conjunction
with other planners.

6.2 Future Work

In the following an outlook on possible future work is provided.

Conditional Effects The integration of conditional effects into our planning ap-
proach would make PASAR useful for a wider range of realistic planning domains.
The biggest challenge is that the ordering of action sets can no longer be done with
a simple graph-theoretic test. However, since the action sets are usually small, an
exhaustive search could be used to replace it.

55

6 Conclusion

Normalizing Abstract Plans Besides ∀-step and ∃-step semantics, Rintanen, Hel-
janko, and Niemelä [RHN06] introduced process semantics. A parallel plan fulfills
process semantics if every action is applied in the earliest possible step.1 We can
transform an abstract plan into one fulfilling process semantics to normalize it. The
hope is that this will make sections of the abstract plan more similar to others and
thus increases the use of learned actions.

Abstractions Our abstraction is very simple. We have focused exclusively on action
interference.
The most successful SAT-encodings for planning are relaxed [WR07a]. They allow
the execution of actions in a step even if their preconditions are not fulfilled after
executing the last step. Even further relaxed encodings [Bal13] additionally allow the
effects of actions to be negated in the same step. Their advantage is that more actions
can be executed in the same step. All encodings that use this idea impose a fixed
order on the actions that is independent of the step. While this reduces parallelism,
it is necessary to obtain an efficient encoding. With our CEGAR based approach we
do not need such a fixed order.
Even coarse abstractions could be useful. Allowing variable to have multiple values
at once is something akin to the concept of delete relaxation [Hof01] in our formalism.
It would allow solving abstractions of planning tasks that are currently too difficult.

1In addition, the plan is required to meet ∀-step semantics. We will ignore that for our purposes.

56

A Complexity of Planning
The word problem for the language PlanMin =
{〈Π, N〉 ∈ Ψ∗ | A plan of length N or less exists for the planning task Π.}
is PSPACE-complete.

Proof. We need to prove that PlanMin is in PSPACE and that PlanMin is
PSPACE-hard. We will show that PlanMin ∈ NPSPACE by describing a non-
deterministic Turing machine that can solve PlanMin-instances with polynomial
space complexity. Since NPSPACE = PSPACE [Sav70], PlanMin is also in
PSPACE.
Let the planning task Π = (X,O, sI , sG) and N ∈ N be an instance of PlanMin.
The initial configuration of the Turing machine encodes the PlanMin-Instance in a
suitable encoding. The Turing machine will mainly edit the counter for N and the
encoding of sI , referred to as s in the following. This encoding could be realized
with a binary number for each variable, which represents the index of its value in its
domain. Note that every variable is assigned a value in sI .
The Turing machine repeats the following program:
(i) If the current state s fulfills sG, accept the input.
(ii) If N equals zero, reject the input, otherwise decrement the counter by one.
(iii) Non-deterministically choose an action a ∈ O.
(iv) If a is not applicable in the current state s, reject the input.
(v) Change the current state s = s⊕ eff(a).

The Turing machine can non-deterministically choose a sequence of applicable actions
to reach the goal before the counter reaches zero, exactly if a plan of length N or less
exists. All operations can be implemented with a constant factor of additional space.
To prove that PlanMin is PSPACE-hard, we show that for each L ∈ PSPACE ⊆
2Σ∗ a function fL : Σ∗ → Ψ∗ exists with:

• fL(w) ∈ PlanMin⇔ w ∈ L,
• fL can be computed in polynomial time.

Without loss of generality let TL = (Q, q0, qY ES,Γ,⊥,Σ, δ) be a Turing machine,
which decides L with polynomial space complexity. Q is a finite set of states, q0 ∈ Q
the initial state, qY ES,∈ Q the only states to signal acceptance of the input, Γ a finite
set of tape symbols, ⊥ ∈ Γ the blank symbol, Σ ⊆ Γ\{⊥} a set of input symbols, and

57

A Complexity of Planning

δ : Q × Γ → Q × Γ × {−1, 0,+1} the transition function. Let STL
be a polynomial;

STL
(|w|) is an upper bound on the number of cells TL will visit with input w. |w|

denotes the length of the word w.
For a fixed language L ∈ PSPACE, the function fL constructs an instance of the
PlanMin word problem 〈Π = (X,O, sI , sG), N〉 from an input w. The construction
is independent of the given input w, except for the initial state sI and M := STL

(|w|)
the maximum space used by the Turing machine. First we define X. We have
one variable for each cell that may be visited by the head of the Turing machine:
t1, . . . , tM and dom(ti) = Γ. Additionally we have a variable for the position of the
head h, dom(h) = {1, . . . ,M} and one for the current state of the Turing Machine
q, dom(q) = Q. In the initial state sI every tape variable is set to ⊥ except for those
corresponding to the initial input w of the Turing machine. In addition q = q0 and
h = 1 are set. For the goal we have sG = {q = qY ES}.
For δ(qi, a) = (qj, b, d) and k ∈ {1, . . . ,M} we add an action ({q = qi, tk = a, h = k},
{q = qj, tk = b, h = k + d}) to O. The number of operators is therefore in O(M),
since the number of transitions is constant for a fixed Turing machine TL.
We set N := Πx∈X | dom(x)| = |Γ|M ·M · |Q|. This is an upper bound on the number
of configurations the Turing machine can be in and on the number of complete states
that are induced by the planning task. A plan with a length exceeding N must visit
one state twice and therefore have a loop which can be removed to get a shorter plan.
Since N is encoded logarithmically, the computation can be done polynomially in M .
STL

(|w|) can be evaluated polynomially in |w| and the rest of the construction can
be implemented polynomially in M . Since M is bound polynomially in |w|, fL can
be computed in polynomial time.
A solution to the PlanMin-Instance directly induces a path through the configura-
tion graph of the Turing machine from the initial to a final configuration. Conversely,
if there is such a path in the configuration graph a plan can be found. It is interesting
to note that for a deterministic Turing machine only one action will be applicable in
each state during the planning process.

58

B Reevaluating SAT Solvers

0 50 100 150 200
Number of solved Instances

0

50

100

150

200

250

300

tim
e

[s]

[164.67] MiniSAT
[165.58] Glucose

SAT solver Solved Score
MiniSAT 224 163.67
Glucose 231 164.57

Figure B.1 & Table B.1: Comparison of SAT solvers for the use with pure PASAR. The
conflicts per makespan are limited to 20000.

The results shown in table B.2 are not directly applicable because a wall-time-based
time out is used to abort a makespan instead of limiting the conflicts. This is done
to allow the comparison to all supported SAT solvers.

59

B Reevaluating SAT Solvers

SAT solver Solved Score
PicoSAT 438 376.87
Lingeling 441 372.01
MiniSAT 443 382.61
Glucose 444 381.38

Table B.2: Comparison of SAT solvers for the use with the final configuration. A time
out of 15 seconds per makespan is used instead of limiting the conflicts.

60

C Test Sets

The following domains have been used in the test set:

C.1 IPC-Set

IPC 2014 Optimal Track
https://helios.hud.ac.uk/scommv/IPC-14/repository/benchmarksV1.1.zip

domain tasks
barman 14
childsnack 20
floortile 20
ged 20
hiking 20
openstacks 20
tetris 17
tidybot 20
transport 20
visitall 20

IPC 2014 Satisficing Track
https://helios.hud.ac.uk/scommv/IPC-14/repository/benchmarksV1.1.zip

domain tasks
barman 20
childsnack 20
ged 20
openstacks 20
tetris 20
thoughtful 20
transport 20
visitall 20

IPC 2018 Optimal Track
https://bitbucket.org/ipc2018-classical/domains/src/default/opt

61

https://helios.hud.ac.uk/scommv/IPC-14/repository/benchmarksV1.1.zip
https://helios.hud.ac.uk/scommv/IPC-14/repository/benchmarksV1.1.zip
https://bitbucket.org/ipc2018-classical/domains/src/default/opt

C Test Sets

domain tasks
data-network 20
organic-synthesis-split 20
petri-net-alignment 20
snake 20
termes 20

IPC 2018 Satisficing Track
https://bitbucket.org/ipc2018-classical/domains/src/default/sat
domain tasks
data-network 20
organic-synthesis-split 20
snake 20
termes 20

C.2 Sparkle-Set
IPC 2018 Satisficing Track
http://ada.liacs.nl/events/sparkle-planning-19/documents/benchmark/sparkle_
planning_challenge_2019_testing_set.zip
domain tasks
Agricola 10
ChairGame 10
Parking 10
Pipegrid 10
Termes 10
UTC-distribution 10
pizza 10

62

https://bitbucket.org/ipc2018-classical/domains/src/default/sat
http://ada.liacs.nl/events/sparkle-planning-19/documents/benchmark/sparkle_planning_challenge_2019_testing_set.zip
http://ada.liacs.nl/events/sparkle-planning-19/documents/benchmark/sparkle_planning_challenge_2019_testing_set.zip

Bibliography
[AS09] Gilles Audemard and Laurent Simon. “Predicting learnt clauses quality

in modern SAT solvers”. In: Twenty-first International Joint Conference
on Artificial Intelligence. 2009, pp. 1–6.

[Bal+16] Tomas Balyo et al. “SAT Race 2015”. In: Artificial Intelligence 241 (2016),
pp. 45–65. doi: 10.1016/j.artint.2016.08.007.

[Bal13] Tomas Balyo. “Relaxing the Relaxed Exist-Step Parallel Planning Se-
mantics”. In: 2013 IEEE 25th International Conference on Tools with
Artificial Intelligence. IEEE Computer Society, 2013, pp. 865–871. doi:
10.1109/ICTAI.2013.131.

[BDG17] Martin Brain, James H. Davenport, and Alberto Griggio. “Benchmarking
Solvers, SAT-style”. In: Proceedings of the 2nd International Workshop on
Satisfiability Checking and Symbolic Computation 2017. 2017, pp. 1–15.
url: http://ceur-ws.org/Vol-1974/RP3.pdf.

[BF97] Avrim Blum and Merrick L. Furst. “Fast Planning Through Planning
Graph Analysis”. In: Artificial Intelligence 90.1-2 (1997), pp. 281–300.

[Bie+09] Armin Biere et al. “Conflict-driven clause learning sat solvers”. In: Hand-
book of Satisfiability, Frontiers in Artificial Intelligence and Applications
(2009), pp. 131–153.

[Bie08] Armin Biere. “PicoSAT essentials”. In: Journal on Satisfiability, Boolean
Modeling and Computation 4 (2008), pp. 75–97.

[Bie17] Armin Biere. “CaDiCaL, Lingeling, Plingeling, Treengeling, YalSAT En-
tering the SAT Competition 2017”. In: Proc. of SAT Competition 2017 –
Solver and Benchmark Descriptions. Ed. by Tomáš Balyo, Marijn Heule,
and Matti Järvisalo. Vol. B-2017-1. Department of Computer Science Se-
ries of Publications B. University of Helsinki, 2017, pp. 14–15.

[BN95] Christer Bäckström and Bernhard Nebel. “Complexity Results for SAS+
Planning”. In: Computational Intelligence 11 (1995), pp. 625–656.

[Cha+05] Krishnendu Chatterjee et al. “Counterexample-guided Planning”. In: Twenty-
First Conference on Uncertainty in Artificial Intelligence. UAI’05. Edin-
burgh, Scotland: AUAI Press, 2005, pp. 104–111. isbn: 0-9749039-1-4.
url: http://dl.acm.org/citation.cfm?id=3020336.3020349.

63

https://doi.org/10.1016/j.artint.2016.08.007
https://doi.org/10.1109/ICTAI.2013.131
http://ceur-ws.org/Vol-1974/RP3.pdf
http://dl.acm.org/citation.cfm?id=3020336.3020349

Bibliography

[Cla+00] Edmund Clarke et al. “Counterexample-guided abstraction refinement”.
In: International Conference on Computer Aided Verification. Springer.
2000, pp. 154–169.

[Coo71] Stephen A. Cook. “The Complexity of Theorem-proving Procedures”. In:
Proceedings of the Third Annual ACM Symposium on Theory of Com-
puting. STOC ’71. Shaker Heights, Ohio, USA: ACM, 1971, pp. 151–158.
doi: 10.1145/800157.805047. url: http://doi.acm.org/10.1145/
800157.805047.

[ES03] Niklas Eén and Niklas Sörensson. “An Extensible SAT-solver”. In: SAT.
Ed. by Enrico Giunchiglia and Armando Tacchella. Vol. 2919. Lecture
Notes in Computer Science. Springer, 2003, pp. 502–518. isbn: 3-540-
20851-8.

[FBS19] Nils Froleyks, Tomas Balyo, and Dominik Schreiber. “PASAR—Planning
as Satisfiability with Abstraction Refinement”. In: Twelfth Annual Sym-
posium on Combinatorial Search. 2019, pp. 70–78.

[Flo+13] José Florez et al. “Combining linear programming and automated plan-
ning to solve intermodal transportation problems”. In: European Journal
of Operational Research 227 (May 2013), pp. 216–226. doi: 10.1016/j.
ejor.2012.12.018.

[FN71] Richard Fikes and Nils J. Nilsson. “STRIPS: A New Approach to the
Application of Theorem Proving to Problem Solving”. In: Artificial Intel-
ligence 2.3/4 (1971), pp. 189–208.

[Fuk+97] Alex Fukunaga et al. “ASPEN: A framework for automated planning and
scheduling of spacecraft control and operations”. In: Proc. International
Symposium on AI, Robotics and Automation in Space. 1997, pp. 181–187.

[GB17] Stephan Gocht and Tomáš Balyo. “Accelerating SAT based planning with
incremental SAT solving”. In: Twenty-Seventh International Conference
on Automated Planning and Scheduling. 2017, pp. 1–5.

[GNT16] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated planning and
acting. Cambridge University Press, 2016, pp. 30–36.

[Hel06] Malte Helmert. “The Fast Downward Planning System”. In: Journal of
Artificial Intelligence Research (JAIR) 26 (2006), pp. 191–246.

[Hof01] Jörg Hoffmann. “FF: The fast-forward planning system”. In: AI magazine
22.3 (2001), pp. 57–57.

[Hut+09] Frank Hutter et al. “ParamILS: An Automatic Algorithm Configuration
Framework”. In: Journal of Artificial Intelligence Research 36 (Oct. 2009),
pp. 267–306.

64

https://doi.org/10.1145/800157.805047
http://doi.acm.org/10.1145/800157.805047
http://doi.acm.org/10.1145/800157.805047
https://doi.org/10.1016/j.ejor.2012.12.018
https://doi.org/10.1016/j.ejor.2012.12.018

Bibliography

[KS92] Henry A. Kautz and Bart Selman. “Planning as Satisfiability”. In: Tenth
AAAI Conference on Artificial Intelligence. 1992, pp. 359–363.

[KS99] Henry Kautz and Bart Selman. “Unifying SAT-based and graph-based
planning”. In: IJCAI. Vol. 99. 1999, pp. 318–325.

[LS04] Daniel Le Berre and Laurent Simon. “The Essentials of the SAT 2003
Competition”. In: Theory and Applications of Satisfiability Testing. Ed. by
Enrico Giunchiglia and Armando Tacchella. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2004, pp. 452–467. isbn: 978-3-540-24605-3.

[NM10] Hootan Nakhost and Martin Müller. “Action Elimination and Plan Neigh-
borhood Graph Search: Two Algorithms for Plan Improvement.” In: ICAPS
2010 - Proceedings of the 20th International Conference on Automated
Planning and Scheduling. Jan. 2010, pp. 121–128.

[RGP08] Nathan Robinson, Charles Gretton, and Duc-Nghia Pham. “Co-plan: Com-
bining SAT-based planning with forward-search”. In: Proceedings of the
6th International Planning Competition. 2008, pp. 1–2.

[RHN06] Jussi Rintanen, Keijo Heljanko, and Ilkka Niemelä. “Planning as satisfia-
bility: parallel plans and algorithms for plan search”. In: Artificial Intel-
ligence 170.12-13 (2006), pp. 1031–1080. doi: 10.1016/j.artint.2006.
08.002.

[Rin12] Jussi Rintanen. “Planning as satisfiability: Heuristics”. In: Artificial In-
telligence 193 (2012), pp. 45–86. doi: 10.1016/j.artint.2012.08.001.

[Rin14] Jussi Rintanen. “Madagascar: Scalable planning with SAT”. In: Proceed-
ings of the 8th International Planning Competition (IPC-2014) 21 (2014),
pp. 1–5.

[RP12] Purushothaman Raja and Sivagurunathan Pugazhenthi. “Optimal path
planning of mobile robots: A review”. In: International journal of physical
sciences 7.9 (2012), pp. 1314–1320.

[Sav70] Walter J. Savitch. “Relationships between nondeterministic and determin-
istic tape complexities”. In: Journal of Computer and System Sciences 4.2
(1970), pp. 177–192. issn: 0022-0000. doi: https://doi.org/10.1016/
S0022- 0000(70)80006- X. url: http://www.sciencedirect.com/
science/article/pii/S002200007080006X.

[Sei12] Jendrik Seipp. “Counterexample-guided abstraction refinement for clas-
sical planning”. MA thesis. 2012, pp. 1–55.

[Sei18] Jendrik Seipp. “Fast downward remix”. In: Ninth International Planning
Competition Booklet (IPC 2018) (2018), pp. 67–69.

65

https://doi.org/10.1016/j.artint.2006.08.002
https://doi.org/10.1016/j.artint.2006.08.002
https://doi.org/10.1016/j.artint.2012.08.001
https://doi.org/https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/https://doi.org/10.1016/S0022-0000(70)80006-X
http://www.sciencedirect.com/science/article/pii/S002200007080006X
http://www.sciencedirect.com/science/article/pii/S002200007080006X

Bibliography

[Sei19] Jendrik Seipp. “Planner Description Kronk”. 2019. url: http://ada.
liacs.nl/events/sparkle-planning-19/documents/solver_description/
seipp-sparkle2019.pdf.

[Tar76] Robert Endre Tarjan. “Edge-disjoint spanning trees and depth-first search”.
In: Acta Informatica 6.2 (June 1976), pp. 171–185. issn: 1432-0525. doi:
10.1007/BF00268499. url: https://doi.org/10.1007/BF00268499.

[WR07a] Martin Wehrle and Jussi Rintanen. “Planning as Satisfiability with Re-
laxed Exist-Step Plans”. In: Australian Conference on Artificial Intelli-
gence. Ed. by Mehmet A. Orgun and John Thornton. Vol. 4830. Lecture
Notes in Computer Science. Springer, 2007, pp. 244–253. isbn: 978-3-540-
76926-2.

[WR07b] Martin Wehrle and Jussi Rintanen. “Planning as Satisfiability with Re-
laxed exist-Step Plans”. In: AI 2007: Advances in Artificial Intelligence.
Ed. by Mehmet A. Orgun and John Thornton. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2007, pp. 244–253. isbn: 978-3-540-76928-6.

[Zob70] Albert L Zobrist. “A new hashing method with application for game play-
ing”. In: ICCA journal 13.2 (1970), pp. 69–73.

66

http://ada.liacs.nl/events/sparkle-planning-19/documents/solver_description/seipp-sparkle2019.pdf
http://ada.liacs.nl/events/sparkle-planning-19/documents/solver_description/seipp-sparkle2019.pdf
http://ada.liacs.nl/events/sparkle-planning-19/documents/solver_description/seipp-sparkle2019.pdf
https://doi.org/10.1007/BF00268499
https://doi.org/10.1007/BF00268499

	Introduction
	Methods and Results
	Structure of the Thesis

	Preliminaries
	Classical Planning
	Planning as State Space Search
	Planning as Satisfiability
	Boolean Satisfiability Problem
	Incremental SAT Solving
	Encoding Planning as SAT
	Parallel Plans
	Makespan Scheduling

	Counterexample-Guided Abstraction Refinement

	Related Work
	Our Planner: PASAR
	Encoding
	SAT Solver
	Decoding SAT Models
	Ordering Action Sets
	Forward Search
	Refining Abstractions
	Additional Features
	Same Makespan Limit
	Interleaving Search

	Experimental Evaluation
	Implementation Details
	Grounding
	Greedy Best-First Search

	Experimental Setup
	Environment
	Test Instances
	Variance

	Parameter Evaluation
	Basic Encodings
	SAT-Based Planning with CEGAR
	Search
	PASAR

	Comparison
	Tuning Set
	Validation Set

	Conclusion
	Summary
	Future Work

	Complexity of Planning
	Reevaluating SAT Solvers
	Test Sets
	IPC-Set
	Sparkle-Set

	Bibliography

