

Liquid Metal Divertor Design for the European DEMO

B.-E. Ghidersa¹, T. W. Morgan², S. Roccella³, M. lafrati³, G. Mazzitelli³, R. DeLuca⁴, G. Dose⁵, T. Barrett⁶, F. Domptail⁶, M. Fursdon⁶, S. Desai⁶, J. Freemantle⁶, D. Horsley⁶, D. Alegre⁷, E. Oyarzabal⁷, F. Tabares⁷, P. Rindt⁸, R. Dejarnac⁹, J. Horacek⁹, M. Jerab⁹, S. Varoutis¹, S. Peschany¹, G. F. Nallo¹⁰, A. Carpignano¹⁰, M. Moscheni¹⁰, N. Pedroni¹⁰, F. Subba¹⁰, A. C. Uggenti¹⁰, R. Zanino¹⁰, V.Pericoli-Ridolfini¹¹, P. Chmielewski¹¹, I. Ivanova-Stanik¹¹, M. Poradziński¹¹, R. Zagorski¹¹, V. Makhlai¹², I. Garkusha¹², N. Pelekasis¹³, M. Vlachomitrou¹³, D. Dimopoulos¹³, A. Lytra¹³

¹ Karlsruhe Institute of Technology, Germany ² Dutch Institute for Fundamental Energy Research (DIFFER), Eindhoven, The Netherlands ³ ENEA, Department of Fusion and Technology for Nuclear Safety and Security, Frascati, Italy

⁴ University of Tuscia, Department DEIm, Italy

⁵ Università di Roma "Tor Vergata", Dipartimento di Ingegneria Industriale, Italy ⁶ United Kingdom Atomic Energy Authority, Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK

⁷ Fusion National Laboratory, CIEMAT, Madrid, Spain

⁸ Eindhoven University of Technology, Science and Technology of Nuclear Fusion group, Eindhoven, The Netherlands

⁹ Institute of Plasma Physics, Czech Academy of Sciences, Prague, Czech Republic

¹⁰ NEMO group, Dipartimento Energia, Politecnico di Torino, Italy

¹¹ Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland

¹² National Science Center "Kharkov Institute of Physics and Technology", Institute of Plasma Physics, Kharkov, Ukraine ¹³ Dpt. Mechanical Engineering, University of Thessaly, Volos 38334, Greece

Goal

Provide a back-up solution for the baseline (risk mitigation)

- Fulfil all divertor requirements (heat/particle handling)
- Compliant with plasma (impurity) and scenario
- Compliant with in vessel components, diagnostics...
- Compatibility with baseline cassette design

Solution: Capillary Porous Structure Design using Tin (Sn) as Liquid Metal

LM Divertor Design

Water cooled: 250°C, 150bar & 16m/s

CPS Layer

Safety analysis

de Fusión

LM in open channel (low flow)

Water cooled CuCrZr conduit (corrosion protection required)

Tungsten braid

Maximum surface temperature

	Design	10 MW m ⁻²	20 MW m ⁻²
5	ENEA CuCrZr	489 °C	843 °C
	ENEA W _{70%} Cu _{30%}	516 °C	919 °C
	DIFFER	00 °C	1020 °C
	CCFE	696 °C	1142 °C

Performance Optimization & Management

 Power handling with Li and LiSn divertor modules in COMPASS under *ELMy H-mode*

- $q// < 25 \text{ MW/m}^2$ (steady-state inter ELMs) and $E_{elm} = 15 \text{ kJ.m}^2$ (= ELM peak energy fluence)
- No mesh damage; good power handling capability for both Li and LiSn up to $q dep = 12 MW/m^2$
- No droplet ejected and no Sn contamination of core/SOL plasmas

- accelerators QSPA Kh-50 and QSPA-M (KIPT)

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.