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1 Introduction

Discovering and unveiling the unknown has ever since been an important, maybe
the most important driving force behind human endeavor. In the world of physics,
understanding the fundamental principles that govern the dynamics of the world
surrounding us, on the small as well as on the large scale, is certainly one of the
greatest unknowns. The tools used by generations of scientists to disclose nature’s
secrets have evolved during the centuries alongside with the sophistication of the
faced questions, from simple mechanical machinery like slide rules, to complex and
powerful electrical machinery like supercomputers. Science and technology have
stimulated each other ever since, and by that, have changed and improved human
lives on a global scale. During the last century, a new phenotype was added to the
collection of tools available for humankind, summarized under the term quantum
technologies.

In quantum technologies, our developed understanding of nature within the
framework of quantum mechanics [63] is translated into new applications, directed
towards the substitution of classical technology with better performing quantum
devices, for instance in medical surgery [84], or the development of fundamentally
new concepts utilizing unique quantum phenomena like quantum entanglement
[14, 100, 102, 200], quantum superposition [199], and quantum tunneling [35, 146].
New technology branches arising from these phenomena are quantum sensing [1,
72], quantum computing [17, 73, 137], and quantum communication [18, 65, 69, 82,
112].

The technological prerequisit for the implementation and operation of quantum
technologies is the preparation, control and readout of a quantum state |Ψ〉 stored
in a specifically engineered hardware. Although designed for the same conceptual
purpose, the physical systems used for the implementation of such quantum
platforms are manifold, and range from microscopic systems like individual electron
spins in silicon [109, 139, 159, 223] and quantum dots [70, 96, 104, 175], magnetic
molecules [5, 28, 83, 132, 205, 213], ultracold atoms [88], trapped ions [16, 25, 26,
44, 130], nitrogen-vacancies in diamonds [66, 95], and polarized photons [115, 176],
as well as macroscopic systems like superconducting quantum circuits [42, 116,
148, 149, 166]. Similar to natural atoms, the quantum hardware is associated with
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1 Introduction

a discrete energy spectrum, but require different conditions for their operation,
for instance in terms of the ambient temperature. Despite a myriad of promising
theoretical ideas, exploiting the full potential of quantum hardware constitutes an
immense technological challenge. A major task remains the preservation of quantum
coherence, meaning that the time evolution of the prepared quantum state is known
and predictable, while allowing for a fast manipulation and detection of the quantum
state at the same time.

Superconducting quantum circuits [45, 58, 59, 121] (SQCs) are among the most
versatile quantum hardware platforms as they offer a unique degree of freedom
and control in shaping the energy spectrum of the system. Successfully realized
applications range from particle detection [50, 182] to low-loss amplification [38, 212,
233, 235] to the storage and processing of quantum information. Especially the latter
two constitute fundamental building blocks on the road map of quantum sensing and
quantum computing with superconducting circuits. In 2019, the first programmable
superconducting quantum processor has achieved quantum supremacy — the
demonstration of a calculation performed on a quantum device which wouldn’t
have been feasible on a classical computer [6]. At the core of SQCs are low-loss
and nonlinear microwave circuits built from superconducting materials, which,
determined by their shape, host collective oscillations of the superconducting
condensate in the low gigahertz regime. Despite the macroscopic scale of SQCs
not uncommonly spanning over hundreds of micrometers or even millimeters, in
combination with the large number of particles participating in the collective motion,
the dynamics of such circuits can still be described by effective circuit models with
only a small number of quantum degrees of freedom (DOF). The elementary building
blocks of these models are capacitors, resistors, as well as linear and nonlinear
inductors. The properties of a circuit are controlled by connecting different circuit
elements to an electrical network, similar to classical integrated circuits, with the
DOF being related to the oscillating currents and voltages.

Similar to the position and momentum coordinate of a quantum particle, the quantum
nature of a circuit with a single DOF manifests in the relation between current and
voltage, which become conjugate variables in the quantum mechanical sense, and
cannot be measured with infinite precision at the same time. As a consequence, the
energy spectra of SQCs are discrete, with the spacing between neighboring energy
levels typically on the order of a few gigahertz, with some remarkable exceptions
[237]. Transitions between the different eigenstates are induced by the application of
propagating microwave photons of similar energy. Since current and voltage are
ultimately linked to the electromagnetic fields, the oscillations of the condensate can
be thought of as stationary microwave photons. Therefore, nonlinear circuits for
which transitions can be addressed individually are referred to as artificial atoms.
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1 Introduction

A common property of natural and artificial atoms is the anharmonicity of the
energy spectrum, implying that consecutive transitions are not of the same energy.
In the context of quantum computing, separating two states from the infinite Hilbert
space to form a quantum two-level system — a quantum bit or qubit — is one of the
main challenges. The key element to engineer the energy spectrum is the Josephson
junction (JJ) [108]. A typical JJ is implemented by a tunneling contact between two
superconducting electrodes, which are separated by a thin insulating barrier. Since
charges tunnel only in discrete numbers across the barrier, the action of a JJ placed
inside a circuit is that of a nonlinear inductor. The corresponding inductance is
referred to as kinetic inductance, as the presence of the tunneling barrier enhances
the inertia of the superconducting condensate. A similar effect can be obtained in
disordered superconductors with high normal-state resisitivity, enabling to build
compact circuits with high impedance [91, 148, 210].

Owing to the macroscopic size, SQCs couple to uncontrolled mesoscopic systems
that degrade the coherence of the circuit [114, 131, 135, 195, 203]. Although many
mesoscopic systems have been identified during the last decades, ranging from defects
in interfaces [135, 163], adsorbates and organic residuals from the fabrication process
[51], non-equilibrium, collective excitations of the superconducting ground state
[56, 180, 188, 227], denoted quasiparticles, and magnetic vortices [211], successfully
mitigating them is considerably more difficult. A substantial effort is invested into
material science and new qubit concepts less susceptible to such disturbances [180],
and the development of quantum error correction schemes [12, 36, 110, 170, 187].

Another very interesting approach is to combine different quantum degrees of
freedom in a hybrid architecture [232]. As most quantum degrees of freedom have
rather distinct advantages and disadvantages, in the ideal case, combinations of
these systems acquire the advantages, while discarding the disadvantages of the
underlying subsystems. Recent examples for such fruitful marriages are hybrid
systems of SQCs and magnetic molecules [22, 23, 83], and SQCs and semi-conducting
spin qubits [154, 194]. The benefits of SQCs are their fast and precise control, as well
as their ability to couple to other quantum system via the electrical and the magnetic
field.

In many hybrid architectures, the counterparts of SQCs require the application of
strong external magnetic fields on the order of several tens to hundreds of millitesla
[23, 194]. Although superconducting materials which are able to sustain these fields
are known and frequently used for the implementation of SQCs, in the vast majority
of circuits, the nonlinear elements are still Josephson tunnel junctions made from
thin film aluminum. The main disadvantage of such conventional JJs are interference
effects occurring inside the tunnel junction in external magnetic fields, similar
to the interference pattern of an optical single slit experiment, which cause the
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1 Introduction

suppression of the JJ’s critical current with field [196]. For that reason, a new type
of nonlinear element is required in the context of hybrid systems, an element that
offers enough nonlinearity to realize a sufficiently anharmonic energy spectrum for
the implementation of qubits, but which can sustain external magnetic fields at the
same time.

In the scope of my thesis, I investigated the applicability of granular aluminum (grAl)
[54] for the implementation of superconducting qubits designed for hybrid architec-
tures. Granular aluminum is a member of the class of granular superconductors
and exhibits a supercondutor-to-insulator transition as the resistivity of the material
is increased [133, 181], and is particularly interesting for the application in hybrid
system due to its large critical field [29, 43, 47, 53]. The microstructure of grAl films is
composed of similarly sized crystalline aluminum grains [55], with diameters on the
order of a few nanometers, which are embedded into an insulating, non-stoichiometric
aluminum-oxide matrix. Therefore, the circuit quantum electrodynamcs of grAl
resonators can be described as an effective array of Josephson junctions [144, 172],
and in analogy to conventional Josephson junction arrays, the grAl film gives rise to
a nonlinear kinetic inductance, which is controlled by the resistivity of the material
and the film dimensions. For the purpose of my study, I substituted the conventional
Josephson tunnel junction in a superconducting transmon qubit [116] with a small
volume of grAl [230]. By measuring the resonance fluorescence response of the
granular aluminum transmon in spectroscopy and time-domain, the properties of the
film and the circuit were characterized, in particular in terms of the microwave losses
in external magnetic fields, the quantum coherence, and the obtained nonlinearity.

For the purpose of improving the signal-to-noise ratio (SNR) of the measurement
setup and to reduce the required measurement time, a low-loss Josephson parametric
amplifier (JPA) was developed additionally. In a typical SQCs setup, several amplifier
stages are required to elevate the signal strength to a level detectable at room
temperature. Although each amplifier inherently degrades the SNR by adding noise
to the signal, the total SNR of the measurement setup is dominated by the first stage,
if signal and noise incident to the first amplifier are sufficiently amplified. JPAs have
repeatedly proven to reach the quantum limit of added noise, the fundamental lower
bound on the added noise as determined by the principles of quantum mechanics
[40].

The presented JPA concept is based on long Josephson junction arrays, which
are engineered to allow for non-degenerate parametric amplification with pairs
of eigenmodes, denoted dimers. Therefore, the device is referred to as the dimer
Josephson junction array amplifier (DJJAA) [231]. The key features of the DJJAA concept
are the potentially large operational bandwidth due to the use of different dimers of
the same device in adjacent frequency domains, and the saturation power offered by
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1.1 Superconducting quantum circuits

the use of long JJ arrays. The implementation of the DJJAA concept is demonstrated
on several devices, all fabricated based on a simple and cheap optical-lithography
process, which were characterized in spectroscopy and time-domain. For one device,
the measurement efficiency of the experimental setup — the measure on how close
our setup approaches the quantum limit — was calibrated with the aid of a transmon
qubit.

The thesis is organized as follows: First, an introduction into the main concepts
of superconducting quantum circuits and their mathematical description is given,
followed by a section summarizing the demands on SQCs for hybrid systems, and
the amenities offered by superconducting granular aluminum. The introductory part
is concluded with a discussion about the requirements and the working principle
of superconducting parametric amplifiers. In chapter 2 and 3, the main results
obtained on the granular aluminum transmon and the dimer Josephson junction
array amplifiers are reported. The main part of the thesis is completed with a
conclusion and an outlook. For all main chapters, additional information is provided
in corresponding appendices.

1.1 Superconducting quantum circuits

Superconducting quantum circuits are electrical networks composed of linear
and nonlinear circuit elements, deliberately connected to form artificial media for
microwave quantum electrodynamics. Because three different fields find application
in the same context, there are three different perspectives on the same physical
system: the solid-state perspective, the (quantum) electrical engineer perspective,
and the quantum optics perspective. While the first perspective is helpful for a
better understanding on a microscopic level, the second perspective is useful for
the designing process of devices and the development of new concepts on a higher
level, and the third perspective is particularly convenient to describe the interaction
between propagating and stationary electromagnetic fields used for manipulation,
storage, and readout.

The solid-state perspective

On a microscopic scale, the properties of a superconducting quantum circuit reflect
the properties of the charge carriers in the superconductor, particularly the properties
of their collective motion. In a conventional (metallic) superconductor, and according
to the Bardeen-Cooper-Schrieffer (BCS) theory [10], the electrons condensate into
Cooper pairs, which occupy a common ground state. The collection of Cooper pairs
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1 Introduction

is referred to as the superconducting condensate, and its ground state is described
by a macroscopic complex wavefunction, whose amplitude is related to the number
of Cooper pairs, while its phase reflects the phase coherence between the electronic
states on a macroscopic scale. In a superconductor, the corresponding Cooper pair
number operator N̂ and the phase operator ϕ̂ are conjugate variables with a non-zero
commutation relation

[N̂, ϕ̂] = −i. (1.1)

Consequently, they underlie the uncertainty principle similar to the position and
momentum coordinates of the electrons in the potential of a natural atom. However,
the fluctuations of these two quantities are not predetermined by natural constants,
but are controlled by the shape and the material properties of the superconductor,
which is one of the main reasons for the immense versatility of superconducting
quantum circuits.

The electrical engineering perspective

In quantum circuit theory, the shape and the material properties of the superconductor
are mapped onto an effective circuit model, and the collective motion of the Cooper
pairs is described by the currents and voltages through and across the circuit elements.
Although many particles participate in the collective motion, the properties of the
system are described by a small set of degrees of freedom (DOF). For linear circuits,
there is a one-to-one correspondence between the quantum circuit and its classical
equivalent. Finding the (independent) DOF of a circuit based on the circuit topology
is the subject of the circuit quantization. Since the currents and voltages are ultimately
related to the Cooper pair number and the macroscopic phase, they are conjugate
variables in the same quantum mechanical sense, and the resulting energy spectrum
of the circuits is discrete.

The quantum optics perspective

Driving transitions between the energy levels of the circuit corresponds to the
manipulation of the quantum state stored in the circuit, and is performed by the
application of propagating microwave photons. In contrast to quantum optics, the
propagating microwave photons are guided to the system through coaxial cables
and eventually interact with the collective oscillation inside the superconductor via
their electrical or magnetic field. For that reason, a useful analogy is to consider the
collective plasma oscillation hosted by the circuit as a stationary microwave photon,
similar to the electromagnetic field confined between the two concave mirrors of
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1.1 Superconducting quantum circuits

an optical cavity. Hence, the exchange of information between the system and its
environment is described by the exchange of microwave photons.

In the following, I will further illustrate the relation between the different perspectives
with the aid of the quantum harmonic oscillator.

1.1.1 The quantum harmonic oscillator

A simple but very relevant implementation of a superconducting quantum circuit
is the LC-oscillator, which is formed by a parallel circuit of an inductor L and a
capacitor C. In Fig. 1.1, the left-hand panel depicts an optical microscopy image of a
physical realization of the LC oscillator, fabricated from a single thin film aluminum
layer (white) on a sapphire substrate (grey).

From a wire to a quantum circuit

Despite the quite peculiar shape noticed at a first glance, the whole circuit is formed
by a single, continuous superconducting wire, which means that every segment is
galvanically connected to all other segments. However, due to the arrangement of
the wire, the circuit contains a region of enhanced capacitance on the right-hand
side, where the two ends of the wire are parallel and close in distance. The galvanic
connection between the capacitor electrodes is considerably narrower in width, and
forms the inductor of the circuit. Hence, if the capacitor is charged, an electric field
will occur between the capacitor plates, and analogously, if the capacitor discharges
via the inductor, the induced current will give rise to a magnetic field surrounding
the inductor. On resonance, the energy stored in the magnetic field equals the energy
stored in the electric field, and both field components are oscillating at the natural
resonance frequency of the circuit. Finding the corresponding eigenfrequencies of a
circuit is subject to (quantum) circuit theory.

The circuit model

The lumped-element electronic schematic of the physical circuit is shown on the
right-hand side of Fig. 1.1. In the lumped-element representation of a circuit, the
physical properties associated to a segment of the superconducting thin film, and
the corresponding electromagnetic fields, are condensed into a single or multiple
two-port circuit elements. In the given example, the contribution of the long wire
forming the inductor is compressed into a single inductive element. During this
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1 Introduction

Figure 1.1: Quantum harmonic oscillator. Optical microscopy image of a superconducting LC oscillator.
The circuit is formed by a single superconducting wire made from thin film aluminum (white)
evaporated on a sapphire substrate (grey), which is arrangend in such a way to form a meander shaped
inductor on the left-hand side and a capacitor on the right-hand side. The right-hand panel shows the
corresponding lumped-element circuit diagram composed of a parallel circuit of an effective capacitance
C and an effective inductance L. The red and the blue arrows indicate the electric and magnetic
field, respectively, associated with the charges on the capacitor plates and the current threading the
inductance. The condition for resonance is reached when the energy stored in the electrical field equals
the energy stored in the magnetic field, which occurs at the natural resonance frequency ω0 = 1/

√
LC

of the circuit.

process, the distribution of the current along the wire is lost, and the effective circuit
model does not account for higher harmonics present in the physical system.

The circuit model of the quantum harmonic oscillator has a single degree of freedom.
In the node representation of electrical networks, the node flux Φ̂, which is defined
as the time integral of the voltage drop V̂(t) across the capacitor

Φ̂(t) =
∫ t

−∞
V̂(t′)dt′, (1.2)

becomes the position coordinate of the system. The spectrum of the node flux
operator is continuous, and by comparing its relation to the voltage operator with
the classical definition of Faraday’s law of induction reveals, that the classical node
flux is indeed equal to the magnetic flux ΦB through the inductor

V(t) = Φ̇B = Φ̇. (1.3)
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1.1 Superconducting quantum circuits

In general, following the canonical quantization [222], the quantum Hamiltonian of
a circuit is deduced from the classical Hamiltonian of its equivalent circuit. For the
quantum LC-oscillator, the Hamiltonian is

Ĥ =
Q̂2

2C
+

Φ̂2

2L
, (1.4)

where Q̂ is denoted the node charge operator. The node charge constitutes the
conjugate variable of the node flux, and becomes the momentum coordinate of the
system. Therefore, the two operators obey the canonical commutation relation

[Φ̂, Q̂] = ih̄, (1.5)

in analogy to the position and momentum coordinate of a quantum particle. While
for the given example, the node charge determines the charge on the capacitor plates,
in more complex systems with more than one DOF, the node charge corresponds
to the combined charges residing on all capacitors connected to the respective
node. Nevertheless, in the node representation the kinetic energy of the system is
associated with the capacitive elements, and the potential energy to the inductive
elements. Although arbitrary for the LC oscillator, this choice becomes convenient
in the treatment of nonlinear inductors, i.e. the Josephson junction [222].

According to the definition of the node flux operator, the voltage and current
operators are

V̂(t) =
Q̂
C

and Î(t) =
Φ̂

L
, (1.6)

revealing that both operators satisfy the constitutive relations of a linear capacitor
and a linear inductor, respectively.

Stationary microwave photons

Since the node flux and charge operators do not commute with the Hamiltonian,
they do not share a common eigenbasis. In order to find the energy eigenstates of
the circuit, the canonical coordinates Φ̂ and Q̂ are expressed in terms of creation and
annihilation operators â† and â, respectively,

Φ̂ = ΦZPF

(
â + â†

)
Q̂ = −iQZPF

(
â− â†

)
. (1.7)

Here, ΦZPF and QZPF are the zero-point fluctuations of the node flux and the node
charge, respectively. By definition, they determine the magnitude of the ground-state
fluctuations in both variables in the absence of excitations, and are the manifestation
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1 Introduction

of the uncertainty principle between both variables. In a superconducting circuit,
the size of these fluctuations is controlled by the relative size of the circuit elements.
For the quantum harmonic oscillator, the zero-point fluctuations are

ΦZPF =

√
h̄Z0

2
QZPF =

√
h̄

2Z0
, (1.8)

where Z0 =
√

L/C is the circuit’s characteristic impedance. According to the
definitions of the zero-point fluctuations, the suppression of the fluctuation in
one variable by changing the characteristic impedance of the circuit, enhances the
fluctuation in the other variable.

Since the node flux and the charge of the harmonic oscillator are ultimately related
to electromagnetic fields created by the current flowing through the inductor and
the charges residing on the capacitor plates, the creation and annihilation operators
correspond to single-mode field amplitude operators, which obey the bosonic
commutation relation

[â, â†] = 1. (1.9)

The quantization of the electromagnetic fields is subject of the second quantization,
and inserting Eq. 35 and Eq.36 into Eq. 34, yields the quantum optics Hamiltonian of
the quantum harmonic oscillator

Ĥ = h̄ω0

(
â† â +

1
2

)
, (1.10)

where ω0 = 1/
√

LC is the resonance frequency. The operator n̂ = â† â is the
occupation number operator, which has a discrete eigenbasis, denoted the Fock
basis, spanned by the discrete set of elementary excitations of the electromagnetic
field, the photons:

n̂ |n〉 = n |n〉 . (1.11)

Here, n ∈ Z≥0 is a positive integer number representing the number of photons
inside a Fock state. The eigenenergies of the quantum harmonic oscillator are

En = h̄ω

(
n +

1
2

)
, (1.12)

where n is thus the number of photons inside the oscillator. The energy spacing
between consecutive energy levels is detemined by the resonance frequency of the
circuit and does not depend on the number of photons inside the oscillator. The
constant term reflects the zero-point fluctuations of the system, which are present
even without any excitation, and are of the same type as the quantum fluctuations of
the vacuum. Although the quantum harmonic oscillator is a relevant system, as every
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linear system can be decomposed into a set of independent harmonic modes, for
quantum computing and many other applications, nonlinear elements are required.
Even in bosonic approaches on quantum computing, for instance the cat codes [219]
or the Gottesmann-Kitaev-Preskill (GKP) code [86], in which the quantum state is
actually stored inside a linear oscillator, non-linear drives are required to prepare
the states.

1.1.2 The Josephson junction

The key element and the reason for the high amount of flexibility of superconducting
quantum circuits is the Josephson junction (JJ). A JJ is formed when two supercon-
ducting electrodes are connected by a weak link, for instance if the electrodes are
separated by a thin insulating tunneling barrier, or even by a narrow bridge. In
both cases, the superconducting condensate is locally weakened and the properties
of the JJ are fundamentaly related to the relationship of charge and phase in a
superconductor. While the wavefunctions of the superconducting electrodes are
well defined in the case of a tunnel junction, which simplifies the mathematical
treatment significantly, for a bridge or constriction, the wavefunction can become
a complicated function of space [134]. In general, the physical laws governing

Figure 1.2: Josephson tunnel junction Scanning electron microscopy image of a Josephson junction
formed by the overlap area of two superconducting electrodes (aluminum on silicon), which are
separated by a thin insulating barrier. For clarity, the electrodes are false color-coded in red and
in blue, and an artistic illustration of the cross section is shown in the right-hand panel. Since the
superconductors are separated, the condensate in each electrode is described by a complex wavefunction
Ψi = |Ψi |eiϕi .
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a constriction depend on the geometric dimension of the wire, and the material
properties of the superconductor. For that and other reasons, the predominant
sources of nonlinearity in superconducting quantum circuits are JJ formed by a
tunnel contact. Yet, every superconducting wire is to some extent nonlinear as the
nonlinearity arises from the superconducting condensate.

The Josephson equations

In a JJ, a dissipationless current of Cooper pairs, denoted the supercurrent, can be
induced by a difference in the macroscopic phases of the superconducting electrodes
ϕ̂ = ϕ̂1 − ϕ̂2, and is sustained by the element up to a critical current Ic. Figure 1.2
depicts an example for a tunnel contact formed between two superconducting
electrodes, false color-coded in red and blue, with an artistic illustration of the
corresponding cross section of the contact.

The transfer of Cooper pairs from one electrode to the other is discrete, and since the
number of Cooper pairs and the phase of the macroscopic wavefunction are conjugate
variables, which are by definition Fourier transform duals, the discreteness of the
charge transport engenders the phase response to be periodic. The corresponding
relation between the supercurrent and the phase difference is referred to as the
current-phase relation, and for the ideal contact it takes the form of the first Josephson
equation [108]

Î(ϕ̂) = Ic sin(ϕ̂). (1.13)

For weak links not formed by a tunnel contact, the current-phase relation can
deviate from the sinusoidal form significantly [134]. The time evolution of the phase
difference is determined by the voltage drop across the element, and expressed by
the second Josephson equation

V̂(t) =
h̄
2e

dϕ̂

dt
, (1.14)

revealing a close similarity to the definition of the node flux operator. However, the
phase operator is defined on the unit circle only, which is why the two operators are
not necessarily identical. As U. Vool argues in his PhD thesis [221], a way of relating
the node flux and the phase difference is to introduce an infinitely large inductance
in parallel to the junction, which does not affect the solutions on the small scale,
but breaks the periodicity of the phase operator and assures the vanishment of the
wavefunctions at infinity.
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1.1 Superconducting quantum circuits

Figure 1.3: Josephson tunnel junction: Current-flux relation and energy potential. a) Current-flux
relation of an ideal JJ (solid blue line) and an ideal linear inductor (red dashed line), plotted against the
generalized flux across the elements Φ. The modulation amplitude is determined by the critical current
Ic of the JJ. b) Energy potential of an ideal JJ E ∝ cos(Φ/ϕ0) (blue), together with the Taylor expansion
around the origin up to the quadratic Φ2 (red) and the quartic term Φ4 (purple). The linear inductance
corresponding to the quadratic curve is denoted the Josephson inductance LJ = Φ0/(2π Ic).

The Josephson potential

Under the assumption that the JJ is shunted by an infinitely large inductor, the
phase operator becomes the normalized flux operator ϕ̂ = Φ̂/ϕ0, with ϕ0 = h̄/(2e)
being the reduced magnetic flux quantum. The potential energy associated to the
Josephson element is

Epot = −EJ cos(ϕ̂) ≈ −EJ +
EJ

2
ϕ̂2 − EJ

24
ϕ̂4 +O(ϕ̂6), (1.15)

where EJ = h̄Ic/(2e) is the Josephson energy.

The expansion of the Josephson potential for small phase differences (ϕ� 1) shows,
that the JJ contributes to the circuit as a nonlinear inductance. Neglecting the energy
offset, the first term of the expansion corresponds to the harmonic potential of a
linear inductor, with the associated coefficient denoted the Josephson inductance
LJ = Φ0/(2π Ic). The quartic term constitutes the first nonlinear term of the JJ, and is
usually sufficient to explain the dynamics governing a nonlinear circuit if the phase
fluctuations across the JJ are small.

In general, the phase fluctuations across the JJ determine the dynamics of the JJ,
and are controlled by the shunting element(s). This circumstance is utilized to build
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different flavors of quantum bits, where either the charge or the phase are considered
a good quantum number.

The Josephson Hamiltonian

For a tunnel junction, the two superconducting electrodes give rise to an additional
shunt capacitance, referred to as the junction capacitance CJ. Figure 1.4 depicts
the corresponding circuit diagram of a JJ, composed of a tunneling element with
sinusoidal current-phase relation (cross) and a capacitor (left-hand panel), as well as
the compact representation (right-hand panel).

Figure 1.4: Josephson tunnel junction: Circuit diagram. The circuit representation of a single Josephson
junction, formed between two superconducting electrodes separated by a thin insulating barrier
(see Fig. 1.2), is a parallel circuit of a capacitor with charging energy Ec = e2/(2CJ), where CJ is the
junction capacitance arising between the electrodes, and a tunnel contact (cross) with Josephson energy
EJ = Φ0/(2π Ic), where Ic is the critical current of the junction. The critical current determines the
maximal supercurrent the JJ can sustain without dissipation, i.e. without a voltage drop across the
element. Therefore, the circuit representation is only valid for bias currents smaller than the critical
current. The self-resonant frequency of the equivalent circuit is referred to as the plasma frequency
ωpl ≈

√
8EJEc. A more compact and commonly used representation of a JJ is shown on the right-hand

side.

The Hamiltonian of the JJ including the kinetic term due to the junction capacitance
is

Ĥ =
Q̂2

2CJ
− EJ cos(Φ̂/ϕ0), (1.16)

which can be rewritten in the form

Ĥ = 4EcN̂2 − EJ cos(Φ̂/ϕ0), (1.17)
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by introducing the normalized charge operator N̂ = Q̂/(2e), and the charging energy
Ec = e2/(2CJ). Despite its simplicity, the JJ Hamiltonian is sufficient to describe
the vast majority of systems studied within the scope of my thesis, ranging from
parametric amplification to the implementation of qubits, as it describes different
dynamics depending on the relative size between the charging energy and the
Josephson energy.

1.1.3 The superconducting charge qubit

The superconducting charge qubit is not only the first superconducting qubit
implemented [30, 166], but also one of its manifestations, the transmon qubit [116],
has become the most widely used qubit flavor until now. Conceptually, the idea of the
charge qubit is to encode the logical states in the charge states of a superconducting
island, connected to a charge reservoir via a JJ, therefore allowing only discrete
numbers of Cooper pairs on the island. If the island is small in size, the charging
energy, which is a measure of the Coulomb expulsion of two charged particles on
the island, dominates the dynamics of the circuit. In this regime, the charge qubit
is referred to as the Cooper pair box [206]. For large islands, the dynamics are
dominated by the superconducting phase.

The circuit diagram of the superconducting charge qubit is similar to the circuit
diagram of the JJ introduced in the previous section, with the main difference being
an additional capacitance Cg connecting the superconducting island to a voltage
source. The application of a gate voltage changes the chemical potential of the island
continuously, and determines the equilibrium point of the charge. The charge qubit
Hamiltonian is

Ĥ = 4Ec(N̂ − Ng)
2 − EJ cos(Φ̂/ϕ0), (1.18)

where Ng = VgCg/(2e) is the normalized offset charge due to the gate voltage
Vg, and is equivalent to a number of Cooper pairs. Notably, the contribution of
the gate capacitor changes the charging energy Ec = e2/(2[CJ + Cg]) of the island.
Since charge transfer is conducted via a tunneling contact, only discrete numbers of
Cooper pairs can tunnel onto the island. Figure 1.5 depicts the corresponding circuit
diagram, in which the superconducting island is highlighted in red.

In general, there are two complementary bases for the Hilbert space representation
of the charge qubit Hamiltonian: the eigenbasis of the normalized charge operator,
and the eigenbasis of the phase operator. Although both bases reproduce the same
results, the natural choice is to use the charge eigenbasis in the limit Ec ≥ EJ, and
the phase eigenbasis in the limit Ec � EJ.
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In the charge eigenbasis the Hamiltonian becomes

Ĥ = 4Ec

∞

∑
N=−∞

(N − Ng)
2 |N〉 〈N|

− EJ

2

∞

∑
N=−∞

(|N〉 〈N + 1|+ |N + 1〉 〈N|) ,
(1.19)

which again does only hold if individual Cooper pairs are transferred across the
JJ at a time. While the first term determines the kinetic energy associated to the
Coulomb expulsion, the second term determines the finite coupling between the
superconducting island and the charge reservoir of the environment.

Energy spectrum

Figure 1.5 depicts the energy spectrum of the charge qubit up to the fourth energy
eigenstate, numerically calculated as a function of the offset charge Ng ∈ [−1, 1]
for two ratios of the Josephson energy and the charging energy EJ/Ec = 1.0 and
50, representative for the two limits of the circuit. For clarity, the energies Ei are
expressed in a frequency scale and are offset by the minimum of the ground state
energy E0.

In the first case, the spectrum is composed of a family of parabolas, which are
horizontally offset by integer values and represent the energies of the charge
eigenstates. Due to the finite tunneling, the parabolas split at the intersection points,
with the splitting between the ground and the first excited state being the Josephson
energy EJ. The point of operation for the charge qubit in this regime, denoted the
charge sweet spot, is at Ng = 0.5, as the slope of the first two eigenenergies vanishes
simultaneously. Representing the ground state in the charge basis (bottom panel)
reveals that the eigenstate at the charge sweet spot is an equal superposition state
between zero and a single Cooper pair on the island, with only a small contribution
of other states, justifying the choice of basis.

The obtained spectrum is highly anharmonic, meaning that the transition energy
E01 between the ground and the first excited state differs significantly from the
transition energy E12 between the first and the second excited state. In general, the
anharmonicity α of an energy spectrum is determined by

h̄α = E12 − E01. (1.20)

However, as it turned out in various experiments, stabilizing the charge qubit at the
desired point of operation proved elusive due to fluctuations in the uncontrolled
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Figure 1.5: Superconducting charge qubit: Circuit diagram and energy spectrum. The circuit diagram
of the superconducting charge qubit consists of a superconducting island, indicated in red, for which
the charge transfer with the environment is conducted via a Josephson junction — a tunneling contact
(cross) associated with the Josephson energy EJ = Φ0/(2π Ic) in parallel with the concomitant junction
capacitance CJ — and is therefore discrete. However, the equilibrium point of the charge is controlled
by an external voltage source Vg that determines the offset charge Ng = VgCg/(2e) on the islands. The
total charging energy of the island is Ec = e2/(2[Cg + CJ]). The left-hand and the right-hand panels
depict the energy spectrum of the circuit, numerically calculated for the two ratios EJ/Ec = 1 and
50, as a function of the offset charge. Additionally, the case EJ/Ec = 0.1 is plotted in light gray, and
serves as a reference. The first four energy levels are indicated by different colors. The comparison
between both plots emphasizes the distinct dependence of the energy spectrum on the value of the
offset charge observed in the regime in which the charging energy dominates or both energy scales
are comparable. With increasing ratio EJ/Ec, the dependence on the offset charge, the offset charge
dispersion, is exponentially suppressed. The lower panels indicate the ground state wavefunction in
the charge number basis for Ng = 0.5. For small ratios EJ/Ec the charge number is a good quantum
number and the eigenstates of the charge qubit are almost identical to the charge number eigenstates.
With increasing ratio, the spread of the wavefunction increases.
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electromagnetic environment of the circuit, significantly limiting the quantum
coherence of the charge qubit [105].

Mitigating the effect of the offset charge on the qubit spectrum is achieved by
increasing the ratio EJ/Ec, shown in the right-hand panel of Fig. 1.5, as the splitting
at the intersection points flattens the dependency of the eigenenergies on Ng. This
causality is the idea behind the transmon qubit [116].

The Transmon regime

The transmon qubit is a type of superconducting charge qubit operated in the regime
EJ/Ec ≥ 50, which is most commonly achieved by shunting a single JJ with an
additional capacitor. As a consequence, the circuit’s susceptibility to offset charges
is exponentially suppressed with

√
EJ/Ec, significantly enhancing the time stability

of the operational frequency. However, at the same time the anharmonicity of the
energy spectrum decreases.

In the transmon regime, the potential well due to the JJ is much larger than the
kinetic energy. Therefore, the representation of the dynamics in the phase basis
becomes more intuitive, drawing the picture of an effective phase particle trapped in
a cosine potential. Since the phase fluctuations across the JJ are small, the potential
energy is well approximated by the terms of a Taylor expansion up to the fourth
order. Neglecting the constant term of the expansion and the offset charge in the
kinetic energy, the approximated transmon Hamiltonian is

Ĥ ≈ 4EcN̂2 +
EJ

2
ϕ̂2 − EJ

24
ϕ̂4, (1.21)

which is the Hamiltonian of a harmonic oscillator with quartic perturbation.
Therefore, a suitable description of the system are the bosonic single-mode field
amplitude operators introduced for the harmonic oscillator:

ϕ̂ = ϕZPF

(
â + â†

)
(1.22)

N̂ = −iNZPF

(
â− â†

)
. (1.23)

Here, ϕ2
ZPF =

√
2Ec/EJ and N2

ZPF =
√

EJ/(32Ec) are the zero-point fluctuations of
the phase and the normalized charge. Applying the rotating-wave-approximation,
i.e. keeping only terms that conserve energy, and using the bosonic commutation
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relation to perform a normal mode ordering, yields the Hamiltonian of the transmon
qubit in second quantization

Ĥ ≈
(√

8EJEc − Ec

)
︸ ︷︷ ︸

= ω′0

â† â −Ec

2︸︷︷︸
=h̄K/2

â† â† ââ, (1.24)

where ω′0 is the resonance frequency of the fundamental transition. In quantum
optics, the obtained type of Hamiltonian is known as the Kerr Hamiltonian, where
K is the Kerr coefficient and determines the anharmonicity of the energy spectrum.
Mapping the charge qubit Hamiltonian onto the Kerr Hamiltonian reveals, that the
anharmonicity in the transmon limit, i.e. performing an expansion of the Josephson
potential up to the fourth order, is set by the charging energy of the shunt capacitor.

α ≈ Ec

h̄
(1.25)

This result constitutes the compromise between the offset charge dispersion and the
anharmonicity encountered in the charge qubit.

Despite its small anharmonicity compared to the Cooper pair box and other qubit
flavors, the transmon qubit has been successfully used for the first demonstration of
the so-called quantum supremacy [6], and persuades by its conceptual simplicity.

1.1.4 Bloch-sphere representation

In the qubit limit, the infinite Hilbert space of a superconducting quantum circuit is
truncated and mapped onto a two-dimensional space spanned by the logical ground
state |g〉, or |0〉 alternatively, and the logical excited state |e〉 or |1〉. While in many
implementations the logical ground and excited state coincide with the two lowest
physical energy eigenstates of the system, in bosonic codes, the infinite Hilbert space
of the harmonic oscillator is used to encode quantum information, and the ground
and excited state can be more complex superposition states [36, 219].

A sufficient condition for the qubit limit of a multi-level system is, that transitions
between the energy eigenstates forming the computational basis are induced
at a significantly slower rate than the anharmonicity of the energy spectrum.
However, even for weakly anharmonic systems like the transmon, there are pulse
sequences designed to avoid the population of higher energy eigenstates outside the
computational basis [161], or which even exploit the higher dimensionality of the
underlying Hilbert space for the preparation of a logical quantum state |Ψ〉 inside
the computational basis [61].
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The Bloch-sphere representation shown in Fig. 1.6 is a common way of displaying
the logical state |Ψ〉 of a quantum bit in the three-dimensional space

|Ψ〉 = cos
(

θ

2

)
|0〉+ sin

(
θ

2

)
eiφq |1〉 , (1.26)

where θ is the mixing angle between the ground and the excited state, and φq is
the phase of the state with respect to a yet undefined reference. The corresponding
Hamiltonian of an ideal qubit is

Ĥ0 =
h̄ωq

2
σ̂z, (1.27)

where σ̂z is a Pauli operator, and ωq = (E1 − E0)/h̄ is the transition frequency
between the ground state |0〉 with energy E0 and the first excited state |1〉 with
energy E1.

Figure 1.6: Bloch-sphere. Graphical representation of the two-dimensional Hilbert space spanned by
the logical states |0〉 and |1〉 of a qubit. The six cardinal points and the corresponding states are indicated
along the three coordinate axes. Any quantum state |Ψ〉 (red dot) on the surface of the Bloch sphere is
determined by two angles θ and φq. In the Schroedinger picture, the state of the qubit precesses around
the z-axis at the transition frequency ωq of the qubit. In statistical quantum mechanics, the surface of
the Bloch sphere hosts pure states, while mixed states reside in the interior.

Rabi-oscillations

In the Schroedinger picture, the time evolution of a system is described by the a
unitary operation Û(t, t0) acting on the initial quantum state of the system. If the
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system Hamiltonian is time independent, the evolution of the quantum state over
time is

|Ψ(t)〉 = eiĤ(t−t0) |Ψ(t0)〉 . (1.28)

For an ideal qubit, the state |Ψ(t0)〉 initialized at time t0 precesses around the z-axis of
the Bloch sphere at the qubit frequency ωq, as illustrated in Fig. 1.6. In order to induce
transitions between the ground and the excited state, an additional drive term has to
be added to the unperturbed Hamiltonian Ĥ0, resulting in the Rabi-Hamiltonian

ĤRabi =
h̄ωq

2
σ̂z + Ωσ̂x cos (ωt) . (1.29)

Here, Ω is the drive amplitude, ω is the drive frequency, and σ̂x is a Pauli operator.
The presented form of coupling is referred to as a transversal coupling, as it does
not preserve the eigenbasis of the initial Hamiltonian. In a frame rotating at the
drive frequency, obtained by the unitary transformation Û = exp (iωσ̂zt/2), the
Hamiltonian becomes

ĤRabi =
h̄∆q

2
σ̂z +

Ω

2
σ̂x, (1.30)

with the frequency detuning ∆q = ωq −ω between the drive and the qubit. The new

eigenenergies of the so-called dressed Hamiltonian ĤRabi are E± = ± 1
2

√
Ω + ∆2

q, and

since the corresponding eigenstates |±〉 of the Rabi-Hamiltonian are superposition
states of the bare eigenstates |0〉 and |1〉, the action of the additional term is to drive
transitions between |0〉 and |1〉 at a rate given by the generalized Rabi frequency

ΩR =
√

Ω2 + ∆2
q. (1.31)

Figure 1.7: Rabi cycle. Time evolution of the probability P1 of finding a qubit in the excited state |1〉, if
a continuous microwave drive of amplitude Ω and frequency detuning ∆q = ωq −ω is applied at time
t0 = 0.
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Figure 1.7 depicts the probability P1 of finding the qubit in the excited state as a
function of the normalized time t and the frequency detuning ∆q after preparing
the qubit in the ground state at t = 0. While the Rabi frequency increases with
increasing detuning, the contrast of the oscillation reduces at the same time. The
obtained pattern is known as the Chevron pattern.

1.1.5 Open quantum systems

So far, the discussion about superconducting quantum circuits has been carried out
on the basis of closed quantum systems — systems that are completely decoupled
from their environment. The quantum state of such an isolated quantum system
evolves indefinitely with time under the action of the corresponding Hamiltonian of
the system. Moreover, if the system is prepared in a superposition state, for instance
a state on the equator of the Bloch sphere (|0〉+ |1〉)/

√
2, the phase relation between

the states remains well defined, which is referred to as quantum coherence.

In reality,every quantum system exchanges information with its environment, sharing
its quantum state with a set of observers. For the study of a quantum system we, the
scientists, become observers, too, by delibaretly opening a communication channel to
the system. In the field of superconducting quantum circuits, the communication is
carried out by propagating microwave photons with energies Eph/h ≈ 0.1− 20 GHz.
If the state of all other observers and their time evolution would be known to us,
the total system including the observers would remain coherent in the quantum
mechanical sense [164]. However, all quantum systems interact with uncontrolled
degrees of freedom, which are usually not accessible, therefore causing quantum
decoherence — the loss of information about the quantum state over time.

The extent of the interaction of a system with its environment is captured by two
characteristic time scales, the energy relaxation time T1 and the dephasing time
T∗2 . In both cases, introducing the corresponding relaxation rates as the inverse,
Γ1 = T−1

1 and Γ∗2 = T∗−1
2 , becomes convenient when dealing with multiple decay

mechanisms.

Energy relaxation

In most cases the total energy relaxation into the equilibrium state of the system
is due to a combination of different physical effects, but can be categorized into a
decay rate κ caused by the interaction of the system with the input port used to
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collect information, and the decay rate γ caused by the interaction with uncontrolled
and unobserved degrees of freedom:

Γ1 = κ + γ. (1.32)

The corresponding relaxation times are T1,κ = κ−1 and T1,γ = γ−1. In a direct
measurement of the system, κ is the rate at which information about the quantum
state is obtained.

For a qubit, the energy relaxation time determines how fast the qubit reaches its
equilibrium state on average after it has been excited. Notably, depending on the
temperature of the environment, the equilibrium state is not necessarily the ground
state of the system, which is why two additional rates are distinguished: The rate Γ↑
at which the environment excites the qubit from the ground state into the excited
state (|0〉 → |1〉), and the rate Γ↓ at which the excited state spontaneously decays
into the ground state (|1〉 → |0〉):

Γ1 = Γ↑ + Γ↓. (1.33)

The equilibrium state depends on the relative size of both rates.

In general, the relaxation rates reflect the property of a time ensemble — a statistical
ensemble of identical copies of the system. If the state of the qubit is continuously
traced over time, usually fast transitions between the two states can be observed,
as shown in Fig. 1.8 (right-hand panel). Although such transitions are denoted
quantum jumps, implying a discontinuous quantum trajectory, recent experiments

Figure 1.8: Energy relaxation. Bloch sphere representation of energy relaxation processes, illustrated in
the rotating frame of the qubit transition frequency. On average, the qubit state transits from the ground
(blue) to the excited state (red) at a rate Γ↑ , and in the opposite direction at a rate Γ↓ . The rates are
defined as the inverse of the duration the qubit spends in the respective state. The continuous tracking
of the qubit state (grey lines) over time reveals fast transitions between the two states, referred to as
quantum jumps [155, 218]. The black line indicates the qubit state inferred from the system response Q,
which is explained in more detail in Sec. 3.9.
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have confirmed that the transitions are coherent Rabi transitions induced by the
environment, usually taking place much faster than the time resolution of the
measurement [155].

Dephasing

The dephasing rate is a measure of how fast the phase coherence of a prepared
superposition state decays with time, i.e. how fast a pure quantum state becomes a
statistical mixture, and is usually caused by a combination of energy relaxation and
the fluctuation of the system’s transition frequency expressed in the pure dephasing
rate Γφ. For a qubit prepared in a superposition state between the logical ground
and first excited state, the dephasing rate is

Γ∗2 =
Γ1

2
+ Γφ. (1.34)

In the ideal case, the dephasing of a qubit is dominated by energy relaxation (Γφ → 0),
and the dephasing time becomes

T∗2 = 2T1. (1.35)

According to conventional terminology, the asterisk indicates the dephasing time
extracted from a Ramsey fringes experiment [186], as exemplarily shown in Fig. 1.9.
In comparison, the time T2 refers to the dephasing time obtained in a Hahn-echo
experiment, an experiment designed to filter the low-frequency components of pure
dephasing processes [94].

Figure 1.9: Dephasing. Bloch sphere representation of pure dephasing in the rotating frame of the
(fixed) qubit transition frequency. For every component of the time ensemble representing the statistical
average, the qubit frequency is slightly different, causing a rotation in the rotating frame, as indicated
by the faint arrows. The projection onto the computational basis shows an exponentially decaying
oscillation between the logical ground and excited state, where the oscillation frequency depends on
the detuning ∆q between the rotating frame and the qubit transition frequency, and the characteristic
time scale of the envelope is T∗2 .
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Reflection coefficient

For superconducting quantum circuitry, a common way of characterizing a system is
to measure the reflection coefficient Γ(ω) — the ratio between the outgoing and the
incident field — through a dedicated input port in close vicinity to the resonance
frequency of the system

Γ(ω) = S11(ω) =
〈B̂out〉
〈B̂in〉

. (1.36)

Here, B̂in and B̂out are the bosonic single-mode field amplitude annihilation operators
of the fields propagating inside the input port. Referring to electrical engineering,
the reflection coefficient is often denoted S11, the first entry in the scattering matrix
of a multi-port network.

In general, the reflection coefficient is a complex function of the probe frequency ω

and power Pin = h̄ω 〈B̂†
inB̂in〉, and allows not only to distinguish between internal

and external energy decay, but also to measure the frequency fluctuations of a
system causing dephasing. While the reflection coefficient remains independent of
the applied probe power for harmonic systems, the response of anharmonic systems
can be highly nonlinear.

1.1.6 Circuit quantum electrodynamics

In analogy to cavity quantum electrodynamics (CQED) [142, 185], the experimental
framework in which natural atoms interact with the quantized light confined in
a three-dimensional superconducting cavity, in circuit qunatum electrodynamics
(cQED), artifical atoms built from superconducting thin films are coupled to dedicated
readout resonators [24, 224]. Figure 1.10 shows an illustration of the conceptual
resemblance between both fields. Notably, for cQED experiments, the harmonic
mode can be an on-chip 2D resonator [11, 33, 224] or a 3D cavity [171, 180]. In
both cases, the corresponding Hamiltonian describing the interaction between the
quantized electromagnetic light and the (artificial) atom is known as the quantum
Rabi Hamiltonian [183, 184]

ĤR =
h̄ωq

2
σ̂z + h̄ωr â†

r âr + gσ̂x

(
âr + â†

r

)
, (1.37)

where â†
r and âr are the creation and annihilation operators of the cavity mode,

respectively, with a bare transition frequency ωr, and g is the coupling rate between
the resonator and the qubit. In the presented from, the coupling is transversal, for
instance induced by a finite coupling via the electrical fields of both modes, and
does not preserve the eigenstates of the uncoupled systems. Although not further
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Figure 1.10: Circuit quantum electrodynamics (cQED). Similar to the field of cavity quantum
electrodynamics (CQED), where natural atoms are coupled to the quantized light confined in a cavity
[101, 142, 185], as illustrated by the artistic sketch, in cQED, an artificial atom is coupled to the electrical
or magnetic field of a microwave cavity. The circuit visible on the left-hand side of the optical microscopy
image constitutes the harmonic cavity, while the artificial atoms is a transmon qubit visible on the
right-hand side. The inset shows an SEM image of the JJ, where the two superconducting electrodes on
both sides are false color-coded in red and blue similar to Fig. 1.2.

discussed, the coupling scheme preserving the bare eigenstates is referred to as a
longitudinal coupling [62].

Provided the coupling rate is significantly slower than the transition frequency of
qubit and cavity (g� ωq, ωr) the application of the rotating wave approximation is
justified, yielding the Jaynes-Cummings Hamiltonian [106, 226]

ĤJC =
h̄ωq

2
σ̂z + h̄ωr â†

r âr + g
(

σ̂+ âr + â†
r σ̂−

)
. (1.38)

The interaction term reveals that individual excitations are exchanged between the
cavity and the qubit at a rate g. In the dispersive limit of cQED, the frequency detuning
∆qr = ωq −ωr between both systems is significantly larger than the coupling rate
∆qr � g, and the Jaynes-Cummings Hamiltonian can be approximately diagonalized
[24]

ĤJC ≈
h̄
2
(
ωq + χqr

)
σ̂z + h̄

(
ωr + χqrσ̂z

)
â†

r âr. (1.39)

The information about the qubit state is encoded in the frequency of the readout
resonator, where χqr = g2/∆qr is the qubit state induced dispersive shift. Moreover,
the dispersive measurement technique of the qubit state is quantum non-demolition
(QND), meaning that the projected state of the qubit remains preserved after
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Figure 1.11: cQED:dispersive readout. Phase arg(S11) of the reflection coefficient measured around
the resonance frequency ωr of a readout resonator with internal and external decay rates γ and κ,
respectively. The solid lines indicate the expected response if the qubit is in the ground state |0〉 (red),
and the excited state |1〉 (black), assuming a dispersive shift 2χqr = −2π × 480 kHz. In the limit κ > γ,
the resonator response in the complex plane covers all four quadrants (inset), and, for a fixed frequency
readout tone (vertical black dashed line), the information about the qubit state is encoded in the
reflected phase. The right-hand panel shows an example of a measured histogram of the reflection
coefficient, when the qubit has been prepared in a superposition state on the equator. The two circular
regions correspond to the coherent states prepared in the readout resonator if the qubit is in the ground
and the first excited state.

the readout. However, above a critical photon number inside the resonator, the
dispersive approximation breaks down [24]. Moreover, in many cQED experiments,
the breakdown of the QND property of the readout is found to occur for even
significantly smaller photon numbers inside the resonator [155].

The main advantage of the dispersive readout is the independent control of the
energy decay of the qubit into the input port, and the rate at which information
about the qubit state is collected, which is now determined by the coupling rate of
the resonator. An example of the dispersive readout of a transmon qubit is shown in
Fig. 1.11.

ac Stark shift and measurement-induced dephasing

Another aspect of the Jaynes-Cummings Hamiltonian becomes visible if the indi-
vidual terms are arranged in a different order. In the same way the quantum state
of the qubit is encoded in the resonance frequency of the resonator, the number of
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photons inside the resonator is reflected by the qubit transition frequency, an effect
known as the ac Stark effect. The resonator induced frequency shift is

ωq(n̄r) = ωq,0 + n̄r2χqr, (1.40)

where n̄r is the average photon number in the resonator. If the dispersive shift is
calibrated from histograms similar to Fig. 1.11, measuring the qubit frequency allows
for a precise calibration of n̄r.

In most cQED experiments, instead of the application of Fock states, which are more
complicated to prepare [99], the state of the readout resonator is measured with a
coherent state, a Poisson distributed superposition of Fock-states (see App. B). Since
the Poisson distribution broadens with increasing readout power, the linewidth of
the qubit transition increases in addition to the frequency shift, as shown in Fig. 1.12.
This effect is known as measurement induced dephasing.

Provided the dispersive shift per photon 2χqr is significantly larger than the linewidth
of the qubit, individual qubit transitions can be observed for each Fock state occupied
in the readout resonator. As an example, in the case of a coherent state stored in the
resonator, its Poisson distribution in the Fock basis can be recovered from the qubit
spectrum [79, 201].

Figure 1.12: Measurement induced detuning in cQED. Dispersive shift of the readout resonator
measured on resonance with an increasing on-chip readout power Pr. An additional drive tone is
applied at frequency fd in order to excite the qubit. With increasing readout power, the transition
frequency of the qubit decreases (AC-Stark effect), while the transition broadens at the same time due
to measurement induced dephasing, as indicated by the Gaussian (red) and Lorentzian (black) fits.
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Beyond the qubit approximation

For qubits with small relative anharmonicity (α/ωq � 1), the two-level approxima-
tion does not describe the observed behavior of the system accurately. The transmon
qubit is such an example, where the dispersive shift of the readout resonator is
lower compared to the two-level approximation due to the presence of higher energy
levels. Including the third level, the dispersive shift is [116]

χqr = χ01 −
χ12

2
, (1.41)

with χj,j+1 = g2
j,j+1/((Ej+1 − Ej)/h̄−ωr). The coupling rates between the transmon

transitions and the readout resonator are determined by the off-diagonal matrix
elements of the charge number operator gj,j+1 ∝ 〈j|N̂|j + 1〉. In the limit EJ � Ec,
the matrix elements of the two lowest transitions are g2

12 ≈ 2g2
01 = 2g2, and the

dispersive shift can be approximated by

χqr ≈
g2

∆qr

α

∆qr + α
. (1.42)

The corresponding Jaynes-Cummings Hamiltonian becomes [116]

Ĥ =
h̄
2
(ω01 + χ01)︸ ︷︷ ︸

=ω̄q

σ̂z + h̄

ωr −
χ12

2︸ ︷︷ ︸
=ω̄r

+
[
χ01 −

χ12

2

]
︸ ︷︷ ︸

=χqr

σ̂z

 â†
r âr. (1.43)

Here, the dressed transmon and resonator frequencies ω̄q and ω̄r, respectively, are
offset owing to the finite coupling rate and quantum fluctuations in both systems
[74, 81]. Therefore, the induced shifts are referred to as Lamb-shifts [21, 124], which
are generally not identical for both systems.

In the spirit of the quantum optics description of the transmon qubit (see Eq. 1.24),
the cQED system can also be described solely based on bosonic field amplitude
operators for both systems [168]:

Ĥ/h̄ = ω̃q â†
q âq +

αq

2

(
â†

q

)2
â2

q + 2χqr â†
q âq â†

r âr

+ ω̃r â†
r âr +

αr

2

(
â†

r

)2
â2

r .
(1.44)

Here, â†
q and âq are the bosonic field amplitude operators of the qubit mode with

fundamental transition frequency ω̃q, and αq is again the qubit anharmonicity. Due to
the nonlinearity of the qubit circuit and the linear, transversal coupling, the resonator
mode inherits a nonlinearity itself, captured by the resonator anharmonicty αr. In most
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cases, this nonlinearity is small compared to the linewidth of the resonator, yielding a
completely different response as discussed in Sec. 1.3.4. Conclusively, in this quantum
optics picture, the dispersive interaction is a cross-Kerr interaction, an important
concept revisited in the context of low-loss amplification with superconducting
circuits.

1.2 Superconducting quantum circuits for hybrid
architectures

The idea behind hybrid architectures is to combine different types of quantum degrees
of freedom, for instance superconducting quantum circuits, spin and molecular
qubits, and magnons, to achieve an operational performance of the combined system
that couldn’t be reached by the individual systems [232].

Preserving quantum coherence

In every quantum system discussed in the context of quantum computing, an optimal
compromise between deliberate exchange of information and the preservation of
the logical quantum state stored in the system has to be found [197]. At the end,
what matters is the number of possible operations. The nuclear spin of atoms is an
example for a quantum system which can be well isolated from its environment,
and preserves the initialized quantum state for seconds [162] and even hours [239],
outperforming most other qubit candidates. However, the high degree of isolation
exacerbates the fast manipulation of the quantum state and the implementation of
fast two qubit gates, which are technological prerequisites for quantum information
processing. Therefore, systems allowing for the possibility to switch interactions on
and off with high contrast deliberately, are of great value.

Boosting interactions with superconductors

Superconducting quantum circuits are particularly interesting for hybrid systems as
they offer a high degree of control over the circuit parameters. Since the circulating
currents and voltages give rise to electric and magnetic fields, their capabilities
of combining them with other quantum systems are manifold. Moreover, the
dissipationless energy transport provided by superconductors reduces local heating
significantly.
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Another practically unique property of superconductors is the kinetic inductance, an
inductive contribution arising from the motion of the Cooper pairs, which can exceed
the geometric inductance by orders of magnitude. Due to the kinetic inductance, the
impedance of a superconducting circuit is not limited by the vacuum impedance, and
the interaction between light and matter is not limited by the fine-structure constant
[197]. Recently, high impedance superconducting resonators have been used to
implement quantum buses between spin qubits in semi-conductor heterostructures
[125, 154].

Demands on superconductors

In many hybrid systems, the application of strong, external magnetic fields is
required for the control of at least one of the quantum systems [232]. Although
the superconducting state is weakened by the presence of magnetic fields in most
cases, as I will briefly discuss in the following sections, there are superconducting
materials sufficiently resilient against magentic fields. Conventionally, the magnetic
field resilience of a superconductor is expressed in a critical magnetic field Bc, which
usually depends on the orientation of the field direction with respect to the plane of
the superconducting thin film [214].

Another aspect is the operational temperature of the systems. In conventional (metal-
lic) superconductors, the formation of Cooper pairs is linked to a characteristic energy
scale. As a consequence, the superconducting state prevails only at temperatures
below a critical temperature Tc. Additionally, even at electronic temperatures below
the critical temperature normal-conducting excitations out of the superconducting
ground state, the quasiparticles, are present, and although superconductors carry
direct currents dissipationless, at finite frequencies, the excitation of quasiparticles
adds dissipation to the circuit [93, 169, 220, 227].

In the following sections, I will briefly discuss the main requirements on supercon-
ductors in more detail: the effect of external magnetic fields on superconductors and
the resulting consequences for quantum circuits, as well as the kinetic inductance
naturally arising from the superconducting condensate. Finally, I will discuss the
properties of a promising material: superconducting granular aluminum.

1.2.1 Superconductors in finite magnetic fields

For the operation of a superconducting quantum circuit in external magnetic fields,
several effects have to be considered that can influence the performance of the
circuit: the suppression of the superconducting gap and the critical temperature, the
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penetration of the thin film by Abrikosov vortices [4], and interference effects inside
a Josephson tunnel junction [214].

Suppression of the gap parameter

In all superconductors, the application of an external magnetic field destroys the
superconducting state eventually. The presence of a magnetic field breaks the
time-reversal symmetry and lifts the energy degeneracy between electrons with
opposite spin and momentum, which are predominantly involved in the formation
of Cooper pairs. While the Zeeman splitting of the electron spin is independent of
the field orientiation with respect to the film plane, the effect on the orbital motion of
the electrons is usually different for fields applied parallel and perpendicular [214].

In the Abrikosov Gor’kov theory, the strength of an external perturbation on the
superconducting condensate is specified by the energy difference it causes between
time-reversed electrons [214], and is referred to as the pair breaking strength 2αPB.
If the pair breaking strength equals the BCS gap ∆00 in zero magnetic field and
temperature, the superconducting state finally vanishes.

The characteristic parameters of a superconductor are the critical temperature Tc,
the gap parameter ∆, which is a measure of the pair correlation of two electrons, and
the energy gap ΩG in the quasiparticle excitation spectrum. In zero magnetic field
the gap parameter and the energy gap are not only identical and commonly referred
to as the superconducting gap, but also related to the critical temperature according
to the BCS theory [10]

∆BCS(T = 0, B = 0) = ∆00 = 1.76kBTc. (1.45)

Although this relation does not strictly hold in the presence of external magnetic
fields [208], it is used to approximate the dependence of the superconducting gap on
the pair breaking strength from the behavior of the critical temperature. By applying
a two-fluid model similar to the calculation of the kinetic inductance discussed in
more detail in Sec. 1.2.2, the dependence

∆(αPB)

∆00
=

√
1− 2αPB/∆00

1 + 2αPB/∆00
(1.46)

is found [214]. The pair breaking strength entering the equation depends on the
physical origin of the external perturbation. For instance, the action of an external
magnetic field applied in-plane with respect to a superconducting thin film is
described by a quadratic relation between the pair breaking strength and the applied
magnetic field αPB ∝ B2, while it is a linear dependence αPB ∝ B for out-of-plane
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fields [214]. Assuming that the superconductivity is destroyed above a critical
magnetic field Bc, the dependence of the superconducting gap on the in-plane
magnetic field is

∆(B)
∆00

=

√√√√1− (B/Bc)
2

1 + (B/Bc)
2 . (1.47)

Magnetic field penetration

The response of superconductors towards external magnetic fields is generally
divided into two different categories or types [214]: Superconductors of type-I expel
the magnetic field from the inner volume of the superconductor, and remain in the
so-called Meissner phase up to the point the superconducting state vanishes at the
critical magnetic field Bc. To the contrary, type-II superconductors expel the magnetic
field only up to a first critical field Bc,1, above which the superconductor enters
an intermediate phase and is partially penetrated by the magnetic field in form
of Abrikosov vortices, until the superconductivity is destroyed above the second
critical field Bc,2.

In the Meissner phase, external magnetic fields are expelled by the induction of
screening currents in a narrow region below the surface [151]. The thickness of
this region is determined by the penetration depth λ. Provided the magnetic fields
are homogeneous on the length scale of the BCS coherence length ξ0, which is the
characteristic length scale on which the pair correlation between two electrons with
opposite spin and momentum decays, the penetration depth derived from BCS
theory approaches the value found in the classical London theory [138].

The London theory is phenomenological and local, and assumes that the magnetic
field exponentially decreases on the length scale of the London penetration depth
λL. At zero-temperature, the London penetration depth is [214]

λL(T = 0) =
(

2me

µ0ns(2e)2

)1/2
. (1.48)

Here, me is the electron mass, e is the elementary charge, µ0 is the vacuum permeability,
and ns is the Cooper pair density.

Disordered superconductors

In superconducting materials with a short mean free path l of the electrons, the
coherence length of the superconducting condensate is reduced and the ability of
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the condensate in screening external magnetic fields is weakened. This circumstance
is captured by an effective penetration depth λeff [214]

λeff ≈ λL(T)
(

1 +
ξ0

l

)1/2
, (1.49)

which is always larger than the London penetration depth. As a side note, for
completeness, the coherence length ξ0 entering the expression for the effective
penetration depth can deviate from the BCS coherence length [214].

Vortex state

According to the phenomenological Ginzburg-Landau theory, the two types of
superconductors are distinguished by their surface energy arising at interfaces
between superconducting and normal-conducting regions. The sign of the surface
energy depends on the ratio of the penetration depth and the coherence length. For
a type-II superconductor, the penetration depth is much larger than the coherence
length and the surface energy is negative, favoring the formation of normal-
conducting regions separated from the superconducting regions by a circulating
screening current, referred to as Abrikosov vortices. Each vortex carries a single
magnetic flux quantum Φ0 = h/(2e).

In thin films of superconductors, for which the penetration depth is comparable
to the film thickness, the screening potential of the condensate is usually reduced
additionally, as the mean free path is smaller due to scattering at the film boundaries.
As a consequence, superconductors that are of type-I in bulk can become type-
II superconductors in thin films. Although magnetic vortices constitute regions
of reduced superconducting gap, acting as sinks or traps for quasiparticles, the
uncontrolled motion of vortices can induce noise to a quantum circuit [211].

Interference effects in Josephson junctions

Similar to the flux quantization in superconducting loops and Abrikosov vortices,
the magnetic flux Φ enclosed in a JJ perpendicular to the tunnel contact is quantized
in multiples of the magnetic flux quantum Φ0. The area A considered in the case of a
JJ, the equivalent to the loop area in a SQUID, is determined by the width b of the JJ,
the thickness of the insulating barrier d, and the penetration depth λ, as illustrated
in Fig. 1.13a. As long as the inductance of the superconducting electrodes is small,
screening effects are negligible, and the enclosed flux is equal to the external flux
Φext.
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If the applied external flux deviates from integer multiples of the magnetic flux
quantum, the supercurrent density J(x) across the JJ oscillates sinusoidally as a
function of the position coordinate x. As a consequence, the net supercurrent I across
the JJ becomes a function of the external magnetic flux. For JJs with a rectangular
shape, and assuming a homogeneous external magnetic field Bext and critical current
density jc, the dependence of the maximal supercurrent on the external magnetic
flux is [214]

I(Φext) = Ic

∣∣∣∣ sin(πΦext/Φ0)

πΦext/Φ0

∣∣∣∣ . (1.50)

As shown in Fig. 1.13b, the obtained supercurrent beyond the central maximum
is significantly smaller than in zero-field even if the condition for constructive
interference is met. In case the JJ is embedded in a tank circuit, the suppression of the
critical current caused by a destructive interference lowers the transition frequency
of the circuit significantly [196].

Figure 1.13: Josephson tunnel junction: Interference effects. a) Cross section of a conventional JJ
sandwich structure composed of two superconducting electrodes of thickness t, denoted S1 (red) and
S2 (blue), separated by a thin insulating layer (grey) of thickness d. Similar to a superconducting loop,
the magnetic flux Φext enclosed in the area around the tunnel contact determined by the penetration
depth λ and indicated by the black dashed line, is quantized and an integer multiple of the magnetic
flux quantum Φ0. In the presence of an external magnetic field ~Bext (green) oriented in parallel to the
plane of the JJ, the supercurrent density J(x) oscillates sinusoidally along the JJ. As a consequence, the
maximal net supercurrent I(Φext) across the JJ becomes a function of the external magnetic field. b)
Characteristic oscillation of the maximal supercurrent, normalized by the critical current in zero-field Ic.
At integer multiples of the magnetic flux quantum, except at zero-field, the supercurrent is completely
suppressed.
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In practical terms, for a magnetic field applied in-plane, the relation between the
enclosed magnetic flux Φext and the external magnetic field Bext is

Φext = Bextb (d + 2λ) . (1.51)

Hence, the modulation period of the critical current depends on the physical
dimension of the JJ: assuming a vertical expanse of d + 2λ = 40 nm, a b = 50 nm wide
JJ would be suppressed at 1 T, and already significantly limited in its applicability at
much smaller fields. As a side note, the obtained result is only valid if the width of
the JJ is significantly smaller than the Josephson penetration depth [216].

1.2.2 Kinetic inductance in superconductors

Any wire made from a conductive material gives rise to a linear geometric inductance
which creates a magnetic field surrounding the wire according to Maxwell’s equations
if a current flows through it. Although the magnitude of the geometric inductance
generally depends on the dimension and shape of the wire, it is usually on the order
of a few tens of pH/µm. In a superconductor, another inductive contribution arises
from the kinetic motion of the Cooper pairs. Due to scattering effects of the electrons,
the Cooper pairs inside a superconductor experience a finite inertia against the
acceleration caused by an alternating electric field. The effect of the inertia on the
response of the system, i.e. the current, is similar to the delay observed in an inductor,
and is referred to as the kinetic inductance. In contrast to the geometric inductance,
it depends on the microscopic properties of the superconducting material, and is not
associated with an external magnetic field surrounding the wire, but rather a magnetic
flux inside the wire. In pure superconductors, for instance aluminum, the magnitude
of the kinetic inductance is usually only a fraction of the geometric inductance,
but can be orders of magnitude larger in disordered or granular superconductors,
reaching values up to ∼ nH/µm.

Complex conductivity

The response of a superconductor to an alternating electric field is described by the
electrical conductivity σ, which is generally frequency dependent and relates the
current density~J with the electric field ~E. For a one-dimensional wire, the relation is
[214]

J = (σ1(ω) + iσ2(ω)) E. (1.52)

While the real part σ1(ω) accounts for energy loss in the material, the imaginary
part σ2(ω) is a measure of the charge carriers inertia, and will be related to
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the kinetic inductance. Although the energy dissipation in a superconductor is
zero for constant fields, it is generally non-zero at finite frequencies due to the
presence of normal-conducting excitations of the superconducting ground state, the
quasiparticles.

Even for excitation frequencies well below the superconducting gap (ω � 2∆/h̄)
and temperatures well below the critical temperature (T � Tc), non-equilibrium
quasiparticles can be present in a superconductor [57, 107, 229]. Hence, in the
two-fluid model[214], the response of a superconductor is described by a combination
of a non-interacting superconducting, and a normal-conducting fluid.

At finite excitation frequencies ω ≥ 0, the real part of the total conductivity is
dominated by the quasiparticles (index n), and the imaginary part is dominated by
the condensate (index s)

σ(ω) = σ1,n(ω)− iσ2,s(ω). (1.53)

The physical implications of the complex conductivity for superconducting quantum
circuitry can be better understood by translating Eq. 1.53 into the language of
electrical engineering. In electrical circuits, the complex conductance plays the role of
an admittance, which is the inverse of the impedance Z. In the spirit of the two-fluid
model, the impedance of the superconductor is modeled with a parallel circuit
consisting of a resistor R and an inductor Lk

1
Z

=
1
R
− 1

iωLk
=

As

ls
σ(ω). (1.54)

Here, ls and As are the length and the cross section of the considered superconducting
wire, respectively. The comparison between the terms on both sides of Eq. 1.54 yields
an expression for the resistance R

R =
ls
As

1
σ1,n

= N�R�, (1.55)

and an expression for the kinetic inductance Lk

Lk = N�
1

tωσ2,s
, (1.56)

where N� is the number of squares of the wire, t is the film thickness, and
R� = 1/(σ1,nt) is the sheet resistance. The interpretation of the obtained result
is, that at finite excitation frequencies ω, the intrinsic inertia of the condensate
gives rise to an reactive impedance, and, therefore is not a perfect shunt for the
dissipative quasiparticle branch. Hence, the impedance of the circuit is enhanced
due to the kinetic inductance of the condensate, but the presence of quasiparticles
will introduce finite losses.

37



1 Introduction

Figure 1.14: Kinetic inductance in superconductors. The grey cuboid illustrates a superconducting
wire of width b and length ls, patterned from a superconducting thin film of thickness t. The geometry
of the wire, as seen from a top view, can be sectioned into squares. In many cases, the properties of the
wire can be derived from the total number of squares or sheets N� arising from the geometry, and
the system parameters specified per sheet, for instance the sheet resistance R� = ρn/t, where ρn is
the normal-state resistivity of the material, or the sheet inductance L�. In a superconductor, the sheet
inductance is generally a combination of a geometric contribution related to the wire geometry, and
a kinetic contribution arising from the kinetic motion of the Cooper pairs. Since normal-conducting
quasiparticles are usually present, the response of a superconductor towards an alternating electrical
field ~E(ω) is commonly described by a two-fluid model, as illustrated in the bottom left panel. While the
quasiparticles (blue) are prone to inelastic scattering, for instance at the wire boundaries or impurities
in the crystal lattice (red circles), adding dissipation to the system, the Cooper pairs (grey) propagate
dissipationless but inherit a finite inertia, causing a time delay. Therefore, neglecting the geometric
inductance, the electrical response of a superconducting wire can be mapped onto a parallel circuit
composed of a resistive branch representing the quasiparticle, and an inductive branch representing the
condensate. At finite excitation frequencies, the condensate is not a perfect shunt for the quasiparticle
branch, and the presence of quasiparticles is dissipative. In disordered superconductors, the kinetic
inductance can exceed the geometric inductance by orders of magnitude.
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Mattis-Bardeen theory

An expression for the imaginary part of the conductivity in the superconducting
state is found in the Mattis-Bardeen-theory (MBT) on the anomalous skin effect
in normal and superconducting metals [150]. In the local (l � λL) and dirty limit
(l � ξ0), where l is the mean-free path of the electrons, the imaginary part of the
superfluid conductivity σ2,s is related to the resistivity in the normal-conducting
state ρn, and the kinetic inductance associated with the condensate is

Lk = N�
R�h
2π2∆

1

tanh
(

∆
2kBT

)
︸ ︷︷ ︸

L�

. (1.57)

Here, T is the electronic temperature, ∆ is the gap parameter, R� = ρn/t is the
normal-state sheet resistance or resistance per square, and L� is the sheet inductance.
At temperatures well below the critical temperature (T � Tc), the expression for the
sheet inductance reduces to

L� =
R�h
2π2∆

. (1.58)

Based on these simple relations, provided the energy gap ∆ or the critical temperature
Tc are known, an estimate of the kinetic inductance emerging in the superconducting
state is possible for a given geometry, by measuring the normal-state sheet resistance
of the material at room temperature and extracting the total number of sheets from
the circuit design. However in general, for distributed devices with a non-uniform
current distribution along the superconductor, the energy participation of each part
has to be taken into account in addition.

1.2.3 Superconducting granular aluminum

Superconducting granular aluminum (grAl) is a promising candidate for the
application in hybrid architectures owing to its tunable and intrinsically nonlinear
kinetic inductance [144, 198, 230], the large critical magnetic in-plane field [29, 43,
47], and low losses in the microwave regime [90, 91, 217, 230].

As its name indicates, the grAl microstructure is composed of crystalline aluminum
(Al) grains embedded in an insulating, non-stoichiometric AlOx matrix, which grows
when Al is evaporated in an oxygen atmosphere. Even for a small amount of oxygen,
separated Al grains form. The typical diameters are (3± 1) nm [54], but the grain
size generally depends on the substrate temperature during the film deposition [3].
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Figure 1.15: Granular aluminum microstructure. Scanning tunneling microscopy image (left-hand
panel) of a granular aluminum (grAl) thin film, adapted from Ref. [234]. The microstructure of grAl
consists of crystalline Al grains with diameters on the order of a few nanometer, which are embedded
in an insulating, non-stoichiometric aluminum-oxide (AlOx) matrix. Since the tunneling of Cooper
pairs between neighboring grains gives rise to a nonlinear kinetic inductance similar to conventional
JJs, the electrodynamics of grAl thin films are modeled as networks of JJs.

Similar to conventional JJ, the transparency of the insulating barrier separating
neighboring grains allows for an inter-grain coupling via the Josephson effect,
constituting the source of kinetic inductance and nonlinearity of superconducting
grAl. Taking the results of the MBT for disordered superconductors summarized
in Eq. 1.58 as a basis, the magnitude of the kinetic inductance is controlled by the
normal-state resistivity ρn and the sheet resistance R� = ρn/t of the film. For grAl,
the resistivity is controlled by the partial oxygen pressure in the evaporation chamber
pO2 and the Al evaporation rate rAl, as shown in Fig. 1.16b.

The obtained sheet inductance in grAl thin films can be varied over three orders
of magnitude reaching values up to nH/� for films of t = 10− 20 nm thickness
[90, 238]. So far, the kinetic inductance of grAl has been successfully used for the
implementation of linear superinductors [91], promising circuit elements for new
qubit concepts, and particle detectors [217]. However, the nonlinearity stemming
from the grAl microstructure has not yet drawn much attention in the context of
superconducting quantum circuits.

Another consequence of the grAl microstructure is a dome-shaped phase-diagram
of the critical temperature Tc and the superconducting gap ∆grAl observed in grAl
thin films as a function of the normal-state resistivity ρn, with a maximum occuring
between ρn = 100− 1000 µΩ cm [133, 181] (see Fig. 1.16a). While films evaporated
on cold substrates T ≤ 100 K reach values up to Tc ≥ 3 K [181], films evaporated
on room-temperature substrates are limited to Tc ≈ 2.2 K [133]. Despite numerous
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Figure 1.16: grAl: phase-diagram. a) Critical temperature Tc of grAl thin films as a function of the
normal-state resistivity ρn constituting the grAl phase diagram. Adapted from Ref. [133]. The behavior
observed for the superconducting gap ∆grAl is similar. With increasing resistivity, the critical temperature
increases until it reaches a maximum value, which depends on the substrate temperature during
evaporation. Above a certain resistivity, the films do not become superconducting on a macroscopic
scale and enter an insulating regime. b) Normal-state resistivity of grAl thin films measured at room
temperature, plotted as a function of the ratio between the partial oxygen pressure in the evaporation
chamber pO2 and the Al evaporation rate rAl. Notably, the evaporation rates are mean values, calculated
from the film thickness and the duration of the evaporation. The black solid line indicates an exponential
fit passing through the coordinate origin, excluding the outlier.

experimental investigations [9, 47, 54, 133, 181], an unambiguous physical explanation
for the enhanced critical temperature is still missing.

Among the discussed explanations for the dome-shape is the competition between
finite size effects in the Al grains enhancing the critical temperature [173], and an
increase in the phase fluctuations of the superconducting order parameter with
increasing normal-state resistivity, which eventually suppresses superconductivity
on a macroscopic scale eventually [52]. Evidence obtained by optical spectroscopy
measurements suggests a Mott-type superconductor-to-insulator transition driven
by the increasing decoupling between the grains and an increasing electrostatic
charging energy [160], supporting the notion of well separated grains rather than
disorder on the atomic scale. A comprehensive overview on superconducting grAl
in the literature is given in Ref. [89].

Quantum electrodynamics

Motivated by the grAl microstructure, the quantum electrodynamics of grAl thin
films can be modeled with the aid of effective arrays of JJs. For geometries favoring
a unidirectional current along the film, for instance rectangular-shaped stripline
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Figure 1.17: grAl: effective circuit model. Graphical illustration of a rectangular-shaped grAl strip with
volume VgrAl = l × w× t. For the prediction of the cQED properties, the film is divided into equally
sized segments of length a, which are thought of being separated by insulating barriers, forming a
one-dimensional array of effective JJs. The critical current Ic associated to each effective JJ is determined
by the critical current density jc, an intrinsic property of the film, and the cross section of the segment
A = w× t, a property of the geometry: Ic = jc/(w× t). The effective junction capacitance CJ is expected
to be large, but determining a value experimentally is generally difficult.

resonators or more generally geometries with a large aspect ratio, the dimensions of
the effective array can be reduced to one [144].

In the one-dimensional limit, the total grAl volume VgrAl is divided into segments of
volume a× w× t, where a is the length of an effective junction, and w and t are the
width and the thickness of the film, respectively, as shown in Fig. 1.17. Therefore,
the total number of effective junctions of a rectangular strip is N = l/a, which is
also the total number of degrees of freedom considered in the model.

Provided the zero-point fluctuations of the phase difference between neighboring
grains are small, the nonlinearity emerging from the inter-grain coupling can be
treated perturbatively, similar to the transmon qubit [116] (see also Sec. 1.1.3). The
corresponding quantum optics Hamiltonian of such a weakly nonlinear multi-mode
system is

Ĥ =
N−1

∑
m=0

h̄ωm â†
m âm +

h̄
2

Km,mωm â†
m âm â†

m âm︸ ︷︷ ︸
self−Kerr

+
N−1

∑
m,k=0

h̄
2

Km,kωm â†
m âm â†

k âk︸ ︷︷ ︸
cross−Kerr

, (1.59)
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where ωm are the N eigenmodes of the model, and Km,m and Km,k are the self-Kerr
and cross-Kerr coefficients, respectively. The model prediction for the self-Kerr
coefficient of the fundamental mode K11 is

K11 = −Cπea
ω2

1
jcVgrAl

, (1.60)

where C is a numerical factor close to unity, generally depending on the standing-
wave pattern of the current, and e is the electron charge [144]. Consequently, for a
given frequency ω1, the implementation with the smallest volume and lowest critical
current density jc offers the largest nonlinearity.

Critical current density

Besides the resonance frequency and the grAl volume, the prediction of the expected
self- and cross-Kerr coefficients requires the knowledge of the critical current density
jc in grAl films. Similar to conventional JJ, the critical current density is a measure
of how much dissipationless supercurrent the film can sustain per unit area, and
is expected to decrease with increasing normal-state resistivity, i.e. decreasing
inter-grain coupling.

In order to determine the critical current density jc, switching current measurements
of grAl direct current superconducting quantum interference devices (dc SQUIDs)
were performed [78]. Similar to a single JJ, a dc SQUID switches into the resistive
state above a certain bias current, denoted the switching current Isw, as discussed in
App. D. Since a dc SQUID is composed of two JJ embedded in a superconducting
loop, the switching current modulates with the flux enclosed in its loop (see App. E).
For the investigated grAl SQUIDs, the two JJs are defined by geometric constrictions
in the loop wire, forming regions of reduced critical current and therefore higher
switching probability. Even though the film geometry is continuous, suggesting a
superconducting weak link behavior [134], the switching dynamics are dominated
by the inter-grain coupling, as a result of the grAl microstructure and the short grAl
coherence length [78].

Generally speaking, the switching into the resistive state is a probabilistic process,
and reflects the interplay between the energy potential defined by the SQUID in
the presence of a finite bias current, and the properties of the condensate [15]. The
switching behavior can be described by the motion of an effective phase particle
in the two-dimensional SQUID potential under the action of gravity and friction
[214]. If a supercurrent is sustained by the SQUID, the phase particle is trapped
in a local minimum, but as soon as it escapes, it enters the so-called running state
in which a finite voltage drop occurs according to the second Josephson equation
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Figure 1.18: grAl dc SQUID: switching current measuerments. Switching current Isw of a dc SQUID
patterned from a single grAl thin film with normal state resistivity ρn = 1520 µΩ cm, measured as a
function of the external field Bz applied perpendicular to the SQUID loop. The SQUID design contains
two identical geometric constrictions of width w = 90 nm constituting regions of reduced critical current
and therefore elevated switching probability. The critical current density is calculated from the maximal
switching current in zero-field and the cross section of the geometric constriction jc = Īsw(0)/(tw).
Due to the large loop inductance, the magnetic flux modulation of the switching current is highly
suppressed, including the observation of excited flux states, as indicated by the colored lines [129]. The
right-hand panel shows two switching current histograms measured at zero (red) and maximal (blue)
SQUID frustration, with the black lines indicating fits to the obtained distributions.

(see Sec. 1.1.2). Although the escape mechanism is generally complex, including
a possible retrapping of the particle after an escape has occurred, an important
consequence of the dynamical process is that the measured switching current is
not necessarily even close to the critical current of the device. Premature switching
caused by thermal activation [34, 120] and macroscopic quantum tunneling [60],
especially in devices with small Josephson energy, can cause significant deviations.
However, by implication, the measured switching current approaches the critical
current with increasing Josephson energy (see App. D).

Figure 1.18 depicts the periodic modulation of the measured switching current with
the magnetic field Bz applied perpendicular to the SQUID loop. The triangular
shape can be explained by the large loop inductance, which suppresses not only
the modulation amplitude, but also allows for excited fluxon states, i.e. different
numbers of flux quanta trapped in the SQUID loop [129]. As shown in the right-hand
panel, for each bias field, the switching current follows a characteristic distribution
from which the value Īsw with highest probability can be extracted [122]. Additional
information about the switching process is contained in the distribution width [78].
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For the presented device, the obtained switching current is Īsw ≈ 4 µA, and the
corresponding Josephson energy is well above the ambient thermal energy at
cryogenic temperatures EJ/kB � 1 K, i.e. the influence of thermally activated
premature switching is small. Therefore, the critical current density is calculated
from the measured switching current in zero-field Īsw(0) and the combined cross
sections of the two constrictions

jc =
Īsw(0)

2t(w1 + w2)
, (1.61)

where w1 and w2 are the widths of the two geometric constrictions, and t is the
film thickness. For the device shown in Fig. 1.18, the thickness and widths are
t = 20 nm and w1 = w2 = 90 nm, respectively, yielding a critical current density
jc(1520 µΩ cm) = 1.1 mA/µm2.

From similar switching current measurements performed on devices with a similar
SQUID geometry but fabricated from different grAl thin films, the relation between
the critical current density and the normal-state resistivity was deduced, with the
results shown in Fig. 1.19. As expected, the critical current density decreases with
increasing normal-state resistivity, and is found to follow a power-law jc ∝ ρ−1.3

n .
More information on the devices is given in App. D.

A more detailed report on the switching current experiments performed on grAl
SQUIDs is found in Ref. [78], including a discussion about the observed diffusive
motion of the effective phase particle.

Figure 1.19: grAl: critical current density. Critical current density jc of various superconducting
grAl thin films with different normal-state resistivity ρn. The critical current densities are calculated
according to Eq. 1.61 from the zero-field switching current Īsw(0) measured in dc SQUIDs, similar
to the device shown in Fig. 1.18, and the cross-section of the geometric constrictions extracted from
scanning-electron-microscopy images. With increasing normal-state resistivity ρn, the critical current
density decreases with a power law jc ∝ ρ−1.3

n as indicated by the black solid line.
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1.3 Quantum-limited amplification

For the operation of superconducting quantum circuits, a low ambient temperature
well below the critical temperature Tc of the superconducting material is required,
mainly to prevent the thermal excitation of quasiparticles. Since the critical temper-
ature is on the order of a few kelvin for the most commonly used superconducting
materials, such as thin film aluminum (Tc ≈ 1.4 K) [111] and the niobium compounds
(Tc ≥ 8 K) [118], but also in more recently applied materials like granular aluminum
(Tc ≥ 1.4 K) [91, 133, 181, 238] and tantalum (Tc = 4.3 K) [177], the devices are
mounted in a cryogenic experimental setup operated at a few tens of millikelvin.
Although the devices have to be thermally isolated from the environment outside
the measurement setup, until today the signal processing is still carried out at room
temperature, imposing an exceptional importance to the connection between the
device and the signal detector.

In the early years, the pioneers of cQED dreamed of a QND readout with a signal-
to-noise ratio (SNR) sufficient to detect the qubit state within an integration time on
a par with the coherence time of the circuit, enabled by the strength of the readout
signal [24]. However, the experimental observation is a renormalization of the qubit
lifetime with increasing signal strength [155], i.e. the occupation of the readout
resonator, and a non-QND behavior of the readout [209]. Although the breakdown of
the dispersive approximation above a critical occupation number, accompanied by
the breakdown of the QND property of the readout was known from the beginning
[24], the origin of the much more pronounced lifetime renormalization is still under
strong debate [145, 174]. A consequence of the experimentally encountered limit on
the signal strength was the improvement of the SNR by reducing the noise in the
measurement chain.

In cQED experiments, the energy scale of the signal photons carrying information
about the qubit’s quantum state is in the range of a few gigahertz. Guided through
coaxial cables, the electrical field of the propagating photons can be linked to a
voltage which is detected at room temperature. Since the equivalent voltage of
a microwave photon in a 50 Ω environment is extremely small compared to the
thermal voltage fluctuations at room temperature, the signal has to be amplified by
several orders of magnitude. Although every amplifier adds noise to the signal and
degrades the SNR inherently [40, 98], in a chain of amplifiers, the SNR is determined
by the first amplifier stage provided its power gain, the ratio between the outgoing
to the incident power in a linear amplifier, is sufficient to saturate the noise of the
following amplifier stage(s). Consequently, the first amplifier stage should be the
amplifier with the best noise performance.
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1.3 Quantum-limited amplification

The amount of added noise depends strongly on the implementation of the amplifier,
and is conventionally referred back to the input port of the amplifier. In this way, the
quoted added noise is independent of the amplification, and is therefore comparable
between different amplifiers. Fundamentally, there is a lower bound on the precision
with which two conjugate variables can be measured at the same time, denoted the
quantum limit [46]. For a bosonic amplifier, the quantum limit is half a photon of
added noise per unit time and bandwidth [40], which is significantly lower than
the added noise of common commercial amplifiers, for instance state-of-the-art
high-electron-mobility-transistor (HEMT) amplifiers [140]. With the advent of SQCs
twenty years ago, a type of bosonic amplifier has gained renewed interest, and,
since then, has repeatedly proven to reach the quantum limit: the superconducting
parametric amplifier.

Besides the noise performance, there are other properties essential for the operation
of an amplifier, which are briefly introduced in the following Sec. 1.3.1. After a basic
understanding of amplifiers is established, the noise performance of an amplifier
chain is discussed in Sec. 1.3.2, followed by a brief discussion about the working
principle of parametric amplifiers in Sec. 1.3.3 and Sec. 1.3.4, and a summary of
common amplifier terminology and the classification of parametric amplifiers in
Sec. 1.3.5.

1.3.1 Basics of amplification

Independent of the physical implementation, there are several figures of merit
consulted to assess the performance of an amplifier. Conceptually, an amplifier is
a two-port device that receives a signal through its input port, and sends out an
amplified version through its output port, as illustrated in Fig. 1.20. Notably, the
input and output port can be located at the same physical port. In the simplest form,
the outgoing power Pout is linearly related to the incident power Pin,

Pout = G(ω)Pin, (1.62)

where G(ω) = Pout,on/Pout,off is the frequency dependent power gain, the ratio
between the output power with (on) and without (off) the amplifier being operated.
Amplifiers that fulfill this criterion are denoted linear amplifiers.

For most linear amplifiers, the linear regime of operation is only a part of the full
range of operation, and eventually, the power gain will start to become nonlinear
with increasing incident power. The signal power range in which the linearity of
amplification prevails, is referred to as the dynamic range of the amplifier. Closely
related to the dynamic range is the saturation power: amplification requires the
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Figure 1.20: Schematic representation of an amplifier. The amplifier (triangle) has a conceptual input
and output port, which, however, can be the same physical port. The periodic signal (red) and the
noise incident to the input port of the amplifier (light blue) are amplified. For a linear amplifier, the
relation between incident and outgoing power is linear Pout = G(ω)Pin, where the power gain G(ω)

is the magnitude of amplification. The noise added by the amplifier (dark blue) is usually referred
back to its input port, and accounted for by introducing a second, artificial noise port. The amount of
added noise is quantified by an added noise number A or alternatively by a noise temperature TN,
with similar quantities As and TN,s defined for the noise already carried by the signal.

transfer of energy from an energy reservoir onto the signal, but for every amplifier,
the utilized physical process is usually limited to a certain input power, above which
the power gain starts to diminish. Conventionally, the saturation power in parametric
amplifiers is defined as the 1 dB compression point, the signal power Pin at which
the maximal power gain G0 is reduced by 1 dB.

P1 dB = Pin|G=G0−1 dB (1.63)

Another important characteristic of an amplifier is the instantaneous bandwidth B, the
frequency domain in which amplification occurs. As mentioned above, the power
gain is a function of frequency, and the instantaneous bandwidth is defined as the
frequency domain in which the power gain is not lower than 3 dB compared to
the maximal power gain G0 (see Fig. 1.21). In the context of cQED, the required
instantaneous bandwidth is at the minimum the linewidth of the readout resonator,
which is typically on the order of a few megahertz.

In addition to the constraints on the instantaneous bandwidth, the amplifier’s range
of operation has to be aligned with the signal frequency at the same time. Therefore,
the center of the power gain has to be frequency tunable in case the instantaneous
bandwidth is not significantly larger than the linewidth of a readout resonator. The
maximal tunability of the power gain is referred to as the bandwidth of the amplifier,
and, the larger the bandwidth is, the more versatile the amplifier is. For cQED
experiments, the signal frequency is usually in the range 1− 10 GHz. In the ideal
case, a single amplifier covers the whole frequency domain.
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1.3 Quantum-limited amplification

Figure 1.21: Power gain and instantaneous bandwidth. Power gain G in decibel as a function of the
incident signal frequency ω. In general, the instantaneous bandwidth of an amplifier is defined as the
frequency domain in which the supplied power gain is not more than 3 dB lower than the maximal
power gain G0.

Based on the figures of merit discussed in this section, there are many different
types of amplifiers that outperform superconducting parametric amplifiers by far,
despite the enormous effort spent during the last decades. Until today, the ideal
superconducting amplifier is not yet found. However, the general performance of
an amplifier becomes peripheral in case the amplifier adds too much noise to the
signal, since the only purpose of parametric amplifiers in the context of cQED is the
improvement in SNR compared to commercial alternatives.

1.3.2 The measurement efficiency

The quantum or measurement efficiency η of an experiment determines how close
the measurement apparatus approaches the quantum limit — the lower bound on
the measurement accuracy determined by the principles of quantum mechanics [46]
— which can be inferred from the noise in the detected signal [97]. In general, the
detected noise is a combination of the intrinsic noise carried by the signal itself, and
the inevitable noise added by the amplifier stages of the experimental apparatus.
Circuit QED experiments are performed with bosonic signals, and the measurement
observables are related to the quadrature operators

Î =
1
2
(â† + â) Q̂ =

i
2
(â† − â), (1.64)

which constitute the real and imaginary part of the field amplitudes and obey a
non-zero commutation relation [ Î, Q̂] = i/2. Similar to the position and momentum
of a quantum particle, the commutation relation causes a lower bound on their
combined variances ∆I∆Q ≥ 1/4 (see App. B.1). In other words, the readout signal
contains at least noise in form of quantum fluctuations.
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The uncertainty can be translated into a number of noise photons As ≥ 1/2 carried
by the signal per unit time and bandwidth, where the lower bound corresponds to
the vacuum fluctuations already encountered as the ground state fluctuations in
the quantum harmonic oscillator (see Sec. 1.1.1). Coherent states are an example
of bosonic states satisfying the lower bound independent of their amplitude, with
noise equally distributed in both quadratures ∆I = ∆Q (see Fig. 1.22 and App. B.1).
Although not further pursued in the scope of my thesis, there are so-called squeezed
states of light for which the uncertainty is distributed non-uniformly [225].

In addition to the intrinsic uncertainty of the observables, typical cQED experiments
involve several amplifier stages, whereof all degrade the SNR by adding noise to
the signal. In a chain of amplifiers without losses between the individual stages
(see Fig. 1.22), the total added noise number Ameas per unit time and bandwidth,
referred back to the input port of the first amplifier stage, is

Ameas = As + A1 +
A2

G1
+

A3

G1G2
+ ..., (1.65)

where Ai and Gi are the added noise number and power gain of the i th amplifier
stage [37]. Provided the power gain of the first amplifier stage is large compared to
the noise added by the second amplifier stage (G1 � A2), the added noise of the
measurement setup is dominated by the first amplifier stage. Notably, another way of
expressing the noise performance is the noise temperature, an effective temperature
derived from the energy associated with the noise photons [40]. Although the noise
temperature is commonly quoted for commercial amplifiers, I find it less intuitive
since the temperature associated with the quantum limit is frequency dependent.

For a linear bosonic and phase-preserving amplifier, i.e. a device amplifying both
signal quadratures by the same amount, the quantum limit of added noise A is found
to originate from quantum fluctuations. According to the Haus-Caves theorem [40,
98], the added noise number is

A =
1
2

∣∣∣∣1− 1
G

∣∣∣∣ , (1.66)

constituting the lower bound on the noise added by the experimental apparatus.

Figure 1.22 illustrates the amplification process in a setup containing three amplifier
stages. Incident to the input port of the amplifier chain is a coherent state with
amplitude | 〈âin〉 | and (arbitrary) phase φ, represented in the quadrature plane and in
the rotating-frame of the carrier frequency ω. The noise is normally distributed in both
quadratures, with the corresponding standard deviations around the expectation
value of the signal denoted σI and σQ. The outgoing signal has an increased amplitude,
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Figure 1.22: Measurement efficiency of an amplifier chain. The action of an amplifier chain composed
of three individual amplifiers can be mapped onto a single device, with power gain G = G1G2G3

and effective added noise number A (Eq. 1.65). The signal incident to the amplifier chain is a single
coherent state (red) with amplitude | 〈âin〉 | and (arbitrary) phase φ, and is illustrated in the complex or
quadrature plane spanned by I and Q. In the rotating frame of its carrier frequency ω, the phase is
time-independent. The noise (light blue) is phase-insensitive and equally distributed in both quadratures.
After the amplification, the signal amplitude is increased by a factor

√
G. Besides the amplified signal

noise (light blue), the total noise in the output mode contains an additional contribution owing to the
noise added by the amplifier chain (dark blue). The measurement efficiency 0 ≤ η ≤ 1 determines how
close the measurement setup approaches the quantum limit.

scaled by the square root of the total power gain
√

G, and carries additional noise
due to the noise added by the amplifier chain.

The measurement efficiency can be defined as the ratio between the lowest achievable
variance σ2

ideal and the actually measured variance σ2 in the outgoing field:

η =
σ2

ideal
σ2 . (1.67)

For a coherent state prepared in the readout resonator of a cQED experiment,
and a quantum-limited, phase-preserving amplification chain, the ideal variance is
σ2

ideal = σ2
I = σ2

Q = 1/2, i.e. a total of one noise photon per unit time and bandwidth
in both quadratures combined. A description on how to determine the measurement
efficiency is given in Ref. [97] and Ref. [220], and experimentally demonstrated in
Sec. 3.8 with a superconducting parametric amplifier.
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1.3.3 The principle of parametric amplification

In a parametric amplifier (paramp), a weak signal is amplified by the periodic
modulation of one of the system parameters with time, which can be the refractive
index in an optical medium [48, 75], or the resonance frequency of a mechanical
oscillator [192] or an electrical circuit [103].

The working principle of a paramp can be understood under the classical consid-
erations of a simple harmonic oscillator formed by a parallel circuit of a capacitor
and an inductor. The charge residing on the capacitor plates oscillates at the natural
resonance frequency ω0 = 1/

√
LC of the circuit between the values +|Q| and −|Q|.

The oscillating current through the inductor lacks behind by a quarter period. If
either the capacitance or the inductance is modulated with time, energy can be
transferred to the system, or pulled out of it, depending on the frequency and the
phase of the modulation.

More precisely, assuming the capacitor plates are movable and are pulled apart
against the Coulomb force every time the capacitor is charged, followed by a
restoration of the initial configuration when the voltage across the capacitor is zero,
mechanical energy is parametrically converted into electrical energy, alongside with
an increase of the oscillating charge amplitude |Q|. If the external modulation is
carried out in the exact opposite order, equivalent to a phase shift of π, energy is
drawn off the resonance. The same operational principle is realized by increasing
and decreasing the inductance periodically. Independent of which circuit element
is modulated with time, the modulation has to take place at twice the resonance
frequency for the given system.

Historically, the first parametric amplifiers based on electrical circuits exploited
the nonlinear capacitance of varactor diodes [103]. In superconducting paramps,
the modulation of the resonance frequency is enabled by the nonlinear inductance
arising in superconducting thin films or JJs [189], i.e. the oscillating current itself
modulates the resonance frequency of the system.

1.3.4 Josephson parametric amplifiers

The simplest implementation of a parametric amplifier with superconducting
circuits, a Josephson parametric amplifier (JPA), is composed of a single JJ with
critical current Ic and Josephson energy EJ = Φ0 Ic/(2π), shunted by a capacitor
C. Similar to the transmon qubit [116], JPAs are operated in the limit EJ � Ec of
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the charge qubit Hamiltonian [30, 166, 206], and, thus the nonlinearity is treated
perturbatively [168]. The corresponding quantum optics Hamiltonian is

ĤJPA = h̄ω0 â† â + h̄
K
2

â† â† ââ, (1.68)

where â† and â are the bosonic single-mode creation and annihilation operators
for the intra-cavity field, respectively, ω0 is the resonance frequency, and K is the
self-Kerr coefficient. In comparison to the transmon qubit, a JPA is operated in the
limit K � κ, meaning that the frequency shift per photon is much smaller than the
linewidth of the mode. Therefore, driving the JPA results in a continuous shift of the
resonance frequency with power rather than in a spectrum composed of discrete
energy levels.

For the operation of the single mode or degenerate JPA, a strong classical pump tone
is applied close to resonance to drive the circuit into a nonlinear regime in which the
response of the JPA around a classical steady-state is highly susceptible to small
perturbations, for instance caused by the weak quantum signal. Following Ref. [68],
a brief discussion about the operational principle and the main features of a JPA is
given based on the input-output formalism [80]. A more detailed version is found in
App. B.3.

Classical steady-state

The average number of photons circulating inside a degenerate JPA under continuous
pumping is determined by a dimensionless, nonlinear equation [68](

δ2 +
1
4

)
n̄− 2δξn̄2 + ξ2n̄3 = 1, (1.69)

where

δ =
ωp −ω0

κ + γ
, n̄ =

|α|2
|β̃in|2

, β̃in =

√
κβin

κ + γ
, ξ =

K|β̃in|2
κ + γ

. (1.70)

The first quantity δ is the frequency detuning between the pump frequency ωp and
the bare resonance frequency ω0 of the JPA, scaled by the total linewidth κ + γ,
which itself is determined by the coupling rate to the input port κ and the rate γ

at which energy is lost to uncontrolled degrees of freedom. The second quantity
n̄ represents the mean number of photons inside the cavity |α|2 normalized by
the number of incident pump photons. The dimensionless drive amplitude β̃in is
related to the pump power applied at the input port via the absolute drive amplitude

53



1 Introduction

βin =
√

Pp/(h̄ωp). Finally, the effective drive strength ξ is determined by the product
of pump power and the self-Kerr coefficient K.

The reflection coefficient of the driven JPA is derived from the input-output
boundary condition [46, 80], which relates the outgoing field with the incident and
the intra-cavity field (see App. B):

S11 = 1− κ

κ + γ

1
1
2 − iδ + iξn̄

. (1.71)

In contrast to a linear cavity, the reflection coefficient depends on the average photon
number inside the cavity, and, therefore on the drive power applied with the pump
tone.

Figure 1.23 depicts the power dependence of the amplitude and the phase of the
complex reflection coefficient, |S11| and arg(S11), respectively, numerically calculated
as a function of the scale invariant pump-cavity detuning δ for different effective
drive strengths ξ. At the critical drive strength ξcrit = −1/

√
27 [68], the solution

for the amplitude of the coherent state in the cavity becomes multivalued, and the
system bifurcates. For a cavity with negative Kerr coefficient, the bifurcation occurs
at the critical detuning δcrit = −

√
3/2. Since only two out of three solutions are

stable, there are two stable branches the cavity can occupy. Experimentally, which
stable branch the cavity occupies depends on the direction of the frequency sweep,
as indicated by the solid and the dashed lines. Notably, under non-classical squeezed
drives even superposition states of these two stable branches, so-called bosonic
Schrödinger Cat-states, are possible [85, 219].

The dimensionless critical drive strength ξcrit can be translated into a critical photon
number ncrit incident to the cavity at which the bifurcation occurs:

ncrit =
(κ + γ)3
√

27κ|K|
, (1.72)

Since the JPA is pumped close to the point of bifurcation for the operation as an
amplifier, a large critical photon number is desired to suppress the effect of the
signal on the point of operation.
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Figure 1.23: JPA: reflection coefficient. Amplitude |S11| (top panel) and phase arg(S11) (bottom panel)
of the complex reflection coefficient of a nonlinear cavity with negative Kerr coefficient, numerically
calculated as a function of the scale invariant pump-cavity detuning δ = (ωp −ω0)/(κ + γ), and for an
increasing effective drive strength ξ. At the critical drive strength ξcrit, the equation determining the
intra-cavity photon number n̄ (see Eq. 99) exhibits multiple (three) solutions. While two solutions are
stable, the third is unstable, and, thus the system bifurcates. Experimentally, depending on the direction
of the pump frequency sweep, either upwards (solid lines) or downwars (dashed lines), the response
of the cavity follows different stable branches, and the response becomes hysteretic. In Josephson
parametric amplifiers, the system is pumped close to the point of bifurcation, since the response of the
system becomes increasingly sensitive to small perturbations in this region.

Power gain:

For a linear and degenerate bosonic amplifier, there is a simple relation between
the incident and the (amplified) outgoing signal field amplitudes, b̂in and b̂out,
respectively, which can be represented in matrix form [68](

b̂out,∆
b̂†

out,−∆

)
=

(
gs,∆ gi,∆

g?i,−∆ g?s,−∆

)(
b̂in,∆

b̂†
in,−∆

)
, (1.73)

revealing that the outgoing field at positive detuning ∆ = (ωs − ωp)/(κ + γ)

depends also on the incident modes at negative detuning −∆. Since there are at
least quantum fluctuations present at this frequency, these additional contributions
are referred to as the idler tone. The coefficients in front of the incident modes
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determine the magnitude of amplification and are referred to as the signal and the
idler gain-factors, gs,∆ and gi,∆, respectively,

gs,∆ = −1 +
κ

κ + γ

i(δ− 2ξn̄−∆) + 1
2

(i∆− λ−)(i∆− λ+)
(1.74)

and

gi,∆ =
κ

κ + γ

−iξn̄e2iφp

(i∆− λ−)(i∆− λ+)
, (1.75)

where φp is the relative phase between the incident pump and the intra-cavity field,
and the terms in the denominator are defined as

λ± =
1
2
±
√
(ξn̄)2 − (δ− 2ξn̄)2. (1.76)

If the external decay rate is much larger than the internal decay rate (κ � γ), the
gain factors satisfy

G∆ = |gs,∆|2 = |gi,∆|2 + 1, (1.77)

where G∆ is the power gain of the amplifier at the signal frequency detuning ∆. In the
high gain limit |gs,∆|2, |gi,∆|2 � 1, the signal incident at the idler frequency is almost
equally amplified as the signal. Since there are always at least quantum fluctuations
present at every frequency, the simultaneous amplification of contributions from
different frequencies causes the additional noise added by the amplifier. Hence, if
the input port is cold (kBT � h̄ωs), the presented implementation of a parametric
amplifier reaches the quantum-limit of added noise.

Figure 1.24a depicts the maximal power gain G0 according to Eq. 1.77, which is
observed at zero pump-signal detuning (∆ = 0), calculated as a function of the
pump-cavity detuning δ and the effective drive strength ξ/ξcrit. Again, the critical
drive strength ξcrit determines the lowest drive amplitude at which the system
bifurcates. Notably, a JPA is operated below the critical value. For every given
drive strength, there is an optimal detuning δ, at which the observed power gain is
maximal. Since the self-Kerr coefficient is negative for a JPA, the cavity frequency is
shifted to lower values with increasing average population n̄, and with that, also the
optimal detuning. Close to the point of bifurcation (δcrit, ξcrit), the observed power
gain increases rapidly, as indicated by the transition from a light blue tone into a
dark red, and by the horizontal slices shown in Figure 1.24b. The black markers
indicate the maximal power gain observed at the ideal pump detuning for five drive
strengths investigated.

Gain-bandwidth compromise:

The ideal pump condition in terms of detuning and drive strength (δ, ξ) is the desired
configuration of operation, since it minimizes the required pump power for a given
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1.3 Quantum-limited amplification

Figure 1.24: JPA: power gain. a) Maximal linear power gain G0 in decibel, assuming a weak (quantum)
signal reflects off the actively pumped cavity, numerically calculated according to Eq. 1.77 as a function
of the dimensionless pump-cavity detuning δ, and the effective pump drive strength ξ/ξcrit, where the
critical drive strength ξcrit defines the value at which the cavity bifurcates. The detuning between the
pump and the signal is zero (ωs −ωp = 0). For every given drive strength ξ, there is an ideal detuning δ

at which the maximum power gain G0 reaches the highest possible value. Since the self-Kerr coefficient
is negative and the cavity resonance frequency shifts to lower values with increasing population,
the optimal detuning does so, too. The closer the cavity is pumped to the point of bifurcation, the
larger the accessible overall maximal power gain. b) Maximal power gain G0 at zero pump-signal
detuning (∆ = 0), as a function of the pump-cavity detuning δ for different drive strengths ξ. Each
curve corresponds to a horizontal cut through the 2D plot shown in panel a. c) Power gain G(∆) as a
function of the detuning ∆ between signal and pump. The shape of the curves is very similar to a
Lorentzian, which is indicated by the black dashed lines. The maximal power gain G0 is observed at
zero detuning ∆ = 0. The corresponding pump-cavity detunings δ are indicated in panels a and b.
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power gain G0. However, operating the JPA away from the ideal conditions allows
for a fine tuning of the operational frequency. Figure 1.24c shows the power gain G in
decibel, calculated under optimal pumping as a function of the frequency detuning
∆ between signal and pump. The maximal power gain is observed at zero detuning
(∆ = 0), indicated by the open black markers. The shape of the gain curves is in good
agreement with a Lorentzian, as it is indicated by the black dashed lines. Therefore,
the instantaneous bandwidth B of the amplifier is defined as the full width at half
maximum (FWHM). As becomes apparent, the bandwidth decreases with increasing
maximal power gain G0, which is referred to as the gain-bandwidth compromise,
and expressed in a constant gain-bandwidth product:√

G0B ≈
γ→0

κ. (1.78)

Overcoming this limitation of standing-wave JPAs is achieved by enhancing the
coupling rate with impedance transformers [165, 191], or by using more complex
pumping schemes [41, 153].

Saturation power:

For JPAs based on weakly nonlinear cavities with finite fourth order (Kerr) nonlin-
earity, the dynamic range is suspected to be limited mainly by two mechanisms:
pump depletion [2, 190] and a signal induced ac Stark shift of the cavity frequency
[31, 136]. While the first effect describes the reduction of the pump tone strength
caused by the amplification process, the second ascribes the output power saturation
to a detuning from the optimal pump condition.

Following the procedure discussed in Ref. [68] and Ref. [178], both effects can be
incorporated into the same framework used to predict the power gain, by introducing
an effective drive strength associated with the input signal into Eq. 99 (see App. B.3).
Figure 1.25a depicts the calculated power gain G0 at zero pump-signal detuning
∆ = 0 for two cavities with self-Kerr coefficients |K|/(2π) = 1 kHz (red) and
|K|/(2π) = 1024 kHz (blue) as a function of the input signal power Ps. Above a
certain input power, the power gain of the amplifier starts to decrease. The value of the
input power at which the decrease starts to become significant depends on the pump
power, i.e. the small signal power gain G0, and the magnitude of the nonlinearity
|K|. Conventionally, the saturation power is defined as the 1 dB compression point
(black markers), the power at which the initial power gain decreased by 1 dB.

In Fig. 1.25b, the saturation power is plotted against |K|, for an initial weak-signal
power gain of G0 ≈ 20 dB. Evidently, a small nonlinearity is desired to enhance the
saturation power, or more precisely, the ratio of cavity linewidth and nonlinearity
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1.3 Quantum-limited amplification

Figure 1.25: JPA: power gain saturation. a) Maximal power gain G0 = G(∆ = 0) as a function of the
signal input power Ps, numerically calculated for two sets of nonlinear cavities with self-Kerr coefficients
K/(2π) = 1 kHz (red) and K/(2π) = 1024 kHz (blue). The calculations consider the signal-induced ac
Stark shift of the cavity [178]. For comparison reasons, the power gain is calculated for four different
pump conditions (Pp, ωp) for each cavity. The power gain starts to drop at a certain input power, which
depends on the magnitude of the nonlinearity |K| and the pump power. The black markers indicate the
1dB compression point, the input power at which the power gain decreased by 1 dB compared to the
inital value. The parameters of the cavity are ω0/(2π) = 7 GHz, κ/(2π) = 350 MHz and γ/(2π) = 0.
b) Saturation power determined as the 1dB compression point, numerically calculated as a function of
the self-Kerr coefficient |K| for an initial power gain G0 = 20 dB. The magnitude of the nonlinearity
is reflected by the color of each marker. With decreasing nonlinearity, the saturation power rapidly
increases. The black line indicates the expected scaling [76]. In order to obtain a large saturation power,
a large ratio κ/|K| is beneficial.

κ/|K| should be as large as possible [117]. However, at the same time the quality
factor Q = ω0/κ has to be large enough to ensure a stable behavior close to the
point of bifurcation, summarized by the constraint pQ ≥ 1, where p is the kinetic
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inductance participation ratio [147] (which is p = 1 in the discussed scenario). The
scaling of the saturation power is given by [76]

P1 dB ∼
12κ2

|K|
h̄ωs

G5/4
0

, (1.79)

which, indicated by the black solid line, is in good agreement with the calculated
saturation powers.

As a side note, the effect of input signal induced ac Stark shifts can be reduced
significantly by employing nonlinear elements with intrinsically reduced fourth
order nonlinearity, for instance the superconducting nonlinear asymmetric inductive
element (SNAIL) [77].

1.3.5 Amplifier classification

In the context of parametric amplification with superconducting quantum circuits,
several technical terms exist to distinguish between the different types of amplifiers
emerged during the last decades [189]. While all amplifiers share the same conceptual
idea — the transfer of energy from a single (or multiple) strong pump tone(s) onto a
weak quantum signal using the nonlinearity of JJs or superconducting wires — the
various circuit implementations can differ significantly.

As discussed in the previous sections, the parametric amplification process contains
at least three tones: a pump (ωp), a signal (ωs), and an idler (ωi), an inevitable mirror
tone created during the amplification process. The corresponding frequencies and
photon energies of those three tones are imperatively related, depending on the
symmetry of the underlying potential. In a three-wave mixing process, a single pump
photon is converted into a signal and an idler photon, yielding the relation

ωp = ωs + ωi, (1.80)

while in a four-wave mixing process two pump photons are converted at the same
time

2ωp = ωs + ωi, (1.81)

as illustrated in Fig. 1.26.
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1.3 Quantum-limited amplification

Figure 1.26: Mixing-process. Schematic illustration of a four-wave mixing process (left-hand panel), in
which two pump photons (red) are converted into a signal (purple) and an idler photon (pink). The
quartic nonlinearity (Φ4) required for such a mixing process — a Kerr-type nonlinearity — is provided
by current biased single JJs, dc SQUIDs, and the kinetic inductance inherent to superconductors. In a
three-wave mixing process (right-hand panel), a single pump photon is converted into a signal and an
idler photon, which requires a cubic nonlinearity (Φ3). An example for such an asymmetric circuit
element is the SNAIL [77].

The main consequence and difference is the frequency detuning between the three
signals, in particular between the pump and the signal, which is significantly larger in
devices utilizing a three-wave mixing process, for instance the Josephson parametric
converter [19]. As discussed in Sec. 1.1.2, the energy potential of a single JJ or a
dc SQUID is symmetric and, thus does not support a three-wave mixing process
induced by a current pumping. Circuit elements supporting three-wave mixing are
the Josephson ring modulator [20], the SNAIL [77] and the rf SQUID [240] in current
bias, as well as the flux pumped dc SQUID operated beyond the flux sweet spot
[233].

In case the signal and the idler frequencies are identical (ωs = ωi), the amplification
process is phase-sensitive, which means that one quadrature is amplified, while the
other quadrature is deamplified, resulting in a squeezed state of light [235, 236].
Which quadrature is amplified depends on the relative phase between the signal
and the pump tone. Additionally, the noise in the outgoing mode is also squeezed,
which can be used to operate an amplifier chain beyond the standard quantum limit
caused by photon shot noise [127]. If the signal and idler do not share the same
frequency, the process is phase-preserving, and both quadratures are amplified at the
same time.

The energy conversion from the pump to the signal can be obtained by simultaneously
confining the tones in resonant systems, so-called standing-wave parametric amplifiers
[39, 189, 233, 235], or during the simultaneous propagation through a nonlinear
medium, so-called travelling wave parametric amplifiers [27, 71, 143, 179, 240]. Besides
the directionality, travelling-wave amplifiers offer a much larger bandwidth, but
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are generally more complicated to fabricate due to the greater complexity, and still
suffer from unintended internal reflections. Despite a few exceptions [41, 126, 127],
most standing-wave amplifiers are operated in reflection and require the use of
non-reciprocal elements to separate the incident from the amplified outgoing signal.

Standing-wave amplifiers implemented with a single mode in space or frequency
are referred to as degenerate amplifiers, while amplifiers utilizing several modes
are labeled non-degenerate. Notably, both implementations can be operated in the
phase-sensitive and the phase-preserving mode of operation.
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2 The granular aluminum transmon
qubit

The granular aluminum transmon is a superconducting charge qubit in which,
instead of a conventional SIS Josephson junction, a small volume of superconducting
granular aluminum is shunted by a large capacitor, which serves as the inductance
and the source of nonlinearity of the circuit. In comparison to conventional JJ
technology, interference patterns have not yet been observed in grAl films in external
magnetic fields, i.e. the films are primarily affected by the suppression of the
superconducting gap parameter ∆grAl. The main question is: how much nonlinearity
does such an grAl element provide and how coherent is it? A summary of the
presented results can be found in Ref. [230].

2.1 Multi-junction transmon qubit

Recalling the results obtained in the discussion of the superconducting charge qubit
in Sec. 1.1.3, in the transmon limit EJ � Ec , the anharmonicity of the charge qubit
spectrum is approximately given by the charging energy Ec and, thus independent of
the Josephson energy EJ [116]. Owing to the microstructure of granular aluminum,
it is very likely that even relatively small volumes of grAl contain multiple effective
JJs. The scaling of the anharmonicity for several JJ in series can be estimated by
substituting the Josephson potential of the single JJ in the charge qubit Hamiltonian
(see Eq. 1.18) with that of an array — a standard procedure in the context of Josephson
parametric amplifiers [68].

For N identically sized JJs in series, and assuming a homogeneous current distribution
along the JJs, the phase drop across each element is ϕJ = ϕ/N, where ϕ is the total
phase drop across the array. The Josephson potential associated to the array is

EJ cos(ϕ̂) → N NEJ︸︷︷︸
E′J

cos(ϕ̂/N), (2.1)
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2 The granular aluminum transmon qubit

where E′J is the Josephson energy of each individual JJ, which is N times larger
to ensure that the inductance of the array is identical to the inductance in the
single JJ implementation, i.e. the fundamental transition frequency is kept fixed
[68]. As a consequence, the charging energy and the zero-point fluctuations of the
superconducting phase ϕZPF (across the array) remain unchanged.

Similar to the single JJ case, the Kerr coefficient Karray for the array is determined by
the coefficient in front of the quartic term of the Taylor expansion of the Josephson
potential:

h̄Karray = −
NE′J

2

( ϕZPF

N

)4
= −EJ

2
ϕ4

ZPF
N2 =

h̄K
N2 . (2.2)

According to Eq. 2.2, the anharmonicity of a multi-junction transmon qubit scales
with N−2 compared to the conventional transmon.

In the more general case of unequal JJs, the Kerr coefficient K of the fundamental
mode can be derived from the energy participation ratio pj of the j th JJ to the mode
[156]:

Karray = −1
2 ∑

j

ω2
1

4EJ,j
p2

j . (2.3)

Provided the wavelength is significantly larger than the physical length of the JJ
array, the energy participation ratio of each element can be inferred from the ratio of

its Josepshon inductance LJ,j and the total inductance L in the circuit: pj =
LJ,j
L . In

this way, not only the effect of differently sized JJs can be considered, but also the
influence of additional linear (geometric) inductances, which contribute to the total
inductance of the circuit, but do not give rise to a Kerr nonlinearity.

2.2 Design

The constraints on the design of the grAl transmon are in some aspects similar to the
constraints on a conventional transmon [116]. Like other superconducting quantum
circuits, the typical operation frequency of transmon qubits is below 10 GHz. In
order to suppress the charge dispersion sufficiently, typically a ratio EJ/Ec = r ≥ 50
is desired.

In the transmon regime, the approximation for the fundamental transition frequency
ω1 ≈

√
8EJEc yields a relation between the Josephson energy of the JJ and the

transition frequency of the transmon EJ ≈
√

r/8h̄ω1. Fixing a transition frequency
determines the Josephson energy and the corresponding Josephson inductance,
as well as the charging energy and the size of the shunt capacitor. For a typical
transmon, the charging energy is therefore around Ec/h = 2π × 100− 300 MHz.
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2.2 Design

Figure 2.1: grAl Transmon: Circuit design. a) Photograph of a copper-waveguide sample holder
equipped with a microwave port similar to Ref. [119], and, optionally, with a 2D vector magnet (see
App. C.6). The vector magnet is schematically represented by the blue and red coils, oriented along the
y and z directions. The sample is positioned in the center of the waveguide and couples to its electric
field at a rate κ. b) Optical microscopy image of the qubit sample, consisting of two Al pads forming a
capacitor Cs ≈ 137 fF, connected by a grAl inductor LK,grAl ≈ 2.65 nH. The coupling rate κ is adjusted
by changing the gap w (see App. C.4). c) and d) Scanning electron microscope (SEM) image of a grAl
inductor (false-colored in blue) with volume VgrAl = 10× 200× 500 nm3, together with the pure Al
leads (false-colored in red) connecting it to the capacitor electrodes. The grainy surface structure is
due to an antistatic Au layer used for imaging. The circuit is obtained in a single lithography step by
performing a three-angle shadow evaporation. The Al layer shunts the grAl film in all areas, except
for the volume VgrAl in the center, which constitutes the source of non-linearity for the qubit [144].
The geometric inductance is Ls = 0.45 nH, and the contacts contribute to the kinetic inductance with
0.13 nH (see App. C.5). e) Atomic force microscope image of the film height z in the area around the
grAl inductor, measured on a sample from the same wafer as the sample discussed in the main text.
The inset shows the cross section along x (black) and y (grey), as indicated by the arrows and overlay
lines in the 3D plot. The cross section along the grAl inductor (grey) confirms the tgrAl = 10 nm grAl
thickness and tAl = 40 nm for each Al layer.
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2 The granular aluminum transmon qubit

Table 2.1: grAl transmon: Circuit parameters. The circuit parameters correspond to an effective circuit
model composed of an inductance L in parallel with a shunt capacitance Cs. The total inductance arises
from the contribution of three inductive elements in series: the geometric stray inductance Ls of the Al
leads, the kinetic inductance LK,Al of the Al leads including the contact junctions to the grAl volume,
and the kinetic inductance LK,grAl of the grAl volume. The value quoted for total inductance and the
grAl inductance is for a fundamental transition frequency of f1 = 7.4887 GHz.

shunt total stray kinetic kinetic

capacitance inductance inductance inductance (Al) inductance (grAl)

Cs L Ls LK,Al LK,grAl

137 fF 3300 pH 450 pH 200 pH 2650 pH

In the grAl transmon, the inductance is provided by the kinetic inductance of the
grAl film. Neglecting spurious geometric contributions, the total kinetic inductance
of a grAl volume with length l and width b is Lk = N�L�, where N� = l/b is the
total number of squares, and L� is the kinetic sheet inductance. Recalling the results
of Sec. 1.2.2, the sheet inductance of a dirty superconductor is proportional to the
sheet resistance R�. In the case of grAl, the sheet resistance R� is controlled by the
partial oxygen pressure during evaporation.

Another constraint on the grAl film geometry arises from the total number of
junctions inside the grAl volume N = l/a, where a is the effective size of a single JJ,
which is not necessarily identical to the grain diameter [234]. Since the expected
nonlinearity scales with N2 (see Eq. 2.2), a small volume of grAl with high resistivity
and low critical current density is desired in order to provide enough kinetic
inductance to meet the criterion on the transition frequency, and to maximize the
anharmonicity of the grAl transmon at the same time. At this point I would like to
mention, that for small volumes of grAl, the prediction of the kinetic sheet inductance
based on the Mattis-Bardeen theory is potentially unprecise, for instance caused by
charging effects in the most outer grains residing close at the film surface.

Figure 2.1 shows a typical copper waveguide sample holder used for readout,
together with the circuit design of the grAl transmon, consisting of a grAl thin film
shunted by an Al capacitor. The shunt capacitance Cs ≈ 137 fF is determined from
FEM simulations, together with the geometric stray inductance Ls ≈ 0.45 nH arising
from the pure Al electrodes connecting the grAl volume (see App. C.4). The choice
of using Al as a shunting layer was motivated by its low intrinsic kinetic inductance,
ensuring an energy participation of the grAl inductance close to unity, as well as the
ease of fabrication. The Purcell rate or external coupling rate κ, i.e. the rate at which
the qubit spontaneously decays into the waveguide, is controlled by the gap w in the
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2.3 Resonance fluorescence readout

Table 2.2: grAl transmon: parameters of the grAl thin film. The properties of the grAl volume
VgrAl = 10× 200× 500 nm3 are related to the parameters of the grAl thin film. The normal-state
resistivity ρn was measured at room-temperature, and the value of the sheet inductance corresponds
to the prediction of the Mattis-Bardeen theory for superconductors in the local and dirty limit (see.
Sec. 1.2.2).

normal-state sheet sheet number of critical

resistivity resistance inductance (MBT) squares current density

ρn R� = ρn/t LK,� N� jc
(1800± 200) µΩ cm (1800± 200) Ω

� (1.3± 0.1) nH
� 2.5 0.4 mA

µm2

outer electrode (see. Fig. 2.1b). Notably, in the direct readout of a qubit, it is this rate
at which information about the qubit state is collected.

The presented sample was fabricated on a sapphire wafer in a single-step lithog-
raphy by performing a three-angle shadow evaporation. First, a 10 nm thick grAl
layer with room-temperature normal-state resistivity ρn = 1800± 200 µΩ cm and
corresponding critical temperature Tc = 1.9 K was deposited at zero-angle, followed
by two 40 nm thick Al layers evaporated at ±35◦. Thanks to this procedure, only
a small grAl volume VgrAl = 10× 200× 500 nm3, highlighted in blue in Fig. 2.1
(panel c and d), remains unshunted by the pure Al layers and participates in the
electromagnetic mode with a kinetic inductance LK,grAl = 2.65 nH, constituting 80 %
of the total inductance, as further discussed in Sec. 2.6. The total number of squares
N� ≈ 2.5 estimated from the grAl inductance and the kinetic sheet inductance
calculated according to Eq. 1.58 is in agreement with the geometric dimensions of
the grAl volume. The parameters of the grAl film are summarized in Tab. 2.2, and
more details on the fabrication recipe are provided in App. C.9.

2.3 Resonance fluorescence readout

In the resonance fluorescence readout of a superconducting qubit [7], the dynamics
of the qubit are directly observed by monitoring the coherent scattering of a probe
tone from the qubit. As discussed in Sec. 1.1.4, the application of a microwave tone
in close vicinity to the transition frequency ωq of the qubit induces Rabi oscillations
between the qubits ground and first excited state, which is reflected in a change
of the scattering behavior. For a coherent drive with amplitude 〈B̂in〉 = βin, the
corresponding Rabi frequency ΩR on resonance is [49]

ΩR = 2
√

κβin, (2.4)
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2 The granular aluminum transmon qubit

where κ is again the coupling rate between the qubit and the input port, i.e. the
waveguide sample holder. As a side note, determining the Rabi frequency enables
the calibration of the incident drive power Pin = h̄ω|βin|2, and the total attenuation
between the microwave source and the qubit.

Provided the Rabi frequency is significantly smaller than the anharmonicity of
the qubit ΩR � α (see Sec. 1.1.4), the response of an anharmonic circuit with a
multi-level energy spectrum can be mapped onto the dynamics expected from a
two-level system. Using the input-output boundary condition between the incident
and the outgoing field [80], the reflection coefficient S11 of a two-level system is [7,
49]

S11 = 1−
√

κ
〈σ̂−〉
〈B̂in〉

, (2.5)

where σ̂− is the Pauli lowering operator, which plays the equivalent role of the
annihilation operator for bosonic fields. Notably, I would like to mention that there
are different forms found for the reflection coefficient in literature, which differ by a
complex phase factor in front of the second term.

In general, the observed response evolves over time, until the system has reached
its equilibrium or steady-state. The characteristic time scale for this so-called ring-
up is determined by the energy relaxation rate Γ1 and the pure dephasing rate
Γφ. Measurements studying the steady-state behavior are usually referred to as
spectroscopy measurements, while measurements detecting the time evolution of
the system are denoted time-domain measurements. Both types of measurements
are complementary for the characterization of a qubit, as is demonstrated in the
following sections.

Spectroscopy

The frequency dependence of the steady-state (t → ∞) reflection coefficient of a
two-level system, measured with a single microwave tone, is [49]

S11(∆q) = 1− κ
Γ1Γ∗2 − iΓ1∆q

Γ1(Γ∗22 + ∆2
q) + Γ∗2 ΩR

, (2.6)

where ∆q = ωq − ω is the frequency detuning between the drive tone frequency
ω and the qubit frequency ωq, Γ1 is the energy relaxation rate, Γ∗2 is the dephasing
rate, κ is the coupling rate to the drive port, and i is the unit imaginary number. The
energy relaxation rate is a combination of spontaneous emission into the input port
at a rate κ and into uncontrolled degrees of freedom at a rate γ.
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2.3 Resonance fluorescence readout

Figure 2.2: grAl Transmon: resonance fluorescence (spectroscopy). a) Single-port reflection coefficient
S11(ω) measured around the fundamental transition frequency ω1 = 2π × 7.4887 GHz of the grAl
transmon. For probe powers Pin well below the single-photon regime (n̄� 1), S11 closely resembles a
circle in the complex plane (dark blue markers), from which, using Eq. 2.7, the external and internal
decay rates κ = 2π × 40 kHz and γ = 2π × 10 kHz, respectively, are extracted. In b) and c), the real
and imaginary part of the reflection coefficient Re(S11) and Im(S11), respectively, are plotted as a
function of the detuning between the probe frequency f and the qubit frequency f1. When increasing
the probe power Pin, the response becomes elliptic in the complex plane, which is the signature of
resonance fluorescence of a two-level-system [7, 49]. The black lines indicate fits to the experimental
data according to Eq. 2.7. The only fitting parameter is the Rabi-frequency ΩR; κ and γ are fixed by
the fit to the low power response. In d) the squared Rabi-frequencies Ω2

R are plotted as a function
of the incident power Pin seen by the qubit. For a two-level system, given by the limit ΩR � α, the
Rabi-frequency is expected to increase linearly with the drive amplitude, as confirmed by the black
dashed line passing through the coordinate origin.
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2 The granular aluminum transmon qubit

In case the decoherence rate is dominated by the energy relaxation Γ∗2 ≈ Γ1/2, the
reflection coefficient simplifies to

S11(∆q) = 1− 2κ

Γ1

1 + i2∆q/Γ1

1 + (2∆q/Γ1)2 + 2(ΩR/Γ1)2 . (2.7)

According to Eq. 2.6 and Eq. 2.7, all essential qubit parameters can be extracted from
the frequency dependence of the reflection coefficient.

Figure 2.2 depicts the complex reflection coefficient S11 measured with a commercial
vector network analyzer (VNA) in close vicinity to the fundamental transition
frequency ωq = ω1 = 2π × 7.4887 GHz of the grAl transmon shown in Fig. 2.1,
plotted as a function of the probe frequency f = ω/(2π) and the calibrated probe
power Pin seen by the qubit.

For an effective two-level system, the reflection coefficient resembles a circle in the
complex plane only for low probe powers, i.e. small Rabi-frequencies (ΩR � κ, γ),
similar to the response of a harmonic system, but becomes increasingly elliptic
when the probe power is enhanced (panel a). The deviation from the circular shape
is caused by the saturation of the qubit population owing to the anharmonicity
of the energy spectrum. Descriptively, the radius of the circle is a measure for the
ratio between internal losses, i.e. losses into uncontrolled degrees of freedom, and
external losses into the input port, while the eccentricity of the ellipse determines
the Rabi frequency.

The qubit parameters ωq, κ, γ and ΩR are extracted by fitting the measured data
with the expected response in the T1 limit, given in Eq.2.7, with the resulting fits
indicated by the black solid lines. The internal and external decay rates are extracted
at low probe powers (dark blue markers) γ = 2π × 10 kHz and κ = 2π × 40 kHz,
respectively, corresponding to characteristic time scales T1,γ ≈ 16 µs and T1,κ ≈ 4 µs.
Since both parameters do not change with power in the investigated range, the Rabi
frequency remains the only fitting parameter for the measurements at higher probe
powers, to enhance the fitting accuracy.

Table 2.3: grAl transmon: spectroscopy. Qubit parameters extracted for the grAl transmon from the
resonance fluorescence spectroscopy measurements shown in Fig. 2.2.

resonance external external internal internal

frequency decay rate energy relaxation decay rate energy relaxation

ω1/(2π) κ/(2π) T1,κ = κ−1 γ/(2π) T1,γ = γ−1

7.4887 GHz 40 kHz 4 µs 10 kHz 16 µs
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2.3 Resonance fluorescence readout

The dependence of the extracted squared Rabi frequencies Ω2
R on the input power is

shown in panel d, with the expected linear relation predicted by Eq. 2.4 indicated
by the black dashed line. From the drive powers set at room temperature and
the corresponding (measured) Rabi frequencies, the total attenuation A = 103 dB
between the source and the qubit was calibrated.

Time-domain

For the time-domain characterization of the grAl transmon, a microwave pulse with
Gaussian envelope and varying amplitude and frequency was applied to manipulate
the qubit state, followed by a readout pulse with rectangular envelope applied on
resonance with the fundamental transition frequency ω1. The pulse sequence is
illustrated in Fig. 2.3a. The Gaussian envelope of the manipulation pulse reduces the
excitation of higher states due to its sharper Fourier spectrum. Since the application
of a microwave drive close to resonance induces Rabi oscillations, varying the
amplitude βin and the duration τm of the manipulation pulse prepares a different
initial qubit state Ψ(βin, τm), before the readout pulse is applied, which is reflected
in the measurement outcome. The readout pulse is integrated and decomposed
into the I and Q quadrature at room temperature using a custom-made microwave
interferometer (see App. G.9). For an improved SNR of the measurement setup, a
dimer Josephson junction array (DJJAA) amplifier has been added to the microwave
output line (see Sec. 3).

Figure 2.3b depicts Rabi oscillations of the grAl transmon as a function of the
manipulation pulse duration τm and the average drive power Pm = h̄ω1Ω2

R/(4κ),
which is calibrated from the measured oscillation frequencies ΩR and related to the
drive amplitude βin. As expected, the Rabi frequency increases with increasing drive
power. The right-hand panel shows a single trace for Pm = −124.7 dBm. Due to
energy relaxation and dephasing, the contrast of the Rabi oscillations decreases over
time, i.e. with increasing length of the pulse duration, as indicated by the exponential
envelopes (black dashed lines). From the measured curves, the duration τπ of a
π-pulse is calibrated for each drive power, which corresponds to the combination of
pulse duration and amplitude required to invert the qubit state. As it is shown in
Fig. 2.3c, the Rabi frequencies extracted from the spectroscopy and the time-domain
measurements are in good agreement.

The generalized Rabi frequency depends not only on the drive amplitude, but also on
the detuning between the drive and the qubit transition frequency ∆q (see Sec. 1.1.4).
Figure 2.3d shows the response of the grAl transmon for manipulation pulses
with a fixed amplitude, but with varying pulse duration τm and drive frequency
fd, revealing the characteristic Chevron pattern (see Sec. 1.1.4). With increasing
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2 The granular aluminum transmon qubit

Figure 2.3: grAl transmon: resonance fluorescence (time-domain). a) Pulse sequence applied to perform
a Rabi measurement. First, a Gaussian-shaped pulse of duration τm and amplitude βin is applied at a
frequency ωd to manipulate the qubit state. Subsequently, for the readout, a rectangular-shaped pulse
of 3.2 µs is applied on resonance, from which the second half is integrated. Measured Rabi-oscillations
between the qubit’s ground |0〉 and first excited state |1〉 as a function of the average drive power of the
manipulation pulse Pm, and its duration τm. The color scale represents the qubit population inversion
from equilibrium (red) to fully inverted (blue). With increasing drive power, the Rabi-frequency increases
as expected. The right-hand panel shows the Rabi-oscillation for Pm = −124.7 dBm, highlighted in the
2D plot by a black arrow. For a given Rabi frequency, the corresponding pulse duration to invert the
qubit is τπ . The black dashed lines indicate an exponentially decaying envelope. b) Comparison between
the Rabi-frequencies extracted from spectroscopy (blue markers) and the time-domain measurements
(red makers) shown in panel a. The black line indicates the expectation ΩR =

√
4κPm/(h̄ω1) from

which the manipulation powers Pm are also calibrated in panel a. c) Rabi oscillations for a fixed
manipulation power Pm = −121.9 dBm, but different pulse durations τm and drive frequencies fd. With
increasing detuning from the fundamental transition frequency, the Rabi frequency increases, while
the contrast of the oscillations decreases. For negative detunings, a two-photon transition into the
second excited state occurs with roughly half the Rabi frequency as in the on-resonance case. From the
frequency detuning, the anharmonicity of the energy spectrum is quantified to α ≈ 2π × 4.5 MHz.
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2.3 Resonance fluorescence readout

Table 2.4: grAl transmon: time-domain. Qubit parameters extracted for the grAl transmon from
resonance fluorescence time-domain measurements shown in Fig. 2.4. The pure dephasing time Tφ is
calculated from the energy relaxation time T1 and the dephasing time T2 obtained in the Ramsey and
Hahn echo experiment using Tφ = T2/(1− T2

2T1
).

resonance energy ext. energy int. energy dephasing dephasing

frequency relaxation relaxation relaxation (Ramsey) (echo)

ω1/(2π) T1 T1,κ T1,γ T∗2 (Tφ) T2 (Tφ)

7.4749 GHz 2.8 µs 3.1 µs 20+22
−6 µs 4.7 µs (28 µs) 5.1 µs (46 µs)

detuning, the observed Rabi oscillations increase in frequency, while the contrast of
the measurement, the Rabi oscillation amplitude, decreases at the same time. At
drive frequencies below the transition frequency, a second transition occurs, with
Rabi oscillations that are roughly a factor

√
2 slower in frequency, suggesting a

two-photon transition from the ground state into the second excited state.

Starting from the precise calibration of the π-pulse duration for a given drive
amplitude by measuring the Rabi oscillations, the qubit coherence is extracted from
a set of three measurements: the energy relaxation measurement, the Ramsey-fringes
[186] and the Hahn-echo experiment [94].

In order to determine the energy relaxation time T1, the qubit state is inverted
by applying a 723 ns long π-pulse at an average manipulation power of Pm =

−131.4 dBm. With increasing waiting time τ between the end of the manipulation
pulse and the beginning of the readout pulse, the population of the excited state
decreases exponentially on a characteristic time scale T1 = 2.8 µs, as shown in
Fig. 2.4a.

For the Ramsey-fringes measurement, the qubit is prepared in a superposition state on
the equator of the Bloch-sphere using a π/2-pulse, and projected back onto the z-axis
with a similar pulse after a waiting time τ. The observed frequency of the Ramsey-
fringes is caused by the detuning of the π-pulse frequency ∆m ≈ 2π× 300 kHz from
the qubit frequency. From the exponential envelope, the coherence time T∗2 = 4.7 µs
is extracted, which is almost twice the energy relaxation time. In the Hahn-echo
experiment, an additional π-pulse is applied in-between the π/2-pulses, reducing
the effect of low-frequency noise, yielding T2 = 5.1 µs. From both measurements,
the pure dephasing times Tφ = 28 µs and Tφ = 46 µs are calculated using Eq. 1.34,
revealing energy relaxation as the main source of decoherence.

In Fig. 2.4b, the fluctuations of the energy relaxation time (grey triangles) and the
qubit frequency, both continuously monitored over 15 h are shown. Each marker
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2 The granular aluminum transmon qubit

Figure 2.4: grAl transmon: resonance fluorescence (time-domain). a) Measurement of the grAl
transmon coherence times. The duration of the π-pulse is 723 ns at an average manipulation power
Pm = −131.4 dBm. The markers in the top panel show the measured population inversion at a
time τ after the π-pulse, and the black line indicates an exponential fit with a characteristic energy
relaxation time T1 = 2.8 µs. The bottom panel shows the results of a Ramsey-fringes (circles) and a
Hahn-echo (triangles) measurement. The observed frequency of the Ramsey fringes agrees within
5% with the frequency detuning ∆m = 2π × 300 kHz of the π-pulse. From the fits indicated by solid
lines, coherence times T∗2 = 4.7 µs and T2 = 5.1 µs, as well as the corresponding pure dephasing times
Tφ = 28 µs and Tφ = 46 µs, respectively, are extracted. b) Time stability of the energy relaxation time
(grey triangles) and the deviation f1 − f̄1 of the qubit transition frequency from its average value f̄1
(pink markers corresponding to the right-hand axis). The pink shaded area is the uncertainty of the
qubit frequency measurement. The inverted black triangles show the intrinsic energy relaxation time
T1,γ = T1T1,κ/(T1,κ − T1), where T1,κ = 3.1 µs (dashed line) is the limit due to spontaneous emission
into the waveguide. Notably, the T1 and frequency stability data were taken in different cool downs.

represents an average obtained by integrating over 15 min. Although the energy
relaxation is limited by spontaneous emission into the waveguide sample holder,
limiting the T1 to T1,κ = 3.1 µs (black dashed line), the relaxation time T1,γ due to
intrinsic energy decay is inferred using

T1,γ = T1T1,κ/(T1,κ − T1). (2.8)

The obtained average intrinsic decay time T1,γ = 20+22
−6 µs is in agreement with the

value obtained from spectroscopy, and on par with other unconventional transmon
qubits [141].

The pink markers indicate the detuning of the qubit frequency f1 from its time
average value f̄1, measured in a different measurement run and with higher time
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resolution. The observed total change is only on the order of the intrinsic linewidth
γ, in conformity with the obtained pure dephasing times. Notably, the indicated
uncertainty (pink shaded area) is due to the averaging over multiple measurements
implemented for the sake of clarity, and does not reflect the intrinsic accuracy of the
measurement.

2.4 Two-tone spectroscopy

In a two-tone spectroscopy, two tones are applied at the same time: a weak probe
tone to measure the response of the system and an additional drive tone to induce
changes in the system. For a qubit, the application of a drive applied close to the
transition frequency dresses the bare energy eigenstates of the system (see Sec. 1.1.4),
which is the ac equivalent to the Stark effect, very similar to the coupling between a
resonator and a qubit. Figure 2.5a depicts the change in the energy spectrum in the
presence of such an additional drive tone, including a potential third energy level.
In the dressed spectrum, the two lowest energy eigenstates split into two states each,
which are separated by the Rabi frequency ΩR induced by the drive. Consequently,
three distinct transitions emerge at frequencies ω1 and ω1±ΩR [7, 13, 215], indicated
by the black and purple arrows. In atomic physics, the corresponding fluorescence
spectrum is referred to as the Mollow-triplet [158].

For a multi-level system (qudit), the presence of higher energy eigenstates, which
remain undressed by the drive as a result of the finite detuning caused by the
anharmonicity of the energy spectrum, results in only two distinct transitions
between the first and the second excited state, referred to as the Autler-Townes
doublet [8, 13]. Since only the excited state splits, the frequency detuning between
the two transitions directly reflects the generalized Rabi frequency ΩR.

Figure 2.5b shows a two-tone spectroscopy performed with the grAl transmon in
close vicinity of its fundamental transition frequency f1. A fixed frequency drive
tone was applied at ∆drive = 2π × 200 kHz above f1 with increasing drive power
Pdrive. Simultaneously, the reflection coefficient S11 was measured with a weak probe
tone at varying frequency f and constant power Pin = −160 dBm using a commercial
VNA.

For small drive powers, only a single resonance is visible in the phase of the reflection
coefficient arg(S11) shown in Fig. 2.5b. With increasing drive power, the occupation
of the first excited state |1〉 increases and a second feature becomes visible, 3.9 MHz
below the qubit frequency, corresponding to the single-photon transition between
the first and the second excited state |1〉 → |2〉. The frequency detuning between

75



2 The granular aluminum transmon qubit

Figure 2.5: grAl transmon: two-tone spectroscopy. a) Energy spectrum of a three-level system (qutrit)
in the abscence (bare) and the presence of a strong microwave drive (dressed). During a two-tone
spectroscopy, two drives are applied, a weak probe tone (black) and a usually stronger drive tone (pink).
The drive splits the two lowest bare energy levels by the Rabi frequency ΩR, inducing three distinct
transitions between the dressed ground and the dressed excited state (Mollow triplet, black and purple
arrows). As the third energy level remains unaffected, there are only two transition between the dressed
excited and the undressed second excited state (Autler-Townes doublet), indicated by yellow arrows.
b) Phase of the reflection coefficient arg(S11) measured with a weak probe tone of constant power
Pin = −160 dBm in the vicinity of the qubit frequency f1, while an additional microwave drive is applied
at ∆drive/2π = fdrive − f1 = 200 kHz detuning, indicated by the dashed white line. With increasing
drive power Pdrive, the fundamental transition splits into two distinct transitions, corresponding to
the side-bands of the Mollow-triplet [158], appearing at frequencies f± = f1 ±ΩR/(2π) [7, 13]. Since
the population of the first excited state increases with drive power, at Pdrive ≥ −150 dBm a second
transition becomes visible 3.9 MHz below f1, corresponding to the |1〉 → |2〉 transition. The measured
anharmonicity α = 2π × 3.9 MHz, as well as the qubit frequency f1 = 7.6790 GHz are slightly different
than the values reported for the spectroscopy, due to the fact that the measurements were taken
in different measurement runs (see App. C.8). Similar to the fundamental transition, the second
transition also splits with increasing Pdrive [13]. c) Extracted frequency splittings δ f = f+ − f− for
the first two transitions (top panel). The black lines correspond to the theoretical predictions 2ΩR
(fundamental transition, purple markers) and ΩR (second transition, yellow markers), respectively,

with ΩR =
√

∆2
drive + Ω2 and Ω =

√
4κPdrive/h fdrive. The bottom panel shows the expectation value

for the photon number operator 〈a†a〉 as a function of the drive power Pdrive numerically calculated for
a qubit (red line) and for an anharmonic multi-level oscillator (see App. C.2).
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the two transitions quantifies the qubit anharmonicity α. Notably, the measured
anharmonicity α = 2π × 3.9 MHz as well as the fundamental transition frequency
f1 = 7.6790 GHz were slightly different compared to the values reported for the
spectroscopy and time-domain measurements. Since the measurements were taken
in different measurement runs, the sample parameters have changed in-between the
runs. An overview on the various experiments is found in App. C.8.

With increasing driver power Pdrive, both transitions |0〉 → |1〉 and |1〉 → |2〉 split
into two distinct transitions each, as expected from the dressed energy spectrum
shown in Fig. 2.5a. Furthermore, the observed frequency splitting is in quantitative
agreement with the theoretical modelling of a driven three-level system [7, 13], as
illustrated by the black solid lines in Fig.2.5c (top panel).

Since the qubit anharmonicity is on the order of a few megahertz, deviations in
the system response from the qubit approximation are expected at higher drive
powers. To illustrate this circumstance, the expectation value of the photon number
operator 〈a†a〉 is shown in Fig. 2.5c (bottom panel), numerically calculated for a
two-level (qubit, red) and a multi-level system (qudit, blue) with self-Kerr coefficient
K = α (see App. C.2). For a qubit, the steady state occupation number versus drive
power saturates at 0.5 as a result of the competition between qubit excitation and
stimulated emission. In contrast, above a certain drive power, which depends on
the relative size of the induced Rabi frequency and the spectral anharmonicity, the
higher dimensionality of the multi-level Hilbert space manifests in an increase of
the average photon number. Notably, the numerical calculations are based on a
time-independent Hamiltonian, i.e. under the assumption of rectangular-envelope
pulses. However, there are more elegant pulse forms and sequences which reduce
leakage into higher energy eigenstates significantly, even for Rabi frequencies
exceeding the qubit anharmonicity [161].

2.5 Energy spectrum

The multi-dimensionaility of the grAl transmon Hilbert space observed in the
two-tone spectroscopy was also confirmed in the resonance fluorescence spectrum.
For drive powers Pin > −138 dBm beyond the range covered in Fig. 2.2, additional
features emerge in the reflection coefficient S11 at frequencies fn below the qubit
frequency f1 (see. Fig. 2.6 left-hand panel). Similar to the high power spectroscopy
of JJ transmon qubits [32, 202], these features are multi-photon transitions into
higher energy eigenstates En starting from the ground state E0. The transitions are
observed at frequencies fn = (En − E0)/(nh), where n is the level number, and the
multi-photon origin is confirmed by the two-tone spectroscopy and the time-domain
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Figure 2.6: grAl Transmon: Energy spectrum. Phase of the measured reflection coefficient arg(S11) as a
function of probe frequency f and incident on-chip power Pin (left panel). With increasing probe power
multi-photon transitions are observed at frequencies fn , labeled (|0〉 → |n〉)/n where n denotes the level
number, which are almost equidistant in frequency, as plotted in the right hand panel. From the first two
points in the right hand panel (highlighted in red) a qubit anharmonicity α = K(1) = 2π× 4.48 MHz is
extracted, much larger than the spectral linewidth κ + γ = 2π × 50 kHz (cf. Fig. 2.2). To highlight the
change in K(n) with increasing level number n, the red line shows a linear extrapolation from the first
two points. The extracted values K(n) are plotted in orange using the right hand axis. The green-colored
arrows indicate the power values at which the individual traces shown in Fig 2.7 were measured.

measurements. From the frequency detuning between the first two transitions (red
markers in Fig. 2.6 right-hand panel), a qubit anharmonicity α = 2π × 4.48 MHz is
extracted.

Following the discussion in Sec. 2.1, for a conventional JJ transmon the anharmonicity
is given by the charging energy Ec,s = e2/2Cs of the shunt capacitance [116],
which is Ec,s/h̄ = 2π × 141 MHz for the geometry presented in Fig. 2.1. Since the
anharmonicity is reduced by N2 for an array of identical JJ, the obtained value for
the anharmonicity implies N =

√
Ec,s/h̄α ≈ 6 effective JJ inside the grAl volume.

The corresponding effective junctions are therefore separated by ∼ 80 nm, spanning
approximately ten grains. This result is in agreement with recent scanning tunneling
microscopy measurements performed on similar grAl films, which evidenced the
collective charging of clusters of grains [234].

From the measured multi-photon transition frequencies fn, the frequency shift per
photon is calculated according to

h̄K(n) = (En − En−1)− (En+1 − En), (2.9)
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Figure 2.7: grAl Transmon: Energy spectrum. Three individual measurements (left-hand panel)
performed at different probe powers (Pin = −121,−106 and −101 dBm), as indicated by the equally
colored arrows in the 2D plot in Fig. 2.6. Several multi-photon transitions are visible as peaks in
the phase response. With increasing power, the linewidth of these transitions broadens, as shown
in the right-hand panels for n = 3 (top panel, Pin = −127 to −123 dBm) and n = 10 (bottom panel,
Pin = −105.75 to −104.75 dBm). Here, ∆n = ω−ωn , is the frequency detuning between the drive and the
respective multi-photon transition frequency, with ω3 = 2π × 7.4842 GHz and ω10 = 2π × 7.4678 GHz,
as indicated by the arrows and the vertical dashed lines in the left-hand panel.

with En/h = n fn. As shown in the right-hand panel of Fig. 2.6 (right-hand axis), the
energy difference between subsequent energy levels K(n) monotonically increases
with the level index n, likely due to the contribution of higher order terms arising
from the expansion of the Josephson potential, not included in the consideration. A
similar decrease in the transition frequency between higher energy eigenstates is
also observed in conventional transmon qubits [116].

In the left-hand panel of Fig. 2.7, three measurements are shown which were
performed at different drive powers Pin = −121,−106 and −101 dBm. At any drive
power in this range several multi-photon peaks are visible. The linewidth of each
transition broadens with power, as exemplarily illustrated in the right-hand panels
of Fig. 2.7 for the 3 rd and the 10 th multi-photon transition. The visibility of the
peaks and the background response of the phase is in remarkable agreement with
the master-equation simulation presented in App. C.2. The broadening of the n = 10
transition compared to n = 3 can be explained by the offset charge dispersion
present in superconducting charge qubits. Although exponentially suppressed with
EJ/EC for the fundamental transition, the offset charge dispersion increases with a
power law in n for higher energy eigenstates [116].
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2.6 Magnetic field dependence

For the operation in external magnetic fields, the sample holder is equipped with a
2D-vector magnet, with the two field components graphically indicated by the red
and blue coils in Fig. 2.1a. A more detailed description of the sample holder and
the vector magnet are found in App. C.3 and App. C.6, respectively. In general, the
application of an external magnetic field is expected to reduce the superconducting
gap of the pure Al layer ∆Al, as well as of the grAl layer ∆grAl, causing an increase
of the kinetic inductance associated with both films (see Sec. 1.2.1 and Sec. 1.2.2).
Since the effect of magnetic fields applied out-of-plane is usually much stronger,
owing to the large aspect ratio between the lateral dimensions of the thin film and
the film thickness, the field orientation is aligned with the film plane using both
coils simultaneously (see App. C.7).

As a side note, during the resonance fluorescence characterization of the qubit
discussed in previous sections, the qubit was protected from external magnetic fields
by a combination of cylindrical shields surrounding the waveguide sample holder,
constructed of different materials. The most inner layer is a copper shield, followed
by a superconducting aluminum and an outer µ-metal shield. For the application of
magnetic fields, the µ-metal shield was removed for all measurements.

By applying a magnetic field By, aligned in-plane with the sample, a continuous
decrease of the qubit frequency f1(By) was observed, as plotted in Fig. 2.8a. The
measurements were performed in two separate measurement runs, with (filled
crosses) and without (open pentagons) an outer superconducting Al shield. When
employing the shield, the maximal field was limited to ∼ 70 mT, after which the
shield was affected by the field coils and introduced distortions in the field alignment
resulting in a sudden decrease of the qubit frequency.

The expected in-plane magnetic field dependence of the qubit transition frequency
f1(By) is derived by mapping the qubit onto a linearized, lumped-element circuit
model consisting of three inductive contributions in series, altogether shunted by a
capacitance Cs = 137 fF. The inductive contributions arise from a field-independent
geometric inductance Ls = 0.45 nH, and two field-dependent kinetic inductances
associated with the pure Al and grAl thin films, Lk,Al(B) and Lk,grAL(B), respectively.
The lumped-element model transition frequency is

f1(By) =
1

2π

√
Cs

(
Lk,Al(By) + Lk,grAl(By) + Ls

) . (2.10)
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Figure 2.8: Magnetic field dependence. a) Relative change in qubit frequency δ f1 = f1(By)− f1 as a
function of the applied in-plane magnetic field By . The experimental data was measured in two separate
measurement runs: with (filled triangles) and without (open pentagons) an outer superconducting
Al shield. The field dependence can be fitted to an effective circuit model (see Eq. 2.10), indicated
by the black dashed line, from which the critical flux density Bc,Al = 150± 5 mT of the Al film was
extracted, in agreement with Ref. [152]. Notably, the observed change in the transition frequency was
caused by the increasing kinetic inductance in the Al wires. b) Internal quality factor Qi = ω1/γ for
the shielded (filled triangles) and unshielded (open pentagons and triangles) case, both plotted versus
the in-plane magnetic field By . For moderate fields, the quality factor slowly decreases with increasing
field, followed by a sudden decrease above B ≥ 100 mT. A possible explanation is the excitation of
quasiparticles due to the suppression of the Al gap.

By describing both superconductors within a two-fluid model [214] (see Sec. 1.2.2),
the field dependence of the gap parameter translates into a field dependence of the
kinetic inductance

Lk,i(By) = Lk,i(0)

√
1 + (By/Bc,i)2

1− (By/Bc,i)2 , (2.11)

where the index i ∈ {Al, grAl} indicates the superconducting material, and Lk,i(0)
is the inductance in zero-field. I would like to mention that there are different
expressions for the field dependence of the superconducting gap, for instance
reported in Ref. [64], which, however, result in a qualitatively very similar prediction.

Due to the large critical magnetic in-plane field of grAl Bc,grAl ≥ 5 T, both, reported
in literature in Ref. [47] and more recently observed in grAl microstrip resonators
using the same waveguide sample holder [29], the observed change in frequency is
primarily due to the lowering of the Al gap ∆Al, which leads to an increase of the
kinetic inductance of the Al wires connecting the capacitor electrodes with the grAl
volume. From the fit to the data according to Eq. 2.10, the contribution of the Al layer
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2 The granular aluminum transmon qubit

Table 2.5: grAl transmon: magnetic field performance. Fit parameters according to Eq. 2.10, extracted
from the magnetic field dependence of the fundamental transition frequency shown in Fig. 2.8a. The
shunt capacitance Cs = 137 fF, as well as the stray inductance Ls = 450 pH remained constant for the
fitting procedure.

kinetic critical kinetic critical

inductance (Al) magnetic field inductance (grAl) magnetic field

LK,Al Bc,Al LK,grAl Bc,grAl

200 pH 150± 5 mT 2650 pH > 1 T

to the total inductance is found to be LK,Al = 200± 5 pH, and the corresponding
critical magnetic field is Bc,Al = 150± 5 mT, in agreement with Ref. [152] for a film
with 80 nm thickness. Furthermore, the obtained value for the contribution of the
Al layer sets an upper bound on the contribution of the contact junctions formed
by the overlap between the Al and the grAl film, as discussed in App. C.5. The
accuracy on the critical field of the grAl is rather small, and the quoted value should
be understood as an order of magnitude only.

Besides the increase in kinetic inductance and the consequential change in the
transition frequency, the decrease in the superconducting gap and the presence of
magnetic fields in general can have detrimental effects on the coherence of a quantum
circuit. Figure 2.8b depicts the internal quality factor Qi = ω1/γ as a function of
the in-plane magnetic field By measured with (filled triangles) and without (open
pentagons and triangles) an outer Al shield. The quoted quality factors are extracted
from a fit to the resonance fluorescence response of the qubit (see Fig. 2.2).

In comparison to the data depicted in Fig. 2.2, the overall lower internal quality
factor in these three measurement runs observed even in zero-field can be attributed
to the removal of the µ-metal shield, which likely results in an increase of the (stray)
Bz field oriented perpendicular to the film plane. In the presented grAl transmon
design, the Al pads are the most field susceptible components, rendering the qubit
frequency and internal quality factor particularly sensitive to out-of-plane magnetic
fields, as illustrated by the factor of three difference in Qi values in the unshielded
case for nominally identical setups. Moreover, since the time-domain measurements
were performed after these three measurement runs, aging effects can be excluded
as an explanation for the observed reduction in Qi.

Increasing the in-plane magnetic field results in a slow decrease of the internal
quality factor. Above By ≥ 100 mT, a sudden decrease in Qi was observed, potentially
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caused by the excitation of quasiparticles due to the suppression of the Al gap, or
the increasing number of magnetic vortices penetrating the Al thin film.

Finally, it is important to note that the absolute value of the non-linear frequency
shift K is not expected to change in magnetic field, because the expression for K in
the grAl transmon is independent of the grAl superconducting gap. The only change
expected is due to a change in the kinetic inductance participation ratio of the grAl
volume, which could also explain the different values for the qubit anharmonicity
obtained in different measurement runs.
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3 Dimer Josephson Junction Array
Amplifier (DJJAA)

The Dimer Josephson junction array amplifier, in short DJJAA, is a non-degenerate,
standing-wave parametric amplifier operated in reflection, which is based on the
dispersion relation engineering of long arrays of SQUID junctions. A detailed
summary of the DJJAA concept can be found in Ref. [231].

The main idea of the DJJAA is to provide a userfriendly working horse for experiments
in the framework of cQED and related, by offering the following attributes in a
single device:

• Low-noise performance down to the quantum limit

• High dynamic range and saturation power

• Protection of the qubit from pump leakage

• Large effective bandwidth realized by a multi-mode approach.

The DJJAA concept is based on the usage of long, one-dimensional arrays of
Josephson elements, in particular dc SQUIDs, resulting in several eigenmodes in the
frequency domain between 1 and 10 gigahertz utilized for parametric amplification.
Moreover, due to the total length of the arrays, experimentally demonstrated up
to N = 1800 SQUIDs, the magnitude of the Kerr coefficients is small compared to
the linewidth of the modes, which is an important prerequisite for a high dynamic
range, as explained in Sec. 1.3.4.

In analogy to the other weakly nonlinear systems, the DJJAA can be described by a
quantum optics Hamiltonian of the form

H =
N−1

∑
m=0

h̄ωm â†
m âm +

h̄
2

Km,mωm â†
m âm â†

m âm︸ ︷︷ ︸
self−Kerr

+
N−1

∑
m,k=0

h̄
2

Km,kωm â†
m âm â†

k âk︸ ︷︷ ︸
cross−Kerr

, (3.1)
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where ωm are the eigenmodes of the DJJAA, and Km,m and Km,k are the self-Kerr and
cross-Kerr coefficients, respectively. In particular the cross-Kerr terms are used to
enable non-degenerate parametric amplification with pairs of modes.

In order to optimize the non-degenerate operation, the regular dispersion relation
of Josephson junction arrays (JJA) is engineered to form pairs of modes, denoted
dimers, separated by only a few hundreds of megahertz. For the operation as an
amplifier, a strong pump tone is applied in-between two dimer modes, giving rise to
a four-wave mixing conversion process and a power gain profile composed of two
overlapping curves with Lorentzian spectral line shape, one containing the signal
response, the other containing the idler. The obtained detuning between pump and
signal frequency protects the measured system, for instance a qubit, from pump
leakage.

3.1 Multi-mode parametric amplifiers

Multi-mode parametric amplifiers constitute a class of JPAs utilizing several
eigenmodes of the same device for parametric amplification in different frequency
domains, such that the overall bandwidth of the amplifier is enhanced [207, 231].
Ideally, a parametric amplifier covers the whole range between 1− 10 GHz typically
used for cQED experiments.

In standard degenerate and non-degenerate JPAs, the operational bandwidth of the
device is enhanced by employing flux tunable junctions, for instance dc SQUIDs or
SNAILs [77], with flux dependent critical current and Josephson energy, as shown
in Fig. 3.1 (left-hand panel). At least in principle, the obtainable bandwidth is on the
order of several gigahertz, but in reality, the power gain tunability of such devices is
limited to a smaller range.

By lowering the Josephson energy with flux, the nonlinearity of the modes increases
with respect to the resonance frequency, while the effect of higher order nonlinear
contributions arising from the Josephson potential are more likely to influence the
performance of the amplifier at the same time [31]. As a consequence, the observed
saturation power decreases. Moreover, the effect of flux noise in the SQUID loop is
proportional to the flux derivative of the frequency dependence on field∼ ∂ω/∂Φext,
which steadily increases away from effective zero-field, the so-called flux sweet spot.

In a multi-mode amplifier, these limitations are mitigated by using several eigen-
modes. A single device can cover a large bandwidth if the maximal flux tunability of
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Figure 3.1: Multimode amplifiers: Concept. a) Resonance frequency ω of a JPA circuit containing
a single (symmetric) SQUID junction, normalized by the plasma frequency ωpl of the SQUID and
calculated as a function of the normalized external magnetic flux Φext/Φ0 enclosed in the SQUID loop.
The total shunt capacitance of the SQUID is C = 2CJ. The bandwidth of the device is given by the
frequency tunability of the mode (red area). The black solid line indicates the slope at the indicated
flux point (black square) to emphasize the increase in flux noise away from the flux sweet spot (black
cross). b) Normalized, flux dependent dispersion relation of a long JJA consisting of N = 1000 SQUID
junctions. The ratio between SQUID capacitance and capacitance to ground is CJ/C0 = 2500. Due to the
large number of degrees of freedom, the mode density in the frequency domain is enhanced, with the
modes close to the plasma frequency being greyed out. In order to cover a similar bandwidth (colored
areas), each eigenmode m + 1 has to be flux tuned to the next lower frequency m at the flux sweet
spot (black crosses) only. The required minimal external flux is indicated for each mode by the black
diamonds. Notably, the slope at these points is almost independent of the mode number m.

each mode is larger than the frequency detuning of neighboring eigenmodes in zero
field:

ωm+1(0)−ωm(0)︸ ︷︷ ︸
∆ωm

≤ ωm+1(0)−ωm+1(Φmax) (3.2)

Here, Φmax ≤ 0.5Φ0 is the maximal external magnetic flux at which the device is
still operable as an amplifier with sufficient power gain and reasonable saturation
power well above the single photon regime.
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3 Dimer Josephson Junction Array Amplifier (DJJAA)

Josephson junction arrays

For devices with several eigenmodes, the dispersion relation of the system is the
dependence of the eigenfrequencies on the mode number. In a long Josephson
junction array containing N � 1 elements, the obtained dispersion relation is
composed of a linear regime in which the frequency detuning between neighboring
eigenmodes is almost equidistant, and a dense regime close to the plasma frequency
ωpl of the JJs (see Fig. 3.1b)

The frequency detuning between the eigenmodes in the linear regime is controlled
by the length of the array N, and the ratio of junction capacitance CJ and capacitance
to ground C0 [228]:

∆ω ∼ 1
N

∆ω ∼ CJ

C0

(3.3)

Since the expected Kerr nonlinearity decreases also with the number of elements,
as discussed in Sec. 2.1, using long JJAs is generally benificial. A more detailed
discussion about JJA is found in App. F.

Figure 3.1 summarizes the conceptual idea of a multi-mode parametric amplifier
by comparing the (ideal) flux modulation of the resonance frequency of a JPA with
a single SQUID junction, with the flux dependent dispersion relation of a JJA. As
indicated by the colored areas, the flux modulation of each mode required to cover
an overall similar bandwidth is highly reduced in the case of the JJA.

3.2 Circuit model

Besides a low number of added noise, a large bandwidth and high dynamic range,
the protection of the device under test (DUT) from the influence of the strong pump
tone is very crucial for a plug-and-play device. While asymmetric nonlinear elements
like the SNAIL [77] enable parametric amplification in a three-wave-mixing process,
in which the signal and the pump tone are naturally far detuned, the DJJAA concept
follows a different path based on a four-wave-mixing process: the dispersion relation
of a JJA is engineered in such a way that it exhibits pairs of modes, denoted dimers,
which are used for non-degenerate parametric amplification. With the pump tone
applied in-between the two dimer modes, the signal, idler and pump tone frequencies
are detuned by up to hundreds of megahertz.
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3.2 Circuit model

Figure 3.2: DJJAA: dispersion engineering. The effective circuit model of the DJJAA consists of
a one-dimensional network of N identical SQUID junctions(crossed boxes), with flux dependent
critical current Ic(Φext) and junction capacitance CJ, which are separated by superconducting islands
contributing with a capacitance to ground C0. The engineering of the dispersion relation is implemented
by either interrupting the array with a large in-plane capacitor (i), or by introducing a large capacitance
to ground (ii) in the center of the array. In the first case, the capacitance to ground on the neighboring
nodes (N/2 and N/2 + 1), is assumed to be enhanced, too, which is captured by the parameter C′0.

Dispersion relation

The dispersion relation of a single JJA is engineered to allow for non-degenerate
parametric amplification by placing a capacitance in the center of the array, either
in series to the junction capacitance, or to ground. Figure 3.2 depicts the effective
circuit model for both cases. The Josephson elements are indicated by crossed boxes,
surrogating a SQUID junction with flux dependent critical current Ic(Φext), shunted
by its junction capacitance CJ. The superconducting islands inbetween the Josephson
elements contribute with a capacitance to ground C0. The additional circuit elements
associated to the center capacitance with size Cc are highlighted in ruby. If the
capacitor interrupts the array, as shown in (i), the capacitance to ground on the
neighboring islands, denoted C′0, is assumed to be enhanced to account for the
physical size of the capacitor plates. The dispersion relation of the DJJAA is derived
from the linearized Lagrangian of the effective circuit model [228].
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3 Dimer Josephson Junction Array Amplifier (DJJAA)

In the case of a galvanically coupled DJJAA device, and provided the center
capacitance Cc is in series with the junction capacitance, the corresponding Lagrangian
is

L =
N/2−1

∑
i=1

C0

2
Φ̇2

i +
N

∑
i= N

2 +2

C0

2
Φ̇2

i

+
C′0
2

(
Φ̇2

N/2 + Φ̇2
N/2+1

)
+

Cc

2
(
Φ̇N/2+1 − Φ̇N/2

)2

+
N/2−1

∑
i=0

CJ

2
(
Φ̇i+1 − Φ̇i

)2
+

N

∑
i=N/2+1

CJ

2
(
Φ̇i+1 − Φ̇i

)2

−
N/2−1

∑
i=0

EJ cos(φi+1 − φi)−
N

∑
i=N/2+1

EJ cos(φi+1 − φi),

(3.4)

where Φi = Φ0φi/(2π) is the node flux on the i th node, and φi is the superconducting
phase. For clarity, terms arising from similar circuit elements are grouped together in
rows. Accordingly, the first row contains the terms arising from the superconducting
islands in-between the Josephson elements, while the second row contains the terms
that are related to the additional capacitance in the center. Here, the coefficient C′0 is
the capacitance to ground attributed to the two nodes to the left and the right of the
center capacitor. In a realistic physical implementation, the additional capacitance to
ground is likely to be much bigger than the capacitance to ground due to the small
superconducting islands in-between the Josephson elements C′0 � C0. Finally, the
third and the fourth row contain the terms associated with the Josephson elements.
Notably, due to the additional lattice site introduced by the center capacitance, the
final value of the indices is N + 1.

In the limit of small circulating currents with respect to the critical current of the
junctions I � Ic, the phase drop φi+1− φi across each junction becomes small even in
regions of maximal current, and the Lagrangian is linearized by approximating the
nonlinear cosine potentials with harmonic potentials. The corresponding coefficients
are the linear Josephson inductances LJ introduced in Sec. 1.1.2.

By introducing the node flux vector ~Φ = (Φ0, ..., ΦN), the linear Lagrangian is
expressed in a more compact matrix representation

L =
1
2
~̇ΦTC̃ ~̇Φ− 1

2
~ΦT L̃−1~Φ, (3.5)

where C̃ and L̃−1 are the capacitance and the inverse inductance matrices, respectively
(see App. G.1). The matrices contain the information about the distribution of the
circuit parameters along the array.
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3.2 Circuit model

The frequencies ωm of the eigenmodes and the corresponding standing-wave pattern
of the node flux ~Φm along the array are calculated by solving the eigenvalue problem

C̃−1/2 L̃−1C̃−1/2~Ψm = ω2
m~Ψm (3.6)

numerically [228].

Figure 3.3a depicts the flux dependent dispersion relation of a DJJAA under the
assumption that the SQUID junctions are symmetric and the loop inductance is
negligible (see App. E). For the given set of circuit parameters listed in Tab. 3.1, the
device exhibits several dimers for which the frequency detuning is significantly
smaller compared to a standard JJA. The circular markers indicate the eigenfrequen-
cies at the flux sweet spot, which are compared to the case of a JJA with the exact
same parameters in Fig. 3.3b. Each dimer is suitable for nondegenerate parametric
amplification, as exemplarily shown for the second dimer in the inset.

Figure 3.3: DJJAA: Dispersion relation. a) Eigenfrequencies of a DJJAA, normalized by the single
junction plasma frequency ωpl, and calculated according to Eq. 3.6 as a function of the normalized
external magnetic flux Φext/Φ0 enclosed in each SQUID loop. Due to the center capacitance, the
DJJAA’s dispersion relation exhibits pairs of modes, denoted dimers, which are close in frequency
and highlighted in the same color. The circuit parameters used for the calculation are N = 1000,
Ic(0) = 6 µA, CJ = 1000 fF, Cc = 45 fF, C′0 = 30 fF and C0 = CJ/2500. b) Dispersion relation in zero-field
of a single JJA (black crosses) and a DJJAA (colored circles) calculated for the same circuit parameters.
As indicated by the inset, each dimer is suitable for nondegenerate parametric amplification, which
detunes the pump tone from the signal frequency by a few hundreds of megahertz.
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3 Dimer Josephson Junction Array Amplifier (DJJAA)

Table 3.1: DJJAA: Circuit parameters. Values for the circuit parameters of the linear model of the
DJJAA, as shown in Fig. 3.2, used for the numerical calculation of the flux dependent dispersion relation
shown in Fig. 3.3. The zero-field critical current Ic(0) and the Josephson inductance LJ, as well as
junction capacitance are for a single SQUID.

Length critical Josephson junction capacitance center center

current inductance capacitance to ground capacitance cap. to ground

N Ic(0) LJ(0) CJ C0 Cc C′0
1000 6 µA 55 pH 1 pF 1/2500 pF 45 fF 30 fF

Kerr-nonlinearity:

The self-Kerr and cross-Kerr coefficients Km,m and Km,k are obtained by expanding
the cosine potentials in the Lagrangian up to the quartic order, and are given by [228]

Km,m = −2h̄π4EJηmmmm

Φ4
0C2

J ω2
m

, (3.7)

and

Km,k = −
4h̄π4EJηmmkk

Φ4
0C2

J ωmωk
. (3.8)

Here, ηmmkk is a numerical factor that takes the standing-wave pattern of each mode
into account, and is defined as

ηmmkk =C2
J

N

∑
i=1

( N

∑
j=0

(
C̃−1/2

i,j − C̃−1/2
i−1,j

)
Ψj,m

)2

×
(

N

∑
j=0

(
C̃−1/2

i,j − C̃−1/2
i−1,j

)
Ψj,k

)2
 ,

(3.9)

where Ψj,m is the j th entry of the m th eigenvector ~Ψm, and C̃−1/2
i,j is the entry in the

i th row and the j th column of the square root of the inverse capacitance matrix.

Although less intuitive as for the transmon qubit, generally speaking, the Kerr
coefficients increase with increasing mode number m, but saturate as soon as the
dispersion relation approaches the plasma frequency. For the applied circuit model,
the standing-wave pattern of the node flux ~Φm is related to the eigenvectors ~Ψm [228]:

~Φm =

√
h̄

2ωm
C̃−1/2~Ψm, (3.10)
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3.3 Design and fabrication

Figure 3.4: DJJAA: Standing-wave pattern. The standing-wave pattern of the node flux eigenvectors
~Φm for the first four eigenmodes m ∈ {0, 1, 2, 3} of a typical DJJAA device with an in-plane center
capacitance. The two modes forming a dimer have a similar distribution along the array, with the mode
lower in frequency being antisymmetric, or out-of-phase, and the other mode being symmetric, or
in-phase, on both sides of the capacitor. Since the current across each element is given by the difference
in flux on the neighboring nodes, the distribution reveals that the current is maximal on both ends of
the array for all modes, and at the roots of the distribution.

Figure 3.4 depicts the standing-wave patterns of the first four eigenstates, corre-
sponding to the circuit parameters used in Fig. 3.3. In the presented case of an
in-plane capacitor, the two modes forming a dimer are symmetric and antisymmetric
pairs with respect to the center capacitance.

3.3 Design and fabrication

The DJJAA samples implemented and investigated in the scope of my thesis consist of
arrays of optically fabricated SQUID junctions, and are interrupted by an interdigital
in-plane capacitor in the center, as shown in Fig. 3.5. The size of center capacitance is
controlled by the length and the number of the fingers, while keeping a constant
gap, and, as a rule of thumb, is adjusted linearly to the length of the array N.

On the left-hand side, the array is galvanically connected to a microwave input port
formed by a 50 Ω on-chip transmission line, and is galvanically grounded on the
other end. The JJA is designed in a meander structure, with a total of twelve SQUIDs
per meander, with the aim to reduce the physical length of the device and the impact
of magnetic field gradients.

The samples are fabricated on double polished sapphire substrates with the aid of a
two-step optical-lithography fabrication process. First, the majority of structures
including the center capacitor, the on-chip transmission line and most parts of the
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3 Dimer Josephson Junction Array Amplifier (DJJAA)

Figure 3.5: DJJAA: sample design. Optical microscopy images of several parts of a DJJAA implementa-
tion. The JJA to the left and the right of the interdigital in-plane capacitor in the center is comprised of a
meander structur of symmetric dc SQUIDs, with twelve SQUIDs per meander. The left-hand end of the
array is galvanically connected to an on-chip transmission line with characteristic impedance Z0 ≈ 50 Ω,
while the right-hand end is grounded. The inset shows a scanning electron microscopy image of two
SQUIDs, in which the aluminum thin films are false-color coded to illustrate the fabrication procedure.
All structures are patterned on sapphire substrates based on an optical-lithography fabrication process.
The overlap areas between the first (blue) and the second layer (red) forming the JJs are A ≈ 10− 12µm2,
giving rise to a substantial junction capacitance CJ.

array are patterned, followed by a zero-angle evaporation of 30 nm Al. The magnified
region around two SQUIDs, as shown in the scanning electron microscopy images
in Fig. 3.5, reveals the parts of the first layer by a blue color. Right before the first
Al layer is evaporated, a physical and chemical cleaning procedure is performed to
minimize the detrimental effect of resist residuals on the aging of the JJs.

For the precise control of the critical current density jc of the JJs, the native oxide,
which grows naturally when Al is exposed to oxygen, is removed from the first layer
with the aid of an argon milling process [92]. Subsequently, the Al film is oxidized
statically for a time tox = 2− 7 min in a controlled oxygen atmosphere with constant
partial pressure pox ≈ 10 mbar, followed by a zero-angle evaporation of 40 nm Al
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3.4 Dimerization

(light red). The overlap area between the first and the second layer, highlighted by
the white dashed rectangle, forms the JJs.

In order to provide a low loss ground reference, a 200− 300 nm platinum layer
is evaporated onto the backside of the wafer. As a sticking layer, a 10 nm layer
of titanium is used. More details on the individual fabrication steps are given in
App.G.13.

3.4 Dimerization

The dimerization of the array modes is demonstrated for three samples in the
top panels in Fig. 3.6a), b), and c), which show the phase of the complex reflection
coefficient arg(S11) as a function of probe frequency f and external flux bias Φext. The
three samples are composed of a different total number of SQUIDs, N = 1200, 1600
and 1800, and furthermore differ in the critical current per SQUID Ic = 7.0 µA, 3.5 µA
and 2.7 µA. The corresponding Josephson inductances are LJ = 47 pH, 94 pH and
123 pH. Due to the sweep in design parameters, a single dimer in (a), three dimers
in (b) and four dimers in (c) were observed.

With increasing external flux, the frequencies of the dimers decrease, as expected from
the increase in the SQUID inductance and in agreement with Fig. 3.3. The maximal
SQUID frustration, i.e. the maximal kinetic inductance, occurs at |Φext/Φ0| ≈ 0.5,
which is used to calibrate the external magnetic flux. From the obtained modulation
amplitude, a high SQUID symmetry in terms of the critical currents of the JJs can

Table 3.2: DJJAA: Circuit parameters (samples). Values for the circuit parameters entering the linearized
DJJAA model for the three samples A, B and C shown in Fig. 3.6, used to calculate the corresponding
dispersion relations shown in Fig. 3.7. With the aid of sample D, the gain-tunability is demonstrated
(see Fig. 3.8). For all samples, the value assumed for the capacitance to ground of the center capacitance
is C′0 = 33 fF.

array critical Josephson junction capacitance center

length current inductance capacitance to ground capacitance

N Ic(0) LJ(0) CJ C0 Cc

sample A 1200 7 µA 47 pH 1225 fF 0.45 pF 30 fF

sample B 1600 3.5 µA 94 pH 1225 fF 0.45 pF 40 fF

sample C 1800 2.7 µA 123 pH 1225 fF 0.45 pF 45 fF

sample D 1300 6.2 µA 53 pH 1225 fF 0.45 pF 32.5 fF
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Figure 3.6: Phase response of the complex reflection coefficient arg(S11) measured as a function of
externally applied flux Φext for three dispersion engineered JJ arrays: a) N = 1200 JJs, Ic ≈ 7.0 µA,
Cc = 30 fF, b) N = 1600 JJs, Ic ≈ 3.5 µA, Cc = 40 fF, c) N = 1800 JJs, Ic ≈ 2.7 µA, Cc = 45 fF. The
dispersion relation is dimerized by introducing Cc in series with the junction capacitance CJ in the center
of the array. As expected, the number of modes within the given frequency range (here 2− 9 GHz)
increases with increasing N and decreasing Ic. By applying a strong pump tone in-between two
hybridized modes, non-degenerate power gain exceeding G0 = 20 dB is observed for up to four pairs of
modes in a single device, as shown in panel c). The arrow and cross symbols in each panel indicate the
external flux bias and pump frequency, color-coded for each dimer. The horizontal features visible in
the vicinity of 4 and 8 GHz correspond to the frequency band of the circulator attached to the DJJAA
input port.
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be inferred, as well as a negligible contribution of the SQUID loop inductance (see
App. E).

From the measured spectra, the frequencies ωm of the eigenmodes are determined,
and compared to the prediction of the circuit model, as shown in Fig. 3.7. The circuit
parameters corresponding to the individual spectra are listed in Tab. 3.2. Since most
circuit parameters entering the model, in particular LJ, CJ, Cc and C′0, are estimated
from complementary room-temperature transport measurements and finite element
method simulations, the capacitance to ground C0 per island remains the only real
free parameter. A detailed discussion can be found in App. G.4. For all three devices,
the same value for the capacitance to ground C0 = 0.45 fF was used to calculate the
dispersion relations, as the amplifier packaging and the design are conceptually
identical.

Although the agreement between the model prediction and the obtained frequencies
is generally satisfying, the agreement is noticeably better for the devices with larger
kinetic inductance per SQUID, since the circuit model does not account for additional
linear inductances arising from the islands connecting the SQUIDs (see App. G.4).

Figure 3.7: DJJAA: dispersion relation at the flux sweet spot. Measured (triangles) and numerically
calculated (circles) dispersion relation of the three DJJAA devices A, B, and C shown in Fig. 3.6. The
circuit parameters LJ, CJ, Cc and C′0 are estimated from room temperature transport measurements
and FEM simulations, and remain fixed, leaving the capacitance to ground C0 the only free parameter
(see App. G.4). For all three samples, the same value C0 = 0.45 fF was used for the calculation. All
parameters are listed in Tab. 3.2. Noticeably, the agreement between the model prediction and the
measurement is better for the longer arrays, which is not due to the length but rather because of the
larger kinetic inductance per SQUID, and the smaller contribution of the stray inductance, which is not
included into the model.
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3.5 Multi-mode power gain

The power gain G = Pout,on/Pout,off is defined as the ratio between the received
power with and without the pump tone applied. Since the response of the system is
deduced from the reflection coefficient, which is a ratio of voltages, the power gain
is determined as the ratio of the squared amplitudes of the reflection coefficient
measured in both cases G(ω) = |S11,on|2/|S11,off|2. Owing to this normalization,
finite losses in the amplifier modes appear as artificial gain in the measurement.

The bottom panels in Fig. 3.6a, b and c depict the power gain G in decibel as a
function of probe frequency f when an additional pump tone of power Pp and
frequency fp is applied in-between two dimerized modes at a time. The black arrows
and cross symbols, color-coded individually for each dimer, indicate the external
bias flux Φext and pump frequency used in each experiment. For most dimers, the
pump frequency appears off-centered with respect to the low probe power response
shown in the top panels, since the mode population n̄m caused by the strong pump
tone lowers the dimer modes in frequency up to several hundreds of megahertz.

For the DJJAA, the observed power gain is composed of two overlapping Lorentzian
curves, symmetrically emerging below and above the pump tone frequency. In
general, the frequency detuning between the two maxima can be fine-tuned by
the pump power and the pump frequency, similar to Ref. [67]. The maximal power
gain G0 exceeds 20 dB, which is a typical value required to saturate the classical
noise added by higher temperature amplifier stages with the amplified quantum
noise. For the sample shown in Fig. 3.6c, four dimers were used to obtain parametric
amplification, epitomizing the potential of the DJJAA concept. Notably, due to a
finite magnetic field gradient along the device, the flux modulation is asymmetric,
as discussed in App. G.7, limiting the achievable flux tunability of the device. Such
detrimental effects on the performance are mitigated with a dedicated magnetic
shielding.

Gain tunability

The flux tunability of the different modes, in particular the achievable tunability
of the power gain, is an important figure of merit for the implementation of a
multi-mode amplifier. Figure 3.8 depicts the power gain measured in three different
dimers in a single device composed of N = 1300 JJs. The device is from the same
batch as sample a in Fig. 3.6, and has therefore similar circuit parameters.

The frequency tunability of all three modes exceeds 1.5 GHz and, thus the total
bandwidth of the device is ≥ 4.5 GHz. Due to the design parameters, the frequency
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splitting between neighboring dimers is roughly a factor of two larger than the
achieved gain tunability. By increasing the number of JJs or the capacitance to
ground, a smaller frequency detuning could be achieved.

Figure 3.8: Gain flux tunability. Phase of the complex reflection coefficient arg(S11) (left-hand panel),
measured for a DJJAA with N = 1300 SQUIDs as a function of the probe frequency f and external bias
flux Φ/Φ0, similar to Fig. 3.6. The grey scale covers again the range from −π (black) to π (white). The
main features in the given frequency range are the second (n = 2), third (n = 3) and fourth (n = 4)
dimer of the device. The pentagons highlight the bias flux and pump frequency used to measure the
power gain close to the dimer modes. The corresponding power gain G is shown in the right-hand
panel as a function of the probe frequency f . The tunable bandwidth of this device measured from
the lowest frequency to the highest frequency of each dimer at which G = 20 dB was reached exceeds
1.5 GHz for all three dimers.

3.6 Gain-bandwidth product

As mentioned in Sec. 1.3.4, the achieved maximal power gain G0 (linear units) and
the instantaneous bandwidth B of each dimer are related by the external coupling
rate of the respective modes, known as the gain-bandwidth compromise. For a
non-degenerate parametric amplifier utilizing two modes at a time, the product of
gain and bandwidth is limited by both decay rates [46, 67]√

G0B =
2κn,+κn,−

κn,+ + κn,−︸ ︷︷ ︸
κ̄n

, (3.11)

where κn,+ and κn,− are the external decay rates of the two modes of the n th dimer,
and κ̄n is the effective linewidth.
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Figure 3.9: Power gain. a) Power gain G in decibel for different pump powers Pp (room-temperature
values) and a fixed pump frequency ωp = 2π× 8.622 GHz, measured at the flux sweet spot of the third
dimer n = 3 (cf. Fig. 3.8) as a function of the frequency f of a low power (Ps � Pp) probe tone (bottom
panel). With increasing pump power, the observed maximal power gain increases, as indicated by the
color scale, while the obtained bandwidth decreases. The top panel shows three gain curves for three
different pump powers, which are indicated by the equally colored arrows, and reveals the double
Lorentzian gain profile. Notably, the sudden increase in noise at probe frequencies above 8.5 GHz is an
artefact caused by the commercial vector network analyzer. For clarity, the features associated to the
pump tone have been removed from the plot, explaining the small gap in the center (top panel).b)
In order to extract the maximal power gain G0 and the bandwidth B of the amplifier, Lorentzian fits
are performed for both modes individually, as demonstrated for the lower mode 3− (top panel). The
bottom panel compares the extracted gain-bandwidth product

√
G0B of both modes with the expected

value κ̄3 (black dashed line).

The maximal power gain G0 of the DJJAA is adjusted by the pump conditions, the
combination of pump frequency ωp and pump power Pp. In general, the pump
frequency is set to a frequency in-between two dimerized modes. However, due to
the finite Kerr nonlinearity of both modes, the resonance frequencies of the dimer
modes shift downwards in frequency with increasing mode population and pump
power, as theoretically demonstrated for a degenerate amplifier (see Fig. 1.23). As a
consequence, there are ideal pump conditions for which the required pump power
is minimized.

Figure 3.9a depicts the power gain G obtained for the third dimer of the sample D (see
Fig. 3.8), measured as a function of the probe frequency f for a steadily increasing
pump power. The pump frequency remained fixed at ωp = 2π × 8.622 GHz during
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the measurement. Under the given conditions, not only the maximal power gain
increases, but also the detuning between the two points at which the maximal power
gain occurs in frequency increases.

The instantaneous bandwidth B and the maximal power gain G0 are extracted by
fitting individual Lorentzian curves to the frequency dependence of the (linear)
power gain profiles:

G(ω) =
G0 (B/2)2

(ω−ω0)
2 + (B/2)2 + Goffset, (3.12)

as demonstrated in Fig. 3.9b. Here, Goffset is a finite offset value and ω0 is the
frequency at which the maximal power gain occurs.

The gain-bandwidth product extracted for both modes is plotted in Fig. 3.9b (bottom
panel), and compared to the theoretical value κ̄3 = 196 MHz, which has been deduced
from the low probe power reflection coefficient of the amplifier for each dimer
individually. While the obtained gain-bandwidth product of the lower mode agrees
well with the prediction, the upper mode exhibits generally larger values and a
moderate decrease with increasing power gain.

For the sample shown in Fig. 3.6a, the obtained gain-bandwidth product
√

G0B ≈
170 MHz is also in good agreement with the average of the two measured linewidths
κ̄/2π = 172 MHz (not shown). Since the inductance per SQUID is significantly
larger for samples B and C, the obtained bandwidth is considerably smaller for these
samples.

Flux tunability

For the same device, the dependence of the gain-bandwidth product with the
applied flux bias was investigated for two dimers. Figure 3.10 depicts the comparison
between the theoretical prediction κ̄n and the gain-bandwidth product obtained
from the power gain measurements shown in Fig. 3.8 (right-hand panel) for the
second (n = 2) and the third (n = 3) dimer.

Since the inductance of the SQUIDs is enhanced with increasing flux Φext, the
characteristic impedance of the amplifier increases at the same time, which lowers
the effective linewidth of the modes (black solid lines). The triangle and the square
markers indicate the gain-bandwidth products for the upper and lower frequency
mode of each dimer, respectively, which are generally in good agreement with the
prediction.
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Figure 3.10: Gain-bandwidth product. Product of the linear power gain G0 and the amplifier bandwidth
B for the second and third dimer of sample D shown in Fig. 3.8, measured at different values for the
external magnetic flux Φext inside the SQUID loops. The black solid line indicates the expected value
determined by the effective linewidth κ̄n = 2κn,+κn,−/(κn,+ + κn,−). The triangles and squares indicate
the measured gain-bandwidth products for the upper and lower frequency mode, respectively. The
color code is identical to the gain measurements in Fig. 3.8.

3.7 Saturation power

The saturation power of an amplifier is conventionally determined by the 1 dB
compression point, the input power at which the power gain has been reduced by
1 dB compared to the low signal power value. Figure 3.11 depicts a representative
saturation power measurement, performed with the upper mode of the third dimer
in sample D (see Fig. 3.8)

The initial power gain G0 for small signal powers Ps is determined by the pump
conditions (ωp, Pp), which are adjusted such that the ideal conditions are closely met
for four different power gain values. In case the pump frequency ωp is slightly lower
compared to the ideal detuning, the increase in signal power shifts the amplifier
modes closer towards the optimal condition due to the signal induced ac Stark effect,
resulting in a slight increase in the observed power gain. The measured curves show
only a slight increase, before the power gain starts to steadily decrease. As expected,
the corresponding 1 dB compression points, indicated by the black markers, are
observed at higher signal powers for lower power gain values, in agreement with
Fig. 1.25. Since the total attenuation of the input line was not calibrated in the same
measurement run, the quoted signal power values are accurate within an order of
magnitude.

At the flux sweet spot (left-hand panel) and at even higher signal powers well
beyond the saturation power, the power gain abruptly disappears, with the origin
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of this behavior remaining unresolved. A similar behavior is not observed in the
measurement away from the sweet spot (right-hand panel), but has been observed
in other devices, too.

Another aspect revealed by the measurements, in particular by the light grey curves,
is the increase in flux noise with increasing power gain owing to the smaller amplifier
bandwidth. In addition, the observed flux noise increases with increasing detuning
away from the flux sweet spot, caused by the steeper slope ∂ωm/∂Φext (see App. G.7).

Figure 3.11: Saturation power measurement. Maximal power gain G0 as a function of the incident
signal power Ps, measured for the upper mode of the third dimer in the sample shown in Fig. 3.8.
The two panels depict the results obtained for four different pump conditions at two different flux
bias points, Φext/Φ0 = 0 (left-hand panel) and Φext/Φ0 = −0.25 (right-hand panel). With increasing
signal power, the power gain starts to decrease, with the 1 dB compression points indicated by the
black markers. The blue line highlights the curve with an initial power gain of 20 dB. At the flux sweet
spot, the power gain suddenly breaks down, which has been observed in other samples, too, but does
not occur in the right-hand panel. The origin of this phenomenon remains unresolved. Notably, the
quoted signal power was not calibrated, but is only roughly determined using an estimate of the total
attenuation A = 76 dB in the input line, which has been measured in a different cool down using the
Rabi frequency of the grAl transmon (see Fig. 2.3) at a comparable frequency. Therefore, the results
should be considered rather qualitatively.

3.8 Noise performance

The calibration of the noise performance of a DJJAA requires a calibrated power
source used to determine the power incident to its input port. If the power gain of
the DJJAA is sufficiently high (G ≥ 100) to saturate the noise added by subsequent
amplifier stages, the SNR of the whole measurement setup is dominated by the SNR
in front of the DJJAA, and the noise can be deduced in absolute values from the
calibrated signal strength.
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Such a calibrated power source can be build from a superconducting qubit dispersively
coupled to a dedicated readout resonator. As discussed in App. B.2, the power
reflected from the readout resonator is related to the mean photon number n̄r inside
the resonator, which in turn can be determined from the transition frequency of the
qubit and the dispersive shift χqr (see Sec. 1.1.6).

Measurement photon number

In a reflection measurement, the amplitude of the frequency dependent reflection
coefficient can be normalized to unity using the off-resonant response of the system,
independent of the total attenuation and power gain in the measurement setup,
as shown in Fig. 1.11. For the measurement of the readout resonator, a pulse or
continuous tone is applied at a fixed frequency in close vicinity to its resonance
frequency fr. The signal received at room temperature is downconverted to an
intermediate (IF) frequency, before it is digitized. By comparing the signal with a
reference from the same microwave source, the signal can be decomposed into the
quadratures I and Q. Using the calibrated signal strength, the measured quadratures
can be expressed in the measurement photon amplitude

√
nmeas [97, 220], with

I2 + Q2 = nmeas. The scaling accounts for the improvement of the SNR due to the
signal strength (∝

√
n̄r), the measurement rate (∝

√
κr), and the integration time

(
√

Tm), and enables to determine the noise in the received signal in numbers of
photons per unit time and bandwidth.

In a continuous single-port reflection measurement performed on resonance, and
neglecting the internal losses of the readout resonator, the measurement photon
number is

nmeas =
γr→0

n̄r
κr

4
Tm, (3.13)

where Tm is the measurement integration time, and γr and κr are the resonator’s
internal and external decay rates, respectively.

The mean circulating number of photons inside the resonator n̄r is calibrated by
measuring the qubit’s fundamental transition frequency fq in a sequence of Ramsey
fringes experiments [186]. The frequency fR of the Ramsey oscillations is given by
the drive detuning from the qubit’s transition frequency fR = | fd − fq|, which is
chosen to be comparable to the frequency shift induced by the population of the
readout resonator ∆ fq = n̄r2χqr, where 2χqr = −2π× 480 kHz is the qubit dispersive
shift [24]. The resonator is populated with n̄r photons by simultaneously applying
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Figure 3.12: Quadrature histogram) 2D-histogram of measured I and Q quadratures of the readout
resonator at fr = 5.8224 GHz. The I and Q values are reported in units of square root of measurement
photons

√
n̄rκrTm/4, where n̄r ≈ 150, κr/2π = 2.7 MHz and Tm = 500 ns, for a total of 6× 105 counts.

We observe two peaks in the IQ−plane, a larger one corresponding to the qubit ground state |g〉,
and an approximately ten times smaller peak corresponding to the first excited state |e〉. The qubit
temperature calculated from the observed populations is Tq = 87 mK, in agreement with the base plate
temperature of the dilution refrigerator of 80 mK, which was raised to activate thermal excitations of
the qubit. The distribution plots along I (top panel) and Q (right panel) are plotted for slices centered
on the ground state peak. From a Gaussian-fit we extract a standard deviation σ = 2.0

√
photon.

a constant tone to the readout resonator at frequency fr (see App. G.12 for more
details).

Figure 3.12 shows a histogram of measured signal quadratures I(t) and Q(t)
expressed in units of the measurement photon amplitude

√
nmeas, for n̄r ≈ 150 and

an integration time Tm = 500 ns. The resonator linewidth is κr = 2π × 2.7 MHz. A
detailed description of the measurement setup and the microwave interferometer
used to decompose the readout signal into the quadratures I and Q is found in
App. G.8 and App. G.9. The qubit’s ground state |g〉 and first excited state |e〉 are
visible as two circles with Gaussian profile, as expected for a coherent state prepared
in the resonator. For clarity, the IQ-plane is rotated such that the information about
the qubit state is encoded entirely in the Q-quadrature, as shown by the slices
through the histogram along I (top panel) and Q (right-hand panel). The angle
between the ground and first excited state is φ = 4 arctan

(
|χqr|/κ

)
≈ 40◦.
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Measurement efficiency

The measurement efficiency η = 0.13 at the resonance frequency of the readout res-
onator is calculated by comparing the measured standard deviation σ = 2.0

√
photon

of the ground state distribution in the histogram shown in Fig. 3.12, with the ideal
case, which is σideal = 1/

√
2
√

photon for a coherent state [40].

The reduction in measurement efficiency can be attributed to known and expected
losses between the readout resonator and the parametric amplifier. Since a commercial
power combiner was used to feed in the pump tone, the power incident to the
DJJAA was lowered by at least a factor of two compared to the calibrated value.
Additionally, the sample holder was separated from the amplifier by several
microwave components, such as circulators and various co-axial cables, which
further add dissipation at the readout frequency. Therefore, a conservative upper
bound on the measurement efficiency determined by losses is ηL ≤ 0.5, which
implies a conservative bound on the quantum efficiency ηDJJAA = η/ηL ≥ 0.26 for
the DJJAA.

Noise visibility

Another contribution of the noise observed at room temperature can be caused
by the amplifiers in the output line of the measurement setup operated at higher
temperature stages. A way to estimate the saturation of the noise added by these
additional amplifier stages with amplified quantum noise incident to the DJJAA,
is the noise visibility measurement, as shown in Fig. 3.13. The measurement is
performed by comparing the noise power detected with a spetrum analyzer at room
temperature, when the DJJAA is on and off. In the frequency region in which the
power gain of the DJJAA is large (G � 1), the measured noise power is increased
and resembles the characteristic Lorentzian line shape of the DJJAA gain profile.

Assuming a frequency independent noise incident to the DJJAA, the maximal noise
visibility ∆P is measured at the frequency at which the DJJAA supplies the largest
power gain G0, as indicated by the coincidence with the gain profile, which has been
obtained in a separate measurement. From the measured increase in output power,
the contribution of the other amplifier stages, primarily the HEMT, can be expressed
in an upper bound for the measurement efficiency [97]

ηHEMT = 1− 10−∆P/10. (3.14)

From the maximal value measured ∆P = 13.2 dB, an upper bound ηHEMT = 0.95
is deduced. Notably, the noise visibility measurement alone is not sufficient to
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Figure 3.13: Noise visibility. Increase in the measured power at room temperature ∆P (blue curve) due
to the amplified quantum noise incident to the DJJAA. For the measurement, only a pump tone is
applied to operate the DJJAA with a maximal power gain of G0 = 23.2 dB (red curves), while the power
is detected with a commercial spectrum analyzer. In the frequency region in which the power gain of
the DJJAA is large (G � 1), the noise incident to the amplifier, at least quantum fluctuations at the
signal and idler frequencies, is amplified and causes an increased noise power at room temperature.
The noise floor in this measurement is determined by the noise added by subsequent amplifier stages,
for the most part the noise added by a high-electron-mobility transistor amplifier. The black dashed
line indicates a Lorentzian fit to the noise visibility.

calibrate the noise performance of the DJJAA, as the losses between the DJJAA and
the HEMT are generally unknown, unless they have been calibrated. As an example,
a quantum limited first amplifier stage with no attenuation in the line connecting it
to the HEMT would show the same noise visibility as a device with a much higher
added noise number, but also more attenuation in the line.

3.9 Quantum jumps of a transmon qubit

The increase in measurement efficiency and SNR by operating the DJJAA enabled
to trace the state of the transmon qubit on a time scale an order of magnitude
faster than its energy relaxation time. From such quantum jump traces, valuable
information can be extracted, for instance the statistics of the duration the qubit
spends in each state, from which the decay rate Γ↓ and the excitation rate Γ↑ can be
deduced individually, i.e. the effective qubit temperature.

An exemplary quantum jump trace is depicted in Fig. 3.14 (left-hand panel) for the
same integration time Tm = 500 ns and readout strength used in Fig. 3.12. For the
detection of the qubit state, highlighted by the solid red line, a multi-point filter is
used [220]. The filter declares a jump, when the detected Q-value falls into a range
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Figure 3.14: Quantum jumps. Typical example of a measured quantum jump trace corresponding
to the time evolution of the Q quadrature for the same experiment shown in a). The red solid line
indicates the qubit state given by a two point latching filter. The colored areas around the Q values
corresponding to |g〉 (pink) and |e〉 (green) represent one standard deviation σ, which is the value used
for the latching filter.

of ±σ around the mean values Q̄m (m ∈ g, e, f, h) associated with the first four qubit
states. For the ground and first excited state, the filter-range is color coded by the
pink and green areas around the mean values Q̄0 and Q̄1, respectively, which are in
turn indicated by the dashed lines.

By compiling a histogram of the duration τ the qubit remains in the excited state, the
decay rate Γ−1

↓ = 4.1 µs into the ground state can be extracted from the measured
quantum jump traces. Figure 3.14 (right-hand panel) depicts the corresponding
histogram together with the exponential fit (black dashed line) from which the decay
rate is determined.

Moreover, for uncorrelated quantum jumps, the probability distribution p(τ) of
the times τ follows a Poisson distribution p(τ) = 1

τ̄ e−τ/τ̄ around a mean value τ̄.
Following the analysis reported in Ref. [220], the statistics of the dwelling times
extracted from the quantum jumps are expressed in the form τp(τ) = τ

τ̄ e−τ/τ̄ for
enhanced visibility.

Figure 3.15 depicts the statistics of the quantum jumps corresponding to the histogram
in Fig. 3.12, for the ground (pink) and the first excited state (green). For the binning,
a constant bin size ∆b in units of log(τ) is used. Both distributions are in excellent
agreement with the prediction of uncorrelated quantum jumps, indicated by the
black dashed lines, which are of the form [220]

∑ ∆b
τ̄

log(10)τ
τ

τ̄
e−

τ
τ̄ . (3.15)
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Figure 3.15: Quantum jumps statistics. Histograms of the time τ the transmon spent in the ground
(pink) and first excited state (green), weighted by its probability p(τ). The black dashed lines indicate
the expected statistics assuming uncorrelated quantum jumps between the two states following a
Poisson distribution.

Here, ∑ is the total sum of the histogram values, and the term in front of the
Poisson distribution ensures that the integral coincides with the total number of
measurements stored in the bins.

As expected, the qubit spent significantly more time in the ground state than in the
first excited state, or in other words, the contribution of the excitation rate to the
energy relaxation rate is negligible Γ↓ � Γ↑.

Qubit temperature

Owing to the interaction between the transmon qubit and its environment, the
excitation rate Γ↑ out of the ground state is non-zero, as discussed in the previous
section, causing a finite equilibrium occupation of the excited state. The extent of
such excitations can be expressed in an effective qubit temperature, calculated from
the relative population of the qubit states. For a transmon qubit, the occupation in
the energy eigenstates beyond the computational basis (|0〉 and |1〉) can be included
into the analysis.

For a qubit in thermal equilibrium with its environment, the occupation probability
pm of the m th energy eigenstate follows a Boltzmann distribution

pm ∝ e
− Em

kBTq , (3.16)

where kB is the Boltzmann constant, and Tq is the effective qubit temperature. Similar
to the Boltzmann statistics of a multi-particle system, the occupation probability
of each qubit state observed in a time ensemble is calculated from the number of
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Figure 3.16: Transmon temperature. Histograms of the probability p(Q) for finding the measurement
outcome Q within regions of bin size ∆Q = 0.6

√
photon. Similar to Fig. 3.12, the information about

the qubit states is projected onto the Q quadrature. The black dashed lines indicate Gaussian fits,
from which the mean values Q̄m and the standard deviations σm are extracted for the ground and first
excited states. The area below the curves within one standard deviation is used to calculate the relative
population of the qubit states. For a qubit in thermal equilibrium, the relative population follows a
Boltzmann distribution ∝ e−Em/(kbTq) (dashed lines), from which the qubit temperature is deduced,
yielding Tq = 61 mK and Tq = 87 mK.

measurements Nm the qubit has been found in the respective state m, divided by the
total number of measurements N = ∑ Nm:

pm =
Nm

N
(3.17)

The corresponding numbers Nm are extracted from the IQ-histogram, either from
the maximal number of counts associated to each state, or the integrated counts
within one standard deviation σ. Hence, the effective qubit temperature is calculated
from the Boltzmann factor of the first two eigenstates

Tq =
E1 − E0

kB ln(N0/N1)
, (3.18)

if not more qubit states can be distinguished, or by fitting a Boltzmann distribution
to the relative occupation

Nm(εm)/N = n0e
− εm

kBTq . (3.19)

Here, the parameter εm = (Em − E0) is the energy difference between the m th
energy eigenstate to the ground state energy E0, and n0 is the relative ground state
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occupation. The energy eigenstates are determined from the qubit spectrum (see
App. G.10).

Figure 3.16 compares the probability histogram p(Q) of measuring a value along
the Q quadrature for a cryostat base temperature Tbase = 30 mK (top panel) with
the outcome of an experiment operated at Tbase = 80 mK. In both cases, the first
two states of the transmon are clearly distinguishable, while the higher energy
eigenstates accumulate at the left-hand edge of the distribution. However, from
the continuous quantum jump traces similar to Fig. 3.14, the third and the fourth
eigenstate are still distinguishable.

The relative population of the qubit states Nm(ε)/N is extracted from the probability
of measuring a Q quadrature value within one standard deviation around the mean
value Q̄m associated to each transmon state. For the measurements taken at a lower
base temperature, the qubit temperature saturates at a constant value Tq ≈ 61 mK,
which is an indication for non-thermal processes that increase the excited state
population beyond thermal equilibrium. At the elevated base temperature, the qubit
temperature of Tq = 87 mK approaches the physical temperature of the cryostat
base plate.
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In the scope of my thesis, I investigated the applicability of superconducting granular
aluminum for the implementation of nonlinear inductances designated for the
use in hybrid architectures, i.e. systems dedicated to combine the advantages of
superconducting quantum circuits with other quantum degrees of freedom. For this
purpose, the properties of grAl thin films were examined with the aid of transport
measurements, as well as in form of a dispersive measurement technique, realized
by embedding a grAl inductor into a resonant circuit to build a superconducting
transmon qubit. Besides the determination of the quantum coherence of the grAl
transmon, the investigation was targeted to assess the performance of the material
in external magnetic fields, an important prerequisite for the usage in many hybrid
systems. In order to decrease the required measurement time, a non-degenerate
parametric amplifier was developed in addition.

Nonlinear granular aluminum inductors

The investigated grAl thin films were deposited in a standard electron beam
evaporator by evaporating pure aluminum in a low-pressure oxygen atmosphere
(∼ 10−5 mbar). As demonstrated, the normal-state resistivity of the fabricated films is
controlled by the ratio of the partial oxygen pressure inside the evaporation chamber
and the pure aluminum evaporation rate, and can be varied over three orders
of magnitude. Since the kinetic sheet inductance of disordered superconductors
is proportional to the sheet resistance according to the Mattis-Bardeen theory,
the control of the film resistivity enables the implementation of physically small
inductors offering a large kinetic inductance at eye level with conventional Josephson
junction technology [91].

The nonlinearity of such inductive elements stems from the grAl microstructure,
which is composed of separate and crystalline aluminum grains embedded in a non-
stoichiometic AlOx matrix [234]. The thin, insulating barrier between neighboring
grains enables a finite Josephson coupling for film resistivities ρn ≤ 104 µΩ cm, above
which granular aluminum enters an insulating regime [133]. Similar to conventional
JJ, the nonlinearity is determined by the phase fluctuations across the inter-grain
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boundaries. Owing to the grAl microstructure, the quantum electrodynamics of grAl
resonators can be mapped onto an array of effective JJs, which links the self-Kerr
coefficient of the fundamental mode of a rectangular-shaped stripline resonator to
the critical current density jc and the volume VgrAl of the grAl film: K11 ∝ j−1

c and
K11 ∝ V−1

grAl [144].

The critical current density jc of superconducting grAl films was determined with
the aid of switching current experiments of micro-SQUIDs patterned from single
grAl layers. In the used design, the SQUID loop was narrowed down in two
regions to form short, geometric constrictions of widths ≤ 100 nm and lengths
≤ 300 nm. Due to the short coherence length of superconducting grAl compared to
the geometric dimension of the constrictions, the switching into the normal state in
such constrictions is expected to be local and determined by the Josephson coupling
between the Al grains [78]. In this notion, the switching is more likely to take place
inside the constriction merely due to the reduced critical current of the film in these
regions. The obtained critical current density was found to decrease with increasing
normal-state resistivity following a power law jc ∝ ρ−1.3

n . Moreover, the analysis of
the switching current distributions have revealed a diffusive motion of the effective
phase particle inside the two-dimensional sQUID potential, as reported in Ref. [78].

In order to further investigate the applicability of grAl elements for hybrid systems,
a grAl transmon qubit was fabricated by shunting a small volume of granular
aluminum VgrAl = 500× 200× 10 nm3, constituting the nonlinear inductance of the
circuit, with a pure aluminum in-plane capacitor. The used fabrication process was
based on an in-situ three-angle shadow evaporation technique [128], demonstrating
the integrability of the grAl fabrication with standard Josephson junction technology.

The coherence of the grAl transmon qubit was directly determined from resonance
fluorescence measurements of the fundamental transition, in spectroscopy, i.e. with a
continuous microwave drive, and in time domain, i.e. with pulsed signals. The energy
relaxation time was found to be limited by the Purcell decay into the waveguide
sample holder to T1,κ = 3.1 µs, while the internal decay time due to uncontrolled
degrees of freedom was found to be T1,γ = 20+22

−6 µs. Complementary Ramsey-
fringes [186] and Hahn-echo [94] experiments further portend pure dephasing times
Tφ = 28 µs and Tφ = 46 µs, respectively, indicative for a stable qubit transition
frequency and on par with state-of-the art superconducting qubit implementations.

By directly tracing the fundamental transition frequency over the duration of 15 h
using spectroscopy techniques, a total change on the order of 10 kHz was observed,
reinforcing the results of the time domain measurements. However, the mean value
of the fundamental transition frequency was prone to changes between consecutive
cool downs, with spreads on the order of several hundred megahertz. Although
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the exact origin remained unresolved, a potential explanation are changes in the
configuration of the grAl volume, supported by the concomitant change in the
obtained anharmonicity of the grAl transmon.

From resonance fluorescence measurements performed at higher readout power and
additional two-tone spectroscopy measurements, the anharmonicity of the qubit
was determined to α = 2π × 4.48 MHz at a fundamental transition frequency of
f1 = 7.4887 GHz. By comparing the obtained value with the expected anharmonicity
of a conventional transmon α ≈ Ec/h̄ [116], which is determined by the charging
energy Ec of the shunt capacitance, the result suggests N = 6 effective junctions
inside the grAl volume, and, hence an effective junction length of a = 80 nm.
Although the deduced size is an order of magnitude larger than the grain size, it is
in agreement with scanning-tunneling microscopy measurements, which revealed
the simultaneous charging of clusters of grains, indicative for a locally high barrier
transparency [234].

Eventually, the grAl transmon was measured in external magnetic fields, which
were applied with a specifically developed 2D vector magnet integrated into a
3D waveguide sample holder, capable of creating in-plane fields on the order of
several hundred millitesla. The measurements showed that the investigated grAl
transmon implementation was limited by the low impedance shunting layers made
from pure aluminum. However, a reasonable coherence time was sustained up to
fields reaching 100 mT, which is already in the range required for the operation of
semiconducting spin [154, 194] and molecular qubits [22, 23, 83]. Moreover, although
the transition frequency was lowered by over 200 MHz due to the suppression of
the gap parameter of the pure aluminum film, a high resolution measurement of
the transition frequency did not reveal any anticrossings with other mesoscopic
systems, a typical observation in conventional transmon qubits [114, 131, 135, 195].

In conclusion, the results reported on the grAl transmon have demonstrated that
nonlinear inductances made from small volumes of granular aluminum are promising
candidates for the application in hybrid systems, as they offer low microwave losses,
sufficient nonlinearity to build a qubit, and resilience against external magnetic
fields.

In future experiments, the limit on the energy relaxation time caused by the
spontaneous emission into the input port could be mitigated by implementing a
dispersive readout scheme for the qubit. Moreover, by using smaller volumes of
granular aluminum, the anharmonicity of the grAl transmon could be enhanced
compared to the presented implementation. However, even the presented value
renders the grAl transmon a potential candidate for the application in bosonic
codes for quantum information processing [87, 99, 113, 157, 219]. For the extended
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application in hybrid systems, the aluminum shunting layer could be exchanged by
superconducting materials with larger critical magnetic fields, for instance niobium
compounds [123, 167, 193]. Alternatively, implementations of other qubit designs
which do not require large shunting capacitors, for instance the fluxonium qubit
[91, 148], could be entirely fabricated from a single granular aluminum layer.

The DJJAA

In order to improve the signal-to-noise ratio of the measurement setup, a non-
degenerate parametric amplifier was developed based on the dispersion engineering
of long Josephson junction arrays, referred to as the dimer Josephson junction array
amplifier, in short DJJAA. By placing a capacitance in the center of the array, the
DJJAA exhibits pairs of modes, denoted dimers, coupled by a cross-Kerr interaction.

The main idea behind the DJJAA concept is to cover a large frequency band utilizing
several eigenmodes of the same device in different frequency domains and, thus
lowering the required frequency tunability of each mode. The usage of multiple
dimers for non-degenerate amplification was demonstrated with up to four modes
in a single device containing N = 1800 JJs. Since the DJJAA devices were fabricated
based on a simple and cheap optical-lithography process demonstrates that the
DJJAA concept is robust and affordable for a large variety of groups working
on superconducting quantum circuits. In combination with the potentially large
bandwidth, DJJAAs could be used in cryogenic setups as ordinary as commercial
amplifiers.

The noise performance of a typical DJJAA was determined using a cQED experiment
composed of a conventional transmon qubit dispersively coupled to a dedicated
readout resonator. The cQED system was used as a calibrated power source to
determine the power incident to the DJJAA. The measurement efficiency of the
DJJAA was found to be ηDJJAA ≥ 0.26, i.e. reaching 26% of the quantum limit on par
with other superconducting parametric amplifiers [97, 143, 220], with remaining
uncertainties caused by unknown and unaccounted microwave losses stemming
from the components connecting the transmon to the amplifier.

Due to the enhanced signal-to-noise ratio enabled by the DJJAA, the state of the
transmon was continuously traced using an integration time of Tm = 500 ns, roughly
an order of magnitude faster than the energy relaxation time of the qubit. From the
statistics of the amount of time the qubit spent in the ground and the first excited
state, the energy relaxation time as well as the effective temperature of the qubit
were determined, revealing the saturation of the qubit temperature to Tq = 60 mK,
well above the operational temperature of the dilution refridgerator: A well-known
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but yet unresolved issue reported in other articles [107, 204], but only detectable due
to the low noise performance offered by the DJJAA.

In conclusion, the DJJAA concept was successfully implemented using different total
numbers of JJs and circuit parameters. The obtained results were in good agreement
with the predictions deduced from effective circuit models, indicative for the high
degree of control on the amplifier parameters.

Potential improvements in future designs are the usage of a large capacitance to
ground to realize the dimerization of the dispersion relation, as it reduces the
negative effect of variations in the critical currents of the JJs and magnetic gradients
along the device. Moreover, it is yet to be demonstrated to build a single device that
covers the whole frequency band between 1− 10 GHz.
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A Circuit quantization

Quantizing an electrical circuit starts with finding the Hamiltonian of the classical
equivalent [62]. In general, an electromagnetic circuit is the connection of individual
circuit elements, for instance inductors, capacitors and resistors, to form an electrical
network. The arrangment of these elements, referred to as the topology of the circuit,
determines the resonant behavior of the system in terms of the distribution of the
electrical currents and voltages over the network. Therefore, current and voltage
constitute a suitable set of generalized coordinates to describe a linear circuit,
with the corresponding time dynamics determined by the Hamilton function, and
expressed in form of a set of equations of motion (EOM). Boundary conditions
arising from the circuit topology and external biases are considered by applying
Kirchhoff’s circuit laws. If the network is entirely build from linear circuit elements,
a set of independent variables can be found: the circuit’s degrees of freedom (DOF).
Since the DOF are independent, the Hamiltonian corresponding to the circuit can
be expressed as a collection of independent harmonic oscillators, analogously to a
linear mechanical system composed of masses and springs. Finding the correct DOF
from a given circuit topology is therefore essential for understanding and predicting
the behavior of a circuit in terms of its resonant frequencies and corresponding
mode distributions. However, if the system contains nonlinear elements, the DOF
cannot necessarily be decoupled but influence each other at all times, making an
analysis of the circuit significantly more difficult [46, 62].

For a quantum circuit, the same general concepts apply, with the fundamental
difference that the primarily classical variables current and voltage are conjugate
variables in the quantum mechanical sense, and therefore cannot be measured
with infinite precision at the same time. In order to derive the Hamiltonian of a
quantum circuit, first the classical Hamiltonian is derived from the Lagrangian
of the circuit, before the classical variables are promoted to quantum mechanical
operators, referred to as canonical quantization. The independent DOF of the system
are either found by diagonalizing the Lagrangian or the Hamiltonian [22]. A detailed
and modern description of the technique to find the DOF, specifically applied to
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superconducting quantum circuits, is found in the work of U. Vool and M. Devoret in
Ref. [62], from which I will briefly recap the main ideas.

A.1 Finding the classical Hamiltonian

Finding the Lagrangian of a circuit starts by dividing the circuit into two families
of elementary building blocks: branches and nodes. The branches represent the
dipolar circuit elements, for instance capacitors and inductors, and the nodes mark
the connection points between the branches. Each branch is associated with a branch
voltage vb(t) and branch current ib(t), as schematically shown in Fig. 1, which are
related to the electrical and the magnetic field of the branch:

vb(t) =
∫ end of b

beginning of b
~E(~r, t) · ~dl (1)

ib(t) =
1

µ0

∮
around b

~B(~r, t) · ~ds (2)

The path of integration is chosen such that it includes all field components. Therefore,
the dynamics of current and voltage are ultimately governed by Maxwell’s equation,
and the wires composing the circuit can be seen as auxillaries to guide and direct
the electromagnetic fields. This connection constitutes the foundation for the later
introduced description of superconducting quantum circuits in the language of
quantum optics by the use of bosonic field operators. Notably, the circuit elements
shown in Fig. 1 are depicted in the lumped-element representation, which means
by definition, that the electromagnetic fields are collimated within the element,
and that the elements are connected by perfectly conducting wires. In other words,
the time delay due to the propagation of signals at a finite speed is neglected.
Mapping a superconducting circuit onto an effective lumped-element model is
particularly helpful to describe the behavior of the circuit in a limited frequency
range, although it is a simplification in general. The lumped-element inductance
of the effective circuit model might represent the total geometric inductance of a
distributed superconducting wire, and the lumped-element model does not cover
the standing-wave pattern of the current along the wire.

The sign convention for the branch current and voltage, as indicated in Fig. 1, is such
that the energy absorbed in the branch becomes

Eb(t) =
∫ t

−∞
vb(t′)ib(t′)dt′. (3)
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Figure 1: Branch and node representation of dipolar circuit elements. In the center, surrounded by a
grey circle, the branch and node representation of a dipolar element is shown. The branch element,
indicated by a black rectangle, has two connections, one at the top and one at the bottom, which
both lead to a single node each (black markers) with indices n and n′ . The electromagnetic properties
of the branch element are characterized by a branch voltage vb and a branch current ib. The sign
convention for the branch current and voltage defines the power absorbed by the branch element to be
a positive number. In the red and the blue circle two common examples of linear dipolar elements are
given: a capacitor (red) and an inductor (blue). For a capacitor exposed to an external voltage bias, an
electrical field emerges (red arrows) between the capacitor plates due to the induced electrical charges
with opposite sign. In contrast, a current flowing through an inductor gives rise to a magnetic field
(blue arrows). Both circuit elements are depicted as lumped elements, which means that the electronic
properties are concentrated in idealized electrical components connected by perfectly conducting wires.
Thus, the propagation delay across the element is neglected on the time scale of any signal. Moreover,
the electromagnetic fields are assumed to be confined inside the elements.

Instead of current and voltage, a complementary but generally more convenient
basis to describe a superconducting circuit is given by the generalized magnetic
branch flux and branch charge Φb and Qb, respectively:

Φb(t) =
∫ t

−∞
vb(t′)dt′ (4)

Qb(t) =
∫ t

−∞
ib(t′)dt′. (5)

The integration is performed up to the present time t, where the starting point
is sufficiently far in the past, where both current and voltage were zero. This set
of quantities is particularily suited for superconducting circuits, since, as it turns
out, the magnetic flux is related to the macroscopic phase of the superconducting
wavefunction, which is the conjugate of the charge. External perturbations in the
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form of offset magnetic fields inducing currents in loops, or potential offset charges
residing on nodes, are considered by Kirchhoff’s circuit laws:

∑
all b around loop l

Φb = Φext,l (6)

∑
all b arriving at node n

Qb = Qoff,n. (7)

For complicated circuits composed of many branches and nodes, finding the DOS
of a network demands a strategic procedure to eliminate redundant variables, as
there are generally less DOF than branches and nodes. However, since the circuits
discussed in the scope of my thesis are simple with respect to their topology, I will
omit a detailed discussion of the procedure described in Ref. [62] in its most general
form. At its heart, it provides a guideline to find a convenient set of generalized
coordinate variables to begin with, from which the Lagrangian can be readily
derived.

In contrast to a mechanical system composed of masses and springs, where the
generalized position coordinate and momentum are determined by the position
and momentum of the centers of mass, in an electrical circuit, both, the magnetic
flux and the charge can be considered as the position or the momentum coordinate.
Anticipating the action of a Josephson junction being that of a nonlinear inductor,
a convenient choice is to treat the magnetic flux as the position coordinate. The
mathematical implementation of this choice is realized by describing the circuit
based on a set of node variables. Similar to the flux of a branch, a node flux Φn can be
defined for each node. Since both sets of variables are complementary, the node and
the branch variables can be converted into one another. For instance, in the abscence
of external magnetic biases, the branch and node flux are simply related by

Φb = Φn −Φn′ , (8)

where n and n′ are the nodes on both sides of the respective branch b.

For the purpose of eliminating the redundant variables, first a reference node is
chosen for the whole circuit, denoted the ground node, by setting the corresponding
node flux to zero. Since the generalized velocity in the node representation is identical
to the time derivative of the node flux Φ̇n, and the difference between the velocities
of two neighboring nodes is equal to the voltage across the branch connecting the
nodes vb = Φ̇n − Φ̇n′ , the kinetic energy associated to a linear capacitive branch
becomes

Ekin,b =
C
2
(
Φ̇n − Φ̇n′

)2 . (9)
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Figure 2: Electromagnetic circuit. Lumped-element electronic schematic of a simple circuit of two LC
oscillators with capacitance Ci and inductance Li , which are capacitively coupled by a third capacitance
C3. The circuit contains three nodes, indicated by black markers, from which the bottom one is assigned
the ground (grey), and the other two are the DOF of the circuit. Each node is associated with a node
flux Φi .

The effective mass is given by the capacitance C. Analogously, the potential energy
of a linear inductive branch becomes

Epot,b =
1

2L
(Φn −Φn′ )

2 . (10)

Eventually, the Lagrangian of the whole circuit is given by the difference between the
kinetic energies of all capacitive branches, and the potential energies of all inductive
branches

L = ∑
b

Ekin,b −∑
b

Epot,b. (11)

Figure 2 depicts the electronic schematic of an exemplary circuit with three nodes.
The circuit consists of three capacitors C1, C2, and C3, and two inductors L1 and
L2. Since the circuit does not contain any closed loop, external magnetic biases can
be neglected. As indicated, the lower node is assigned the ground node, with the
corresponding node flux being zero. The Lagrangian of the circuit is

L =
C1

2
Φ̇2

1 +
C2

2
Φ̇2

2 +
C3

2
(
Φ̇2 − Φ̇1

)2 − Φ2
1

2L1
− Φ2

2
2L2

. (12)

By introducing the node flux vector ~Φ = (Φ1, Φ2), the Lagrangian can be expressed
in a more compact form using a matrix representation

L =
1
2
~̇ΦTC̃ ~̇Φ− 1

2
~ΦT L̃−1~Φ, (13)
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where C̃ and L̃−1 are the generally symmetric capacitance and the inverse inductance
matrix, respectively. For the given circuit shown in Fig. 2, the corresponding matrices
are

C̃ =

(
C1 + C3 −C3
−C3 C2 + C3

)
and L̃−1 =

(
1
L1

0
0 1

L2

)
,

revealing that due to the circuit topology and the initial choice of generalized
coordinates, the inverse inductance matrix is diagonal while the capacitance matrix
is not. Consequently, a linear coordinate transformation is required in order to
decouple the coordinates and to find the true DOF.

The EOM for the generalized node fluxes, Φ1 and Φ2, are derived from the system
Lagrangian using the Euler-Lagrange equation

∑
i

d
dt

∂L
∂Φ̇i
− ∂L

∂Φi
= 0. (14)

Since the capacitive contributions in the Lagrangian are harmonic, the conjugate
momenta have the dimension of a charge

Qi =
∂L
∂Φ̇i

, (15)

and, more precisely, represent the charges on each node. In the given example, the
node charges are

Q1 = (C1 + C3)Φ̇1 − C3Φ̇2

Q2 = (C2 + C3)Φ̇2 − C3Φ̇1.

Generally speaking, for a circuit containing only linear capacitors, the relation
between the canonical momenta, the node charges Qi, and the generalized velocities,
the derivatives of the node flux Φ̇i, is determined by the capacitance matrix C̃. Similar
to the node flux vector, a node charge vector ~Q = (Q1, Q2) can be defined, and the
relation becomes

~Q = C̃ ~̇Φ. (16)

Deriving the Hamiltonian of the circuit requires the inversion of this relation, which
is equivalent to a variable transformation of the generalized coordinates (~Φ, ~̇Φ)

into the canonical coordinates (~Φ, ~̇Q). Mathematically, the change in variables is
performed using a Legendre transformation:

H = ∑
i

Φ̇iQi −L. (17)
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Applying the Legendre transformation onto the given example, yields the classical
circuit Hamiltonian

H =
1

C1C2 + C1C3 + C2C3

[
(C2 + C3)Q2

1
2

+
(C1 + C3)Q2

2
2

+ C3Q1Q2

]

+
Φ2

1
2L1

+
Φ2

2
2L2

,

(18)

which can be represented in a matrix form using the node flux and charge vectors:

H =
1
2
~QTC̃−1~Q +

1
2
~ΦT L̃−1~Φ. (19)

Similar to the Lagrangian given in Eq. 12, the Hamilton is not diagonal in the current
coordinate basis, as shown by the coupling term ∼ Q1Q2.

Diagonalization

In general, finding the basis that diagonalizes the Hamiltonian can be performed at
an early stage by diagonalizing the Lagragian first before deriving the Hamiltonian.
Depending on the circuit topology, the prefered coordinate transformation for the
Lagrangian has the form

~Υ = L̃−1/2~Φ (20)

or
~Υ = C̃1/2~Φ, (21)

where L̃−1/2 and C̃1/2 are the square roots of the inverse inductance and capacitance
matrix respectively, defined as L̃−1/2 · L̃−1/2 = L̃−1 and C̃1/2 · C̃1/2 = C̃. Since
the inverse inductance matrix is already diagonal in the given example, the more
convenient choice is the first transformation, which results in the Lagrangian

L =
1
2
~̇ΥT L̃1/2 · C̃ · L̃1/2︸ ︷︷ ︸

Ã

~̇Υ− 1
2
~ΥT~Υ. (22)

The eigenvalues and eigenvectors of the Lagrangian are found by diagonalizing the
the matrix Ã. For the circuit shown in Fig. 2, the matrix Ã is

Ã =

(
L1(C1 + C3) −√L1L2C3
−√L1L2C3 L2(C2 + C3)

)
, (23)

which can be rewritten

Ã =

(
Ω−2

1 − β
Ω1Ω2

− β
Ω1Ω2

Ω−2
2

)
(24)
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Figure 3: Classical circuit analysis. Measured eigenfrequencies Ω± (red and blue markers) of two
capacitively coupled transmon qubits with flux tunable SQUID junctions. Since the SQUIDs are
asymmetric with respect to the critical currents of the individual JJs (see App. E), the observed flux
modulation amplitude reaches a lower bound of 4 GHz. Additionally, the SQUID loop areas also differ
by design, i.e. the area ratio is 2.811, resulting in a fast oscillation and a slow oscillation with the flux
Φ1 enclosed in the smaller loop. Whenever the two transmons are tuned on resonance, they hybridize,
resulting in an avoided level-crossing. Although the transmons are intrinsically nonlinear, the flux
modulation can be predicted from the linear circuit model shown in Fig. 2. The red and blue solid lines
correspond to the solutions given in Eq. 27.

by introducing the parameters Ω−2
i = Li(Ci +C3 and β = C3/

√
(C1 + C3)(C2 + C3).

Performing an eigendecomposition

Ã = S̃Λ̃S̃−1, (25)

where S̃ is a matrix of the same size and dimension as Ã, composed of the eigenvectors
of Ã, gives the diagonal matrix Λ̃

Λ̃ =

(
Ω−2

+ 0
0 Ω−2

−

)
, (26)

with the corresponding eigenvalues defined as

Ω± =

(
2Ω2

1Ω2
2

Ω2
1 + Ω2

2 ±
[
(Ω2

1 −Ω2
2)

2 + 4β2Ω2
1Ω2

2
]1/2

)1/2

. (27)

It is straight forward to show that the same coordinate transformation also diago-
nalizes the Hamiltonian.

The presented conceptual procedure is also applicable to more complex circuits
with more degrees of freedom, as long as the circuit does not contain any closed
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loops, which requires the consideration of the external magnetic flux enclosed in
the loops. Moreover, in the presence of time-dependent external flux, a consistent
procedure becomes even more important [67].

A simplification is possible in the case of dc SQUIDs with negligible loop inductance
(see App. E) and assuming a static external flux only. Under these conditions, the
lowest energy eigenstates can be calculated by representing the dc SQUID by a
linear inductor with flux dependent inductance. Figure 3 depicts the response of two
capacitively coupled transmon qubits with asymmetric SQUID junctions. Since the
SQUID loop areas differ by almost a factor of three, two distinct modulation periods
are observable, resulting in a modulation pattern composed of a fast and a slow
oscillation. Whenever the two transmons are tuned on resonance, the hybridization
caused by the capacitive coupling manifests in form of avoided level-crossings. The
solid red and blue lines illustrate a fit to the measured data according to Eq. 27, for
which the flux dependence introduced by the SQUIDs is accounted for using Eq. 159.

So far, the presence of offset charges Qoff,n on the individual nodes has been neglected,
since, for a classical circuit, these offset charges only shift the equilibrium point
around which the node charges oscillate. However, in a superconducting quantum
circuit, the situation can be different, as shown in the context of the superconducting
charge qubit in Sec. 1.1.3.

A.2 Canonical quantization

In classical Hamiltonian mechanics, the time evolution of the canonical coordinates
is determined by Hamilton’s equations. For an electrical circuit discribed in the node
variable framework, Hamilton’s equations for the node flux and charge variables are

d~Q
dt

= −∂H
∂~Φ

and
d~Φ
dt

= +
∂H
∂~Q

. (28)

Both equations can be expressed in a more general form using the Poisson bracket

d~Q
dt

= {~Q, H}+ ∂~Q
∂t

, (29)

as exemplarily displayed for the node charge ~Q. Since the development of quantum
mechanics, it is known that the classical behavior of a system is just a manifestation
of the underlying quantum behavior, observed for systems involving a large number
of particles or high energies, which is referred to as the correspondence principle [3,
12]. In the canonical quantization of a classical system proposed by Paul Dirac [13],
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the primarily classical canonical coordinates are promoted to quantum mechanical
operators, for instance the node flux and charge of an electrical (quantum) circuit

~Φ → ~̂Φ

~Q → ~̂Q

H → Ĥ,

and the Poisson brakets are substituted with the corresponding commutators

{~Q, H} → 1
ih̄
[ ~̂Q, Ĥ]. (30)

The quantum operators are indicated by hats. The idea of the canonical quantization
is to preserve the form of the Hamilton equations. Hence, in the Heisenberg picture
in which the quantum operators are time dependent while the quantum states do
not change with time, the time evolution of a quantum operator is determined by

d~Q
dt

=
1
ih̄
[ ~̂Q, Ĥ] +

∂~Q
∂t

, (31)

which is known as the Heisenberg equation of motion.

Another consequence of the canonical quantization is, that conjugate variables obey
the canonical commutation relation

[Φ̂, Q̂] = ih̄. (32)

The sign in front of the term on the right-hand side of the equation determines
the node flux as the position variable, and the node charge as the conjugate
momentum, in agreement with the classical treatment [62]. Since conjugate variables
are mathematically defined in such a way that they are Fourier transform duals
of one another, they naturally underlie an uncertainty principle. Even in classical
mechanics this mathematical definition induces an uncertainty between conjugate
pairs, for instance as observed for the frequency and the time duration of a periodic
signal.

In the following, I will discuss the quantization of an electrical circuit with the aid
of a more simple resonant circuit: The LC-oscillator. The lumped-element circuit
representation is schematically depicted in Fig. 4. The circuit has two nodes, from
which the lower node is selected to be the ground node, while the top node is
associated with the generalized node flux operator Φ, defined as the time integral of
the voltage operator V across the capacitor

Φ̂(t) =
∫ t

−∞
V̂(t′)dt′. (33)
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Figure 4: LC-Oscillator. Circuit schematic representation of a parallel LC oscillator. The voltage V
across the capacitor C induces the charges ±Q on the capacitor plates, and is associated to an electrical
field (red arrows). The current I through the inductor L gives rise to a magnetic field (blue arrows). The
node flux Φ, which is the time integral of the voltage V, is the position coordinate, while the charge Q
is the conjugate momentum.

For the quantum harmonic oscillator, following the procedure described in previous
sections, the Hamiltonian is

H =
Q̂2

2C
+

Φ̂2

2L
, (34)

where Q̂ is the node charge operator. While the spectrum of the node flux is
continuous, the spectrum of the charge operator is discrete.

Similar to the mechanical quantum harmonic oscillator, the canonical coordinates
are expressed in terms of creation and annihilation operators â† and â, respectively,

Φ̂ = ΦZPF

(
â + â†

)
(35)

Q̂ = −iQZPF

(
â− â†

)
. (36)

Here, ΦZPF and QZPF are the zero-point fluctuations of the node flux and the node
charge, respectively. By definition, they determine the magnitude of the ground-state
fluctuations in both variables in the abscence of excitations, and are the manifestation
of the uncertainty principle. In a superconducting circuit, the size of these fluctuations
is controlled by the relative size of the circuit elements:

ΦZPF =

√
h̄Z0

2
(37)

QZPF =

√
h̄

2Z0
, (38)
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Figure 5: Quantum LC-oscillator. Parabolic energy potential E = Φ2/(2L) of the harmonic LC oscillator,
plotted as a function of the node flux Φ in numbers of the magnetic flux quantum Φ0. Since the node
flux is chosen to be the canonical position variable, the conjugate momentum is the charge Q on the
capacitor. The energy is normalized by the inductive energy EL = ϕ2

0/L, and the grey horizontal lines
indicate the discrete but infinite set of eigenenergies En = h̄ω0(n + 1/2), where n are the eigenvalues
of the photon number operator, and ω0 = 1/

√
LC is the resonance frequency of the LC oscillator.

The basis |n〉 spanned by the eigenvectors of the photon number operator is referred to as the Fock
basis. The inset shows the region of the potential around zero flux, including the first three energy
eigenstates and the corresponding eigenfunctions |n〉 ∈ {0, 1, 2}. The eigenfunction of the ground state
is a Gaussian, and the zero-point fluctuations of the node flux are related to the standard-deviation of
the ground state. Obviously, the Fock states are not the eigenstates of the node flux and the current
operator. The circuit parameters chosen for the calculation are C = 200 fF and L = 2 nH, resulting in a
characteristic impedance Z0 = 100 Ω.

where Z0 =
√

L/C is the circuit’s characteristic impedance. According to the
definitions of the zero-point fluctuations, the suppression of the fluctuation in
one variable by changing the characteristic impedance of the circuit, enhances the
fluctuation in the other variable. For linear circuits with more than one DOF, each
eigenmode can be associated with a characteristic impedance.

As mentioned earlier, the node flux and the charge of the harmonic oscillator are
ultimatively related to electromagnetic fields created by the current flowing through
the inductor and the charges residing on the capacitor plates. For that reason, in
the context of superconducting quantum circuits, the creation and annihilation
operators correspond to single-mode field amplitude operators, which obey the
bosonic commutation relation

[â, â†] = 1. (39)
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The quantization of electromagnetic fields is subject of the second quantization. By
inserting Eq. 35 and Eq.36 into Eq. 34, yields the Hamiltonian in second quantization

Ĥ = h̄ω0

(
â† â +

1
2

)
, (40)

where ω0 = 1/
√

LC is the resonance frequency of the LC oscillator. The operator
n̂ = â† â is the occupation number operator, which has a discrete eigenbasis,
denoted the Fock basis, given by the discrete set of elementary excitations of the
electromagnetic field, the photons:

n̂ |n〉 = n |n〉 , (41)

In the Fock basis spanned by |n〉, with n ∈ Z≥0, the eigenenergies of the quantum
harmonic oscilaltor are

En = h̄ω

(
n +

1
2

)
, (42)

where n is the number of photons inside the oscillator. The energy spacing between
consecutive energy levels is detemined by the resonance frequency of the circuit and
does not depend on the number of photons inside the oscillator. Figure 5 depicts
the quadratic energy potential of the quantum harmonic oscillator E = Φ2/(2L)
(red), and the first twenty energy eigenenergies En, indicated by the grey horizontal
lines. The inset shows the first three eigenenergies E0, E1, and E2, highlighting the
equidistance between the energy eigenstates, and the real parts of their corresponding
eigenfunctions Ψ0(Φ), Ψ1(Φ) and Ψ2(Φ) in position space.

The general expression of the eigenfunctions in the position space are

Ψn(Φ) = 〈Φ|n〉 = 1√
2nn!

(
1

2πΦ2
ZPF

) 1
4

e−Φ2/(4Φ2
ZPF)Hn

(
1√

2ΦZPF
Φ

)
, (43)

where Hn(z) are the Hermite polynomials, Φ are the eigenvalues of the flux operator
and |Φ〉 the corresponding eigenfunctions satisfying

Φ̂ |Φ〉 = Φ |Φ〉 . (44)

Since the eigenfunctions of observables are interpreted as probability amplitudes in
quantum mechanics, the illustration of Ψn(Φ) shows that depending on the state,
some values of the node flux will be measured with higher probability, while some
values, the roots of Ψn(Φ) = 0, will never be measured. Notably, for all Fock states,
the expectation value of the current and voltage is zero. According to Eq. 43, the
eigenfunction of the ground state Ψ0 is a Gaussian, with its standard deviation σ

determined by the flux zero-point fluctuations σ =
√

2ΦZPF.
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The same procedure can be applied to circuits with a larger number of DOF, where
the eigenmodes are independent and therefore described by an individual pair of
creation and annihilation operators. In a nonlinear circuit, the decomposition into
independent modes is not necessarily possible, but in many applications not desired
either.

154



Input-output formalism

B Input-output formalism

In the framework of quantum electrodynamics with superconducting circuits, the
carriers of signals and information are photons in the microwave regime of the
electromagnetic spectrum. For the readout and manipulation of the circuit’s quantum
state, the photons have to interact with the plasma oscillation in some way, either via
the electric or magnetic field. Besides this intentional interaction, in a real system,
there are unintentional interactions to uncontrolled degrees of freedom residing in
the electromagnetic environment of the circuit. A consequence of these interactions
is, that the system cannot be treated as a closed quantum system, but becomes an
open quantum system which is subject to energy relaxation and dephasing.

Similar to conventional radio frequency technology, resonant superconducting
quantum circuits constitute a hardware interface that transduces the electromagnetic
fields of propagating photons into oscillating currents and voltages. The coupling
strength between the circuit and the electromagnetic wave can be controlled by the
multipole moments of the circuit. A popular example is the coupling via the electric
dipole moment of the circuit, arising from its shape in form of a microwave antenna,
as demonstrated with the grAl transmon discussed in Ch. 2 and the cQED system
discussed in Sec. 1.1.6.

Independent of the obtained coupling strength, the engineered interaction between
quantized light and matter in superconducting quantum circuits is conceptually
very similar to the rich physics studied in quantum optics, as discussed in Sec. 1.1.
A mathematical framework particularly suitable to describe the dynamics of an
open quantum system in this context, is the input-output formalism [21]. At its
heart, it provides a direct mathematical relation between the incident photons, the
photons stored inside the quantum system, and the outgoing photons. The following
description of the input-output formalism is deduced from the excellent works of C.
W. Gardiner and M. J. Collett [21], A. A. Clerk et al. [6], S. Girvin [22], Eichler and
Wallraff [15], and U. Vool [61].

Introducing dissipation

Figure 6 depicts the schematic illustration of a cavity, which is coupled to a microwave
input port on the left-hand side, and to an artificial loss port on the right-hand side.
The cavity is described by the Hamiltonian Ĥsys, and is illustrated in the form of an
optical cavity composed of two semi-transparent, concave mirrors, that confine the
light inside the volume between the mirrors. However, despite the chosen portrayal,
the cavity might be in place of a superconducting circuit all the same. While the
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Figure 6: Input-output representation of a single cavity. Schematic representation of a microwave
cavity described by the corresponding Hamiltonian Ĥsys, which is coupled to a microwave input port
on the left-hand side, and to an artificial loss port on the right-hand side. Referring to quantum optics
experiments, the cavity is depicted in the form of two semi-transparent, concave mirrors that confine
the electromagnetic field inside the cavity. The transparency of the mirrors determines the coupling
rates κ and γ to the two microwave ports. For a superconducting circuit, the coupling rate κ to the input
port is well controlled by the dipole moment of the circuit, while the coupling rate γ to uncontrolled
degrees of freedom is much more difficult to predict and to control. In the vast majority of systems, the
ideal case is γ→ 0. The field confined inside the cavity, and the propagating fields in the microwave
ports is described by a set of single-mode field amplitude operators. For the two ports, the incident and
outgoing fields are distinguished, and carry a corresponding index.

desired exchange of information is carried out via the input port, the artificial loss
port accounts for the system’s interaction with uncontrolled degrees of freedom. For
that reason, the corresponding coupling rates are referred to as the internal, and
external coupling rate, γ and κ, respectively. The two coupling rates determine how
fast the field inside the cavity can be excited, and how fast it spontaneously decays
into the two ports.

Each part of the system is associated with a set of bosonic field amplitude operators.
For a single mode cavity, the stationary field inside the cavity is described by a set of
creation and annihilation operators denoted Â† and Â, respectively, while the fields
in the microwave ports B̂ and Ĉ will be separated into incident and outgoing fields,
as indicated by the arrows.

The combined Hamiltonian of the whole arrangement, including the two ports and
the exchange of excitations, is

Ĥ = Ĥsys + Ĥinput + Ĥbath + Ĥint,input + Ĥint,bath, (45)
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where Ĥsys is the cavity or system Hamiltonian, as it might describe a quantum
two-level system, Ĥinput and Ĥbath are the Hamiltonians associated with the input
and loss port, respectively, and Ĥint,input and Ĥint,bath determine the interaction
between the cavity and the input port, and the cavity and the loss modes, respectively.

A convenient and natural choice is to model the input port and the loss port by an
infinite set of independent harmonic modes

Ĥinput = h̄
∫ ∞

0
dωB̂†(ω)B̂(ω) (46)

and
Ĥbath = h̄

∫ ∞

0
dωĈ†(ω)Ĉ(ω) (47)

which obey the bosonic commutation relation [b̂(ω), b̂†(ω′)] = δ(ω − ω′) and
[ĉ(ω), ĉ†(ω′)] = δ(ω−ω′). Here ω and ω′ are the frequencies of the bosonic modes.
Within the rotating-wave approximation, the interaction Hamiltonians are

Ĥint,input =
h̄√
2π

∫ ∞

0
dω
√

κ(ω)
[

Â† B̂(ω) + B̂†(ω)Â
]

(48)

and
Ĥint,bath =

h̄√
2π

∫ ∞

0
dω
√

γ(ω)
[

Â†Ĉ(ω) + Ĉ†(ω)Â
]

, (49)

which describe the exchange of single photons between the ports and the cavity.
For simplicity, two-photon interactions, which can be present in nonlinear cavities
[68], are neglected. Referring to superconducting circuits, the given form of the
interaction Hamiltonians reminds of a linear coupling between two harmonic
oscillators, as discussed in previous sections, induced by a shared capacitance or a
shared inductance.

The strength of the interaction is given by the generally complex and frequency
dependent coefficients κ(ω) and γ(ω). In the Markov approximation, these coeffi-
cients are considered to be constant and independent of frequency, which means
that the port modes interact with the system only in close vicinity of its resonance
frequency (κ, γ� ω0), or in other words, that the state of the cavity as seen from the
input port does not change significantly within one period. Unlike the intra-cavity
field operators, the field operators associated to the ports represent densities of
photons per unit bandwidth.
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Quantum Langevin equation:

In the Heisenberg picture, the time evolution of the observables, in this case the
field amplitude operators, is determined by the Heisenberg equation of motion. For
observables without explicit time dependence, the Heisenberg EOM reduces to [8]

˙̂A(t) =
1
ih̄
[Â(t), Ĥ]. (50)

Here, the operator Â represents the intra-cavity field, and a similar expression is
found for the port modes B̂ and Ĉ. By inserting the Hamiltonian according to Eq. 45,
and using the bosonic commutation relation, the EOM of Â becomes

˙̂A(t) =
1
ih̄
[Ĥsys, Â(t)]− i√

2π

∫ ∞

0
dω
√

κB̂(ω)− i√
2π

∫ ∞

0
dω
√

γĈ(ω) (51)

The time evolution of the port modes B̂ and Ĉ is found by solving their corresponding
Heisenberg EOM [21], and are of the form

B̂(ω) = e−iω(t−t0) B̂0(ω) +
1√
2π

∫ t

t0

dt′
√

κe−iω(t−t0) Â(t′), (52)

where B̂0(ω) is the value of the input port mode at time t0 < t. Since t0 is a moment
in the past, B̂0(ω) plays the role of an initial value. An equivalent expression is found
for the modes of the loss port. Inserting the obtained solutions into Eq. 51 yields

˙̂A(t) =
1
ih̄
[Ĥsys, Â(t)]− κ

2
Â− γ

2
Â−
√

κB̂in −
√

γĈin, (53)

which is the quantum Langevin equation of the intra-cavity field operator. In the
Markov approximation, the interaction with the port manifests in the form of
damping terms of the intra-cavity field at rates κ and γ. The incident modes are
defined as

B̂in(t) =
i√
2π

∫ ω

0
dωe−iω(t−t0) B̂0(ω), (54)

and
Ĉin(t) =

i√
2π

∫ ω

0
dωe−iω(t−t0)Ĉ0(ω), (55)

and are the port modes that interact with the intra-cavity field at time t. A
complementary or time-reversed quantum Langevin equation can be derived that
relates the time evolution of the intra-cavity field at time t with the solutions of the
port modes at future times t1 > t. In analogy to the incident port modes, a set of
outgoing modes can be defined similar to Eq. 54 and 55. Comparing the obtained
quantum Langevin equations yields the following boundary conditions

B̂out − B̂in =
√

κÂ (56)
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and
Ĉout − Ĉin =

√
γÂ, (57)

which relate the incident and outgoing modes with the intra-cavity mode. In most
cases, the bath of loss modes is considered to be cold, and the modes incident to the
cavity through the loss port are neglected. However, the additional channel increases
the energy relaxation rate of the intra-cavity field.

B.1 Optical phase space

A convenient way to illustrate the time evolution of a system is the phase space. In
classical and quantum mechanics alike, the phase space is spanned by the conjugate
variables of the system, for instance the position and momentum of a mechanical
pendulum, or the flux and charge in an electrical circuit. If the system has a single
DOF, the phase space is a two-dimensional space similar to the complex plane. For
an optical system described by bosonic field operators, a similar representation is
available, denoted the optical phase space. Since the bosonic field operators obey the
bosonic commutation relation, a set of complementary conjugate variables is defined

Î =
1
2
(â† + â) (58)

Q̂ =
i
2
(â† − â), (59)

which are referred to as the quadrature operators, and obey the commutation relation

[ Î, Q̂] =
i
2

. (60)

At this point, I would like to emphasize that there are different possibilities for
the normalization of the quadrature operators. In the given normalization, the
quadrature operators Î and Q̂ represent the real and imaginary part of the field
amplitude operator, respectively,

â = Î + iQ̂, (61)

which is a convenient choice since the corresponding variances are given in number
of photons. The normalization affects the result of the commutation relation and the
lower bound for the uncertainty in the quadratures

∆I∆Q ≥ 1
4

, (62)
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where ∆I and ∆Q are the variances. However, independent of the normalization, the
fluctuations in the photon number of any bosonic mode are correctly recovered

|∆A|2 = (∆I)2 + (∆Q)2 ≥ 1
2

, (63)

with the lower bound of half a photon representing the quantum fluctuations, as for
instance present in the ground state of the quantum harmonic oscillator.

The Wigner function

In quantum optics, the different states of light are commonly represented with
the Wigner function W(α), a quasiprobability distribution that maps the quantum
mechanical wavefunction of a state onto a statistical distribution in phase space.
Although the Wigner function is real valued and normalized to unity, since it can take
on negative values for non-classical states of light — indicating quantum interference
— the corresponding distribution represents a quasiprobability only.

Any point α in the two-dimensional optical phase space is determined by its real
and imaginary part

α = I + iQ. (64)

The quantities I and Q are the real valued eigenvalues of the quadrature operators.
Following this notation, the Wigner function is defined as [28]

W(I, Q) =
1
π

∫ ∞

−∞
due−i2uQ 〈I + u

2
|ρ|I − u

2
〉 (65)

where ρ is the density matrix describing the state of light in this context. In general, a
quantum system can appear as a statistical ensemble if it is coupled to other systems
that are inaccessible for the observer. The density matrix is a classical superposition
of pure states |Ψj〉

ρ = ∑
j
= pj |Ψj〉 〈Ψj| , (66)

where the coefficients pj are classical probabilities. In this notation, the density
matrix corresponding to a pure state, for instance the Fock state |n〉, is

ρ = |n〉 〈n| . (67)

Figure 7 depicts the Wigner function of the Fock state |1〉 in a two-dimensional
contour plot (left-hand top panel) and in a three-dimensional surface plot (left-hand
bottom panel). In both cases, the region in which the Wigner function becomes
negative is indicated in pink, while the positive values are highlighted in a purple
color tone. Since the Fock state is an eigenstate of the number operator, it is maximally
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uncertain in the phase, and the Wigner function is symmetric around the origin. Fock
states are highly non-classical states of light, and are generally difficult to generate.
Simply applying a period and monochromatic drive with harmonic time evolution
to a quantum harmonic oscillator, will not create a Fock state, but a particular
superposition of Fock states, denoted a coherent state.

Coherent states

A coherent state is a special quantum state of light in an harmonic oscillator, for
which the expectation values of the field quadrature operators oscillate periodically
with time, similar to the classical solutions. By definition it is an eigenstate of the
annihilation operator

Â |α〉 = α |α〉 , (68)

where the corresponding eigenvalue α represents the complex field amplitude of
the coherent state. Since the annihilation operator and the number operator do not
commute, the coherent state is not an eigenstate of the number operator, but is
distributed in the Fock basis

â |α〉 = e−
1
2 |α|2

∞

∑
n=0

αn
√

n!
|n〉 . (69)

The probability of a Fock state being occupied follows a discrete Poisson distribution
around the mean value n̄ = |α|2, and accordingly, the corresponding standard
deviation of the distribution grows with the square root of the mean value σn =

√
n̄.

Despite the increasing uncertainty in the photon number, the uncertainty in the
quadratures is independent of α

σI =

√
〈α| Î2|α〉 − 〈α| Î|α〉2 =

1
2
= σQ, (70)

and moreover equal to the vacuum fluctuations. Consequently, in the high amplitude
limit, the coherent state approaches the classical limit, and since the time evolution
of a coherent state under the action of the quantum harmonic oscillator Hamiltonian
resembles that of the classical trajectory, it is oftern referred to as the classical state.

Figure 7 depicts the Wigner function W(I, Q) in the optical phase space of the
coherent state |α〉 = |

√
2(1 + i)〉 in the two right-hand panels. Since the coherent

state is not an eigenstate of the quantum harmonic oscillator, it will rotate around the
origin with time at the frequency of the oscillator. In contrast to the solution for the
Fock state |1〉 (left-hand panels), for which the Wigner function becomes negative in
some regions, it is never below zero for the coherent state. The cross section of the
distribution along the quadratures is a Gaussian, as indicated by the projections.
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Figure 7: Optical phase space: Wigner function representation of states of light. The two top panels
show contour plots of the Wigner function W(α) of the Fock state |1〉 (left-hand panel) and the coherent
state |α =

√
2(1 + i)〉, plotted in the two-dimensional (optical) phase space. The eigenvalues of the

quadrature operators I and Q, spanning the phase space, are of the same dimension as the field
amplitudes. For the Fock state, the Wigner function takes on negative values (pink regions), which is
the signature of quantum behavior, while the coherent state is always positive (purple regions). Since
the Fock state is an eigenstate of the number operator, the number of photons is n = 1. In contrast, the
coherent state is a superposition of Fock states, with the mean number of photons n̄ determined by the
distance to the origin n̄ = |α|2. An interesting feature of the coherent state is, that the uncertainty in I
and Q, indicated by the size of the disc, is independent of the mean number of photons. In order to
emphasize the difference between the two states, the two bottom panels show a three-dimensional plot
of the corresponding Wigner functions. The projection of the coherent state is a Gaussian.
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B.2 The damped and driven harmonic oscillator

The methodology of the input-output formalism and its application to circuit
quantum electrodynamics can be demonstrated in many aspects with the aid of
the quantum harmonic oscillator. Although the obtained time evolution is that of a
linear system, the conceptual treatment is the same as for a nonlinear system, with
the main difference, that analytical solutions can be found for the linear system, the
description of a nonlinear system might involve numerical calculations.

For the quantum harmonic oscillator, neglecting the constant term due to the
zero-point fluctuations, the considered system Hamiltonian is

Ĥsys = h̄ω0 Â† Â, (71)

and the quantum Langevin equation of the intra-cavity field is

˙̂A = −iωÂ− κ

2
Â− γ

2
Â−
√

κB̂in −
√

γĈin. (72)

The presence of the two ports and their finite coupling to the cavity introduces two
damping terms, that cause an exponential decay of the intra-cavity field. In case
a strong drive is applied through the input port of the cavity, the corresponding
incident fields are decomposed into a classical part representing the drive, and a
quantum part representing quantum fluctuations,

B̂in(t) = b̂in(t) + βin(t) (73)

where the classical part is indicated by the Greek letter. A very common drive form
is a classical, monochromatic drive with frequency ωp,

βin(t) = βin cos
(
ωpt + φp

)
, (74)

where βin is the amplitude of the drive and φp is its phase, which is not of importance
for a linear system, but becomes important in the context of phase-sensitive parametric
amplification with nonlinear cavities. In most cases, the bath of loss modes is assumed
to be cold, and the incident modes Ĉin consisting of quantum fluctuations only, are
neglected.

Ring-up and classical steady-state

Similar to the decomposition of the incident field, the response of the intra-cavity to
the drive can be separated in a classical part, which describes the generally complex
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expectation value of the intra-cavity field, and a quantum part, representing the
quantum fluctuations around that expectation value:

Â(t) = â(t) + α(t) (75)

The time evolution of the classical part in a frame rotating with the drive frequency
ωp, is

α̇(t) = −i(ω0 −ωp)α−
κ + γ

2
α−
√

κβin︸ ︷︷ ︸
=Ω/2

. (76)

For a monochromatic drive, the last term is a complex number that determines the
effective strength of the drive tone Ω = 2

√
κβin, and contains the pump phase.

As soon as a drive is applied to the cavity, the state of the intra-cavity field starts
to change. If the drive amplitude is constant, the state of the intra-cavity field will
reach an equilibrium state, denoted the steady-state, in which the excitation due to
the drive is balanced by the dissipation. However, the change of the intra-cavity field
is not instantaneous, but evolves on a characteristic time scale, usually referred to as
the ring-up time. The solutions of the quantum Langevin equation are of the form

α(t) =
(

α0 −
Ω

i2∆− (κ + γ)

)
ei∆t− κ+γ

2 t +
Ω

i2∆− (κ + γ)
, (77)

where α0 is the initial state of the cavity at time t = 0, and Ω
i2∆−(κ+γ)

is the equilibrium
state, which depends not only on the detuning ∆ = ωp −ω0 between the drive and
resonance frequency of the cavity, but also on the effective drive strength Ω and the
decay rates κ and γ.

In some situations, for instance continuous wave measurements for which a
monochromatic drive is applied for a duration much longer than the charac-
teristic time scale associated with the ring up, understanding the behavior of the
classical steady-state α̇ is sufficient to characterize the cavity. For the steady state of
a driven, linear cavity, there is always a unique relation between the incident and the
intra-cavity field amplitude:

α =

√
κ

i∆− κ+γ
2

βin (78)

=

−√κ
κ+γ

2 + i∆

∆2 +
(

κ+γ
2

)2


︸ ︷︷ ︸

=g(∆,κ,γ)

βin (79)

where ∆ = ωp − ω0 is the frequency detuning between the drive tone and the
resonance frequency of the cavity. In nonlinear cavities, the number of possible
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solutions for the intra-cavity field depends on the drive strength, with the cavity
even entering a deterministically chaotic regime [23]. The derived relation between
the intra-cavity field and the incident field is particularly useful to calculate the
reflection coefficient using the input-output relation of the classical drive

βout = βin +
√

κα. (80)

Reflection coefficient

The reflection coefficient Γ, often labeled S11 in reference to the first entry of the
scattering matrix used in electrical engineering, is defined as the ratio between the
outgoing and the incident field

Γ = S11 =
〈B̂out〉
〈B̂in〉

=
βout

βin
(81)

= 1 +
√

κ
α

βin
. (82)

Although the measured reflection coefficient is time dependent in general, in
continuous wave experiments its steady-state is measured. For a linear cavity, the
reflection coefficient is obtained by inserting the steady-state relation between the
intra-cavity and the incident field, as given by Eq. 79, into Eq. 82

Γ = S11 = 1− κ
κ+γ

2 + i∆

∆2 +
(

κ+γ
2

)2 (83)

Accordingly, the reflection coefficient is a complex number, which can be represented
in the complex plane. If the detuning is sweeped from negative to positive values (or
vice versa), the reflection coefficient describes a circle in the case of a linear cavity,
and the ratio between the coupling rates can be deduced from its radius, see Fig. 9.
For a reflection measurement, the circle can always be scaled and oriented using the
off-resonant point (1, 0) [20]. In the case κ > γ, usually referred to as the overcoupled
regime [51], the reflection coefficient covers all four quadrants of the complex plane,
and the corresponding phase, conventionally measured from the positive real axis,
performs a full cycle in the range [−π, π]. With increasing losses, less information is
encoded in the phase of the reflection coefficient.

Free energy decay

The free energy decay of the intra-cavity field is described by Eq. 77 for Ω = 0.
Assuming that the intra-cavity field has been initialized in an arbitrary coherent
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Figure 8: Driven and damped harmonic oscillator: ring-up. Time evolution of the complex expectation
value of the intra-cavity field α = 〈Â〉 of a harmonic oscillator exposed to a coherent and constant
drive, and finite dissipation at a rate κ + γ, calculated according to Eq. 77. The different colors indicate
different detunings ∆ between the drive frequency ωp and the resonance frequency ω0 of the oscillator
(∆ = ωp − ω0). The constant effective drive strength is Ω = 2

√
κβin, which is a combination of the

average incident field amplitude βin, and the coupling rate κ between the input port and the harmonic
oscillator. In the presented case, the effective drive strength is Ω = 2κ, and the ratio of the coupling
rates is γ/κ = 0.1. Depending on the detuning, the intra-cavity field reaches a different steady-state,
and follows different trajectories in the optical phase space (top left panel). The corresponding time
evolution of the real and imaginary part, the quadratures, is shown in the bottom and right-hand panel.
Notably, while the characteristic time scale for the intra-cavity field to reach its steady-state is given
by ∼ 1/κ, the drive strength ε and the loss rate γ influence the steady-state amplitude only, but not
the qualitative shape of the trajectory. The uncertainty of the trajectory and the steady state due to
quantum fluctuations is not shown.

state α0 by the application of a drive, at time t = 0, the drive is turned off and the
intra-cavity field evolves freely according to the quantum Langevin equation given
in Eq. 76. The temperature of the baths in the ports is zero, and the effect of quantum
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Figure 9: Harmonic oscillator: reflection coefficient. Complex reflection coefficient Γ = S11 as obtained
for a harmonic oscillator in its steady-state, calculated for three different ratios between the external
and internal coupling rates κ and γ, respectively. The dashed lines indicate the time evolution of
the reflection coefficient for three arbitrarily chosen detunings ∆ = ωp −ω0, and the round markers
represent the corresponding steady-state. By changing the detuning ∆, the reflection coefficient follows
a circle in the complex plane. Depending on the ratio between external and internal coupling, the
circle covers different quadrants. In general, the ratio κ/γ is encoded in the radius of the circle. The
magnitude of the coupling rates is deduced from the frequency dependence of the phase arg(S11)

and amplitude |S11|, shown in the right-hand panels. Conventionally, the phase is measured from the
positive real axis. If κ〉γ, the change in phase covers the full range [−π, π], while it is [−π, π] for κ ≤ γ.
Cavities of the first category are denoted overcoupled, while the others are denoted undercoupled. The
special case κ = γ is refered to as critical coupling, for which all incident power is absorbed in the
oscillator, as indicated by the amplitude signal.

fluctuations is neglected. The solution for the intra-cavity field amplitude in a frame
rotating at a frequency ωp is of the form

α(t) = α0e−∆te−
κ+γ

2 t, (84)

where the second factor describes the oscillation of the field’s phase at a frequency
determined by the detuning ∆ between the frequency of the rotating frame and the
resonance frequency of the cavity, and the third factor describes the exponential
decay of the field amplitude over time. The characteristic time scale of the exponential
decay is 2/(κ + γ). The energy stored inside the cavity is proportional to the mean
number of photons n̄ = |α|2, and the respective time evolution is

n̄(t) = n0e−(κ+γ)t. (85)
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Therefore, while the field amplitude decays at a rate (κ + γ)/2, the charactersitic
time scale for the exponential energy decay is T1 = 1/(κ + γ).

Outgoing power

The power in the reflected outgoing mode is

Pout = h̄ω 〈B̂†
outB̂out〉 , (86)

where ω is the drive frequency, and, according to the input-output relation, is a
combination of two parts: the incident field directly reflected from the cavity, and
the power emitted by the cavity. In the limit of a strong drive, the contribution of the
quantum fluctuations are negligible, and the power is determined by the classical
field amplitudes

Pout ≈ h̄ω|βout|2 (87)

Using the input-output relation of the classical part given in Eq. 80 and the relation
between the intra-cavity field and the incident field accodring to Eq. 79, yields an
expression that relates the outgoing power to the incident power

|βout|2 =
(

1 + κ|g|2 +
√

κ(g? + g)
)
|βin|2

=

1− κγ

∆2 +
(

κ+γ
2

)2

 |βin|2
, (88)

or to the average number of photons inside the cavity n̄ = |α|2

|βout|2 =

∆2 +
(

κ+γ
2

)2
− γκ

κ

 n̄. (89)

Both results show, that if the coupling rates to both ports are identical κ = γ, referred
to as a critically coupled cavity in electrical engineering, the outgoing power is zero
on resonance ∆ = 0. Another rather surprising result is obtained in the limit κ � γ,
or equivalently γ→ 0, in which the coupling to the second port is negligible. The
outgoing power, again evaluated on resonance (∆ = 0), is

Pout =
γ→0

h̄ω0
κ

4
n̄, (90)

which means that, due to the interference between the incident fields arriving at
the cavity’s input port and the intra-cavity fields leaking out, the observed decay
rate in the driven case is κ/4 instead of κ for the undriven case. This result is crucial
for thecalibration of of the measurement efficiency of the experimental setup (see
Sec. 3.8).
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B.3 The damped and driven anharmonic oscillator

The following sections are an extention of Sec. 1.3.4 and discuss the behavior of a
weakly anharmonic oscillator in the limit κ � K, representative for the degenerate
Josephson parametric amplifier (JPA).

The EOM for the intra-cavity field of the denegerate JPA is

˙̂A = −iω0 Â− iKÂ† ÂÂ− κ

2
Â− γ

2
Â−
√

κB̂in −
√

γĉin, (91)

where B̂in(t) and ĉin are the incident signals through the input port and the artificial
loss port, respectively. Similar to the quantum harmonic oscillator, there is a boundary
condition relating the intra-cavity field with the incident and outgoing fields:

B̂out(t) = B̂in +
√

κÂ, (92)

and
ĉout(t) = ĉin +

√
γÂ. (93)

The two rates γ and κ reflect the strength of the coupling between the ports and the
JPA, and determine how fast an incident field can drive the intra-cavity field, and,
once excited, how fast the intra-cavity field decays into the ports spontaneously.
Surprisingly, in the case of a driven cavity measured in reflection, the observed
intra-cavity field decay is slower compared to the free decay (see Eq. 90) [22].

For the operation of the system as an amplifier, the energy required to amplify
the quantum signal is provided by a strong drive tone, denoted the pump. Since
the amplitude of the pump tone is orders of magnitude larger compared to that of
the signal, it is treated classically and described by a coherent state with constant
amplitude and phase, while the signal is treated quantum mechanically. In the
spirit of this distinction, the incident, the outgoing and the intra-cavity fields are
decomposed into a classical and a quantum part:

B̂in(t) =
(

b̂in(t) + βin

)−iωpt
, (94)

B̂out(t) =
(

b̂out(t) + βout

)−iωpt
, (95)

Â(t) = (â(t) + α)−iωpt . (96)

Accordingly, the classical parts are represented by Greek letters, and the quantum
signals are given in Latin letters, with the hat indicating their quantum nature. The
time evolution is harmonic and determined by the frequency of the pump ωp, which
is equivalent to a frame rotating at the pump frequency. The modes of the loss port
are not decomposed, but are treated solely quantum mechanically. This is a valid
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assumption provided the bath is cold kBTbath � h̄ω0, with the only virtue of the
bath being the absorption of excitations from the system, without exciting it.

In order to derive expressions for the amplification of the device as a function of the
pump parameters, the pump amplitude and the pump frequency, first, the classical
steady state of the cavity is derived, and from that, the reflection of the quantum
signal is treated perturbatively.

Classical steady-state:

The steady state of the classical intra-cavity field α, satisfying the condition α̇ = 0, is
calculated by inserting Eq. 94-96 into the EOM defined in Eq. 91, and keeping the
classical terms only.

i(ω0 −ωp)α +
κ + γ

2
α + iKα?α2 =

√
κβin (97)

Notably, the drive amplitude βin and the intra-cavity field amplitude α do not have
the same units. By multiplying both sides of the equation with its complex conjugate
yields:

(ω0 −ωp)
2 +

(
κ + γ

2

)2
|α|2 + 2K(ω0 −ωp)|α|4 + K2|α|6 = κ|βin|2. (98)

For a coherent state, the complex amplitude is proportional to the mean number
of photons, in particular βin =

√
n̄in and α =

√
n̄. Therefore, the deduced equation

relates the mean number of incident photons with the mean number of photons
stored in the cavity. Following the procedure of Eichler and Wallraff [15], Eq. 98 can
be expressed in scale invariant quantities:(

δ2 +
1
4

)
n̄− 2δξn̄2 + ξ2n̄3 = 1, (99)

where

δ =
ωp −ω0

κ + γ
, n̄ =

|α|2
|β̃in|2

, β̃in =

√
κβin

κ + γ
, ξ =

K|β̃in|2
κ + γ

. (100)

The first quantity δ is the frequency detuning between the pump and the bare
resonance frequency of the cavity, scaled by the total cavity linewidth κ + γ. The
second quantity n̄ represents the mean number of photons inside the cavity relative
to the incident pump power, which is defined via the dimensionless drive amplitude
β̃in. Finally, the effective drive strength χ is determined by the product of pump
power and nonlinearity.
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By inserting the boundary condition for the classical pump applied through the
input port, βout = βin +

√
κα, the reflection coefficient becomes:

S11 = 1− κ

κ + γ

1
1
2 − iδ + iξn̄

, (101)

which is Eq. 101 in the main text.

Power gain:

The power gain of the single-port JPA is calculated by inserting the expression for
the field amplitudes, given in Eqs. 94-96, into Eq. 91, the EOM of the intra-cavity
field amplitude, and keeping terms only, that are linear in the quantum part â(t).

The corresponding quantum Langevin equation describing the time evolution of the
quantum part is

˙̂a(t) = i(ωp −ω0 − 2K|α|2 + i
κ + γ

2
)â(t)− iKα2 â†(t) +

√
κB̂in. (102)

Although the time evolution of the intra-cavity field is of interest if the device is
operated with microwave pulses, first, a better understanding of the behavior of
the steady state in the frequency domain is particularly helpful. Since the EOM
of the quantum part of the intra-cavity field is linear in â(t), it can be solved by
decomposing the signal into its Fourier-components [15]:

â(t) =
√

κ + γ

2π

∫ ∞

−∞
d∆e−i∆(κ+γ)t â∆. (103)

Here ∆ = (ωs − ωp)/(κ + γ) is the dimensionless detuning between the pump
frequency ωp, and the frequency of the weak quantum signal ωs. Equivalent
expressions are found for the quantum parts of the field amplitudes of the incident
modes b̂in and ĉin. Furthermore, the amplitude of the classical part can be expressed
in terms of the mean number of photons inside the cavity n̄, defined by Eq. 99, and
the pump phase φp: α =

√
n̄eiφp . Hence, the steady state of the quantum part is

determined by

0 =

(
i(δ− 2ξn̄ + ∆)− 1

2

)
â∆− iξn̄e2iφp â†

−∆ +

√
κ

κ + γ
b̂in,∆ +

√
γ

κ + γ
ĉin,∆. (104)

Apparently, due to the nonlinearity of the cavity, contributions of the intra-cavity
field symmetrically detuned from the pump frequency, with detunings ∆ and −∆,
are mixed. The complete relation between the incident and the intra-cavity field is
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most conveniently formulated in a matrix representation of Eq. 104 and its complex
conjugate.(

d̂in,∆
d̂†

in,−∆

)
=

(
i(−δ + 2ξn̄−∆) + 1

2 iξn̄e−i2φp

−iξn̄e−2iφp i(δ− 2ξn̄−∆) + 1
2

)(
â∆

â†
−∆

)
(105)

Here, the operator d̂in,∆ = (
√

κb̂in,∆ +
√

γĉin,∆)/(κ + γ) summarizes the modes
incident to the cavity. Inverting the matrix yields the relation between the intra-cavity
field amplitudes and the new operators d̂in,∆ introduced for the incident modes

â∆ =
i(δ− 2ξn̄−∆) + 1

2
(i∆− λ−)(i∆− λ+)

d̂in,∆ +
−iξn̄e2iφp

(i∆− λ−)(i∆− λ+)
d̂†

in,−∆, (106)

where the terms in the denominator are defined as

λ± =
1
2
±
√
(ξn̄)2 − (δ− 2ξn̄)2. (107)

With the aid of the input-output boundary conditions which are defined in Eq. 92 and
Eq. 93, a compact relation between the outgoing and the incident field amplitudes is
found:

b̂out,∆ = gs,∆b̂in,∆ + gi,∆b̂†
in,−∆ +

√
γ

κ
(gs,∆ + 1)ĉin,∆ +

√
γ

κ
gi,∆ ĉ†

in,−∆ (108)

Remarkably, the outgoing signal of the pumped nonlinear cavity at a detuning ∆

does not only contain amplified contributions of the incident signal at the same
detuning, but also from the mirrored contributions at detuning−∆. Since there are at
least quantum fluctuations present at this frequency, these additional contributions
are referred to as the idler tone. The coefficients in front of the incident modes
determine the magnitude of amplification and are referred to as the signal and the
idler gain-factors, gs,∆ and gi,∆, respectively.

gs,∆ = −1 +
κ

κ + γ

i(δ− 2ξn̄−∆) + 1
2

(i∆− λ−)(i∆− λ+)
(109)

and

gi,∆ =
κ

κ + γ

−iξn̄e2iφp

(i∆− λ−)(i∆− λ+)
(110)

If the coupling rate to the input port is much larger than the coupling to the artificial
loss port (κ � γ), the gain factors satisfy

G∆ = |gs,∆|2 = |gi,∆|2 + 1, (111)

where G∆ is the power gain of the amplifier at the signal frequency detuning. In the
high gain limit |gs,∆|2, |gi,∆|2 � 1, the signal incident at the idler frequency is almost
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equally amplified as the signal. Since there are always at least quantum fluctuations
present at every frequency, the simultaneous amplification of contributions from
different frequencies causes the additional noise added by the amplifier. Hence, if
the input port is cold (kBT � h̄ωs), the presented implementation of a parametric
amplifier reaches the quantum-limit of added noise.

In analogy to the relation between incident and intra-cavity field amplitudes, there
is a simple matrix representation summarizing the relation between incident and
outgoing signals: (

b̂out,∆
b̂†

out,−∆

)
=

(
gs,∆ gi,∆

g?i,−∆ g?s,−∆

)(
b̂in,∆

b̂†
in,−∆

)
(112)

Saturation power:

The power gain offered by any type of linear amplifier existing is generally limited
to a certain range of incident signal power, referred to as the dynamic range
of the amplifier, above which the gain either starts to decrease, or the relation
between incident and outgoing signal becomes nonlinear. In the first case, due to
the compensation of increasing input signal power and decreasing power gain, the
signal output power approaches a maximal value and therefore saturates. While the
origin of power gain saturation depends on the amplifier’s physical implementation,
for Josephson parametric amplifiers there are two mechanism suspected to cause
the onset of saturation: pump depletion and a signal induced ac Stark shift of the
cavity frequency, as discussed in the main text.

For the derivation of the power gain in the previous section, the strength of the pump
tone was assumed to be constant, or stiff, as the theory experts say. Provided the
incident signal is weak, the amount of pump photons converted into signal photons
is negligible compared to the total number of pump photons inside the cavity.
However, with increasing signal power, a siginificant number of pump photons is
required to generate the output signal, and consequently, the pump tone is depleted.
The reduction of the effective pump strength due to the conversion process, and
with that, the reduction in power gain is referred to as pump depletion [54]. Another
mechanism, which is suspected to be the dominant source of saturation, is the signal
induced frequency shift of the cavity frequency [40]. As discussed in the main text,
for every pump power below the point of bifurcation, there is an optimal pump
frequency at which the observed power gain is maximal. In the presence of a quartic
term (∝ Φ̂4), the resonance frequency depends on the mean number of photons
inside the cavity, and for that reason, the optimal pump frequency shifts to lower
values with increasing pump power, as shown in Fig. 1.24a. If the signal power
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increases, the amplifier is shifted away from the ideal pumping condition, and the
power gain decreases without an adjustment of the pump parameters.

Both effects are included into the discussion by considering additional terms for
the calculation of the mean number of pump photons inside the cavity n̄ that are
nonlinear in the signal amplitude â. As discussed in Ref. [15] and Ref. [48], the next
higher order terms taken into account are 2iK 〈â† â〉 α and iK 〈â2〉 α?, which are added
to Eq. 97. Consequently, the previously rather slim equation determining the mean
number of pump photons becomes considerably more extensive:

n̄
[

δ2 +
1
4
− 3ξ âδ + 5ξ2

â + 2ξ3
â

]
+ n̄2 (−2δξ + 5ξξ â) + n̄3ξ3. (113)

The effective drive strength due to the signal photons is captured by ξ â = Kn̄â/(κ +γ),
where n̄â = 〈â†

∆â∆〉+ 〈â†
−∆â−∆〉 is the mean number of photons inside the cavity,

evaluated at the signal (∆) and the idler (−∆) frequency. Notably, the effect of the
relative phase between pump tone and signal is neglected, synonymous to the
assumption that the frequency detuning between pump and signal is (significantly)
larger than the intermediate frequency (IF) bandwidth of the measurement setup [48].
The intra-cavity signal photons â∆ and â−∆ are related to the input field amplitude
and the mean number of pump photons according to Eq. 106. However, since the
latter depends in turn on the mean number of signal photons, the steady state has to
be calculated self-consistently.

In order to calculate the saturation effect with increasing signal power Ps, first
the intra-cavity field is calculated according to Eq. 106 for the number of pump
photons calculated from Eq. 99 under the optimal pump conditions (ξ, δ), but
without considering the signal-induced ac Stark shift. The effective signal input field
amplitude is determined by the incident signal power |b̃in|2 = κPs/(h̄ωs[κ + γ]2),
while the input at the idler frequency is assumed to be zero. Notably, the discussed
treatment does not include the effect of quantum fluctuations, which are present
at all frequencies. For amplifiers with large saturation power, this simplification
introduces minor deviations from the actual situation only. The obtained solutions
for the intra-cavity fields â∆ and â−∆ are plugged in into Eq. 113, and in turn,
the corrected mean number of pump photons n̄ is used to calculate the corrected
intra-cavity fields. This procedure has to be repeated several times for the result
to converge. After the final iteration, the obtained results are used to calculate the
power gain G0(Ps) as a function of the signal power shown in Fig. 1.25.
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C grAl transmon: supplementary information

In the following sections, additional information on the grAl transmon discussed in
Ch. 2 in the main text are given, including derivations of mathematical formulas
used to extract information from measurements, finite-element method simulations
of the waveguide sample holder and the grAl transmon circuit design, as well as
details on the measurement setup and the operation of the 2D vector magnet. Similar
information is provided in the supplementary information found in Ref. [65].

C.1 Resonance fluorescence: reflection coefficient

The reflection coefficient of a qubit given in Eq. 2.7 used to fit the resonance
fluorescence spectroscopy measurements (see Fig. 2.2), is derived starting from
Eq. 2.5 and following the description in Ref. [9].

First, the expectation value of the lowering operator of the qubit is expressed using
the Pauli operators σx and σy:

〈σ̂−〉 = (〈σ̂x〉 − i 〈σ̂y〉)/2. (114)

The steady state expectation values (time t→ ∞) for the Pauli operators σ̂x, σ̂y, σ̂z for
a qubit exposed to a continuous drive with amplitude Ω and detuning ∆q = ωq −ω

to the qubit frequency ωq, and in the presence of energy relaxation at a rate Γ1 and
dephasing at a rate Γ∗2 = Γ1/2 + Γϕ, (Γϕ : pure dephasing rate) are given by [9]:

〈σ̂x(Ω, ∆q)〉 = Γ1Γ∗2 Ω
(

Γ1(Γ∗22 + ∆2
q) + Γ∗2 Ω2

)−1
(115)

〈σ̂y(Ω, ∆q)〉 = Γ1∆qΩ
(

Γ1(Γ∗22 + ∆2
q) + Γ∗2 Ω2

)−1
(116)

〈σ̂z(Ω, ∆q)〉 = −1 + Γ∗2 Ω2
(

Γ1(Γ∗22 + ∆2
q) + Γ∗2 Ω2

)−1
(117)

Using Eq. 115 and Eq. 116, the expectation value of the Pauli lowering operator
becomes

〈σ̂−〉 =
1
2

Γ1Γ∗2 Ω− iΓ1∆qΩ

Γ1

(
Γ∗22 + ∆2

q

)
+ Γ∗2 Ω2

. (118)

By inserting Eq. 118 into the expression for the reflection coefficient given in Eq. 2.5,
yields

S11(∆q) = 1−
√

κΩR

2βin

Γ1Γ∗2 − iΓ1∆q

Γ1(Γ∗22 + ∆2
q) + Γ∗2 ΩR

, (119)
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where ΩR = Ω is the Rabi frequency on resonance. As discussed in Sec. 1.1.4, the
generalized Rabi frequency is equal to the drive amplitude Ω only on resonance, but
depends on the detuning between drive and qubit frequency. Although the detuning
is swept during the spectroscopy measurement shown in Fig. 2.2, the value extracted
from the fits and entering the expression for the reflection coefficient is the Rabi
frequency on resonance, i.e. the drive amplitude.

The relation between the Rabi frequency ΩR and the expectation value of the bosonic
field amplitude 〈Bin〉 = βin is

ΩR = 2
√

κ 〈Bin〉 = 2
√

κβin. (120)

In the limit of negligible pure dephasing Γϕ � Γ1, and using Eq. 120, the reflection
coefficient simplifies to

S11(∆q) = 1− 2κ

Γ1

1 + i2∆q/Γ1

1 + (2∆q/Γ1)2 + 2(ΩR/Γ1)2 , (121)

which is Eq. 2.7 in the main text. The factor in front of the second term of Eq. 121
is the coupling efficiency κ/Γ1, with Γ1 = κ + γ. It is a measure of the relative size
of the internal loss rate γ compared to the external coupling rate κ. At low Rabi
frequencies, for which mainly the two lowest energy levels are populated and the
qubit response closely resembles a circle, the qubit is found in the overcoupled
regime for κ > γ and in the undercoupled regime for κ < γ, similar to the harmonic
oscillator (see Fig. 9).

C.2 Numerical calculation of the Kerr Hamiltonian

The observed frequency and power dependence of the grAl transmon reflection
coefficient, shown in Fig. 2.6 and Fig. 2.7, is simulated using a Kerr Hamiltonian
exposed to a coherent microwave drive. In the rotating frame of the coherent drive,
the Hamiltonian is

HKerr/h̄ = ∆1a†a− K
2

a†2a2 − Ω

2
(a† + a), (122)

where ∆1 = ω1 −ω is the detuning between the fundamental transition frequency
ω1 and the drive tone frequency ω, a† and a are the bosonic single-mode field
amplitude creation and annihilation operators of the intra-cavity field, respectively,
and Ω is the drive amplitude. The self-Kerr coefficient is K = 2π × 4.5 MHz, based
on the value obtained in the experiment.
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Figure 10: Numerical calculations: resonance fluorescence. Complex reflection coefficient S11 plotted
in the complex plane (a), together with the frequency dependence of the real part (b) and the imaginary
part (c), numerically calculated for varying probe frequencies f around the resonance frequency
f1 = 7.4887 GHz of the driven Kerr Hamiltonian (see Eq. 122). For comparison reasons, the input
drive power Pin, the Kerr-coefficient K = 2π × 4.5 MHz, and the decay rates γ = 2π × 10 kHz and
κ = 2π × 40 kHz, are set to coincide with the experimenal values (see Fig. 2.2). The black lines indicate
least-square fits using Eq. 2.7. The only fit parameter is the Rabi-frequency ΩR reported in d. The
linear dependence of the Rabi frequency with drive amplitude and the quantitative agreement with the
measured data shown in Fig. 2.2d confirm the validity of the qubit limit and enables the calibration of
the input line attenuation A = 103 dB.

In analogy to the reflection coefficient of the harmonic oscillator defined in Eq. 82,
the reflection coefficient of an anharmonic oscillator is [6, 21]

S11 = 1 +
√

κ
〈a〉
βin

. (123)

The expectation values of the intra-cavity field 〈a〉 are calculated as a function of the
drive detuning ∆1 and amplitude Ω, by solving the corresponding master equation
numerically using Qutip [33, 34]. Notably, in order to align the simulation results
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Figure 11: Numerical calculations: energy spectrum. Phase of the numerically calculated reflection
coefficient arg(S11) as a function of probe frequency f and probe power Pin (left panel), reproducing
the measurement results shown in Fig. 2.6. The multi-photon peaks are equally spaced in frequency,
with the difference given by K/2 = 2π × 2.25 MHz (right-hand panel). In contrast to the experiment, a
constant frequency shift K is obtained (orange markers, right hand panel), as expected, because the
Kerr Hamiltonian in Eq. 122 only contains terms up to the 4th order. The green markers indicate the
probe power values at which the individual traces shown in Fig. 12 are taken.

with the measurements and the analytical reflection coefficient of a qubit in EQ. 119,
an additional phase factor e−iπ/2 has to be introduced for the calculated expectation
value of the intra-cavity field.

The master equation in Lindblad form in the presence of energy relaxation at a rate
Γ1 is [39]

ρ̇s(t) = −
i
h̄
[HKerr, ρs(t)] + Γ1D[a](ρs(t)). (124)

Here, ρs is the system’s density matrix, HKerr is the driven Kerr Hamiltonian given
in Eq. 122, and D[a](ρ) is the Lindblad superoperator introducing single-photon
dissipation

D[a](ρs) = aρsa† − 1
2

a†aρs −
1
2

ρsa†a. (125)

In general, the master equation formalism describes the time evolution of an open
quantum system interacting with its environment. The continuously driven system
will reach a steady-state for t → ∞, from which the spectroscopy results can be
obtained.

For the numerical calculations, the internal and external decay rates γ = 2π× 10 kHz
and κ = 2π× 40 kHz, respectively, are set to the values obtained from the experiment
(see Fig. 2.2), constituting a total energy relaxation rate Γ1 = κ +γ = 2π× 50 kHz. The
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Figure 12: Numerical calculations: energy spectrum. Three individual traces (left-hand panel) calculated
at distinct drive powers (Pprobe = −121,−106 and −101 dBm). Similar to the experimental results
shown in Fig. 2.7, several multi-photon transitions are visible at any given drive power in this
range. With increasing power, the linewidth of the transitions broadens as depicted by the zoom-ins
(right-hand panels) around the 3rd (right, Pprobe = −127 to −123 dBm) and 10th (left, Pprobe = −105.75
to −104.75 dBm) multi-photon transition. For a better comparison to the measured data, the phase-offset
is removed. Again ∆n = ω−ωn is the detuning between the drive and the transition frequency of the
n th multi-photon transition. Notably, the sign for ∆n is different than the sign of the effective transition
frequency in the driven Kerr Hamiltonian (see Eq. 122) to ensure that drive frequencies below the
respective transition frequency have a negative detuning.

dimension of the Hilbert space is Nlevel = 30. The drive amplitudes Ω = 2
√

κβin are
chosen to coincide with the values used in the experiment, with βin =

√
Pin/(h̄ω1).

The power values Pin are the calibrated values shown in Fig. 2.2d.

Spectroscopy

Figure 10 depicts the numerically calculated reflection coefficient S11 and the
corresponding least-square fits using Eq. 2.7. The colors are related to the drive
power similarly to Fig. 2.2. The linear fit to the extracted Rabi frequencies shown in
Fig. 10d confirms that the two-level approximation is valid in the parameter space of
the spectroscopy experiment.
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Energy spectrum

The experimental results presented in the main text in Fig. 2.6 and Fig. 2.7 are
reproduced in the numerical calculation using the same range of probe frequency
and power.

Figure 11 depicts the phase of the reflection coefficient arg(S11) as a function of
the incident power Pin and probe frequency f . Similar to the experiment, multi-
photon transitions at frequencies fn = (En − E0)/(nh) become visible. From a
linear fit to the multi-photon frequencies extracted from the 2D plot using the
same algorithm as in the main text (see. Fig. 11 right-hand panel), the self-Kerr
coefficient K = 2π × 4.5 MHz assumed for the calculation is recovered, validating
the procedure. Since the Kerr Hamiltonian in Eq. 122 does not contain higher order
nonlinear terms, in contrast with the experimental results, the simulated K(n) is
independent of the level number n.

For a comparison to Fig. 2.7 shown in the main text, Fig. 12 shows the phase of
the calculated reflection coefficient arg(S11) as a function of the probe frequency
f for three drive powers Pin = −121, −106 and −101 dBm. The small qualitative
difference between simulation and measurement is to some degree caused by the
finite frequency dependence of the background phase response in the experiment,
attributable to standing-wave resonances in the cryostat wiring. Moreover, the
simulation does not account for a finite offset charge dispersion or other effects that
potentially broaden the linewidth of the multi-photon transitions.

C.3 3D waveguide sample holder

The same 3D waveguide sample holder design, composed of a hollow copper body
with removable lid shown in Fig. 2.1, was used for the readout of the grAl transmon,
as well as for the readout of the cQED experiment shown in Fig. 1.10. The height,
length and width of the inner volume is 6 mm, 45 mm and 36 mm, respectively,
and the wall thickness of the copper body is 2 mm. To simplify the manufacturing
process, the edges of the hollow space are round. Due to the large aspect ratio of the
waveguide’s cross section, the electrical fields in the center of the waveguide, which
are oriented in the y-direction according to the coordinate system used for the coils,
remain unaffected by the round edges.

The sample readout is performed using a 50 Ω coaxial microwave port which
couples into the volume of the waveguide via the electrical field. The coaxial cable
has a center conductor with a diameter of 0.51 mm and an inner shield diameter
of 1.68 mm, incasing a teflon dielectric with relative permittivity εr = 2.1. For
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Figure 13: 3D waveguide sample holder. The performance of the microwave ports of two waveguide
sample holders can be deduced at room-temperature, by aligning the copper bodies and measuring the
reflection coefficient at one port. Since the other port is terminated to 50 Ω, the transmission from one
port to the other will appear as losses in the reflection coefficient. Hence, high losses observed in the
reflection coefficient are indicative for a good transmission and small internal reflections. As shown in
the bottom panel, the observed reflection coefficient is frequency dependent, with a sharp decrease
around 4.5 GHz, denoted the cut-off frequency. Due to the adjustment screw incorporated into the
bottom of the waveguide (visible in Fig. 2.1), the frequency dependence can be tuned and adapted to
the frequency range of the experiment.

impedance transformation, the center conductor ends in a cylinder of radius 2 mm
and length 3 mm, with a distance of 1.4 mm to the waveguide ceiling. Additionally,
a screw incorporated into the bottom of the waveguide can be used to adjust the
impedance matching. At room temperature, the performance of the impedance
matching is verified by measuring the reflection coefficient of the input port of one
waveguide, when a second waveguide is attached to its body (see Fig. 13).

In the depicted arrangement, signals that couple into the waveguide and are not
reflected at the input port, appear as losses in the absolute value of the reflection
coefficient |S11|. The comparison between the red and the blue curve shows the
tunability of the obtained spectrum by changing the position of the screws in both
waveguides. After the adjustment was completed for the waveguide used in the
experiment, the screws were fixed using silver paste. The band of the waveguide
is restricted by a lower cut-off frequency (∼ 4.5 GHz) below which the field is
evanescent, and an upper cut-off frequency (∼ 11.5 GHz).
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Two copper stubs integrated into the top and bottom of the outer walls, visible in
Fig. 13, from which one has a thread, are used to align the Helmholtz coil bodies
with the position of the sample.

C.4 FEM simulations

The fundamental transition frequency ω1 and the external coupling rate κ to the
waveguide sample holder are simulated for the circuit geometry (see Fig. 14) using
a commercial finite-element method simulator (HFSS - High frequency structure
simulator). The inductive contribution of the grAl volume is modeled with a
linear lumped-element inductor LK. Capacitive contributions arising from the grAl
microstructure are not considered. In order to extract the shunt capacitance Cs and
geometric stray inductance Ls of the grAl transmon circuit design, the transition
frequency is simulated for different values of the grAl inductance LK (see Fig. 15a).

Figure 14: Finite-element method simulation model. For the simulation of the waveguide sample
holder and the circuit geometry, the waveguide and the grAl circuit design are translated into effective,
three-dimensional models. The waveguide model consists of a copper body (light orange) of similar
dimensions as discussed in App. C.3, which is attributed with a perfect conductivity boundary condition
and filled with vacuum (light red). The adjustment screw entering through the bottom is considered by
a copper rod. The waveguide body hosts a sapphire wafer of thickness 330 µm and relative permittivity
εr = 10 and relative permeability µr = 1, on which the circuit is modeled. The capacitor geometry is
defined by the width and length of the outer electrode bC and hC, respectively, as well as the gap w.
The gap between the electrodes is gf, and the bridge connecting them has a length lb. The width of the
electrode fingers is wf.
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Figure 15: Finite-element method simulations of the linearized circuit. a) Simulated transition
frequency f1 of the linearized circuit obtained using the eigenmode solver of a commercial finite-element
method simulator (HFSS), shown in Fig. 14. The grAl volume is substituted with a lumped-element
inductance Lk which is swept from 2 nH to 10 nH to extract the shunt capacitance Cs = 137 fF and the
additional geometric inductance Ls = 450 pH arising from the design using Eq. 126. As indicated by
the dotted cursors, the measured frequency f1 = 7.4887 GHz corresponds to a value Lk = 2.85 nH. b)
Simulated external quality factor Qc as a function of the gap w in the outer electrode for Lk = 2.85 nH.
Similarly to the design of Ref. [53], by closing the gap the external quality factor can be controlled
over a range of three orders of magnitude. The colored dashed lines indicate the design value for the
experiment and the black marker indicates the measured external quality factor Qc = 1.9× 105 (see
Fig. 2.2).

The physical dimensions of the circuit are listed in Tab. 1. The simulated transition
frequencies are fitted to the prediction of an effective lumped-element model

f1(LK) =
1

2π
√

Cs(LK + Ls)
, (126)

yielding Cs = 137 fF for the shunt capacitance, and Ls = 450 pH for the geometric
stray inductance (see Fig. 15a).

The external quality factor can be varied over three orders of magnitude by changing
the gap w in the outer electrode (see Fig. 2.1b main text and Fig. 15b). Due to the
large aspect ratio of the waveguide body, the external quality factor does not change
significantly with distance x away from the center of the waveguide as shown in
Ref. [65].
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Table 1: Geometrical parameters of the grAl transmon design. Width bC outer capacitor electrode,
height hC outer capacitor electrode, gap in outer electrode w, length of the bridge connecting the
capacitor pads lb, width of capacitor pads wf, gap between capacitor pads gf.

bC hC w lb wf gf

1000 µm 800 µm 300 µm 400 µm 100 µm 100 µm

C.5 Contribution of the contact junctions

The contribution of the contact junctions, which form between the pure Al shunting
layer and the grAl thin film, to the kinetic inductance and the measured nonlinearity
can be estimated from the fit value for the kinetic inductance of the Al layer
LK,Al = 200 pH extracted from the field dependence of the resonance frequency
(see Sec. 2.6). Taking into account the typically 15% kinetic inductance fraction
measured in Al thin films [27], and using the geometric stray inductance Ls = 450 pH
obtained from FEM simulations (see App. C.4), results in 70 pH intrinsic kinetic
inductance and leaves 130 pH to the contact junctions. Hence, according to the energy
participation approach for the Kerr coefficient discussed in Sec. 2.1, the contribution
of the contact junctions to the anharmonicity of the qubit is negligible.

The critical current for each contact junction is Ic = 5 µA, corresponding to a critical
current density jc = 0.13 mA/µm2. The critical current density of the grAl film can
be estimated from the number of effective junctions N ≈ 6, and the cross section of
the film AgrAl ≈ 10× 200 nm2

jc,grAl =
Φ0

2π

N
LK,grAl Agral

≈ 0.4
mA
µm2 , (127)

in agreement with the switching current measurements discussed in Sec. 1.2.3 for a
film with similar normal-state resistivity.

C.6 2D vector magnet

The waveguide sample holder can be equipped with a 2D vector magnet [65], which
consists of a pair of Helmholtz coils (HH) and a solenoid for field alignment, denoted
compensation coil (see Fig. 2.1a and Fig. 16) . The field direction of the HH coils is
aligned within machining precision with the in-plane direction of the thin films
along the y-axis. The compensation coil symmetry axis is oriented in the z direction,
perpendicular to the Helmholtz axis and out-of-plane with respect to the sample.
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Figure 16: 2D vector magnet a) Photograph of the cryogenic setup used for the magnetic field
measurements in Fig. 2.8. The copper waveguide sample holder equipped with the 2D vector magnet
(highlighted in color) is mounted at the dilution stage of a table-top Sionludi dilution refrigerator
(greyscaled), typically operated at a base temperature Tbase ≤ 30 mK. The flat copper cylinder visible in
the lower part of the image is the lid of the outer shield (not shown), which consists of successive
copper (Cu) and aluminum (Al) cylinders, similar to Ref. [27]. The Cu shield was used in all three
measurements presented in Fig. 2.8, while the Al shield was only used during the "shielded" cooldown.
The inset shows the top view of the copper waveguide sample holder including the 2D vector magnet
(top), and the Helmholtz field By (bottom) numerically calculated according to Eq. 129 for a bias current
Icoil = 1 A and as a function of lateral position x. The magnetic field of the two Helmholtz coils is
aligned within machining precision with the in-plane direction y of the thin-films. The Bz coil is the
compensation coil used to align the in-plane field in-situ. b) In-plane field component By according
to Eq. 129 of the HH coil geometry, calculated as a function of position x and y in the plane of the
sample substrate. The horizontal solid black lines indicate the outer dimensions of the waveguide
sample holder, defining the spacing between the HH coils, while the black dashed rectangle indicates
the substrate dimensions. The sample position is highlighted by the solid black rectangle.

All coils are winded with the same type of NbTi, multifilament superconducting
wire with diameter d = 140 µm (Supercon. Inc. 54S43). The winding parameters -
the number of layers nL and the number of windings per layer nw, as well as the
physical dimensions of the coils, i.e. the radius R, length l and vertical distance ∆y
(in the case of the HH coils), are summarized in Tab. 2.

From both coil geometries, the relation between the applied bias current Icoil and the
magnetic flux density ~B(~r) at position~r is calculated using the Biot-Savart law. For
simplicity, the individual coils are approximated with nL × nw single wire loops. To
account for the physical dimension of the coils, the loop radius increases with each
added layer R = R0 + jd, where R0 is the inner radius and j is the number of the layer,
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and the position along the coils symmetry axis depends on the winding number. In
both directions, the step size is given by the wire diameter d. Following the approach
of Caparelli et al. [4], analytical expression for the magnetic field components Br(~r)
in radial direction (parallel to the loop plane xz), and By(~r), oriented perpendicular
to the loop plane, are derived from the Biot-Savart law:

Br(~r) =
µ0 IcoilR2

2

∞

∑
k=0

(−1)k+1 kr2k−1

(2kk!)2 y−2(k+1)

Γ[2(k + 1)]2F1

(
k + 1, k +

3
2

, 2;−R2

y2
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By(~r) =
µ0 IcoilR2

2

∞

∑
k=0

(−1)k (k + 1)r2k
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)
.

(129)

Here, 2F1 is the hypergeometric function, R is the loop radius, Icoil is the bias current
magnitude and Γ is the mathematical gamma function (not to be confused with an
energy relaxation rate). Notably, the wire loops lie in the xz-plane and the field By is
perpendicular to this plane. Notably, for the calculation of the field coils, the infinite
sum is truncated after 20 terms.

Figure 16a (bottom right) depicts the numerically calculated magnetic flux density
of the HH coils as a function of the lateral position x for a bias current Ib = 1 A and

Table 2: 2D vector magnet: coil dimensions and winding parameters. Values for the physical
dimension, i.e. the inner coil radius R0 and length l, and the total number of windings Nw, determined
by the number of layers nL and the number of windings per layer nw, for the pair of Helmholtz coils and
the compensation coil. The lateral separation between the Helmholtz coils is ∆y. Numerical calculations
based on the coil parameters yield predictions for the flux densities by and bz per ampere at the position
of the sample.

Helmholtz Compensation

R0 (mm) 10 30

l (mm) 5 10

∆y (mm) 10 -

nL 30 32

nw 35 70

Nw = nL × nw 1050 2240

by (mA/T) 80 -

bz (mA/T) - 50
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y = 0 mm. The center of the waveguide is the origin for x and y as indicated by the
black dashed lines (top right panel). Since the magnetic flux density By changes by
only 3% in the region where the sample chip is mounted (−5 mm ≤ x ≤ 5 mm), the
value by = 80 mT/A is taken to convert the HH bias current Icoil into a magnetic
flux density. For the compensation coil a conversion factor bz = 50 mT/A is found
using the same procedure.

Figure 16b depicts the magnetic in-plane field By as a function of the position (x, y)
in the plane of the sample, numerically calculated for a bias current Icoil = 1 A. The
horizontal black lines indicate the outer walls of the waveguide sample holder, which
define the distance ∆y between the HH coils. Moreover, the diced chip containing the
sample is indicated by the dashed black rectangle, while the position of the sample
itself is indicated by the small black rectangle. The field homogeneity in the area of
the sample is emphasized by the uniform grey color scale and the low density of
(colored) contour lines.

C.7 Magnetic field alignment

Due to large aspect ratio between the lateral size of the circuit components and
the film thickness, the grAl transmon like most other superconducting circuits is
significantly more susceptible to out-of-plane components of the magnetic field. As
discussed in App. C.6, the magnetic field applied to the sample can be aligned with
the in-plane direction by using the compensation field of the 2D vector magnet.

For the alignment of the field, the compensation current is determined for which
the transition frequency of the grAl transmon is maximal and the dependence
on the compensation field is symmetric around this value. Fig. 17 depicts three
measurements performed with a double triangular current bias around different
mean values for the compensation field (bottom panels). While the first and the
second curves are asymmetric, the symmetry in the third measurement is indicative
for a compensation field close to optimum.

Since the behavior of the sample becomes hysteretic in small out-of-plane fields, as
exemplarily demonstrated in Fig. 18, the HH current is gradually increased with a
step size of 50− 100 mA, which translates into 4− 8 mT using the conversion factor
by listed in Tab. 2. For each value, the ideal compensation current is determined in
the same way as shown in Fig. 17. After the calibration, the currents through the
HH and the compensation coil are tuned always at the same time, preventing the
application of large out-of-plane fields in the ideal case. Moreover, the sample is
reset in a thermal cycle by reaching temperatures well above the critical temperature
of the film (T > Tc = 1.9 K) after the calibration procedure.
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Figure 17: grAl transmon: magnetic field alignment. In order to align the magnetic field in-plane with
the grAl transmon, the compensation field Bz is swept in a closed loop around a mean value. From
the symmetry of the obtained trajectory of the transition frequency, the ideal compensation field is
determined. The top panels show the phase of the reflection coefficient in the range (−0.3 rad, 0.3 rad)
represented by the grey scale color map, measured for different compensation currents ICC, as shown
in the bottom panels. The mean values for the compensation current are 1 mA, 2 mA, and 1.5 mA,
indicated by the black dashed lines. While the first and the second value are too small and too large,
respectively, resulting in an asymmetric response, the third value is close to the ideal value.

Figure 18: grAl transmon: out-of-plane field dependence a) Fundamental transition frequency and b)
internal quality factor Qi = ω1/γ as a function of the applied out-of-plane magnetic field Bz . Starting
from effective zero-field (black arrow), the measurement cycle is indicated by the colored arrows. In
both parameters f1 and Qi, a hysteretic behavior was observed, which is more pronounced in the
frequency domain at positive magnetic fields.
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C.8 Overview Measurement runs

The grAl transmon was measured in seven measurement runs, summarized in Tab. 3,
which were performed in three different cryogenic setups. The spectroscopy (run
#2), time-domain (run #7), and two-tone measurements (run #1) were obtained in
two commercial blueFors cryostats of similar type and wiring (see App. G.8). In
all three runs, the sample was surrounded by the full outer magnetic shielding.
The magnetic field dependence was measured in a custom-made table-top Sionludi
dilution refrigerator [57], with different configurations for the outer shielding, but
always without an outer µ-metal shielding.

The measurement outcomes are illustrated and summarized in Fig. 19 in form of the
fundamental transition frequency f1 as a function of the applied magnetic in-plane
field By, and the corresponding external quality factor Qc = ω1/κ as a function
of the transition frequency. Although the external quality factor shows a different
frequency dependence than expected from the FEM simulation (black dashed line),
the measurement outcomes obtained in different measurement runs align, validating
the similarity of the fitting procedure.

Figure 19: grAl transmon: measurement run overview. The grAl transmon was measured in a total of
seven measurement runs, for which the obtained fundamental transition frequencies f1 are shown in
panel a) as a function of the applied magnetic in-plane field By , and the corresponding external quality
factors Qc in panel b) as a function of the transition frequency. In run #1, #2 and #7, no magnetic
fields have been applied, and the markers align with zero-field. The black dashed line in panel b
indicates the result obtained from the FEM simulations of the sample and the waveguide sample holder
(see App. C.4). The deviation from the prediction at frequencies below 7.5 GHz could be explained by
standing waves inside the waveguide, caused by imperfections not captured by the simulation, or a
different setting for the adjustment screw. As shown in Fig. 13, the coupling into the waveguide does
vary with frequency and the position of the screw significantly.
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Table 3: Summary of the grAl transmon parameters obtained during different measurement runs:
fundamental transition frequency f1, qubit anharmonicity α, external quality factor (zero-field) Qc,
internal quality factor (zero-field) Qi, external coupling rate (zero-field) κ, internal decay rate (zero-field)
γ, outer shielding configuration.

run #1 run #2 run #3 run #4 run #5 run #6 run #7

f1 (GHz) 7.6790 7.4887 7.5156 7.4778 7.672 7.7292 7.4749
α/2π (MHz) 3.90 4.48 - - - 3.35 4.5

Qc(×105) 1.7 1.9 1.8 1.5 1.9 1.9 1.5
Qi(×103) 900 750 95 100 130 51 750

κ/2π (kHz) 45 40 42 50 40 40 51
γ/2π (kHz) 8.5 10 78 75 58 150 10
Outer shield:

Cu yes yes yes yes yes yes yes
Al yes yes no yes no no yes

µ-metal yes yes no no no no yes
Magnetic field no no yes yes yes yes no

C.9 Fabrication recipe

The structures of the grAl transmon are patterned in a resist double-stack composed
of two postive direct write electron-beam resists [37]: copolymer PMMA/MAA
(El-13), 13% solids dissolved in ethyl lactate and a 950PMMA (A-4), 4% solids
dissolved in anisole. Since the resists are spin-coated on an insulating, epipolished
sapphire substrate (diameter: 2 inch, thickness: 330 µm), an antistatic Au layer of a
few nanometer thickness is evaporated on top of the resist stack. The total resist
stack has a height of ∼ 1− 1.1 µm.

After the e-beam write and right before the development, the antistatic gold layer
was removed using a Lugol solution, a mixture of potassium iodide and iodine (2:1),
dissolved in water. The development was performed by placing the written sample
in a mixture of IPA and H2O (3:1 volume fraction), for about 120 s, while carefully
shaking the sample at a frequency of ∼ 1 Hz (118 oscillations) using a tweezer. The
outcome of the development process was assessed under an optical microscope,
as shown in Fig. 20a, with the undercut in the bottom resist visible as bright halo
around the main features. The central strip appears connected to the leads due to
optical interference effects.

Following the development process, the sample was installed in a commercial Plassys
e-beam evaporator to perform a three-angle shadow evaporation. The load lock of
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Figure 20: grAl transmon: fabrication. a) Optical microscopy image of the sample after the development.
The undercut in the bottom resist is visible as bright halo, while the zoom-in shows the region which
later forms the grAl volume. Due to interference effects, the structures appear connected. b) Pressure
in the load lock pLL of the evaporator as a function of the oxygen mass flow Vox/t in sccm under
simultaneous vacuum pumping.

the evaporator was pumped for three hours (pLL = 1.9× 10−7 mbar). First, resist
residuals were removed in a cleaning step for 2 : 30 min using an oxygen/argon
(10 sccm/5 sccm) plasma with a beam voltage 200 V and a beam current 10 mA.
Subsequently, the pressure in the evaporation chamber was further reduced by
employing a Ti gettering to reach 4.9× 10−8 mbar.

For the metal deposition, first a 10 nm grAl film was evaporated at zero angle. The
average aluminum evaporation rate was rAl = 0.286 nm/s, calculated from the film
thickness, which is confirmed by AFM measurements (see Fig. 2.1), and the duration
of the evaporation 35 s. The partial oxygen pressure during the evaporation was
pO2 = 2.25× 10−5 mbar, which is controlled by the injected oxygen mass flow Vox/t
and the delivery rate of the turbo pump, as shown in Fig. 20b. Subsequently, an
argon milling [27] was used for 10 s, followed by a double-angle evaporation of two
40 nm pure Al thin films under ±35◦. However, I would like to point out that the
effect of the Ar milling on the contact resistance between the grAl layer and the Al
layers was not investigated. An overview on the individual fabrication steps is listed
in Tab. 4 and Tab. 5.
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Table 4: grAl transmon: electron-beam lithography fabrication recipe – resist application and
development.

Resist application

substrate C-plane sapphire, double-sided epipolished

1st resist layer El-13 (thickness: 700− 800 nm, positive)
2nd resist layer A-4 (thickness: ∼ 300 nm, positive)

acceleration 1000 rpm/s
spin speed 2000 rpm
spin time 100 s
HP temp 200 ◦C
HP time 300 s

antistatic layer Au

e-beam writing

acceleration voltage 50 kV

Development

Au remover Lugol solution
time 10− 15 s
rinse destilled H2O
developer IPA and H2O (3:1)
time 120 s
rinse destilled H2O + N2 blown-dry
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Table 5: grAl transmon: electron-beam lithography fabrication recipe – thin film evaporation.

thin film deposition and lift-off

cleaning
mass flows O2/Ar (10 sccm/5 sccm)
beam parameters Ubeam = 200 V, Ibeam = 10 mA

Ti gettering
duration 2 min (active) and 3 min (passive)
pressure 4.9× 10−8 mbar

grAl-layer
thickness 10 nm
rate 0.286 nm/s
O2 pressure 2.25× 10−5 mbar
angle 0 ◦

Ar-milling
Ar mass flow 4.0 sccm
beam parameters Ubeam = 400 V, Ibeam = 15 mA
duration 10 s

Al-layers
thickness 40 nm
rate 1 nm/s
angle ±35 ◦

lift-off
solvent NMP or NEP
time 2.5 h
temperature 90 ◦C (preheated)
rinse acetone + ethanol + N2 blown-dry
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D grAl dc SQUIDs: supplementary information

In the following sections, the switching dynamic of an ideal JJ is discussed to provide
a basis for the switching current measurements of the grAl SQUIDs.

D.1 The Resistively-Capacitively-Shunted-Junction-model

In the resistively-capacitively-shunted-junction (RCSJ) model, the static and dynamic
properties of the gauge-invariant phase difference γ across a Josephson junction
is derived from an effective circuit model, that captures the dc transport of a
non-resistive supercurrent, as well as the finite dissipation in the presence of
quasiparticles.

The circuit diagram of the RCSJ model is depicted in the left-hand panel of Fig. 21a,
and consists of a parallel circuit of an ideal JJ (cross symbol), with critical current Ic and
sinusoidal current-phase relation, which is shunted by a capacitor with capacitance
C, and a resistor with resistance R. The shunt capacitor accounts for the geometric
capacitance arising between the electrodes, while the shunt resistor introduces
finite dissipation induced by the tunneling of normal-conducting quasiparticles.
Although the dynamics of the quasiparticles are generally quite complex, requiring
the resistance to be a nonlinear function of the voltage drop V across the junction, it
is nevertheless, for the sake of simplicity, considered to be constant.

Provided a finite bias current I, the total current through the effective circuit is the
sum of the currents through the three branches

I = Ic sin(γ) +
V
R

+ C
dV
dt

, (130)

with an identical voltage drop V across each branch. The voltage V and its time-
derivative can be eliminated in favor of the phase difference γ by means of the
second Josephson equation, resulting in a second order differential equation in γ

d2γ

dτ2 +
1
Q

dγ

dτ
+ sin(γ) =

I
Ic

, (131)

where τ = ωpt is a dimensionless time variable. The frequency ωp is the plasma
frequency of the JJ

ωp =

√
2eIc

h̄C
, (132)
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Figure 21: Josephson junctions: phase dynamcis. a) Effective circuit diagram of a Josephson junction
according to the resistively-capacitively-shunted-junction (RCSJ) model, devised to describe the
dynamics of the superconducting phase difference across the junction γ. The model consists of a
parallel circuit of an ideal junction with critical current Ic and sinusoidal current-phase relation (cross
symbol), which is shunted by a capacitor with capacitance C, and a resistor with resistance R. The
shunt capacitor accounts for the geometric capacitance arising between the electrodes, while the shunt
resistor introduces finite dissipation induced by the tunneling of normal-conducting quasiparticles.
b) The left-hand panel depicts the washboard potential U = −EJ(cos(γ) + Iγ/Ic) arising in the RCSJ
model, normalized by the Josephson energy EJ = Φ0 Ic/(2π), as a function of the phase difference γ for
three different bias currents I/Ic ∈ {0, 0.2, 0.9}. As long as the phase particle, which represents the
phase difference γ, is trapped in one of the local minima, a non-resistive supercurrent flows across the
junction. Once the bias current exceeds the critical current I/Ic > 1, the phase particle starts moving
along the potential, entering the running state. Since the phase changes with time, the junction becomes
resistive with a finite voltage drop across it. The escape of the particle can be premature, even before
I/Ic > 1, either triggered by thermal activation (TA), or by macroscopic quantum tunneling (MQT), as
indictaed by the right-hand panel. In both cases, the escape probability is related to the remaining
barrier height U0.

which can be identified as the self-resonance frequency of the equivalent junction
circuit. The quality factor Q is a measure of damping and depends not only on the
resistance, but also on the capacitance

Q = ωpRC. (133)
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A better understanding of the dynamics described by Eq. 131 can be gained by
mapping the differential equation into the equation of motion of an effective phase
particle moving in a one-dimensional potential. In this analogy, the phase difference
γ becomes the position variable of the particle, and the time derivative γ̇ becomes
its velocity. By introducing the mass of the particle m = h̄2C/(4e2), the effective
potential U becomes

U = −EJ(cos(γ) + Iγ/Ic), (134)

where EJ = φ0 Ic/(2π) is again the Josephson energy. Due to its shape, the potential
is referred to as the washboard potential.

The right-hand panel in Fig. 21b depicts the normalized washboard potential U as a
function of the phase difference γ for three different bias currents I/Ic ∈ {0, 0.2, 0.9}.
For small bias currents, the particle remains trapped in one of the local minima,
which corresponds to the zero-voltage state of the junction. According to the
Josepshon equation, the immobility of the phase particle describes the flow of a finite
supercurrent across the junction without dissipation. However, with increasing bias
current, the potential is tilted towards increasingly negative slopes. As soon as the
bias current surpasses the critical current (I > Ic), the derivative becomes negative
at all positions, and the particle starts to move downhill, in some occasions referred
to as the running state. Since the velocity of the particle is non-zero, a finite voltage
drop occurs across the junction and the JJ switches into the normal-conducting state.

Notably, due to the second term in Eq. 131, the particle is subject to fricition directed
opposite to the direction of motion. Depending on the amount of friction, the phase
particle can be retrapped after it has been escaped, and the motion of the particle
can be diffusive rather than ballistic.

Escape dynamics

In contrast to the classical and ideal scenario, in which the particle escapes from
the local minimum it is trapped in not before the bias current reaches the critical
current (I/Ic > 1), an escape can be triggered prematurely by two effects: Thermal
activation (TA) and macroscopic quantum tunneling (MQT). While the first effect
can be understood classically, the existence of the second effect unambiguously
implies, that the macroscopic phase describing the superconducting condensate is a
quantum mechnanical observable [44].

Figure 21b (right-hand panel) shows a magnification of one of the minima for a
bias current close to the critical current (I/Ic = 0.9). Since the phase particle is a
quantum object with a finite uncertainty between position and momentum, the
energy eigenstates of the particle in the potential wells are discrete and anharmonic
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[43, 44], indicated by the horizontal pink lines. Even in the energetic ground state,
the phase particle (black dot) is not resting, but constantly in motion, signified by
the pink arrows. The frequency of this motion ω0 is determined by the curvature of
the potential around the minimum, and is therefore similar to the plasma frequency
ωp, but generally bias current dependent:

ω0(I) = ωp

(
1− I

Ic

)1/4
(135)

The oscillation frequency of the particle is closely related to an attempt frequency,
which is on the order of gigahertz typically, and determines the characteristic time
scale of the switching event.

The probability that an escape occurs depends on the thermal energy of the particle
and the remaining barrier height U0, as indicated in the right-hand panel of Fig. 21b.
For a sinusoidal current-phase relation, and assuming that the switching occurs for
bias currents close to the critical current only, the remaining barrier height is well
approximated by

U0(I) ≈ EJ

(
1− I

Ic

)3/2
. (136)

In general, the relation between the barrier height and the bias current depends on
the shape of the current-phase relation.

At finite but low temperatures (kBT � EJ), the escape rate over the barrier due to
thermal activation ΓTA is a simple Arrhenius law

ΓTA(T, I) = bt
ω0(I)

2π︸ ︷︷ ︸
Γ0

exp
(
−U0(I)

kBT

)
, (137)

where the temperature dependence of the attempt frequency Γ0 is captured by
a thermal coefficient bt [63]. With decreasing temperature, thermally activated
escapes of the phase particle are suppressed exponentially. At the so-called crossover
temperature T? = h̄ω0/(2πkB), the remaining switching events start to be dominated
by macroscopic quantum tunneling through the barrier [24]. Although the escape
dynamics due to MQT are generally very rich, the resulting escape rate can be
estimated within a Wentzel-Kramers-Brioullin approximation. However, a simpler
and mathematically more convenient approximation can be found by substituting
the physical temperature T in Eq. 137 with a fixed temperature Tesc

ΓMQT(I) = Γ0(I) exp
(
−U0(I)

kBTesc

)
, (138)

representing the temperature independent tunneling process.
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Escape probability:

Another consequence of the premature switching into the resistive state of a JJ is, that
the maximal bias current extracted from transport measurements is not necessarily
the critical current, but, in particular for small JJs, a significantly smaller value. In
order to distinguish between the two quantities, the measured value is referred to
as the switching current Isw. Under some conditions, the deviation between the
measured value and the actual critical current of the junction can be significant. A
series of repetitive transport measurements will result in an asymmetric distribution
of switchting currents around a mean value Īsw, with a finite width σsw similar to a
standard deviation.

Following the description of Kurkijärvi et al., summarized in Ref. [36], the switching
current probability distribution as a function of the bias current I is derived from
the thermal activation of a particle above a barrier. Although the model theory was
initially developed for thermal processes only, the introduction of a temperature
Tesc extends the theory to MQT.

The probability W(t) that an escape has not yet occured after time t, is given by

W(t) = exp
(
−
∫ t

0
Γsw(T, I{t′})dt′

)
. (139)

Here, Γsw is the switching rate at which the junction switches into the resistive state,
or, in the picture of the mechanical analogon, the phase particle enters the running
state. In case every escape event triggers a switching, the switching rate is identical
to the escape rate. However, in the presence of friction and retrapping, both rates
can differ significantly.

Since the bias current is often swept at a constant rate, which is much slower than
the attempt frequency ( İ � Γ0), the time dependence can be substituted with a bias
current dependence, and the probability becomes

W(I) = exp
(
−1

İ

∫ I

0
Γsw(T, I′)dI′

)
. (140)

The probability P(I) for the particle to escape, or equivalently for the junction to
switch into the resistive state at a given bias current I, is given by the derivative of
Eq. 140

P(I) = −dW(I)
dI

=
Γsw(T, I)

İ
W(I). (141)

According to Eq. 141, the switching probability is the product of two probabilities: The
probability that the junction switches in the bias current interval I + dI, determined
by the first factor, and the probability that the junction has not yet switched. In
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order to calculate P(I), Eq. 141 has to be solved numerically due to the nonlinear
bias current dependence of the remaining barrier height U0 given in Eq. 136 for a
sinusoidal current-phase relation. However, an analytical, and hence more convenient
expression with only three free parameters can be found by assuming a linear
dependence between U0 and I [2]:

P(I) = A exp
(

I − Īsw

b
− exp

[
I − Īsw

b

])
(142)

As previously mentioned, Īsw is the bias current at which switching occurs with
the highest probability, while the parameter b is related to the width σsw of the full
distribution defined by Eq. 141. The third parameter A is a scaling parameter that
determines the amplitude of the distribution, as it is not normalized in the presented
form.

Figure 22a depicts the switching current distribution P(I) of an ideal JJ with sinusoidal
current-phase relation, as a function of the bias current I, numerically calculated
according to Eq. 141. The switching rate Γsw is assumed to be a combination of
escapes that are triggered by thermal activation and by macroscopic quantum
tunneling:

Γsw = ΓTA + ΓMQT. (143)

Again, the underlying consequence of this assumption is, that every escape triggers
a switching into the resistive state. The temperature T of the JJ is assumed to be low
compared to the critical temperature T/Tc = 0.02, which, in the presented case is
that of thin film aluminum Tc = 1.4 K. In order to account for MQT, a finite escape
temperature Tesc = 0.3 K is considered, similar to the value reported in Ref. [63]. The
resulting switching current probability function has a characteristic, asymmetric
shape, with a slower rise below Īsw, and a steeper descent above it. The width of the
distribution σsw gives insight into the dynamics of the escape. The white dashed
line is a fit to the calculated data according to the analytical expression given in
Eq. 142, from which Īsw and σsw are extracted. The junction parameters entering
the calculation are the critical current Ic = 5 µA, the value of the shunt capacitance
C = 1 fF and the (constant) bias current sweeping rate İ = 200 µA/s.

In Fig. 22b, the switching current distribution is plotted for different temperatures
T/Tc ∈ {0.02, 0.32, 0.52, 0.62, 0.72, 0.82}. With increasing temperature, the critical
current of the JJ decreases, causing a reduction of the amplitude of the washboard
potential EJ, and with that, the barrier height U0, as well as a decrease of the plasma
frequency ωp. As a result, the bias current with the highest switching probability
appears at lower values, alongside with a broadening of the switching current
distribution. The extracted values for Īsw are depicted in panel c as a function of
temperature, and are normalized by the critical current.
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Figure 22: Josephson junctions: escape dynamics. a) Switching current distribution P(I) of an ideal JJ,
numerically calculated according to Eq. 141 as a function of the bias current I. The distribution is plotted
around the switching current with highest probability Īsw, normalized by the critical current Ic = 5 µA.
While the physical temperature of the JJ is assumed to be low compared to the critical temperature
T/Tc = 0.02, macroscopic quantum tunneling (MQT) is taking into account by considering a non-zero
escape temperature Tesc = 0.3 K (see Eq. 138). The shunt capacitance is C = 1 fF, the critical temperature
is Tc = 1.4 K and the bias current sweeping rate is İ = 200µA/second. The white dashed line indicates a
fit to the distribution using the analytical expression given in Eq. 142. b) Switching current distributions
P(I) as a function of normalized bias current, calculated for different physical temperatures T. With
increasing temperature, the critical current is suppressed alongside with the plasma frequency ωp of the
JJ. Consequently, the escape happens at lower bias currents and the increasing thermal energy causes a
broadening of the distribution. c) Normalized switching current Īsw/Ic as a function of temperature T,
extracted from fits to the calculated distributions similar to panel a and b. The color of the scatter points
indicate the physical temperature, and the black dashed line indicates the BCS temperature dependence
of Ic [60]. For the JJ with larger critical current Ic = 100 µA (pentagons), the switching currents are
very close to the critical current, while for the smaller JJ Ic = 5 µA (crosses), a significant premature
switching is observed. The offset at low temperatures is due to quantum tunneling.d) Normalized
standard deviation of the switching current distribution σsw as a function of temperature. At low
temperatures, MQT dominates, and σsw remains constant. With increasing temperature, thermally
activated escapes start to dominate and the distribution width increases. The decrease at temperatures
close to Tc is due to the strong temperature dependence of the critical current.
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The same numerical calculations were performed for two JJ, that differ in their
critical current only, with Ic ∈ {5 µA, 100 µA}. For the JJ with larger critical current,
the extracted switching currents are very close to the BCS temperature dependence
of the actual critical current, indictaed by the black solid line. Since the energy scales
corresponding to TA and MQT are low compared to the Josephson energy EJ, a
bias current close to the critical current is required to reduce the barrier height U0
sufficiently. As opposed to this, the switching current of the JJ with smaller critical
current deviates from the critical current significantly. At low temperatures, the
deviation is caused by the presence of MQT, until thermally activated escapes start
to dominate the switching.

The competition between MQT and TA becomes particularly evident in the tempera-
ture dependence of the distribution width, depicted in Fig. 22d. At low temperatures,
the width remains constant, indicating a constant escape rate due to the temperature
independent MQT. Hence, in the absence of MQT, the width would decrease further
with decreasing temperature. The transition into the regime in which the escape
is dominated by TA occurs around the assumed and fictional escape temperature
Tesc = 0.3 K associated to MQT. Since the temperature is normalized by the critical
temperature, I would like to emphasize that the size of the constant plateau depends
on the choice of the critical temperature. At temperatures close to the critical temper-
ature, the distribution width decreases again since the critical current approaches
zero. Similar to the asymmetry of the switching current distribution, caused by the
upper bound given by the critical current, the distribution is squeezed from below.

D.2 Device overview

The critical current density of superconducting grAl films, as shown in Fig. 1.19, was
obtained from switching current measurements performed on various dc SQUIDs.
The parameters of the film, i.e. the film thickness t and the normal-state resistivity
ρn (measured at room temperature), and the dimensions of the two geometric
constrictions, i.e. the widths w1 and w2, as well as the lengths l1 and l2, are listed in
Tab. 6.

The rather large fluctuations in the measured switching currents, even for devices
with almost identical constriction dimensions, suggest, that the switching dynamics
are strongly influenced by the film microstructure. Although not significant, there
seems to be a trend in the data indicating a slight decrease of the switching current
with the length of the geometric constriction. A possible explanation could be an
increase in the statistical probability of finding an increasingly weaker inter-grain
coupling between two (effective) grains.
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Table 6: Device parameters for the grAl dc SQUIDs from which the critical current densities are
extracted (shown in Fig. 1.19). The parameters are: film thickness t, normal-state resistivity ρn, measured
switching current in zero-field Īsw(0), geometric dimensions of the two constrictions width wi and
length li (i ∈ {1, 2}).

t ρn Īsw(0) w1 w2 l1 l2
device (nm) (µΩcm) (µA) (nm) (nm) (nm) (nm)

1 30± 5 250± 40 47.4± 0.5 65± 5 43± 5 57± 5 61± 5
2 52.3± 0.5 73± 5 81± 5 65± 5 62± 5
3 63.2± 0.6 84± 5 80± 5 63± 5 59± 5
4 40.9± 0.4 77± 5 77± 5 154± 5 150± 5
5 20.4± 0.2 57± 5 64± 5 150± 5 149± 5
6 22.2± 0.2 80± 5 78± 5 236± 5 235± 5
7 47.1± 0.5 77± 5 75± 5 248± 5 239± 5
8 20.6± 0.2 58± 5 62± 5 246± 5 245± 5

9 20± 5 1520± 200 4.01± 0.04 79± 5 79± 5 70± 5 61± 5
10 2.94± 0.03 99± 5 105± 5 90± 5 100± 5
11 3.20± 0.03 86± 5 84± 5 158± 5 148± 5

12 20± 5 3200± 720 0.91± 0.01 54± 5 57± 5 170± 5 165± 5
13 1.10± 0.01 76± 5 76± 5 257± 5 258± 5
14 0.93± 0.01 76± 5 74± 5 261± 5 258± 5

15 30± 5 5550± 450 1.1± 0.01 80± 5 78± 5 68± 5 67± 5
16 0.79± 0.01 76± 5 80± 5 65± 5 69± 5
17 0.57± 0.01 36± 5 44± 5 67± 5 58± 5
18 0.24± 0.01 53± 5 55± 5 160± 5 160± 5
19 0.68± 0.01 73± 5 73± 5 165± 5 164± 5
20 0.17± 0.01 56± 5 59± 5 256± 5 254± 5
21 0.86± 0.01 70± 5 73± 5 265± 5 261± 5
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E Superconducting Quantum Interference Devices -
SQUIDs

In a Superconducting Quantum Interference Device (SQUID), two physical effects
find a combined application: The Josephson dynamics of a weak link as described
in the previous section, and the quantization of the magnetic flux enclosed in a
superconducting loop in number of the magnetic flux quantum Φ0. As a consequence,
the response of a SQUID becomes a periodic function of the flux Φ enclosed in its
loop, which itself is related to the external magnetic field, rendering SQUIDs among
the most sensitive magnetic field detectors existing [7]. The arising periodicity is
attributed to an interference effect between the two loop branches, and the circulating
current induced by the application of an external magnetic field, resulting in an
interference pattern similar to that of an optical double slit experiment.

The physical implementation of a SQUID comes in two ways, either with a single JJ or
two JJs embedded in a superconducting loop. Historically, the two implementations
are distinguished nominally by the readout scheme used to measure the magnetic
flux, with devices containing a single JJ labeld radio frequency or rf SQUIDs [16, 55],
and devices with two JJs labeled direct current or dc SQUIDs [32, 59]. In the first
case, the SQUID used to be inductively coupled to a resonant tank circuit, with the
response of the SQUID altering the transition frequency of the auxiliary system,
while in the latter case, the information about the enclosed magnetic flux used to
be extracted from switching current measurements as discussed in the previous
section.

Depending on the application, SQUIDs are operated in the resistive or in the
nonresistive state. Similar to a single JJ, the SQUID enters the resistive state above a
critical bias current in case of a dc SQUID, or a critical circulating current in case
of an rf SQUID. However, the main drawback of this state of operation is the loss
of quantum coherence due to dissipation. With every measurement, the prepared
macroscopic quantum state of the superconducting condensate is obliterated. In the
framework of cQED, the nonresistive state of operation is therefore favored, which
enables the implementation of non-destructive readout schemes [29].

At a first glance, a dc SQUID is quite similar to an effective JJ with a nonconstant,
flux dependent critical current. Analogously, the Josephson dynamics of the two
weak links give rise to a nonlinear kinetic inductance, which can be tuned with the
external magnetic field. Embedded into a tank circuit, the resonance frequency of the
circuit becomes a function of the external magnetic field, and similar to an rf SQUID,
the information about the magnetic flux is encoded in the resonance frequency
of the device when used as detector for magnetic fields. In quantum information
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processing with superconducting circuits, where various circuits are connected to
a processor, a precise control over the frequency detuning between the different
components of the circuit is an essential prerequisite. Therefore, the flux tunablity
offered by a dc SQUID is used in superconducting quantum circuits.

From the perspective of transport measurements however, the SQUID contains
more degrees of freedom, and the switching dynamics are more complicated, and
generally sensitive to perturbations close to the plasma frequency. Although the
critical current is a measure of the maximal direct current the superconductor can
carry without resistance, the switching into the resistive state is a dynamical process,
and contains information about the properties of the superconducting material the
SQUID is made of, as well as about the electro-magnetic environment, as discussed
in Ref. [18].

E.1 Magnetic flux quantization

The superconducting wavefunction has to be unambiguous and single-valued in
every point in space and time. Therefore, the change of phase within one cycle
around a loop made from a superconducting material has to be an integer multiple
of 2π. The very consequence of this constraint is the quantization of the flux
inside a superconducting loop in integer numbers of the magnetic flux quantum
Φ0 ≈ 2.068× 10−15 Wb [10, 14], similar to the quantization of the electron’s orbital
angular momentum in the potential of an atom.

In the absence of a JJ in the loop, the external magnetic field is expelled by a circulating
current induced in the loop, and the enclosed magnetic flux remains zero. However,
in the presence of a JJ, quanta of magnetic flux Φ0 can tunnel into the loop. As soon
as the flux enclosed in the loop reaches half a flux quantum, the induced screening
current changes its orientation since it becomes energetically favorable to increase
the external flux rather than to expel it.

E.2 direct current SQUIDs

A direct current superconducting quantum interference device (dc SQUID) consists
of two Josephson Junctions (JJ), embedded in parallel in a superconducting loop, see
Fig. 23. In analogy to a single JJ, the supercurrent across the dc SQUID is related to
the phase difference γ between the superconducting electrodes connected to the
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Figure 23: Direct current superconducting quantum interference device. The top part shows the
artistic portrayal of a dc SQUID, consisting of two JJs (grey regions) embedded in a superconducting
loop. The leads connect the SQUID loop in such a way that the JJs are connected in parallel, and are
colored in different shades of red to emphasize the potential difference in phase of their macroscopic
wavefunctions. The external magnetic field is indicated by the black arrows piercing through the loop
from below. In the lower part of the image, an effective circuit model is depicted, based on which
the static and dynamic properties of the SQUID are derived. Each JJ is modeled individually by a
parallel circuit of an ideal JJ with critical current Ic,i , a capacitor Ci , and a resistor Ri , similar to Sec. D.1.
Additionally, the inductance of the loop itself is accounted for by an inductor with inductance Li in
each of the two SQUID branches. The penetration of the loop area by an external magnetic field induces
a screening current J in the loop wires. In case the loop inductance is significant compared to the
kinetic inductance of the JJs (L/LJ ≥ 1), screening effects start to dominate the flux modulation of the
critical current.
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loop. However, to the contrary, the effective critical current of the dc SQUID Ic is not
constant, but a periodic function of the magnetic flux Φ enclosed in the loop.

I = Ic(Φ) sin(γ) (144)

To the same effect the critical current of a single JJ is related to its kinetic inductance,
the kinetic inductance corresponding to the dc SQUID is a function of its critical
current, too, and, hence becomes a function of the magnetic flux.

LJ,sq =
Φ0

2π Ic(Φ)
(145)

Therefore, a better understanding of the flux modulation of the critical current is
vital for a better understanding of the applicability of a dc SQUID in the context of
cQED and other fields of research.

The flux modulation of the critical current is derived from an effective circuit model,
shown in Fig. 23. The circuit model consists of two JJs, both modeled in the spirit of
the RCSJ-model, described in Sec. D.1, with critical currents Ic,1 and Ic,2, junction
capacitances CJ,1 and CJ,2 and junction resistances R1 and R2. While the junction
capacitances and the resistances are irrelevant for the derivation of the critical current,
they become important quantities for the description of the switching dynamics of
the SQUID into the normal-conducting state. The loop wires contribute with an
additional inductance in each branch, denoted L1 and L2. For materials with low
normal-state resistivity, for instance pure aluminum, the loop inductance is mainly
geometric, and therefore neglectable. However, it contributes significantly in case
of superconducting materials with high intrinsic kinetic inductance, for instance
granular aluminum, or niobium.

Critical current flux modulation:

The supercurrent I across the SQUID is the sum of currents in both branches, denoted
I1 and I2

I = Ic,1 sin(γ1) + Ic,2 sin(γ2). (146)

In agreement with Eq. 1.13, γ1 and γ2 are the gauge invariant phase differences
across the JJs. The application of an external magnetic field induces a circulating
screening current J inside the SQUID loop, which is given by half the difference of
the currents flowing in the SQUID branches

J =
I1 − I2

2
. (147)
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Due to the circulating current, the phase differences γ1 and γ2 are not independent,
but are related via the magnetic flux enclosed in the loop.

γ1 − γ2 = 2πΦT/Φ0 (148)

The magnetic flux Φ is a combination of two contributions: The applied external
magnetic flux Φext, and the magnetic flux induced by the currents I1 and I2 flowing
through the effective loop inductances L′1 = L1 −M and L′2 = L2 −M, where M is
the mutual inductance between the SQUID branches.

Φ = Φext + LJ + ηL
I
2

(149)

Here, L = L′1 + L′2 is the total inductance, and η, with 0 ≤ η ≤ 1 is a parameter
that takes a finite asymmetry between the loop inductances into account (not to be
confused with the measurement efficiency).

L′1 = (1− η)
L
2

(150)

L′2 = (1 + η)
L
2

(151)

In analogy to the asymmetry in the loop inductances, a finite asymmetry between the
critical currents of the JJs is considered by introducing a critical current asymmetry
parameter α:

Ic,1 = Īc(1− α) (152)

Ic,2 = Īc(1 + α), (153)

where Īc is the critical current mean value. Inserting Eqs. 149 to 153 into Eqs. 146 to
148 yields expressions for the total current I, and the screening current J

I/ Īc = (1− α) sin(γ1) + (1 + α) sin(γ2) (154)

2J/ Īc = −(1− α) sin(γ1) + (1 + α) sin(γ2) (155)

and an expression for the relation between the phase differences

γ2 = γ1 − 2π
Φext

Φ0
− πβ

J
Īc
− πβη

I
2 Īc

, (156)

as a function of the asymmetry parameters α and ηL, and the screening parameter
β = 2LĪc/Φ0. Notably, in some publications, the screening parameter is expressed
in terms of the maximal critical current of the SQUID Ic,max = 2 Īc, instead of the
mean critical current Īc of the individual JJs.
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Negligible screening: β = 0

In case the loop inductance is small compared to the Josephson inductance of each
junction (L� LJ), according to Eq. 149, the external magnetic flux and the total flux
are identical in good approximation. The induced screening current J inside the
loop changes its direction every time the external magnetic flux increases by half
integer multiples of the flux quantum Φ0, which is expressed in a simplified relation
for the single junction phase differences

γ1 − γ2 = 2π

(
Φext

Φ0
+ s
)

, s ∈N. (157)

Inserting Eq.(157) into Eq. 146, and identifying the average phase difference γ =

(γ1 + γ2)/2 as the phase difference across the SQUID in the spirit of Eq. 144, yields
an analytical expression the flux dependent critical current Ic(Φext)

Ic(Φext) = 2 Īc

∣∣∣∣cos
(

πΦext

Φ0

)∣∣∣∣
√

1 + α2 tan2
(

πΦext

Φ0

)
. (158)

Figure 24 (a) depicts the periodic flux modulation of the critical current as a function
of the critical current asymmetry parameter α ∈ (0, 0.2, 0.4, 0.6). While the maximal
value max(Ic) = 2 Īc is independent of αc, the asymmetry limits the minimal value
found at half a flux quantum, reaching zero for symmetric devices only. Inserting
Eq. 158 into Eq. 145 yields an expression for the flux dependent kinetic inductance
of the SQUID

LJ(Φext) =
LJ,0∣∣∣cos

(
π Φext

Φ0

)∣∣∣√1 + α2 tan
(

π Φext
Φ0

)2
, (159)

with the zero-field inductance LJ,0 determined by the critical currents of the individual
JJs

LJ,0 =
Φ0

2π(2 Īc)
. (160)

Suppressing the critical current by means of an external magnetic field increases
the corresponding kinetic inductance, until it reaches a maximal value at half a
flux quantum of enclosed flux. According to Eq. 159, the consequence of the critical
current asymmetry is a reduction of the critical current modulation depth and,
therefore prevents the divergence of the corresponding kinetic inductance at half a
flux quantum enclosed in the loop.
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Figure 24: Critical current flux modulation of a dc SQUID. Normalized critical current of a dc SQUID
Ic/ Īc as a function of the applied external magnetic flux in number of magnetic flux quanta Φext/Φ0,
numerically calculated for different values of a) the critical current asymmetry α, b) the screening
parameter β = 2LĪc/Φ0, c) a variable critical current asymmetry and a fixed screening parameter β = 1,
and in d) a fixed screening parameter β = 1 and an asymmetry η between the loop inductance in both
SQUID branches. In general, the modulation depth decreases with α and β, but with a significantly
different slope around the minimum at half a quantum of external flux. For a combination of a finite
screening β = 1 and critical current asymmetry, the position of the minimum shifts to lower flux values
with increasing α. Depending on the relative size of α and β, the shape is either rounded or sharp at the
minimum. In case of an increasing asymmetry in the loop inductance η, the position of the maximum
shifts more significantly than that of the minimu.
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Finite screening: β 6= 0

In the presence of considerable screening of the external magnetic field due to the
loop inductance L, and, especially in case of an asymmetry ηL between the inductance
in the two SQUID branches, a numerical calculation of the critical current flux
modulation is necessary. Following the detailed description presented in Ref. [59],
the screening current J is first eliminated in Eq. 156 by inserting the expressions for
the total current and the screening current given in Eq. 154 and Eq. 155, respectively:

γ2 = γ1 − 2π
Φext

Φ0
− πβ

2
(1 + η)

I
Īc

+ πβ(1− α) sin γ1. (161)

The critical current of the SQUID is calculated for every value of the magnetic flux
Φext individually, by finding the roots of the function

F(I, γ1) =
I
Īc
− (1− αc) sin γ1 − (1 + α) sin γ2 (162)

For a given set of values for the bias current 0 ≤ I/Ic ≤ 2 and phase difference
0 ≤ γ1 ≤ 2π, the maximal bias current max(I) at which the function F possesses
a root in γ1 still, necessarily is the critical current. Consequently, the extracted
combination of I and γ1 will satisfy ∂F/∂γ1 = 0 at the same time, with the derivative
given by

∂F(I, γ1)

∂γ1
= −(1− α) cos γ1 − (1 + α) [1 + πβ(1− α) cos γ1] cos γ2. (163)

Figure 24b-d show the critical current modulation with external flux in the presence
of finite screening β 6= 0, for a symmetry SQUID (α = η = 0) in panel (b), as
well as in combination with a critical current asymmetry (α 6= 0, ηL = 0) in panel
(c), and an asymmetry in the loop inductance (α = 0, η 6= 0) in panel (d). In all
combinations of SQUID parameters, the critical current reaches a maximal value
2 Īc determined by the sum of the critical currents of the individual JJs. Similar to
the reduction of the modulation depth ∆Ic, the difference between the minimal and
the maximal critical current, with increasing critical current asymmetry α, depicted
in Fig. 24a, the modulation depth decreases with increasing screening parameter
β, too. However, while the shape of the minimum is round for α > 0, it remains
sharp for all values of β, which is the main characteristic to distinguish between
both cases. For combinations of finite screening and asymmetry, the position of the
minimal and maximal critical currents with respect to the applied magnetic flux
shift, as indicated in panel (c) and (d).
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Figure 25: Critical current modulation depth. a) Normalized critical current of a dc SQUID Ic/ Īc as a
function of the applied external magnetic flux in number of magnetic flux quanta Φext/Φ0, numerically
calculated for a critical current asymmetry α = 0.4. The modulation depth of the critical current ∆Ic

is defined as the difference between the minimal and the maximal value. b) Relative critical current
modulation depth ∆Ic/(2 Īc) as a function of the critical current asymmetry parameter α, and the
screening parameter β. The values are extracted from numerical calculations, as shown in a), by either
varying α or β while keeping the other equal to zero. The loop inductance asymmetry is neglected
(η = 0) in both cases. While the modulation depth decreases linearly with α, eventually approaching
no modulation for α = 1, it decreases slower with increasing screening parameter β. The solid black
line indicates the power law according to Eq. 164, which is in good agreement with the numerical
calculation.

Provided the screening due to the loop inductance dominates over the critical current
asymmetry, the relative modulation depth is related to the screening parameter β

[25]
∆Ic

2 Īc
≈ 1

1 + β
, (164)

and the inductance of the loop L can be inferred from the measured modulation
depth. Figure 25 depicts the definition of the modulation depth with the aid of the
critical current calculated for α = 0.4 in panel (a), and the dependence of ∆Ic on
the parameters α and β in panel (b). With increasing critical current asymmetry,
the modulation depth decreases linearly (red curve), until it vanishes for α = 1. Of
course this limit is only theoretical, since it requires one of the critical currents to
become either zero or infinity. The dependence on the screening parameter (blue
curve) is a power law, in agreement with Eq. 164, which is indicated by the solid
black line for comparison reasons. Despite the different dependence on α and β, I
would like to point out, that the relation between β and the circuit parameters (L and
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Īc) is linear, while it is nonlinear in case of α (Ic,1 and Ic,2). For that reason, plotting
the modulation depth against Ic,2, which I assume to increase in order to change
the value of α, instead of plotting it against α, would result in a similar power law
dependence.
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F Josephson Junction and SQUID arrays

A Josephson junction array (JJA) or, alternatively a SQUID array (SQA), is an
electrical network formed by the interconnection of multiple (N ≥ 3) Josephson
circuit elements of the same kind [60]. Although the term array does not constrain
the dimensionality of the network, in the scope of this thesis I will use the term
synonymously and solely to describe one-dimensional chains of JJs or SQUIDs.
However, even in the one-dimensional case, the potentially large number of degrees
of freedom can give rise to rich many-body phenomena [52].

Since JJs and SQUIDs are quantum objects in general, the dynamics of JJAs can be
either semi-classical, provided the Josephson energy of a single element dominates
over the charging energy (EJ � Ec), or quantum mechanical in the opposite case
(EJ � Ec). Since charge and phase are conjugate variables in a supercondutor,
the suppression of charge fluctuations can induce a superconductor-to-insultator
transition [17, 58]. The applications of JJAs are manifold, but are highly dependent
on the parameter regime. Classical arrays are used for the implementation of large
inductors, denoted superinductors if the corresponding impedance of the array
is larger than the resistance quantum (Z ≥ RQ) [42, 45], or alternatively as weak
sources of nonlinearity in superconducting parametric amplifiers [5, 66, 68], while
quantum arrays are utilized to investigate the Coulomb blockade of Cooper pairs
[30], the formation of charge solitons [1, 11], and quantum phase slips [50].

Similar to the phonon spectrum present in a crystalline solid state, the number of
independent degrees of freedom N determines the total number of eigenmodes of the
circuit. The dependence of the eigenenergies Em, or alternatively the corresponding
frequency of the eigenmodes ωm on the mode number m is referred to as the dispersion
relation of the array. In general, the dispersion relation is nonlinear and depends not
only on the parameters of the circuit elements, the Josephson energy EJ and charging
energy Ec, but also on the boundary conditions. In contrast to the solid state, the
boundary condition on both ends of the array can be determined deliberately, either
by a capacitive or a galvanic coupling to the environment. The choice of coupling
will determine the standing-wave pattern of current and voltage along the array.

For long arrays (N � 1), the circuit topology gives rise to low-frequency eigenmodes,
for which the effective wavelengths are much larger than the distance between
neighboring circuit elements, and, hence the modes are similar to the acoustic
harmonics of a string. Although the eigenmodes of a JJA are generally nonlinear in
power, the otherwise much larger phase fluctuations across single JJs is diluted over
many elements, which reduces the nonlinearity of the mode significantly [15]. In the
context of cQED, the control of this nonlinearity is used to enhance the saturation
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power of Josephson parameteric amplifiers, which is discussed in more detail in
Ch. 3.

Despite the exact application, first and foremost, a mathematical description of the
array based on an effective circuit model is required, which is introduced in the
following section. The eigenmodes are calculated from the linearized Lagrangian of
the circuit model, while the nonlinearity arising from the cosine potential of the JJs
is introduced perturbatively, with only the first order nonlinearity being considered.
Besides the microwave properties of the closed system, the external coupling rates
to a microwave input port are of interest provided the eigenmodes of the JJA are
readout directly.

F.1 Dispersion relation

The dispersion relation or eigenmode spectrum of a one-dimensional array of JJs, or
equivalently dc SQUIDs, is calculated numerically from the linearized Lagrangian
of an effective circuit model, which is based on the quantum-phase model [17].
The circuit model consists of N junctions with assigned critical current Ic,i and
corresponding Josephson energy EJ,i = Φ0 Ic,i/(2π) for the i th element, and is
shown in Fig. 26a. The junction capacitance CJ,i arising between the superconducting
electrodes is in parallel with the nonlinear inductive contribution for each Josephson
element. The interconnections between the Josephson elements are described as
superconducting islands with capacitance C0 to ground. For simplicity, the inductive
contribution of the islands is neglected. For a quantum mechanical treatment, the
node charges and phases associated to the superconducting islands, Q̂i and φ̂i, are
conjugate variables (see App. A).

In case of dc SQUID-junctions with small loop inductance and screening parameter
(β� 1), the critical currents and corresponding Josephson energies become functions
of the external magnetic flux Φext, but apart from this, the treatment is identical.
Hence, I use the terms JJA and SQA interchangeably throughout my thesis.

Although identical circuit elements are desired in the scope of my thesis, which is
why I will drop the node index i for the circuit parameters, an intentional periodic
variation of the circuit parameters can induce band structures into the dispersion
relation similar to photonic crystals [31], which has recently been exploited to build
travelling wave parametric amplifiers based on SQUID arrays [49].
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Figure 26: Josephson junction arrays. a) Schematic circuit diagram of a one-dimensional chain of N
identical Josephson elements (crossed box). As indicated by the grey box, the Josephson elements
represent either single JJs with constant Josephson energy EJ = Φ0 Ic/(2π) and ideal current phase
relation (cross), that are shunted by the junction capacitance CJ with charging energy Ec = e2/(2CJ), or
flux tunable dc SQUID junctions. Provided the screening parameter of the SQUID is small (β� 1), the
SQUID behaves similar to a JJ with flux dependent critical current (see App. E). The island connecting
the Josephson elements exhibit a capacitance to ground C0. The boundary condition on both ends
of the array depends on the coupling mechanism, and is either galvanic (top panel) or capacitive
(bottom panel). In the latter case, the coupling capacitors are Cin and Cout. b) Numerically calculated
dispersion relation of a short (N = 180, blue) and long (N = 1800, red) array. The eigenfrequencies ωm
are normalized by the plasma frequency ωpl ≈

√
8EJEc, the self-resonance frequency of each Josephson

element. The capacitance ratio is CJ/C0 = 2500. For the short array, most eigenmodes accumulate close
to the plasma frequency, while the long array exhibits an almost linear dispersion relation for the first
few modes, indicated by the black dashed line.
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Boundary conditions:

The boundary conditions on both ends of the array depend on the coupling
mechanisms, which can be either capacitive or galvanic, resulting in an antinode of
the voltage or the current at these locations, respectively. Provided the coupling is
galvanic on both ends, the Lagrangian is

L =
N−1

∑
i=1

C0

2
Φ̇2

i +
N−1

∑
i=0

CJ

2
(
Φ̇i+1 − Φ̇i

)2 − EJ cos(φi+1 − φi). (165)

Here, φi is the superconducting phase of the i th island, which is related to the node
flux Φi = Φ0φi/(2π) introduced in Sec. 1.1.1. Since the voltage is related to the time
derivative of the node flux, and has to vanish for a galvanic coupling, the boundary
condition translates into Φ0 = ΦN = 0. For a capacitive coupling at both ends, the
Lagrangian is

L =
N−1

∑
i=1

C0

2
Φ̇2

i +
Cin

2
(
Φ̇0 − Φ̇in

)2
+

Cout

2
(
Φ̇out − Φ̇N

)2

+
N−1

∑
i=0

CJ

2
(
Φ̇i+1 − Φ̇i

)2 − EJ cos(φi+1 − φi).

(166)

Here, Cin and Cout are the coupling capacitors at the two ends of the array. In the
absence of a voltage drive, the coupling capacitors are grounded (Φin = Φout = 0).

Linearized Lagrangian:

In the limit of small circulating currents with respect to the critical current of the
junctions I � Ic, the phase drop φi+1 − φi across each junction becomes small even
in regions of maximal current, and the Lagrangian is linerized by approximating the
nonlinear cosine potentials with harmonic potentials. The corresponding coefficients
are the linear Josephson inductances LJ as introduced in Sec. 1.1.2.

L =
N

∑
i=1

C0

2
Φ̇2

i +
N

∑
i=0

CJ

2
(
Φ̇i+1 − Φ̇i

)2 − 1
2LJ

(Φi+1 −Φi)
2. (167)

Since the linearization does not affect the role of the capacitive contributions,
the Lagrangian of a capacitively coupled array given in Eq. 166 can be linearized
analogously. In order to solve for the eigenfrequencies of the system, the linear
Lagrangian given in Eq. 167 is expressed in a more compact form by introducing the
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node flux vector ~Φ = (Φ0, ..., ΦN), as well as the inverse inductance and capacitance
matrices L̃−1 and C̃, respectively. The matrix representation of the Lagrangian is

L =
1
2
~̇ΦTC̃ ~̇Φ− 1

2
~ΦT L̃−1~Φ. (168)

The matrices contain the information about the distribution of the circuit parameters
along the array, and are of dimension (N − 1)× (N − 1) and N × N depending on
the coupling mechanism. For the galvanically coupled array, the capacitance matrix
in its simplest form is

C̃ =


2CJ + C0 −CJ 0 . . .
−CJ 2CJ + C0 −CJ 0 . . .

0 −CJ 2CJ + C0 −CJ 0 . . .
...

. . . . . . . . . . . . . . . . . .

 , (169)

and the inverse inductance matrix is

L̃−1 =


2
LJ

− 1
LJ

0 . . .

− 1
LJ

2
LJ

− 1
LJ

0 . . .

0 − 1
LJ

2
LJ

− 1
LJ

0 . . .
...

. . . . . . . . . . . . . . . . . .

 . (170)

While the inverse inductance matrix reflects the reality of nearest neighbour inductive
coupling, the capacitance matrix is a simplification. In experimental realizations of
JJAs, especially in microstrip geometries where the distance to the ground is much
larger than the distance between neighboring elements, the ground can mediate
long-range Coulomb-interactions between the charges on the superconducting
islands. A more complete picture is discussed in Ref. [35], which potentially results
in a quantitatively better agreement between the experimental observation and the
model prediction.

Diagonalization:

Starting from Eq. 168, the eigenenergies Em of the system can be calculated either
by deriving the Hamiltonian by means of a Legendre transformation introducing
the canonical momenta Qi = ∂L

∂Φ̇i
= CijΦ̇j first, before it is diagonalized, or by

diagonalizing the Lagrangian directly. While the Hamiltonian is

H0 =
1
2
~QTC̃−1~Q +

1
2
~ΦT L̃−1~Φ, (171)
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the diagonalization of the Lagrangian is realized by performing a coordinate
transformation of the form

~Υ = C̃1/2~Φ, (172)

where C̃1/2 is the square root of the capacitance matrix satisfying C̃1/2 · C̃1/2 = C̃.
The transformed Lagrangian in matrix representation is

L =
1
2
~̇ΥT~̇Υ− 1

2
~ΥTC̃−1/2 L̃−1C̃−1/2~Υ, (173)

from which the energy eigenvalues Em = h̄ωm and the corresponding eigenvectors
~Ψm are found by solving the eigenvalue problem [64]

C̃−1/2 L̃−1C̃−1/2︸ ︷︷ ︸
Ω̃

~Ψm = ω2
m~Ψm. (174)

Since the matrix Ω̃ is orthogonal, implying Ω̃T = Ω̃−1, the resulting eigenvectors
~Ψm are orthogonal, too, and the eigenvalues are real. In the case under consideration,
the eigenvectors ~Ψm are related to the node flux eigenvectors of the array, ~Φm, via
the capacitance matrix and the eigenfrequencies

~Φm =

√
h̄

2ωm
C̃−1/2~Ψm, (175)

and describe the (classical) standing-wave pattern of each mode along the array.
Since the current I through, and the voltage drop V across the i th circuit element
is related to the gradient of the magnetic flux ∆Φi = Φi+1 −Φi and its derivative
∆Φ̇, respectively, the magnetic flux eigenvectors give insight into the standing-wave
pattern of current and voltage.

Until now, the description of the array was classical. In the quantum mechanical
case, as discussed in more detail in Ref. [64], the flux eigenvectors are promoted
to operators, which can be describe in terms of pairs of bosonic single-mode field
amplitude creation and annihilation operators â†

m and âm, respectively,

~̂Φm =

√
h̄

2ωm
C̃−1/2~Ψm

(
âm + â†

m

)
. (176)

Hence, the entries in the eigenvectors can be thought of as the zero-point fluctuations
of the flux, or equivalently the phase across each JJ. The node flux vector ~Φ, as
introduced in context of the matrix representation of the Lagrangian in Eq. 173, can
be expressed as the sum of these

~̂Φ = ∑
m

~̂Φm. (177)
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By inserting Eq. 177 into Eq. 171, the linear Hamiltonian expressed in second
quantization is

Ĥ =
N−1

∑
m=0

h̄ωm â†
m âm. (178)

Energy spectrum:

Two examples for the dispersion relation of a JJA are given in Fig. 26b, showing
the eigenenergies ωm of the first twenty eigenmodes, normalized by the plasma
frequency ωpl, for a shorter array with N = 180 (pink) and a longer array with
N = 1800 (cyan) JJs. Notably, due to the additional capacitance to ground C0, the
plasma frequency of the array is reduced

ωpl =
1√

LJ(CJ + C0/4)
, (179)

although the change is significant only if the capacitance to ground is comparable
to the junction capacitance. For the arrays studied in this thesis, the capacitance
to ground is at least two orders of magnitude smaller, and its contribution to the
plasma frequency is negligible.

The dispersion relation of the longer array exhibits an almost linear regime at
the beginning, with an approximately equidistant detuning between the modes,
becoming appreciably nonlinear only after the sixth eigenmode. By comparing this
results with the shorter array, it becomes evident that the number of modes in this
linear regime, as well as the frequency detuning between them, depend on the total
number of Josephson elements N. Moreover, the slope of the linear regime, indicated
by the black dashed line, is controlled by the ratio of junction capacitance to ground
capacitance, which is CJ/C0 = 2500 in the given examples. Hence, in case CJ � C0
and in the light of the large number of degrees of freedom, it is legit to state that the
vast majority of eigenmodes accumulate close to the plasma frequency, while a few
eigenmodes are addressable individually only.

Standing-wave pattern:

Figure 27a depicts the first four eigenvectors ~Φm (m ∈ {0, 1, 2, 3}) as a function
of the node number i, numerically calculated for a JJA with N = 180 elements
and symmetric capacitive coupling on both ends (Cin = Cout � CJ). Due to the
boundary conditions, the voltage exhibits an antinode on both ends for all modes,
with the fundamental mode being a λ/2 mode. Neighboring voltage antinodes are
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Figure 27: JJA: capacitive vs. galvanic coupling. a) Magnetic flux eigenvectors ~Φm normalized by the
magnetic flux quantum Φ0 for the first four eigenmodes of a capacitively coupled JJA with N = 180
elements, plotted against the node number i as defined in Fig. 26a (bottom panel). The coupling
capacitances on both ends are identical and assumed to be small compared to the junction capacitance
(Cin = Cout � CJ). Since the current I and voltage V are proportional to the gradient of the magnetic
flux and its derivative, respectively, the standing-wave patterns of the eigenvectors give insight into
the modal distribution of I and V. Therefore, voltage antinodes are located at the positions of the
maxima, while current antinodes are located at the roots of the distribution. The effective wavelength
λeff,m of the mode is given by the standing-wave pattern and the physical length of the JJA. For a
long array, the lowest frequency modes resemble the harmonics of an accoustic system with open
boundary conditions (λ/2, λ, 3λ/2, ...). b) Magnetic flux eigenvectors of a galvanically coupled JJA. In
contrast to the capacitively coupled array, the first eigenmode is a dc mode and all eigenmodes with
standing-wave pattern exhibit current antinodes on both ends. c) Dispersion relation of a capacitively
coupled array as a function of the ratio between input and junction capacitance. Again Cin = Cout, and
the eigenfrequencies are normalized by the plasma frequency ωpl. With increasing coupling capacitance,
the capacitively coupled array effectively turns into a galvanically coupled array, as indicated by the
standing-wave pattern of the second eigenmode shown in d).
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separated by a current antinode, with the total number of voltage antinodes given
by m + 2. Hence, while the even modes exhibit a maximum of the current in the
center of the array, the odd modes exhibit a voltage maximum. The amplitude of the
standing-wave pattern decreases with increasing mode number m. As opposed to
this, for a galvanically coupled array, shown in Fig. 27b, current antinodes are located
on both ends, and the fundamental mode is a dc mode with linear standing-wave
pattern and zero frequency ωm = 0.

The transtition between the two coupling regimes is indicated in Fig. 27c with the
aid of the eigenenergies of the first six modes of a JJA, plotted against the coupling
capacitance Cin. With increasing coupling capacitance, the energy spectrum transits
from the dispersion relation of a capacitively coupled JJA into that of a galvanically
coupled array. As indicated by the black solid line, the fundamental mode approaches
zero-frequency, although it will never actually reach zero. The transition occurs in
the region in which the frequency dependent impedance of the coupling capacitance
is larger than that of the junction capacitance, but smaller than that of the ground
capacitance. The parameter induced change of boundary conditions is further
emphasized in Fig. 27d, by a comparison between the standing-wave patterns of the
second overall mode for the two extremal conditions indicated by the black circles
in panel c. The previously λ mode turns into a λ/2 mode.

F.2 Kerr coefficients

The nonlinearity in JJAs arises from the cosine potential of the individual Josephson
elements. Since the nonlinearity of a single JJ depends on the phase fluctuations
across the junction, the nonlinearity in a JJA is much lower in magnitude in general,
and is therefore treated perturbatively

Ĥ = Ĥ0 + Ĥ1, (180)

where Ĥ0 is the linear Hamiltonian given in Eq. 178, and the perturbation term is

Ĥ1 = − EJ

24

N−1

∑
i=0

(
φ̂i+1 − φ̂i

)4
= − EJ

24

(
2e
h̄

)4 N−1

∑
i=0

(
Φ̂i+1 − Φ̂i

)4 . (181)

By inserting the expression for the node flux operators

Φ̂i = ∑
m,j

C̃−1/2
i,j Ψm,j

√
h̄

2ωj

(
âj + â†

j

)
, (182)
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into the nonlinear Hamiltonian given in Eq. 181, and applying the rotating-wave
approximation yields the nonlinear Hamiltonian

H =
N−1

∑
m=0

h̄ωm â†
m âm +

h̄
2

Km,mωm â†
m âm â†

m âm︸ ︷︷ ︸
self−Kerr

+
N−1

∑
m,k=0

h̄
2

Km,kωm â†
m âm â†

k âk︸ ︷︷ ︸
cross−Kerr

, (183)

given in Eq. 3.1 in the main text. Notably, the terms considered describe interactions
between two modes at most, even though the nonlinear Hamiltonian in Eq.181 gives
rise to further interactions. The terms neglected describe the interaction of two
modes via a third one, and the pairwise creation and annihilation of photons in four
different modes [64].

The coefficients in front of the second and the third term are referred to as the self-Kerr
and the cross-Kerr coefficients, respectively. As mentioned during the introduction,
the two effects describe the frequency dependence of the m th eigenfrequency on the
average photon number occupying the same mode m or another mode k, respectively.
The Kerr coefficients are identified as

Km,m = −2h̄π4EJηmmmm

Φ4
0C2

J ω2
m

, (184)

and

Km,k = −
4h̄π4EJηmmkk

Φ4
0C2

J ωmωk
, (185)

where ηmmkk is a numerical factor that takes the standing-wave pattern into account.
In particular, the higher the mode number, the larger is the average phase fluctuation
across each JJ, and the larger the nonlinearity is, as can be seen from panel a and b in
Fig. 27. The numerical factor is

ηmmkk =C2
J

N

∑
i=1

( N

∑
j=0

(
C̃−1/2

i,j − C̃−1/2
i−1,j

)
Ψj,m

)2

×
(

N

∑
j=0

(
C̃−1/2

i,j − C̃−1/2
i−1,j

)
Ψj,k

)2
 .

(186)

Here Ψj,m is the j th entry of the m th eigenvector ~Ψm, and C̃−1/2
i,j is the entry in the

i th row and the j th column of the square root of the inverse capacitance matrix.
Generally speaking, the Kerr coefficients increase with increasing mode number m,
but saturate as soon as the dispersion relation approaches the plasma frequency.
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Figure 28: JJA: Kerr coefficients. Self-Kerr and next neighbor cross-Kerr coefficients |K|m,m (circles)
and |K|m,m+1 (diamonds), respectively, numerically calculated as a function of the mode number m
for an array with N = 100 (panel a) and with N = 1000 JJs (panel b). Both arrays are assumed to be
galvanically grounded on both ends. The Josephson inductance is LJ = 50 (pH), the junction capacitance
is CJ = 1 pF and the capacitance to ground is C0 = CJ/2500. Similar to the dispersion relation of the
short array shown in Fig. 26b (blue), the Kerr coefficients quickly saturate and accumulate close to a
maximal value for m ≥ 4. For the longer array, the saturation is slower, and the overall magnitude of
the coefficients is lower. c) Self-Kerr coefficients of the first 10 eigenmodes, expect for the fundamental
(dc) mode, as a function of the total number of Josephson elements N. The other circuit parameters
remain again fixed. With increasing length, the self-Kerr coefficients decrease. In shades of pink and
purple are the solutions presented in panel a and b, respectively. The dashed lines indicate curves of
the type ∼ 1/Nε , with ε ∈ [1, 3]. The comparison to the numerical solutions emphasizes the much
stronger decrease in nonlinearity for the first mode. d) The ratios between the self-Kerr coefficients and
the corresponding eigenfrequencies |K|m,m/ωm show, that the reduction in frequency is faster than
the reduction in nonlinearity. Furthermore, the small magnitude of the ratios for the given circuit
parameters justify the perturbative treatment of the nonlinearity.
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Scaling with the array length N:

The frequencies ωm and the Kerr-coefficients Km,m and Km,k of the eigenmodes are
essential variables when designing experiments involving JJAs. Since they are not
independent, but are both controlled by the circuit parameters and the length of the
array, a compromise might has to be found if one or the other underlies experimental
constraints. If an overall low nonlinearity is desired, which is a common condition
in Josephson parametric amplifiers and superconducting qubits, the natural choice
seems to be an increase of the array length. Despite the following discussion, a
detailed analysis on the scaling of the nonlinearity with N, even in circuits containing
additional linear inductive elements, can be found in Ref. [56].

Figure 28 panel a and b depict the self-Kerr and next neighbor cross-Kerr coefficients
|K|m,m and |K|m,m+1, respectively, as a function of the mode number m for two arrays
with identical circuit parameters LJ = 50 pH, CJ = 1 pF, and C0 = CJ/2500, but
different total number of Josephson elements, N = 100 (panel a) and N = 1000
(panel b). Similar to the comparison of the dispersion relation of a relatively short
to a much longer array in Fig. 26b, the Kerr coefficients saturate much earlier in
terms of the mode number in the short array, while the absolute values are much
lower for the long array. In Fig. 28 panel c, the self-Kerr coefficients of the first 10
modes, except for the fundamental (dc) mode, are plotted on a log scale for arrays
with increasing total length N. The dependence clearly shows that the reduction in
nonlinearity is the strongest for the first mode (m = 1), by more than two orders of
magnitude between the shortest (N = 100) and the longest (N = 1000) array. With
increasing mode number, the reduction with length is less pronounced. The dashed
lines indicate curves of the type ∼ 1/Nε, with ε ∈ [1, 3], in order to emphasize the
scaling of the nonlinearity with length.

Besides the reduction in nonlinearity, the frequency of the corresponding mode
decreases with length, too. Fig. 28d shows the ratio between the self-Kerr coefficient
and the corresponding eigenmode frequency. As can be seen, the frequency of the
modes decreases faster with N than the nonlinearity. Therefore, if a certain resonance
frequency needs to be met, the scaling of the nonlinearity is actually much weaker
than the fast decrease with ∼ N2.5 shown in Fig. 28c. Although in principle the
choice of the eigenmode is free, and, so far, has an implication on the reduction of
the nonlinearity only, the coupling to a microwave input port is affected by the mode
number and array length, too. Especially in the context of standing-wave parametric
amplifier concepts, for which the coupling rate determines the bandwidth of the
amplifier, a sufficiently strong coupling needs to be ensured.
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F.3 External coupling

In order to complete the picture of JJAs from the perspective of (quantum) electrical
engineering, the reamining property, the coupling rate κ to a microwave input
port needs to be examined. Similar to the previous treatment, the coupling rate is
determined based on a numerical calculation method.

The linear microwave response of a JJA can be predicted from an effective circuit
model by calculating the corresponding reflection coefficient Γ(ω), or denoted
S11(ω) in the context of electrical engineering, as a function of probe frequency
ω. Provided the eigenmodes of the array are sufficiently detuned in frequency
compared to the linewidth of the mode ∆ωm = ωm+1 − ωm � κm, the microwave
response of each eigenmode can be examined individually in terms of its resonance
frequency ωm and external coupling rate κm. In analogy to a single resonance and
in the absence of microwave losses, the phase of the reflection coefficient arg(S11)

undergoes a phase roll of 2π in close vicinity to the resonance frequencies ωm. From
a fit of the numerical data to the theoretical prediction based on a simple resonator
model, ωm and κm are determined for each mode.

Transmission matrix approach:

In a reflection measurement of an electrical circuit, the reflection coefficient Γ is
determined by the input impedance of the circuit Zin as seen from the respective port,
and the charactersitic impedance Z0 of that same port [51]. However, since it is rather
cumbersome to calculate the input impedance of a JJA and its frequency dependence
analytically, a much more convenient approach is to numerically calculate the
reflection coefficient Γ from the S11 entry of the scattering matrix of an effective
two-port network, based on a transmission matrix approach [51]. In case only a
single physical port is connected to the JJA, the second port of the transmission
matrix is grounded.

Generally speaking, the transmission matrix T̃ of a two-port network relates the
current and voltage of the first port, denoted I1 and V1, respectively, to the current
and voltage of the second port, denoted I2 and V2 accordingly.(

V1
I1

)
=

(
A B
C D

)
︸ ︷︷ ︸

T̃

(
V2
I2

)
(187)

The scattering and transmission matrix representation of a two-port network are
shown in Fig. 29. Since both representations describe the same physical system, the
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Figure 29: Scattering and transmission matrix. Scattering matrix (cyan) and transmission matrix
(purple) of a two-port network. The entries of the scattering matrix are defined as the ratios of the
voltages Sij = V−i /V+

j incident to the j th port, and outgoing through the i th port, while the incident

voltage on all other ports is zero V+
k = 0(k 6= j). Therefore, the entry S11 is the reflection coefficient

measured from the first port. The entries of the transmission matrix relate the current and voltage of
the first port, I1 and V1, respectively, with those of the second port, denoted I2 and V2. The relations
between the two ports are V1 = AV2 + BI2 and I1 = CV2 + DI2.

entries of both matrices are related. The reflection coefficient measured from the
first port is [51]

S11 =
A + B/Z0 − CZ0 − D
A + B/Z0 + CZ0 + D

, (188)

where A, B, C and D are the entries of the transmission matrix, which are complex
and frequency dependent in general, and Z0 is again the characteristic impedance of
the input port.

The convenience of this approach in the context of JJA arises from the fact,
that the whole JJA can be represented by an effective two-port network with
corresponding transmission matrix T̃, which is calculated from the transmission
matrices T̃i representing each circuit element individually, simply by subsequent
matrix multiplications of these matrices:

T̃ =
N+1

∏
i=1

T̃i =

(
A B
C D

)
(189)

The reflection coefficient as seen from the input port connected to the array is then
calculated from the four entries of the transmission matrix using Eq. 188.

According to the effective circuit model shown in Fig. 30a, the JJA can be broken
down to a unit cell composed of three elements: a Josephson element represented by
a parallel LC circuit, with junction capacitance CJ and generally tunable inductance
LJ(Φext) to account for the flux tunability of SQUIDs, as well as the capacitance to
ground C0 and stray inductance Ls of the superconducting island connecting the
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Figure 30: JJA: External coupling. a) Linear circuit model of a one-dimensional Josephson junction
array. The unit cell of the array is composed of three circuit elements connected in series: a Josephson
element represented by a parallel circuit of a tunable inductance LJ(Φext) = LJ,0/| cos(πΦext/Φ0)|,
shunted by the junction capacitance CJ, and a superconducting island with capacitance to ground C0,
and linear stray inductance Ls. The input port is taken into account by a semi-infinite transmission
line with characteristic impedance Z0, while the other end of the array is connected to ground. b)
Phase of the complex reflection coefficient arg(S11), numerically calculated using a transmission matrix
approach as a function of the probe frequency ω = 2π f and the external magnetic flux Φext in numbers
of the magnetic flux quantum Φ0. The circuit parameters plugged in into the calculation are N = 1000,
LJ,0 = 50 pH, CJ = 1 pF, C0 = CJ/2500, and Ls = 10 pH. The individual modes are clearly visible due to
the sharp phase roll-off which occurs on the order of the linewidth. Since the microwave losses are
zero, the linewidth is equal to the external coupling rate κ. The right-hand panel depicts the frequency
dependence of the phase extracted at zero external flux, as indicated by the black dashed line in the
left-hand panel. The dashed lines are the results of individual fits to the complex reflection coefficient
in close frequency vicinity of each mode according to Eq. 193 used to extract the external coupling rate.
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Josephson elements. Notably, in this approach it is much simpler to include the stray
inductance into the model. The transmission matrices for the three elements are

T̃J =

1
[(

jωLJ
)−1

+ jωCJ

]−1

0 1


T̃C0 =

(
1 0

jωC0 1

)

T̃Ls =

(
1 jωLs

0 1

)
. (190)

As mentioned at the beginning, in order to recover the relfection coefficient as
measured from a single port network, which is different compared to the case of a
network with two physical ports, the second port has to be grounded. If the JJA is
galvanically connected to ground, the voltage needs to vanish at the end node. The
transmission matrix representing this termination is

T̃term =

(
0 0
0 1

)
. (191)

Summing up the calculation procedure, the transmission matrix of a JJA from which
the reflection coefficient is calculated according to Eq. 188, is

T̃ =

(
N−1

∏
i=1

T̃JT̃C0 T̃Ls

)
T̃JT̃term. (192)

Figure 30b depicts the phase of the reflection coefficient arg(S11), numerically
calculated as a function of the probe frequency f , and the external magnetic flux Φext

in number of flux quanta. The flux dependence of the variable inductance considered
for the calculation is that of a symmetric dc SQUID LJ = LJ,0/| cos(πΦext/Φ0)|. The
transition frequencies of the individual modes of the array are identified by the
relatively sharp phase roll-off, and the characteristic sinusoidal flux dependence.
For the given set of parameters, N = 1000, LJ,0 = 50 pH, CJ = 1 pF, C0 = CJ/2500,
and Ls = 10 pH, the three eigenmodes falling into the frequency domain between 1
and 10 gigahetz are well separated from each other. The right-hand panel shows a
vertical slice along the probe frequency around zero-field, as indictaed by the black
dashed line in the 2D colorplot. The characteristic phase roll-off by 2π is visible for
the first six modes, and emphasized by the color gradient. In contrast to the 2D plot,
the black dashed line(s) in panel b represent the solutions of the least-square fits to
the theoretical reflection response of a single mode given in Eq. 82.
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Table 7: JJA: Circuit parameters. Values for the circuit parameters of the linear model of a JJA, as
shown in Fig. 30a, used for the numerical calculation of the reflection coefficient, as shown in Fig. 30a.

Length Josephson junction capacitance stray characteristic

inductance capacitance to ground inductance impedance

N LJ,0 CJ C0 Ls Z0

1000 50 pH 1 pF 1/2500 pF 10 pH 50 Ω

The fits are performed for each mode individually, and the reflection coefficient in
close frequency vicinity of the m th eigenmode of the array is approximated by

Γfit,m = Γmeiφm eism(ω−ωm), (193)

where sm is a finite background slope in the phase of the reflection coefficient caused
by the presence of the other array modes, and φm is a finite offset value of the
phase. The comparison between the black dashed lines representing the fits and the
calculated data shows good agreement.

Parameter scaling:

With the transmission matrix approach at hand, the dependence of the external
coupling rate on the circuit parameters can be determined. For each given set
of parameters, the zero-field response is calculated in form of the frequency
dependent reflection coefficient. Since the available parameter space is relatively
large, I will focus on two parameters: The array length N and the impedance
of each Josephson element ZJ =

√
LJ,0CJ. While increasing the array length is

particularly interesting for parametric amplifiers to reduce the nonlinearity in the
modes, the effect on the coupling rate can be negative, for instance by reducing
the available instantaneous bandwidth of the amplifier. On the other hand, the
junction impedance is representative for constraints on the fabrication process.
Experimentally, the achievable parameter space for the reliable fabrication of tunnel
contacts is limited, in particular, usually a certain critical current density jc = Ic/A
cannot be deceeded without risking the appearance of galvanic shorts through the
barrier. If the critical current density is fixed and the junction size is varied, the
plasma frequency of the junction remains constant, while its impedance changes
linearly with A.

Figure 31a depicts the external coupling rate κm of the first seven modes of a JJA,
except for the fundamental dc mode, as a function of the corresponding transition
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Figure 31: JJA: External coupling. a) Numerically calculated external coupling rate κm for the first
seven eigenmodes m ∈ {1, .., 7} of a JJA, which is galvanically coupled to a 50−Ω semi-infinite
transmission line on one end, and terminated to ground on the other end. The values for κm and the
corresponding resonance frequency ωm are extracted from individual fits to the calculated reflection
coefficient according to the theoretical prediction of a single resonant mode given in Eq. 193. With
increasing array length N, from N = 100 (cyan) to N = 1000 (pink), the resonance frequencies decrease
as well as the coupling rate. Around ωpl/2, the coupling rate exhibits a maximum for all modes. The
black dashed lines are guides for the eye. The circuit parameters are identical to the calculation shown
in Fig. 30. b) Product of the coupling quality factor Qc,m = ωm/κm and the inductance participation
ratio γL = LJ,0/(LJ,0 + Ls). In order to guarantee convenient operation conditions if the array modes are
used for parametric amplification, the product needs to be much larger than 1 [41]. c) External coupling
rate of the first mode κ1 for different array lengths N and junction impedances ZJ =

√
LJ,0/CJ. The

plasma frequency remains fixed LJCJ = const., which reflects the case of a constant critical current
density jc, and a variable junction size AJ. With increasing junction impedance, the maximal coupling
rate reduces, as well as the frequency at which the maximum occurs. For all combinations, the prodcut
γLQc,1 remains well above 1, as shown in d).
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frequency ωm for various array lengths N ∈ [100, 1000]. The information about the
length of the array is endoded in the color of the data points, from cyan (100) to pink
(1000). With increasing length, both, the transition frequencies and the coupling
rates decrease. For the given set of circuit parameters, which is identical to the set
used in Fig. 30b, a critical length N ≈ 300 is required to reach the frequency range
below 10 gigahertz. Interestingly, the coupling rates of all modes exhibit a maximal
value around ωpl/2, with the magnitude decreasing with the mode number. Hence,
the lower the mode number the stronger the coupling to the input port.

Especially in the context of parametric amplification with superconducting resonant
circuits operated close to a critical point at which the circuit enters a regime of
multistability, the behaviour in vicinity of this point is crucial for the performance
of the amplifier. A figure of merit for the behavior of the system in this regime, is
the product between the coupling or external quality factor Qc,m = ωm/κm, and
the kinetic indutance participation ratio γL = LJ,0/(LJ,0 + Ls). For a convenient
operation, the product is required to be much larger than 1 [41]. Figure 31b depicts
the product γLQc,m calculated from the data shown in panel a. For all modes, the
calculated ratio is at least above 10.

In addition to the length of the array, in Fig. 31c the junction impedance is varied
as well, while the product LJ,0CJ, which is proportional to the plasma frequency of
the junction, remains fixed. Again, this particular choice of sweeping the circuit
parameters resembles the scenario of a constant critical current density jc and a
varying junction size. With increasing junction impedance, the external coupling
rate κ1 of the first mode κ1 decreases for most array lengths. Only for the shortest
array (N = 100, cyan colored), the coupling rate slightly increases. The effect on the
transition frequencies is rather weak, since the plasma frequency remains fixed and
the change in CJ primarily increases the slope of the linear regime of the dispersion
relation.

The change of the coupling rate can be understood qualitatively from the change in
characteristic impedance of the array. The characteristic impedance Z0,JJA of the JJA,
calculated according to the linear circuit model shown in Fig. 30a, is

Z0,JJA(ω) =

√
LJ

C0(1− LJCJω2)
+

Ls

C0
. (194)

At frequencies well below the plasma frequency of the junction LJCJω
2 � 1, the

impedance is rather constant and given by the sum of the inductive contributions
LJ and Ls, and the capacitance to ground C0. As soon as the frequency becomes
close to the plasma frequency of the Josephson elements, the impedance increases
rapidly until it diverges at the plasma frequency. Since the external quality factor
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Qext,1 is proportional to the ratio of the characteristic impedance of the array and the
characteristic impedance of the input port

Qext,1 ∼
Z0,JJA

Z0
, (195)

the external coupling rate is

κ1 ∼ ω1
Z0

Z0,JJA
. (196)

According to this relation, the dome-like shape of the external coupling rate as a
function of the array length owing to the competition between an increasing transition
frequency with decreasing length, and an increasing characteristic impedance close
to the plasma frequency. Moreover, comparing the maximal values of the coupling
rate between different modes, reveals a scaling with the inverse of the mode number
m, and the coupling rate of the m-th mode is

κm ∼
ωm

m
Z0

Z0,JJA
. (197)

When designing parametric amplifiers from JJA, the scaling of the external coupling
rate and the nonlinearity with the array length has to be considered.

A very efficient tuning knob is the capacitance to ground. By increasing the
capacitance to ground, not only the slope of the linear regime of the dispersion
relation decreases, and, hence more modes are in the desirable frequency domain
between 1 and 10 gighertz, but also the characteristic impedance of the array
decreases at the same time, which increases the coupling strength to the input port.
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G DJJAA: Supplementary information

The following sections give additional information about the DJJAA devices discussed
in the main text, for instance how the circuit parameters are estimated from additional
room-temperature measurements and how the results compare to the prediction
of a linear transmission matrix model, as well as a discussion about the cQED
system composed of a conventional transmon qubit coupled to a dedicated readout
resonator used to calibrate the noise performance of the DJJAA and the measurement
efficiency of the setup.

G.1 Capacitance and inverse inductance matrices

For the DJJAA design with an in-plane center capacitance, the capacitance and
inverse inductance matrices introduced in Eq. 168, C̃ and L̃−1 respectively, are

C̃ =



C′J −CJ 0 . . .
−CJ C′J −CJ 0 . . .

0 −CJ C′J −CJ 0 . . .
...

. . . . . . . . . . . . . . .
0 −CJ C′c −Cc 0

0 −Cc C′c −CJ 0
0 −CJ C′J −CJ 0
. . . . . . . . . . . . . . . . . .

. . . 0 −CJ C′J −CJ

. . . 0 −CJ C′J



(198)

and

L̃−1 =



2
LJ

− 1
LJ

0 . . .

− 1
LJ

2
LJ

− 1
LJ

0 . . .

0 − 1
LJ

2
LJ

− 1
LJ

0 . . .
...

. . . . . . . . . . . . . . . . . .
0 − 1

LJ
1
LJ

0 0

0 0 1
LJ

− 1
LJ

0

0 − 1
LJ

2
LJ

− 1
LJ

0
. . . . . . . . . . . . . . . . . .

. . . 0 − 1
LJ

2
LJ

− 1
LJ

. . . 0 − 1
LJ

2
LJ



. (199)
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For reasons of clarity, I introduced the effective capacitances C′J = 2CJ + C0 and
C′c = CJ + Cc + C′0 in the representation of the capacitance matrix. The contributions
due to the center capacitance are highlighted in ruby.

G.2 Kerr coefficients

For the antisymmetric modes (even mode number m), the jump in the node flux
distribution, which occurs from negative to positive values at the position of the
center capacitance, causes unphysical results for the dimensionless factors ηmmmm
and, as a consequence, artificially large self-Kerr coefficients. Therefore, the self-
and next-neighbor cross-Kerr coefficients are calculated by symmetrizing the node
flux eigenfunctions, which does not alter the physical interpretation but avoids the
numerical error.

~Φm,sym = ~ΦT
m · S̃ (200)

Here, the diagonal matrix S̃ is

S̃ = diag(1, 1, ..., 1, 1,−1,−1, ...,−1,−1), (201)

Table 8: Eigenfrequencies, self- and cross-Kerr coefficients ωm , |K|m,m and |K|m,m+1, respectively,
predicted by the circuit model introduced in Sec. 3.2 using the circuit parameters of sample A and D
listed in Tab. 3.2.

N 1200 1300

m
ωm

2π

|K|m,m

2π

|K|m,m+1

2π

ωm

2π

|K|m,m

2π

|K|m,m+1

2π
(GHz) (kHz) (kHz) (GHz) (kHz) (kHz)

0 2.123 0.2 0.6 1.881 0.2 0.5
1 2.539 0.4 1.4 2.227 0.3 1.1
2 6.539 2.8 5.9 5.773 2.3 4.8
3 7.252 3.4 6.5 6.400 2.8 5.3
4 10.530 7.6 15.2 9.359 6.3 12.5
5 11.064 8.2 13.0 9.860 6.8 10.8
6 13.525 12.7 25.0 12.153 10.7 21.0
7 13.848 13.1 18.9 12.473 11.0 16.1
8 15.591 17.0 33.3 14.152 14.6 28.6
9 15.777 17.2 23.7 14.345 14.8 20.5

10 16.988 20.2 39.8 15.546 17.6 34.6
11 17.096 20.3 27.4 15.661 17.7 24.0
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Table 9: Eigenfrequencies, self- and cross-Kerr coefficients ωm , |K|m,m and |K|m,m+1, respectively,
predicted by the circuit model introduced in Sec. 3.2 using the circuit parameters of sample B and C
listed in Tab. 3.2.

N 1600 1800

m
ωm

2π

|K|m,m

2π

|K|m,m+1

2π

ωm

2π

|K|m,m

2π

|K|m,m+1

2π
(GHz) (kHz) (kHz) (GHz) (kHz) (kHz)

0 1.160 0.1 0.3 0.916 0.1 0.2
1 1.380 0.2 0.6 1.093 0.1 0.4
2 3.580 1.3 2.7 2.836 0.9 1.9
3 4.015 1.6 3.0 3.199 1.2 2.2
4 5.927 3.6 7.3 4.737 2.7 5.3
5 6.320 4.1 6.5 5.085 3.0 4.8
6 7.911 6.6 12.9 6.407 4.9 9.6
7 8.196 6.9 10.2 6.675 5.2 7.7
8 9.459 9.5 18.4 7.765 7.3 14.1
9 9.650 9.7 13.6 7.955 7.5 10.5

10 10.622 12.0 23.4 8.827 9.4 18.3
11 10.746 12.1 16.5 8.957 9.6 13.1

where the sign change occurs at the entry with index j = N/2 + 1. Subsequently, the
eigenvectors ~Ψm are calculated by inverting Eq. 3.10. Notably, directly symmetrizing
the eigenvectors ~Ψm does not prevent the numerical error. The self-Kerr and next
neighbor cross-Kerr coefficients |K|m,m and |K|m,m+1 are listed in Tab. 8 and Tab. 9
for the four decives discussed in the main text. For all dimers used for parametric
amplification, the obtained Kerr coefficients are on the order of a few kilohertz,
which is in agreement with the observed saturation power (see Sec. 1.3.4 and Sec. 3.7).

G.3 Sample holder

The DJJAAs are fabricated on sapphire wafers with a physical dimension of
7.5× 3.6 mm2, and are attached to a dedicated copper sample holder using silver
paste. For the microwave connection between the 50 Ω Al transmission line patterned
on the wafer and the SMA connector serving as the input port, a printed circuit
board (PCB) containing a 50 Ω microstrip transmission line is used.

The PCB has a copper cladding of thickness tcopper = 35 µm on both sides, enclosing
a low loss dielectric TMM10i (εr = 9.9) of thickness t = 635 µm, supplied by
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Rogers Corporation. The height difference between the PCB and the sapphire wafer
(t = 330 µm) is compensated by a small copper post below the wafer (not shown).
The PCB transmission line is patterned by removing half of the top metalization on
one side, sparing a strip of 0.618 mm width, which is directly soldered to the center
conductor of an SMA connector, and wire bonded to the on-chip transmission line
using at least two Al bonds. The other half of the PCB remains copper cladded and
serves as the ground reference. For that reason, the top and the bottom metalization
are galvanically connected using vias, and again, the amplifier is connected to the
PCB ground using Al wire bonds. Notably, for some devices, the coupling to lossy
resonant modes hosted by the sample holder and the on-chip metalization has
been observed, causing a significant decrease in the amplifier performance in the
corresponding frequency range. A solution was found by using silver paste instead
of multiple Al wire bonds to ground the amplifier.

Each amplifier is equipped with a superconducting bias coil integrated into the lid
of the sample holder, and a commercial circulator directly mounted to the SMA
input port, to avoid low-frequency standing waves (see. Fig. 32b).

Figure 32: DJJAA: sample holder. a) Copper body of the DJJAA sample holder (without lid), hosting
a printed circuit board (PCB) and a 7.5× 3.6 mm2 sapphire wafer. For the exchange of microwave
photons, the PCB contains a 50−Ω microstrip transmission line, soldered to the center pin of an SMA
connector on one end, and wire bonded to the 50−Ω on-chip microstrip transmission line of the
amplifier on the other end, using at least two Al bonds. In order to ground the DJJAA, half of the PCB
has a top metalization, which is galvanically connected to the bottom metallization with vias. The PCB
is glued with silver paste and kept in place with four additional brass screws, the wafer is only glued
with silver past. b) Closed sample holder. A superconducting bias coil is integrated into the lid, and a
commercial circulator is directly mounted to the SMA connector of the input port to separate incident
and outgoing fields.
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G.4 Linear device characterization

Although the amplification of microwave signals is only possible due to the
nonlinearity of the DJJAA modes, a closer look at the linear response of a device
gives already vital insight into the expected performance. Moreover, comparing the
obtained results with the design parameters helps to enhance the accuracy of the
model prediction.

The device parameters are extracted from the measured reflection coefficient
(see Fig. 3.6), as well as complementary measurements discussed in the following
paragraphs. The only parameter which is fixed by design is the number of total
SQUIDs N, i.e. the possibility of shorted JJs is neglected.

Critical current

The critical current of a single SQUID is estimated from room temperature transport
measurements, and the Ambegaokar-Baratoff formula [60], which relates the critical
current of a JJ to its normal state resistance Rn right above the critical temperature
Tc, and the energy gap ∆ in the superconducting state.

Ic(T) =
π∆(T)
2eRn

tanh
(

∆(T)
2kBT

)
. (202)

At temperatures well below the critical temperature Tc, the formula simplifies to

Ic(T = 0) =
π∆(T)
2eRn

. (203)

The energy gap of the pure aluminum films is estimated from the BCS relation
between the energy gap and the critical temperature of a supercondutor ∆ = 1.76kBTc,
with Tc = 1.4 K. Since the normal-state resistance is measured at room temperature,
there is a phenomenological correction term Rn = 1.15Rn,RT based on experimental
observations taken from other experiments performed in our group. Another
correction arises from the contribution of the pure aluminum wires connecting the
JJs to the measured resistance. As deduced from the design geometry, a total of
six sheets of pure aluminum has to be considered per SQUID. The resistance RSQ
attributable to the SQUIDs is

RSQ = Rn,RT − 6NR�,Al, (204)

where N is the total number of SQUIDs, and R�,Al = 1.1 Ω/� is the sheet resistance
of the pure aluminum film measured at room temperature.
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In the design with an in-plane capacitor in the center, as presented in Fig. 3.5, the
total resistance of the array cannot be measured in a single transport measurement,
but only the resistance from the input port to the center capacitor Rn,in, and from
the center capacitor to ground Rn,out. However, from the difference in resistance,
potential gradients in the critical current along the array can be deduced, which is
expressed in the resistance asymmetry parameter

masym =
Rn,in − Rn,out

Rn,in + Rn,out
. (205)

Junction capacitance

The junction capacitance CJ is estimated from the overlap area AJ extracted from
SEM images, similar to the example given in Fig. 3.5, and the capacitance per unit
area cJ ≈ 50 fF/µm2.

CJ = cJ AJ (206)

The SEM images are taken from different devices fabricated in the same run, in
order not damage the actual sample. For a dc SQUID, the total capacitance is twice
the capacitance of a single JJ. The fabrication procedure is relatively reproducible,
since the feature size is well above the resolution limit of the resist, and the obtained
overlap area is around

AJ = 10.5± 0.4 µm2, (207)

which results in a junction capacitance of

CJ = 1050± 40 fF (208)

per SQUID. The value used for the calculation of the dispersion relations shown in
Fig. 3.7 is about 15% larger, which could be explained either by a different capacitance
per unit area, or a smaller critical current, since the junction capacitance is adjusted
such that the measured plasma frequency is reproduced.

Center capacitance

The capacitive contributions of the center capacitance, Cc and C′0, are deduced
from finite element method simulations performed with Sonnet. While the in-plane
capacitance Cc is controlled by the number of fingers and their length, and is adjusted
according to the total length of the device, the capacitance to ground due to the
capacitor plates remains unchanged. In the presented geometry, it is C′0 ≈ 33 fF.
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For the three samples the total number of SQUIDs is N = 1200, 1600, and 1800 (from
left to right), and the critical currents per SQUID are Ic = 7.0µA, 3.5µA, and 2.7µA.
The center capacitances are Cc = 30 fF, 40 fF, and 45 fF. Finally, the capacitance
to ground C0 remains the only free fitting parameter, and is extracted from the
dispersion relation.

Capacitance to ground

The capacitance to ground C0 attributed to each superconducting island remains
the only free parameter in order to align the measured dispersion relation at the
flux sweet spot with the model prediction. The eigenfrequencies of the DJJAA are
either extracted directly from the measured reflection coefficient, or from a two-tone
spectroscopy after the flux sweet spot has been determined.

The extracted value C0 = 0.4 fF stated in the main text can be compared to a value
estimated from the circuit design. For a microstrip geometry, the capacitance to
ground per unit length is

C(w) =
εeff

60c0 ln
(

8h
w + w

4h

) , (209)

where c0 is the speed of light in vacuum, h ≈ 330 µm is the substrate height, and
w = 4 µm is the wire width. The effect of a finite film thickness is neglected, which is
justified by its relative size compared to the substrate height. Since the electric fields
are only partially confined inside the substrate, the effective relative permittivity
εeff is

εeff =
εr + 1

2
+

εr − 1
2

1√
1 + 12 h

w

. (210)

For the used sapphire substrates, the relative permittivity is εr = 9.3 for electric
fields oriented perpendicular to the crystalline C-axis (hexagonal crystal structure).
Instead of a capacitance per unit length, a more convenient representation is a
capacitance to ground per square

C0,� = C(w)w ≈ 0.13 fF, (211)

with w = 3 µm. Accordingly, the value C0 = 0.45 fF extracted from the dispersion
relations (see Fig. 3.7) corresponds to around N� ≈ 3.5 per SQUID on average, which
is in agreement with the DJJAA design shown in Fig. 3.5.
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Stray inductance

Estimating the additional stray inductance due to the pure aluminum wires
connecting the SQUIDs is important, as it influences the dynamics of the circuit
under strong pumping, and since it determines the reliability of the lumped-element
circuit model, which does not account for additional linear inductances. In general,
the stray inductance contributes in form of a geometric inductance related to the
wire geometry, and a kinetic inductance related to the superconducting condensate.
Although these contributions cannot be distinguished in the experiment, it is possible
to predict them based on the circuit design and on room temperature transport
measurements.

For the given microstrip geometry, the geometric inductance per unit length Lg

depends only weakly on the wire width w, and is calculated from standard microwave
theory [47]

Lg =
60
c0

ln
(

8h
w

+
w
4h

)
≈ 1.4

pH
µm

, (212)

where c0 is again the speed of light in vacuum, h ≈ 330 µm is the substrate height,
and w = 3 µm is the wire width. Similar to the capacitance to ground, the geometric
inductance per unit length is translated into a inductance per square

Lg,� = Lg(w)w ≈ 4.0
pH
µm

. (213)

The kinetic sheet inductance is estimated from the measured sheet resistance
R�,Al = 1.1 Ω/� and the Mattis-Bardeen formula:

LK,� ≈ 1.3
pH
�

. (214)

Combining both contributions, and using the same number of squares as extracted
from the capacitance to ground, the stray inductance per SQUID is

Ls = N�
(

Lg,� + LK,�
)
≈ 19pH. (215)

Notably, the obtained result is only a rough estimate, and should be appreciated as
an orientation only. Experimentally, the flux modulation of the DJJAA modes can
give insight into the kinetic inductance participation ratio, from which the stray
inductance can be calculated and compared to the calculated value.

Magnetic flux calibration and Josephson inductance participation ratio

The modulation of the resonance frequencies contains information about the external
magnetic flux, and the ratio between the kinetic inductance of the SQUIDs and the
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stray inductance, which is expressed in the kinetic inductance participation ratio γL.
Both quantities are extracted from the measured data by comparing the observed
frequency modulation to the prediction of an effective lumped-element model.

In the experiment, the magnetic flux enclosed Φext inside the SQUID loops is set by
the application of a bias current Ib to a superconducting field coil integrated into the
lid of the device, as shown in Fig. 32. The conversion between the bias current Ib and
the magnetic flux Φext is possible due to the periodic modulation of the resonance
frequencies. As discussed in previous sections, but especially in Sec. E.2, the action
of a dc SQUID in a circuit is that of a nonlinear inductance, which depends on the
magnetic flux enclosed in the SQUID loop. Since the loop inductance is negligible
for the SQUIDs of the presented DJJAA design, as is experimentally validated from
the almost complete suppression of the resonance frequencies, the applied magnetic
flux is equal to the magnetic flux inside the loop. Therefore, the suppression of the
resonance frequencies occurs at half a flux quantum Φext = 0.5Φ0.

The flux modulation of each mode can be mapped onto an effective lumped element
circuit model. Since the field spectra are measured at low microwave powers, a linear
circuit model is sufficient to capture the features related to the flux modulation. The
model consists of a flux dependent (kinetic) inductance LK,eff(Φext) in series with a
constant, magnetic flux independent stray inductance Ls,eff, which are shunted by a
capacitance Ceff, as shown in Fig. 33. The resonance frequency of the fundamental
mode is

f0 (Φext) =
1

2π
√

C [Ls,eff + LK,eff(0)/ |cos (πΦext/Φ0)|]
. (216)

The external magnetic flux Φext is due to the bias current Ib applied to the
superconducting field coil. In the simplest case, the flux created by the bias current
is linear

Φext = lb(Ib + Ioffset), (217)

where lb is an unknown conversion factor related to the coil geometry, e.g. the coil
dimensions and the number of windings. Additionally, a potential dc offset field
is accounted for by an offset bias current Ioffset. The physical interpretation of this
assumption is, that the offset field is homogeneous on the length scale of the array.

By introducing the resonance frequency in effective zero-field

f0(Φext = 0) =
1

2π
√

C [Ls,eff + LK,eff(Φext = 0)]
, (218)
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Figure 33: DJJAA: magnetic flux calibration. a) Effective lumped-element circuit model to describe
individually the characteristic modulation of the DJJAA modes with the external magnetic flux. The
model consists of two inductors in series, out of which one accounts for the constant stray inductance
Ls,eff, while the other for the tunable SQUID inductance LK,eff(Φeff). The inductors are shunted by an
effective capacitance Ceff to form a resonant circuit. b) Fundamental resonance frequency f0(Φext) of
the circuit as a function of the external magnetic flux Φext, normalized by the frequency in effective
zero-field f0(0), for different inductance participation ratios γL = LK,eff(0)/(LK,eff(0) + Ls,eff). If the
tunable inductance dominates (blue color tones), the shape of the curve is round and sinusoidal. With
increasing stray inductance, a noticeable change of the resonance frequency occurs close to half a flux
quantum only. c) Measured resonance frequencies f1,− (grey markers) and f1,+ (black markers) of the
pair of modes forming the dimer with dimer index n = 1 for the sample with N = 1200 SQUIDs. The
frequencies are from the field dependent reflection coefficient shown in Fig. 3.6. The blue solid lines
indicate individual fits to the model prediction according to Eq. 219. From the fit parameters, the bias
current Ib is converted into an external magnetic flux Φext (top x-axis), and the kinetic inductance
participation ratio is determined γL = 0.65.
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Table 10: DJJAA: normal-state resistance and kinetic inductance participation ratio. Normal-state
resistance measured at room temperature, from the input port to the center capacitance Rn,in, from
the center capacitance to ground Rn,out. The resistance asymmetry between the two array sections m
is calculated according to Eq. 205. Kinetic inductance participation ratio γL,fit extracted from a fit to
the frequency modulation with the applied magnetic flux (see App. G.4), and calculated according to
γL = LJ/(LJ + Ls).

sample A B C D

N 1200 1600 1800 1300

Rn,in (kΩ) 29.03 70.96 102.25 32.4

Rn,out (kΩ) 28.41 71.3 102.91 32.38

m 1.022 0.995 0.994 1.001

γL,fit 0.65 0.87 0.92± 2 -

γL 0.71 0.83 0.87 0.74

and using the conversion between the bias current and the external magnetic flux,
and the kinetic inductance participation ratio γL, the resonance frequency of the
effective circuit model can be expressed as

f (Ib) =
f0(0)√

1 + γL

[
1 + |cos (πlb(Ib + Ioffset)|−1

] . (219)

Although the information contained in the flux dependence of the resonance
frequency is not sufficient to determine all values of the effective circuit elements, it
is sufficient to extract the kinetic inductance participation ratio γL, the conversion
factor lb, and the offset flux. Notably, due to the small modulation period, the offset
flux is only determinable within (−0.5Φ0, 0.5Φ0].

Figure 33 depicts the expected flux modulation of the fundamental frequency of the
effective lumped-element circuit model according to Eq. 219, calculated for different
inductance participation ratios γL. If the flux dependent inductance dominates
γL ≈ 1 (blue colors), the observed modulation is similar to the flux modulation of
the critical current, to be exact the square root of the critical current. With increasing
stray inductance, the curves increasingly deviate from the ideal modulation, up to
the point at which the contribution of the flux tunable inductance is noticeable close
to half a flux quantum only.
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G.5 Energy decay rates and dimer detuning

For the later use of the DJJAAs as parametric amplifiers, especially the external
and internal coupling or decay rates of the modes take a special role. While the
first determines the instantaneous bandwidth of the amplifier, the latter potentially
degrades the noise added by the amplifier. The third characteristic quantity is the
dimer detuning, and in particular, how it compares to the external coupling rate.

The eigenfrequencies ωm of each mode, together with the corresponding coupling
rates κm and γm, are extracted from fits to the frequency dependence of the reflection
coefficient. Although the DJJAA modes remain coupled due to the non-zero cross-
Kerr coefficients, the reflection coefficient of the DJJAA measured at low probe
powers can still be approximated by a combination of independent and linear modes,
as the Kerr coefficients are small by design. Since the two modes of a dimer belong
together conceptually, the response in the immediate frequency vicinity of a pair of
modes is fitted by the response of two linear modes, while the contribution of all
other modes is neglected. The corresponding reflection coefficient of the n th dimer
is

Γn(ω) = Γn,−Γn,+eiφ0 eis(ω−ω̄), (220)

which accounts for a finite offset phase φ0 and a finite background slope s in the
phase response, additionally. The frequency ω̄ = (ωn,− + ωn,+)/2 is the average of
the two dimer frequencies. The other fitting parameters are the external coupling
rates κn,− and κn,+, and the internal decay rates γn,− and γn,+. The corresponding
dimer detuning 2Jn is defined as the frequency difference between the two modes

2Jn = ωn,+ −ωn,−. (221)

The applied simplification is particularly justified in the linear regime of the
dispersion relation, in which the inter-dimer detuning (ωn+1,− − ωn,+) is much
larger than the intra-dimer detuning 2Jn, while the the two dimer modes are still
well separated from each other at the same time (Jn ≈ κn,−, κn,+).

Recalling the results of the discussion about nondegenerate parametric amplifiers
(see Sec. 3.6), the gain-bandwidth product is determined by the effective coupling
rate of the device, which is a combination of the coupling rates of both modes

κ̄n = 2
κn,−κn,+

κn,− + κn,+
. (222)

Figure 34a depicts the field dependent response of the sample with N = 1200
SQUIDs, identical to Fig. 3.6 (left-hand panel), as well as the frequency dependence
of the phase and the amplitude of the reflection coefficient, arg(S11) and |S11|,
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Figure 34: DJJAA: Fitting the complex reflection coefficient. a) Phase of the complex reflection
coefficient arg(S11) as a function of the probe tone frequency f and the external magnetic flux Φext (see
Fig. 3.6a), measured at low microwave powers. For each value of the applied external flux, the frequency
dependence of the reflection coefficient is fitted to the prediction of an effective model composed of
two linear cavities. b) Phase arg(S11) (top panel) and amplitude |S11| (bottom panel) of the reflection
coefficient measured at the flux sweet spot of the device, as indicated by the black solid line in panel a.
From the fit to the model prediction (black line), the resonance frequencies ω1,1/(2π) = 5.874 GHz and
ω1,2/(2π) = 6.568 GHz, the external coupling rates κ1/(2π) = 168 MHz and κ2/(2π) = 207 MHz, as
well as the internal decay rates γ1/(2π) = 7 MHz and γ2/(2π) = 13 MHz are extracted.

respectively, measured at the flux sweet spot shown in panel b. Notably, the position
of a jump in the phase response is not necessarily the position of the resonance
frequency. The black solid line indicates a least-square fit to the data according to
Eq. 220, from which the following device parameters are extracted:

ω2,−/(2π) = 5.874 GHz ω2,+/(2π) = 6.568 GHz
κ2,−/(2π) = 168 MHz κ2,+/(2π) = 207 MHz
γ2,−/(2π) = 7 MHz γ2,+/(2π) = 13 MHz

Once again I would like to mention that the fundamental dimer n = 1 is not visible
in the measured spectrum due to its low resonance frequencies. As a side note,
an enhancement of the fitting accuracy is obtained by removing features in the
reflection coefficient that are unambiguously attributable to the measurement setup.
The region around half a flux quantum of effective flux, where the DJJAA response
is fully suppressed, serves as the reference.
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A similar fit to the reflection coefficient is performed at different values of external
magnetic flux in order to extract the flux dependence of the device parameters,
as exemplarily shown in Figure 35. The same procedure is applied to the other
devices. For comparison reasons, the parameters are extracted from two neighboring
modulation periods.

The external coupling rates and the dimer detuning show a characteristic flux
dependence, which is similar to the one observed for the resonance frequencies. In
the whole range investigated, the dimer detuning is more than twice as large as the
external coupling rates, which is not the ideal condition for pumping.

The obtained internal decay rates give insight into the electromagnetic environment
of the device. Many different types of mesoscopic systems are known to induce
losses to superconducting circuitry, for instance adsorbates or organic residuals
from the fabrication process, defects present in the non-stoichiometric oxide of the
JJ barrier and other interfaces, non-equilibrium quasiparticles, magnetic vortices,
and lossy modes in the sample holder. Although the exact origin in our DJJAA
devices remains unknown, measurements on samples with less JJs but identical
fabrication procedure pinpoint into the direction of defects in the JJs. Independent
of the origin, the observed internal decay rates are still sufficiently low compared to
the external coupling rates to enable an operation of the devices as amplifiers close
to the quantum limit.

External and internal quality factor

While stating the energy decay rates is convenient from the perspective of quantum
optics, another common way of expressing energy decay in the context of electric
circuits are the external and internal quality factors Qc and Qi, respectively. The
quality factors are calculated as the ratio between the resonance frequencies and
the decay rates, and are therefore a measure on how many oscillations the system
performs until the energy has decayed to e−1 of its initial value, or in other words,
how much energy is dissipated within one cycle. Following the established notation,
the quality factors of the i th mode of the n th dimer of a device are

Qc,n,i =
ωn,i

κn,i
(223)

Qi,n,i =
ωn,i

κn,i
. (224)

Figure 36 depicts the external and internal quality factors calculated from the
extracted device parameters shown in Fig. 35. Since the comparison between the
two periods reveals a very similar behavior, only the data from the left period
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Figure 35: DJJAA: External and internal coupling rates, and dimer detuning. Field dependence of the
external coupling rates κ2,− and κ2,+ (top panel), the dimer detuning 2J2 = ω2,+ −ω2,− (central panel),
and the internal decay rates γ2,− and γ2,+ for the DJJAA sample A with N = 1200 SQUIDs (see Fig. 3.6
left-hand panel). Similar to the corresponding resonance frequencies shown in Fig. 33, the parameters
associated with the lower mode (-) are indicated by grey markers, while the parameters of the higher
mode (+) are indicated by black markers. The effective coupling rate κ̄2 = 2κ2,−κ2,+/(κ2,− + κ2,+ is
calculated from the extracted values and plotted with blue markers. In the whole range, the dimer
detuning is roughly twice the effective coupling rate. The observed change with flux in both parameters
is due to the change of the resonance frequencies, and is expected for the presented design, i.e. a
galvanically coupled DJJAA with in-plane center capacitance. The possible origins for the internal decay
rates are manifold, ranging from organic residuals of the fabrication process, to uncontrolled degrees of
freedom residing inside the JJs’ oxide barriers, to interactions with lossy modes in the electromagnetic
environment, for instance the sample holder.
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Figure 36: DJJAA: External and internal quality factor. External and internal quality factors Qc,1,i and
Qi,1,i , respectively, as a function of the external magnetic flux Φext (left-hand panels) and the resonance
frequency (right-hand panel). The external quality factor steadily increases away from the flux sweet
spot, as the impedance of the array increases due to the increasing kinetic inductance of the SQUIDs.
However, there are several ripples visible in the frequency dependence, which could be caused by a
frequency dependent characteristic impedance of the input port, for instance due to standing waves.
The behavior of the internal quality factor is less intuitive, as it can be affected by a variety of different
external perturbations. For both modes, the internal quality factor is minimal around the flux sweet
spot and close to half a flux quantum of external flux. However, this observation could be coincidence
only. As the frequency dependence reveals, the two modes are exposed to a common electromagnetic
environment, which is itself frequency dependent. Therefore, the drop of the internal quality factor
towards higher and lower frequencies could indicate the presence of lossy modes in the sample holder.

(Φext/Φ0 ∈ [−0.5, 0.5]) is plotted. Around effective zero-field, the region where the
characteristic impedance of the array is the smallest, the external quality factor is
largest, and for both modes around Qc ≈ 30.

Plotting the quality factors versus the extracted resonance frequencies reveals
frequency dependent features both modes are affected by. In the external quality
factors oscillations are observed, which could hint at standing waves in the input
port, or more generally, the frequency dependence of the input port’s characteristic
impedance. In the internal quality factors several peaks and dips are observed that
occur at the same frequencies for both modes. However, as the modes are hosted by
the same array and possess a comparable standing-wave pattern, the coincidence of
such features is not surprising.
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G.6 Comparison to circuit model

Similar to the discussion about the external coupling rate in JJA, discussed in Sec. F.3,
the parameters of the DJJAA devices is predicted using the transmission matrix
approach. The information about each dimer is extracted by fitting Eq. 220 to the
numerically calculated frequency dependence of the reflection coefficient.

Figure 37 shows the results obtained at the flux sweet spot for the three devices
presented in Fig. 3.6, using the circuit parameters listed in Tab. 3.2, and assuming an
additional stray inductane of Ls = 19 pH per SQUID. The agreement between the
linear circuit model and the measured dimer parameters is satisfying, especially
given the fact that no frequency dependence of the input port impedance was
assumed, and no remote ground model [35].

Figure 37: DJJAA: Measurement vs. prediction. The three panels depict the comparison between the
measured and the predicted external coupling rates κ̄n (blue diamonds) and dimer detunings Jn (red
pentagons) for the three devices A, B, and C shown in Fig. 3.6 a) N = 1200 b) N = 1600 c) N = 1800.
The measured values are highlighted by a black fringe. The corresponding circuit parameters are listed
in Tab. 3.2, and the additional stray inductance is Ls = 19 pH per SQUID.

G.7 dc field gradients and ac flux noise

The DJJAA sample holder discussed in Sec. G.3 is made of copper and does not
provide an efficient shielding against dc and ac external magnetic fields. In this
section, two perturbative effects of the external magnetic field created by the
environment are discussed: a finite dc gradient along the array, and a global ac field.
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Magnetic field gradient:

In particular for the DJJAA devices with a center capacitance interrupting the array,
a magnetic field gradient along the array can have a strong effect on the dimerization
of the DJJAA modes, as can be seen in Fig. 3.6c. The effect of a magnetic field gradient
can be investigated by using a position or node dependent kinetic inductance in the
effective circuit model used for the transmission matrix approach (Sec. F.3).

Figure 38 depicts the comparison between the numerically calculated and the
measured reflection coefficient for sample C (see Fig. 3.6c). The external flux in the
i th SQUID is assumed to follow a quadratic dependence

Φext,i = Φext,N

(
i + 1

N

)2
, (225)

where Φext,N = 0.165Φ0 is the offset field at the position of the N th SQUID as seen
from the microwave input port. Although the assumption on the magnetic field
gradient does not consider the design of the DJJAA devices in form of meanders, the
numerical calculation does recover the main features observed in the measurement,
and confirms a finite field gradient as the origin of the misalignment between the
modes.

Figure 38: DJJAA: magnetic field gradient. Comparison between the phase arg(S11) of the numerically
calculated (left-hand panel) and the measured (right-hand panel) reflection coefficient (see Fig. 3.6c).
The calculations are based on the transmission matrix approach discussed in Sec. F.3, and consider a
node dependent magnetic field to reflect the presence of a finite magnetic field gradient, together with
a critical current asymmetry m = 1.007 between the parts of the array to the left and the right of the
center capacitance.
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Mitigating such detrimental effects is crucial for the operation of an amplifier. For
the suppression of out-of-plane magnetic field components, a cylindrical outer Al
shield has been build, which is anchored at the base plate of the cryostat.

ac flux noise:

In contrast to a finite magnetic field gradient, which mainly influences the dimer-
ization and limits the achievable gain tunability, a finite alternating magnetic field
threading the SQUID loops enhances the noise measured at room temperature. Time
variations in the resonance frequencies translate into an fluctuating detuning of the
device from the initial point of operation, and as a consequence, the observed power
gain becomes a function of time.

While every SQUID is exposed to a local electromagnetic environment, caused by
magnetic adsorbates and residuals from the fabrication process, there are magnetic
fields which can be considered homogeneous on the length scale of the amplifier.
Examples for such global and alternating sources are fluctuations in the bias current
applied to the superconducting field coil, and sources residing at distant locations
outside the measurement setup like pulse tubes and cellphones.

Figure 39: DJJAA: ac flux noise. Maximal power gain G0 (top panels) and phase of the reflection
coefficient arg(S11) (bottom panels) measured with a fixed frequency probe tone as a function of time
t. The comparison between the data obtained at the flux sweet spot Φext/Φ0 ≈ 0 (left-hand panels) and
the flux bias point Φext/Φ0 ≈ −0.2 (right-hand panels) demonstrates the increase in flux noise due
to the increasing flux dependence of the resonance frequency of the amplifier modes. The data was
measured with the higher frequency mode of the third dimer 3+ associated to the sample shown in
Fig. 3.8 using an IF bandwidth of 10 Hz.
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Figure 39 depicts the long-time stability of the power gain G0 and the phase of the
reflection coefficient measured with a VNA at the flux sweet spot Φext/Φ0 ≈ 0
and another flux bias point Φext/Φ0 ≈ −0.2. The IF bandwidth of the VNA was
set to 10 Hz during the measurement. At the flux sweet spot, the power gain is
stable within ∆G = 0.1 dB, while there appears a distinct periodic modulation with
period 107 s away from the sweet spot. Besides the increase in noise associated to the
increasing susceptibility of the modes to flux noise away from the flux sweet spot,
the decrease in bandwidth discussed in Sec. 3.6 further enhances the observed noise.

G.8 Transmon qubit: cryogenic microwave wiring

The microwave wiring of the cryogenic setup — a commercial, dry 3He/4He dilution
refridgerator — used for the experiments on the conventional transmon qubit to
calibrate the noise performance of the DJJAA (see Sec. 3.8), is shown in Fig. 40. In order
to reduce the signal level and the thermal noise seen by the samples, the signal input
port and the pump port are equipped with a total of 70 dB of attenuation, from which
60 dB stem from commercial attenuators mounted at different temperature stages of
the setup, and 10 dB are attributed to the stainless steel coaxial cables. Notably, not all
temperature stages of the commercial cryostat are shown. Furthermore, commercial
low-pass filters and custom-made infrared (IR) filters are mounted at the base plate
to suppress high frequency noise and irradiation.

The signal is guided to the sample using a commercial, cryogenic circulator. In
order to protect the transmons and the readout resonators from the magnetic stray
fields, a combination of different outer shieldings surrounds the waveguide sample
holder, which is similar to the one shown in Fig. 2.1. Reflected from the readout
resonator, the signal was combined with the DJJAA pump tone using a commercial
power combiner, which added at least 3 dB attenuation to the signal path. Similar to
the qubit sample, the incident and amplified outgoing sample reflected from the
DJJAA are separated using a circulator. In the output line, additional filtering and an
isolator suppress irradiation from higher temperature stages. The outgoing signal is
further amplified at 4 K using a HEMT amplifier, and again at room temperature.
The noise temperatures, as certified by the manufacturer, are TN,HEMT = 2− 3 K and
TN,RT = 127 K.
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Figure 40: DJJAA: Experimental wiring for the noise performance measurement in Sec. 3.8. The
input line and the pump line of the DJJAA are equipped with 60 dB of attenuation in form of commercial
attenuators, distributed along the lines at different temperature stages. For thermal isolation of these
stages, the microwave wiring in both lines are based on stainless steel coaxial cables, which add another
∼ 10 dB of attenuation to each line. In order to filter high frequency noise, two low-pass filters are
added to the input line, with an upper cut-off frequency 7.2 GHz. The pump line is only equipped
with a single low-pass filter with a cut-off at 12 GHz. The signal is guided to the samples, i.e. three
pairs of transmon qubits (blue) coupled to dedicated readout resonators (red) hosted in a waveguide
sample holder, using a commercial circulator. As indicated by the open cylinders, the sample holder is
surrounded by a combination of three different (magnetic) shieldings: copper (Cu), aluminum (Al),
and a µ-metal. The signal reflected from the readout resonator(s) is combined with the DJJAA pump
tone using a commercial power combiner, which attenuates the signal by at least 3 dB. The amplified
outgoing signal, reflected from the DJJAA, is further amplified by a HEMT amplifier mounted at
4 K and a room-temperature amplifier. An isolator and additional filtering protect the samples from
radiation coming from the output line. Depending on the measurement, the input and the output line
are either connected to the microwave ports of a commercial VNA (gain measurements) or the ports of
a custom-made microwave interferometer (quantum jumps). For the noise visibility measurement, only
the output port is connected to a spectrum analyzer. The dc line for the superconducting field coil of
the DJJAA contains a copper powder filter.

253



Appendix

G.9 Transmon qubit: time-domain setup

The time-domain setup used to measure the quantum jump traces of the transmon
qubit (see Fig. 3.14) is a custom-made, heterodyne microwave interferometer similar
to the one used in Ref. [26], with its schematic shown in Fig. 41. The I and Q
quadratures are determined from the time-varying difference between a signal path
SIG(t), which has been passed through the cryostat and therefore interacted with
the sample, and a reference path REF(t), which has not interacted with the sample:

I(t0) =

t0+Tm/2∫
t0−Tm/2

SIG(t)REF(t)dt (226)

Q(t0) =

t0+Tm/2∫
t0−Tm/2

SIG(t)REF
(

t +
T
4

)
dt. (227)

Here, t0 is the moment in time in the center of the integration window of length
Tm, referred to as the integration time in the main text (see Sec. 3.8), and T = 16 ns
is the period of the intermediate frequency (IF) 62.5 MHz. Due to the calculation
procedure for I and Q, the integration time Tm has to be an integer multiple of
T(1 + 1/4) = 20 ns. Both microwave tones are generated using the channels of a
two channel microwave source, and, since both paths are downconverted to the IF
using the other channel as the local oscillator (LO), the calculated quadratures I and
Q become insensitive to drifts of the individual carrier channels.

The pulse sequences for the readout and the manipulation of the transmon are
synthesized by mixing the respective carrier tone with the (rectangular) pulse shape
supplied by an arbitrary waveform generator (AWG). Since the process is heterodyne
and single-sideband (SSB) mixers are used for the conversion, the carrier frequencies
are shifted to higher frequencies by an amount determined by the IF. Both, the
readout and the qubit manipulation tone are combined at room temperature. The
strength of the tones is controlled by the voltage amplitudes of the AWG and the
power of the carrier signal.

The output signal coming from the cryostat is first filtered using a custom-made
cavity bandpass filter adjusted to the resonance frequency fr to filter out the strong
DJJAA pump tone applied at fp = 5.509 GHz, the filter function is shown in Fig. 41
in form of the transmission spectrum |S21|, and subsequently downconverted to the
IF. Several room-temperature amplifiers are used to increase the signal strength
to a level well beyond the resolution of the analog-to-digital converter (ADC). The
sampling rate of the ADC is 1250 MHz, corresponding to a time resolution of 0.8 ns.
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Figure 41: DJJAA: Time-domain setup. Schematic of the microwave interferometer — the time-domain
setup — used to decompose the signal of the readout resonator into the I and Q quadratures. At the
center of the interferometer are two paths denoted the signal (red) and the reference (blue). For the
readout tone of the resonator, the continuous microwave tone of a two channel microwave source (2
channel LO), is mixed with the desired pulse shape synthesized by an arbitrary waveform generator
(AWG) using a single-sideband (SSB) mixer. The signal is split into two paths, from which one serves as
the local oscillator (LO) of the reference tone, and the other is guided to the fridge. The readout power
is roughly adjusted by a step attenuator, and fine-tuned by the voltage amplitude of the waveform.
Before the readout signal reaches the microwave input port of the cryostat (see Fig. 40 for microwave
wiring), the qubit manipulation drive (green path) is combined with the signal. The signal coming from
the cryostat is filtered with a custom-made cavity band-pass filter to remove the DJJAA pump tone
applied at fp = 5.509 GHz. The transmission spectrum around the signal frequency fr = 5.8224 GHz is
shown. For the downconversion of the signal to the intermediate frequency (IF) 62.5 MHz, the second
port of the microwave source (2 channel LO) is used. In that way, drifts in the two channels appear in
both, the reference and the signal path. Several isolators (circulators with 50 Ω-terminations) are used
to reduce unintended crosstalk between both paths.

G.10 Transmon qubit: circuit parameters and energy spectrum

The circuit parameters of the transmon qubit, the charging energy EC,q and the
Josephson energy EJ,q, as well as the coupling rate g to the readout resonator are
extracted by comparing the energy spectrum predicted by the full qubit-resonator
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Figure 42: Transmon: spectrum. The transmon spectrum is measured by performing a two-tone
spectroscopy. The response of the readout resonator is monitored with a constant and continuous probe
tone applied on resonance ωprobe = ωr, while a drive tone is applied in vicinity of the fundamental
transmon transition frequency ωq. The two Lorentzian curves By sweeping the drive tone frequency
ωdrive and power Pdrive, various transitions in the transmon become visible. The measured transmon
spectrum is shown in the right-hand panel. At low power, the fundamental transmon frequency appears
at ωq = 2π × 4.505 GHz, while a second transition appears at ω2 = 4.244 GHz when the drive power is
increased, corresponding to the transition between the first excited state and the second excited state.
This observation is due to a finite population of the excited state, as discussed in Sec. 3.9. From the
difference of both transitions, the qubit anharmonicity αq = −2π × 256 MHz is extracted. Additionally,
several multi-photon transitions are visible, for instance the (|0〉 → |2〉)/2 transition.

Hamiltonian expressed in the charge basis for the transmon and the Fock-basis for
the readout resonator |N, nr〉

Ĥ =
∞

∑
N=−∞

(
4Ec(N − Ng)

2 |N〉 〈N| − EJ

2
|N〉 〈N + 1|+ |N + 1〉 〈N|

)
+ h̄ωr |nr〉 〈nr|

+ h̄g
∞

∑
N=−∞

N |N〉 〈N|
∞

∑
nr=0

√
nr + 1 (|nr + 1〉 〈nr|+ |nr〉 〈nr + 1|) ,

(228)

with the results obtained from the quantum optics Hamiltonian given in Eq. 1.44 [38].
The qubit parameters entering the quantum optics Hamiltonian are extracted from the
energy spectrum of the transmon shown in Fig. 42,yielding the fundamental transmon
transition frequency ωq = 2π × 4.505 GHz and the anharmonicity of the spectrum
αq = −2π × 256 MHz. The remaining parameters are the resonator frequency
ωr = 2π × 5.8224 GHz (see Fig. 1.11) and the dispersive shift 2χqr = 2π × 480 kHz
(see Fig. 1.11 and Fig. 3.12).

The results obtained by aligning the energy spectra are EJ,q/h = 12.5 GHz, Ec,q/h =

225 MHz
(
EJ,q/Ec,q ≈ 56

)
and g = 2π × 39 MHz, in good agreement with values
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extracted from finite element simulations of the circuit geometry (charging energy
and coupling rate) and the normal-state resistance of the JJ RJ = 10.3 kΩ measured
at room temperature.

G.11 Transmon qubit: coherence

By applying a squared-envelope manipulation pulse of duration t to the transmon on
resonance with its fundamental transition frequency f̃q, continous Rabi-oscillations
between the transmon’s ground and first excited state are observed, shown in Fig. 43a
(top panel). Using a relatively weak drive strength, the duration of the π-pulse
tπ ≈ 1.43 µs is calibrated by fitting the data (blue) with a periodic cosine function
with exponentially decaying envelope (red).

Energy relaxation measurements were performed by exciting the qubit to its first
excited state using the calibrated π-pulse, and gradually increasing the time interval
τ between the end of the excitation pulse and the beginnig of the readout pulse.
From an exponential fit (red) to the data (blue), shown in Fig. 43a (bottom panel),
the energy relaxation time is found to be T1 ≈ 8.8 µs.

Figure 43: Transmon: quantum coherence. a) Rabi oscillations of the transmon (top panel) and energy
relaxation measurement (bottom panel) following a π−pulse, both encoded in the phase response
of the readout resonator. The π−pulse duration of 1.5 µs corresponds to the first minimum of the
measured Rabi oscillations. From the exponential energy decay (red solid line), an energy relaxation
time of T1 = 8.8 µs is deduced. b) Ramsey fringes experiment with the pulse sequence depicted in the
lower right-hand corner. Two oscillations were observed with similar frequency f 1

R = 1.03 MHz and
f 2
R = 1.19 MHz, with a characteristic decay time T∗2 = 6.5 µs.
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The transmon’s coherence time T∗2 ≈ 6.5 µs was extracted from a Ramsey fringes
measurement. As shown in Fig. 43b, two superposed oscillations with different
frequencies were observed. In the case of two distinct Ramsey frequencies, an
extended fit function ϕ(τ) is used to fit the measured time evolution of the phase of
the reflection coefficient.

ϕ(τ) = exp−τ/T∗2 (A1 cos [2π( fR,1τ) + φ0,1]

+ A2 cos [2π( fR,2τ) + φ0,2]) + ϕ0.
(229)

Most probably, the two Ramsey frequencies fR,1 and fR,2 arise from two distinct
transmon frequencies, which could be caused by the coupling to mesoscopic system(s)
residing in the environment of the transmon. However, the origin remains unknown.

G.12 Transmon qubit: Photon number calibration

The photon number inside the readout resonator n̄r of the transmon used for
the calculation of the measurement photon number (see Sec. 3.8) was calibrated
for a number of voltage amplitudes V̄drive set for the readout drive tone at room
temperature. Notably, for readout and manipulation performed on the readout
resonator and the qubit, square-envelope pulses were used. The integration time of
the readout tone is Tm = 300 ns, and the pulse duration for a π-pulse is τπ = 57 ns.

Figure 44a depicts the calibrated photon number as a function of the squared voltage
amplitude, which is proportional to the average drive power Pdrive ∝ V̄2

drive, and
increases linearly with the drive power, as expected. The change in the Ramsey
frequency fR and the reduction in coherence time T∗2 with increasing resonator
population is illustrated in Fig. 44b for two different drive amplitudes. Notably, the
decrease in coherence results from an increasing distribution of the coherent state
in the Fock-basis causing measurement-induced dephasing, which is proportional
to V̄drive [19] (see Sec. 1.1.6). The measured Ramsey fringes are fitted with an
exponentially damped cosine

ϕ(τ) = e−τ/T∗2 A cos [2π( fRτ) + φ0] + ϕ0. (230)

Here τ is the time the qubit state evolves between the π/2 pulses, T∗2 is the coherence
time, A is the oscillation amplitude, fR is the Ramsey frequency, φ0 is the offset phase
of the cosine oscillation and ϕ0 is the global offset phase.
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Figure 44: Transmon: photon number calibration a) Photon number calibration of the readout strength
proportional to the squared voltage amplitude V̄2

drive of the readout pulse. The pulse sequence used
in the experiment is depicted in the lower right corner. In-between two (π/2)x pulses applied to
the transmon (pink), an additional tone was applied to the readout resonator with varying voltage
amplitude V̄drive (purple). After this pulse sequence, the qubit state was inferred from the response of
the readout resonator. From the change in frequency fR observed in the Ramsey fringes (see panel b)
with respect to the undriven case f 0

R = | fq,drive − fq|, and using the dispersive shift χqr [see Fig. 3.12],
the photon number n̄r was calibrated as a function of the applied drive power Pdrive ∝ V̄2

drive. b) Two
examples of measured Ramsey fringes with V̄drive = 0.02 V (blue) and V̄drive = 0.24 V (red) visible in
the phase response of the readout resonator. Besides the change in the frequency fR, the measured
coherence time T∗2 decreases also due to measurement-induced dephasing.

G.13 Fabrication recipe

The DJJAA samples are based on a simple, fast and reproducible positive optical-
lithography fabrication, summarized in Tab. 11 and Tab. 12. The design is split into
two consecutive fabrication steps, as emphasized in Sec. 3.3, using a dedicated soda
lime glass based chrome mask for each step.

Firstly optical resist (S 1805) is spin coated onto a doubly polished sapphire wafer1

with the coating parameters summarized in Tab. 11. The sapphire wafers are either
cleaned in the so-called piranha solution, a mixture of sulfuric acid, water, and
hydrogen peroxide, or used directly from the supplier. However, no unambiguous
difference has been observed in the quality of the amplifiers. After the resist has
dried on a hot plate for 60 s, it is exposed for 4 s with light of wavelength λ = 365 nm
emitted by a 500W Xe lamp. Subsequently, the exposed parts of the resist are
dissolved using a 25− 30 s bath in a commercial MF 319 developer, followed by a

1 CrysTec

259



Appendix

rinse in destilled water. Since the developer contains TMAH, which is a known Al
etcher, the development time for the second step does not exceed 30 s.

The pure Al films are deposited in a PLASSYs electron beam shadow evaporator.
Typically the transfer chamber (load lock) is prepumped for around t ≈ 1 h
(first step) and t ≈ 3 h (second step) giving values for the pressure of around
pLL ≈ 2− 5× 10−7 mbar. Before the first aluminum layer is deposited the wafer is
cleaned with an oxygen/argon (10 sccm/5 sccm) plasma under a beam voltage 200 V
and a beam current 10 mA for 2 : 30 min. Subsequently around 30 nm of aluminum
is deposited at 1 nm/s.

For the junction fabrication the intrinsic oxide layer on-top of the first Al layer is
removed by an Ar milling process (flow rate: 4.0 sccm, 400 V, 15 mA) for 2 : 30 min
before the insulating barrier is grown under controlled conditions, determined by
the combination of oxygen pressure and time - the exposure. In order to increase
the barrier quality the pressure inside the main chamber is further reduced by Ti
gettering (pLL ≈ 5− 6× 10−8 mbar). The second aluminum layer is slightly thicker
(40 nm) to ensure a good contact.

For lift-off, the samples are stored in a preheated (T = 90 ◦C) NEP bath for a couple
of minutes. Especially after the second step, a low power (power not calibrated)
ultra sonic bath is used to ensure the lift-off of the metal parts in the SQUID loops.
Subsequently, the wafer is rinsed in an acetone and ethanol bath (in this order),
before it is finally blown-dry with N2-gas.
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Table 11: Optical-lithography fabrication recipe: Resist application, exposure and development.

Resist application

resist S1805 (thickness: 500 nm, positive)
acceleration 500 rpm/s
ramp speed 500 rpm
ramp time 5 s
spin speed 4500 rpm
spin time 60 s
HP temp 115 ◦C
HP time 60 s

exposure

mask type soda lime glas based chrome mask
dose 13 mW/cm2

wavelength 365 nm
contact mode hard
time 4 s

Development

developer MF-319
time 20− 30 s
rinse destilled H2O + N2 blown-dry
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Table 12: Optical-lithography fabrication recipe: Aluminum evaporation.

Aluminum evaporation: layer 1

cleaning O2/Ar
parameters 10 sccm/5 sccm, Ubeam = 200 V, Ibeam = 10 mA

thickness 30 nm
rate 1 nm/s
angle 0 ◦

lift-off
solvent NMP or NEP
time 5− 10 min
temperature 90 ◦C (preheated)
US-bath 2× 4 min at lowest power
rinse acetone + ethanol + N2 blown-dry

Argon milling and oxidation

cleaning Argon milling
parameters 4.0 sccm, Ubeam = 400 V, Ibeam = 10 mA
time 2 : 30 min
partial pressure 10 mbar
time 2− 7 min

Aluminum evaporation: layer 2

thickness 40 nm
rate 1 nm/s
angle 0 ◦

lift-off
solvent NMP or NEP
time 5− 10 min
temperature 90 ◦C (preheated)
US-bath 2× 4 min at lowest power
rinse acetone + ethanol + N2 blown-dry
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