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Abstract

Multi Party Computation (MPC) deals with the problem which arises if several parties that
do not trust each other want to work together in order to jointly execute a program, with-
out the input of the individual parties becomes known to each other. Algorithms which
are calculated between these parties must usually be available as a boolean circuit. It is
disadvantageous here that converting programs for RAM machines into boolean circuits
is associated with a significant increase in program runtime. By means of predicated in-
structions, algorithms and programs written for regular RAM machines can be translated
into efficient MPC programs. For this purpose, this thesis introduces a model in order
to discuss certain optimization possibilities of the individual program fragments. Using a
practical example, the minimal spanning tree problem, the developed approach is imple-
mented, performance is determined and the result is compared with another known method
for solving the problem. It is shown that the program runtimes can be reduced. In practice,
the effectiveness strongly depends on the control-flow of the input program.

Bei sicherer Mehrparteienberechnung (multi party computation, MPC) arbeiten mehrere
sich gegenseitig nicht vertrauende Parteien zusammen, um gemeinsam die Ausführung
eines Programmes zu berechnen, ohne dass die Eingabe der einzelnen Parteien für die
anderen bekannt wird. Damit Algorithmen zwischen diesen Parteien berechnet wer-
den können, müssen die Algorithmen in der Regel als boolescher Schaltkreis vorliegen.
Nachteilig ist hierbei, dass das Umwandeln von Programmen für RAM-Maschinen in boo-
lesche Schaltkreise mit einer deutlichen Steigerung der Programmlaufzeit verbunden ist.
Mit Hilfe von prädizierten Instruktionen lassen sich Algorithmen und Programme, die
für reguläre RAM Maschinen geschrieben wurden, in effiziente MPC Programme über-
setzen. Dazu wird in der vorliegenden Arbeit ein Modell eingeführt, um einzelne Opti-
mierungsmöglichkeiten der Programmfragmente zu betrachten. An einem ausgewählten
praktischen Beispiel, dem minimalen Spannbaum-Problem, wird dieser Ansatz umgesetzt,
die Performance ermittelt und das Ergebnis mit einer weiteren bekannten Methode zum
Lösen des Problems verglichen. Es kann gezeigt werden, dass sich durch dieses Vorgehen
die Programmlaufzeiten reduzieren lassen. In der Praxis hängt die Effektivität jedoch stark
vom Kontrollfluss des Eingabeprogramms ab.





Hiermit versichere ich, dass ich diese Arbeit selbständig verfasst und keine anderen, als die
angegebenen Quellen und Hilfsmittel benutzt, die wörtlich oder inhaltlich übernommenen
Stellen als solche kenntlich gemacht und die Satzung des Karlsruher Instituts für Technolo-
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1 Introduction

1.1 Motivation

In secure multiparty computation (MPC) a set of parties not trusting each other are comput-
ing a function together with every party using a secret private input hidden from the other
parties. These computation are called secure because only the process does not revealed
any information about input data except for the result of the calculated function. Perform-
ing such computations without a trusted third party has been a topic in cryptography since
1982 and the introduction of the millionaires’ problem by Yao [23].

In general computer science algorithms are often given in the form of a random access
memory (RAM)-program. In cryptography there are two general approaches to transform
such a RAM-program into an MPC protocol. Firstly, a dedicated MPC protocol can be de-
veloped for a specific application based on cryptographic primitives. Secondly, a compiler
can be used which can turn any program into a MPC protocol. While the first usually offers
better performance the security for the latter only has to be proven once for the compiler
instead of every program individually.

A common approach for MPC compilers is to translate the input program into a circuit.
Although optimizations have been proposed to reduce the runtime of these circuits there
is still a blowup of O(T 3 log T ) in time when transforming T -time RAM programs into
circuits [15].

The introduction of oblivious RAM for MPC which allows random access to a memory
without leaking information about the access pattern enables RAM programs to be trans-
lated into MPC protocols directly. However, branching in programs that depend on secret
input data is usually not allowed, since it could leak information about the private inputs
[12]. So far this problem can be circumvented by performing an oblivious computation
(implemented in [8]) which additionally hides the CPU state and the program that is being
executed. The runtime overhead by using this technique is high because every possible
CPU instruction will be calculated in every step.

1.2 Contribution

In this thesis, we will combine existing MPC tools with instruction predication in order to
translate regular RAM programs into an MPC protocol while considering efficiency con-
cerns. Compared to existing solutions we can allow branches depending on private inputs
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1 Introduction

within the program while achieving a better performance than using oblivious computation.
As a result this approach is suitable in particular for algorithms with such branches which
impact the runtime of the algorithm. We will also discuss possible optimization techniques
for the resulting MPC programs.

As an example, we will apply our approach to create a MPC version of Kruskal’s mini-
mum spanning-tree algorithm. Then we will create an algorithm using an oblivious version
of the union find data structure. We compared both of these approaches in practice by using
a MPC framework implementing the SPDZ2k protocol [2].

1.3 Structure of Thesis

In the next chapter we will first introduce some basic definitions and notations used
throughout the thesis. Then we will talk about related work. The following chapter will
introduce the machine model and formal definition for our MPC compiler. Then we will
discuss multiple possible optimization methods for improving the runtime of the MPC
programs. Finally, in the following chapter a practical application of the compiler and opti-
mization methods will be applied. In the last chapter we will discuss our results and given
an outlook about this kind of approach for MPC algorithms.
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2 Preliminaries

The following section will describe notations and concepts used in this thesis.

2.1 Oblivious data structures

In some situations we want to use data stored in a random access memory on a remote
server, but at the same time can’t trust this server and want to protect our data. To solve this
problem the concept of oblivious RAM (ORAM) was introduced by Goldreich in 1987 [4].
In order to protect our data we have to address two problems:

(a) The content of the memory has to be hidden from the server.
(b) The access pattern to the RAM can be used by an adversary to gain information about

our data.

A solution to problem (a) can be encrypting the data stored on the server. In order to
hide information about the access pattern in problem (b) an ORAM must use an access
pattern independent from the actual read and write operations on the RAM.

Different definitions for ORAM have been used in other works [4] [1] [18]. We will use
the definition introduced by Shi et al. [18] since it fits our purpose best and generalizes this
definition for any algorithm.

Definition 1 (Oblivious RAM). An oblivious RAM (ORAM) is a set of interactive proto-
cols between a server and a client. LetN be the capacity as the number of blocks which can
be stored in the ORAM and B is the block size in number of bit in each block. Every block
can be addressed by a unique global identifier u ∈ U with U being the set of identifiers.
The ORAM has to support the following protocols:

• ReadAndRemove(u) The client can perform this interactive protocol using a pri-
vate block identifier u ∈ U as input. The server receives and removes the block
identified by u from the ORAM and returns the block content to the client. If the
ORAM doesn’t contain such a block a special symbol ⊥ will be returned instead.

• Add(u, data) This protocol requires two private inputs from the client: an identi-
fier u ∈ U and block content data ∈ {0, 1}B. The client performs this interactive
protocol with the server in order to write the content data to the block identified by
u. This protocol always has to be preceded by the ReadAndRemove(u) protocol
since we never want to have more than one content block for each identifier in our
ORAM.
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2 Preliminaries

To match the definitions of a typical random access memory we define a Get and Set
function based on the previous two protocols which we will use later. Get(u) invokes
the ReadAndRemove(u) protocol followed by Add(u, data) where data is the re-
sult of the first operation. Similar Set(u, data) invokes ReadAndRemove(u) and then
Add(u, data) with the given input.

Additionally we want an ORAM to satisfy the security definition given below based on
our definition for computational indistinguishability.

Definition 2 (Computational indistinguishability). Two ensembles of random variables
X = {x1, x2, . . . , xn}, Y = {y1, y2, . . . , yn} are computationally indistinguishable if for
every probabilistic polynomial time algorithm D a negligible function µ exists with the
following property:

|Pr[D(1n, X) = 1]− Pr[D(1n, Y ) = 1]| ≤ µ(n) (2.1.1)

We call a function µ : N→ R negligible if ∃c ∈ N, n0 ∈ N : ∀n > n0 : |µ(n)| < n−c.

Definition 3 (ORAM Security definition). Let y := ((op1, arg1), (op2, arg2), . . . ,
(opM , argM)) be a sequence of data request with length M . With each opi denoting either
a ReadAndRemove or an Add operation, argi denotes the argument of the operation
with

argi = ui, if opi = ReadAndRemove

argi = (ui, datai), if opi = Add

As in definition 1 we define that an Add operation is always preceded by a
ReadAndRemove operation. That means if opi = Add then opi−1 =
ReadAndRemove and ui−1 = ui.

Let ops(y) be the sequence of operations (op1, op2, . . . , opM) and A(y) be the access
sequence to the remote memory when performing a sequence of data requests y. We de-
fine an ORAM as secure if for any two data request sequences y, z with |y| = |z| and
ops(y) = ops(z), their respective access patterns A(y) and A(z) are computationally in-
distinguishable by anyone but the client.

Goldreich and Ostrovsky [5] (extended by Larsen et al. [13]) proved Ω(log(n)) is a
lower bound for the number accesses to the memory in each read and write operation. In
practice, an ORAM using a binary-tree with a runtime inO(log(n)3) per RAM access with
constant clientside storage has been proposed by Shi et al. [18].

We define oblivious algorithms similar to the ORAM definition: For any two inputs
with equal length we want the memory accesses performed by our algorithm to be compu-
tationally indistinguishable.
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2.2 Secure multi-party computation

Definition 4 (Oblivious algorithm). Let A be an algorithm using a remote memory and
Ã(x) be sequence of accesses to this memory performed by A with input x. We call A
an oblivious algorithm if for any input i1, i2, Ã(i1) and Ã(i2) are computationally indistin-
guishable.

2.2 Secure multi-party computation

The ORAM model described in the previous section assumes a client is storing data on an
untrusted server. In some use-cases we want to perform computation with more than two
parties not trusting each other, keeping their inputs private. This is called secure multi-
party computation (MPC). To perform algorithms between multiple untrusted parties the
data shared between the parties has to be encrypted in a way that every participant has a
share from the data. We will call such an encrypted data value share. In order to read the
actual content from a share every party has to reveal its share to the other parties. This
technique is called secret sharing.

There are different methods to implement secret-sharing most notably the additive
scheme and Shamir’s scheme [17]. These schemes use offline-phases where every parties
is performing calculations on its on data and online-phases that requires communication
between those parties. As a consequence some operation which can be performed offline
like addition are fast while other operations like multiplication are significantly slower.

MPC primitives

When describing joint algorithms as MPC protocol we will use the following notation and
primitives, summarized below in table 2.1.
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2 Preliminaries

Notation Description

[a] A shared secret (share) for the value of a

[a] + [b]
Performs an arithmetic operation for the value of both
shares and returns a share containing the result.[a]− [b]

[a] · [b]

[a] < [b]
Returns a share [c] with c = 1 if the value of a is smaller
than the value of b and c = 0 otherwise.

EQZ([a])
Performs an equal zero (EQZ) comparison returning a
share [c] with c = 1 if the value of a equals 0 and c = 0
otherwise.

IfElse([c], [a], [b]) Shorthand for [c] · [a] + ([1]− [c]) · [b]

Table 2.1: Notation and primitives for MPC protocols
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3 Related Work

To our knowledge this is the first work using predicated instruction to find efficient MPC
programs. As such, there are no directly related works. For the general idea of using RAM
programs in MPC there have been practical implementation such as by Marcel Keller in
[8]. In this work a subset of the C program language is being introduced as a programming
language for a multiparty RAM machine. The machine is based on secret-sharing and tree-
based ORAM. It can execute programs by running every possible instruction on every step
which also hides the program which is being executed from the adversary.

Our contribution is based off the ORAM implementations for MPC as given by Marcel
Keller and Peter Scholl in [11]. These implementations are MPC versions of the ORAM
introduced by Shi et al. in [18] and the Path ORAM by Stefanov et al. in [19]. Keller and
Scholl further use this ORAM to implement a MPC version of Dijkstra’s algorithms where
the graph and source vertex are shared secrets across all parties. They also implemented
their algorithms using SPDZ which is a nickname for the MPC protocol introduced by
Damgard et al. in [3] and performed some experiments in their work.

In the experimental part of this thesis we use an implementation of the SPDZ2k MPC
protocol proposed by Cramer et al. in [2]. This protocol operates over the field of inte-
gers modulo 2k and allows up to n − 1 of n participating parties to be corrupted. Another
notable MPC protocol with similar runtime cost using the same security model is the MAS-
COT protocol by Keller, Orsini and Scholl [10]. The MASCOT protocol (which stands for
faster malicious arithmetic secure computation with oblivious transfer) relies on oblivious
transfer in the preprocessing phase of the protocol in order to use symmetric cryptography
which is faster than public-key cryptography used in other MPC protocols. The implemen-
tation of the SPDZ2k protocol had slightly better runtime in a few practical tests for the
online phase of the algorithm compared to MASCOT which has a faster offline phase. We
decided to use SPDZ2k over the MASCOT protocol since we compared the runtime of the
online phases for our implementations.

Regarding the lower bound for oblivious data structures Riko Jacob et al. proofed in [7]
Ω(log n) as a lower bound for the expected amortized runtime of oblivious stacks, queues,
deques, priority queues and search trees with n items.

For the particular problem of solving the minimum spanning tree problem in a parallel
MPC setting a solution has been proposed by Peeter Laud in [14]. This approach uses a
variation of Borůvka’s minimum spanning tree (MST) algorithm as well as a batched obliv-
ious array with read and write function which performs multiple read and write operations
in amortized constant time.
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4 Machine and Compiler Model

In this section we will introduce a generic abstract machine model which can execute pro-
grams. Then we will use this model to define a compiler that can translate programs into ef-
ficient MPC programs using predicated instructions which will be described later. We will
also introduce a corresponding compiler optimization problem which consists of finding a
MPC program with the fastest average runtime for a given input program using predicated
instructions.

Figure 4.1: This diagram shows how we use the different representations of a program to transform
a program from its original program domain into an MPC program domain. The dou-
ble ended arrows indicate which practical program domains are represented by which
theoretical machine model. The one sided arrow represents the predicated instruction
compiler (PI-Compiler) described in definition 13.

In practice our input is a program in some arbitrary program domain (for example a
programming language like C) and we want to translate our program into a MPC program
domain such as the MP-SPDZ framework. This framework implements well known MPC
protocols in a high level script scripting and we will late use it for performing runtime
comparisons in the experimental part. Our primary goal is to describe a general approach
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4 Machine and Compiler Model

to efficiently translate programs not limited to a specific program domain. In order to
do this we abstract from these specific practical implementations by representing both the
original program domain and the MPC program domain as a machine model as described
later in definition 7. The predicated instruction compiler describes how a program can
be translated from the regular to the MPC machine model. This connection between the
theoretical models and the practical program domains is also depicted in figure 4.1.

4.1 Terms

The machine model used for the definition of the compiler is an abstract model similar to
the RAM machine for executing programs. We choose an abstract model which allows us
to consider optimizations for this model representative for any specific model without the
loss of generality. In particular a specific model in this context can be an abstract machine
model itself for example the common RAM machine model.

There are two important parts in the abstract machine model: machine states and ma-
chine instructions. A program execution in our model is represented by successively ap-
plying machine instructions to an initial machine which contains the input data.

Definition 5 (Machine states). A machine state (or program state) describes the current
state of the whole memory which can be used by the machine while executing programs.
This represents all memory cells used by the machine such as CPU registers, tapes or
random access memory.

For the sake of simplicity and without loss of generality we define the set of possi-
ble machine states S to consist of four parts: input In, working memory Mem, program
counter PC and output Out.

S = In×Mem× PC ×Out

The program counter PC should be a subset of the natural numbers. The definitions for
other individual part are not limited by the abstract model. Although in general we assume
that the machine state is a representation for the memory cells of the machine. For example,
a working memory consisting of a RAM with 100 bytes of memory would be represented as
S = Z256×Z256×· · ·×Z256 (100 times) with Z256 denoting the set of integers modulo 256.

The program’s input data will be stored within the input In of the machine state when
the execution for a program begins. After the execution is finished the program’s output
will be stored in the Out part of the machine state.

We denote the access to the input In of a machine state m as mIn. Similar mMem, mPC

and mOut denotes the access to the working memory, program counter and output of m,
respectively.

Definition 6 (Machine instructions). Let S be a set of machine states. We define a machine
instruction mi : S 7→ S as a mathematical function mapping every previous machine state
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4.1 Terms

to a new state. We call a machine instruction mi with ∀m ∈ S : mPC + 1 = mi(m)PC a
non-jump or regular machine instruction. All other instruction are called jump instructions.

Definition 7 (Machine model). We define a (specific) machine model M representing a set
of actual machines as a 3-tuple M = (S, I, c). With S being the set of machine states, I
being the set of machine instructions on the set of S which can be performed the represented
machines and c being a cost function c : I 7→ N which assigns costs to every machine
instruction. This costs represent the runtime of an instruction for this model.

In general such a machine model is an abstraction for a program domain. A program
domain denotes any environment which allows the execution of program which can be
represented by our previous definitions of machine state and machine instructions. An
example would be any imperative programming language: the commands used in such
a language can be described as machine instructions and the memory of the programs at
runtime can be described as machine state in our abstract model.

In our previous definitions specific machine models with very similar properties are
treated as distinct models. We want to group similar models to find optimizations which
work for such models. For example, we can consider different machine models using
random access memory with different memory sizes. This way, we can create specific
algorithms for various input sizes.

Definition 8 (Family of machine models). We define a group of machine models M as
family of machine models if all models provide the same set of instructions and there exist
a surjective function f : N 7→ M which enumerates all models in the family. Usually we
have additional information about the runtime behavior. For example if our function f(n)
enumerates machine models by different RAM sizes we know that the runtime of read and
write operations to this RAM have polylogarithmic asymptotic growth with the RAM size
n in a family representing MPC.

We will late use the input parameter for the enumerating function of a family of machine
models to represent a public input parameter for MPC programs. For example, the input
size of a program can be represented by this parameter.

As mentioned in definition 7 in order to describe a specific machine model for our
abstract model we have to define these three components:

(i) The set of machine states S which represents the state of a program execution for
our machine. This set describes the current state of the whole memory used by a
machine between machine instructions.

(ii) The set of machine instructions I which describe all possible transition between ma-
chine states

(iii) A cost function c assigning a cost value for all machine instructions

11



4 Machine and Compiler Model

Definition 9 (Program). A program P in our model is defined as a list of machine in-
structions which is equivalent to a finite sequence of functions. The number of machine
instruction in the sequence P is denoted as Pmax. The expected number of machine in-
structions which have to be executed in order to run a program P for an average input is
denoted by #MI(P).

The execution of such a program in our model is represented by successively applying
machine instructions to an input program state until an output state is reached. A machine
instruction is a mathematical function which maps a previous program state to a new one.

A program P with a number of Pmax instructions can be executed by applying every
machine instruction consecutively to the current machine state. This is shown in algo-
rithm 1. The applied machine instruction is determinated by the program counter which is
part of the machine state. The initial state contains the input parameters for the program
and the program counter is set to one (other values are chosen arbitrary). When the pro-
gram counter is greater than the number of instructions in the program Pmax the execution
ends and the program is finished. The final machine state contains the algorithm’s output.

Algorithm 1 out← RegularExecution(P , i)
Executes program P for a given input i.
currentState← create initial state for input i
pc← 1
while pc <= Pmax do

mi← P(pc) . Fetch the next machine instruction mi from P
currentState← mi(currentState) . Apply mi to the current state
pc← currentStatePC . Get program counter from currentState

end while
return currentStateOut

In order to translate an input program into a MPC program we have to define the re-
quirements for a machine model representing a MPC domain and we have to define the
relation between MPC and regular machine models.

Definition 10 (MPC machine model). We call a machine model M̂ a MPC model if the
program domain represented by M̂ can be use to perform secure multiparty computations
as described in section 2.2. In particular we want this MPC program domain to satisfy
these properties:

(i) The data stored within the machine state represents shares which cannot be read by
any strict subset of the involved parties except when all parties decide to unveil the
value.

(ii) Every function represented by a machine instruction does not reveal any information
about the value stored within the machine state.

12



4.2 Problem definition

This implies we can’t use the program execution described in algorithm 1 in practice
since the parties cannot read the program counter from the current machine state. The
algorithm for executing programs in such a MPC model will be described in section 4.2.

Definition 11 (MPC convertable program). We define a program in our model as MPC
convertable if for the corresponding set of machine states S and set of used machine in-
structions I exists a MPC model M̂ = (Ŝ, Î , ĉ) with Ŝ being isomorphic to S with an
isomorphism ϕs : S 7→ Ŝ. In addition we want the set of machine instructions I to be
isomorphic to Î with an isomorphism ϕi : (S 7→ S) 7→ (Ŝ 7→ Ŝ) which maps every ma-
chine instruction from the original model to an equivalent instruction in the MPC model by
fulfilling the following property: ∀ins ∈ I : ∀s ∈ S : ϕs

(
ins(s)

)
=
(
ϕi(ins)

)
(s).

The previous definition applies to programs for families of machine models if it holds
for all machine models in this family and there is a family of machine models containing
all corresponding MPC models.

In order to describe the oblivious program execution for our MPC model we define a
formal conditionalSet-function which takes the previous and the next machine state and
a secret share of a bit b and return the previous state if b = 0 and the next state otherwise.

conditionalSet(b, prev, next) =

{
prev b = 0

next b = 1
(4.1.1)

Regarding the definition of conditionalSet you would expect a runtime asymptotic to
the size of the underlying machine states. But we’ll only use this function after a number of
machine instructions were performed which are known in advance of the actual program’s
execution. And by doing this, we can implement this function in practice by conditionally
applying the part of the machine state which can be changed by the preceding machine
instructions. Thus we can assume an asymptotic runtime equal to the machine instructions
mentioned.

4.2 Problem definition

Given an input program which fulfills our definition for a MPC convertable program the
predicated instruction-compiler should be able to find the fastest MPC protocol implement-
ing the input program. We can easily create a secure (but inefficient) output for any input
program by using our required isomorphism ϕi and conditionalSet. Instead of executing
only one instruction at a time, we have to execute every instruction used by the input pro-
gram in every step and combine it with our conditionSet-function. Using this function
allows us to only apply changes to the machine state if the current program counter points
to the current machine instruction. This oblivious execution of a program is shown in algo-
rithm 2 using the notation for MPC primitives described in table 2.1. Following this naive
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4 Machine and Compiler Model

approach we have to execute every machine instruction for every step of our program. The
runtime T of the resulting program for an input program P with a set of machine instruc-
tions I is equal to the accumulated runtime of all machine instructions multiplied by the
number of executed instructions. Denoting the cost function of the MPC machine model
as ĉ the runtime T of our MPC program execution is given by the following equation:

T = #MI(P) ·
∑
i∈I

ĉ(i) (4.2.1)

Depending on the size of the program it can be more efficient to execute all machine
instructions given by the machine model. This idea was already implemented by Marcel
Keller in [8] and also allows to hide the program being executed from the adversaries.

Since the value of the program counter in a MPC model is a shared secret between the
involved parties we cannot read its value to determine the termination of a program without
leaking additional information about the inputs. Instead we have to use an upper bound
value which gives us the number of instructions executed before the program execution is
stopped. In algorithm 2 we consider a program P for a family of machine models. For this
reason we use an upperBound-function which gives us an upper bound for every machine
model given by a public parameter n known to all parties which denotes what machine
from the family of the machine models will be used.

Algorithm 2 [out]← ObliviousExecution(P , upperBound, i)
Performs an oblivious execution of program P with Pmax instructions with for a secret-
shared input i.
currentState← create MPC machine state for input i
pc← [1]
for j ← 1 to upperBound(n) do

for k ← 1 to Pmax do . Loop through all machine instructions
mi← P(k)
nextState← mi(currentState)

. Only apply mi to the machine state if the program counter point to k
b← EQZ(pc− [k])
currentState← conditionalSet(b, currentState, nextState)
pc← currentStateOut

end for
end for
return currentStateOut

We can easily improve the runtime of the oblivious program execution by executing
multiple successive non-jump machine instructions in a single step. This can be achieved
by grouping these machine instructions together which would be part of the same vertex
when constructing a control-flow graph of the program. If we do this, we still have to run
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4.2 Problem definition

every machine instruction in our program on every step, but instead of one step for every
single machine instruction we have one step per group. We call these groups of machine
instructions predicated instruction.

Definition 12 (Predicated instruction program). We define a predicated instruction pro-
gram P̂ as finite sequence of finite sequences of machine instructions. Every sequence of
machine instructions in P̂ is called a predicated instruction. The total number of sequences
in P̂ is denoted as P̂max.

Let PI be the set of predicated instructions used in our compiled program P̂ and
#PI(P̂) be the number of predicated instructions required until the execution of P̂ has
finished. The total runtime T of the output program is given by

T = #PI(P̂) ·
∑

ins∈PI

insmax∑
i=1

ĉ(ins(i)) (4.2.2)

with insmax being the number of machine instructions from the predicated instruction
ins and ĉ being the cost function of the MPC machine model.

An optimal compiler has to find a predicated instruction program P̂ which results in
the fastest average-case runtime. We will first introduce two kinds of definitions for a
predicated instruction compiler and then define the corresponding optimization problem.

Definition 13 (Predicated instruction compiler). We define a predicated instruction com-
piler C between a machine modelM and a MPC machine model M̂ (or two families of
such modelsM and M̂) as a probabilistic polynomial time algorithm. Given a MPC con-
vertable input program P for M C has to calculate a predicated instruction program P̂
as well as an upperBound function in the MPC machine model M̂ (or all MPC machine
models in the family M̂) using the isomorphisms ϕs, ϕi as described by definition 11. The
output of compiler C has to fulfill the following requirements:

For all valid inputs i for P holds: If we run algorithm 1 with P and i as input and
remember the last value of currentStatewe can run the compilers output and successively
apply the predicated instructions as shown in algorithm 3. Then we compare the output of
the last state from the regular algorithm with the output from the last state of the oblivious
algorithm. If we apply our ismorphism for machine states ϕs to the former the result has to
be equal to the latter. This can be described by the following equations:

CM,M̂(P) = (P̂ , upperBound)

∀i ∈ input(P) : ls(PredicatedInstrExecution, P̂ , upperBound, i)Out

= ϕs(ls(RegularExecution,P , i))Out

(4.2.3)
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With input(P) denoting all possible inputs for programP and ls(x, p1, p2, . . . ) denoting
the last machine state in the execution of algorithm x with parameters p1, p2, . . . . If the
predicate instruction compiler is defined on a family of machine models the variable n
denotes a public integer indicating which model of the family to use, otherwise n is omitted
and upperBound is a value instead of a function.

Algorithm 3 [out]← PredicatedInstrExecution(P̂ , upperBound, i)
Performs an oblivious execution of a predicated instruction program P̂ with P̂max instruc-
tions with a given for a secret-shared input i.
currentState← create MPC machine state for input i
pc← [1]
for j ← 1 to upperBound(n) do

. In every step execute every machine instruction of every predicated instruction
for k ← 1 to P̂max do

pi← P̂(k)
nextState← currentState
for l← 1 to pimax do

mi← pi(l)
nextState← mi(currentState)

end for
. Only apply pi to the machine state if the program counter point to k

b← EQZ(pc− [k])
currentState← conditionalSet(b, currentState, nextState)
pc← currentStatePC

end for
end for
return currentStateOut

When we want to transfer a predicated instruction program P̂ into a program of the
MPC program domain represented by the MPC machine model we will unroll the inner
loops shown in algorithm 3 for P̂ . This means in practice our program in the MPC program
domain only contains a single loop we’ll call execution loop which contains all machine
instructions from our program P̂ in addition to some instructions to conditionally apply the
machine instructions.

The extent of definition 13 is very wide since the output program P̂ has nothing related
to the input expect producing the same result when using the same input. Since we expect
the input program to have near optimal runtime we can state a more narrow definition.

Definition 14 (Simplified predicated instruction compiler). We define an probabilistic
polynomial time algorithm C as simplified PI-Compiler if it holds the definition of a PI-
Compiler, but also fulfills additional constraints to the output predicated instruction pro-
gram P̂ . Let P be the input program and Pmax the number of sequences in this program.
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We require every sequence in P̂ to be a part of the input program P mapped by the isomor-
phism for machine instructions ϕi:

∀ins ∈ P̂ : ∃i ∈ [0..Pmax] : ∀j ∈ [0..insmax] : ins(j) = ϕi(P(i+ j)) (4.2.4)

Definition 15 (Compiler Optimization Problem). We define the (simplified) predicated in-
struction compiler optimization problem based on the definition of the predicated instruc-
tion compiler. Given an MPC convertable program P for a single machine model or a
family of models we want to find a predicated instruction program P̂ which holds the same
requirements as the output of a predicated instruction compiler from definition 13 (and def-
inition 14 respectively) with the minimal runtime across all possible outputs. The runtime
of such an output is given in equation 4.2.2.

If we assume an input program with optimal runtime for this optimization problem the
runtime of the solution from the simplified problem is at most a constant factor slower than
the solution of the full problem. This is true since we can always create a solution that
executes every machine instruction in each step and thus achieve a runtime equal to the
runtime in equation 4.2.1.

4.3 Proof for non computability of the compiler
optimization problem

Our generic model introduced in section 4.1 is able to simulate a given number of steps
of a Turing machine. Using this property, we show that given an optimal compiler we can
create an algorithm solving the halting-problem for a given Turing machine.

Theorem. The compiler optimization problem as described in definition 15 is non com-
putable.

Proof. We want to proof the non computability of the compiler optimization problem by
reducing it to the non computable halting problem [21]. We assume that the compiler op-
timization problem is computable and therefore a probabilistic polynomial time algorithm
C exists which can solve this problem. Given such an optimal compiler C we can create a
probabilistic polynomial time algorithm solving the halting-problem for any given Turing
machine M and input x. We do this by running C for a family of programs with an integer
parameter n enumerating this family. The program consisting of the following steps:

(i) Simulate n steps of Turing machine M with input x.
(ii) If m has halted return 1 otherwise return 0.
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Our compiler C will always return a program with the best average-case runtime. As a
consequence the machine instruction for "return 1" cannot appear in the output program if
the Turing machine M will never halt with input x. Otherwise, we could construct a faster
program by removing said machine instruction since it will never be executed.

The resulting program either contains a machine instruction for "return 1" or not. If
this particular machine instruction exists in the output of C, our algorithm returns "M does
eventually halt with input x", otherwise our algorithm returns "M will run indefinitely".
This implies we can construct a Turing machine solving the halting problem. This is a con-
tradiction to the fact that the halting problem is non computable. Therefore our assumption
is false.

The algorithm can be performed with a compiler for the full as well as the simplified
problem. This concludes both problems are non computable. Notably, we can add more
instructions in program described just before the "return 1" instruction. We can use this
to show that even a compiler that is able to optimize the runtime to a fixed multiple of the
optimal runtime is non computable.
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In this section, we will discuss possible optimizations which can be applied by a predi-
cated instruction compiler. We assume that we are given an existing predicated instruction
program we want to optimize. This is always feasible since we can simply create predi-
cated instruction from the control-flow graph of our input program as described in section
4.2. In general we want to minimize the time of the program execution by minimizing
the time spend running predicated instructions which are not applied in the execution loop
(the outer loop in algorithm 3). First. we do this by reducing the number of predicated
instruction in the same loop. Then. we try to reduce the total runtime by removing costly
machine instructions. Finally. we decrease the share spent running unnecessary predicated
instructions by reordering the instructions.

5.1 Multiple instruction loops

Our first approach for improving the runtime of a program is splitting the single predicated
instruction loop containing all instructions as shown in algorithm 3 into multiple smaller
loops with fewer instructions. Since every loop contains less unnecessary instructions this
results in a faster total runtime.

This approach is straight forward since we can only improve the runtime by doing this.
But it can only be used if the program can be splitted, into multiple sequential phases with
the requirement that the number of executed predicated instruction is known in advance.
Every phase then results in a loop containing only the predicated instruction actually used
within this phase.

5.2 Duplicated instruction removal

Another straight forward optimization approach is the removal of duplicated machine in-
structions. The execution of a compiled program requires us to run every instruction in
every step whether or not this instruction is needed in this step of the program execution.
Therefore we want to reduce the total program size as much as possible. Before we can
remove a duplicated instruction we have to add a new common predicated instruction con-
taining said instruction. However as a drawback this change increases the total number of
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predicated instruction calls. An example how the instructions can be replaced is displayed
in the following figure 5.1.

Predicated Instruction 1
Instruction A
Instruction C

Predicated Instruction 2
Instruction B
Instruction C

Predicated Instruction 1
Instruction A
pc <- Predicated

Instruction 3

Predicated Instruction 2
Instruction B
pc <- Predicated

Instruction 3

Predicated Instruction 3
Instruction C

Figure 5.1: An example for replacing machine instructions with multiple occurrences. On the
left side the original instructions are displayed. The right side shows the predicated in-
structions with machine instruction C replaced. An assignment to the program counter
in the program state is denoted with pc←.

Instead of performing an expensive machine instruction we create a new predicated in-
struction PInew containing said machine instruction once and replace all other occurrences
with a jump instruction to the new predicated instruction. In general, unless the replaced
machine instruction is at beginning or end of the predicated instruction we also have to
split the original predicated instruction after the replacement into two parts. In this case we
need PInew to include a write to the program counter pointing to second part of the original
predicated instruction. This can be done by expending the MPC machine model to contain
a dedicated register that contains the target program counter after instruction PInew was
executed. In practice this results in a constant memory overhead per replaced instruction.

Notably in the displayed example since we replace only two occurrences of instruction
C the substitution shown in this example can never result in a faster runtime. This is ob-
vious when we use the equation 4.2.2 for the required runtime. The number of predicated
instruction calls is doubled since for each call two predicated instructions have to be exe-
cuted. Let Tx the runtime of an instruction x (Tpc is the runtime for the assignment of the
program counter) and #PIy the average number of calls for the predicated instruction y.
This example can be expressed though the following inequality 5.2.1.

(#PI1 + #PI2)(TA + TB + 2TC) < 2(#PI1 + #PI2)(TA + TB + 2Tpc + TC) (5.2.1)
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5.2 Duplicated instruction removal

Generalization

In general we can check the impact of this optimization on the average runtime by using
the following equation: Let #PI the average number of predicated instruction calls in
the whole program and T1 the runtime of a single iteration of our predicated instruction
loop. We assume that in every iteration of the loop only a single predicated instruction
can be executed which results in the total runtime T of the program being given by T =

#PI · T1. Let further #̃PI be the average number of predicated instruction calls after our
optimization with OC be the overhead #̃PI = #PI +OC . Similar T̃1 denotes the runtime
of a single loop iteration after the optimization was applied with OT being the overhead
such as T̃1 = T1 + OT . Since we want to reduce the runtime of the loop we want the
overhead OT to be negative in order to be useful. Our optimization results in a shorter
average runtime if it fulfills the following inequality:

#̃PI · T̃1
#PI · T1

< 1⇔ (#PI +OC)(T1 +OT )

#PI · T1
< 1

⇔ 1 +
OC

#PI
+
OT

T1
+

OCOT

#PI · T1
< 1

(5.2.2)

This can be simplified to the following condition:

OCOT +OT#PI +OCT1 < 0 (5.2.3)

In order to determine the value of OC we denote the set of predicated instructions that
contain the duplicated instruction as I . We also denote with ci the number of predicated in-
structions calls required to replace a single instruction call of instruction i after the replace-
ment of machine instructions. This number ci is depending on the number and position of
the performed replacements. We can describe ci using the following equation:

ci = 2cbi + 3ci + 2ce (5.2.4)

With cbi = 1 if the duplicated instruction is the first instruction in i and cbi = 0 otherwise.
Similar cei = 1 if the duplicated instruction appears at the end of i, otherwise cei = 0. ci

denotes the number of occurrences of the replaced instruction which are neither at the
beginning nor at the end of i. This results in the following formula:

OC =
∑
i∈I

ci#PIi (5.2.5)

Additionally in order to describe the value of OT we denote the runtime of our replaced
machine instruction as Ts. The total runtime overhead for writing the program counter and
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the callback register is denoted as Tr. The value of Tr is depending on the position of the
replaced machine instruction within the predicated instructions.

OT = (1− |I|)Ts + Tr (5.2.6)

As mentioned before we need at least three occurrences with the same instruction to
achieve a reduction of runtime in total. If the machine instruction that will be replaced is not
at the beginning or the end of the predicated instruction the original predicated instruction
has to be split into two parts which is executed before and after the new added instruction.
Thus the number of predicated instruction calls for such an instruction triples.

This overhead limits the number of situation where the application of this optimization
can successfully improve the runtime. On the other hand we can further improve the num-
ber of replaced instructions by not only looking for exact duplicates but instead also look
for similar instruction.

For example, as mentioned in section 2.1 a reading or writing access to an oblivious
RAM often has a polylogarithmic runtime to RAM size and takes in most cases noticeably
more time than other machine instruction. We can imagine we are given an input set of
predicated instruction where each instruction containing a RAM write instruction at the
end we can group these together. This is possible even if these instructions are not exactly
the same as they might use different registers for parameters of the write operation. In this
case we can add additional registers to the working memory of MPC machine model which
contain the parameters of the operation.

To further generalize this optimization we cannot only look at single instructions for
replacement but also instruction sequences which are duplicated. Finding the optimal pro-
gram using this optimization becomes vastly more difficult: In the single instruction case
we can check every single machine instruction and performance a replacement regardless
of the order of checking since the number of instruction calls doesn’t change between re-
placements1. When we consider instruction sequences a replacement influences the number
of occurrences for other instruction sequences. As a consequence an algorithm finding the
optimal replacements for single instructions has linear runtime whereas such an algorithm
for instruction sequences has exponential runtime. Although since the number of replace-
ments that result in a better runtime is usually small it should be feasible to perform a
complete search in order to find the best replacements especially for small programs.

5.3 Switch instruction order

The order of the predicated instructions has a great impact on the total runtime of the pro-
gram. As an example we can assume four predicated instruction A, B, C, D with instruction

1Except for the number of calls to register write that are usually cheap
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A ending with a jump to instruction D and D ending with a jump to either A or B (on av-
erage equally distributed) depending on the program state. We denote the runtime of our
program with T . If we execute our program with the instruction order A-B-C-D it is easy
to see that the instruction order A-D-B-C has a runtime of 1

2
T .

Since the search space of this problem is exponential in size to the number of predicated
instruction it is unlikely that there is a polynomial time algorithm which finds the optimal
order given a set of predicated instructions. Nevertheless there have been an optimization
approach for a similar situation with SIMD (single instruction, multiple data) computa-
tions [16]. In the execution of a predicated program a single step whenever a predicated
instruction has been executed is either useful and the result is applied to the machine state
or the result is discarded. We want to construct a functionW which takes an assignment for
the order of predicated instructions as an input and calculates the average share of useful
instructions. The idea is to maximize such a function W .

We construct this function W by looking at probabilities for one predicated instruction
being followed another and creating a Markov chain model depending on this data. A
Markov chain model describes a stochastic process with discrete states and time steps.
Every state has probability for each state assigned to change to this state in the next time
step. This is called transitions.

Let n denote the number of predicated instruction and m be the number of instructions
in our execution loop. Our Markov model contains n ·m states Si,j . Such a state represents
the program counter pointing to instruction i while the program execution is at position j
within the execution loop.

We denote the assignment of instruction within the execution loop as a n× n matrix O
with elements from {0, 1} with Oij = 1 denoting instruction i is placed at position j within
the execution loop. Furthermore the probability of a jump from instruction i to instruction
k is denoted as pij . ~ui denotes the unit vector in the i-th dimension. These values can be
estimated by sampling typical inputs for the program. The transition probabilities T (a, b)
from a state a to a state b are given by:

∀i ∈ [1..n] : ∀j ∈ [1..m− 1] : ∀k ∈ {x ∈ [1..n]|x 6= i} : T (Si,j, Sk,j+1)

= Oijpik (5.3.1)
∀i ∈ [1..n] : ∀j ∈ [1..m− 1] : T (Si,j, Si,j+1) = Oijpii + (1−Oij) (5.3.2)
∀i ∈ [1..n] : ∀k ∈ {x ∈ [1..n]|x 6= i} : T (Si,m, Sk,1) = Oimpik (5.3.3)
∀i ∈ [1..n] : T (Si,m, Si,1) = Oimpii + (1−Oim) (5.3.4)

All other transition probabilities are zero. This results in a sparse transition matrix M
for our model which will be described using a number of n2 submatrices Mij with m×m
elements.
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M =


T (S1,1, S1,1) T (S1,2, S1,1) . . . T (Sn,m, S1,1)
T (S1,1, S1,2) T (S1,2, S1,2)

... . . .
T (S1,1, Sn,m) T (Sn,m, Sn,m)



=


M11 M21 . . . Mn1

M12 M22
... . . .

M1n Mnn


(5.3.5)

∀i ∈ [1..n] : ∀j ∈ {x ∈ [1..n]|x 6= i} : Mij

= pij


0 0 . . . 0 Oim

Oi1 0
0 Oi2
... . . .
0 Oi,m−1 0


(5.3.6)

∀i ∈ [1..n] : Mii = pii


0 0 . . . 0 Oim

Oi1 0
0 Oi2
... . . .
0 Oi,m−1 0



+


0 0 . . . 0 1−Oim

1−Oi1 0
0 1−Oi2
... . . .
0 1−Oi,m−1 0



(5.3.7)

We can calculate a stationary distribution t ∈ Rmn for the presented model by solving
the equation Mt = t using the following help functions h(x) = 1 + (m + x− 2) mod m,
g(x, y) = h(x) + (y − 1)m:

∀i ∈ [1..nm] :

(
n∑

j=1

pjdi/meOj,h(i)tg(i,j)

)
+ (1−Odi/me,h(i))tg(i,di/me) = ti (5.3.8)
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We can calculate a share W in this distribution gives us the amount of work our algo-
rithm actually spends performing useful instructions.

W =
n∑

i=1

m∑
j=1

Oijtg(i,j) (5.3.9)

Our goal is to find a matrix O which maximizes this share W while fulfilling the con-
straints given by equation 5.3.8. Unfortunately, calculating W for an input O involves
solving a system of equations with nm equations. Thus, we have to rely on generic so-
lutions for optimization problems such as hill climbing, simulated annealing or genetic
algorithms.

Duplicating instructions

In contrast to the removal of duplicated machine instructions it can also be useful to du-
plicate a often used instruction with a short runtime on purpose. As mentioned before we
want to maximize the time spend executing useful predicated instructions which are actu-
ally required in the current step of the programs execution. There are two possibilities to
find good candidates for duplicated predicated instructions:

• An analytical analysis of the predicated instruction program can be performed.
• By doing an empirically analysis for typical program inputs

Compared to the execution of a regular program the runtime of an execution for a predi-
cated instruction program slows down when we increase the number of instructions. Hence,
the duplication of instructions must result in a reduction of the upper bound given by pred-
icated instruction compiler in order to be useful. Looking at the model mentioned in the
previous section we can expand it to include instruction duplication by using n as a target
parameter to maximize W rather than a fixed value.
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6 Application

We will apply our different MPC compiler techniques to the practical problem of find-
ing the minimum-spanning tree (MST) of a graph in this section. We define minimum-
spanning tree problem with the following definition.

Definition 16 (Minimum-Spanning Tree). Given a connected graph G = (V,E) and an
edge weight function w : E 7→ R we define a subset E ′ ⊆ E as minimum-spanning tree if
the graph G′ = (V,E ′) is connected and the total edge weight wT (E ′) =

∑
i∈E′ w(i) of E ′

is minimal across all subset of E which form a connected graph.

Definition 17 (Minimum-Spanning Tree Problem). Given a connected graph G = (V,E)
and an edge weight function w : E 7→ R find a subset E ′ ⊆ E which is a minimum-
spanning tree for G and w.

6.1 Baseline algorithm

For a comparison to our predicated instruction based approach we will also introduce a
solution similar to the contribution by Wang et al. [22]. The authors published an idea
for creating an oblivious MPC data structure based on the functionality of the usual data
structures and use these to translate an existing algorithm into an oblivious MPC algorithm.
In this case we want to use an oblivious union-find data structure to build an oblivious
version of Kruskal’s algorithm.

Definition 18 (Union-Find data structure). A union-find data structure represents a number
of n sets and provides two functions.

(i) A find function which is given an element (an integer) and returns a representative
for this set. Two elements are in the same set if the representatives returned by the
find function are equal.

(ii) A union function which is given two representatives returned by find will join the
two sets represented by the input.

Compared to common definition the number of sets is fixed and has to be known from
the beginning. It doesn’t provide a makeSet-function to create new sets.
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6.1.1 Oblivious Union-Find

The naive way of implementing a MPC union-find data structure is using an array arr of
shares which holds the following invariant: ∀i < n : arr[i] is a share of the representative
of i.

For every find and union operation we have to iterate through the whole array. The
find operation uses an equal zero function (EQZ) as described in section 2.2 to select
the correct element from the array without revealing any information about the requested
element. This is displayed in algorithm 4. In a similar way the Union function shown
in algorithm 5 replaces the corresponding representatives in the array. This results in a
runtime of O(n) for each operation.

Algorithm 4 [a]← Find([i]) Find represent [a] for a given element [i]

Require: i ≥ 0 ∨ i < n
[a]← [0]
for j ← 0 to n− 1 do

[b]← EQZ([i]− [j])
[a]← [a] + [b] · arr[j]

end for
return [a]

Algorithm 5 Union([a], [b]) Joins the sets containing element a and b
[r0]← Find([a])
[r1]← Find([b])
[t]← [r0] < [r1]
([s0], [s1])← CondSwap([t], [r0], [r1])
[s] = [s0]− [s1]
for i← 0 to n− 1 do

[u]← EQZ(arr[i]− [s0])
arr[i]← arr[i] + [u] · [s]

end for

In order to improve the asymptotic runtime of this data structure we can replace the
array of secret shares with an ORAM with size n. We assume such an ORAM provides
a function Get and Set as described in definition 3. Get(p) with returns a share of the
value at position given by an input share p. Set(p, v) changes the value at position p to a
given value v. Both of these inputs are given as shares.

Using an ORAM arr allows us to directly random access any element in polylogarithmic
runtime instead of iterating through the whole array. Using this property we can improve
the asymptotic runtime by changing the invariant: Compared to the naive approach we want
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the ORAM to represents a graph where every vertex v has a single successor arr(v). The
representative of a vertex is found by following the successor until r is found that satisfies
arr(r) = ([r], [c]) with [c] as height of the tree starting at root r. The number of successor
to follow has an upper limit of log2(n). We can achieve the last property by using a union
by rank operation. This means we will always attach the smaller trees to the larger ones.

The Find-operation is shown in algorithm 6. Using our invariant we have to follow
the successors given by our ORAM dlog2(n)e-times. The Union-operation displayed in
algorithm 7 replaces the representative of the smaller tree with a reference to the larger one.
If the height of both trees is equal the selected representative for both subtree is selected
arbitrary but the height of the chosen representative is increased by one.

Algorithm 6 [a]← Find([i]) Find represent [a] for a given element [i]

Require: i ≥ 0 ∨ i < n
([r], [c])← Get([i])
for j ← 0 to dlog2(n)e do

([r], [c])← Get([r])
end for
return ([r], [c])

Algorithm 7 Union([a], [b]) Joins the sets containing element a and b
([r0], [c0])← Find([a])
([r1], [c1])← Find([b])
[t]← [c0] < [c1]
[r]← IfElse([t], [r1], [r0])
[c]← IfElse([t], [c1], [c0]) + EQZ([c1]− [c0]) · EQZ([r1]− [r0])
Set([r0], ([r], [c]))
Set([r1], ([r], [c]))

The runtime of these Union and Find operation now depend on the underlying
ORAM’s runtime. We denote the runtime of the ORAM as TGet and TSet for the Get
and Set function respectively. The runtime of the Find operation is O(log(n)TGet) and
O(log(n)TSet) for Union. When using a path ORAM proposed by Wang et al. [22] this
results in a runtime of O(log(n)4) for both Union and Find. Although the asymptotic
runtime is better than the naive approach the constant factor is much larger so for small
input the naive implementation should outperform the ORAM approach.

6.1.2 Blackbox Kruskal

Using one of the oblivious data structures described above we can write an oblivious ver-
sion of Kruskal’s algorithm using the union-find data structure as a black box. Kruskal’s
algorithm is a greedy algorithm. It finds the minimum spanning tree in two phases:
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(i) The input edge array will be sorted by weight.

(ii) A union-find data structure will be used to successively create the minimum spanning
tree.

The first phase can be solved by using known sorting algorithms which compare and
swap elements within an array independent from the actual data. These algorithms are
called sorting networks. This means as long as we are given a compare and swap operation
which fulfills our definition for MPC we can easily construct a sorting program as MPC
protocol. We tried if we can use our proposed predicated instruction approach in order
to implement well-known RAM sorting algorithms as MPC programs. But preliminary
experiments showed that an implementation of the quicksort algorithm using predicated
instructions has longer runtime in practice than an implementation of the bitonic sorting
network. This was not unexpected since the asymptotic runtime of a n-element bitonic
sorting network is O(n log2 n) when executing the comparison sequentially and the ex-
pected asymptotic runtime of quicksort isO(n log n) which is slowed down by a faction of
log3 n because of the runtime overhead for the ORAM access. Although in theory it could
be still possible to find an ORAM algorithm with similar asymptotic runtime since so far
only a lower bound of O(log n) per ORAM access has been proven.

We will now assume our input array is already sorted and focus on the second phase on
the algorithm.

In the second phase a union-find data structure with a new set for every vertex in the
graph will be created. Then the algorithm will build the minimum spanning tree by be-
ginning with an empty result array and walking through every sorted list of edges starting
with the lowest weight edge. The algorithm will use the find-operation for the two vertices
connected by the edge to check whether or not the vertices are within the same set in the
union-find data structure. If both vertices are not within the same set the union-function
will be called with both sets and the edge will be added to result set.

The second phase of Kruskal’s algorithm is shown in algorithm 8. Here
UnionFind(n) denotes the creation of a union-find data structure with n elements and
ObliviousArray(n) denotes the creation of an ORAM with capacity n.

As described before the algorithm consists of a loop which will be executed for every
index i of the edge array. In every step we perform two Find calls to get the representatives
of both connected vertices connected by the current edge. Then we check whether or not
they belong to the same set and store the result within share c. We can also call the union
operation in every step because calling union for two representatives of the same set does
not change the state of the union-find data structure. In every step we will write the current
edge index into and output array out at index k then we will add c to index k. After
executing the loop the first nv − 1 elements of out array contains the indexes of the MST
while the last element contains always index of the last edge and can be ignored. Since the
number of union and find calls is fixed for every input size we don’t have to hide which
operation has been executed on the data structure.
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6.2 Predicated instruction algorithm

Algorithm 8 out← Kruskal(vertices, edges, nv, ne)

Require: List of edges is sorted
u← UnionFind(nv)
out← ObliviousArray(nv)
[k]← [0]
for i← 0 to ne − 1 do

([v0], [v1])← edges[i]
[r0]← u.Find([v0])
[r1]← u.Find([v1])
u.Union([r0], [r1])
[c]← [1]− EQZ([r0]− [r1])
out.Set([k], [i])
[k]← [k] + [c]

end for
return out

6.1.3 Runtime

The runtime T of this “Blackbox” Kruskal algorithm is mostly depending on the runtime
of the union and find-operations. It’s given by the following equation:

T = TI + ne(2TF + TU + TEQZ + TSet + T+) (6.1.1)

With TI denoting the runtime of initialization of the UnionFind and
ObliviousArray data structures, ne being the number of edges, TF , TU , TEQZ ,
TSet and T+ respectively denoting the runtime of a single Find, Union, EQZ, Set
operation and an add operation between two shares.

Using the trivial union-find data structure this results in asymptotic runtime ofO(nvne)
with nv denoting the number of vertices and ne denoting the number of edges. Compared
to that using the second union-find implementation with an ORAM proposed by Wang et
al. [22] the algorithm has an asymptotic runtime of O(log(nv)

4ne).

6.2 Predicated instruction algorithm

As described in the previous section Kruskal’s algorithm can be written as an algorithm
without any branches depending on input data. Hence, with the discussed optimizations
it is not possible to improve the runtime of the “blackbox” version of the algorithm using
predicated instructions. We can however improve the runtime by considering the whole
union-find data structure as part of the algorithm.
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This way, we can use a union-find algorithm with path compression to improve the
overall runtime of the algorithm. Using path compression means after each find-operation
we will update the path of every visited vertex in our union-find data structure to point
to the representing vertex directly. This saves search steps when using the find-operation
multiple times on the same element. Similar to the union-find structure above we use an
ORAM to store the representatives of a node. It is shown that a union find data structure
using both union-by-rank and path compression results in a amortized runtime O(α(n))
with α(n) being the inverse Ackermann function [20] which is a function whose value
grows very slow so that we can assume a value of 5 for all reasonable input sizes n.

In order to find predicated instructions for our algorithm we look at the control-flow
graph of our algorithm. In order to better illustrate this we split the main loop of Kruskal’s
algorithm with integrated union-find into these steps:

(i) Read the next edge in the sorted edge array and put store the vertex ids into registers.
(ii) Perform a single step of the find-operation. A single step contains following the next

edge the graph represented by representative ORAM. Within this step we will also
perform a path compression step.

(iii) Check whether or not the find-operation is finished.
(iv) Write the edge into the output array
(v) Perform a union-operation

Figure 6.1: Control-flow graph for the main loop of Kruskal’s algorithm. Every vertex represents
a set of code that will be executed together. A directed edge means the code of the
vertex being pointed at can be next to be executed after the code in the source vertex.
This could be cause by either a conditional jump between those code segments or
because there are non-jump instructions placed in succession.

The implementation of these steps are described respectively in algorithms 9, 10, 11,
12 and 13. We will use these algorithms to construct our predicated instructions. As
such the first parameter in each algorithm is a share of a bit c which is c = 1 if this
predicated instruction should be applied in this step otherwise c = 0 (except for algorithm
11 which doesn’t use any writing function). This is a practical implementation of the
conditionalSet-function in the abstract execution loop displayed in algorithm 3.
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6.2 Predicated instruction algorithm

Figure 6.1 displays the control-flow of Kruskal’s algorithm. The labels of the vertex
describe which of the previous listed steps will be executed in this step of the algorithm.
The vertex labeled with ∗ represents the initialization of data structures and the ∗∗ vertex
represents some additional code for formatting the output. Since the graph has three ver-
tices for the main loop of Kruskal’s algorithm we will use three predicated instructions in
our MPC algorithm. Every predicated instruction consists of the steps shown by the labels
in figure 6.1.

The resulting algorithm is shown in algorithm 14. The main loop starting in line 13
contains these three predicated instructions. Each instruction begins with the line [c] ←
EQZ([pi]−[x]) where x is the number of said instruction. The bit share [c] decides whether
or not the following predicated instruction should be active in this step of the algorithm. As
before the algorithm will successively go through the sorted edge array. The find operation
will be performed with the two representatives for both vertices adjacent to the current
edge at the same time. Notably the number of loops is limited by the inverse Ackermann
function times the number of edges in the input graph. As shown by Harfst and Reingold
in [6] the amortized cost for a single find-operation is α(m,n) + 3 with m being the total
number of operation on a n-element union-find data structure. That’s why we can chose
l = ne ∗ 3 ∗ (a(ne, nv) + 3) as limit for the number of loop iterations since we perform ne

operations on a union-find data structure of size nv. The additional factor 3 is caused by
the number of predicated instructions since at least 1

3
of all iteration execute the relevant

first predicated instruction.

This algorithm has a better asymptotic runtime than the "blackbox" version of Kruskal’s
algorithm. However, in practice it is slower since it has a very large constant factor. This is
caused by the high number of costly accesses to the ORAM.

Algorithm 9 ([v1], [v2])← GetNextEdge([c], edgeArray, [nextEdge], [v1], [v2])

Require: c = 0 ∨ c = 1
Ensure: Returns an edge from edgeArray with index nextEdge if c = 1 otherwise the

input parameters ([v1], [v2]) will be returned.
([ṽ1], [ṽ2])← edgeArray.Get([nextEdge])
[v1] = IfElse([c], [ṽ1], [v1])
[v2] = IfElse([c], [ṽ2], [v2])
return ([v1], [v2])
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Algorithm 10 ConditionalPathCompression(ufArray, [cond], [elem])

Ensure: If cond = 1 a single path compression step will be performed on ufArray for
element [elem], otherwise ufArray remains unchanged.
[represent]← ufArray.Get([elem])
[successor] = ufArray.Get([represent])
[successor]← IfElse([cond], [successor], [represent])
ufArray.Set([elem], [succesor])

Algorithm 11 [out]← IsRepresentative(ufArray, [index])

Ensure: out = 1 if the element at index [index] is the representative of their group, oth-
erweise out = 0.
[represent]← ufArray.Get([element])
[out]← EQZ([represent]− [element])
return [out]

Algorithm 12 CondSet(arr, [cond], [idx], [val])

[valold]← arr.Get([idx])
[valnew]← IfElse([cond], [val], [valold])
arr.Set([idx], [valnew])

Algorithm 13 [out]← ConditionalUnion(uf, [cond], [r1], [r2])

[out]← [1]− EQZ([r1]− [r2])
CondSet(uf, [cond], [r2], [r1])
return [out]
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6.2 Predicated instruction algorithm

Algorithm 14 Kruskal (predicated instructions)
out← Kruskal(vertices, edges, nv, ne)

Require: List of edges is sorted
Ensure: out is an array of share with out[e] = [1] if edes[e] is part of the calculated mst

and out[e] = [0] otherwise.
1: out← ObliviousArray(nv − 1)
2: uf ← ObliviousArray(nv) . Initialize Union-Find Array
3: for i← 0 to nv − 1 do
4: uf.Set([i], [i])
5: end for
6: [pi]← [1]
7: ([v1], [v2])← ([0], [0])
8: [nextEdge]← [0]
9: for l← 0 to 2(α(ne, ne) + 3) do

. Get next edge in sorted array
10: [c]← EQZ([pi]− [1])
11: ([v1], [v2])← GetNextEdge([c], edgeArray, [nextEdge], [v1], [v2])
12: [pi]← [pi] + [c]

. Perform find operation on union find data structure
13: [c]← EQZ([pi]− [2])
14: ConditionalPathCompression(uf, [c], [v1])
15: ConditionalPathCompression(uf, [c], [v2])
16: [r1]← uf.Get([v1])
17: [r2]← uf.Get([v2])
18: [nextPhase]← IsRepresentative(uf, [r1]) · IsRepresentative(uf, [r2])
19: [pi]← [pi] + [c] · [nextPhase]

. Perform union operation and set output bit
20: [c]← EQZ([pi]− [3])
21: [inMST ]← ConditionalUnion(uf, [c], [r1], [r2])
22: CondSet(out, [c], [inMST ])
23: [pi]← IfElse([c], [1], [pi])
24: end for
25: return [out]

We will now discuss how we can optimize the algorithm by using the optimizations
described in section 5.

First we can reduce the number of predicated instructions by merging together the ver-
tex containing step iv, v and the vertex containing step i since these steps will always be
executed successively (except for the first and last step execution). We can do this by split-
ting the algorithm into two phases. The first phase only contains a single execution of step
i and is appended after the initialization phase. It is followed by a second phase containing
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the two remaining predicated instructions. Since we now only have two different predi-
cated instructions at most we cannot achieve much runtime improvement by reordering the
predicated instructions as explained in section 5.3. Instead we can reduce the number of
expensive array read and write operations. We do this by introducing a new function which
combines step ii and iii. This function is shown in algorithm 15.

Algorithm 15 ([c], [rout])← FindStep(ufArray, [rin])

[rout]← ufArray.Get([rin])
[c]← EQZ([rin]− [rout])
[successor] = ufArray.Get([rout])
ufArray.Set([rin], [succesor])
return ([c], [rout])

The resulting algorithm is shown in algorithm 16. Since there are only two predicated
instructions and by using the property that we can write into the output array as long as the
last written value is the correct value we can omit the register pi which stores the program
counter.

Algorithm 16 Kruskal (optimized)
out← Kruskal(vertices, edges, nv, ne)

Require: List of edges is sorted
1: out← ObliviousArray(nv − 1)
2: uf ← ObliviousArray(nv) . Initialize Union-Find Array
3: for i← 0 to nv − 1 do
4: uf.Set([i], [i])
5: end for
6: ([r1], [r2])← edges.Get([0])
7: ([c0], [c1])← ([0], [0])
8: [nextEdge]← [0]
9: for l← 0 to 2(α(ne, ne) + 3) do

10: ([c0], [r0])← FindStep(uf, [r0])
11: ([c1], [r1])← FindStep(uf, [r1])
12: [c]← [c0] · [c1]
13: CondSet(uf, [c], [r0], [r1])
14: [j]← [j] + [c]
15: [c]← [c] · ([1]− EQZ([r0]− [r1]))
16: out.Set([k], [j]− [1])
17: [k]← [k] + [c]
18: end for
19: return [out]
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6.3 Experiments

6.3 Experiments

In order to compare the algorithms in practice we implemented all algorithms using a MPC
framework published by the Data61 group [9]. This framework allows us to write MPC
algorithms in a custom high-level language based on python. This high-level language will
be translated into a special byte-code format. Then the byte-code format will be used to
execute the input program with multiple parties together. In our test version 0.1.3 of the
MPC framework was used on a test system with a 2.30GHz dual-core CPU (Intel i5-6200U)
and 8 GB of RAM.

The framework provides an implementation for a simple linear ORAM as well as a path
ORAM. Whenever we used an ORAM in our implementation we use the "OptimalORAM"-
class which automatically selects the ORAM implementation with the fastest runtime de-
pending on the ORAM size (ORAMs smaller than 10000 elements use the linear ORAM
while using path ORAM otherwise).

First we compared the runtime of the described Union-Find data structures. For this
comparison we ran a multiple tests with different number of sets. Although the test data
should not have any effect on the runtime in an MPC program, we note that our data was
generated by selecting equally distributed parameters for the tested operations at compile-
time of the high-level language using the default python random number generator. The
runtime of a union and a find operation combined is shown as a graph in figure 6.2. Al-
though the idea behind our trivial Union-Find data structure and the Union-Find data struc-
ture using linear ORAM is fairly similar the first achieves a faster runtime than the latter
only for union operations at very small input sizes. This behavior is not expected for linear
ORAM but for path ORAM which is only useful for large data size as mentioned before.
We expect the reason for this behavior to be the internal usage of a sophisticated bit decom-
position function by the linear ORAM which eliminates the need to perform a comparison
for every set per operation required in the trivial Union-Find implementation. This could
be also an explanation for the steep jump at an input size of 32 and 64.

Next we compared our different implementations for the MST problem. Similar to the
comparison of union find implementations the test data was generated at compile-time of
the high-level language. The input (a fully connected graph with n vertices and m edges
with n ≤ m ≤ n2) is generated in the following manner: Starting with a n unconnected
vertices we select two random vertex and connect them. Then we will select a random
unconnected vertex and connect them to a random already connected vertex. We repeat
this until all vertices are connected. Finally we connect random vertices which are not yet
connected until the number of edges is m. This set of edges will be written into an array
using random order. All random numbers are chosen using the default python random
number generator. Since there is no support for arrays storing tuples the input graph is given
as a tuple of two ORAMs containing one of the adjacent vertices for every edge each. In the
practical implementation of predicated instruction MST the inverse Ackermann’s function
α is being calculated at compile time.
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Figure 6.2: Runtime comparison between the naive union-find implementation and the implemen-
tation using ORAM with union by rank

The times for our benchmark between different MST implementation is shown in figure
6.3. As expected for smaller input sizes the black-box version of the MST algorithm out-
performs the version using predicated instructions. We presume the high number of ORAM
read and write accesses causes the constant factor of the predicated instruction version to
be much higher than the black-box version. The graph for the Kruskal implementation
using predicated instructions has some steep section between 32 to 35 and 66 to 67 which
is probably a result of the characteristic of the inverse Ackermann’s function. For input
sizes with more than 36 edges the runtime of the predicated instruction implementation is
always better than the black-box implementation. This is a consequence of the different
asymptotic runtime behaviors.
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Figure 6.3: Runtime comparison for the online phase of both implementations of Kruskals algo-
rithm
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7 Discussion

We introduced a model which we can use as a new approach to create MPC programs
from existing non-MPC programs using predicated instructions. We discussed different
optimization approaches which can improve the MPC program’s runtime: Removing du-
plicated machine instructions from the program, reordering the predicated instruction and
duplicating instructions which are commonly used. Then we applied our results to create a
MPC minimum spanning tree program using Kruskal’s algorithm.

7.1 Conclusion

Compared to existing solutions (Keller [8], Wang [22]) our approach can result in MPC
programs with a better asymptotic runtime. In the experimental part we showed this can
succeed in theory as well as in practice. In direct comparison the MPC program imple-
menting Kruskal’s algorithm using predicated instructions has better runtime than the im-
plementation using the ideas by Wang et al [11] for input graph with 36 or more edges.

In general we want the original non-MPC program to have certain properties in order
for our approach to be successful:

• The program should use at least some branches depending on (hidden) input data,
since without any branches there is no point in using predicated instructions.

• The input program should not have too many branches otherwise the overhead intro-
duced by the oblivious execution is too big.

• The total number of jumps into certain branches should be predictable when consid-
ering all aggregated calls for each branch.

The last point allows making better assumptions for the optimization of the MPC pro-
gram and also easily allows us to get an upper bound for the number of predicated instruc-
tions required to execute the program. If we don’t have such an upper bound we can either
estimate an upper by sampling the number for typical input for our program and selecting
and upper bound with an acceptable error rate for our application or by periodically reveal-
ing if our program has finished executing. Both of these approaches might cause a problem
with the security definition of the MPC model which has to be addressed.
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7.2 Future Work

Since this is the first work using this kind of approach for MPC programming there are lots
of open problem:

The ideas for the optimizations of predicated instruction programs discussed in chapter 5
were only applied to specific algorithms in the practical part of this work. We focused on
the ideas behind the optimizations and implemented some improvements specific to the
Kruskal’s algorithm. However, it would be possible to use the suggested optimization
ideas to implement a practical compiler that can turn any RAM program into an MPC
protocol. But in particular the removal of duplicated instructions requires programs with
more predicated instruction in order to be useful.

We also did not yet consider what is the best way to combine our different optimization
approaches. This problem is not trivial since certain optimizations influence the effective-
ness of each other.

Another potential optimization could be the use of parallelisation in our predicated in-
struction approach. We can execute multiple predicated instructions from our program at
the same time and use the property that the program counter can only point to one of the
predicated instructions.

Finally the idea of using predicated instruction could be combined in conjunction with
other approaches to MPC algorithms. As mentioned in chapter 5 the idea behind this work
can be applied solely to a specific section of a program. As such the idea behind predicated
instructions could be used as a tool when constructing sophisticated algorithms for specific
problems.
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