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of a Hidden Markov Model (HMM). The game-theoretical part of the model
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simultaneous consideration of escalation and de-escalation phases and of

two differently exposed risk groups, which requires differential risk

communication. For each scenario, we derive the explicit and generic

solution of the model, which makes it possible to identify the scope for

warning compliance and its effects independent from the parameter

constellation.

Applying empirical data from flood and risk studies yields plausible results

for the escalation-scenario of the model and reveal the limits of
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Abstract 

In this article, we analyze the phenomenon of flood evacuation compliance from a both decision-

theoretic and game-theoretic perspective presenting the Warning Compliance Model (WCM). This 

discrete decision model incorporates a Bayesian information system, which formalizes the statistical 

effects of a warning forecast based on the harmonious structure of a Hidden Markov Model (HMM). 

The game-theoretical part of the model incorporates the evacuation order decision of a local 

government and the people’s compliance regarding their evacuation-decisions. The strengths of this 

novel approach lie in the joint consideration of probabilistic and communicative risk aspects of a 

dynamic setting, in the simultaneous consideration of escalation and de-escalation phases and of two 

differently exposed risk groups, which requires differential risk communication. For each scenario, we 

derive the explicit and generic solution of the model, which makes it possible to identify the scope for 

warning compliance and its effects independent from the parameter constellation. Applying empirical 

data from flood and risk studies yields plausible results for the escalation-scenario of the model and 

reveal the limits of compliance if people face a Black Swan flood event. 

1. Introduction 

Natural disasters cause severe damage worldwide, with an upward trend (Alfieri et al. 2016; Bruine de 

Bruin et al.).Whenever natural catastrophes may endanger human life and sufficient warning time 

precedes the occurrence of the event, the immediate evacuation of the population is required. 

Evacuation can be defined as “the process of alerting, warning, deciding, preparing, departing and 

(temporarily) holding people, animals, personal belongings and corporate stock and supplies from an 

unsafe location at a relatively safer location given the actual circumstances“ (Kolen & van Gelder, 

2018). In the context of an evacuation, the questions of whether, and – if answered with yes – when 

and to what extent are among the most difficult decisions to be made by responsible actors such as 



2 
 

(local) government and civil protection agencies. The decision problem can be divided into three 

different elements or tasks. First, the occurrence of the potentially dangerous event that could make 

an evacuation necessary must be predicted as accurately as possible by a hazard forecast. In practice, 

this task is performed by Early Warning Systems (EWS), which are usually developed and operated by 

research institutes and commercial (early warning) services specialized in this field. Whether timely 

evacuation is possible at all depends on the scientific and technical performance of these systems on 

the one hand and the specific characteristics of the concrete natural hazard on the other. 

The second task comprises evacuation planning and the evacuation decision itself, which can be either 

a mandatory evacuation request (“order”) or a voluntary evacuation request (“recommendation”) but 

either way this decision is eventually based on a comprehensive cost-benefit analysis of public 

decision-makers, weighing up the advantages and disadvantages of an evacuation. While the potential 

lives to be saved play the primary role in this consideration, an evacuation can also involve securing 

critical assets and thus avoiding direct economic damage. However, the measures and operations, 

which have to be put in place within a short period, require a systematic preparation and planning in 

combination with pre-disaster risk communication with the potentially affected population living in 

the risk-prone area. For example, one of the most frequently reported bottlenecks for an effective 

evacuation is unnecessary traffic congestion, i.e. congestion which could have been overcome by 

timely planning of escape-routes as well as pre-disaster planning and training to overcome problems 

of coordination during the evacuation. 

The third aspect, which constitutes a necessary precondition for a successful evacuation, concerns the 

acceptance and evacuation compliance of the population, which requires a good communication 

strategy but also a high credibility of the political decision makers. It should be understood that an 

evacuation, which usually involves leaving one's own home for up to several weeks, is a very 

consequential decision for those affected. There can be many reasons why potentially affected people 

do not comply with an evacuation order. The target group does not perceive the order or it does not 

take it seriously (enough) because it fails to understand the gravity of the situation and instead 

considers the measure to be exaggerated. On the other extreme, people may consider the order as 

too drastic an intervention in their private affairs and therefore give priority to their own crisis micro-

management in the first instance (in particular to stay with vulnerable family members, pets or to 

protect their belongings), which can entail a dangerous loss of time. Further reasons are that people 
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perceive their homes as a safe place, that they don’t know where to go or that they have distrust into 

the public decision makers’ “true objectives”. The last aspect is relevant if people think that e.g. tourists 

are more relevant to the local government’s decision or even in highly problematic contexts where the 

local government misuses an evacuation request in order to get rid of marginalized groups. Hence, 

evacuation compliance depends crucially on the population's trust and credibility in the official 

decision-makers.  

“Approaching evacuation as a process and not as an outcome is key to understanding why some 

evacuate and some do not, and more important, to determining what can be done to motivate more 

compliance.” (Dash & Gladwin, 2007). Following Dash & Gladwin, the objective of this contribution is 

a model-based analysis of an interaction of the three before mentioned tasks of evacuation: hazard 

forecast and early warning, strategic evacuation-decision making as well as evacuation compliance. At 

the center of the warning response model is the evacuation decision of a public decision maker (local 

government) and the evacuation compliance of the potentially affected population.  

The decision problem is as follows: A public decision maker (PDM), e.g. the local government of a 

hypothetical seaside town, receives a forecast or warning from a stylized EWS and has to decide 

whether to issue an non-mandatory evacuation order. We choose an approach from information 

economics and model the EWS as an information system (Bikhchandani et al. 2013). The sequence of 

events and the occurrence of informative signals (emissions or “warnings” in our context) can be 

depicted as a Hidden Markov Model (HMM). Both, the hazard and the evacuation decision, are scalable 

over two levels. The hazard, e.g. a flood, can have an severe impact affecting the residential area near 

the coast (this corresponds to state S1 where a proportion of 𝛾% of the population would be affected 

by flood) or an extreme impact affecting all residents of the whole town (this corresponds to state S2 

affecting the entirety of the local population). Figure 1 illustrates the two potential levels of impact 

taking the example of New Jersey (left picture), a state which was severely hit by hurricanes in the past 

(e.g. hurricane Sandy in 2012) and which led to the identification of flood-risk zones by FEMA. The 

picture to the right in Figure 1 shows the zones of Southeast Louisiana as an example for three risk 

categories (indicated by the colors red, orange and yellow). Depending on the specificities of the 

locations and the local vulnerability profile of the population, there are very often up to five or more 

categories. Although we use the case of two zones for the sake of simplicity it is to note that a higher 

number of risk or evacuation zones increases operational complexity, in particular it becomes more 
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difficult to communicate each citizen which risk zone it belongs to and what this means in terms of 

preparation and reaction. 

Accordingly, conditional on the received signal the authority can either issue a partial evacuation 

focusing at the residential area in the coastal (risk) zone or it can issue a full evacuation for the whole 

region. For the evacuation decision, the authority takes three types of cost into account: The potential 

damage to the population in the case of flooding in an non-evacuated region (either just the coastal 

region or the entire town), the cost of an evacuation incurred by the government and the burden for 

the population in the case of a false alarm. Further details are given in section 4. 

Although the model has a relatively simple structure, it makes it possible to depict two different levels 

of risk and to derive an optimal decision for every outcome based on the Markov chain structure. 

 

Figure 1. Examples of flood risk zones -left: New Jersey (FEMA 2012), right: Southeast Louisiana(State 

of Louisiana) 

The scalability of the decision is an important feature of the model as this often constitutes a major 

problem in practice. Closely related is also the consideration of different population groups 

(heterogeneity). This aspect is considered very important in the literature, as different groups act from 

very different motives and under different circumstances. In the literature, a distinction is made above 

all between groups in risk areas and those outside risk areas, between vulnerable and (less) vulnerable 

groups, and groups that are differentiated according to socio-demographic criteria (age, gender, 

ethnicity). In our model, we limit ourselves to the first point and distinguish between people living 

inside and outside risk areas. This criterion is usually highly relevant for high tide and hurricanes, since 

coastal inhabitants are exposed to a higher risk and usually are well aware of this (official classification 
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into risk zones). We would like to stress that we have not integrated the other criteria into the model 

primarily for reasons of complexity, and not because we consider these further group differentiations 

to be unimportant. On the contrary, our model approach can be extended to include these groups 

relatively easily, provided that data on hazard characteristics, local conditions and demographics are 

available. 

In addition, the model also allows to analyze the de-escalation-decisions (return to “normal”), which 

are absent in most evacuation models. While a situation where no flood yet occurred corresponds to 

the escalation-phase (just evacuation-decisions have to be made), situation S2 represents the de-

escalation-problem. Here, the whole town is already flooded and the people either evacuated the 

period before or they were “forced out of the region” by the flood itself which implied a high risk for 

life and health. Those who evacuated or were lucky to escape in time, now feel the urge to return as 

fast as possible. However, if the flood situation worsens again this can put these people at a new risk, 

which is a frequently overlooked issue in evacuation-modeling. As Sorensen & Sorensen state, „the 

time period for the span of withdrawal is elastic in that the evacuation may last for any amount of 

time, and may occur more than once or sequentially should there be secondary hazards or a 

reoccurrence or escalation of the original threat. For example, while the primary hazards form 

hurricanes are wind and storm surge flooding, secondary threats could include inland riverine flooding 

that might necessitate a second evacuation effort.“ (Sorensen & Sorensen, 2006). To protect the 

people from this kind of “second wave”, the government can decide whether to issue an order to 

remain outside the region. Note that an “evacuation-order” and a “remain-order” just differ with 

respect to the status quo (i.e. whether people are already out of the region or not) because in both 

cases the government aims to incite the population to be absent from home. In situation S1, just the 

coastal area is flooded. This situation represents a combination of escalation (relevant for the rest of 

the town, which is not yet flooded) and de-escalation (relevant for the inhabitants of the coastal area, 

who had to leave the region and are about to return). It is one central feature of this dynamic model 

that it comprises both escalation and de-escalation as well as the more intricate constellation in 

between. The challenge for the authority is to find an optimal policy – conditional on the current state 

and future prediction – which fits to both groups at the same time. 

One further important element of our model is trust of the potentially affected population in the 

government’s communication. Although theoretically the government can enforce an evacuation 
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order, police coercion is for sure the “means of last resort” for public officials. In principle, large-scale 

enforcement in a stressful situation will most probably fail due to lack of time, lack of staff, increased 

opposition by the public and personal discomfort of the executive personnel. Therefore, we assume in 

our model that the government cannot force people to evacuate but it can just influence them in a 

direct and indirect way while both channels depend on trust.  

The first type of trust is the people’s trust in a competent impact assessment on the side of the 

government. While the (unconditional and conditional) event probabilities are common knowledge to 

all decision-makers of our setting, we assume an information asymmetry between the government 

and the public with respect to the impact of a potential flooding event. To put it plainly, people know 

how probable a flood event is but they do not know (as precisely as the regional government knows) 

how severely this flood could hit them. While probabilities and warnings are publicly issued by the 

weather forecasting service, the question how dangerous this event could be for a specific region is 

still a different aspect. By contrast, the local government has access to more and deeper expertise, 

which makes competence-trust valuable at this point. We see a concrete example and further 

justification for this assumption in the first wave of the current Corona-pandemics. Although data 

about the spread of the virus and the upsurge of infections was publicly available at any time, in many 

countries people were skeptical about the drastic restrictions and did not believe in potential damaging 

impacts for themselves. However, in a country like Germany, where trust in government is 

comparatively high, people showed a high degree of acceptance accordingly. 

The second trust component is reliability-trust, which exerts an indirect effect on the public’s 

evacuation decision because it affects the chance for a smooth evacuation. Wilson (2018): “Issuing 

mandatory evacuation orders (…) prior to the landfall of hurricanes can be as or even more disruptive 

and dangerous than the storm itself. For example, 107 of the 120 deaths attributable to Hurricane Rita 

occurred because of extreme temperatures in jammed traffic during the Houston’s evacuation (…). 

More recently, Hurricane Irma in 2017 prompted the evacuation of up to 6.3 million Floridians, one of 

the largest such displacements in American history (…). The storm’s aftermath raised serious questions 

about overburdened infrastructure and the social vulnerability of communities that were unable to 

leave via their own means (…).” Before all events unfold (let’s say in an imaginary period zero) the 

government can invest in better evacuation conditions, such as improved evacuation planning and 

training, contracting for vehicle capacities (e.g. busses which can bring the people out of the affected 
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region) or even the construction of additional roads. We assume that the government has a fixed 

budget for this investment but must decide about the allocation answering the question which region 

(coastal area versus rest of the city) should receive which share of it. As the public cannot directly 

observe all taken measures, it again has to trust that the government did the most to make a smooth 

evacuation possible. A low level of reliability trust leads to the conviction of the inhabitants of both 

regions that they have to cope with the congestion-problem on their own. This will eventually increase 

the expected degree of congestion and thus prevent a (possibly life-saving) evacuation. In the model 

we deal mainly with the first type of trust but treat congestion as an intensification of the evacuation 

problem. 

The remainder of the article is organized as follows. After a brief outline of the related literature in 

section 2, we present the early warning or information system in section 3 and the decision-model and 

communication-game in section 4. In section 5, we derive the model’s results, in particular the Nash-

Equilibrium of the compliance-game. In section 6 we give a brief summary and discuss the implications 

and possible extensions of our approach.  

2. Related literature and state of the art 

This section gives a brief overview on the relevant literature in this field. We start with some stylized 

facts about EWS and refer to selected case studies, which looked at specific challenges such as 

information processing, information aggregation, information communication as well as coordination 

between experts, such as services for flood control, who bear a large part of the responsibility for the 

public when making proficient use out of this information. The second part refers to literature on 

evacuation decision making and evacuation compliance. Although slightly dominated by social 

scientists this is a very interdisciplinary area of research, which comprise empirical studies, simulation 

models and guidelines.  

Literature on EWS and in particular models, which aim at improved forecasts, abound. An EWS belongs 

to the so-called non-structural measures of hazard protection (as compared to structural measures, 

such as dams or levees in the case of flood, which constitute a physical barrier). According to Salit et 

al. (2013) and Mileti & Sorensen (1990), an EWS for flood risk comprises three basic components: “the 

detection system (collection and analysis of information, flood forecasting), the management system 

(composed of national and local emergency management officials) and the response system 
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(transmission and reception of warnings to the population concerned)” (Salit et al. 2013). With respect 

to the last there is again a long list of requirements concerning the interface between sender and 

receiver of the message. These requirements refer to issuance and dissemination (outreach), 

perception, comprehension and interpretation, personalization (anticipating the receiver’s 

interpretation as people contextualize the information for themselves and ask questions such as: What 

does this message mean to me? Do I need further information?) and sender credibility. Warnings must 

be perceivable and clear (Sorensen 2000) and an EWS has to be adopted to the local conditions (Salit 

et al. (2013).  

Although floods and hurricanes are easier to predict than e.g. earthquakes, there are numerous 

examples of wrong forecasts also for these two types of events. The difficulty with hurricanes is that 

they can change their direction shortly before landfall. A well-known example is hurricane Rita in the 

Gulf of Mexico in the year 2005: “Although originally projected to hit the Houston/Galveston area, Rita 

took an easterly turn while still in the Gulf, a shift in direction that spared these metropolitan areas a 

direct hit” (Carpender et al. 2006, p. 777). There is a comparable level of uncertainty for floods as the 

movement of water masses, which break their path through inhabited districts, can be highly dynamic 

and therefore difficult to predict (Salit et al. 2013).  

With respect to the subtopic evacuation and evacuation decisions, research over the last two decades 

has constantly shifted towards a stronger focus on risk communication and people’s reactions to the 

combined events of an upcoming hazard and an evacuation order. From a practical perspective, there 

are guidelines such as the MEND-guide for humanitarian interventions who provide useful orientation 

for decision makers (Goldschmidt et al. 2014). In natural disasters all around the world the number of 

fatalities among those who did not evacuate in time is still remarkable. Therefore, research focused 

on the guiding question which group of people typically don’t evacuate in time, which are their 

characteristics and what can be done to influence their decision in an effective way. Basically, there 

are two main strands of literature: empirical case studies and evacuation simulation models. The 

former looks at specific events in a specific country and runs post-event surveys to understand people’s 

perceptions and motivations. Among the key insights is that personal risk perception plays an 

influential role in the evacuation decision (Dash & Gladwin 2007), that people tend to “hedge” their 

risk in the sense that they collect information from different sources, cross-check information and tend 
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to wait for a clearer picture unless they are fully convinced. A special focus lies on vulnerable groups 

with restricted mobility but also those who are socially vulnerable, such as marginalized groups.  

With respect to government communication in general and evacuation orders in particular, the impact 

of the official nature of an evacuation order on people’s decisions seems to be quite differentiated. 

Basically, people trust public authorities, they trust local authorities more than central government, 

they show a higher willingness to follow government orders even if this is in conflict with family’s/peers 

recommendation and they closely screen the authority’s credibility.  

For the context of evacuation decisions, evacuation compliance, acceptance and trust in public 

authorities and government agencies was subject to quite a number of contributions. The two main 

strands of literature focus on intention-based and credibility-based trust. People can doubt the 

intention of public officials if they feel that the government abuses the event as a pretext for the 

pursuit of other goals or that different groups of stakeholders (other than the directly affected 

population, such as tourists, investors, voters etc.) are the true addressees of a consequential measure. 

Although we do not focus on intention-based trust, we nevertheless take explicitly potential conflicts 

of interests into account. In our model, the government can pursue different objectives. While saving 

lives and protecting the population from injuries is the government’s primary objective, there are also 

secondary objectives, which can be “added to” the primary one by assigning weights and thus 

influencing the final decision. Secondary goals can also focus on the population to prevent nuisance or 

even deprivation caused by an evacuation. Alternatively, secondary goals can focus on the prevention 

of economic losses in the affected region. The Corona-crisis 2020 illustrates in a very evident way that 

the trade-off between impairments of the population and economic losses must not be ignored. 

With respect to credibility-based trust, the impact of false alarms is a frequently studied topic. The 

problem that people cease to take a warning seriously, if they experienced a false alarm is known as 

the Crying Wolf-phenomenon (Roulston & Smith 2004). Although it is difficult to empirically analyze 

the effects of sequential observations if the events at question are very rare, there were some 

occasions, which can shed some light into this issue. Studies find a rather modest effect of the Crying 

Wolf-phenomenon indicating that false alarms don’t exert a crushing effect on the sender’s credibility 

but rather shift some weight moderately into the direction of other information sources. Hence, 

people learn that they should not trust entirely the public announcements although they are still 

willing to trust to a sufficient degree.  
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To the best of our knowledge, competence trust and compliance as conceptualized in this paper have 

not yet been under study in the context of evacuation modelling. Regarding competence trust, the 

idea that people hold their own belief about the severity of a risk is close to approaches dealing with 

subjective risk perception (SRP). In SRP, the salience of communicated risk depends, among other 

factors, on the credibility of the source (e.g. media, government), which in turn leads to changes of 

subjective probabilities (Lindell & Prater 2002). However, our approach assumes objective risk 

perception, i.e. there are neither information asymmetries nor (preference-based) distortions of the 

event probabilities. In our model, we assume an information asymmetry between government and 

public regarding the impact of a potential flood. If people trust the government’s competence 

regarding the impact assessment, they interpret an evacuation-order (and equally a remain-order) as 

an indicator of the (partially) unknown future impact. 

The account of simulation models takes a formal approach and models evacuation decisions with a 

strong focus on congestion (Santos & Aguirre 2004). For example, Teo et al. (2015) present an agent-

based evacuation model; their model also incorporates government advice. However, the task of the 

government is to find the optimal assignment of people to avoid congestion. 

In our model, we deal with the problem of congestion in a rather different way. We neither focus on a 

routing model, nor do we solve a problem of pure coordination. Instead, congestion represents a 

further bottleneck, which can be effectively influenced by the government as a third party and which 

can influence the public’s incentives for evacuation via the trust channel. With respect to cost-benefit-

analyses in the context of forecasting models, our approach is akin to the classic Quickest Change 

Detection (QCD) problem (Li 2012). A QCD-problem distinguishes between two states (“regimes”) of a 

system. These are two conditions of which one is harmless but the other is problematic and should 

therefore be avoided. For example, an economy can be on its way into a recession or just experience 

a random and transient decline in output. Or a patient can show symptoms which indicate an infection 

but which can also just be due to other factors. The first, problematic, reason requires a more 

comprehensive and also more painful therapy than the second. The decision maker’s task is then to 

detect the switch to the problematic regime as fast as possible. A QCD-problem is a dynamic setting 

where time approaches a fixed terminal date. In our approach, timing is not relevant for the decision 

but time rather structures the sequence of the events. In addition, our approach has the Markov chain-

properties. 
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3. Problem structure and information system 

This section describes the statistical part of the model, the Information System (IS).  

3.1 The information (“warning”) system 

The basic structure of the problem, in particular the randomness and sequence of events, follows the 

properties of a Hidden-Markov-Model (HMM). Markov-models are stochastic automata, which share 

the property that future developments just depend on the current state and not from preceding states. 

A Markov-model is characterized by stochastic transitions between states, which are characterized by 

transition probabilities. In a HMM, the decision maker cannot directly observe the states but receives 

a signal (“omission”) which makes inferences about the true state possible (Zucchini & MacDonald 

2009). Figure 2 represents the three-state, first-order HHM for the decision problem described in the 

introduction. 

 

Figure 2. Hidden-Markov-Chain 

There are nine possible transitions between the three states. The initial state is S0, which corresponds 

to the situation where either no or just a harmless flood occurs. The state S1 represents a severe flood, 

which affects just the coastal region (the “risk zone” A) and the state S2 stands for an extreme flood 

with extraordinary water-levels affecting the whole town (regions A and B). The transition from state 

i to state j is depicted by the variable ijs . Starting from S0, three transitions to the state in the next 

period are possible: Either we remain in S0 (this corresponds to transition 00s ), which is the most 

probable transition, or we are hit by a flood event and end up in state S1 (
01s ) or even in state S2 ( 02s ). 
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According to Figure 2, every state is reachable from any other state, which is a realistic model of natural 

disaster events. For example in the case of a tsunami or a hurricane, which can rapidly change its 

direction, the direct transition s02 would be highly relevant whereas for floods, which develop over 

time (depending on precipitation, the confluence of rivers etc.), also the other two sequences {s01 , s12} 

are plausible. In general, a probability of occurrence refers to 1 year and to a pre-defined area. It is 

usual that intensity and frequency are mapped on the same scale so that events of extraordinary 

intensity are also extraordinarily rare. This is why the frequency of a flood (e.g. a 100-year flood) is 

used as a proxy for severeness. Most risk-metrics for natural disasters are just restricted to the 

meteorological or geophysical factors and thus provide information about the occurrence of an 

extreme weather event or specific constellations thereof. However, in general these metrics do not 

include information about the vulnerability of the specific location. Recently so-called impact forecasts 

are increasingly coming into focus, which do not only answer the question “What is the weather?” but 

also “What is the weather doing?” (Merz et al. 2020). Our probabilities are best understood as joint 

event and impact forecasts. 

We term state S0 the escalation-state because the two transitions leaving S0 move towards the 

dangerous states S1 and S2. In the escalation-state S0, the decision-maker has to decide whether to 

order evacuation for (at least one of) the groups or not. State S2 represents the opposite case, the de-

escalation-state. As described above, in S2 just return-decisions have to be made. In the diagram, the 

arrows in the opposite direction, indicating the “way back to normal”, consider the de-escalation 

phases. Finally, we call state S1 the mixed state, because it comprises both escalation and de-

escalation. All available transitions can alternatively depicted in a more efficient way as a Transition-

Matrix S (Table 1). If a Markov chain is ergodic, a property which will be fulfilled for the numerical 

applications of our model, it has a unique stationary distribution, which can be determined by solving 

the equation 
T =S , where ( )0 1 2, ,

T
   = . The resulting distribution *  tells us the “average” 

probability for each state (S0, S1 or S2), which remains unchanged when time progresses (Zucchini & 

MacDonald 2009). 

We now turn to the main part of the information system as illustrated in Table 1. The grey variables in 

brackets indicate the warnings, which are available one period before the forecasted event occurs. The 

variable ik  reads as “the (warning) signal received in state i predicts state k as the state of the next 
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period”. For flood, the time between two events could be between 12 and 24 hours; in the last case 

the warning represents a classic day-ahead forecast. 

The warning signal ik is a discrete, trinary random variable  0,1,2ik  , which is sufficiently 

informative in a sense described below. The quality or precision of the information system is described 

by the conditional probability ( | )ik ijq s , which is the probability that a warning signal predicts the 

transition from the current state i to the future state k given that the true future state is j. The so-

called Likelihood-Matrix L (Table 1) summarizes all constellations for this conditional probability. It is 

straightforward that the rows of this matrix add up to 1.  

Table 1: Transition matrix and Likelihood-Matrix 

 

 

    (1) 

For the information system to be sufficiently informative, it is required that the warning signals display 

a minimal degree of precision with respect to the state of nature they predict. In concrete terms, we 

impose the following Informativeness-Condition (IC) on the information system (expression (2)). 

Informativeness-Condition (IC):  ( | ) ( | )ij ij i j ijq s q s  −         (2) 

Assume the transition ijs , i.e. the true future state is state j. Then the warning should have higher 

probability to signal state j than to signal any other state –j. If IC is fulfilled, the information-system is 

valuable or useful for the decision maker in the sense that it generates “better than random” results, 

which is an empirically correct assumption regarding the forecasting precision of EWS in practice. 

Both, the prior transition probabilities and the Likelihood-Matrix are common knowledge of all 

decision makers of our setting: the (local) government G and the populations of the two regions, which 

we term group A and group B. In each period, all actors know the current state, the issued warning 

signal with respect to the next state (both pieces of information are summarized in the variable ik ) 

and the Likelihood-Matrix. The warning signal is issued e.g. by a weather forecasting service and is 

therefore publicly observable. With this information, the DMs can calculate the up-dated posteriori-

probability according to Bayes’ Theorem 
( | )

( | )
( | ) ( | )

ij ik ij

ij ik

ij ik ij i j ik i j

j j

s q s
p s

s q s s q s




 − −

− 

=
+ 

. Formally, 
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for a given state i, we combine S and L and thus derive the conditional Posterior-Matrix P according 

to expression (3).   

 

 (3) 

3.2 Rough calibration based on minimal assumptions  

Although this model serves mainly analytical purposes to understand the basic factors of interactive 

decision making on theoretical grounds, we nevertheless strive to achieve a rough calibration and put 

the model into an empirically plausible “frame”. Throughout this paper we use two types of calibration. 

We use a set of simple and arbitrary numbers as parameter values if our main purpose is to show the 

main mechanism of the model, how it works and to illustrate a comprehensive range of potential 

solutions. We call these parameter values “arbitrary numbers”. With respect to model validation, we 

apply (and partly adjust) parameter values where we could find some reference or benchmark data. 

We call this set of numbers “hypothetical data” and apply it where we want to illustrate, for example, 

which of the derived solutions comes closest to a real world-setting.  

Now, what is the data availability with respect to the parameters of an information system as described 

in Section 3.1? First, it is needless to say that EWS are complex and specific tools with still a very low 

level of standardization for data generation and data sharing. Although many EWS use probabilistic 

forecasting and apply Bayesian tools, which makes them to a minimum degree compatible to our 

approach, unfortunately there are no databases existing which could be used for parametrization. 

However, at least for an escalation to scenario S1 of an extreme flood, i.e. for the transition 
01s , there 

are some insights from the European Flood Awareness System about the expected frequency of severe 

coastal inundation (Merz et al. 2020, p. 16). A flood, which heavily affects the coastal residents roughly 

corresponds to a frequency of 20 to 80 years, depending on geological and geographical factors of the 

built environment, the technical resilience of the region and the flood protection measures. As our 

model takes vulnerability as given, we take a 50-year-flood as a plausible case, which corresponds to 

an expected rate of occurrence of 2% per year and 0.0055% per day respectively. For the case of an 

extreme flood it is even more difficult to identify a good proxy for at least two reasons. First, there is 

less experience and data with extreme events and second, very extreme floods result from more 
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1 0 1 1 1 2
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complex hazard scenarios. Most frequently, they can be caused by meteorological compound events 

of severe convective storms, marine gusts and long periods of heavy precipitation. In addition, 

hurricanes can cause extreme floods and one of the most deterrent candidates are Tsunamis. EWS for 

Tsunamis determine the earliest arrivals, the time of arrival, the wave amplitude and the propagation 

of a tsunami (Chaturvedi et al. 2017, p. 84). For such very extreme events, the range lies between 200 

and 1.000 years but even reaches up to 10.000 years. The latter number refers to a flood protection 

exercise in the Netherlands, executed by the Task Force for Flood Event Management (FLOODsite, p. 

115). We again take a medium value as an average guess and take a 500-year flood (daily event 

probability of 0.00055%) as an appropriate proxy. Hence, the first row of the transition-matrix gets the 

entries 0.99993950, 0.0000550 and 0.0000055 (see Figure 4). For transitions starting in state S1 and 

S2, it is not possible to extract benchmark numbers from literature or flood reports because the further 

worsening of an already bad situation (transition 
12s ) is usually not registered as a separate event. In 

addition, the warning process during a de-escalation is partly different from an escalation because a 

warning system has to fall below a certain threshold before the alarm is deactivated and the region is 

declared safe again. Hence, although it is important to understand the interactions and dynamics of 

the de-escalation events, too, evidence is scarce. For this reason we filled the rest of the Transition-

Matrix together with two flood experts, taking the warning bias (threshold-deactivation of the EWS) 

into consideration. The left matrix in expression (4) shows the calibrated Transition-Matrix S. For these 

values, we get ( )0 1 2* 99.9797%, 0.0167861%, 0.00347298%   = = = =  as the stationary 

distribution of the Markov Model.          

 

(4) 

In the next step we look for empirical values of the Likelihood-Matrix, i.e. data which tells us something 

about the precision and effectiveness of flood-EWS, also called EWS-verification. In verification of 

weather warning, most approaches apply contingency tables and corresponding scores, as e.g. the 

equitable threat score (ETS) in UK and a combination of ETS, the probability of detection (POD), the 

false alarm ratio (FAR) together with the frequency bias is used in Austria (Wilson 2018, Wilson & Giles 

2013). The most advantageous account was provided by Wilson & Giles (2013). The authors evaluated 

contingency-table data between 2009 and 2011 of a Canadian flood-EWS in order to arrive at an 
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improved warning index. For a severe flood-event they derive a HIT-rate of 75% and a False-Alarm (FA)-

rate of 2%. For an extreme flood the EWS-precision is lower according to the literature. Although, for 

example, nearly all tsunamis can be detected by modern EWS, there is uncertainty about under- and 

overestimating the wave height and the exact localization. Here the uncertainty can be considerable 

with fluctuations between 30-50% (Lauterjung & Letz, 2017, p. 41). Therefore we consider this 

uncertainty and adjust for noise. We assume a HIT-rate of 60% and a FA-rate of 6% for S2. We use 

these values for our study but have to adjust the calculation because our setting considers three states 

(including warning states). Matrix L (matrix with letter-entries in the middle of expression (4)) 

represents a general Likelihood-Matrix which helps to understand the calculations. The HIT-rate for 

state S1 is calculated by taking the HITS (cells e + f + h + m) and divide them by HITS and misses (cells 

d + g). For state S2 we have the same procedure but different cells are relevant, here we have m divided 

by (m + g + h). The FA-rates are the ratio of the false alarms in the numerator and the false alarms 

together with the “correct negatives” in the denominator. This corresponds to the ratios (b + c)/(a + b 

+ c) for S1 and (c + f)/(a + b + c + d + e + f) for S2. We further have to consider the Informativeness-

Condition (IC), which requires a > b > c, m > h > g, e > d and e > f. The right part of expression (4) shows 

all entries of the matrix 0L , which fulfill the ensemble of the before mentioned conditions. The 

likelihood-matrices for the mixed-scenario (S1) and the de-escalation-scenario (S2) could not be 

derived in a similarly precise way. Here again we took 0L as anchor and consulted the two flood 

experts. The resulting matrices are shown in expression (5). 

 

(5) 

Expressions (4) and (5) comprise the “hypothetical dataset” for the IS-validation. By applying Bayes’ 

rule we get the corresponding conditional Posterior-Matrices 0
P , 1

P  and 2
P as given by expression (6).  

 

(6) 

Altogether, these numbers are oriented at real EWS-data reflecting current performance of an EWS 

for (coastal) flood risk without imposing too many restrictions, which otherwise bear the risk to be 

unjustified on empirical grounds. In the first place, this model provides the formal “infrastructure” for 

1 2

0.75 0.24 0.01 0.55 0.35 0.10

0.35 0.60 0.05 ; 0.20 0.60 0.20

0.05 0.30 0.65 0.01 0.19 0.80

   
   

= =   
   
   

L L

5 3 3

0 1 2

6 5 4

0.99997 0.99824 0.99815 0.625 0.225 0.043 0.266 0.051 0.009

2.4 10 1.7 10 1.1 10 ; 0.365 0.704 0.266 ; 0.676 0.615 0.126

1.4 10 8.6 10 7.1 10 0.010 0.070 0.691 0.058 0.334 0.865

− − −

− − −

     
     

=    = =     
            

P P P



17 
 

an analysis and if transferred to a concrete context, assumptions can be fine-tuned towards the specific 

forecasting technology and data basis as illustrated by the reference above. 

4. Decision Model 

In this section, we briefly describe the objective functions and strategies of the local government G 

and the citizens of the two regions A and B. For the ease of exposition, we talk about “group A” and 

“group B” and an objective function reflects the (dis)utility of one representative member of each 

group. As all objective functions are scenario-dependent, for each type of decision maker we have an 

objective function for the escalation-state (S0), the mixed-state (S1) and the de-escalation state (S2). 

In the model, we express all types of payoffs in disutility-units, such as damage, deprivation and 

economic loss. Therefore, the resulting objective functions are cost functions, where the term “cost” 

is just shorthand for disutility reflecting different forms of negative consequences for the individuals. 

In each state, the groups and the local government G observe the warning signal ꙍik, update the priors 

accordingly and make their respective decision. For the description of the model structure but even 

for the derivation of the equilibrium conditions it is not necessary to take the warning-levels explicitly 

into consideration. Therefore, for the most part of this section, we suppress the warning-level k in the 

notation and just use the short form ijp  to describe the conditional probabilities ( | )ij ij ikp p s   of a 

transition to state j given the current state i and “any” warning-level k. This way, the analysis is more 

general but also more comprehensible. Later, we evaluate the ijp -values for different warning-levels.  

4.1 Decision variables, payoff parameters and trust variables 

Decision variables 

The discrete, binary decision variable {0,1}Av  for group A (and Bv  for group B respectively) 

describes the decision of a representative member of group A. The choice , 1A Bv =  always represents 

the cautious option of the decision, which is “evacuation” in the escalation-state and “stay evacuated” 

in the de-escalation-state. Accordingly, , 0A Bv =  represents the risky option of a decision 

corresponding to “no evacuation” in the escalation-state and “return home” in the de-escalation-state. 

While both groups choose an action strategy, the government G chooses a communication strategy. 

In particular, G picks one out of three types of requests { }E E0,E1,E2 . The request E0 is equivalent to 

the message “no evacuation necessary in both regions” in the escalation-state and “return to both 

regions is possible” in the de-escalation-state. Although G has a trinary strategy set, each group 
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receives a binary signal 
, {0,1}A BE  . For request E0, the received signals are identical ( 0, 0)A BE E= =  

because the order is the same for both groups. Request E1 is equivalent to the message “evacuation 

in region A but no evacuation necessary in region B” in the escalation-state and to “stay evacuated in 

region A but return to region B is possible” in the de-escalation-state. Hence, request E1 generates the 

signals ( 1, 0)A BE E= = . Finally, request E2 corresponds to the message “evacuation in both regions” 

in the escalation-state and “stay evacuated in both regions” in the de-escalation-state. By observing 

the request E2, each group receives the same signal ( 1, 1)A BE E= = . Note that there is no possibility 

for the signal-combination ( 0, 1)A BE E= =  because this would imply a contradiction (if evacuation is 

ordered to the whole town, this automatically includes group A, too).   

The described communication strategies of the government include both active and passive 

communication. With respect to the request E1, the government has to take into consideration that 

the very same message has different content for each group, i.e. the signals vary. However, as the 

analysis in section 5 shows, even an identical signal (as in the case of the requests E0 and E2) can cause 

different reactions by the two groups because their risk situation is different. 

Payoffs 

With respect to the disutility of the citizens, we distinguish three types of cost. The most important 

cost component is D, which is relevant if a person is hit by a flood. It represents potential death and 

injury or strong deprivation (in the case of lack of food, water, medicine). The other two cost 

components refer to the cost of evacuation and capture the inconvenience, nuisance or deprivation 

with less relevance for health. The parameter 
mc  reflects the direct cost of the evacuation itself (“cost 

for moving”, therefore the index m) and 
dc  reflects the deprivation of one evacuated period. This cost 

term takes into account the fact that those affected by an evacuation are exposed to a particularly 

difficult and stressful situation together with the nuisance that the normal course of everyday life is 

disrupted. The superscript d therefore stands for either deprivation or disruption. We assume a clear-

cut order of the cost-components 0 m dc c D   . 

The government takes the before mentioned disutility-components into account, too. In addition, G 

cares for two types of economic losses. The loss-parameter L  reflects the economic opportunity cost 

of an unjustified evacuation due to foregone business revenues in the region. The loss parameter H  

captures the loss of human capital if people are hit by a flood. In addition to the direct physical damage 

D, affected people are either not available or not productive for a time span after the flood because 
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they are in hospitals, suffer at home from injuries or psychical stress or they have to care for their 

peers. Note that all cost components refer to one period (the focal period of planning) except the 

human-capital-loss, which reflects a medium-term future loss. To consider this difference, we add a 

discount factor 0 1   to the human capital-loss component. The superscripts L and H stand for 

“low” and “high”, which should help to order the cost components visually. We assume 

0 L H D   . 

Direct evacuation cost are not included in the government’s decision because civil protection is the 

primary task of the local government. In addition, there are often soft budget constraints for disaster 

situations. Extra funds are made available by the central government because policy makers, and in 

particular their voters, will not tolerate a high death toll. However, budget issues always play a role 

and in the context of disasters, they most probably affect future decisions. As done in section 3, we 

also want to roughly calibrate these five cost components to get an approximate order of magnitude. 

The values used as a basis are provided by Table 2. 

Table 2. Calibration of cost parameters 

Variable Value [€] Description 

D  65 10     Value of Statistical Life (VSL); Viscusi & Aldy (2003) 

mc  21.6 10     Lost net value of production (day); Schröter et al. (2008) 

dc  32.5 10     Lost net value of production x deprivation factor 

L  
31.25 10     Lost net value of production (week); Schröter et al. (2008) 

H  
45 10     Disability Adjusted Life Years (DALY); Cropper & Sahin (2009) 

 

Expected flood impact  and competence trust in the government 

As already mentioned above, there is an information asymmetry between the government and the 

two groups with respect to the expected impact [0,1]  of a potential flood. Although there are 

event probabilities available, there can remain doubts whether and how severely even an extreme 

flood could harm and affect individuals (Dow & Cutter 2000). In the context of flood risk, people often 

wrongly estimate the speed and power of water flows, the effects of an impairment of critical 

infrastructure and the destabilizing impact of high water levels on buildings (which is why people often 

prefer sheltering in high buildings to evacuation). The expected impact of a flood as perceived by group 

A is given by ˆ(1 )c c

A A A A AE   = + − ,  0,1A  . The variable [0,1]c

A   reflects the competence 
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trust in the government’s impact assessment and the variable {0,1}AE   is the received binary signal, 

which directly results from G’s request as described above. The variable ˆ ( )A   is the independent 

belief of group A about the potential impact of a flood, which the individuals infer from the warning-

level  . The higher 
c

A , the higher the willingness of group A to take the government’s request into 

account, i.e. to interpret the government’s request as credible information about flood risk (Basolo et 

al. 2009). The lower the trust parameter, the more weight is placed on the independent guess ˆ ( )A 

. In the special case of full trust ( 1c

A = ), the expected impact equals the binary signal AE , i.e. 

A AE =  and  0,1A  . Note that a sufficiently high trust-level can either increase or reduce the 

motivation to evacuate (or to stay in the region if already evacuated), dependent on the type of 

request. In the opposite case of full distrust ( 0c

A = ), the expected impact equals the independent 

belief ˆ( ( ))A A  = . As the independent belief ˆ ( )A   depends on the warning-level, we need 

further assumptions about this parameter. In the case of “no warning” ( 0 = ), the independent belief 

of both groups is zero ( ˆ ( 0)A  = = ˆ ( 0) 0A  = = ). In the case of a flood-warning for region A ( 1 =

) we assume an arbitrary value ˆ0 ( 1) 1A  =   for group A, which depends on prior flood experience 

and the risk expertise of the population. As we neither look at path dependent outcomes nor 

incorporate issues of risk experience and risk communication, we treat this variable as exogenous. 

From the perspective of group B, the impact is expected to be very low, indicated by the variable 

0 1  , which stands for a very low probability. Hence, ˆ0 ( 1) 1B   = =  . In the case of a 

level-2-warning ( 2 = ), group B expects an impact similar to the belief of group A for a level-1-

warning, ˆ0 ( 2) 1B  =  , and group A expects a “near to certain” strike based on the belief 

ˆ0 ( 2) 1A   = = − . If not otherwise stated, we make the assumption 
c c

A B  , which implies that 

the parameters for competence-trust of both groups are either identical or the trust-level of group A 

is higher because the people in the risk-zone expect that the government has a special focus on this 

region. 

Expected congestion (1 –  ) and reliability trust in the government 

The second type of trust considered in ECM is the government’s reliability with respect to evacuation 

preparation and congestion management. Let [0,1]  be a measure of evacuation effectivity, which 

is equal to zero if the roads are fully congested (in this case evacuation is impossible) and equal to one 

if there is no congestion at all. The complement (1 –  ) is then a measure of congestion. Depending 

on whether one group or both groups leave the region at the same time, there is congestion to the 
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extent of 1 (1 )A Bv v  − = + − . The government has the possibility to mitigate the congestion 

problem by an investment [0,1]I   into improved evacuation planning and emergency logistics, 

1 [ (1 ) ] (1 )A Bv v I  − = + − − . These measures comprise e.g. very detailed scenario planning, 

evacuation training with employees, special contracts with bus companies or even rent contracts to 

have helicopters available. We assume that this investment, i.e. the complete package of measures, is 

not observable to the public. A full investment, 1I = , stands for a perfect preparation-level, which can 

reduce the congestion-problem completely. No investment, 0I = , as the other extreme, implies that 

G has done absolutely nothing to improve the situation. In this case, the groups turn in on themselves. 

The required budget for an investment-level I  is given by ( ) [1 ]B I Log I= − − . This function implies 

( 0) 0B I = =  and ( 1)B I = =  , i.e. the perfect preparation-level comes at an infinitively high cost. 

As the public cannot observe the investment-level, both groups need to trust the government to have 

taken the necessary precautions (Hamm et al. 2019). The trust-parameter for reliability trust [0,1]r   

is assumed identical for both groups. Hence, from the perspective of both groups, the expected 

evacuation effectivity is given by 1 [ (1 ) ] (1 )r

A Bv v   = − + − − .  

4.2 Cost functions of group A and B 

Escalation-scenario S0 

The cost-functions for both strategies of group A and S0 are given by the expressions (7) and (8). 

( ) ( ) ( )( )0

00 01 02( 1) 2 (1 ) 1 (1 )S m d m d

A A A A A AC v p c c p p c D c   = = + + + + − + − −   (7) 

( )0

01 02( 0)S

A A AC v p p D= = +         (8) 

If group A evacuates ( 1Av = ) although the evacuation is unnecessary (to be expected with probability 

00p ), the group incurs twice the moving-cost 
mc  (the group moves out of the region but returns when 

the false alarm is realized) and once the cost for evacuation-deprivation 
dc . These two cost-elements 

are not involved in the case of no evacuation ( 0Av = ). When the group evacuates and the region is 

hit by a flood (to be expected with probability 
01 02p p+ ), it incurs the moving-cost and either physical 

damage 
AD , if evacuation fails due to congestion (determined by 1 A− ), or the evacuation-cost 

dc , if the evacuation can be executed without congestion (to be expected with probability A ). If the 

group does not evacuate but a flood occurs, the group suffers from the high damage cost. Note that 

the value of the damage cost depends on the expected impact because we look at the problem from 
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the group’s perspective. The cost functions for group B in scenario S0 look nearly identical (9), the only 

difference is that group B is not affected by a flood in region A (expected with probability 
01p ), which 

implies a lower risk of damage but a higher risk of unnecessary evacuation.      

( )( ) ( )( )0

00 01 02( 1) 2 (1 ) 1 (1 )S m d m d

B B B B B BC v p p c c p c D c   = = + + + + − + − −   (9) 

0

02( 0)S

B B AC v p D= =          (10) 

Mixed-scenario S1 

In the de-escalation-state S1, region A is already flooded and the citizens are no longer there: Either 

they evacuated in a controlled manner (depending on their evacuation-strategy in S0) or the flood 

“forced” them out of the region. In this case, they had to hastily abandon their homes, had to be saved 

by rescue services or did not survive. The following cost functions, as depicted by (11) and (12), are 

therefore only relevant for those in group A who were able to leave the region unharmed and are now 

waiting to return. Remember that in a de-escalation-state the strategy 1v =  corresponds to “stay 

evacuated” and 0v =  means “return home”.  

1( 1)S d

A AC v c= =           (11) 

( )1

01 02( 0)S m

A A AC v c p p D= = + +         (12) 

If group A stays evacuated it suffers from evacuation-deprivation 
dc . If A returns, it incurs the cost for 

moving back, 
mc , and risks to be hit a second time by a returning flood (“second wave”). We don’t 

consider congestion for the way back because there is less rush and – what is more important – if 

people get stuck on their way back they are still in a safe area. The cost functions of group B are the 

same as in scenario S0 because also in S1 region B is not flooded. 

De-escalation-scenario S2 

In S2, both groups face a de-escalation scenario. The cost-functions for A are the same as in S1 and 

those for group B, expressions (13) and (14), are equivalent. 

2 ( 1)S d

B BC v c= =           (13) 

2

02( 0)S m

B B AC v c p D= = +          (14) 
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4.3 Social cost function of the government G 

In the ECM, the government has the role of a policy-maker who seeks to minimize the social cost. 

Basically, the “ingredients” to the social cost function are similar to the cost functions of both groups 

with mainly three differences. First, the government cannot decide about evacuation due to the strict 

no-enforcement-assumption. However, G seeks to optimally influence the groups’ decisions by its 

communication-strategy E  and this requires that G needs to know the parameter constellations for 

which no, partial or full evacuation is socially optimal. Second, the government communicates E  to 

both groups at the same time; therefore the social cost function is an average of the outcomes in both 

regions, weighted by the population share  . Third, G puts weight [0,1]  on the population’s 

deprivation (caused by an evacuation) but also weight [0,1]   on the economic losses. Hence, for 

1 =  and 0 = , the groups objectives and the government’s objectives come closest (although they 

are still not identical due to the information asymmetries). The physical damage parameter D  has an 

explicit weight of 1, however the implicit weight of D of course depends on  and . Fourth, the 

government has full information on the trust-sensitive parameters   and   as G knows the expected 

impact ( 1 = ) and its own investment I  into congestion reduction. The last parameter, which is 

specific to G’s decision, refers to the de-escalation-scenario.  

Escalation-scenario S0 

( )( )0

00 (1 ) (2 ) ...S m d L

G A BC p v v c c    = + − + + +
   

( )01 02( ) (1 )( ) ( ) (1 )( ) ...H m m d H

A Ap p v D c c c v D        + + − + + + + + − + +
   

( )01(1 ) (2 ) ...m d L

Bp v c c   + − + + +
   

 ( )02 (1 ) (1 )( ) ( ) (1 )( )H m m d H

B Bp v D c c c v D        + − − + + + + + − +
       (15) 

The first two summands refer to group A (weighted by  ), the last two summands refer to group B 

(weighted by 1 − ). In the case that an evacuation is unnecessary, the economic opportunity cost 

L occurs as an additional factor and if a necessary evacuation has not taken place – either due to 

congestion or due to a wrong decision) the medium-term cost H come on top of D  (both loss 

parameters are weighted by   as explained above).  
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Mixed-scenario S1 and De-escalation-scenario S2 

For the social cost-functions in S1 (but also for S2 below), there appears one further parameter in the 

de-escalation-scenario. Suppose that group A was already affected by a flood and now has to decide 

whether to return. The return-decision can just be made by those who successfully evacuated, hence 

by a share of 
1t

A
−

 percent of the population of group A. The time-index 1t −  indicates that the share 

of people who make the return-decision depends on both, the evacuation strategy and the evacuation-

success of the period before. Therefore, the values 
1

,

t

A B −
 result endogenously from the equilibrium 

evacuation-strategies as well as from the equilibrium congestion-rate (see section 5). Apart from this 

detail, the social cost functions for scenario S1 and S2 are straightforward. 

( )1 1

10 ( ) (1 ) ...S t d L m

G A A AC p v c v c    −= + + − +  

( )1

11 12( ) (1 )( ) ...t d H m

A A Ap p v c v D c     −+ + + − + + +  

( )10 11( )(1 ) (2 ) ...m d L

Bp p v c c   + + − + + +
   

 ( )12 (1 ) (1 )( ) ( ) (1 )( )H m m d H

B Bp v D c c c v D        + − − + + + + + − +
        (16) 

( )2 1

20 ( ) (1 ) ...S t d L m

G A A AC p v c v c    −= + + − +  

( )1

21 22( ) (1 )( ) ...t d H m

A A Ap p v c v D c     −+ + + − + + +  

( )1

20 21( ) (1 ) ( ) (1 ) ...t d L m

B B Bp p v c v c    −+ + − + + − +  

 ( )1

22 (1 ) (1 )( )t d H m

B B Bp v c v D c     −+ − + − + +         (17) 

 

5. Equilibrium analysis and game results 

In this section, we derive the Nash-Equilibria (NE) of the Stackelberg-game for the scenarios S0, S1 and 

S2. We restrict the analysis on pure equilibria and solve the game by backward-induction, starting with 

the sub-equilibrium on stage 2 (group-interactions) and moving forward to stage 1 to identify the 

optimal evacuation-order of the government. The optimal government’s investment decision (stage 0) 

will be derived in section 6. 
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In the escalation-scenario S0, both groups play a subgame on stage 2 because the groups influence 

each other via the evacuation-effectiveness parameter [0,1] , which is defined by expression (18). 

Note that although each group forms an ex ante belief about this parameter ( A and B  respectively), 

in equilibrium there results just one level of evacuation-effectiveness for the whole city.  

( ), 1 (1 ) (1 )
A Bv v A Bv v y  = − + − −             (18) 

According to expression (18), for 0y =  evacuation-effectiveness is partially reduced to 1,0 if just 

group A decides to evacuate ( 1Av =  and 0Bv = ) and it is fully reduced to 1,1  if both groups evacuate 

( 1Av =  and 0Bv = ). As we assume 0 0.5  , there will be less people in the street if group A 

evacuates compared to group B. Hence, 1,1 0,1 1,00 1      . As already described above, by 

investing a share  0,1y  of a given budget in improving the traffic conditions, the government can 

reduce congestion. As the citizens cannot observe the investment they form a belief ,

r

A B  about it, 

which reflects the public’s trust in G’s reliability.  

In a first step we ignore the concrete warning-level and derive a general solution for each of the three 

situations S0, S1 and S2. The last requirements, 
0 1 20 , , 1i i ip p p   and 

0 1 2 1i i ip p p+ + = , are both 

straightforward and were already prescribed by section 3. Without loss of generality, we henceforth 

substitute 0ip  according to 0 1 21i i ip p p= − − . 

 

Figure 3. Game structure and sequence of events 

 

5.1 Optimal strategies in the Escalation-Scenario S0 

Optimal group strategies 

We first define three terms 
0

,0 1S

A BT  , which constitute critical thresholds for the conditional 

probability 02p  as given by 
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0

1 01

10 10

2

[ (1 ) ]

m d
S

A m d

A

c c
T p

c D c  

+
 −

+ + −
        (19)     

0

1

01 01

2

[ (1 ) ]

m d
S

B m d

B

c c
T

c D c  

+


+ + −
,          (20) 

0

2

11 11

2

[ (1 ) ]

m d
S

B m d

B

c c
T

c D c  

+


+ + −
         (21) 

Lemma 1a: For the threshold-terms (19) – (21) the following order applies: 
0 0 0

1 1 2

S S S

A B BT T T  . 

Proof: The order can be easily verified by taking into consideration the parameter assumptions made 

above: 1,1 0,1 1,00 1      , 
010 1p  , ˆ ˆ

B A   and 
c c

A B  . 

We can then state the following Proposition 1a. 

Proposition 1a (Group-Equilibrium in S0) 

The group-equilibrium of the sub-game on stage 2 for scenario S0 is given by 

( )* *0, 0A Bv v= =  if 
0

02 1

S

Ap T ;          (22) 

( )* *1, 0A Bv v= =  if 
0 0

1 02 2

S S

A BT p T  ;         (23) 

( )* *0, 0A Bv v= =  if 
0

2 02

S

BT p           (24) 

Proof: For ( 0, 0)A Bv v= =  to be a NE, two conditions (I) 
0 0( 0, 0) ( 1, 0)S S

A A B A A BC v v C v v= =  = =  

and (II) 
0 0( 0, 0) ( 0, 1)S S

B A B B A BC v v C v v= =  = = must be fulfilled. In words, both groups must 

strictly prefer not to evacuate provided that the other group sticks to the no-evacuation-strategy, too. 

For each condition, there is a critical threshold for 
02p : (I) 

0

02 1

S

Ap T  and (II) 
0

02 1

S

Bp T . Hence, a NE 

where no group evacuates requires 
0 0

02 1 01 1[ , ]S S

A Bp Min T p T − . According to Lemma 1a, it follows 

that 
0 0

1 1

S S

A BT T and thus 
0

1

S

AT is the required upper bound (if 
02p is lower than 

0

1

S

AT , it is also lower 

than 
0

1

S

BT but not vice versa). Hence, if group A does not evacuate, then group B certainly does not 

either. 

For ( 1, 0)A Bv v= =  to be a NE, two conditions (III) 
0 0( 1, 0) ( 0, 0)S S

A A B A A BC v v C v v= =  = =  and 

(IV) 
0 0( 1, 0) ( 1, 1)S S

B A B B A BC v v C v v= =  = = must be fulfilled. Under this condition, group A must 

strictly prefer to evacuate given that group B does not and group B should not prefer to evacuate given 

that group A does. Again there result two conditions, constituting a critical threshold for 
02p . The first 

is identical to (I) above with a reversed sign, and the second leads to (IV) 
0

02 2

S

Bp T . Hence, 
0 0

1 2

S S

A BT T  

is a necessary condition for the existence of a NE and according to Lemma 1a, this condition holds true. 
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The strategy-combination ( 1, 1)A Bv v= =  is a NE if the conditions (V) 

0 0( 1, 1) ( 0, 1)S S

A A B A A BC v v C v v= =  = =  and (VI) 
0 0( 1, 1) ( 1, 0)S S

B A B B A BC v v C v v= =  = =  are 

fulfilled. Both groups prefer to evacuate, given that the other group does so, too. The second condition 

is the same as condition (IV) above, just with the reversed sign. The first condition requires
0

02 1

S

Ap T  

Hence, a NE for both groups evacuating requires 
0 0

1 2 02[ , ]S S

A BMax T T p . According to Lemma 1a, we 

know that 
0 0

1 2

S S

A BT T  and thus 
0

2

S

BT  is the lower bound (if 
02p  exceeds 

0

2

S

BT , it exceeds 
0

1

S

AT  anyway). 

Hence, if group B evacuates, then group A will certainly evacuate, too. This completes the proof of 

Proposition 1a.  

Optimal government strategies 

The optimal decisions of both groups on stage 2 are anticipated by G (the government), which tries to 

minimize the social cost by deciding about its communication-strategy E . The procedure comprises 

two steps: First, we derive the critical thresholds for which G prefers the outcomes “no evacuation”, 

“partial evacuation” and “full evacuation”. Second, once we know the government’s objectives, we 

derive the optimal communication-strategy of stage 1 of the Stackelberg-game. We first define two 

terms 
00 1S

GT  , which constitute critical thresholds for the conditional probability 
02p  as given by 

0

1 01

10

(2 )

( ) ( )

m d L
S

G m d L H d

c c
T p

c c D c

 

    

+ +
 −

+ + + + −
     (25) 

01 10 110

2

11 10

( ) (1 ) (2 )

( ) (1 ) (2 )

H d m d L

S

G H d m d L

p D c c c
T

D c c c

       

       

   − + − + − + +   
   − + − + − + +   

   (26) 

Lemma 1b: Let 11

10

( )0

( )

H d m

H d m

D c cS

G D c c

   

   
 

+ − −

+ − −
  . Then for the threshold-terms (25) and (26) the order 

0 0

1 2

S S

G GT T  applies. 

Proof: See Appendix 1. 

Proposition 1b defines the socially optimal strategy-combinations as envisaged by the government. To 

distinguish socially optimal strategies from individually optimal (Nash-equilibrium) strategies, we use 

a small circle ( ) as superscript.  

Proposition 1b (Optimal Government-Strategies in S0) 

( )0, 0A Bv v= =  if 
0

02 10 S

Gp T  ;        (27) 

( )1, 0A Bv v= =  if 
0 0

1 02 2

S S

G GT p T  ;        (28) 
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( )0, 0A Bv v= =  if 
0

2 02

S

GT p          (29) 

Proof: If “no evacuation” of both groups ( 0, 0)A Bv v= =  minimizes the social cost-function, the social 

cost must be lower than in the two alternatives, (I) 
0 0( 0, 0) ( 1, 0)S S

G A B G A BC v v C v v= =  = =  and (II) 

0 0( 0, 0) ( 1, 1)S S

G A B G A BC v v C v v= =  = = . Condition (I) requires 
0

02 1

S

Gp T  and condition (II) 

requires 
0

02 2

S

Gp T . According to Lemma 1b 
0 0

1 2

S S

G GT T  holds and therefore 
0

1 01

S

GT p−  is the upper 

bound for 
02p  in (21). The government prefers that just group A evacuates ( 1, 0)A Bv v= =  if the 

following two inequalities hold: (III) 
0 0( 1, 0) ( 0, 0)S S

G A B G A BC v v C v v= =  = =  and (IV) 

0 0( 1, 0) ( 1, 1)S S

G A B G A BC v v C v v= =  = = . Inequality (III) is the inverse constellation to (I) and 

condition (IV) requires 
0

02 2

S

Gp T . According to Lemma 1b, we know that 
0 0

1 3

S S

G GT T , therefore 
02p  

lies in between in constellation (22). If the inverse constellation of (IV) holds true, (v)
0

02 2

S

Gp T  , joint 

evacuation ( 1, 1)A Bv v= =  minimizes the social cost. With 
0 0

1 2

S S

G GT T  from Lemma 1b, we identify 

0

2

S

GT as the lower bound for 
02p . This completes the proof.  

5.2 Optimal strategies in the Mixed-Scenario S1 

Optimal group strategies 

We first define two terms 
1

,0 1S

A BT  , which constitute critical thresholds for the conditional 

probability 
12p  as given by 

1

11

d m
S

A

A

c c
T p

D

−
 −           (30) 

1

01 01

2

[ (1 ) ]

m d
S

B m d

B

c c
T

c D c  

+


+ + −
         (31) 

In situation S1, congestion is no longer a strategic issue between the two groups and therefore their 

objective functions are not interdependent. Thus, we are left with just one critical threshold for each 

group. Note that the optimal group strategies in S1 and S2 do not constitute a Nash-equilibrium 

because these are independent optimal strategies. 

Lemma 2a:  1 1

110 1 0,1S S

A BT T p      . 

Proof: We just sketch the proof by contradiction. As 
1S

BT  does not depend on 11p , it is sufficient to 

show that 
1 1

11( 0)S S

A BT p T=  . In order to get the opposite result 
1 1

11( 0)S S

A BT p T=  , B must exceed 

a lower bound 
1S

B . However, it is straightforward to show   1 10, : 0 1S S

B A B B BT         . 
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We then can state the following Proposition 2a. We skip the proof because it follows the same 

structure as for Proposition 1a. 

Proposition 2a (Group-strategies in S1) 

The optimal group-strategies for scenario S1 are given by 

( )* *0, 0A Bv v= =  if 
1

12

S

Ap T          (32) 

( )* *1, 0A Bv v= =  if 
1 1

12

S S

A BT p T           (33) 

( )* *0, 0A Bv v= =  if 
1

12

S

BT p          (34) 

Optimal government strategies 

For the government we get the following two critical thresholds 
10 1S

GT   for situation S1, as given 

by (35) and (36). 

1

1 11

( )d m L
S

G H L

c c
T p

D

 

 

− +
 −

+ +
         (35) 

( )
1

2

11

(2 )

( )

m d L
S

G m d L H d

c c
T

c c D c

 

    

+ +


+ + + + −
      (36) 

Lemma 2b: For the critical thresholds (35) and (36), it holds 
1 1

1 2

S S

G GT T . 

Proof: We again provide the proof by contradiction. As 
1

2

S

GT  does not depend on 11p , it is sufficient to 

show that 
1 1

1 11 2( 0)S S

G GT p T=  . In order to get the opposite result 
1 1

1 11 2( 0)S S

G GT p T=  , 11 must exceed 

a lower bound 
1

11

S . However, for our assumptions any, value 
1

11 11

S   will strictly exceed 1. We 

conclude   1

11 11 110,1 : 1S      , which completes the proof. 

Proposition 2b defines the socially optimal strategy-combinations from the government’s perspective 

for situation S1. We skip the proof because it follows the same structure as for Proposition 1b. 

Proposition 2b (Optimal Government-Strategies in S1) 

( )0, 0A Bv v= =  if 
1

12 10 S

Gp T  ;        (38) 

( )1, 0A Bv v= =  if 
1 1

1 12 2

S S

G GT p T  ;        (39) 

( )0, 0A Bv v= =  if 
1

2 12

S

GT p          (40) 
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5.3 Optimal strategies in the De-Escalation-Scenario S2 

Following our standard procedure, the two terms 
2

,0 1S

A BT   constitute the critical thresholds for the 

conditional probability 
22p  in the de-escalation-state. In S2, both groups already evacuated. For group 

A the expression is identical to situation S1 and group B also makes the decision whether to stay 

evacuated or return into region B.  

2

11

d m
S

A

A

c c
T p

D

−
 −           (41) 

2
d m

S

B

B

c c
T

D

−
            (42) 

Due to B A    it is straightforward that 
2 2S S

A BT T . This brings us directly to Proposition 3a. 

Proposition 3a (Group-strategies in S2) 

The optimal group-strategies for scenario S2 are given by 

( )* *0, 0A Bv v= =  if 
2

22

S

Ap T           (43) 

( )* *1, 0A Bv v= =  if 
2 2

22

S S

A BT p T            (44) 

( )* *0, 0A Bv v= =  if 
2

22

S

BT p           (45) 

Optimal government strategies 

For the government we get the following two critical thresholds 
20 1S

GT   for situation S2, as given 

by (46) and (47). 

2 1

1 1 11

( )d m L
S S

G G H L

c c
T T p

D

 

 

− +
  −

+ +
         (46) 

2

2

( )d m L
S

G H L

c c
T

D

 

 

− +


+ +
          (47) 

Proposition 3b defines the socially optimal strategy-combinations from the government’s perspective 

for situation S2.  

Proposition 3b (Optimal Government-Strategies in S2) 

( )0, 0A Bv v= =  if 
2

22 10 S

Gp T  ;         (48) 
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( )1, 0A Bv v= =  if 
2 2

1 22 2

S S

G GT p T  ;        (49) 

( )0, 0A Bv v= =  if 
2

2 22

S

GT p          (50) 

5.4  Zones of Compliance (ZoC) 

Illustration in a probability triangle 

In this section we analyze the scope for compliance in the government’s interaction with both groups. 

For the main part of this subsection, we refer to the escalation-scenario S0. The left diagram of Figure 

4 shows the critical thresholds of both groups in S0 graphically in a probability triangle. The edges and 

the corner points of the triangle are highlighted in black. Any constellation of the conditional posterior 

probabilities, i.e. the discrete, conditional probability distribution  | 0 1 2: , ,s i i ip p p , can be marked 

in this triangle as a probability-point   with coordinates 
1 2( , )i ip p . The higher one of these 

probabilities, the closer it is to “its corner”. Assume for example that we are in state S0 and we receive 

“no warning” (
00 ). In this case, the first column of the conditional posterior matrix 0

P  (6) applies and 

gives back the probability-point 
00 01 02( , , ) (0.999975,0.000024,0.000001)p p p = = . As the 

probability 00 01 021p p p − −  comes close to 1, this point would we drawn in the origin of ordinates.  

 

Figure 4. Probability triangle for optimal decisions, just groups (left) and with authority (right) 

We now just need to spot the conditional probability in the plane and can directly infer the decisions 

of both groups. If   lies below 
0

1

S

AT  in the area labeled “0”, then no group evacuates. If   is located 

between 
0

1

S

AT  and 
0

2

S

BT , which corresponds to the area “A”, just group A evacuates but group B does 

not. The last possibility is that the point lies above 
0

2

S

BT  in the upper corner “AB”. In this case, both 

groups prefer to evacuate. 
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In the right diagram of Figure 4 we added the critical thresholds of G as dotted lines. As both lines do 

not coincide with the groups‘ thresholds, there are constellations in which the groups and the 

government’s preferences deviate from each other. These zones of conflicting interest are highlighted 

in the diagram. In zone 0[2] G prefers that group A evacuates, which is not the preferred strategy of 

group A. There is the exact opposite constellation in zone AB[1]:  Here, G does not want group B to 

evacuate, however group B prefers evacuation. The conflicting interest between authority and groups 

results from three causes: the two information asymmetries (related to flood impact and anti-

congestion investment) and the weighting factors  and  . With respect to the information 

asymmetries, people should be always better off to follow the government (whether they actually do 

depends on trust) but with respect to the preference parameters this is not necessarily the case. For 

example, it is possible that G puts highest weight on economic loss ( 1 = ) and lowest weight on 

citizens’ deprivation ( 0 = ). In such a case, G could act too cautiously not to endanger business 

activities too much and show less consideration for the affected population. However, in our model 

also economic losses have a short and long-term component and we assume that the long-term losses 

due to flood injuries exceed the short-run losses. Therefore, the outcomes of the compliance-game 

show a very low sensitivity with respect to changes in  and  .  

Government communication and compliance 

For its communication-decision in scenario S0, the government is guided by Proposition 1b. However, 

G’s communication must also be effective. The request of G is effective under two conditions. First, the 

respective addressee (group A, group B or both groups) of the request is impact-sensitive ( 2ip   

( , ,( 1)Si

A B A BT  = ) and the level of competence-trust is high enough ( , ,

c

A B A B  ). The first condition 

refers to a situation where a group expects maximal impact (remember, impact is the subjective 

probability that “an event really hits me”) but does not evaluate the consequences high enough 

compared to the less precautious alternative. In such a situation, impact-communication is effectless, 

even with the highest level of trust. The second requirement, a sufficiently high trust-level, is 

straightforward. If a group is impact-sensitive, their decision can theoretically be influenced but 

whether this influence is successful depends on the group’s perception of the credibility and 

trustfulness of the sender. The lower the trust-level ,

c

A B , the more weight is put on the “autonomous” 

impact parameter ,
ˆ0 1A B    (the groups judge the impact on their own). We define *|E   as the 
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optimal strategy of G if the communication is effective and *|E  if communication is ineffective. 

Expression (51) summarizes the optimal strategies of the government.  

0 ( 0, 0)

* | 1 ( 1, 0)

2 ( 1, 1)

A B

A B

A B

E v v

E E v v

E v v

  = =


 =  = =
  = =

  * | 0, 1, 2E E E E E=       (51) 

If communication is effective, the government chooses the optimal strategy according to its objective. 

This strategy minimizes the social cost-function according to Proposition 1b. If, however, 

communication is ineffective, the chosen strategy is irrelevant and therefore the whole strategy-set 

applies. We use the symbol *|E  to indicate ineffective communication and E  as a symbol for the 

universal set, which comprises the entire set of signals.  

Before we present the equilibrium, we first illustrate graphically how to determine the government’s 

optimal decision. For this example illustration we just focus on 0

1

S

AT  as the decision-threshold, which 

determines whether just group A decides about evacuation. As known from expression (25), this 

threshold corresponds to a line with negative slope 1. To make the scope for communication visible, 

we express A  by its explicit term ˆ(1 )c c

A A A A AE   = + − , which contains the binary signal 

{0,1}AE   (as presented in section 4.1). As long as there is a minimum-level of trust ( 0c

A  ), the 

threshold-line 0

1

S

AT  extends to a range or spectrum of threshold-lines with the lower and upper bound 

defined by 1AE =  and 0AE =  respectively. Diagram (a) of figure 5 gives an example of such a 

threshold-spectrum. With respect to the threshold-line of group A ( 0

1

S

AT ), the spectrum is highlighted 

by blue color together with its lower bound 0

1 ( 1)S

A AT E =  and upper bound, 0

1 ( 0)S

A AT E = . The dotted 

line in the middle of the spectrum indicates the autonomous impact-level ˆ
A , which determines the 

decision if trust is absent. In the diagram, we also depict the threshold-lines of the government 
0

1

S

GT  

(low black solid line) and an arbitrary probability-point  .   
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Figure 5. Zones of Compliance (ZoC) for different constellations   

If the probability-point   lies within this range, the government can directly influence the group’s 

decision with its request. Therefore, we call the threshold-spectrum “zone of compliance” (ZoC). 

Diagram (a) represents the case of a too narrow range (small ZoC) where the probability-point    lies 

outside ZoC ( 0

1

S

AZoC ).   is located below 0

1

S

AZoC  but above 
0

1

S

GT , i.e. in this situation group A 

does not evacuate (regardless of any request) although G wants it to do so. Hence, in this case the 

trust-level is not high enough and the authority cannot convince the group. Diagram (b) shows the 

same situation with the only difference that the trust-level is higher. The higher trust-level widens ZoC 

so that   is now located inside of this range ( 0

1

S

AZoC ). Although group A would be reluctant to 

evacuate in the case of an autonomous decision without trust (  lies below the dotted line), by 

sending the signal 1AE =  (more precisely, G sends signal 1E , which is received as 1AE =  by group 

A), the government can realize the lower bound of ZoC (straight red line at the bottom of ZoC). 

In diagram (c) we just switched the order of 0

1

S

AT and 
0

1

S

GT with the consequence that now G prefers no 

evacuation of group A. By sending the signal 0AE =  (signal 0AE =  from group A’s perspective), the 

government can realize the upper bound of ZoC (red black line at the top of ZoC). To summarize, 

given group A’s equilibrium strategy 0

1

S

AT , its trust-level c

A , the government’s objective 
0

1

S

GT  and a 

current projection defined by  : As long as 0

1

S

AZoC , the authority has influence on the decision of 
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group A. Note that there is just a need to intervene by communication if  lies between the critical 

thresholds 0

1

S

AT  and 
0

1

S

GT  (otherwise there is no conflict of interest, regardless of the scope for 

compliance). 

The diagrams (d) – (f) show the critical thresholds and ZoCs for both groups; the ZoC of group A is 

colored blue and ZoC of group B is colored green. The only difference between these three pictures is 

again the trust-level while the position of  remains unchanged. In diagram (d) the trust-level is too 

low and the probability point lies outside both ZoCs. The optimal group strategies are evacuation for 

group A (
* 1Av = ) and no evacuation for group B (

* 0Bv = ). These decisions are not influenced by G, 

which means that G’s optimal strategy is  * | 0, 1, 2E E E E E=  . In words: As G’s 

communication is ineffective, G can communicate anything; the signals do not matter. In diagram (e), 

the trust-levels of both groups are higher and now   lies inside 0

1

S

AZoC  but still outside of 0

2

S

BZoC . 

Here G has influence on the decision of group A but not on the decision of B. In diagram (f), both ZoCs 

overlap. In this constellation, G has influence on the decisions of both groups. This overlapping 

constellation can easily occur for high levels of trust because in this case the groups are willing to adapt 

their impact-expectations mainly to the government’s judgement. Therefore, this represents the best 

possible constellation for G because it can directly influence both groups by one signal.  

5.5 Nash-Equilibrium (NE) of the Evacuation-Compliance-Game 

We can now combine the interim results as stated by Proposition 1a and Proposition 1b to derive the 

main result of the Evacuation-Compliance-Game. As the general structure of the solution is not altered 

by the scenarios, we state the result for all three scenarios (S0, S1 and S2) together. Assume that the 

current situation is state Si and the decision makers receive the warning ij . The Transition-Matrix S , 

the Likelihood-Matrix iL  and the conditional Posterior-Matrix iP  are defined as described above. The 

probability-point ( )| 1 2,
i ijs i ip p =  respresents the ij -column of iP . Furthermore, the actors’ 

payoffs are given as described in sections 4.1 – 4.3 and for both groups and the government there are 

critical thresholds Si

AT , Si

BT , 1

Si

GT  and 2

Si

GT . Let *ˆ
Av  and *ˆ

Bv be the optimal group strategies under 

autonomous conditions (according to Propositions 1a, 2a and 3a), i.e. without government or with zero 

trust in the government ( 0c c

A B = = ). Si

AZoC and Si

BZoC  represent the Zones of Compliance of both 

groups. The time-structure of the Compliance-Game is given by Figure 3.  

 



36 
 

Result (NE of ECG) 

The following strategies represent a Nash-Equilibrium of the underlying subgame on stage 1 and stage 

2 of Figure 3. 

 

 

 

 

* * *

2 1 2

* * *

| 1 1 2 2 1

* * *
2 1 1

2, 1, 1( )

( ) ( ) 1, 1, 0

( ) 0, 0, 0

i ij

Si
A B

G i i

Si Si Si Si

s A B G i i G i A B

Si

i G i
A B

E E v vT p p

ZoC ZoC T p p T p E E v v

p T p E E v v



= = = 

       = = =

  = = =

 (52) 

 
 

( )

( )

* * * *

1 1 2

| | * * * *
2 1 1

ˆ{ 1, 2}, 1,( )

( ) ˆ0, 0,
i ij i ij

Si
A B BSi Si G i i

s A s B Si

i G i A B B

E E E v v vT p p
ZoC ZoC

p T p E E v v v
 

= = = 
     

  = = =
 (53) 

 
 

( )

( )

* * * *

2 1 2

| | * * * *
2 2 1

ˆ2, , 1( )

( ) ˆ{ 0, 1}, , 0
i ij i ij

Si
A A BSi Si G i i

s A s B Si

i G i A A B

E E v v vT p p
ZoC ZoC

p T p E E E v v v
 

= = = 
     

  = = =
 (54) 

 
 

  ( )* * * * *

|
ˆ ˆ{ 0, 1, 2}, ,

i ij

Si Si

s A B A A B BZoC ZoC E E E E E v v v v

    = = = =  (55) 

The equilibrium-conditions read as follows: Expression (52) considers the case where the probability-

points lies in an area where the two ZoCs overlap. In this case, the government can advise both groups 

according to its own preferences, which can be summarized by the relative position of   and the 

critical thresholds of G. Note that the groups’ preferences do not matter for this constellation: Even if 

there is no conflict of interest (i.e. the groups pursue the same goal as G) the government still needs 

to care about its communication because the groups follow the government with any order. In 

constellation (53),   lies in the ZoC of group A but not in the zone of B.  In this case the government 

just communicates to group A. Expression (54) represents the analogue constellation for group B; G’s 

communication just focusses on group B but group A cannot be reached. The final constellation, (55), 

represents the case where   lies outside both ZoCs. In this case, G has no communicative influence. 

Hence, in equilibrium the government communicates the universal set (signals are ignored by both 

groups) and the groups play their autonomous equilibrium strategies *ˆ
Av  and *ˆ

Bv .  

5.6 Equilibrium-analysis based on the empirical reference-data 

In this section we take a closer look at the derived equilibrium-conditions by applying the reference-

data introduced in sections 3.2 and 4.1. For the most part we focus on the escalation-scenario S0 with 

a warning-level 1 and 2 because we consider these two situations to be the most frequent and relevant 
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ones. For the standard parameters we chose the values ,
ˆ.5, .5, .3, .5, .5A B I   = = = = =  and 

rather low trust-levels between , [0.2,0.4]c

A B  . The situation 
01  is depicted in Figure 6(a). It can be 

seen that G would strongly advise evacuation but group A would also evacuate anyway. At a minimum 

trust-level of .3c

A  , which is illustrated in the graph, the ZoC is wide enough to embrace the 

probability-point. This means that – although group A would evacuate from alone – the government 

should advise evacuation to avoid misunderstandings: Compliant citizens could wrongly interpret a 

missing evacuation order as an all-clear signal. To summarize, for a warning-level 1 the risk-decision of 

group A and G are in line, but this needs an affirmation from the government if trust and compliance 

are sufficiently high. The critical threshold of group B is not shown in the graph because the (horizontal) 

ZoC of group B starts at a probability-value 
02 0.01p =  and is thus far above the probability-point. In 

other words, in the case of a level-1-warning in S0, group B is very far from evacuating.  

 

Figure 6: Variation of warning-level and preference-parameters for S0 

But how does this change if the coastal city receives a level-2-warning? This situation is illustrated in 

diagram (b). The probability-point slightly moves to the upper-left and the critical threshold of group 

A shrinks downwards because the autonomous impact-expectation is close to 1 ( 1W

A = − ). This 

means that group A would try whatever possible to get out of the region. However, for the chosen 

parameters, group B would not evacuate and the probability-point still remains below the critical 

threshold of the government. Hence, in spite of a level-2-warning, region B would not evacuate. Is this 

decision too risky? Above all, this decision takes into account the trade-off between physical damage 

and potential death on the one hand but also the cost of evacuation, which comprise deprivation and 

economic losses, on the other hand. If we ignore this trade-off and just take injuries and fatalities into 

consideration, the decision would be different as shown by Figure 6(c). Here we changed the 

government’s preference parameters and eliminated any other factor ( 0, 0 = = ) so that physical 

damage alone determines the decision. We see that a government, which exclusively cares for lives, 

would order evacuation of region B. This, however, is without success because the probability-point is 
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not covered by the ZoC of group B. Even maximal trust would not be sufficient to change this situation: 

Full trust ( 1c

B = ) would expand the ZoC and thus move the lower bound downwards, but only up to 

the value 
02 0.0011p = , which is still above the probability-point. For the case of a level-2-warning we 

conclude that for the empirical reference data, which we took as a basis for our study, we find 

ourselves in the conflicting trade-off between “protection from damage” and “damage through 

protection” and the bad news is that this conflict cannot be overcome by trust and compliance. For 

the other two situations S1 and S2, we get quite clear results, which is mainly due to the high 

probability values of the (conditional) posterior probabilities. Once region A or region B is affected by 

a flood, the government and the groups decide to stay evacuated and not to return. These situations 

are so clear – in the sense that the probability-point is largely out of sight – that there is no issue for 

compliance. However, there is one constellation where compliance matters and this is exactly due to 

the high exposure: For our parameter constellation in S1, group B is close to evacuate when a warning-

1-level is received. However, even for low values of trust the zone of compliance covers the probability-

point so that unnecessary evacuation should not occur.    

6. Summary and Discussion 

In this contribution we presented the Warning-Compliance-Model (WCM) as a novel and 

comprehensive approach to study probabilistic and communicative aspects of public risk management 

and compliance within one coherent framework. The random events were modeled using a Hidden 

Markov chain and depicted both the escalation and de-escalation phases of hypothetical severe flood 

events. At the same time, the performance of the EWS can be taken into account by determining the 

Likelihood-Matrix accordingly. Since approaches of the literature on EWS-verification usually work 

with contingency tables, the information system of the WCM can also be linked empirically.  

The second part of the model included the communication game between the government and the 

two population groups under consideration. First, the optimal strategies of the groups were 

determined for all states of the Hidden Markov chain, representing either the evacuation decision or 

the decision to return to the region. On the part of the government, the socially desired solutions were 

determined from the perspective of the policy maker. The model is kept as simple as possible from a 

technical point of view and allows the explicit derivation of the stationary solutions of the model in a 

generic form. The methodological core of the communication game is the compliance of the 

population with the (non-enforceable) orders of the government. Compliance helps the two groups (A 
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and B) to overcome their information asymmetry vis-à-vis the state, provided their trust in the 

authority is sufficiently high. The higher the trust in the state, the more willing the two groups are to 

follow the instructions for a given probability distribution (as depicted in a compact form by the 

probability point). 

First, it is clear that compliance is only necessary when the interests of the population and the state 

diverge. Nevertheless, it should be noted that even if interests are aligned and trust is sufficiently high 

(compliance without conflict of interest), the state must communicate affirmatively to avoid 

misunderstandings. Since in this model - but ultimately also in all real world communication - silence 

also represents a signal, it would be dangerous if the state did nothing, in the deceptive certainty that 

the population itself already knew best what to do. In this respect it is clear that not only compliance 

is needed for an effective communication strategy, but also an effective communication strategy is 

needed to give a compliant group orientation during a crisis. Second, if there is a conflict of interest, it 

is no longer the distance between the critical thresholds that determines the outcome of the 

communication game, but whether the probability-point lies in the Zone of Compliance. In other 

words: Not the interests or preferences of the state per se, but the credibility of its message together 

with the objective probability of the risk ultimately determine whether compliance can arise. 

The application of empirical data from flood and risk studies to the model provides plausible results 

for the escalation scenario. For the de-escalation phase, the assumptions made and the probabilities 

suggested by the experts led to the clear result that the population in region A would already evacuate 

on its own initiative, but that the state would also order this evacuation. Since the probability point in 

this constellation lies with the Zone of Compliance for already rather low trust values, this is a quite 

clear case for the necessity of affirmative communication as described above. 

The results for an announced Black Swan flood show that the inhabitants of region B would not react 

to an S2 warning. Remarkably, however, the government would not issue an evacuation order either, 

taking into account economic follow-up costs and the particular burden on the people that an 

evacuation would entail. Only when the government considers the costs of an evacuation to be very 

low compared to the expected consequences for life and limb caused by an extreme flood the authority 

would order an evacuation. In this case, however, the critical threshold lines of state and population 

group B, which in the model indicate readiness to evacuate, fall far apart. In order for Group B to be 

persuaded to evacuate via compliance, it must have a very high level of trust, since otherwise the 



40 
 

probability-point of a black swan event would no longer lie in the (from the citizens' point of view) 

impact-relevant area. 

What does all this imply for improved disaster management? The Warning-Compliance-Model 

illustrates the intricate interaction between objective event probabilities, the precision of forecasting 

technology, the authority’s and public’s preferences as well as the role of trust in a communication 

game. The model can be very helpful to determine the effects of e.g. a higher EWS-precision or a higher 

trust-level on the scope for compliance and hence on the outcome in the case of a severe or disastrous 

flood event. Furthermore, the model shows that many different and important problems in the context 

of flood evacuation, which are predominantly looked separately and from a purely empirical 

perspective, such as risk communication, the crying-wolf-phenomenon or conflicts of interest, can be 

better seen as elements of one comprehensive picture. The WCM is best understood as a first step to 

identify the interlinkages between these different areas. More concrete, policy makers could consider 

some implications of this study for the development or training application of Evacuation Maps (Wilson 

2018). As different geographic areas correspond to different risk profiles and this in turn will influence 

people’s expectations, it is possible to derive a rough and preliminary guess of people’s probable 

decisions and the corresponding level of (expected) compliance. One further implication of the results 

of this study relates to risk communication. Risk communication in advance increases the impact 

expectation, which in turn requires less compliance. However, since both, compliance and risk 

communication, will depend on the same type of trust (competence trust in the authorities), this will 

enable the government to better empower people to make independent decisions before a crisis. This 

strategy, however, is particularly dependent on public trust, because it also means that too little trust 

in competence destroys both options: The population will not be convinced, either in advance or in 

the event of an approaching crisis, that the flood could affect them.  

Finally, we also want to briefly discuss potentially problematic assumptions of the model as well as 

promising model extensions.  As already mentioned we admit that the assumption of a representative 

decision maker for each group simplifies away some interesting and important aspects. It is promising 

to take the heterogeneity of people into account because differences in preferences of stakeholders 

will have an impact on their willingness to evacuate (e.g. vulnerable people, such as assisted care 

individuals, or gender differences (Bateman & Edwards 2002). We also assume that the assignments 

of buildings and individuals to zones is clear-cut. However, this is far from straightforward: “A study 
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before Hurricane Irene found that 83% of adults without a high-school education (e.g. 46% of East 

Harlem’s population in 2006) could not identify their evacuation zone.” (Wilson 2018, p.9). Similarly, 

special forms of evacuation such as long term resettlements and relocations (Sorensen & Sorensen, 

2006) are less well representable in the model, either. With respect to the preferences, we assume in 

our model that just the government takes economic losses into account. However, this will also be an 

important motive for small businesses. Finally, it could be very promising to apply more psychological 

approaches like risk perception theory, prospect theory or protection motivation theory to this 

framework. One complicating challenge of such an extension is that this introduces path-dependence 

into the model so that the derived closed-form solutions are just relevant for the described stationary 

solutions. Nevertheless, risk perception is ultimately a history-dependent phenomenon and it should 

be feasible to add this component to the Warning Compliance Model.  
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Appendix 1 

Proof of Lemma 1b: To proof 
0 0

1 2

S S

G GT T  we first show that 
0 0

1 2 ( 0)S S

G GT T  = , which is true for 

11 10  . Increasing   shifts 
0

2

S

GT  upwards. The highest admissible value for 
0

2

S

GT  is 1, because 

otherwise it would be an irrelevant threshold for 
02p . Setting 

0

2 1S

GT = and solving for   provides us 

with the upper limit 11

10

( )0

( )

H d m

H d m

D c cS

G D c c

   

   
 

+ − −

+ − −
  . As both, 

0

1

S

GT and 
0

2

S

GT  vary linearly in 
01p , it remains 

to show that 
0 0 0

2 01 1 01( ) / / 1S S S

G G GdT dp dT dp =  = − , which completes the proof.  

Appendix 2 

Proof of Proposition 2a: For ( 0, 0)A Bv v= =  to be a NE, two conditions (I) 

1 1( 0, 0) ( 1, 0)S S

A A B A A BC v v C v v= =  = =  and (II) 
1 1( 0, 0) ( 0, 1)S S

B A B B A BC v v C v v= =  = = must be 

fulfilled. In words, both groups must strictly prefer not to evacuate provided that the other group sticks 

to the no-evacuation-strategy, too. For each condition, there is a critical threshold for 
12p : (I) 

1

12 1

S

Ap T  and (II) 
1

12 1

S

Bp T . Hence, a NE where no group evacuates requires 
1 1

12 1 1[ , ]S S

A Bp Min T T . 

According to Lemma 2a, it follows that 
1 1

1 1

S S

A BT T and thus 
1

1

S

AT is the required upper bound (if 
02p is 

lower than 
1

1

S

AT , it is also lower than 
1

1

S

BT but not vice versa). Hence, if group A does not evacuate, then 

group B certainly does not either.   
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