
Empirical Software Engineering
https://doi.org/10.1007/s10664-020-09885-w

On the feasibility of automated prediction of bug
and non-bug issues

Steffen Herbold1 ·Alexander Trautsch2 · Fabian Trautsch2

© The Author(s) 2020, corrected publication 2020

Abstract
Context Issue tracking systems are used to track and describe tasks in the development
process, e.g., requested feature improvements or reported bugs. However, past research has
shown that the reported issue types often do not match the description of the issue.

Objective We want to understand the overall maturity of the state of the art of issue type
prediction with the goal to predict if issues are bugs and evaluate if we can improve existing
models by incorporating manually specified knowledge about issues.

Method We train different models for the title and description of the issue to account for the
difference in structure between these fields, e.g., the length. Moreover, we manually detect
issues whose description contains a null pointer exception, as these are strong indicators
that issues are bugs.

Results Our approach performs best overall, but not significantly different from an
approach from the literature based on the fastText classifier from Facebook AI Research.
The small improvements in prediction performance are due to structural information about
the issues we used. We found that using information about the content of issues in form of
null pointer exceptions is not useful. We demonstrate the usefulness of issue type prediction
through the example of labelling bugfixing commits.

Conclusions Issue type prediction can be a useful tool if the use case allows either for a certain
amount of missed bug reports or the prediction of too many issues as bug is acceptable.

Keywords Issue type prediction · Mislabeled issues · Issue tracking

Communicated by: Burak Turhan

� Steffen Herbold
steffen.herbold@kit.edu

Alexander Trautsch
alexander.trautsch@cs.uni-goettingen.de

Fabian Trautsch
fabian.trautsch@cs.uni-goettingen.de

1 Institute AIFB, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
2 Institute of Computer Science, University of Goettingen, Göttingen, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-020-09885-w&domain=pdf
http://orcid.org/0000-0001-9765-2803
mailto: steffen.herbold@kit.edu
mailto: alexander.trautsch@cs.uni-goettingen.de
mailto: fabian.trautsch@cs.uni-goettingen.de


Empirical Software Engineering

1 Introduction

The tracking of tasks and issues is a common part of modern software engineering, e.g.,
through dedicated systems like Jira and Bugzilla, or integrated into other other systems like
GitHub Issues. Developers and sometimes users of software file issues, e.g., to describe
bugs, request improvements, organize work, or ask for feedback. This manifests in different
types into which the issues are classified. However, past research has shown that the issue
types are often not correct with respect to the content (Antoniol et al. 2008; Herzig et al.
2013; Herbold et al. 2020).

Wrong types of issues can have different kinds of negative consequences, depending on
the use of the issue tracking system. We distinguish between two important use cases, that
are negatively affected by misclassifications. First, the types of issues are important for
measuring the progress of projects and project planing. For example, projects may define a
quality gate that specifies that all issues of type bug with a major priority must be resolved
prior to a release. If a feature request is misclassified as bug this may hold up a release.
Second, there are many Mining Software Repositories (MSR) approaches that rely on issue
types, especially the issue type bug, e.g., for bug localization (e.g., Marcus et al. 2004,
Lukins et al. 2008, Rao and Kak 2011, Mills et al. 2018) or the labeling of commits as defec-
tive with the SZZ algorithm (Śliwerski et al. 2005) and the subsequent use of these labels,
e.g., for defect prediction (e.g., Hall et al. 2012, Hosseini et al. 2017, Herbold et al. 2018)
or the creation of fine-grained data (e.g., Just et al. 2014). Mislabelled issues threaten the
validity of the research and would also degenerate the performance of approaches based on
this data that are implemented in tools and used by practitioners. Thus, mislabeled issues
may have direct negative consequences on development processes as well as indirect con-
sequences due to the downstream use of possibly noisy data. Studies by Herzig et al. (2013)
and Herbold et al. (2020) have independently and on different data shown that on average
about 40% issues are mislabelled, and most mislabels are issues wrongly classified as BUG.

There are several ways on how to deal with mislabels. For example, the mislabels could
be ignored and in case of invalid blockers manually corrected by developers. Anecdotal
evidence suggests that this is common in the current state of practice. Only mislabels that
directly impact the development, e.g., because they are blockers, are manually corrected
by developers. With this approach the impact of mislabels on the software development
processes is reduced, but the mislabels may still negatively affect processes, e.g., because
the amount of bugs is overestimated or because the focus is inadvertently on the addition
of features instead of bug fixing. MSR would also still be affected by the mislabels, unless
manual validation of the data is done, which is very time consuming (Herzig et al. 2013;
Herbold et al. 2020).

Researchers suggested an alternative through the automated classification of issue types
by analyzing the issue titles and descriptions with unsupervised machine learning based
on clustering the issues Limsettho et al. (2014b), Hammad et al. (2018) and Chawla and
Singh (2018) and supervised machine learning that create classification models (Antoniol
et al. 2008; Pingclasai et al. 2013; Limsettho et al. 2014a; Chawla and Singh 2015; Zhou
et al. 2016; Terdchanakul et al. 2017; Pandey et al. 2018; Qin and Sun 2018; Zolkeply and
Shao 2019; Otoom et al. 2019; Kallis et al. 2019). There are two possible use cases for
such automated classification models. First, they could be integrated into the issue tracking
system and provide recommendations to the reporter of the issue. This way, mislabeled
data in the issue tracking system could potentially be prevented, which would be the ideal
solution. The alternative is to leave the data in the issue tracking unchanged, but use machine
learning as part of software repository mining pipelines to correct mislabeled issues. In



Empirical Software Engineering

this case, the status quo of software development would remain the same, but the validity
of MSR research results and the quality of MSR tools based on the issue types would be
improved.

Within this article, we want to investigate if machine learning models for the predic-
tion of issue types can be improved by incorporating a-priori knowledge about the problem
through predefined rules. For example, null pointer exceptions are almost always associ-
ated with bugs. Thus, we investigate if separating issues that report null pointers from those
that do not contain null pointers improves the outcome. Moreover, current issue type pre-
diction approaches ignore that the title and description of issues are structurally different
and simply concatenate the field for the learning. However, the title is usually shorter than
the description which may lead to information from the description suppressing information
from the title. We investigate if we can improve issue type prediction by accounting for this
structural difference by treating the title and description separately. Additionally, we inves-
tigate if mislabels in the training data are really problematic or if they do not negatively
affect the decisions made by classification models. To this aim, we compare how the train-
ing with large amounts of data that contains mislabels performs in comparison to training
with a smaller amount of data that was manually validated. Finally, we address the question
how mature machine learning based issue type correction is and evaluate how our proposed
approach, as well as the approaches from the literature, perform in two scenarios: 1) the
classification of all issues regardless of their type and 2) the classification of only issues
that are reported as bug. The first scenario evaluates how good the approaches would work
in recommendation systems where a label must be suggested for every incoming issue. The
second scenario evaluates how good the approaches would work to correct data for MSR.
We only consider the correction of issues of type bug, because both Herzig et al. (2013) and
Herbold et al. (2020) found that mislabels mostly affect issues of type bug. Moreover, many
MSR approaches are interested in identifying bugs.

Thus, the research questions we address in the article are the following.

– RQ1: Can manually specified logical rules derived from knowledge about issues be
used to improve issue type classification?

– RQ2: Does training data have to be manually validated or can a large amount of
unvalidated data also lead to good classification models?

– RQ3: How good are issue type classification models at recognizing bug issues and are
the results useful for practical applications?

We provide the following contributions to the state of the art through the study of these
research questions.

– We determined that the difference in the structure of the issue title and description may
be used to slightly enhance prediction models by training separate predictors for the
title and the description of issues.

– We found that rules that determine supposedly easy subsets of data based on null
pointers do not help to improve the quality of issue type prediction models aimed at
identifying bugs.

– We were successfully able to use unvalidated data to train issue type prediction models
that perform well on manually validated test data with performance comparable to the
currently assigned labels by developers.

– We showed that issue type prediction is a useful tool for researchers interested
in improving the detection of bugfixing commits. The quality of the prediction



Empirical Software Engineering

models also indicate that issue type prediction may be useful for other purposes, e.g.,
as recommendation system.

– We provide open source implementations of the state of the art of automated issue type
prediction as a Python package.

The remainder of this paper is structured as follows. We describe the terminology we use
in this paper and the problems we are analyzing in Section 2, followed by a summary of
the related work on issue type prediction in Section 3. Afterwards, we discuss our proposed
improvements to the state of the art in the sections 4 and 5. We present the design and results
of our empirical study of issue type prediction in Section 6 and further discuss our findings
in Section 7. Finally, we discuss the treats to the validity of our work in Section 8 before we
conclude in Section 9.

2 Terminology and ProblemDescription

Before we proceed with the details of the related work and our approach, we want to
establish a common terminology and describe the underlying problem. Figure 1 shows a
screenshot of the issue MATH-533 from the Jira issue tracking system of the Apache Soft-
ware Foundation. Depending on the development process and the project, issues can either
be reported by anyone or just by a restricted group of users, e.g., developers, or users with
paid maintenance contracts. In open source projects, it is common that everybody can report
issues. Each issue contains several fields with information. For our work, the title, descrip-
tion, type, and discussion are relevant. The title contains a (very) brief textual summary of
the issue, the description contains a longer textual description that should provide all rel-
evant details. The reporter of an issue specifies the type and the title, although they may
be edited later. The reporter of an issue also specifies the type, e.g., bug, improvement,

Fig. 1 Example of a Jira Issue from the Apache Commons Math project. Names were redacted due to data
privacy concerns



Empirical Software Engineering

documentation change. The concrete types that are available are usually configurable and
may be project dependent. However, the type bug exists almost universally.1 Once the issue
is reported, others can comment on the issue and, e.g., discuss potential solutions or request
additional information. While the above example is for the Jira issue tracking system, sim-
ilar fields can be found in other issue trackers as well, e.g., Bugzilla, Github Issues, and
Gitlab Issues.

We speak of mislabeled issues, when the issue type does not match the description of the
problem. Herzig et al. (2013) created a schema that can be used to identify the type of issues
as either bug (e.g., crashes), request for improvements (e.g., update of a dependency), fea-
ture requests (e.g., support for a new communication protocol), refactoring (non-semantic
change to the internal structure), documentation (change of the documentation), or other
(e.g., changes to the build system or to the licenses). Herbold et al. (2020) used a similar
schema, but merged the categories request for improvements, feature request, and refac-
toring into a single category called improvement and added the category tests (changes to
tests). Figure 1 shows an example for a mislabel. The reported problem is a missing Javadoc
tag, i.e., the issue should be of type documentation. However, the issue is reported as bug
instead.

Since both Herzig et al. (2013) and Herbold et al. (2020) found that the main source of
mislabels are issues that are reported as bug, even though they do not constitute bugs, but
rather improvements of potentially sub optimal situations, we restrict our problem from a
general prediction system for any type of issue to a prediction system for bugs. This is in line
with the prior rel6ated work, with the exception of Antoniol et al. (2008) and (Kallis et al.
2019), who considered additional classes. Thus, we have a binary classification problem,
with the label true for issues that describe bugs, and false for issues that do not describe
bugs. Formally, the prediction model is a function hall : ISSUE → {true, f alse}, where
ISSUE is the space of all issues. In practice, not all information from the issue used, but
instead, e.g., only the title and/or description. Depending on the scenarios we describe in
the following, the information available to the prediction system may be limited.

There are several ways such a recommendation system can be used, which we describe in
Fig. 2. The Scenario 1 is just the status quo, i.e., a user creates an issue and selects the type.
In Scenario 2, no changes are made to the actual issue tracking system. Instead, researchers
use a prediction system as part of a MSR pipeline to predict issue types and, thereby, cor-
rect mislabels. In this scenario, all information from the issue tracking system is available,
including changes made to the issue description, comments, and potentially even the source
code change related to the issue resolution. The third and fourth scenario show how a pre-
diction system can be integrated into an issue tracker, without taking control from the users.
In Scenario 3, the prediction system gives active feedback to the users, i.e., the users decide
on a label on their own and in case the prediction system detects a potential mistake, the
users are asked to either confirm or change their decision. Ideally, the issue tracking system
would show additional information to the user, e.g., the reason why the system thinks should
be of a different type. Scenario 4 acts passively by prescribing different default values in the
issue system, depending on the prediction. The rationale behind Scenario 4 is that Herzig
et al. (2013) found that Bugzilla’s default issue type of BUG led to more mislabels, because
this was never changed by users. In Scenario 3 and Scenario 4 the information available to
the prediction system is limited to the information users provide upon reporting the issue,
i.e., subsequent changes or discussions may not be used. A variant of Scenario 4 would be

1At least we have never seen an issue tracking system for software projects without this type.



Empirical Software Engineering

User writes issue and selects type

Model predicts if issue is a bug

User decides on final label

Show predic�on to user

If predic�on does not equal selected typeElse

User writes issue

Model predicts if issue is a bug

User decides on final label

Bug as default type

If predic�on is bug

Improvement
as default type

User writes issue and selects type User writes issue and selects type

Model predicts and corrects issue types

Researcher collects data

Scenario 1: 
No predic�on

Scenario 2: 
Predict labels for research

Scenario 3: 
Ac�ve recommenda�on

Scenario 4: 
Passive recommenda�on

Fig. 2 Overview of the scenarios how prediction systems for bug issues can be used

a fully automated approach, where the label is directly assigned and the users do not have
to confirm the label but would have to actively modify it afterwards. This is the approach
implemented in the Ticket Tagger by Kallis et al. (2019).

Another aspect in which the scenarios differ is to which issues the prediction model
is applied, depending on the goal. For example, a lot of research is interested specifically
in bugs. Herzig et al. (2013) and Herbold et al. (2020) both found that almost all bugs
are classified by users as type bug, i.e., there are only very few bugs that are classified
otherwise in the system. To simplify the problem, one could therefore build a prediction
model hbug : BUG → {true, f alse} where BUG ⊂ ISSUE are only issues which
users labeled as bug. Working with such a subset may improve the prediction model for
this subset, because the problem space is restricted and the model can be more specific.
However, such a model would only work in Scenario 2, i.e., for use by researchers only, or
Scenario 3, in case the goal is just to prevent mislabeled bugs. Scenario 4 would, therefore,
not work with the hbug model.

3 RelatedWork

That classifications of issue types have a large impact on, e.g., defect prediction research
was first shown by Herzig et al. (2013). They manually validated 7,401 issue types of five
projects and provided an analysis of the impact of misclassifications. They found that every



Empirical Software Engineering

third issue that is labeled as defect in the issue tracking systems is not a defect. This intro-
duces a large bias in defect prediction models, as 39% of files are wrongly classified as
defective due to the misclassified issues that are linked to changes in the version control
system. Herbold et al. (2020) independently confirmed the results by Herzig et al. (2013)
and demonstrated how this and other issues negatively impact defect prediction data. How-
ever, while both Herzig et al. (2013) and Herbold et al. (2020) study the impact of mislabels
of defect prediction, any software repository mining research that studies defects suffers
from similar consequences, e.g., bug localization (e.g., Marcus et al. 2004, Lukins et al.
2008, Rao and Kak 2011, Mills et al. 2018). In the literature, there are several approaches
that try to address the issue of mislabels in issue systems through machine learning. These
approaches can be divided into unsupervised approaches and supervised approaches.

3.1 Unsupervised Approaches

The unsupervised approaches work on clustering the issues into groups and then identifying
for each group their likely label. For example (Limsettho et al. 2014b; 2016) use Xmeans
and EM clustering, Chawla and Singh (2018) use Fuzzy C Means clustering and Hammad
et al. (2018) use agglomerative hierarchical clustering. However, the inherent problem of
these unsupervised approaches is that they do not allow for an automated identification
of the label for each cluster, i.e., the type of issue per cluster. As a consequence, these
approaches are unsuited for the creation of automated recommendation systems or the use
as automated heuristics to improve data and not discussed further in this article.

3.2 Supervised Approaches

The supervised approaches directly build classification models that predict the type of the
issues. To the best of our knowledge, the first approach in this category was published by
Antoniol et al. (2008). Their approach uses the descriptions of the issues as input, which are
preprocessed by tokenization, splitting of camel case characters and stemming. Afterwards,
a Term Frequency Matrix (TFM) is built including the raw term frequencies for each issue
and each term. The TFM is not directly used to describe the features used as input for the
classification algorithm. Instead, Antoniol et al. (2008) first use symmetrical uncertainty
attribute selection to identify relevant features. For the classification, they propose to use
Naı̈ve Bayes (NB), Logistic Regression (LR), or Alternating Decision Trees (ADT).

The TFM is also used by other researchers to describe the features. Chawla and Singh
(2015) propose to use fuzzy logic based the TFM on the issue title. The fuzzy logic classifier
is structurally similar to a NB classifier, but uses a slightly different scoring function. Pandey
et al. (2018) propose to use the TFM of the issue titles as input for NB, Support Vector
Machine (SVM), or LR classifiers. Otoom et al. (2019) propose to use a variant of the
TFM with a fixed word set. They use a list of 15 keywords related to non-bug issues (e.g.,
enhancement, improvement, refactoring) and calculate the term frequencies for them based
on the title and description of the issue. This reduced TFM is then used as an input for
NB, SVM, or Random Forest (RF). Zolkeply and Shao (2019) propose to not use TFM
frequencies, but simply the occurrence of one of 60 keywords as binary features and use
these to train a Classification Association Rule Mining (CARM). Terdchanakul et al. (2017)
propose to go beyond the TFM and instead use the Inverse Document Frequency (IDF) of
n-grams for the title and descriptions of the issues as input for either LR or RF as classifier.

Zhou et al. (2016) propose an approach that combines the TFM from the issue title
with structured information about the issue, e.g., the priority and the severity. The titles are



Empirical Software Engineering

classified into the categories high (can be clearly classified as bug), low (can be clearly clas-
sified as non-bug), and middle (hard to decide) and they use the TFM to train a NB classifier
for these categories. The outcome of the NB is then combined with the structural informa-
tion as features used to train a Bayesian Network (BN) for the binary classification into bug
or not a bug.

There are also approaches that do not rely on the TFM. Pingclasai et al. (2013) published
an approach based on topic modeling via the Latent Dirichlet Allocation (LDA). Their
approach uses the title, description, and discussion of the issues, preprocesses them, and cal-
culates the topic-membership vectors via LDA as features. Pingclasai et al. (2013) propose
to use either Decision Trees (DT), NB, or LR as classification algorithm. Limsettho et al.
(2014a) propose a similar approach to derive features via topic-modeling. They propose to
use LDA or Hierarchical Dirichlet Process (HDP) on the title, description, and discussion of
the issues to calculate the topic-membership vectors as features. For the classification, they
propose to use ADT, NB, or LR. In their case study, they have shown that LDA is superior
to HDP. We note that the approaches by Pingclasai et al. (2013) and Limsettho et al. (2014b)
both cannot be used for recommendation systems, because the discussion is not available
at the time of reporting the issue. Qin and Sun (2018) propose to use word embeddings of
the title and description of the issue as features and use these to train a Long Short-Term
Memory (LSTM). Palacio et al. (2019) propose to use the SecureReqNet (shallow)2

Kallis et al. (2019) created the tool Ticket Tagger that can be directly integrated into
GitHub as a recommendation system for issue type classification. The Ticket Tagger uses
the fastText Facebook AI Research (2019) algorithm, which uses the text as input and inter-
nally calculates a feature representation that is based on n-grams, but not of the words, but
of the letters within the words. These feature are used to train a neural network for the text
classification.

The above approaches all rely on fairly common text processing pipelines to define
features, i.e., the TFM, n-grams, IDF, topic modeling or word embeddings to derive numer-
ical features from the textual data as input for various classifiers. In general, our proposed
approach is in line with the related work, i.e., we also either rely on a standard text pro-
cessing pipeline based on the TFM and IDF as input for common classification models or
use the fastText algorithm which directly combines the different aspects. The approaches
by Otoom et al. (2019) and Zolkeply and Shao (2019) try to incorporate manually specified
knowledge into the learning process through curated keyword lists. Our approach to incor-
porate knowledge is a bit different, because we rather rely on rules that specify different
training data sets and do not restrict the feature space.

4 Approach

Within this section, we describe our approach for issue type prediction that allows us to use
simple rules to incorporate knowledge about the structure of issues and the issues types in
the learning process in order to study RQ1.

2The network is still a deep neural network, the (shallow) means that this is the less deep variant that was
used in by Palacio et al. (2019), because they found that this performs better. neural network based on work
by Han et al. (2017) for the labeling of issues as vulnerabilities. The neural network uses word embeddings
and a convolutional layer that performs 1-gram, 3-gram, and 5-gram convolutions that are then combined
using max-pooling and a fully connected layer to determine the classification.



Empirical Software Engineering

4.1 Title and Description

We noticed that in the related work, researchers used the title and description together,
i.e., as a single document in which the title and description are just concatenated. From
our point of view, this ignores the properties of the fields, most notably the length of the
descriptions. Figure 3 shows data for the comparison of title and description. The title field
is more succinct, there are almost never duplicate words, i.e., term frequency will almost
always be zero or one. Moreover, the titles are very short. Thus, the occurrence of a term
in a title is more specific for the issue than the occurrence of a term in the description.
The description on the other hand is more verbose, and may even contain lengthy code
fragments or stack traces. Therefore, many terms occur multiple times and the occurrence
of terms is less specific. This is further highlighted by the overlap of terms between title and
description. Most terms from the title occur also in the description and the terms lose their
uniqueness when the title and description are considered together. As a result, merging of
the title and description field may lead to suppressing information from the title in favor of
information from the description, just due to the overall lengths of the fields and the higher
term frequencies. This loss of information due to the structure of the features is undesirable.

We propose a very simple solution to this problem, i.e., the training of different prediction
models for title and description. The results of both models can then be combined into a
single result. Specifically, we suggest that classifiers that provide scores, e.g., probabilities
for classes are used and the mean value of the scores is then used as prediction. Thus, we
have two classifiers htitle and hdescription that both predict values in [0, 1] and our overall

probability that the issue is a bug is
htitle+hdescription

2 . This generic approach works with any
classifier, and could, also be extended with a third classifier for the discussion of the issues.

4.2 Easy Subsets

An important aspect we noted during our manual validation of bugs for our prior work (Her-
bold et al. 2020) was that not all bugs are equal, because some rules from Herzig et al.
(2013) are pretty clear. The most obvious example is that almost anything related to an
unwanted null pointer exception is a bug. Figure 4 shows that mentioning a null pointer is
a good indicator for a bug and that there is a non-trivial ratio of issues that mention null
pointers. However, the data also shows that a null pointer is no sure indication that the issue
is actually a bug and cannot be used as a static rule. Instead, we wanted to know if we
can enhance the machine learning models by giving them the advantage of knowing that
something is related to a null pointer. We used the same approach as above. We decided to

Fig. 3 Visualization of the structural differences of issue titles and descriptions based on the 607,636 Jira
Issues from the UNVALIDATED data (see Section 6.1)



Empirical Software Engineering

Fig. 4 Data on the usage of the terms NullPointerException, NPE, and NullPointer in issues based on 30,922
issues from the CV data (see Section 6.1)

train one classifier for all issues that mention the terms “NullPointerException”, “NPE”, or
“NullPointer” in the title or description, and a second classifier for all other issues. Together
with the separate classifiers for title and description, we now have four classifiers, i.e., one
classifier for the title of null pointer issues, one classifier for the description of null pointer
issues, one classifier for the title of the other issues, and one classifier for the description of
the other issues. We do not just use the average of these four classifiers. Instead, the predic-
tion model checks if an issue mentions a null pointer and then uses either the classifiers for
null pointer issues or for the other issues.

4.3 ClassificationModel

So far, we only described that we want to train different classifiers to incorporate knowledge
about issues into the learning process. However, we have not yet discussed the classifiers
we propose. We consider two approaches that are both in line with the current state of the
art in issue type prediction (see Section 3).

The first approach is a simple text processing pipeline as can be found in online tutorials
on text mining3 and is similar to the TFM based approaches from the literature. As features,
we use the TF-IDF of the terms in the documents. This approach is related to the TFM but
uses the IDF as scaling factor. The IDF is based on the number of issues in which a term
occurs, i.e.,

IDF(t) = log
n

df (t)
+ 1 (1)

where n is the number of issues and df (t) is the number of issues in which the term t occurs.
The TF-IDF of a term t in an issue d is computed as

T F − IDF(t, d) = T F(t, d) · IDF(t) (2)

where T F(t, d) is the term frequency of t in d . The idea behind using TF-IDF instead of just
TF is that terms that occur in many documents may be less informative and are, therefore,
down-scaled by the IDF. We use the TF-IDF of the terms in the issues as features for our
first approach and use multinomial NB and RF as classification models. We use the TF-IDF

3e.g., https://www.hackerearth.com/de/practice/machine-learning/advanced-techniques/text-mining-feature-
engineering-r/tutorial/ https://scikit-learn.org/stable/tutorial/text analytics/working with text data.html

https://www.hackerearth.com/de/practice/machine-learning/advanced-techniques/text-mining-feature-engineering-r/tutorial/
https://www.hackerearth.com/de/practice/machine-learning/advanced-techniques/text-mining-feature-engineering-r/tutorial/
https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html


Empirical Software Engineering

implementation from Scikit-Learn (Pedregosa et al. 2011) with default parameters, i.e., we
use the lower-case version of all terms without additional processing.

Our second approach is even simpler, taking pattern from Kallis et al. (2019). We just use
the fastText algorithm (Facebook AI Research 2019) that supposedly does state of the art
text mining on its own, and just takes the data as is. The idea behind this is that we just rely
on the expertise of one of the most prominent text mining teams, instead of defining any
own text processing pipeline. We apply the fastText algorithm once with the same parame-
ters as were used by Kallis et al. (2019) and once with an automated parameter tuning that
was recently made available for fastText4. The automated parameter tuning does not per-
form a grid search, but instead uses a guided randomized strategy for the hyper parameter
optimization. A fixed amount of time is used to bound this search. We found that 90 seconds
was sufficient for our data, but other data sets may require longer time. In the following, we
refer to fastText as FT and the autotuned fastText as FTA.

Please note that we do not consider any deep learning based text mining techniques
(e.g., BERT by Devlin et al. (2018)) for the creation of a classifier, because we believe
that we do not have enough (validated) data to train a deep neural network. We actually
have empirical evidence for this, as the deep neural networks we used in our experiments
do not perform well (see Section 6, Qin2018-LSTM, Palacio2019-SRN). Deep learning
should be re-considered for this purpose once the requirements on data are met, e.g., through
pre-trained word embeddings based on all issues reported at GitHub.

4.4 Putting it all Together

From the different combinations of rules and classifiers, we get ten different classification
models for our approach that we want to evaluate, which we summarize in Fig. 5. First, we
have Basic-RF and Basic-NB, which train classifiers on the merged title and description,
i.e., a basic text processing approach without any additional knowledge about the issues pro-
vided by us.5 This baselines allows us to estimate if our rules actually have a positive effect
over not using any rules. Next, we have RF, NB, FT, and FTA which train different classi-
fiers for the title and description as described in Section 4.1. Finally, we extend this with
separate classifiers for null pointers and have the models RF+NPE, NB+NPE, FT+NPE,
and FTA+NPE.

5 Unvalidated Data

A critical issue with any machine learning approach is the amount of data is available for
the training. The validated data about the issue types that accounts for mislabels is limited,
i.e., there are only the data sets by Herzig et al. (2013) and Herbold et al. (2020). Combined,
they contain validated data about roughly 15,000 bugs. While this may be sufficient to train
a good issue prediction model with machine learning, the likelihood of getting a good model
that generalizes to many issues increases with more data. However, it is unrealistic that vast
amounts of manually labelled data become available, because of the large amount of manual

4https://ai.facebook.com/blog/fasttext-blog-post-open-source-in-brief/
5Basic-FT is omitted, because this is the same as the work by Kallis et al. (2019) and, therefore, already
covered by the literature and in our experiments in Section 6.

https://ai.facebook.com/blog/fasttext-blog-post-open-source-in-brief/


Empirical Software Engineering

Issue

Title

Descrip�on

TF-IDF

TF-IDF

Random Forest
/ Naïve Bayes

Random Forest 
/ Naïve Bayes

Combine into final score

RF
/N

B

Issue

Title

Descrip�on

TF-IDF

TF-IDF

Random Forest
/ Naïve Bayes

Random Forest 
/ Naïve Bayes

Combine into final score

RF
/N

B

Issue

Title

Descrip�on

fastText
(+Autotune)

fastText
(+Autorune)

Combine into final score

FT
/F

TA

Issue

Title

Descrip�on

fastText
(+Autotune)

fastText
(+Autorune)

Combine into final score

FT
/F

TA

Issue

Issues with NPE

Issues without NPE

Title

Descrip�on

Title

Descrip�on

TF-IDF

TF-IDF

TF-IDF

TF-IDF

Random Forest
/ Naïve Bayes
Random Forest
/ Naïve Bayes
Random Forest
/ Naïve Bayes
Random Forest
/ Naïve Bayes

Combine into final score

RF
/N

B+
N

PE

Issue

Issues with NPE

Issues without NPE

Title

Descrip�on

Title

Descrip�on

TF-IDF

TF-IDF

TF-IDF

TF-IDF

Random Forest
/ Naïve Bayes
Random Forest
/ Naïve Bayes
Random Forest
/ Naïve Bayes
Random Forest
/ Naïve Bayes

Combine into final score

RF
/N

B+
N

PE

Issue

Issues with NPE

Issues without NPE

Title

Descrip�on

Title

Descrip�on

fastText
(+Autotune)
fastText
(+Autotune)
fastText
(+Autotune)
fastText
(+Autotune)

Combine into final score

FT
/F

TA
+N

PE

Issue

Issues with NPE

Issues without NPE

Title

Descrip�on

Title

Descrip�on

fastText
(+Autotune)
fastText
(+Autotune)
fastText
(+Autotune)
fastText
(+Autotune)

Combine into final score

FT
/F

TA
+N

PE
Issue Title+

Descrip�on TF-IDF Random Forest
/ Naïve Bayes

Ba
sic

RF
/N

B

Fig. 5 Summary of our approach

effort involved. The alternative is to use data that was not manually labelled, but instead use
the user classification for the training. In this case, all issues from more or less any issue
tracker can be used as training data. Thus, the amount of data available is huge. However,
the problem is that the resulting models may not be very good, because the training data
contains mislabels that were not manually corrected. This is the same as noise in the training
data. While this may be a problem, it depends on where the mislabels are, and also on how
much data there is that is correctly labelled.

Figure 6 shows an example that demonstrates why training with unvalidated data may
work and why it may fail. The first column shows data that was manually corrected, the
second column shows data that was not corrected and contains mislabels. In the first row,
the mislabels are random, i.e., random issues that are not a bug are mislabeled as bugs.
In this case, there is almost no effect on the training, as long as there are more correctly
labelled instances than noisy instances. Even better, the prediction model will even predict
the noisy instances correctly, i.e., the prediction would actually be better than the labels
of the training data. Thus, noise as in the first example can be ignored for training the
classifier. This is line with learning theory, e.g., established by Kearns (1998) who demon-
strated with the statistical query model that learning in the presence of noise is possible,
if the noise is randomly distributed. In the second row, the mislabels are not random, but
close to the decision boundary, i.e., the issues that are most similar to bugs are misla-
beled as bugs. In this case, the decision boundary is affected by the noise and would be
moved to the top-right of the area without manual validation. Consequently, the trained



Empirical Software Engineering

Fig. 6 Example for the possible effect of mislabels in the training data on prediction models. The color
indicates the correct labels, i.e., red for bugs and blue for other issues. The marker indicates the label in the
training data, - for bugs, + for other issues. Circled instances are manually corrected on the left side and
mislabels on the right side. The line indicates the decision boundary of the classifier. Everything below the
line is predicted as a bug, everything above the line is predicted as not a bug

model would still mislabel all instances that are mislabeled in the training data. In this
case, the noise would lead to a performance degradation of the training and cannot be
ignored.

Our hope is that mislabeled issues are mostly of the first kind, i.e., randomly distributed
honest mistakes. In this case, a classifier trained with larger amounts of unlabeled data
should perform similar or possibly even better than a classifier trained with a smaller amount
of validated data.

6 Experiments

We now describe the experiments we conducted to analyze issue type prediction. The exper-
iments are based on the Python library icb6 that we created as part of our work. icb
provides implementations for the complete state of the art of supervised issue type pre-
diction (Section 3.2) with the exceptions described in Section 6.2. The additional code to
conduct our experiments is provided as a replication package7.

6https://github.com/smartshark/icb
7https://doi.org/10.5281/zenodo.3994254

https://github.com/smartshark/icb
https://doi.org/10.5281/zenodo.3994254


Empirical Software Engineering

6.1 Data

We use four data sets to conduct our experiments. Table 1 lists statistics about the data
sets. First, we use the data by Herzig et al. (2013). This data contains manually vali-
dated data for 7,297 issues from five projects. Three projects used Jira as issue tracker
(httpcomponents-client, jackrabbit, lucene-solr), the other two used Bugzilla as issue tracker
(rhino, tomcat). The data shared by Herzig et al. (2013) only contains the issue IDs and the
correct labels. We collected the issue titles, descriptions, and discussions for these issues
with SmartSHARK (Trautsch et al. 2018; Trautsch et al. 2020). The primary purpose of the
data by (Herzig et al. 2013) in our experiments is the use as test data. Therefore, we refer to
this data set in the following as TEST.

Second, we use the data by Herbold et al. (2020). This data contains manually validated
data for all 11,154 bugs of 38 projects. Issues that are not bugs were not manually validated.
However, Herbold et al. (2020) confirmed the result by Herzig et al. (2013) using sampling
that only about 1% of issues that are not labeled as bugs are actually bugs. Consequently,
Herbold et al. (2020) decided to ignore this small amount of noise, which we also do in
this article, i.e., we assume that everything that is not labeled as bug in the data by Herbold
et al. (2020) is not a bug. The primary purpose of the data by Herbold et al. (2020) in our
experiments is the use in a leave-one-project-out cross-validation experiment. Therefore,
we refer to this data as CV in the following.

The third data set was collected by Ortu et al. (2015). This data set contains 701,002
Jira issues of 1,238 projects. However, no manual validation of the issue types is avail-
able for the data by Ortu et al. (2015). We drop all issues that have no description and
all issues of projects that are also included in the data by Herzig et al. (2013) or Herbold
et al. (2020). This leaves us with 607,636 issues of 1,198 projects. Since we use this data to
evaluate the impact of not validating data, we refer to this data as UNVALIDATED in the
following.

We use two variants of the data by Herzig et al. (2013) and Herbold et al. (2020): 1)
only the issues that were labelled as bug in the issue tracker; and 2) all issues regardless of
their type. Our rationale for this are the different possible use cases for issue type predic-
tion, we outlined in Section 2. Using these different sets, we evaluate how good issue type
prediction works in different circumstances. With the first variant, we evaluate how good
the issue type prediction models work for the correction of mislabeled bugs either as rec-
ommendation system or by researchers. With the second variant we evaluate how good the
models are as general recommendation systems. We refer to these variants as TESTBUG,
CVBUG,TESTALL, and CVALL. We note that such a distinction is only possible with data
that was manually validated, hence, there is no such distinction for the UNVALIDATED
data.

We also use a combination of the UNVALIDATED and the CV data. The latest issue in
the UNVALIDATED data was reported on 2014-01-06. We extend this data with all issues
from the CV data that were reported prior to this date. We use the original labels from the
Jira instead of the manually validated labels from Herbold et al. (2020), i.e., an unvalidated
version of this data that is cut off at the same time as the UNVALIDATED data. We refer
to this data as UNVALIDATED+CV. Similarly, we use a subset of the CVALL data, that
only consists of the issues that were reported after 2014-01-06. Since we will use this data
for evaluation, we use the manually validated labels by (Herbold et al. 2020). We drop
the commons-digester project from this data, because only nine issues were reported after
2014-01-06, none of which were bugs. We refer to this data as CV2014+.



Empirical Software Engineering

Table 1 Statistics about the data we used, i.e., the number of issues in the projects (All), the number of issues
that developers labeled as bug (Dev. Bugs), the number of issues that are validated as bugs (Val. Bugs), the
number of bugfixing commits without issue type validation (No Val.) and the number of bugfixing commits
with issue type validation (Val.)

Issues Bugfixing Commits

All Dev. Bugs Val. Bugs No Val. Val.

httpcomponents-client 744 468 304 − −
jackrabbit 2344 1198 925 − −
lucene-solr 2399 1023 688 − −
rhino 584 500 302 − −
tomcat 1226 1077 672 − −
TEST Total 7297 4266 2891 − −
ant-ivy 1168 544 425 708 568

archiva 1121 504 296 940 543

calcite 1432 830 393 923 427

cayenne 1714 543 379 1272 850

commons-bcel 127 58 36 85 49

commons-beanutils 276 88 51 118 59

commons-codec 183 67 32 137 59

commons-collections 425 122 49 180 88

commons-compress 376 182 124 291 206

commons-configuration 482 193 139 340 243

commons-dbcp 296 131 71 191 106

commons-digester 97 26 17 38 26

commons-io 428 133 75 216 129

commons-jcs 133 72 53 104 72

commons-jexl 233 87 58 239 161

commons-lang 1074 342 159 521 242

commons-math 1170 430 242 721 396

commons-net 377 183 135 235 176

commons-scxml 234 71 47 123 67

commons-validator 265 78 59 101 73

commons-vfs 414 161 92 195 113

deltaspike 915 279 134 490 217

eagle 851 230 125 248 130

giraph 955 318 129 360 141

gora 472 112 56 208 99

jspwiki 682 288 180 370 233

knox 1125 532 214 860 348

kylin 2022 698 464 1971 1264

lens 945 332 192 497 276

mahout 1669 499 241 710 328

manifoldcf 1396 641 310 1340 671



Empirical Software Engineering

Table 1 (continued)

Issues Bugfixing Commits

All Dev. Bugs Val. Bugs No Val. Val.

nutch 2001 641 356 976 549

opennlp 1015 208 102 353 144

parquet-mr 746 176 81 241 120

santuario-java 203 85 52 144 95

systemml 1452 395 241 583 304

tika 1915 633 370 1118 670

wss4j 533 242 154 392 244

CV Total 30922 11154 6333 18539 10486

UNVALIDATED Total 607636 346621 − − −

The statistics for the BUGFIXES data set are shown in the last two columns of the CV data

Finally, we also use data about validated bugfixing commits. The data we are using also
comes from Herbold et al. (2020), who in addition to the validation of issue types also val-
idated the links between commits and issues. They found that the main source of mislabels
for bug fixing commits are mislabeled issue types, i.e., bugs that are not actually bugs. We
use the validated links and validated bug fix labels from Herbold et al. (2020). Since the
projects are the same as for the CV data, we list the data about the number of bug fix-
ing commits per project in Table 1 together with the CV data, but refer to this data in the
following as BUGFIXES.

6.2 Baselines

Within our experiments, we not only evaluate our own approach which we discussed in
Section 4, but also compare our work to several baselines. First, we use a trivial baseline
which assumes that all issues are bugs. Second, we use the approaches from the literature
as comparison. We implemented the approaches as they were described and refer to them
by the family name of the first author, year of publication, and acronym for the classifier.
The approaches from the literature we consider are (in alphabetatical order) Kallis2019-
FT by Kallis et al. (2019), Palacio-2019-SRN by Palacio et al. (2019), Pandey2018-
LR and Pandey2018-NB by Pandey et al. (2018), Qin2018-LSTM by Qin and Sun
(2018), Otoom2019-SVC, Otoom2019-NB, and Otoom2019-RF by Otoom et al. (2019),
Pingclasai2013-LR and Pingclasai2013-NB by Pingclasai et al. (2013), Limsettho2014-
LR and Limsettho2014-NB by Limsettho et al. (2014a), and Terdchanakul2017-LR and
Terdchanakul2017-RF by Terdchanakul et al. (2017).

We note that this is, unfortunately, a subset of the related work discussed in Section 3. We
omitted all unsupervised approaches, because they require manual interaction to determine
the issue type for the determined clusters. The other supervised approaches were omitted
due to different reasons. Antoniol et al. (2008) perform feature selection based on a TFM
by pair-wise comparisons of all features. In comparison to Antoniol et al. (2008), we used
data sets with more issues which increased the number of distinct terms in the TFM. As
a result, the quadratic growth of the runtime complexity required for the proposed feature



Empirical Software Engineering

selection did not terminate, even after waiting several days. Zhou et al. (2016) could not
be used, because their approach is based on different assumptions on the training data, i.e.,
that issues are manually classified using only the title, but with different certainties. This
data can only be generated by manual validation and is not available in any of the data sets
we use. Zolkeply and Shao (2019) could not be replicated because the authors do not state
which 60 keywords they used in their approach.

6.3 PerformanceMetrics

We take pattern from the literature (e.g. Antoniol et al. 2008, Chawla and Singh 2015,
Terdchanakul et al. 2017, Pandey et al. 2018, Qin and Sun 2018, Kallis et al. 2019) and base
our evaluation on the recall, precision, and F1 score, which are defined as

recall = tp

tp + f n

precision = tp

tp + fp

F1 score = 2 · recall · precision

recall + precision

where tp are true positives, i.e., bugs that are classified as bugs, tn true negatives, i.e., non
bugs classified as non bugs, fp bugs not classified as bugs and f n non bugs classified as
bugs. The recall measures the percentage of bugs that are correctly identified as bugs. Thus,
a high recall means that the model correctly finds most bugs. The precision measures the
percentage of bugs among all predictions of bugs. Thus, a high precision means that there
is strong likelihood that issues that are predicted as bugs are actually bugs. The F1 score is
the harmonic mean of recall and precision. Thus, a high F1 score means that the model is
good at both predicting all bugs correctly and at not polluting the predicted bugs with two
many other issues.

6.4 Methodology

Figure 7 summarizes our general methodology for the experiments, which consists of four
phases. In Phase 1, we conduct a leave-one-project-out cross validation experiment with
the CV data. This means that we use each project once as test data and train with all other
projects. We determine the recall, precision, and F1 score for all ten models we propose
in Section 4.4 as well as all baselines this way for both the CVALL and the CVBUG data.
In case there are multiple variants, e.g., our ten approaches or different classifiers proposed
for a baseline, we select the one that has the best overall mean value on the CVALL and the
CVBUG data combined. This way, we get a single model for each baseline, as well as for
our approach, that we determined works best on the CV data. We then follow the guidelines
from Demšar (2006) for the comparison of multiple classifiers. Since the data is almost
always normal, except for trivial models that almost always yield 0 as performance value,
we report the mean value, standard deviation, and the confidence interval of the mean value
of the results. The confidence interval with a confidence level of α for normally distributed
samples is calculated as

mean ± sd√
n

Zα (3)

where the sd is the standard deviation, n the sample size, and Zα the alpha
2 percentile of the

t-distribution with n − 1 degrees of freedom. However, the variances are not equal, i.e., the



Empirical Software Engineering

CVALL

CVALL without AALLAll ModelsAALL Mean F1 Score

Best from
Phase 1 TESTALL Mean F1 Score

UNVALIDATED Best from
Phase 1+2 TESTALL+CVALL Paired t-test for F1 Score

For each Project A in CV:

Training
Data

Test
Data

Predic�on 
Models

Evalua�on 
Criteria

Phase 2

Phase 3

Phase 1

CVALL without ABUGAll ModelsABUG Mean F1 Score

CVBUG
Best from
Phase 1 TESTBUG Mean F1 Score

UNVALIDATED Best from
Phase 1+2 TESTBUG+CVBUG Paired t-test for F1 Score

Friedman/Nemenyi test for
F1 Score for best per publica�on
Friedman/Nemenyi test for
F1 Score for best per publica�on

Phase 4 UNVALIDATED Best from
Phase 3 BUGFIXES Percentage of true posi�ve and

false posi�ve bugfixing commits

Phase 5
UNVALIDATED
+CV

Best from
Phase 3 CV2014+ Mean F1 Score

Fig. 7 Overview of the experiment methodology. The training and evaluation in all phases is conducted with
all issues and with only bug issues

assumption of homoscedacity is not fulfilled. Therefore, we use the Friedman test (Friedman
1940) with the post-hoc Nemenyi test Nemenyi (1963) to evaluate significant differences
between the issue prediction approaches. The Friedman test is an omnibus test that deter-
mines if there is any difference in the central tendency of a group of paired samples with
equal group sizes. If the outcome of the Friedman test is significant, the Nemenyi test eval-
uates which differences between approaches are significant based on the critical distance,
which is defined as

CD =
√

k(k + 1)

12N
qα,N (4)

where k is the number of approaches that are compared, N is the number of distinct values
for each approach, i.e., in our case the number of projects in a data set, and qα,N is the α

percentile of the studentized range distribution for N groups and infinite degrees of freedom.
Two approaches are significantly different, if the difference in the mean ranking between
the performance of the approaches is greater than the critical distance. We use Cohen’s
d Cohen (1988) which is defined as

d = mean1 − mean2√
sd1+sd2

2

(5)

to report the effect sizes in comparison to the best performing approach. Table 2 shows the
magnitude of the effect sizes for Cohen’s d . We will use the results from the first phase
to evaluate RQ1, i.e., to see if our rules improved the issue type prediction. Moreover, the
performance values will be used as indicators for RQ3.

In Phase 2, we use the CV data as training to train a single model for the best performing
approaches from Phase 1. This classifier is then applied to the TEST data. We report the
mean value and standard deviation of the results. However, we do not conduct any statistical
tests, because there are only five projects in the TEST data, which is insufficient for a
statistical analysis. Through the results of Phase 2 we will try to confirm if the results from
Phase 1 hold on unseen data. Moreover, we get insights into the reliability of the manually
validated data, since different teams of researchers validated the CV and the TEST data. In



Empirical Software Engineering

Table 2 Magnitude of effect
sizes of Cohen’s d d Magnitude

d < 0.2 Negligible

0.2 ≤ d < 0.5 Small

0.5 ≤ d < 0.8 Medium

0.8 ≤ d Large

case the performance is stable, we have a good indication that our estimated performance
from Phase 1 generalizes. This is especially important, because Phase 2 is biased in favor of
the state of the art, while Phase 1 is biased in favor of our approach. The reason for this is
that most approaches from the state of the art were developed and tuned on the TEST data,
while our approach was developed and tuned on the CV data. Therefore, the evaluation on
the TEST data also serves as counter evaluation to ensure that the results are not biased due
to the data that was used for the development and tuning of an approach, as stable results
across the data sets would indicate that this is not the case. Thus, the results from Phase 2
are used to further evaluate RQ3 and to increase the validity of our results.

In Phase 3, we evaluate the use of unvalidated data for the training, i.e., data about
issues where the labels were not manually validated by researchers. For this, we compare
the results of the best approach from Phase 1 and Phase 2 with the same approach, but
trained with the UNVALIDATED data. Through this, we analyze RQ2 to see if we really
require validated data or if unvalidated data works as well. Because the data is normal, we
use the paired t-test to test if the differences between results in the F1 score are signifi-
cant and Cohen’s d to calculate the effect size. Moreover, we consider how the recall and
precision are affected by the unvalidated data, to better understand how training with the
UNVALIDATED data affects the results.

We apply the approach we deem best suited in Phase 4 to a relevant problem of the Sce-
nario 2 for issue type prediction discussed in Section 2. Concretely, we analyze if issue
type prediction can be used to improve the identification of bugfixing commits. Herbold
et al. (2020) found that mislabelled issues are the main source for the wrong identification
of bugfixing commits. Therefore, an accurate issue type prediction model would be very
helpful for any software repository mining tasks that relies on bugfixing commits. To eval-
uate the impact of the issue type prediction on the identification of bug fixing commits, we
use two metrics. First, the percentage of actual bug fixing commits, that are found if issue
type prediction is used (true positives). This is basically the same as the recall of bugfixing
commits. Second, the percentage of additional bugfixing commits that are found in addi-
tionally in relation to the actual number of bug fixing commits. This is indirectly related to
the precision, because such additional commits are the result of false positive prediction.

Finally, we apply the best approach in a setting that could be Scenario 3 or the Scenario
4 outlined in Section 2. An important aspect we ignored so far is the potential information
leakage because we did not consider the time when issues were reported. In a realistic
scenario where we apply the prediction live within an issue tracking system, data from the
future is not available. Instead, only past issues may be used to train the model. For this
scenario, we decide on a fixed cutoff date for the training data. All data prior to this cutoff
is used for training, all data afterwards for testing of the prediction performance. This is
realistic, because such models are often trained at some point and the trained model is then
implemented in the live system and must be actively updated as a maintenance task. We use
the UNVALIDATED+CV data for training and the CV2014+ for testing in this phase. We



Empirical Software Engineering

compare the results with the performance we measured in Phase 3 of the experiments, to
understand how this realistic setting affects our performance estimations in comparison to
the less realistic results that ignore the potential information leakage because of overlaps in
time between the training and test data.

For our experiments, we conduct many statistical tests. We use Bonferroni correc-
tion (Dunn 1961) to account for false positive due to the repeated tests and have an overall
significance level of 0.05, resp. confidence level of 0.95 for the confidence intervals. We use
a significance level of 0.05

22 = 0.0023 for the Shapiro-Wilk tests for normality (Shapiro and
Wilk 1965), because we perform nine tests for normality for the best performing approaches
for both all issues and only bugs in both Phase 1 and four additional tests for normality in
Phase 3. We conduct two Bartlett tests for homoscedacity (Bartlett 1937) in Phase 1 with a
significance level of 0.05

2 = 0.025. We conduct four tests for the significance of differences
between classifiers with a significance level of 0.05

4 , i.e., two Friedman tests in Phase 1 and
two paired t-tests in Phase 3. Moreover, we calculate the confidence intervals for all results
in Phase 1 and Phase 3, i.e., 25 results for both CVALL and CVBUG and four results for
Phase 3. Hence, we use a confidence level of 1− 0.05

54 = 0.999 for these confidence intervals.

6.5 Results

6.5.1 Results for Phase 1

Figures 8 and 9 show the the results for the first phase of the experiment on the CVALL

and CVBUGS data, respectively. We observe that while there is a strong variance in the
F1 score using the CVALL data with values between 0.0 (Limsettho2014-NB) and 0.643
(Herbold2020-FTA), the results on the CVBUG data are more stable with values between
0.610 (Terdchanakul2017-RF) and 0.809 (Herbold2020-RF). The strong performance on
CVBUG includes the Trival approach, i.e., simply predicted everything as bug is already
relatively hard to beat, because the recall is perfect and the precision is at about 60%.8 This
finding is different for the CVALL, because here the class level imbalance is the other way
around and the precision drops to roughly 20%. In general, we observe that the F1 score
with the CVALL data is lower than with CVBUG.

This also shows in the results for the different variants we proposed in Section 4.4, were
we observe big difference with the CVALL data and only relatively small differences with
the CVBUG data. On the CVALL data, the strongest driver of the differences is the choice
of the classifier. The models using FTA perform best, followed by FT classifier which has
a slightly worse performance. The drop between FT and RF is steep, NB performs worse
and predicts only few bugs. Using distinct classifiers for the title and description improves
the performance slightly. However, additional classifiers for null pointers lead to slightly
worse results. Thus, we find that Herbold2020-FTA with separate classifiers for title and
descriptions performs best for CVALL, even though the difference to the other variants with
FTA/FT is small. On the CVBUG, the F1 score of all models that use different separate
classifiers for title and description is within the interval [0.790, 0.809].

860% is roughly the amount of bugs within the data



Empirical Software Engineering

Fig. 8 Results of leave-one-project-out cross validation with the CVALL data. The bold-faced approaches
where the best for a publication and are used in the statistical analysis

Thus, we find that overall, Herbold2020-FTA performs best among the approaches dis-
cussed in Section 4.4. Figure 10 allows us to gain further insights and to understand how the
approach achieves the performance. The figure shows the performance of the two predictors



Empirical Software Engineering

Fig. 9 Results of leave-one-project-out cross validation with the CVBUG data. The bold-faced approaches
where the best for a publication and are used in the statistical analysis

that are internally used in comparison to the overall performance. We see that for both
the CVALL and the CVBUG data, that the performance of using only the title or descrip-
tion yields worse results than the combination of both classifiers. This indicates that the



Empirical Software Engineering

Fig. 10 Results for the different classifiers for title and description in comparison to their combination to
gain insights into the Herbold2020-FTA model

differences between title and description we describe in Section 4.1 are indeed relevant.
Moreover, because the combination of both classifiers outperforms each classifier on its
own, this indicates that some issues that are hard to predict based on title can be predicted
based on the description, and vice versa.

For the related work that suggested multiple classifiers, our observations are similar. The
differences on the CVBUG data are small, the performance on the CVALL data is always
worse and, in many cases, very bad with only very few bugs predicted. The only outlier
is Palacio2019-SRN, which performs better on the CVALL data than on the CVBUG, but
relatively bad on both data sets. We hypothesize that this is because there are fewer training
issues available in CVBUG and see this as an indicator that Palacio2019-SRN may perform
better in future benchmarks, given that the amount of data is increased.

Of the approaches from the related work, only Kallis2019-FT and Pandey2018-LR
achieve an F1 score of over 0.5 on CVALL. We also note that the approach Qin2018-LSTM
degenerated into a trivial model that predicts everything as bug. Consequently, we exclude
Qin2018-LSTM from our subsequent statistical analysis, because we would, otherwise,
have the same model twice.

We reject the null hypothesis of the Friedman test that there are no significant differ-
ences between the approaches on the CVALL data (p − value < 0.001). The post-hoc
Nemenyi test found that while our Herbold2020-FTA approach has the best mean rank-
ing, the difference is not significant in comparison to Kallis2019-FT and Pandey2018-LR.
The difference in F1 score between our Herbold2020-FTA and Kallis2019-FT is almost
non-existent. Thus, the advantage of automatically tuning the FT classifier and the usage
of different classifiers for title and description is very small. The magnitude of the (non-
significant) effect size between Herbold2020-FTA and Kallis2019-FT is negligible with
d = 0.073. However, there is a difference between the recall and precision of Herbold2020-
FTA and Kallis2019-FT. Herbold2020-FTA has a higher precision, while Kallis2019-FT
has a higher recall. While not significant, the difference between Pandey2018-LR on the
one hand and Herbold2020-FTA and Kallis2019-FT on the other hand is larger, both in
the mean value and also in the (non-significant) effect size which has a large magnitude
with d = 1.387. All other models from the state of the art are significantly different from
Herbold2020-FTA and Kallis2019-FT with a large effect size of at least d = 3.370. We
note that Pandey2018-LR is not significantly different from the trivial model. Moreover, we
observe that all other approaches are all equal to or worse than trivially predicting everything
as bug in the mean F1 score, because of a low recall. Pinglasai2013-LR, Otoom2019-NB,
and Limsettho2014-LR are even significantly worse than the trivial model.



Empirical Software Engineering

We reject the null hypothesis of the Friedman test that there are no significant differences
between the approaches on the CVBUG data (p − value < 0.001). The post-hoc Nemenyi
test found that our Herbold2020-FTA has the best best mean ranking, but the diffference is
not significant in comparison to Kallis2019-FT and Pandey2018-LR. However, in compar-
ison to the CVALL data, there is some gap between Herbold2020-FTA and Kallis2019-FT
both in the mean F1 score and the magnitude of the effect size would be medium with
d = 0.503 if it where significant. Moreover, Herbold2020-FTA yields a slightly better per-
formance in both recall and precision, i.e., there is no trade-off between Herbold2020-FTA
and Kallis2019-FT between recall and precision. The gap between Herbold2020-FTA and
Panday2018-LR is similar to the gap on the CVALL of effect and the effect size would
be large with d = 0.839. All other approaches from the state of the art are significantly
worse than Herbold2020-FTA with a large effect size of at least d = 1.115. We note that
Kallis2019-FT and Pandey2018-LR are not significantly different from the trivial model.
Same as for the CVBUG data, we find that all other approaches have a worse mean rank-
ing than the trivial approach, even though Chawla2015-FL has a slightly higher mean value
than the trivial model. However, only Terdchanakul2017-RF is significantly worse the the
trivial model.

When we consider the results on CVBUG and CVALL together, the approaches
Herbold2020-FTA, Kallis2019-FT and Pandey2018-LR are consistently ranked first, with
their mean ranks in that order. The differences between these three approaches are not sig-
nificant. However, we note that there is a considerable gap in the mean ranks reported on the
CD diagrams between Herbold2020-FTA and Kallis2019-FT on the hand, and Pandey2018-
LR on the other hand. This gap also shows in the mean F1 score, which is lower on both the
CVALL and CVBUG data. In fact, Pandey2018-LR almost always ranks worse on than both
Herbold2020-FTA and Kallis2019-FT. Thus, we believe that the reason that Pandey2018-
LR is not significantly different from Herbold2020-FTA and Kallis2019-FT is our limited
sample size of 38 projects, which leads to a critical distance of 2.216 for the Nemenyi test.
Thus, even if Herbold2020-FTA would always have the best score, Kallis2019-FT would
always have the second best score, and Pandey2018-LR would always have the third best
score, the difference would still not be significant. The reason for this is that we have not
enough data, given that we are not just comparing these three populations, but a total of
nine approaches at the same time. Therefore, we predict that with more data Herbold2020-
FTA and Kallis2019-FT would significantly outperform Pandey2018-LR, but do not have
the data to substantiate our claim.

Given this prediction, we conclude from Phase 1 that Facebook AI Research did a very
good job on the design of FT that outperforms other classification algorithms, but that the
automated tuning may not always yield better results, e.g., because there is not enough data.
Similarly, different classifiers for title and description may improve the results of FT, but
not significantly.

We also note that approaches that use NB as classifier perform a lot worse on the CVALL

data than on the CVBUG data. We believe this may be because the models are not actually
learning a good scoring function, but rather relatively randomly guessing the number of
bugs based on the a-priori probability of the class in the training data. This should work
reasonably well in the CVBUG data because of the class level imbalance in favor of bug
issues, but should fail in case of the CVALL data because the chance of correctly hitting
bugs when roughly 20% of the issues are randomly predicted is relatively low.



Empirical Software Engineering

6.5.2 Results of Phase 2

Figures 11 and 12 show the results for the second phase of the experiment, i.e., training with
the CVALL, resp. CVBUG data and testing with the TESTALL, resp. TESTBUG data. The
results are consistent with our results from Phase 1. Herbold2020-FTA and Kallis2019-FT
perform best on both data sets, there is almost no difference on the TESTALL data and a
slightly better F1 score for Herbold2020-FTA on the TESTBUG data. The mean F1 score
of both approaches is within the confidence interval of the results from Phase 1. In general,
we find that even though we just have five projects in the TEST data and the data was
independently labelled from the CV data, that the F1 score of 12 out of 18 approaches is
within the CI, in the other six cases (three on TESTALL and TESTCV each) the values on
the TEST data are only slightly higher than the upper bound of the confidence interval on
the CV data. This slight improvement of approaches on the TEST data can be explained by
the fact that these approaches were developed on the TEST data, which should give them
an advantage in comparison to the CV data. Overall, these results are a strong indicator that
our findings from Phase 1 generalize to a broader population of projects.

6.5.3 Results of Phase 3

Figures 13 and 14 show the results of the training with the UNVALIDATED data in com-
parison to the results of Phase 1 and Phase 2 combined. The training with UNVALIDATED

Fig. 11 Results of training with the CVALL and testing with the TESTALL data



Empirical Software Engineering

Fig. 12 Results of training with the CVBUG and testing with the TESTBUG data

data actually outperforms the training with validated data in case all issues are performed if
we consider the mean F1 score. However, we fail to reject the null hypothesis of the paired
t-test that there is no difference (p − value = 0.385). Therefore, we conclude that training
without manual validation is not significantly different for the identification of bugs among
all issues in terms of F1 score. Regardless, the recall and precision show that while the F1
score is not affected, the way this F1 score is achieved is very different between validated

Fig. 13 Comparison of the results from Phase 1 and Phase 2 with training with the UNVALIDATED data
and testing with CVALL and TESTALL



Empirical Software Engineering

Fig. 14 Comparison of the results from Phase 1 and Phase 2 with training with the UNVALIDATED data
and testing with CVBUG and TESTBUG

and unvalidated data. The Herbold2020-FTA-UV has a very large recall nearly always over
0.9, but a relatively low precision with values between 0.3 and 0.7. Thus, the strong F1
score is achieved by predicting nearly all bugs at the cost of a mediocre precision. With the
validated data, this is the opposite. The recall is much lower and between 0.3 and 0.8, but
the precision is higher with values between 0.65 and 1.0.

If we apply the classifier trained on the UNVALIDATED data to only the bugs, the F1
score is still similar, but slightly worse than training with validated data. We reject the null
hypothesis of the paired t-test that there is no difference (p − value = 0.010) and find that
the effect size of this difference is small (d = 0.435). In terms of recall and precision the
differences between training with and without validation are similar. However, the precision
of training without validation is increased to values between 0.45 and 0.85 and the recall of
training with validation is increased to 0.45 to 0.95. Overall, our results show that training
with unvalidated data is an option, especially if recall is more important than precision.

6.5.4 Results for Phase 4

For Phase 4, we decided to use the Herbold2020-FTA-UV approach, even though
Herbold2020-FTA performed slightly better if only bugs are considered. Our reason for this
is that we have a defect prediction use case in mind, where false negatives would mean
that bugs are missed. Consequently, we value recall higher than precision, which means
that Herbold2020-FTA-UV is preferable over Herbold2020-FTA. Figure 15 shows how the
labeling of bugfixing commits is changed by using issue type prediction in comparison to
trivially assuming that the developer classification is correct without validation. With the
trivial approach, all actual bugfixing commits are identified. This is a property of the data,
since the manual validation only reduces the amount of bug fixes. The issue type prediction
with Herbold2020-FTA-UV finds on average 91.3% of the bugfixing commits, the worst
case in our data is is that only 80.9% of the bugfixing commits are identified. When we con-
sider the false positive bugfixing commits, we see that the issue type prediction has a strong
positive impact. The mean percentage of additional bugfixing commits is at 47%, in com-
parison to 81% with the trivial approach. Thus, the amount of additional bugfixing commits,
that are actually, e.g., feature additions, is greatly reduced by using the issue type predic-
tion. While the resulting data still contains mislabels, the amount of mislabels is reduced.



Empirical Software Engineering

Fig. 15 Impact on using Herbold2020-FTA-UV for the labeling of bugfixing commits

However, even with the reduction there is still much noise left, i.e., about one third of bug-
fixing commits the data would still be mislabels. Hence, for the use case of the creation of
defect prediction data, issue type prediction could potentially replace manual validation for
the creation of training data, but we suggest to rely on manual validation for the creation of
test data.

6.5.5 Results for Phase 5

Same as for Phase 4, we decided to use the Herbold2020-FTA-UV approach, because this
approach performs best when applied to all issues. We use the UNVALIDATED+CV data
for training and the CV2014+ for testing. This combination of training and test data is
realistic for practical scenarios, because there is no temporal overlap between the train-
ing and test data. Moreover, the UNVALIDATED+CV data contains historic data from the
test projects, that would be readily available without large effort. The advantage of adding
this data for the training is that the classifier could possibly also learn project specific
information.

Fig. 16 Evaluation in a realistic time aware setting in comparison to the time agnostic results from Phase
3. The results from Phase 3 are restricted to the projects we evaluate in Phase 5, i.e., the projects from CV
without commons-digester



Empirical Software Engineering

Figure 16 shows the results of Phase 5. In general, the results are similar to the results
of Phase 4. There is a small drop in recall and a slight increase in precision with the time
awareness, but almost no difference in the F-measure. This is a strong indicator that our
results from Phase 3 generalize and that this approach can also be reasonably be used for
prediction within issue tracking system. We note that based on the data from Herzig et al.
(2013) and Herbold et al. (2020) this prediction system would perform almost the same as
developers: most bugs would be correctly labelled as bug (very high recall over 90%), but
only about 55% of the issues labeled as bug would actually be bugs, which is about 5%
worse than developers.

7 Discussion

We now discuss the answers to our research questions and how our results relate to findings
from the literature.

7.1 Answers to Research Questions

7.1.1 RQ1: Canmanually specified logical rules derived from knowledge about issues
be used to improve issue type classification?

On the one hand, our results show a small improvement in the performance of issue type
prediction due to the use of two classifiers, i.e., because of the structural information about
the difference between title and description that we incorporate in the learning process. On
the other hand, the knowledge about null pointers we integrated to the learning process did
not have a positive effect. For us, this indicates two things. First, if we can help the model
to better understand the structure of the data, e.g., by accounting for the separate fields,
this can have a positive effect, even though the improvement is likely small. Other aspects
that could be considered here would be parsing of structural information that is available
in the issue, e.g., HTML or Markdown syntax, to enable a better pre-processing of the
data. Second, defining logical rules that mimic (parts of) the guidelines for labeling issues
by Herzig et al. (2013) does not seem helpful. It seems like the classifiers can infer these
rules, or at least similar rules themselves and the definition of hard coded rules may actually
inhibit the learning process, because they either restrict the solution space or the available
data unnecessarily. In summary, we answer RQ1 as follows.

Answer to RQ1: Rules that describe the general structure of issues may improve
issue type classification. Rules that describe specific issue types and interfere with the
classification should be avoided.

7.1.2 RQ2: Does training data have to bemanually validated or can large amount of
unvalidated data also lead to good classification models?

Our results show that training with unvalidated data leads to a comparable mean per-
formance than training with validated data. However, we also find that there are strong
differences in how this performance is achieved. Our results provide a strong indication
that manual validation leads to models with a better precision, i.e., fewer false positive



Empirical Software Engineering

predictions of bugs. On the other hand, large amounts of unvalidated data achieve only a
mediocre precision that is counterbalanced by a very high recall, i.e., few bugs that are
missed. Thus, the choice whether to use unvalidated data or validated data should be done
with the use case of the issue type prediction in mind. For example, for defect prediction
research few false negatives are important, i.e., unvalidated data is better. If a sample of bug-
fixing commits should be manually validated line by line to create data like Defects4J (Just
et al. 2014), few false negatives are more important and training with validated data would
be preferable. In summary, we answer RQ2 as follows.

Answer to RQ2: Unvalidated data is useful, if the goal is to miss as few bugs as
possible. If there should be few false positive, validated data should be used for
training.

7.1.3 RQ3: How good are issue type classification models at recognizing bug issues?

According to our results, users of issue type prediction can expect a F1 score of about 0.65
if applied to all issues and of 0.80 if applied to only bugs. Depending on the use case, one
can either use validated or unvalidated data and thereby, get usable models for the prediction
of bug issues both with few false positives (less than 25%) or few false negatives (less than
5%), but not at the same time. However, our results also show the limitations of the current
state of the art of issue type prediction. Models that perform universally well with both few
false positives and few false negatives are not possible within the current state of the art and
the available data. We believe that this could only change, if massive amounts of validated
data would be available, i.e., not in the order of 105 as is currently the case, but rather in
the order of at least 106 or more. However, given that (Herzig et al. 2013) and (Herbold
et al. 2020) report that the manual issue type classification is very time consuming, it may
be problematic to achieve this. In summary, we answer RQ3 as follows.

Answer to RQ3: Issue type classification models are good at recognizing bugs, in case
the use case allows for either some false positives or some false negatives. Current
models cannot minimize both false positives and false negatives.

7.2 Recommendations for Using Issue Type Prediction

Based on our results, we have the following recommendations for researchers and praction-
ers with respect to the scenarios we outlined in Section 2.

– Researchers may use issue type prediction to reduce the false positive issue labels (Sce-
nario 2), but the resulting data will still contain mislabels and does not constitute ground
truth. Models for this purpose should be trained with manually validated data. In case
a very high data quality is required, issue type prediction is not a suitable replacement
for manual validation.

– Practitioners may use issue type prediction to automatically differentiate between bugs
and other issue types in bug trackers and get comparable results to the currently
assigned labels by developers. Models for this purpose should be trained with a large



Empirical Software Engineering

corpus of data that does not require manual validation. We recommend to use this as
a passive recommendation (Scenario 4) and not active recommendation (Scenario 3),
because too many wrong active predictions may lead to the rejection of the approach.

7.3 Comparison with the Literature

An important part of our work was the replication of the existing approaches from the lit-
erature and the evaluation of their performance on independent data and, in general, for
more than the usually used five projects by Herzig et al. (2013). The literature generally
reported very good results with performance values higher than the best results we observed
in our study. We could not replicate this but are aware of several reasons for the differ-
ences between our work and the literature. Most importantly, we used more data. Thus, if
an approach randomly works on two or three projects, but fails otherwise, this would be
detected by our work, but not necessarily by the smaller case studies in the related work.
Also, we used a different case study setup. We clearly separated the training and test data,
to avoid any kind of information leakage, e.g., because timing aspects were not considered
while doing cross-validation. When we looked at the literature, all prior publications per-
formed some sort of train/test split within the projects, sometimes with accounting for the
timing (Terdchanakul et al. 2017; Otoom et al. 2019; Pingclasai et al. 2013), but some-
times not Limsettho et al. (2014a), Chawla and Singh (2015), and Qin and Sun (2018).
In addition to the possible information leakage, this kind of train/test splits reduced the
amount of test data to at most 20% of all the data of a project. Thus, the related work
not only used fewer projects, but also less data of these projects for testing. Finally, most
of the literature did not even use all five projects from Herzig et al. (2013), but subsets
of this data, further reducing the evidence available for drawing conclusions. Interest-
ingly, the best performing approach from the literature was never evaluated on validated
data Kallis et al. (2019). However, the authors used 30,000 unvalidated issues for the per-
formance estimation, i.e., more evidence than the other approaches from the state of the
art.

In conclusion, we saw that the literature on this topic was not reliable so far and hope
that our work not only sheds light on how well issue type prediction actually works, but also
serves as guideline for future studies on this topic.

8 Threats to Validity

There are several threats to the validity of our work, which we report following the
classification by Wohlin et al. (2012).

8.1 Construct Validity

The design of experiments may not be suitable to analyze our research question. The biggest
threat is to the analysis of RQ1, because we only evaluated the impact of two manually
designed rules and only in the single way of using different classifiers. Other manual knowl-
edge or other ways to incorporate this knowledge into the learning process may lead to
different results. Moreover, the results of all three research questions are impacted by our
choice of F1 score, recall, and precision as performance metrics. While these metrics are
well accepted in the state of the art and reasonable for the use case, other metrics, especially



Empirical Software Engineering

metrics that would consider different costs for different kinds of misclassification, may lead
to different results.

Regarding the statistical methods, the biggest threat is that we did not perform statis-
tical tests for the selection of the best classifier per publication, but simply took the one
with the best mean value. Thus, other classifiers from the same publication might not be
statistically significantly different. Unfortunately, performing additional tests was not rea-
sonably possible, because if we would have done one statistical test per publication, we
would have a very small significance level for the subsequent tests where we compare
publications due to the Bonferroni correction. If we would just have applied the Nemenyi
post-hoc test to all 25 approaches, we would have found much fewer significant difference,
because the critical distance increases linearly with the number of approaches, i.e., our tests
would not have been very powerful. Therefore, doing a selection just with the mean values
was the only viable option with the amount of data we have available. Another potential
threat is that a Bayesian approach for the statistical analysis as was suggested by Benavoli
et al. (2017) as an update of the guidelines by Demšar (2006) may lead to different results.
We mitigated this threat by not using pure null hypothesis testing, but also considering the
confidence intervals and the effect sizes.

8.2 Internal Validity

Our interpretation that the Pandey2018-LR is actually worse than Herbold2020-FTA and
Kallis2019-FT is only conjectured from the properties of the statistical tests, but not directly
supported by the statistical analysis. Moreover, our conclusions regarding the differences
between the models trained with unvalidated and validate data may also be wrong. The
unvalidated data contains more issues, i.e., the size of the data set could also be respon-
sible for the differences in recall and precision. We believe that the difference in recall
may be due to the size and decrease with more validated data, but cannot reasonably deter-
mine this without more validated data. However, we believe that the differences in precision
are unlikely to go away, because this would mean a performance degradation due to more
validated data, which is unlikely.

8.3 External Validity

The manually validated data was mostly for Java projects of the Apache Software Founda-
tion that use Jira as issue tracker. Only two projects used Bugzilla and one project was from
the Mozilla Foundation. The unvalidated data we used was from a diverse range of software
projects written in different languages and owned by different organizations, but also lim-
ited to Jira as issue tracker. Therefore, it is unclear how well our results generalize beyond
Apache projects, the Java programming language, and the Jira issue tracker. However, the
good results with the unvalidated data indicate that generalization to different organizations
and programming languages is likely. Generalization to other issue trackers is also likely,
because we do not observe a difference between the two Bugzilla projects and the Jira
projects in our results. Moreover, the results from Phase 2 of our experiments show that our
observations hold on two data sets, i.e., at least generalize to some degree.

8.4 Reliability

There are no threats to the reliability of our research, other than the threats to the reliability
of the prior research by Herzig et al. (2013) and Herbold et al. (2020), i.e., the reliability



Empirical Software Engineering

of the manually validated data that we used. However, we note that the work by Herbold
et al. (2020) is a successful independent conceptual replication of the work by Herzig et al.
(2013).

9 Conclusion

Issue tracking systems play a central role in the organization of modern software devel-
opment. Issues that are raised guide the development process and describe, e.g., requested
features or reported bugs. Each issue has a type that is assigned by the reporter of the issue
and only seldom changed afterwards. From prior research, we know that the issue type
does often not match with the content of the issue, e.g., because feature requests are incor-
rectly labelled as bug. Within this article, we analyzed the state of the art of automated issue
type prediction with machine learning and focused on the prediction of whether an issue
describes a bug or not. We analyzed if we can improve issue type prediction with rules that
account for structural information or rules about whether an issue is a bug and found that
accounting for the structure of issues may slightly improve predictions. Moreover, we deter-
mined that data that contains mislabeled issues may still leads to good prediction models
regardless, especially with respect to their ability to correctly identify all bugs. In compari-
son, training with manually validated data that does not contain mislabels leads to classifiers
with a similar performance, but with fewer non bug issues predicted as bug at the cost of
missing more bugs. Overall, the performance of the prediction models is promising and
indicates that issue type prediction is likely suitable for practical use within tools and to
improve data for research. We demonstrated this with two practical examples that show
how the identification of bug fixing commits can be improved and that prediction in issue
trackers would be comparable to the labels of developers.

The knowledge about issue type prediction is still limited, especially regarding the use
as recommendation system. Therefore, we believe that future work should investigate how
tools such as the issue type prediction tool by Kallis et al. (2019) are received by devel-
opers and how they can best be integrated into existing issue tracking systems. We believe
that such studies should combine quantitative and qualitative aspects, e.g., to quantita-
tively analyze how often developers agree with predicted labels and qualitatively analyze
the feedback of developers through interviews and questionnaires. The development of
tools should also consider when and how prediction models are updated. For example,
semi-supervised online learning could be used to continuously improve prediction models
through re-training in case users actively disagree with predictions. Moreover, we believe
that more validated data is the only reasonable way to overcome the problem that one must
choose between models with high recall and models with high precision. A collaboration
by many researchers with the research turk approach (Herbold 2020) could help to over-
come the issue of the large manual effort and be suitable for the creation of a larger data
set.

Acknowledgments This work is partially funded by DFG Grant 402774445.

Funding Open Access funding provided by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons



Empirical Software Engineering

licence, and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommonshorg/licenses/by/4.0/.

References

Antoniol G, Ayari K, Di Penta M, Khomh F, Guéhéneuc YG (2008) Is it a bug or an enhancement?: A text-
based approach to classify change requests. In: Proceedings of the 2008 conference of the center for
advanced studies on collaborative research: meeting of minds, ACM, New York, NY, USA, CASCON
’08, pp 23:304–23:318. https://doi.org/10.1145/1463788.1463819

Bartlett MS (1937) Properties of sufficiency and statistical tests. Proc R Soc London A Math Phys Sci
160(901):268–282

Benavoli A, Corani G, Demšar J, Zaffalon M (2017) Time for a change: a tutorial for comparing multiple
classifiers through bayesian analysis. J Mach Learn Res 18(1):2653–2688

Chawla I, Singh SK (2015) An automated approach for bug categorization using fuzzy logic. In: Proceedings
of the 8th india software engineering conference, ACM, pp 90–99

Chawla I, Singh SK (2018) Automated labeling of issue reports using semi supervised approach. J Comp
Meth Sci Eng 18(1):177–191

Cohen J (1988) Statistical power analysis for the behavioral sciences. Lawrence Erlbaum Associates
Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30
Devlin J, Chang M, Lee K, Toutanova K (2018) BERT: pre-training of deep bidirectional transformers for

language understanding. arXiv:1810.04805
Dunn OJ (1961) Multiple comparisons among means. J Am Stat Assoc 56(293):52–64. https://doi.org/10.10

80/01621459.1961.10482090
Facebook AI Research (2019) fasttext - library for efficient text classification and representation learning.

https://fasttext.cc/, [accessed 14-November-2019]
Friedman M (1940) A comparison of alternative tests of significance for the problem of m rankings. Ann

Math Stat 11(1):86–92
Hall T, Beecham S, Bowes D, Gray D, Counsell S (2012) A systematic literature review on fault prediction

performance in software engineering. IEEE Trans Softw Eng 38(6):1276–1304. https://doi.org/10.1109/
TSE.2011.103

Hammad M, Alzyoudi R, Otoom AF (2018) Automatic clustering of bug reports. Int J Adv Comput Res
8(39):313–323

Han Z, Li X, Xing Z, Liu H, Feng Z (2017) Learning to predict severity of software vulnerability using only
vulnerability description. In: 2017 IEEE International conference on software maintenance and evolution
(ICSME), pp 125–136

Herbold S (2020) With registered reports towards large scale data curation. In: Proceedings of the 2020
international conference software engineering - NIER track

Herbold S, Trautsch A, Grabowski J (2018) A comparative study to benchmark cross-project defect predic-
tion approaches. IEEE Trans Softw Eng 44(9):811–833. https://doi.org/10.1109/TSE.2017.2724538

Herbold S, Trautsch A, Trautsch F (2020) Issues with szz: an empirical assessment of the state of practice of
defect prediction data collection. arXiv:1911.08938

Herzig K, Just S, Zeller A (2013) It’s not a bug, it’s a feature: How misclassification impacts bug prediction.
In: Proceedings of the international conference on software engineering, IEEE Press, Piscataway, NJ,
USA, ICSE ’13, pp 392–401. http://dl.acm.org/citation.cfm?id=2486788.2486840

Hosseini S, Turhan B, Gunarathna D (2017) A systematic literature review and meta-analysis on cross project
defect prediction. IEEE Trans Softw Eng PP(99):1–1. https://doi.org/10.1109/TSE.2017.2770124

Just R, Jalali D, Ernst MD (2014) Defects4j: a database of existing faults to enable controlled testing studies
for java programs. In: Proceedings of the 2014 international symposium on software testing and analysis
(ISSTA), ACM

Kallis R, Di Sorbo A, Canfora G, Panichella S (2019) Ticket tagger: machine learning driven issue
classification. In: IEEE International conference on software maintenance and evolution (ICSME), IEEE

http://creativecommonshorg/licenses/by/4.0/
https://doi.org/10.1145/1463788.1463819
http://arxiv.org/abs/1810.04805
https://doi.org/10.1080/01621459.1961.10482090
https://doi.org/10.1080/01621459.1961.10482090
https://fasttext.cc/
https://doi.org/10.1109/TSE.2011.103
https://doi.org/10.1109/TSE.2011.103
https://doi.org/10.1109/TSE.2017.2724538
http://arxiv.org/abs/1911.08938
http://dl.acm.org/citation.cfm?id=2486788.2486840
https://doi.org/10.1109/TSE.2017.2770124


Empirical Software Engineering

Kearns M (1998) Efficient noise-tolerant learning from statistical queries. J ACM 45(6):983–1006.
https://doi.org/10.1145/293347.293351

Limsettho N, Hata H, Matsumoto Ki (2014a) Comparing hierarchical dirichlet process with latent dirichlet
allocation in bug report multiclass classification. In: 15Th IEEE/ACIS international conference on soft-
ware engineering, artificial intelligence, networking and parallel/distributed computing (SNPD), IEEE,
pp 1–6

Limsettho N, Hata H, Monden A, Matsumoto K (2014b) Automatic unsupervised bug report categorization.
In: 2014 6th International workshop on empirical software engineering in practice, IEEE, pp 7–12

Limsettho N, Hata H, Monden A, Matsumoto K (2016) Unsupervised bug report categorization using
clustering and labeling algorithm. Int J Softw Eng Knowl Eng 26(07):1027–1053

Lukins SK, Kraft NA, Etzkorn LH (2008) Source code retrieval for bug localization using latent dirichlet
allocation. In: Proceedings of the 2008 15th working conference on reverse engineering, IEEE Computer
Society, USA, WCRE ’08, p 155–164 https://doi.org/10.1109/WCRE.2008.33,

Marcus A, Sergeyev A, Rajlich V, Maletic JI (2004) An information retrieval approach to concept location
in source code. In: Proceedings of the 11th working conference on reverse engineering, IEEE Computer
Society, USA, WCRE ’04, pp 214–223

Mills C, Pantiuchina J, Parra E, Bavota G, Haiduc S (2018) Are bug reports enough for text retrieval-based
bug localization? In: IEEE International conference on software maintenance and evolution (ICSME),
pp 381–392

Nemenyi P (1963) Distribution-free multiple comparison. PhD thesis, Princeton University
Ortu M, Destefanis G, Adams B, Murgia A, Marchesi M, Tonelli R (2015) The jira repository dataset: Under-

standing social aspects of software development. In: Proceedings of the 11th international conference
on predictive models and data analytics in software engineering, association for computing machinery,
New York, NY, USA, PROMISE ’15,. https://doi.org/10.1145/2810146.2810147

Otoom AF, Al-jdaeh S, Hammad M (2019) Automated classification of software bug reports. In: Proceedings
of the 9th international conference on information communication and management, ACM, pp 17–21

Palacio DN, McCrystal D, Moran K, Bernal-Cárdenas C, Poshyvanyk D, Shenefiel C (2019) Learning
to identify security-related issues using convolutional neural networks. In: 2019 IEEE International
conference on software maintenance and evolution (ICSME), pp 140–144

Pandey N, Hudait A, Sanyal DK, Sen A (2018) Automated classification of issue reports from a software
issue tracker. In: Sa PK, Sahoo MN, Murugappan M, Wu Y, Majhi B (eds) Progress in intelligent
computing techniques: theory, practice, and applications. Springer Singapore, Singapore, pp 423–430

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss
R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011)
Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830

Pingclasai N, Hata H, Matsumoto K (2013) Classifying bug reports to bugs and other requests using topic
modeling. In: 2013 20Th asia-pacific software engineering conference (APSEC), vol 2, pp 13–18.
https://doi.org/10.1109/APSEC.2013.105

Qin H, Sun X (2018) Classifying bug reports into bugs and non-bugs using lstm. In: Proceedings of the tenth
asia-pacific symposium on internetware, ACM, p 20

Rao S, Kak A (2011) Retrieval from software libraries for bug localization: a comparative study of
generic and composite text models. In: Proceedings of the 8th working conference on mining soft-
ware repositories, association for computing machinery, New York, NY, USA, MSR ’11, p 43–52.
https://doi.org/10.1145/1985441.1985451

Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika
52(3/4):591–611

Śliwerski J, Zimmermann T, Zeller A (2005) When do changes induce fixes? In: Proceedings of the 2005
international workshop on mining software repositories, ACM. https://doi.org/10.1145/1082983.1083
147

Terdchanakul P, Hata H, Phannachitta P, Matsumoto K (2017) Bug or not? bug report classification
using n-gram idf. In: IEEE International conference on software maintenance and evolution (ICSME),
pp 534–538. https://doi.org/10.1109/ICSME.2017.14

Trautsch A, Trautsch F, Herbold S, Ledel B, Grabowski J (2020) The smartshark ecosystem for soft-
ware repository mining. In: Proceedings of the 2020 international conference software engineering -
demonstrations track

Trautsch F, Herbold S, Makedonski P, Grabowski J (2018) Addressing problems with replicability and valid-
ity of repository mining studies through a smart data platform. Empirical Softw Engg 23(2):1036–1083.
https://doi.org/10.1007/s10664-017-9537-x

https://doi.org/10.1145/293347.293351
https://doi.org/10.1109/WCRE.2008.33
https://doi.org/10.1145/2810146.2810147
https://doi.org/10.1109/APSEC.2013.105
https://doi.org/10.1145/1985441.1985451
https://doi.org/10.1145/1082983.1083147
https://doi.org/10.1145/1082983.1083147
https://doi.org/10.1109/ICSME.2017.14
https://doi.org/10.1007/s10664-017-9537-x


Empirical Software Engineering

Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslen A (2012) Experimentation in software
engineering. Springer Publishing Company. Incorporated

Zhou Y, Tong Y, Gu R, Gall H (2016) Combining text mining and data mining for bug report classification.
J Softw Evol Process 28(3):150–176

Zolkeply MS, Shao J (2019) Classifying software issue reports through association mining. In: Proceedings
of the 34th ACM/SIGAPP symposium on applied computing, ACM, pp 1860–1863

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.



Empirical Software Engineering

Steffen Herbold is interim professor at the Karlsruhe Institute of
Technology, Germany. His research is focused on the application of
data science methods and their applications in software engineering
as well as software engineering to data science methods.

Alexander Trautsch is a PhD candidate at the Institute of Com-
puter Science of the Georg-August-Universit?t and works as part of
the DEFECTS project on foundational issues of defect prediction
research and the impact of the evolution of static analysis warnings
over time on software quality.

Fabian Trautsch works as IT Application Specialist at the Sartorius
AG. Previously, he worked as a PostDoc in the Software Engineering
for Distributed Systems group at the Institute of Computer Science of
the University of Goettingen. He received the BSc degree in applied
computer science from the University of Goettingen in 2013, the sub-
sequent MSc degree in 2015 and his doctorate in 2019. His research
interests include mining software repositories, software evolution,
software testing, and empirical software engineering.


	On the feasibility of automated prediction of bug and non-bug issues
	Abstract
	Introduction
	Terminology and Problem Description
	Related Work
	Unsupervised Approaches
	Supervised Approaches

	Approach
	Title and Description
	Easy Subsets
	Classification Model
	Putting it all Together

	Unvalidated Data
	Experiments
	Data
	Baselines
	Performance Metrics
	Methodology
	Results
	Results for Phase 1
	Results of Phase 2
	Results of Phase 3
	Results for Phase 4
	Results for Phase 5


	Discussion
	Answers to Research Questions
	RQ1: Can manually specified logical rules derived from knowledge about issues be used to improve issue type classification?
	RQ2: Does training data have to be manually validated or can large amount of unvalidated data also lead to good classification models?
	RQ3: How good are issue type classification models at recognizing bug issues?

	Recommendations for Using Issue Type Prediction
	Comparison with the Literature

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity
	Reliability

	Conclusion
	References


