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Abstract 
Water reacting with silica causes the generation of hydroxyl SiOH 
accompanied by a volume or swelling expansion. The principle of 
LeChatelier ensures that the hydroxyl concentration increases with in-
creasing externally applied stresses. From literature it becomes obvious 
that (a) the hydroxyl concentration must depend on the multi-axiality of 
the applied stresses, and (b) that the swelling effect is anisotropic. Based 
on Finite Element results it can be shown that for instance under torsion 
loading a strong stress-enhancement of the water/silica reaction with 
increased hydroxyl content must occur although this stress state shows a 
disappearing hydrostatic stress term. 

Due to the disappearing hydrostatic stress term under torsion loading, no 
mechanical effect would have been expected in torsion tests. Seen from 
this point of view, the torsion test seems ideal to us to provide evidence 
of anisotropic swelling. 

Further effects that can also influence the torsion test are addressed in 
the Appendix.  
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1. Torsion measurements from literature 
Torsion tests on silica cylinders were performed by Aaldenberg et al. [1] at temperatures 
between 550°C and 700°C in normal lab air environment. The torsion moments Mt were 
measured as a function of time t for a constant drill angle as plotted in Fig. 1a. Different 
surface states were reached by grinding, polishing and flame-polishing. In Fig. 1b the results 
are plotted in the form  

 0)()( MtMtM tt   (1.1) 

vs t, where M0 is the moment at t=0. This report deals with the question of the fundamental 
effect of silica swelling by hydroxyl generation on twisted cylinder samples. In the Appendix, 
two other effects will be discussed qualitatively. 

 

 

 
Fig. 1 Torsion measurements by Aldenberg et al. [1], a) torsion moment vs. time, b) change of the 

torsion moment vs. square-root of time. 
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2 Effect of swelling 
2.1 Uniaxial tension 
For uniaxial tension tests it holds for the stresses: z=appl, y=x=0 and for the swelling 
strains: sw,y=sw,x. The total swelling volume is in general the sum of the components  

 zswyswxsw
z

v ,,,
)(    (2.1) 

with the superscript (z) indicates the direction of the uniaxial loading. The hydroxyl concen-
tration reads  

 



 


RT

V
SS zexp0 , (2.2) 

with an activation volume V=14.4 cm3/mol [2]. The swelling strain components were 
determined as  
 )(

,
z

vzsw    (2.3) 

with 1.92 [2], and 
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2
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,, 46.0)1( z
v

z
vyswxsw    (2.4) 

The volume swelling strain )( z
v  can be computed from the hydroxyl concentration S via [3] 

 97.0,)(   Sz
v  (2.5) 

For small stresses, eq.(2.2) can be linearized as 

 )1(0 RT
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
  , (2.6a) 
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where v,0 is the volume swelling in the absence of an applied stress. A continuous first deri-
vative with respect to the stress at the origin is assumed. 
The increase of the volume swelling strain due to the load may be denoted as  
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V
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z
v
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  0,
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and the linear strains as 
 )(

,
z

vzsw    (2.8) 
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v

z
vyswxsw    (2.9) 

2.2 Torsion loading 
Under torsion loading, the maximum and minimum principal stresses appear in a coordinate 
system turned by 45° with respect to the length axis. In this system, Fig. 2, the “applied” 
stresses are  

 0, ,,,  xapplzapplyappl   (2.10) 
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This loading case can be simply handled by superposition of uniaxial tensile and uniaxial 
compression tests. By renaming the coordinates, the stress app,y causes the swelling strains 
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y
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)( , (2.11) 

where now the superscript (y) stands for loading in y-direction. The other swelling strain com-
ponents are   
 )(

,
y

vysw    (2.12) 
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By superimposing the individual strains to the total ones (indicated by subscript “tot”) it 
results 
 0,  totv , (2.14) 

 0,,  totxsw  (2.15) 
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Fig. 2 a) Cylinder under torsion moment Mt, b) applied stresses in the principal axes system shown 

on a volume element with a schematic representation of a Si-O bond. 

2.3 Swelling stresses 
Since in water diffusion layers the swelling strains are present only in thin surface layers, free 
expansion is not possible due to the bulk material that remains free of water. In the surface 
layer, swelling strains are created causing swelling stresses sw,z and sw,y. 
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Due to the compatibility condition between surface layer and bulk, the total strains consisting 
of elastic and swelling strains, must be the same in the layer as in the bulk material.  
This condition can be expressed as 

 0
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The solution of this system of linear equations reads 
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E
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These two swelling stresses cause a shear stress 

 totzswtotyswtotzswsw

E
,,,,,,2

1

1
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
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
  (2.22) 

Here E is Young’s modulus and  Poisson’s ratio (E=72000 MPa, =0.17).  
In terms of the applied torsion stress 

 zyzappl   )(2
1  (2.23) 

it finally holds by use of the proportionality eq.(2.5),  
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3
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


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

RT

V
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E
applsw  (2.24) 

This shear stress acts against the externally applied torsion.  

2.4 Swelling moment 
The change of torsion moment caused by swelling in a thin surface layer of thickness b that is 
small compared to the cylinder radius R of the test specimen, b <<R, is given as 

 
arm" Cantilever"
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affetedWater
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
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  (2.25) 

The water diffusion layer b increases with time t according to  

 tDb eff  (2.26) 

where D is the diffusivity. The swelling moment can, therefore, be expressed by 
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3 Effect of the damage-affected modulus 
A second influence of the water penetrating into the surface is the damage of the original 
material by hydroxide formation interrupting the ring structure of silica.  

In damage mechanics according to Lemaitre [4], the damage variable D represents the part of 
the material cross-section that can no longer transmit forces. As outlined in [5], the area that 
can carry load, AD, is reduced to  

 )1(0 DAAD   (3.1) 

where A0 denotes the total geometrical cross section subsuming damaged and undamaged 
regions. According to the hypothesis of strain equivalence by Lemaitre [4], the effective 
elastic modulus of the damaged glass, ED, decreases with increasing damage  

 )1(0 DEED   (3.2) 

where E0 is the modulus of the virgin glass. For small hydroxyl concentrations it can be 
written 

 SSD )(  (3.3) 

with 10.6 [6, 7]. For not too large damage (D<0.5) the Poisson’s ratio doesn’t change more 
than 10% and can for our purpose assumed as a constant [8]. Then eq.(3.2) holds also for the 
shear modulus GD  

 )1(0 DGGD   (3.4) 

In a strain- or displacement-controlled test, the decrease of the stresses in the damaged zone, 
D, D, are then  

 )1(
00

DDD 






 (3.5) 

with the original stresses 0 and 0 in the surface region. Consequently, the decrease of the 
torsion moment is for thin layers b<<R  

 effDDt DStRbDRbRM 00
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0
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0
2

, 22)(2    (3.6) 

where the subscript “D” indicates the change due to damage. The ratio of the two moments is 
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

 (3.7) 

At 700°C, this ratio is about 24, i.e. the dominant effect of hydroxyle generation on the 
torsion moment is via swelling. Finally, the total change caused by the two effects is 

 





 effapplt DStR

RT
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M 0
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




 




  (3.8) 
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where the parameter =S0 D  depends on the material, the environment, and the temperature. 
The paper of Aaldenberg et al. [1] doesn’t provide any information on Deff and the surface 
water concentration S0, which was probably not measured. Consequently, the quantity  has 
to be used here as an unknown parameter. 

4. Application to torsion experiments by Aaldenberg et al. [1] 
Figure 3 shows again the results of Fig. 1b plotted vs. the square root of time. The red straight 
lines represent the behavior for long times. The slopes of these asymptotes are listed in Table 
1. Whereas the slopes for the ground and the polished specimens are almost identical, the 

slope of the flame-polished material is steeper. The related parameter =S0 D  is given in the 
third Column of Table 1. 

 

Surface state Slope (Nm/s1/2) Parameter  =S0Deff  (m/s) 

ground -1.6010-4 1.0610-9 

polished -1.7510-4 1.1710-9 

flame-polished -2.5310-4 1.7010-9 

Table 1 Parameter  according to eq.(3.8) from straight-line evaluation of Fig. 3. 

 
Fig. 3 Data by Aaldenberg et al. [1] for 700°C given in Fig. 1b, straight lines indicate linear long-time 

behaviour. 

 

5. Discussion 
From Figs. 1 and 3 there are strong deviations from the straight-line behaviour visible for 
short times. The moment decreases much faster. In our opinion there are two effects respon-
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5.1 Origin for the time t 
In [1] it is mentioned that for heating up the furnace to test temperature a time “on the order of 
one hour” was necessary. During this pre-heating time, the test specimen was already 
mounted in the test apparatus. Especially in the time span where the test temperature was 
nearly reached, the diffusion zone could already grow with high growth velocity due to the 
square-root dependence bt. Consequently, the time origin for the growth of the water 
diffusion zone is different from the time under load. The effect is illustrated in Fig. 4 for the 
ground and the flame-polished specimens which show clear straight-line behaviour over a 
large time span. The time origin for diffusion, here t’, is shifted by 1 hour, i.e. t’=t+1h. This 
effect is trivially more significant for small times and can be neglected for large times. About 
35-40% of the early deviations would rise from the origin shift by 1h. 

 
Fig. 4 Data from Fig.3, plotted vs the time t’ for diffusion, by use of t’=t+1h. 

5.2 Effect of surface cracks 
In ground silica surfaces cracks are present as has been outlined by Suratwala et al. [9]. Even 
in the case of finishing by mechanical polishing or chemical etching larger cracks remain if 
the additionally removed surface layer is less than the crack depths after grinding. The indi-
vidual distributions of the depths a and the widths L are approximated in [9] by exponential 
distribution function 
In [10] we computed an apparent thickness bapp of the diffusion zone for the case of a surface 
containing many small machining cracks. When these cracks are modelled as an array of edge 
cracks of depth a, schematically illustrated by Fig. 5a, the water can penetrate into the glass 
through the undamaged surface LB and through the crack faces La, (L= length of the 
surface element). At very short times the volume V of water entrance into a single array 
element comes from the specimen surface Vs=LBb and the two crack faces Vc= Lab with 
b given by eq.(2.26). For small layer thickness, b<<(a,B/2), the apparent layer thickness bapp 
can be defined as  
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For large layer thickness, b>>a,  

  bbbapp for ,  (5.2) 

These two limit dependencies may be interpolated by a continous dependency  
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or more general by introducing a fitting parameter   

 





  )/exp(

2
1 ab

B

a
bbapp   (5.4) 

where a and B are average values of crack depth and crack spacing. Figure 5b shows the 
apparent zone depth by eq.(5.4) for =1. Since the change of the torsion moment is negative, 
bapp is plotted.  

 
Fig. 5 a) Surface cracks due to surface treatment, modelled by an array of periodical edge cracks, b) 

apparent diffusion layer thickness bapp as a function of the true layer thickness b for several parameters 
a/B and =1. 

Final Remark: Due to the disappearing hydrostatic stress term under torsion loading, 
no mechanical effect would have been expected in torsion tests. Seen from this point 
of view, the torsion test seems ideal to us to provide evidence of anisotropic swelling.  
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APPENDIX 

A1  Hydroxyl concentration at high temperature 

A1.1 Diffusivity 

When water diffuses into silica glass, it reacts with the silica network according to the 
following equation: 

 Si-O-Si + H2O  SiOH+HOSi, (A1.1) 

with the molar concentration of hydroxyl groups, S = [SiOH], and the molar concentration of 
water, C = [H2O]. For reaction of Eq. (A1.1), the equilibrium constant is at high temperatures 
 450°C 

 C

S
K

2

  (A1.2) 

In this case, the hydroxyl groups are mobile and can move away from one another; they 
become independent, and the reverse reaction behaves as a normal bimolecular reaction. In 
the high-temperature region, T450°C, the OH groups must be mobile and show a minimum 
diffusivity in order to sample neighboring OH groups, leading to a bimolecular reverse 
reaction, as has been required by Doremus [11]. His estimation for the minimum hydroxyl 
diffusivity, DOH, was  

 /scm10 217
OH

D  (A1.3) 

In the preceding considerations we only considered the effective diffusivity that is based on 
the diffusion of molecular water including the reaction (A1.1). 

Water near a crack tip can enter the material easier due to enhanced diffusivity D under 
mechanical load according to [12] 

 






 


TR

V
DD hexp0   (A1.4) 

where D0 denotes the value of the diffusivity in the absence of a stress. T is the absolute 
temperature in K; ∆V15 cm3/mol is the activation volume for stress-enhanced diffusion and 
R is the universal gas constant.  
The diffusivity of the OH-groups, DS=DOH, from Yongheng and Zhenan [14] is plotted in Fig. 
6 together with the effective diffusivity Deff according to Davis and Tomozawa [13]. For the 
case of a partial water vapor pressure of 6 Torr representing normal lab air, the diffusivities by 
Davis and Tomozawa were transformed from the data at 355 Torr via 

 
Torr355

Torr6
Torr355Torr6 DD   (A1.5) 

The straight lines in Fig. 6 can be represented by 
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 





 

RT

Q
DD s

S exp0  (A1.6a) 

with D0=1010 cm2/s and QS=261 kJ/mol (red line). The effective diffusivities from [13] may 
be descrided by  

 






 


RT

Q
DD eff

effeff exp0,  (A1.6b) 

with Deff,0=1.2 10-6 cm2/s at 355 Torr and Qeff=80.6 kJ/mol .  

 
Fig. 6 Arrhenius plot of diffusivities, black: effective water diffusivity in silica at 355Torr by Davis 

and Tomozawa [13], red: diffusivity of hydroxyls from dehydroxylation experiments by Yongheng 
and Zhenan [14]. 

A1.2 Hydroxyl generation at crack tips 
In ground silica surfaces cracks are present even in the case of finishing by mechanical 
polishing or chemical etching. This has been outlined by Suratwala et al. [9]. Such a surface 
state is schematically shown in Fig. 7 in side- and front view. The individual distributions of 
the depths a and the widths L are approximated in [9] by exponential distribution function.  
When a mechanical tensile stress  is applied (Fig. 7), 50% of all surface cracks are oriented 
normally to the stress direction in a statistical sense. Such cracks will be considered in the 
following computations. 
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Fig. 7 Stress-enhaced hydroxyl generation at the tips of surface cracks under load. 

A2 An alternate scenario for the decreasing torsion moment 
When silica surfaces undergo high-temperature treatment in lab air, they are strongly 
damaged as can be concluded from strength measurements on silica fibers by Proctor et al. 
[15]. Surface inspections after the strength tests revealed the local damages from which final 
fracture started. An example of such a surface damage for a heat-treatment time of 30-40 min 
at 800°C in lab air is shown in Fig. 8. From this image and the crack-face view in [15] we can 
conclude that the corrosion events appear roughly as a hemisphere that is strongly cracked by 
irregularly orientated cracks. From the two images, the radius  of the damages was deter-
mined as given in Table 2. For the torsion tests at 700°C we have to expect about 14 µm 
after t=30-45 min. 
Proctor et al. [15] explain the damage events as dust contamination that reacts with the silica 
surface. The nature of the atmosphere should have a small effect. This conclusion is drawn 
from the fact that the strength in vacuum is only slightly increased and only the dust particles 
already deposited on the surface become effective. The damaged zone in Fig. 8 is strongly 
cracked by irregularly orientated cracks. This region cannot carry external load. From a 
mechanics point of view it can be modelled as a hemisphere with a disappearing Young’s 
modulus, E0.  

 
Temperature  (µm)

600°C 7.6 

800°C 22.4 

Table 2 Radii for semi-spherical pores reported by Proctor et al. [15]. 
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z 
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Fig. 8 Crack patterns within a nearly spherical surface damage according to Proctor et al. [15], left part: 

Cracks exclusively, right part: Shadowing included. 

For an estimation of the surface damages on the reduction of the cross-section let us consider 
a part of the specimen surface with a length L in axial direction. When N damages are in a 
surface area A=2RL, the damage density is n=N/2RL. The average damage radius   for a 

number of N damages may be defined via the volume of the N damages of not necessarily 
identical radii per surface area is 

 
3/1

1

31 







 



N

i
iN   (A2.1) 

When N damages are in the unit surface area A, the damage density is nA=N/A. The damage 
volume is 
 3

3
2/ AnAV   (A2.2) 

This volume through which no load can be transmitted corresponds to an effective reduction 
in the cylinder radius, b, of 

 
A

V
b   (A2.3) 

as indicated in Fig. 9. The change of torsion moment caused by surface damaging is again 
given by  
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The effective radius reduction depends on time, b=f(t), because of  

 The increased number of damage events which is proportional to time t as 
long as no interactions between the damages occur and older damages inter-
fere with newer dust particles.  

 The reaction rate between the dust particles and the silica surface is limited 
and dust contamination and silica need time for reaction. 

 

 
Fig. 9 Stress-free surface region due to surface damages (schematic). 
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