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Abstract

Inferring phylogenetic trees for individual homologous gene families is difficult because alignments are often too short,
and thus contain insufficient signal, while substitution models inevitably fail to capture the complexity of the evolu-
tionary processes. To overcome these challenges, species-tree-aware methods also leverage information from a putative
species tree. However, only few methods are available that implement a full likelihood framework or account for
horizontal gene transfers. Furthermore, these methods often require expensive data preprocessing (e.g., computing
bootstrap trees) and rely on approximations and heuristics that limit the degree of tree space exploration. Here, we
present GeneRax, the first maximum likelihood species-tree-aware phylogenetic inference software. It simultaneously
accounts for substitutions at the sequence level as well as gene level events, such as duplication, transfer, and loss relying
on established maximum likelihood optimization algorithms. GeneRax can infer rooted phylogenetic trees for multiple
gene families, directly from the per-gene sequence alignments and a rooted, yet undated, species tree. We show that
compared with competing tools, on simulated data GeneRax infers trees that are the closest to the true tree in 90% of the
simulations in terms of relative Robinson–Foulds distance. On empirical data sets, GeneRax is the fastest among all tested
methods when starting from aligned sequences, and it infers trees with the highest likelihood score, based on our model.
GeneRax completed tree inferences and reconciliations for 1,099 Cyanobacteria families in 8 min on 512 CPU cores. Thus,
its parallelization scheme enables large-scale analyses. GeneRax is available under GNU GPL at https://github.com/
BenoitMorel/GeneRax (last accessed June 17, 2020).
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Introduction
Reconstructing the evolutionary history of homologous genes
constitutes a fundamental problem in phylogenetics, as the
phylogenetic trees of gene families (henceforth, gene family
trees [GFTs]) play a prominent role in numerous biological
studies. For instance, GFTs are essential to understand ge-
nome dynamics (Touchon et al. 2009), to study specific traits
(Musilova et al. 2019), or to infer the species tree (Boussau
et al. 2013; Mirarab et al. 2014).

Standard phylogenetic methods infer trees from multiple
sequence alignments (MSAs), for instance using the maxi-
mum likelihood (ML) criterion (Nguyen et al. 2015; Kozlov
et al. 2019). Under the correct substitution model, ML meth-
ods are statistically consistent (Yang 1994), that is, they con-
verge to the true tree when the sequences are long enough.

However, this condition is often violated for GFTs: typical per-
gene MSAs are short (50–1,000 sites) and can comprise a
large number of sequences representing a large number of
taxa (hundreds or thousands for large gene families). As a
result, there is typically insufficient signal in the MSA to re-
construct a well-supported phylogeny. In other words, the
tree with the highest likelihood might not correspond to the
true tree.

Species-tree-aware (STA) approaches aim to compensate
for this insufficient phylogenetic signal by relying on a puta-
tive species tree. Indeed, GFTs and the species tree exhibit an
intricate relationship: genes evolve within a (species) genome
and undergo biological processes such as duplication, hori-
zontal gene transfer (HGT), loss, or speciation (fig. 1).
Therefore, although GFTs can be incongruent with the
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species tree, their own evolutionary history is, to a substantial
degree, determined by the species tree. STA methods exploit
this relationship between the GFTs and the species tree to
leverage additional information for GFT inference. In the fol-
lowing, we denote gene duplication, gene loss, and HGT
events as duplication, transfer, loss (DTL) events .

A common approach used by STA methods (Chen et al.
2000; Scornavacca et al. 2015; Noutahi et al. 2016) consists of
contracting weakly supported GFT branches into polytomies,
which are subsequently resolved using the species tree. These
heuristics limit the set of GFTs explored to trees that can be
obtained as combinations of alternative resolutions of the
contracted branches. Most existing implementations (Chen
et al. 2000; Noutahi et al. 2016) are based on parsimony and
require a priori specification of arbitrary DTL parsimony costs.
This is particularly problematic if the substitution model is
misspecified, or if it fails to adequately capture the complexity
of the data. This is commonly the case for shorter gene align-
ments where parameter-rich substitution models are more
difficult to use. In addition, the user must define what a “low
support value” for branch contraction is, often by setting an
arbitrary threshold. Treerecs (Comte et al. 2020) addresses
this last limitation by exploring several thresholds and return-
ing the GFT that maximizes a likelihood score that is based on
both the MSAs and the species tree. Finally, obtaining branch
support values usually requires a substantial amount of com-
putational effort (e.g., 1–2 orders of magnitude more than for

a simple ML tree search on the original MSA, if the classic
Felsenstein Bootstrap is used [Felsenstein 1985]).

Other STA methods utilize a hierarchical probabilistic
model of sequence level substitutions and gene level events,
such as duplication, transfer, and loss. This allows the defini-
tion of the joint likelihood as the product of the probability of
observing the alignments given the GFTs (phylogenetic likeli-
hood) and the probability of observing the GFTs given the
species tree (reconciliation likelihood):

LðG; SjAÞ /
Y

Gi2G
PðAijGiÞPðGijSÞ; (1)

where S is the species tree, G is the set of GFTs, andA the set
of corresponding MSAs. Phyldog (Boussau et al. 2013) coes-
timates the GFTs and the species tree by conducting a tree
search that is based on such a joint likelihood score. However,
Phyldog does not model HGT. ALE (Szöll}osi, Rosikiewicz, et al.
2013) calculates the joint likelihood using a dynamic pro-
graming scheme that requires the phylogenetic likelihood
to be approximated via conditional clade probabilities
(Larget 2013). In order to calculate conditional clade proba-
bilities, ALE requires a sample of GFTs as input that are typ-
ically obtained via Markov Chain Monte Carlo (MCMC)
sampling. This approach has two shortcomings. First, the
conditional clade probability approximation inevitably limits
the set of GFTs explored to trees that are composed of clades
observed in an tree sample, as the phylogenetic likelihood of
all other trees is approximated to be 0 (Szöll}osi, Rosikiewicz,
et al. 2013). Although being less restrictive, conceptually this
limitation is nonetheless analogous to those induced by the
branch contraction methods discussed above. It is also sim-
ilarly sensitive to model miss-specification and inadequacy.
Second, obtaining a tree sample, either via Bayesian phyloge-
netic MCMC methods or via bootstrap methods for a set of
gene families is computationally expensive. For an in depth
review of GFT inference methods, see Szöll}osi et al. (2015) and
El-Mabrouk and Noutahi (2019).

Probabilistic frameworks to model both, sequence
(Felsenstein 1981) and gene evolution events (Åkerborg et al.
2009; Sennblad and Lagergren 2009; Szöll}osi, Tannier, et al.
2013), can be found in the literature. However, no ML tool
can currently directly infer GFTs from MSAs by simultaneously
accounting for sequence substitutions and DTL events. We
believe that such a method can substantially improve the ac-
curacy of GFT inference. A common argument against using
STA ML approaches is the amount of time and computational
resources required to conduct such analyses (El-Mabrouk and
Noutahi 2019). However, a joint (phylogenetic and reconcilia-
tion likelihood) ML approach does not require expensive pre-
processing and can therefore decrease the overall
computational cost substantially, while increasing accuracy at
the same time. Tree search heuristics are widely used to infer
phylogenies from sequence data (Nguyen et al. 2015; Kozlov
et al. 2019) using the phylogenetic likelihood. Thus, extending
these methods by joint likelihood calculations represents a nat-
ural way of improving the accuracy of GFT inference.

(a) (b)

(b) (c)

FIG. 1. A gene tree evolving along the species tree, and several possible
inferred trees. (a) The true history. The gene tree (blue lines) evolves
within the species tree (gray area) and undergoes speciations (S),
duplications (D), losses (L), and HGT (T). (b) The true rooted gene
tree. (c) An unrooted gene tree inferred with a sequence-aware
method. The splits between gene lineages are very close in time,
and there is not enough signal in the sequences to correctly infer
the unrooted gene tree topology. (d) Rooted tree inferred from the
species tree only (without accounting for the sequences), assuming
that HGTs are less likely than duplications
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Here, we introduce GeneRax, our novel software to infer
ML reconciled GFTs based on a joint reconciliation and phy-
logenetic likelihood. We use the term reconciled GFT to des-
ignate both, the GFT topology and its reconciliation with the
species tree. The input for GeneRax consists of a rooted, but
undated binary (fully bifurcating) species tree, a set of per-
family MSAs (DNA or amino-acid), and corresponding gene-
to-species leaf name mappings. Several genes from the same
gene family can be mapped to the same species. In addition,
the user can provide initial GFTs, typically inferred via stan-
dard phylogenetic methods (Nguyen et al. 2015; Kozlov et al.
2019). GeneRax is easy to use, models DTL events, and can
process gene families in parallel. Employing a hierarchical
probabilistic model allows it to simultaneously account for
both, the signal from the gene family MSAs and from the
species tree. It estimates all substitution and DTL events in-
tensity parameters and does not require any ad hoc threshold
nor any arbitrary DTL event parsimony costs.

Nonetheless, one should keep in mind that incomplete
lineage sorting (ILS) constitutes another important source
of discordance between GFTs and the species tree. A recent
study suggests that ILS can bias reconciliation inference
(Zheng and Zhang 2014). To this end, we also assess the
impact of ILS on the reconstruction accuracy of STA methods
and discuss the limitations of GeneRax in the presence of ILS.

New Approaches
In this section, we outline the joint likelihood computation,
our tree search algorithm, and our parallelization scheme.

Reconciliation Likelihood
In this subsection, we derive the reconciliation likelihood for a
rooted GFT given an undated, yet rooted species tree, as
implemented in ALE.

The “undated” DTL model, in contrast to the continuous
time model described in Szöll}osi, Tannier, et al. (2013), is a
discrete state model, which starts with a single gene copy on a
branch of the species tree. Subsequently, gene copies evolve
independently until, either all copies are observed at the
leaves or every gene copy becomes extinct. On an arbitrary
branch of the species tree, a gene copy

• either duplicates and is replaced by two corresponding
gene copies on the same branch (with probability pD);

• a new copy is transferred to a random branch that is not
ancestral to the donor branch, but otherwise drawn uni-
formly at random from the species tree, while a copy also
remains on the donor branch (with probability pT);

• is lost (with probability pL);
• undergoes a speciation event on internal branches, in

which case it is replaced by a copy on each descendant
branch (with probability pS ¼ 1� pD � pT � pL); and

• is observed for terminal branches, that is, arrives in the
present and is observed, thus terminating the process
(again with probability pS ¼ 1� pD � pT � pL).

By d, k, and s, we denote the duplication, loss, and transfer
intensity parameters that parametrize the above event

probabilities as follows:

pD ¼ d=ð1þ dþ sþ kÞ; (2)

pT ¼ s=ð1þ dþ sþ kÞ; (3)

pL ¼ k=ð1þ dþ sþ kÞ; (4)

and

pS ¼ 1=ð1þ dþ sþ kÞ: (5)

The probability of observing a rooted GFT G under the
undated DTL model defined above can be calculated by sum-
ming over all possible series of D, T, L, and S events (hence-
forth “scenarios”) that yield a rooted topology that is
congruent with G. The sum over all possible scenarios is com-
puted in two steps (Sjöstrand et al. 2013; Szöll}osi, Tannier,
et al. 2013). First, we calculate the extinction probability of a
gene copy that was initially present on some branch of the
species tree. The extinction probability is the sum over all
scenarios that do not yield descendants. Second, we sum
over all reconciliations of G, where a reconciliation of G cor-
responds to a specific sequence of D, T, S, and gene copy
extinction events, and its probability corresponds to the
product of the specific sequence of events (cf., fig. 2a).

To begin, let e be a branch of the species tree S, and let f
and g be its descendant branches (remember that the species
tree is rooted). Let T ðeÞ be the set of species tree branches
that can receive an HGT from e. Because we do not assume
any time information on the species tree other than the order
of descent induced by the rooted tree topology, we consider
that T ðeÞ corresponds to all nodes that are not ancestors of
e. We allow transfers from e to its descendants, because a
gene could have evolved along an extinct or unsampled lin-
eage and could subsequently have been transferred back to a
descendant of e (Szöll}osi, Tannier, et al. 2013).

The extinction probability, that is, the probability that a
gene copy observed on an internal branch e becomes extinct
before being observed at the tips of the specie tree is

Ee ¼ pL þ pSðEf EgÞ þ pDðE2
eÞ þ pTðEe�EeÞ: (6)

The terms correspond to the 1) loss probability, 2) speci-
ation and subsequent extinction probability in both descend-
ing lineages (this term must be omitted for terminal
branches), 3) duplication and subsequent extinction proba-
bility of both copies, and finally 4) transfer and subsequent
extinction probability of both, the donor copy on branch e
and the transferred copy on branch h. For the latter event, we
have introduced the notation:

�Ee ¼
X

h2T ðeÞ

Eh

jT ðeÞj : (7)

In (6), the value of Ee depends on �Ee, and thus on the
extinction probabilities of all species in the species tree. We
iteratively estimate �Ee and Ee for all nodes e in the species tree,
by initializing ½Ee�0 ¼ 0 and computing:
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½Ee�n ¼ pL þ pS½Ef �n�1½Eg�n�1 þ pDð½Ee�n�1Þ2

þpT½Ee�n�1P
h2T ðeÞ ½Eh�n�1=jT ðeÞj

: (8)

We do not prove the existence of the limit nor that this
limit is the solution of equation (6) here.

In simulations, we observed that five iterations are suffi-
cient to estimate Ee, and we have thus set the number of
iterations to 5 in our implementation. In the special case
where s¼ 0 (no HGT), the contribution of the term �Ee

zero, and we can directly compute Ee from Ef and Eg.
To calculate the probability of a rooted GFT G, we have to

sum over all reconciliations of G. This includes D, T, S, and
gene extinction events that may have generated the observed,
rooted GFT along the species tree. The algorithm to calculate
the sum over all reconciliation histories proceeds from the
tips of the rooted species tree and rooted GFT toward their
respective roots. Let v and w be descendants of u on G, and f
as well as g be descendants of e on the species tree S. For
calculating the recursive sum over reconciliations, consider
Pu;e, as the sum over all reconciliations that generate the
subtree below some internal node u of G starting from a
single gene being present on the internal branch e of the
species tree S. We calculate Pu;e by enumerating all possible
single D, T, and S events that can result from u on e. These are
shown in figure 2 and yield

Pu;e ¼ pSðPv;gPw;f þ Pw;gPv;f Þ þ pSðEf Pu;g þ Pu;f EgÞ

þpDðPv;ePw;eÞ þ pDð2Pu;eEeÞ

þpTð�Pe
wPv;e þ �P

e
vPw;eÞ þ pTð�Pu;eEe þ �EePu;eÞ;

(9)

where we have introduced the notation:

�Pu;e ¼
X

h2T ðeÞ

Pu;h

jT ðeÞj ; (10)

where T ðeÞ denotes the branches of S that are not ances-
tors of e. If both e and u are terminal branches, we set
Pu;e ¼ PS.

Similar to the expression for the extinction probability, Pu;e

depends on itself. We solve this through fixed point iteration
analogously to (6). Aside of the self-dependence, every other
term involves either descendant branches in G (u and w),
descendant branches in S (f and g), or both. This allows to
devise a bottom-up dynamic programing recursion starting at
the leaves, such that for leaf g of the GFT and leaf s of the
species tree Pðg; sÞ ¼ 1, if gene g maps to species s, and zero
otherwise.

Given the above, to calculate the reconciliation likelihood,
let G be a rooted GFT, r its root, S a rooted species tree, VðSÞ
the set of nodes of S, and N ¼ fd; s; kg the set of DTL

(a) (b)

FIG. 2. Calculating the probability of G along S. (a) The probability that the rooted GFT G is generated along the rooted species tree S according to the
“undated” DTL process can be calculated by summing over all reconciliations. Here, we show the leading terms in the sum over all reconciliations that
start with a single gene copy on branch 1 of S and obtain a rooted gene tree that is congruent with G. (b) More generally, to calculate Pu;e , that is, the
sum over all reconciliations generating the subtree below some internal node u of G starting from a single gene present on the internal branch e of S,
we must consider the following events (i) if e is an internal branch of S, speciation with probability pS such that the descendants of v on G are observed
on f of S and of w on G are observed on g of S, or vice versa. If e is a terminal branch, with probability pS gene u will be observed at the terminal branch e;
(ii) if e is an internal branch of S, speciation with probability pS such that the descendants of u are observed on f of S and the copy on g goes extinct with
probability Eg, or vice versa; (iii) duplication with probability pD such that v and w are both observed on e; (iv) duplication with probability pD such that
either the first or the second copy goes extinct, each with probability Ee and u is observed on e; (v) transfer with probability pT, such that the respective
branches v and w correspond to the copy on the donor branch e of S, whereas the other copy corresponds to the recipient copy on branch h of S that is
not an ancestor of e; and finally (vi) transfer with probability pT followed by the extinction of either, the copy in the donor linage e with probability Ee of
the extinction of the copy in the recipient, with probability Eh. These correspond to the terms of equation (2).
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intensity parameters. The reconciliation likelihood can then
be expressed as

LðS;NjGÞ ¼
X

s2VðSÞ
Pr;s=

X

s2VðSÞ
ð1� EsÞ; (11)

where we divide by
P

s2VðSÞð1� EsÞ to condition on survival,
as extinct gene families cannot be observed.

Joint Likelihood Evaluation
GeneRax attempts to maximize the joint likelihood defined as

LðG; S;NjAÞ /
Y

Gi2G
LðS;NjGiÞLðGijAiÞ; (12)

where G is the set of GFTs, S is the species tree, N are the DTL
event intensity parameters, and A is the set of gene family
MSAs.

GeneRax estimates the reconciliation likelihood LðS;NjGiÞ
based on the dynamics programing recursion described
above. It uses the highly optimized pll-modules library
(Darriba et al. 2019) to compute the phylogenetic likelihood
LðGijAiÞ. Hence, GeneRax offers all substitution models also
supported by RAxML-NG (Kozlov et al. 2019).

Joint Likelihood Optimization
Given a set of MSAs and a species tree, GeneRax searches for
the set of rooted GFTs and DTL intensity parameters that
maximizes the joint likelihood. We illustrate the search pro-
cedure in figure 3.

GeneRax starts either from user-specified GFTs or from
random GFTs. Our joint likelihood search algorithm needs
to start from GFTs with high phylogenetic likelihood, prefer-
ably inferred with phylogenetic ML tools such as RAxML-NG
(Kozlov et al. 2019). We provide a rationale for this in the
Results section. When starting from random GFTs, GeneRax
performs an initial search (Step 0 in fig. 3) that solely max-
imizes the phylogenetic likelihood, without accounting for
the reconciliation likelihood.

After this optional step, GeneRax starts optimizing the
joint likelihood, by alternating between optimizing the
GFTs and the DTL event intensity parameters.

When optimizing the GFTs (Step 1 in fig. 3), GeneRax
processes each family independently, and applies a tree search
heuristic to each of them separately: for a given tree, it tests all
possible Subtree Prune and Regraft (SPR) moves within a given
radius and subsequently applies the SPR move that yields the
tree with the highest joint likelihood. Then, it iterates by again
applying SPR moves to this new tree, until the joint likelihood
cannot be further improved. At the end of the GFT optimi-
zation, GeneRax increases the SPR radius by 1 until a certain
maximum value is reached (see further below).

GeneRax optimizes the DTL intensity parameters globally
over all gene families (Step 2 in fig. 3). To this end, we apply
the gradient descent method to find a set of DTL intensity
parameters that maximizes the reconciliation likelihood over
all gene families. We numerically approximate the gradient via
finite differences.

The entire procedure stops when the SPR radius (starting
from 1) exceeds a user-defined value. When the user does not

FIG. 3. GeneRax pipeline. In each step, we draw in red the parameters that GeneRax optimizes and in gray the fixed parameters that GeneRax uses
to compute the likelihoods. GeneRax performs Step 0 only when starting from random GFTs, to infer ML GFTs from the MSAs. Step 1 optimizes the
DTL event rates from the GFTs and the species tree. Step 2 optimizes the GFTs from the MSAs, the species tree and the DTL rates. GeneRax repeats
Step 1 and Step 2 with increasing SPR radius, until it reaches the maximum radius. Then, it applies Step 3 to reconcile the GFTs with the species tree.
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define this maximum SPR radius, we set it to 5, as we did not
observe any improvement above this value in our
experiments.

GFT and Species Tree Reconciliation
The reconciliation likelihood computation algorithm con-
ducts a postorder traversal of both, the species tree and the
GFT, and sums over all possible scenarios at each step of the
traversal. To infer the ML reconciliation (Step 3 in fig. 3),
GeneRax keeps track of the ML path during the traversal.

GeneRax can export the reconciled GFTs into both
Notung (Chen et al. 2000) and RecPhyloXML (Duchemin
et al. 2018) formats (fig. 4).

Parallelization
Achieving “good” parallel efficiency given a large number of
gene families is challenging: The most straightforward solu-
tion consists in assigning a subset of gene families to each core
(Boussau et al. 2013). However, gene family MSAs are highly
heterogeneous in terms of size and are hence hard to evenly
distribute over cores (Morel et al. 2018) such as to achieve
“good” load balance. In particular, large gene family MSAs can
easily generate a parallel performance bottleneck. Our solu-
tion allows to split up individual inferences on such large gene
family MSAs across several cores. Thus, we parallelize over,
but also within gene families, in analogy to our ParGenes
(Morel et al. 2018) tool. However, unlike ParGenes,
GeneRax parallelizes individual GFT searches over the possible
SPR moves and not over MSA sites. For a given GFT, we
distribute the SPR moves we intend to apply among the cores

assigned to the reconciliation of the GFT and apply them
simultaneously. We adopted this parallelization approach
for two reasons: 1) unlike the phylogenetic likelihood, the
time for computing a reconciliation likelihood does not de-
pend on the number of sites (i.e., a parallelization will not
scale with the number of sites in contrast to the phylogenetic
likelihood) and 2) per-MSA gene sequences are typically not
long enough to efficiently parallelize the phylogenetic likeli-
hood calculations over the sites.

Results
In the following, we present the results of our experiments.
For all methods, we report GFT quality (measured by
Robinson–Foulds [RF] distance to the true trees on simulated
data sets and joint likelihood on empirical data sets) and
computational efficiency (measured by sequential runtime
and parallel efficiency). All data and all inferred trees are avail-
able at https://cme.h-its.org/exelixis/material/generax_data.
tar.gz.

RF Distances to True Trees
We show the relative RF distances between the 1,099 simu-
lated Cyanobacteria true GTRs and the respective inferred
GTRs in figure 5. For methods that yield more than one po-
tential GFT per gene family (ALE and RAxML-NG), we average
the distance over all inferred trees.

GeneRax and ALE perform better than all other methods,
except in the case of the misspecified substitution model
where Treerecs performs equally well. Under the true model,
STA methods that do not account for HGT but use a joint
likelihood score (Phyldog and Treerecs) perform better than
the purely sequence-based method (RAxML-NG), but worse
than methods accounting for HGT. Although EcceTERA
accounts for transfers, it only performs as good as Treerecs,
presumably because the EcceTERA algorithm only uses par-
simony. We hypothesize that Notung performs worse than all
the other methods because it rearranges trees based on a
parsimony score and an arbitrary support value threshold.

FIG. 4. Reconciled GFT and species tree. Users can easily visualize
reconciliations inferred with GeneRax using the online tool
RecPhyloXML-visu (Duchemin et al. 2018). This example illustrates
one HGT and one duplication events.

FIG. 5. Relative RF distances to true trees, by inferring gene trees with
the true substitution model (LGþCþ I) and a misspecified substi-
tution model (WAG).
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We summarize the results of the GenPhyloData simula-
tions where we vary parameters (DTL intensity parameters,
etc.) in the presence of HGT in figure 6 and the results of the
simulations in the absence of HGT in the Supplementary
Material online . GeneRax finds the best trees in 90% of our

simulation scenarios, but ALE finds trees that are almost as
good in most simulations. Treerecs and Phyldog perform al-
most as well as GeneRax and ALE in the absence of HGT, but
worse under HGT. Notung performs significantly worse than
all SPA methods.

(a) (b)

(c) (d)

(e) (f)

FIG. 6. Comparison of different GTF correction tools on simulated data sets, in the presence of horizontal gene transfers. (a) Species taxa number,
(b) sites number, (c) increasingly wrong species tree, (d) average DTL rates, (e) ratio between duplication and transfers rates, and (f) gene tree
branch lengths.
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All STA methods show an analogous accuracy pattern
when we vary parameters: They perform better with increas-
ing gene sequence signal strength (fig. 6b and f) and perform
worse with increasing discordance between the species tree
and the GFTs (fig. 6c–e).

We show the results of the SimPhy simulations over
varying ILS discordance scores in figure 7. GeneRax out-
performs all other STA tools. It finds better GFTs than the
only non-STA method (RAxML-NG) up to an ILS discor-
dance score of 0.6. Our findings suggest that GeneRax can
be deployed for analyzing data sets that exhibit a moder-
ate degree of ILS.

Branch Score Distances to True Trees
To compare the quality of the gene branch lengths in terms of
expected number of substitutions per site, we measured the
average branch score distance (Kuhner and Felsenstein 1994)
between the inferred trees and the true trees (fig. 8) with the
phangorn R library (Schliep 2011). GeneRax performs better
than all competing tools. In particular, GeneRax shows a bet-
ter average branch score distance (1.02) than ALE (1.48). A
possible explanation for this is that ALE does not infer the
branch lengths by optimizing the phylogenetic likelihood
score, as opposed to GeneRax, Treerecs, and RAxML-NG.
When using ALE, Notung, Phyldog, or EcceTERA, users inter-
ested in branch length accuracy would need to include an
additional tool into their pipeline (e.g., RAxML-NG).

Joint Likelihood
We report the joint ML scores of the GFTs obtained with the
different tools in figure 9. As the true tree is generally not
know for empirical data, and given that we are willing to
accept the ML criterion, we must assume that the tree yield-
ing the best joint ML is also the one that best explains the
data. This approach of benchmarking ML tools on empirical
data sets has been used repeatedly for assessing standard tree
inference tools (Nguyen et al. 2015; Kozlov et al. 2019). The
rationale for this is that standard tree searches based on the

FIG. 7. RF distance to true trees on simulated data sets with increasing
discordance due to ILS.

FIG. 8. Branch score distance to true trees. We excluded from the plot
methods that do not infer the branch lengths.

(a) (b)

FIG. 9. Log-likelihoods (the higher the better) evaluated with GeneRax. When evaluating the joint likelihood for Primates, we set the HGT rate to 0.
(a) Primates and (b) Cyanobacteria.
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phylogenetic likelihood are inherently more difficult on em-
pirical than on smooth and perfect simulated data. That is,
differences between tree search algorithms might sometimes
only be observable on empirical data. As expected, GeneRax
finds the highest joint likelihood score. ALE is close to
GeneRax, because it strives to approximate the same model.
As the remaining tools implement distinct models, our com-
parison might appear as being unfair. However, we mainly
regard this as a means of verifying that GeneRax properly
maximizes the likelihood under its specific reconciliation
model. Treerecs and Phyldog are also very close to GeneRax
in the absence of transfers, because they deploy a similar joint
likelihood model. ALE performs better than Treerecs and
Phyldog in the presence of HGT, because Treerecs and
Phyldog only account for gene duplication and loss.
RAxML-NG, EcceTERA, and Notung do not implement a
joint reconciliation likelihood model, which explains their
low scores.

In addition, when running GeneRax on the empirical
Cyanobacteria data set, we recorded both, the reconciliation
likelihood and the phylogenetic likelihood during the tree
search (fig. 10). We observe that the joint likelihood optimi-
zation occurs through an increase of the reconciliation likeli-
hood in conjunction with a decrease of the phylogenetic
likelihood. We observed this consistently on all simulated
and empirical data sets we experimented with. In general,
we observed that our joint likelihood tree search heuristic is
not efficient in improving the phylogenetic likelihood score,
and thus needs to start from trees with a high phylogenetic
likelihood. For this reason, when the user does not provide a
starting tree, we initially only optimize the phylogenetic like-
lihood, and only subsequently start the joint likelihood
optimization.

Sequential Runtimes
We measured the sequential runtimes of all tools on the
empirical Cyanobacteria data set. Comparing runtimes is
not straightforward: Some tools are very fast but require an
external preprocessing step, as described in table 1 . For

instance, Notung is the fastest tool, but it requires GFTs
with support values as input, and obtaining those can be
extremely time-consuming. For a fair comparison, we plot
both the time spent in the GFT inference tools alone, and
the time spent in their respective preprocessing steps (fig. 11).

When only considering the stand-alone runtimes of the
tools, GeneRax is the slowest method. However, when includ-
ing the preprocessing cost, GeneRax becomes the fastest STA
approach. In addition, using only a single tool for the entire
inference process substantially improves usability and repro-
ducibility of the analyses.

Parallel Efficiency
We measured the parallel runtimes of GeneRax for different
numbers of cores. For this experiment, we executed GeneRax
on the empirical Cyanobacteria data set (1,099 families), start-
ing from RAxML-NG trees. We used 4 up to 512 cores.
Despite the highly heterogeneous gene family MSA sizes (in
terms of both number of sites and number of taxa, see
Supplementary Material online), GeneRax achieves a high
parallel efficiency of 70% on 512 cores. We plot the speedup
as a function of the number of cores in the Supplementary
Material online.

We also measured the parallel efficiency of running the
competing methods as described in the Materials and
Methods section and plot them in the Supplementary
Material online. GeneRax is the only tool that achieves
good efficiency (70%) because it parallelizes both, over, and
within gene families, thereby achieving a “good” load balance.
Despite a similar two-level parallelization scheme, the parallel
efficiency of RAxML-NG (scheduled with ParGenes, with one
starting tree per family) is below 20%. The reason for this is
that ParGenes parallelizes individual tree searches over the
sites whereas GeneRax parallelizes them over the SPR moves.
Gene MSAs are often short, and there is typically not a

FIG. 10. Reconciliation and sequence log-likelihoods during GeneRax
tree search on the Cyanobacteria data set. The sequence likelihood
decreases while the reconciliation likelihood increases.

FIG. 11. Sequential runtimes and additional overhead from precom-
putation steps (bootstrap trees with RAxML-NG for Notung and
Treerecs, MCMC samples with MrBayes for ALE and EcceTERA, and
RAxML-NG starting trees for GeneRax-raxml). The RAxML-NG col-
umn corresponds to the time spent in one single tree search. We
represent times with a logarithmic scale.
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sufficient number of sites to allocate several cores per tree
search with RAxML-NG. Other competing tools also fail to
attain good parallel efficiency (40%), because they do not
parallelize individual GFT inferences and are thus limited by
the longest individual per-tree inference time. The parallel
efficiency of GeneRax decreases when starting from random
trees, because the initial phylogenetic likelihood optimization
step is based on RAxML-NG code, which does not implement
our aforementioned two-level parallelization scheme yet.

Discussion

An Accurate, Robust, and Fast Approach
We present GeneRax, an open source STA GFT inference
software. GeneRax can simultaneously account for substitu-
tion and DTL events. It performs a tree search to optimize a
joint likelihood, that is, the product of the phylogenetic like-
lihood and the reconciliation likelihood. It can handle multi-
ple gene families in parallel. To the best of our knowledge,
GeneRax is the first STA tool that does not require any pre-
processing of the MSAs. Also, it does not require any arbitrary
threshold settings or parsimony weights, and it can account
for HGT.

On simulated data sets, we demonstrate that GeneRax and
ALE find trees that are closer to the true trees than those
inferred by competing tools. We show that GeneRax can
provide more accurate GFTs even when the species tree is
inaccurate and the substitution model is misspecified. Using
two empirical data sets (Cyanobacteria and Primates), we
confirm that GeneRax finds the best-scoring ML trees under
its specific model among the tested tools, both, with and
without HGT. Finally, we show that GeneRax not only is faster
than the tested competing methods (when accounting for
the computational cost of the preprocessing steps) but also
has a substantially higher parallel efficiency, making it suitable
for seamless large-scale analyses.

GeneRax is a production-level code. We released it on
BioConda (Grüning et al. 2018) to facilitate installation, and
we kept its interface as simple as possible. Although most
competing STA methods require input GFTs, sometimes, in-
cluding additional information (e.g., support values), GeneRax
can directly infer the GFTs from a set of given MSAs. This
simplified analysis process reduces the number of ad hoc
choices that users have to make: GeneRax does not require
bootstrap-support thresholds, parsimony weights, MCMC
convergence criteria, chain settings, proposal tuning, or priors.
Reducing the number of arbitrary choices does not only yield
the tool easier to run but also substantially improve the re-
producibility of the results. One could contest the parameters
we used in our experiments for the preprocessing steps:
Treerecs and Notung might not need 100 bootstrap trees
to obtain reliable support values. ALE and EcceTERA might
not need as many MrBayes runs, chains, or generations to
correctly approximate the phylogenetic likelihood. In general,
it is possible to run the preprocessing steps faster than in our
experiments. When running the competing methods, we
tried to use the parameters that favor result quality/

confidence over short runtimes, as we would have done in
a real analysis.

Limitations of GeneRax
GeneRax relies on two important assumptions: first, that the
rooted species tree is known, and second, that the observed
discordance between the GFTs and the species tree is mainly
due to D, T, and L events. Our experiments suggest that, when
those assumptions are violated, GeneRax can only improve
the quality of the GFTs up to a certain degree. In particular,
users should be cautious when using GeneRax in the presence
of ILS. Furthermore, GeneRax is not suitable for improving
GFT topologies in the presence of hybridization. Nonetheless,
GeneRax might be deployed for detecting potential hybridi-
zation events, by identifying species pairs exhibiting an
“abnormally high” number of HGT events.

Future Work
Despite the favorable evaluation results, GeneRax still faces
several challenges.

First, the GeneRax reconciliation model does not take into
account the branch lengths, neither in the species tree nor in
the GFTs. This leads to information loss and furthermore
allows for transfers between noncontemporary species. We
believe that further adapting and extending the reconciliation
model could improve the quality of the results. For instance,
one could exploit an ultrametric dated species tree and use
speciation events to slice the species tree, as done in Szöllosi
et al. (2012). However, slicing the species tree increases the
number of inner species nodes quadratically and thus incurs a
substantial increase in computational cost.

Second, the GeneRax reconciliation model assumes that
ILS does not occur. Some promising work (Rasmussen and
Kellis 2012; Chan et al. 2017) has been conducted to combine
DTL events and ILS in a single model. We believe that a
computationally efficient software that can account for ILS,
DTL events, and substitutions in a probabilistic framework
would represent a major breakthrough in phylogenetic
inference.

Finally, GeneRax needs a known/given species tree to es-
timate the GFTs. To this end, we plan to extend GeneRax to
coestimate both, the GFTs and the species tree, as done in
Boussau et al. (2013). An approach to solving this challenge
consists in inferring initial GFTs with non-STA methods and
then inferring an initial species tree that maximizes the rec-
onciliation likelihood given these GFTs. Then, in a second
step, one can propose new species tree topologies, optimize
the GFTs and DTL intensity parameters on the proposed new
species tree topology, and update the species tree if the joint
likelihood improves.

Materials and Methods
We compared GeneRax with competing GFT inference meth-
ods on both, simulated and empirical data sets.
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Tested Software
This subsection describes the settings we used for executing
the competing tools (summarized in table 1) in all of our
experiments.

We used ParGenes (Morel et al. 2018) to run RAxML-NG
with ten random and ten parsimony starting trees and 100
bootstrap trees. For methods requiring starting GFTs, we se-
lected the tree with the best likelihood found by RAxML-NG.
We used 100 bootstrap trees to compute GFTs with branch
support values as required for Notung and Treerecs. As
Notung does not provide any explicit recommendation for
setting the bootstrap-support threshold, we used the default
value (90%). We executed Treerecs with its automatic thresh-
old selection from seven threshold values (seven is the default
value). We executed Phyldog with a fixed species tree using a
maximum SPR radius of 5, as in GeneRax, since Phyldog does
not have a recommended setting. To execute ALE, we first
generated posterior tree samples with MrBayes (Ronquist
et al. 2012), using two independent runs, four chains,
1,000,000 generations, a sampling frequency of 1,000 and a
burn-in of 100 trees. We used the undated ALE model to
produce 100 tree samples per gene family. We used the
same MrBayes tree samples to execute EcceTERA with the
amalgamate option, without transfer from the dead, and with
the dated species tree option.

Note that, Treerecs, Notung, MrBayes, EcceTERA, and ALE
do not provide a parallelization over gene families for typical
distributed memory compute cluster systems. To execute
them on large data sets, we scheduled them with a dedicated
MPI program, by dynamically assigning jobs (with one job per
gene family) to the available MPI ranks, starting from the
most expensive jobs with the largest gene family MSAs.
Henceforth, we refer to sequential runtime as the sum of
the time required by each program and to parallel runtime
as the elapsed time spent for the entire MPI run. For a given
number of cores, the parallel efficiency is the sequential run-
time divided by the product of the parallel runtime and the
number of cores.

We executed GeneRax with default parameters and with
both, random (GeneRax-random) and RAxML-NG
(GeneRax-raxml) starting trees. When not stated otherwise,
we present GeneRax results for random starting trees.

When working on simulated data sets that were not
expected to contain HGT, we executed both, ALE and
GeneRax, with an HGT rate set to 0 and denote these runs
as ALE-DL and GeneRax-DL. When accounting for HGT, we
denote them as ALE-DTL and GeneRax-DTL.

Simulated Data Sets
We executed all tools listed in table 1 on the data set originally
used to benchmark ALE (Szöll}osi, Rosikiewicz, et al. 2013).
Szöllosi et al. initially inferred GFTs for 1,099 Cyanobacteria
gene families using ALE. Then, they simulated new sequences
under the LGþCþ I model along these trees, retaining both,
the MSA sizes and branch lengths. In our experiments, we
inferred GFTs once under LGþCþ I (true substitution
model) and once under WAG without rate heterogeneity
(misspecified substitution model).

In addition, we generated additional simulated data sets to
investigate the influence of various parameters on the meth-
ods and their respective accuracy. The parameters we studied
are the number of sites, the average gene branch lengths, the
species tree size, and the DTL intensity parameters. We also
used putative species trees that were increasingly different
from the true species tree to quantify the robustness of the
methods with respect to topological errors in the species tree.
We simulated the species tree and GFTs using GenPhyloData
(Sjöstrand et al. 2013) and the sequences using Seq-Gen
(Rambaut and Grass 1997), which simulates a continuous
time birth and death process along a time-like species tree.

Finally, we executed simulations using SimPhy (Mallo et al.
2016) with increasing population sizes to assess the impact of
ILS. We define the ILS discordance of a simulated data set as
being the average relative RF distance (Robinson and Foulds
1981) between the true species tree and the true GFTs
obtained when running the same simulations without D, T,
or L events.

Table 2. Description of the Empirical Data Sets Used in Our Benchmarks.

Data Set Database Species Families Avg. Sites Avg. Genes Max. Genes

Primates ENSEMBL 13 1,523 84 45 349
Cyanobacteria HOGENOM 36 1,099 239 37 130

NOTE.—We extracted the Primates data set from the release 96 of the Ensembl Compara database (Zerbino et al. 2018). The Cyanobacteria data set was originally used in a
previous study (Szöll}osi, Rosikiewicz, et al. 2013) and was extracted from the HOGENOM database (Penel et al. 2009).

Table 1. Softwares Used in Our Benchmark, with the Type of Method (ML, parsimony, or both), the Nature of the Input Trees (random tree, ML
tree, tree with bootstrap-support values, or MCMC sample of trees), Whether the Method Is STA and Whether the Method Accounts for HGT.

Software Method Type Input Trees STA HGT Ref.

RAxML-NG ML Random No No Kozlov et al. (2019)
Notung Parsimony Supported ML Yes No Chen et al. (2000)
Treerecs Parsimony 1 ML Supported ML Yes No Comte et al. (2020)
Phyldog ML ML Yes No Boussau et al. (2013)
EcceTERA Parsimony Supported ML or MCMC samples Yes Yes Scornavacca et al. (2015)
ALE ML MCMC samples Yes Yes Szöll}osi, Rosikiewicz, et al. (2013)
GeneRax ML Random or ML Yes Yes This paper
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Empirical Data Sets
We executed all methods in table 1 on the empirical data sets
listed in table 2. We measured both, sequential and parallel
runtimes. We also used GeneRax to evaluate the joint likeli-
hood of the trees inferred with each method, to assess the
quality of our tree search algorithm whose goal is to maximize
this likelihood.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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Grüning B, Dale R, Sjödin A, Chapman BA, Rowe J, Tomkins-Tinch CH,
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