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Abstract: After interventions such as bypass surgeries the vascular function is checked qualitatively
and remotely by observing the blood dynamics inside the vessel via Fluorescence Angiography.
This state-of-the-art method has to be improved by introducing a quantitatively measured blood flow.
Previous approaches show that the measured blood flow cannot be easily calibrated against a gold
standard reference. In order to systematically address the possible sources of error, we investigated
the error in geodesic length measurement caused by spatial discretization on the camera chip.
We used an in-silico vessel segmentation model based on mathematical functions as a ground truth
for the length of vessel-like anatomical structures in the continuous space. Discretization errors for
the chosen models were determined in a typical magnitude of 6%. Since this length error would
propagate to an unacceptable error in blood flow measurement, counteractions need to be developed.
Therefore, different methods for the centerline extraction and spatial interpolation have been tested
and compared against their performance in reducing the discretization error in length measurement
by re-continualization. In conclusion, the discretization error is reduced by the re-continualization
of the centerline to an acceptable range. The discretization error is dependent on the complexity of
the centerline and this dependency is also reduced. Thereby the centerline extraction by erosion in
combination with the piecewise Bézier curve fitting performs best by reducing the error to 2.7% with
an acceptable computational time.

Keywords: length measurement; discretization error; centerline; spatial interpolation; blood flow

1. Introduction

Camera-based diagnostic methods, as a subfield of biomedical optics, are becoming increasingly
important in many clinical applications and their use is ubiquitous and indispensable, especially when
contactless operation is required [1–4]. For intraoperative diagnosis, in particular tumor fluorescence
imaging and fluorescence angiography (FA) have already been proven to positively affect patient
outcome [4–8]. However, most applications require sophisticated post processing to provide the
information needed with sufficient accuracy. The aim of this study is to improve the accuracy of
quantitative intraoperative FA with the focus on determining the exact length of vessel segments from
fluorescence images, as the precise determination of vessel geometry is one of the preconditions for
the accurate quantification of blood volume flow.

During surgical interventions, such as bypass grafting, the quality of the procedure should be
checked before closing the patient’s skull to ensure a low recurrence rate [9]. Currently, the vascular
function can be checked subjectively by the surgeon via Fluorescence Angiography [7]. In this paper
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the vascular function is defined as the property of vessels to transport blood. Therefore, the measured
parameter of volume flow is essential to assess this function. The blood flow can be obtained by various
methods such as sonographic methods or optical remote sensing methods [10]. The clinically available
standard tool for intraoperative blood flow measurement is an ultrasound probe. There a probe or
sensor needs to get in contact with the vessel, which is often cumbersome due to a narrow and deep
working channel. Contact causes the risk of contamination and tissue damage such as vessel rupture
which might lead to fatal outcome. The specified accuracy of ±10% in volume flow measurement
has been proven to be sufficient and valuable for intraoperative medical applications [11,12].
Optical contact-free methods such as laser speckle flowgraphy and fluorescence angiography do
not provide quantitative values yet. However, they can overcome the challenges of the channel’s
narrow geometry which limits the use for sonographic flow probes [7,13]. Additionally, the risks
of contamination and mechanical stress are not evident. Therefore, optical contact free methods
need to be developed towards the goal of the quantitative measurement of flow. The method in
focus of this research uses the fluorescent dye Indocyanine Green (ICG), which binds to the plasma
protein and allows the visualization of the blood’s dynamics with the help of an infra-red camera [14].
Two approaches to calculate the volume flow are pursued. The first approach is a one-point
measurement, where the temporal intensity signal in one point or ROI (mean value of a region of
interest) is analyzed. Subsequently, the flow is calculated following the fundamentals of the indicator
dilution theory [15]. The main drawback of this approach is the fact that the indicator dilution theory
relies on absolute measured concentrations which cannot be simply calculated from backscattered
fluorescence signals without solving the complex inverse problem. Several requirements are not
fulfilled since the neurovascular branching is complex and the whole injected bolus will not pass by
the recorded vessel. The second approach which is also pursued within this project is a two-point
measurement. The volume flow is calculated from the mean transit time (∆t) of an ICG bolus along
a vessel and the vessel geometry, the representative cross-sectional area ( π·d2

4 ) and the geodesic length
of the centerline (s) (see Equation (1)) [16].

V̇ =
π · d2 · s

4 · ∆t
(1)

Both methods are not widely accepted due to their lack of robustness and accuracy [15–17].
However, we base our method on the second approach since its preconditions are promising. It was
shown that this measurement systematically overestimates the volume flow. Furthermore, its accuracy
depends on several spatial and temporal parameters (see Equation (1)). This work aims on the
investigation of the geodesic length (s) measurement of the centerline. Measuring an objects length is
often addressed in the application of optic and photonic technologies such as fluorescence microscopy,
X-ray computer tomography, etc., and provides crucial information in multiple medical fields such as
ophthalmology, otolaryngology, and oncology, but its accuracy is rarely critically discussed [18–23].
This is also the case in non-medical applications where an object is projected onto a detector grid and
therefore holds a source for errors due to discretization [24]. We want to tackle this observed and
reported systematic source of error and therefore provide a fundamental critical review of results of
length measurements using optic and photonic technologies.

The systematic error leads to the two hypotheses of this work.
The first hypothesis: Is the discretization error reduced by a re-continualization of the

discrete structure?.
The second hypothesis: Is the error dependent on the angle in respect to the rectangular grid of

the pixels in a camera chip and can this dependency be reduced by a re-continualization of the discrete
structure? For example, a line which is angled at 0°, 45° or 90° to the rectangular grid should show
a minimum error due to its perfect fit to the grid. Intermediate angles will show a higher error.

Since obtaining the ground truth of the geodesic length in clinical data is difficult and
often not possible, an in-silico model was set up to mimic the optical segmentation of vessels.
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Consequently, the segmentation error and the projection error of a 3D structure into a 2D plane are not
considered. Previously, we have shown that the error in length measurement due to discretization
is significant (6.3%) and should not be ignored for volume flow analysis [25]. This error is always
positive. Thus, the discrete length is, as expected, always longer than the ground truth continuous
length measurement. Its impact on the flow can be calculated using the error propagation of
uncorrelated variables according to the DIN standard 1319-3 specification. This emphasizes the
need for counteraction to significantly reduce this error (see Equation (2), with εx indicating the
relative error of the parameter x).

εV̇ = 2 · εd + εs + εt (2)

Therefore, we extend our previous research in this paper by developing methods to reconstruct
a centerline and re-continualize it before the length measurement. Hereby, we investigate the
performance of two centerline extraction methods: Erosion method and Voronoi diagrams. In a second
step we examine two spatial interpolation methods: Bézier curve and polynomial interpolation.
The aim is to quantify the difference between the length measurement compared to the ground truth
obtained from continuous functions in silico. Afterward, the proof of the validity of the in silico model
is given by a physical experiment with silicone tubes imaged by a camera and illumination system.

2. Methods

All calculations are done in MathWorks MATLAB R2019a.
The order and structure of the methods used in this paper are sketched in Figure 1.

2.1. In silico image generation
Centerline creation 

Centerline function f(x) 
See Table 1

Diameter dilatation
Diameter function

2.2. Centerline extraction
Erosion Voronoi diagram

Centerline post-processing

2.3. Length measurement
Discrete lengthGround truth Spatial 

interpolation

Bézier spline 

Polynomial

2.4. Experimental image acquisition 

Figure 1. An overview of the methods used in this paper. Sections 2.1–2.3 deal with the in silico method
and Section 2.4 with the experimental method.

Since the in silico model was already introduced in a previous paper, only an overview of
the model is given and the modifications of the published model are presented in the following
section [25]. The centerline extraction and spatial interpolation methods are described. It is followed
by the validation in a physical experiment and the evaluation method.

2.1. In-Silico Model

The model generates binary images mimicking a broad range of possible vessel segmentations.
The generation is based on mathematical functions where the geodesic length is extracted as arc
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length therefore providing a reliable ground truth. No publication is known to the authors describing
vessels by mathematical functions. The proposed functions in Table 1 depict a large variety of shapes
and spatial frequencies. The chosen functions will be investigated separately and the results can be
separated as well for the following application tailored error analysis. The functions are projected
onto a resolution grid to simulate a discretization on a camera chip and then dilated to simulate
segmentations. The resolution is set to 720 × 576 pixels in accordance with the PAL(DV) standard
which is common in the fluorescence recording settings in most surgical microscopes. Newly released
microscopes have a higher resolution but since we are proposing a software-based method, we focused
on the majority of microscopes in the field. The model can be easily adjusted to an arbitrary resolution.
Please note that no segmentation and projection error is included in this model. Table 1 shows the
different functions. A single vessel segmentation is generated by multiple steps:

1. Choose a function (randomly).
2. Choose a window width s (in pixels) in the image within the limits of [65 350] (randomly)

(the mathematical function will be projected into this window).
3. The function will be rotated with a random angle α.
4. The windowed and rotated mathematical function will be projected onto the resolution grid and

thereby discretized.

2.2. Centerline Extraction

Two centerline extraction methods were used in this work. Both methods differ in their
fundamentals, are commonly used for the extraction of a centerline and will be presented in the
following sections. Afterward, the necessary post-processing steps are presented.

2.2.1. Erosion

The centerline extraction by erosion is well established and used in various medical and
non-medical application [26,27]. Erosion is a fundamental and iterative nonlinear operation in
morphological image processing and belongs to the family of median filters. A termination condition
needs to be set, in our case to preserve a closed line. Its iterative use results in a thinning of a foreground
structure (logical 1) to a one-pixel thick line or even a dot in case of a circular structure. The set of
elements in this paper was defined as all elements in a 3 × 3 cross neighborhood of the pixel under
investigation being in the center. The termination condition was set to an asymmetrical vertical and
horizontal check of the neighbors to ensure a one pixel thick centerline.

2.2.2. Voronoi Diagram

The Voronoi diagram in contrast to the erosion is not an iterative or morphological method.
It is a method derived from set theory which partitions an n-dimensional space into Voronoi cells.
Each Voronoi cell is defined by a center point. The cell includes all points with minimal (Euclidean)
distance to this center point. If a point has an equal distance to two center points, then this point
belongs to a Voronoi edge, which separates two Voronoi cells. Each point of the set belongs exclusively
to one cell or edge. A Voronoi diagram is the representation of all Voronoi edges. They can be used to
extract a centerline in 2D and 3D data sets and it was shown that it complies strongly with the Medial
Axis Transformation [28]. In Figure 2 an example of a centerline extraction by a Voronoi diagram is
shown. The centerline is shown in red and the Voronoi edges in blue. The set of Voronoi center points
is defined as all border pixels of the segmentation mask. Two types of Voronoi edges appear, first the
edges separating two neighboring Voronoi cell center points (along the segmentation border line) and
second the edges separating two opposing Voronoi cell center points. These edges resulting from
opposing center points represent the centerline of our given mask.
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Table 1. Mathematical function, their formula and variables [25].

Function Type Detailed Type Formula Variables’ Limit

Straight lines f (x) = tan(θ) · x θ = [−45◦, 45◦], x is arbitrary

Parabolas Left arm f (x) = a · x2 a = [1, 2]
xlow = [−

√
2s,−2], xhigh = [xlow+2, 0]

Right arm a = [1, 2]
xlow = [0,

√
2s− 2], xhigh = [xlow+2,

√
2s]

Vertex a = [1, 2]
xlow = [−

√
2s,−1], xhigh = [1,

√
2s]

L.a. inverted a = [−1,−2]
xlow = [−

√
2s,−3], xhigh = [xlow+2, 1]

R.a. inverted a = [−1,−2]
xlow = [1,

√
2s− 2], xhigh = [xlow+2,

√
2s]

V. inverted a = [−1,−2]
xlow = [−

√
2s,−2], xhigh = [2,

√
2s]

Polynomials f (x) = ∑n
k=4 ak · xk n ≤ 15, x = [−5, 5]

Sinusoids Low frequency f (x) = a · sin( f · π · x) a = [0.2s, 0.7s], f = [1, 2]
xlow=[0, 2π], xhigh=[xlow+0.5π, xlow+2π]

High frequency a = [0.1s, 0.1 + s
2 f ], f = [1.5, 7]

xlow=[0, 2π], xhigh=[xlow+0.5π, xlow+2π]

Curved Waves Quadratic f (x) = q · x2+ q = [−10, 15], a = [0.05s, 0.15s], f = [0.5, 2]
a · sin(2 · π · f · x) xlow = [−3, 3], xhigh = [xlow+2, xlow+6]

Cubic f (x) = c · x3 + q · x2+ c = [−15, 10], q = [−15, 30]
a · sin(2 · π · f · x) a = [0.1s, 0.3s], f = [0.5, 2]

xlow = [−3, 3], xhigh = [xlow+2, xlow+6]

Bell curves Gaussian f (x) = a · e−
x2

2σ2 a = [0.2s, s], σ = [0.2, 3]
xlow = [−5, 1], xhigh = [1,−5]

G. inverted a = [−0.2s,−s], σ = [0.2, 3]
xlow = [−5, 1], xhigh = [1,−5]

Polynomials f (x) = a · 16· a = [0.2s, s]
(x4 − 2 · x3 + x2) xlow = 0, xhigh = 1

P. inverted a = [−0.2s,−s]
xlow = 0, xhigh = 1

Bifurcations Combination of all

Figure 2. To the left the Voronoi diagram of a segmentation mask, to the right a zoom into a section of
this diagram—blue are the Voronoi edges, red is the centerline extracted from the Voronoi edges.
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2.2.3. Centerline Post-Processing

Post processing of the centerline is required before handing over the extracted centerline to the
length measurement. Artifacts such as centerlines with a break of one pixel or single foreground pixels
are fixed by detecting and filling or eliminating those. Afterward, a crucial step needs to be done,
connections as stairway like steps are adjusted into exclusively diagonal connections. This is necessary
due to the overestimation of the measured centerline in case of the appearance of orthogonal step
connections as shown in Figure 3. Finally, spurs are removed at the end of the centerline.

Figure 3. To the left, an incorrect measurement due to a step-like connection with a distance of 2, to
the right, the corrected centerline with a measured distance of

√
2.

2.3. Length Measurement

This section describes the derivation of the ground truth length from the mathematical functions,
and the three length measurement methods used to calculate the length of the extracted and
processed centerlines.

2.3.1. Ground Truth Length

The ground truth of the length is extracted from the mathematical function f (x) as the arc length
lArc( f (x)) of the function f (x) from xstart to xend (Equation (3)). f ′(x) is the differentiated function.

lArc( f (x)) =
∫ xend

xstart

√
1 + f ′(x)2dx (3)

In our case some curves are described as parametric curve by c(t) =

(
x(t)
y(t)

)
which has the

advantage that also bifurcations and other complex functions can be easily analyzed. The arclength is
calculated as shown in Equation (4).

lArc(c(t)) =
∫ tend

tstart

√
x′(t)2 + y′(t)2dt (4)

2.3.2. Discrete Length of Centerline

The discrete length of the obtained centerline is calculated as the sum of Euclidean distances of
each pixel to its neighbor as seen in Equation (5), ldiscrete is the discrete length of the centerline, i is
the index of the sorted pixels along the centerline, imax is the number of pixels of the centerline and cl
represents the centerline.

ldiscrete =
imax−1

∑
i=0
‖cl(i + 1)− cl(i)‖2 (5)

2.3.3. Continuous Length by Polynomial Approximation

One approach to approximate a set of points by a mathematical function is the approximation
with a polynomial function. In this case x(i) and y(i) are treated independently. A polynomial of
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the order 10 and all elements (number of elements = imax) of x(i) and y(i) are used. The order 10
was chosen due to its versatility and adaptability since it can depict a broad range of geometries
and showed good results in an explorative study prior to this work. The functions’ coefficients are
determined by the least squares method by QR decomposition of the Vandermonde Matrix [29].
Afterward, both polynomials can be used to calculate the arclength of the approximated centerline
(see Equation (6)).

lpoly =
∫ imax

0

√
xpoly

′(t)2 + ypoly
′(t)2dt (6)

2.3.4. Continuous Length by Bézier Curve

Bézier curves are parametric curves with Bernstein polynomials (Bn
i ) as the basis. The ith Bernstein

polynomial of the order n is defined as:

Bn
i (x) =

(
n
i

)
· xi · (1− x)n−i (7)

with x ∈ [0, 1] and (
n
i

)
=

n!
i! · (n− i)!

(8)

A Bézier curve is a linear combination of Bernstein polynomials of the order n, weighted by
the control points P as input. n equals the number of control points P. This results in the following
function with x ∈ [0, 1]:

Bezier(x) =
n

∑
i=0

(
n
i

)
· xi · (1− x)n−i · Pi (9)

The Bézier curve is used to approximate the reconstructed discrete centerline by a continuous
function. Therefore, all elements of the centerline are used as control points for a set of k Bézier curve
elements. Each curve was calculated from at least four control points, where two consecutive curves
share exactly one point. A collinearity condition at the transition of two segments enforces a C1 Bézier
spline. This avoids too strong spatial smoothing compared to the input of all control points at once
and still matches the requirement of a constantly differentiable function due to the tangential property
of Bézier curves in general. The length of each curve is determined by the parametric Bézier curve
elements and summed up to calculate the length of the centerline (Equation (10)).

lBezier =
k

∑
B=1

∫ 1

0

√
xB ′(t)2 + yB ′(t)2dt (10)

2.4. Physical Length Measurement

To support the findings from the in silico simulation, an experiment is set up. The possibilities
in silico are very broad and easily scalable. As a proof of concept, the results of the linear functions and
straight silicone tubes are compared regarding the error in geodesic length measurement. The silicone
tubes have a thin wall and are filled with a solution containing the dye Indocyanine Green to ensure
a high contrast while imaging with a camera and illumination setup. They are placed on a rotational
plate as seen in Figure 4 and images are taken at different angles (0° to 90° in 15° steps always starting
at 0°). The rotational positioning accuracy of the plate is ±0.5°. The relative position of the plate and
the recording system were not changed throughout all experiments. The size of the tubes are varied
as shown in Table 2. Markers are placed on the tubes to indicate the distances at which the ground
truth is known. In total 56 images are recorded and then processed the same way as the in silico images.
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Figure 4. An exemplary image of a silicone tube filled with Indocyanine Green (ICG). It is fixed to
a rotational board and the red line indicates 0° of rotation.

Table 2. Tubes used in the experiment.

Inner Diameter in mm Wall Thickness in mm

1 1
2 0.5
3 0.5
4 0.5
5 0.5
6 1
7 1
8 1

The setup includes the following items:

• Carl Zeiss Meditec AG PENTERO® 900 (Surgical microscope)
• Silicone tubes RCT THOMAFLUID®

• Rotational plate (Thorlabs PR01(/M))
• Blood analog (52.4 mL demineralized water, 41.5 mL Glycerin (99.5%) and 6.7 g protein powder)
• ICG (PULSION Medical Systems SE)

2.5. Evaluation

The relative error in length measurement will be used for the evaluation of the methods.
The relative error for the in silico data is calculated in reference to the continuous ground truth
length (see Equation (11)).

εs =
lmeasured

lArc
− 1 (11)

Hereby, eight values need to be tracked for each image:

1. Continuous ground truth length
2. Discrete ground truth length without any centerline reconstruction
3. Discrete length with the centerline reconstruction by erosion
4. Discrete length with the centerline reconstruction by Voronoi diagram
5. Continuous length with the centerline reconstruction by erosion and interpolation by Bézier
6. Continuous length with the centerline reconstruction by erosion and interpolation by

polynomial approximation
7. Continuous length with the centerline reconstruction by Voronoi diagram and interpolation

by Bézier
8. Continuous length with the centerline reconstruction by Voronoi diagram and interpolation by

polynomial approximation
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The ground truth in the physical experiments is the hand measured distance between the markers
using a micrometer caliper with an indication accuracy of 10 µm (Stahlwille 77371002). From three
measurements the mean was calculated and used for the error calculation. The deviation in the
measurement of the ground truth with the caliper was in the magnitude of 0.1% or less of the length of
the segments in all cases. The caliper was zeroed and reapplied between each single measurement.

Since showing all results is not feasible the mean µ and standard deviation σ of the relative errors
will be given for all structures separately and accumulated. A positive error indicates a measurement
longer than the ground truth and a negative error shorter. Finally, a two sided Wilcoxon rank sum
test is performed to proof significant changes after re-continualization of the discrete centerline.
The significance level will be denoted by an asterisk in the corresponding tables.

3. Results

The results are split in two parts, first the results from in silico analysis and second the
experimental results.

3.1. In Silico Results

Figure 5 shows two examples of vessel segmentations generated by the in silico model.
The centerline extraction and spatial interpolation methods were then applied on 1204 such images.

Figure 5. In silico simulation of two vessel segmentations. Left: Section of a parabola with a stenosis.
Right: Bifurcation including sections of two Gaussian bells and a sinusoidal.

Table 3 shows the discretization error of the mathematical functions, which is due to the
projection onto the grid. No reconstruction methods were used here, and all errors are positive.
Furthermore, the quantity of images in each set is shown.

Table 3. Mean relative error of the discrete length measurement with no reconstruction compared to
the continuous ground truth [25].

Function Type Relative Error Quantity in the Set

Straight lines 2.3% 184
Parabolas 7.2% 312

Polynomials 6.3% 168
Sinusoids 6.8% 132

Curved Waves 7.6% 102
Bell curves 8.5% 108
Bifurcations 6.7% 198
Mean of all 6.3%

Table 4 shows the comparison of the spatial interpolation methods for the centerline extraction by
erosion for all used mathematical functions. It should be noted that the mean error due to discretization
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after the centerline extraction is 7.0% and the best interpolation method (Bézier) reduces this error
to 2.7%.

Table 4. Mean relative error of the length measurement methods in % after centerline extraction by
erosion compared to the continuous ground truth. Significance was proven for the reduction of the
error compared to the discrete length for each function type ∗∗∗∗ p < 0.0001.

Discrete Bézier Polynomial
µ± σ µ± σ µ± σ

Straight lines 5.2 ± 3.8 2.6 ± 1.8 ∗∗∗∗ 2.1 ± 1.6 ∗∗∗∗

Parabolas 7.5 ± 4.0 2.4 ± 1.5 ∗∗∗∗ 1.9 ± 1.3 ∗∗∗∗

Polynomials 6.5 ± 4.8 3.9 ± 6.2 ∗∗∗∗ 7.2 ± 7.5 ∗∗∗∗

Sinusoids 8.5 ± 5.8 4.2 ± 7.8 ∗∗∗∗ 6.6 ± 12.6 ∗∗∗∗

Curved waves 7.6 ± 2.6 2.5 ± 1.4 ∗∗∗∗ 2.6 ± 2.2 ∗∗∗∗

Bell curves 10.4 ± 3.2 3.1 ± 1.7 ∗∗∗∗ 1.9 ± 1.4 ∗∗∗∗

Bifurcations 6.1 ± 5.4 2.1 ± 5.3 ∗∗∗∗ 2.6 ± 5.1 ∗∗∗∗

Mean of all 7.0 ± 4.8 2.7 ± 4.5 ∗∗∗∗ 3.2 ± 5.8 ∗∗∗∗

Table 5 shows the comparison of the spatial interpolation methods for the centerline extraction by
Voronoi diagrams for all used mathematical functions. The mean error due to discretization after the
centerline extraction is 7.9% and the best interpolation method (Bézier) reduces this error to 4.7%.

Table 5. Mean relative error of the length measurement methods in % after centerline extraction by
Voronoi diagrams compared to the continuous ground truth. Significance was proven for the reduction
of the error compared to the discrete length for each function type ∗∗∗∗ p < 0.0001.

Discrete Bézier Polynomial
µ± σ µ± σ µ± σ

Straight lines 5.1 ± 5.8 3.3 ± 5.8 ∗∗∗∗ 3.2 ± 6.0 ∗∗∗∗

Parabolas 8.6 ± 7.0 4.2 ± 8.5 ∗∗∗∗ 4.5 ± 8.7 ∗∗∗∗

Polynomials 9.1 ± 8.5 7.7 ± 11.0 ∗∗∗∗ 11.2 ± 11.3 ∗∗∗∗

Sinusoids 8.6 ± 5.0 5.6 ± 7.8 ∗∗∗∗ 8.9 ± 12.8 ∗∗∗∗

Curved waves 8.3 ± 4.5 4.5 ± 7.0 ∗∗∗∗ 5.7 ± 7.5 ∗∗∗∗

Bell curves 8.2 ± 4.2 3.4 ± 5.1 ∗∗∗∗ 3.4 ± 5.6 ∗∗∗∗

Bifurcations 7.9 ± 11.2 4.6 ± 11.6 ∗∗∗∗ 5.9 ± 11.2 ∗∗∗∗

Mean of all 7.9 ± 8.1 4.7 ± 9.2 ∗∗∗∗ 5.9 ± 10.0 ∗∗∗∗

The mean run time for the combination of the two reconstruction and interpolation methods
is shown in Table 6. The erosion method with polynomial approximation was the quickest and the
Voronoi diagram in combination with the Bézier curve the slowest. The difference was approximately
a factor of ten. The measurement of the discrete length was neglected due to an unacceptable
performance in length measurement. The run time was determined on a computer with an Intel
i5-Quad-Core Processor with 3.4 GHz with no parallel computing.

Table 6. Mean run time of the different combination of the methods in seconds for a single image.

Erosion Voronoi

Bézier curve 13.08 s 21.09 s
Polynomial approximation 2.33 s 10.34 s

3.2. Experimental Results

The deviation in the measurement of the ground truth with the caliper was in the magnitude of
0.1% or less of the length of the segments in all cases. The experiments on the silicone tubes resulted in
the mean length errors, which are shown in table 7. Please note that these errors represent the mean
error for all angles.
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Table 7. Mean relative error of the length measurement methods in % after the centerline extraction by
both methods and the spatial interpolation compared to the ground truth for the experimental data
set (mean also over all angles). Significance was proven for the reduction of the error compared to
the discrete length for each function type ∗∗∗∗ p < 0.0001. Angle resolved relative errors are given in
Tables 8 and 9.

Discrete Bézier Polynomial
µ± σ µ± σ µ± σ

Erosion 4.7 ± 3.0 1.9 ± 1.3 ∗∗∗∗ 1.6 ± 1.6 ∗∗∗∗

Voronoi 5.0 ± 3.0 2.0 ± 1.3 ∗∗∗∗ 1.5 ± 1.5 ∗∗∗∗

The tubes were set up as lines in different angles. Tables 8 and 9 and Figure 6 show the relative
error in dependency to the angle (relative to the resolution grid). The discrete centerline shows,
as expected, a clear dependency on the angle with the minimum error at 0°, 45° and 90° where the
centerline best fits into the camera chip grid.

Table 8. Mean relative error of the length measurement methods in % after the centerline extraction
by erosion and the spatial interpolation compared to the ground truth for the experimental data set.
Significance was proven for the reduction of the error compared to the discrete length as indicated
∗ p < 0.05, ∗∗∗ p < 0.001, ∗∗∗∗ p < 0.0001.

Discrete Bézier Polynomial
Angle µ± σ µ± σ µ± σ

0° 2.4 ± 1.3 1.8 ±1.5 ∗ 1.5 ± 1.5 ∗∗∗

15° 7.0 ± 2.4 2.3 ± 1.0 ∗∗∗∗ 1.7 ± 1.6 ∗∗∗∗

30° 6.6 ± 2.3 1.9 ± 1.3 ∗∗∗∗ 1.6 ± 1.6 ∗∗∗∗

45° 2.2 ± 1.7 1.6 ± 1.6 ∗ 1.6 ± 1.7 ∗

60° 7.0 ± 2.3 1.8 ± 1.3 ∗∗∗∗ 1.4 ± 1.6 ∗∗∗∗

75° 5.8 ± 2.6 2.1 ± 1.2 ∗∗∗∗ 1.9 ± 1.7 ∗∗∗∗

90° 1.9 ± 1.3 1.7 ± 1.6 1.6 ± 1.7

Table 9. Mean relative error of the length measurement methods in % after the centerline extraction by
Voronoi diagrams and the spatial interpolation compared to the ground truth for the experimental data
set. Significance was proven for the reduction of the error compared to the discrete length as indicated
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001, ∗∗∗∗ p < 0.0001.

Discrete Bézier Polynomial
Angle µ± σ µ± σ µ± σ

0° 2.4 ± 1.6 1.8 ±1.3 1.5 ± 1.4 ∗

15° 7.4 ± 2.3 2.6 ± 1.0 ∗∗∗∗ 1.6 ± 1.2 ∗∗∗∗

30° 6.8 ± 2.2 2.1 ± 1.3 ∗∗∗∗ 1.7 ± 1.6 ∗∗∗∗

45° 2.5 ± 1.5 1.6 ± 1.5 ∗∗ 1.5 ± 1.6 ∗∗∗

60° 7.1 ± 2.2 1.9 ± 1.1 ∗∗∗∗ 1.5 ± 1.5 ∗∗∗∗

75° 6.4 ± 2.2 2.3 ± 1.0 ∗∗∗∗ 1.5 ± 1.6 ∗∗∗∗

90° 2.3 ± 1.7 1.7 ± 1.5 1.5 ± 1.6 ∗∗
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Figure 6. Relative length error using the erosion method in dependency on the angle for straight
silicone tubes. The angle is measured to the horizontal pixel grid structure.

4. Discussion and Conclusions

The proposed model is able to generate a large number of images mimicking pre-segmented
cerebral vessels with a mathematically defined ground truth. The multitude of shapes including
bifurcations depict a large variety of possible vessel structures. No publication is known to the authors
describing vessel geometries by mathematical functions. Therefore, some of the proposed functions
and their parameters’ limits might be suitable and others unsuitable to describe a vessels geometry.
The functions used in this model can be considered separately and therefore also the findings derived
from the results as well. Validation of the model and the used functions requires an in vivo data set,
including processing of the data, which is also a source of bias and error. Nevertheless, the model
is designed to depict an extensive range of vessel geometries and a retrospective containment is
possible. The focus of this paper was the measurement of the geodesic length along the centerline.
It adds value to the previous publication by the authors [25] by extending the investigation of the
discretization error of a continuous object by the development of counteractions and the investigation
of their effectiveness to reduce this error in silico and in a physical experiment. We have first shown
that the error due to discretization of the ground truth centerline is +6.3%. No reconstruction method
was involved in this step and the simulation is set up with the PAL(DV) standard. This error is
also always positive. The error of the discrete centerline reconstructed by the proposed methods
increased to 7.0% and 7.9% (Erosion and Voronoi method). This is intuitive, since the error due to
the reconstruction adds up to the discretization error. According to Equation (2), the propagated
error from length measurement is directly forwarded as an element of the sum. Assuming the same
error for the diameter measurement, the relative error in the flow measurement would result in
21.0% and 23.7% for the erosion and Voronoi method. In fact, the error is even higher because the
model does not account for segmentation errors or projection errors of a 3D structure onto a 2D
plane. This projection error is strongly dependent on the angle between the vessel segment and

focal plane. It can be described by a cosine function cos(α) =
lprojection

l . Small changes in α result
in small projection errors and are tolerable. A tilt angle of approximately ±16° would equalize the
positive effect of the re-continualization by the proposed methods. In a clinical context a tilt angle
of 16° is not expected. The depth of field in typical neurovascular surgery is smaller than 2 mm
(at a magnification of >7) [30]. Consequentially, any vessel larger than 7 mm would be partially
blurry. Nevertheless, requirements on the measurement work flow can be derived to ensure that the
projection error does not equalize the gained accuracy in length measurement. These propagated error
values do not include errors from transit time measurement and are already too high. For comparison,
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sonographic contact intraoperative flow meters have an accuracy of ±10% [12]. This emphasizes the
need for an improved geodesic length assessment method to enable a reliable optical volume flow
measurement. One option is changing the hardware and using a camera with a higher spatial resolution.
Unlike the coastline paradox, where the length of a fractal object is prolonged towards infinity with
increasing resolution, we expect a convergence of the measured geodesic length towards the true length
with increasing resolution. This is due to the decreasing discretization error. It relies on the assumption
that a vessel is a non-fractal object. This assumption is most likely valid for vessels (probably not for
the capillary system). The upgrade of the recording system is costly and cannot be easily performed
on systems already in use and therefore it is not the prioritized solution. Another option is using
software-based methods to enhance the length measurement. Re-continualization methods such as
spatial interpolation to ensure in the prevalent cases a smooth centerline is the preferred choice since
they can be easily installed to all systems. The length measurement of discrete objects has shown to
be longer than the continuous ground truth due to the angular characteristic of the pixels as a grid.
Some outlier cases are shorter. Either the reconstruction or the spatial interpolation of the centerline
introduces a negative error. We have observed that the reconstruction of the centerline can provoke
negative errors due to a wrong spur removal at the ends of the centerline, especially in the case of
bifurcation. Whether the spatial interpolation introduces a negative error is checked by applying it to
the discrete ground truth centerline (no reconstruction involved) and comparing the resulting length
with the continuous length of the centerline. This showed a mean relative error of <0.05% for the Bézier
curves method, which emphasizes its suitability to properly re-continualization a discrete centerline
without too strong spatial smoothing. The polynomial approximation showed a mean relative error
of approximately −2%. This implies a strong spatial smoothing caused by the limited capability of
polynomial functions to represent different and versatile structures. Here the order of the polynomial
has a large influence since a small order could provoke a strong smoothing and a large order could
introduce spikes and therefore lengthen the centerline. Taking into account that a centerline consists of
hundreds of elements, a not piecewise fitted function (as the polynomial fit is) is prone to extensive
smoothing effects. Therefore, the proposed method using Bézier curves is more robust.

All proposed centerline extraction methods and their combination with spatial interpolation
methods show a significant decrease in the relative error in length measurement. This verifies
the first hypothesis and validates the proposed approach. Especially the centerline extraction by
erosion in combination with the Bézier curve interpolation shows a significant decrease in error from
7.0% to 2.7% (compared with the discrete centerline obtained by reconstruction). The run time of
approximately 13 s per image on average is acceptable since the operation is not required to be in
real time. Furthermore, the code runs on MATLAB and not on an optimized processor and solver,
so a further decrease in run time is possible. The run time was tracked to evaluate the methods
relative to each other and not in an absolute manner. The evaluation of the recorded images of silicone
tubes comply with the in silico simulation and show similar errors with their respective counterpart
(straight lines). The physical experiments are prone to several sources of errors. First, the positioning
accuracy of the sample in the field of view contains errors. The translational displacement was
avoided by fixing the imaging system and the rotational plate. The rotational positioning was set by
a rotational plate with an accuracy of ±0.5°. A value of this magnitude induces a minor error in length
measurement even at the most sensitive angle changes (see Figure 6). Second, the manual measurement
of the ground truth length with a caliper introduces errors. The caliper has an indication accuracy of
10 µm, which introduces a small error. The measured segments yield lengths from 12–75 mm and are
much larger than this error. Furthermore, the repeated measurement with the caliper showed a good
reproducibility with a deviation of 0.1% or less. In conclusion, all errors are small and do not have
a large impact on the measurement and therefore the results of the physical measurement are assumed
trustworthy. The results of this investigation also verifies the second hypothesis. The rectangular
grid of the detection array leads to an angle dependent error, which is reduced by re-continualization.
The angular measurements (Tables 8 and 9 and Figure 6) show a clear dependency of the error in
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length in case of a discrete measurement. The measurements also show that the re-continualization
by spatial interpolation significantly reduces this error in nearly all cases. The reduction is more
significant in the cases of angles that do not fit the grid (15°, 30°, 60° and 75°). This implies that the
dependency of the error to the angle is reduced. It is not possible to recreate all in silico categories
with silicone tubes since the geometry of the tubes changes when they are bent. Three-dimensional
printed structures could overcome this drawback but an investigation of the tolerances of the printers
is required. The results of this research are of great importance for applications where small changes in
the measurement have a significant impact on the outcome. Especially in medicine and life science,
errors can have fatal consequences for the patient. Facilitating a non-contact flow measurement with
an acceptable accuracy would fit into the surgical work flow. It would also increase the quality of the
procedure and could decrease the recurrence rate. Further, the results are also applicable in all fields
where geodesic distances of discretized images are requested with a high precision.

5. Outlook

The proposed model depicts a broad range of vessel geometries. Its validation requires a sufficient
in vivo data set. Its validation on different images could help to clarify which mathematical functions
are the most suitable for length analysis. This also leads into an application tailored model (e.g., retinal
vessel have different geometries than cerebral vessels). So far, this model does not account for the
projection errors of a 3D object onto a 2D plane. Adding a dimension to the mathematical functions
is possible. This would not only enable the inclusion of projection errors into the investigation,
it would also enable 3D length analysis (for example, of 3D—Computed Tomography (CT) or Magnetic
Resonance Imaging (MRI) data sets).

The evaluation of the performance of the proposed length measurement techniques could be
extended by a displacement analysis. In this work we focused on the length but not on the displacement.
Calculating the difference of the integrals (mathematical input function and Bézier curve) could exploit
circumstances that limit the error reduction by re-continualization.

The developed model can also be used to determine the performance of hardware-based methods
to lower the discretization error. Changing the resolution in the model is easy and a follow up study can
be performed to assess the benefits of increasing the resolution. Requirements on the resolution could
be derived from this assessment and the required applicative specifications. Finally, non-geometrical
factors need to be analyzed to complete the error analysis. This could be done analogously with the
help of synthetic images or in measured data. Once in silico studies are done, ex vivo and in vivo
studies are needed to finally state the accuracy and tolerances of the optical measurement of volume
flow in clinical use.
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