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CHAPTER 1

Introduction

The pioneering monographs of Bellman (1957) and Howard (1960) mark the beginning of
highly active research on Markov Decision Processes (MDP) and their applications for more
than half a century. The term itself goes back to Bellman (1954) while the formalization
in the present form was introduced by Blackwell (1965). Further steps towards more
general models are represented by the books of Hinderer (1970) and Bertsekas and Shreve
(1978). Their common optimality criterion of minimizing the expected total cost became
standard in the literature and is a suitable choice in many applications. Moreover, the tower
property of conditional expectation is a key feature enabling the application of dynamic
programming techniques.

But there are also circumstances in which the use of this optimality criterion is either not
possible or not appropriate. Two of them are addressed in this thesis. Firstly, we consider
the case that the transition law of the decision process is not fully known. In the literature
this is referred to as ambiguity whereas uncertainty relates to random quantities with known
distribution. Secondly, we study risk-averse decision-makers who are willing to accept a
higher expected cost in order to reduce the risk of an extremely adverse outcome. Such
preferences are referred to as risk-sensitive. It will turn out that in some cases ambiguity
and risk-sensitivity lead to the same optimal decision. Our guiding example is a model for
dynamic reinsurance in discrete time.

1.1. Literature Overview

In many applications, the transition law of a Markov Decision Process is subject to
misspecification since it is either based on expert opinion or estimation from historical
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data. Consequently, the controller may optimize with respect to a transition law deviating
from the true one. Applying the so-obtained optimal policies in the real system may
lead to a significant degeneration of performance. One way of dealing with an ambiguous
transition law is the robust approach, where the controller selects a policy which is optimal
with respect to the most adverse transition law of a respective family in each scenario.
Satia and Lave (1973) as well as White and Eldeib (1994) have studied this approach for
MDP with finite state and action spaces assuming that the rows of the unknown transition
matrix lie in prespecified polytopes. Later on, Iyengar (2005) developed a solution theory
for distributionally robust MDP with countable state and action spaces under general
constraints on the transition kernels. Contemporaneously, Nilim and El Ghaoui (2005)
reached similar findings, however, limited to finite state and action spaces. In both works,
a rectangularity condition on the respective sets of probability measures turned out to be a
key assumption for deriving a Bellman equation. This property and possibilities to weaken
it were further investigated by Wiesemann et al. (2012) and Shapiro (2016).
The robust approach can also be interpreted as a dynamic zero-sum Stackelberg game

with nature as the controllers opponent selecting the transition law in each scenario. This
perspective provides more clarity about based on what information the transition law
is selected and turns out to be helpful when dealing with measurability issues in more
general settings with Borel state and action spaces. Such a dynamic game set-up, where
the topology of convergence in distribution is used for the space of probability measures,
can be found in González-Trejo et al. (2002), however lacking the rigorous derivation of a
Bellman equation. Their results are complemented by Jaśkiewicz and Nowak (2011, 2014).

A seemingly different problem is to incorporate risk-sensitive preferences of the controller
into the decision model. While minimizing the expected cost implies a risk-neutral attitude,
empirical evidence suggests that many agents tend to be risk-averse or are even forced
to be so by regulators, e.g. in the finance or insurance industry. The study of so-called
risk-sensitive Markov Decision Processes was pioneered by Howard and Matheson (1972),
who replaced expectation by the certainty equivalent of an exponential utility in a decision
model with finite state and action space. In the sequel, the study of similar optimality
criteria was extensively pursued in the literature. A comprehensive treatment with general
utilities and Borel state and action spaces can be found in the paper by Bäuerle and
Rieder (2014). The exponential certainty equivalent is also known as entropic risk measure.
Especially with regard to financial and insurance applications it is of interest to replace
it by other monetary risk measures. Exemplarily, Bäuerle and Ott (2011) consider the
problem with Expected Shortfall. The main difficulty of maximizing a certainty equivalent
or monetary risk measure is to obtain a value iteration since these functionals do not have a
tower property like conditional expectation. A solution dating back to Kreps (1977a,b) and
since then frequently applied in the literature is to extend the state space and introduce
summary variables.
Other risk-sensitive optimality criteria avoid this issue. Since the 2000s, dynamic risk

measures, which typically have some sort of tower property, were increasingly studied in



1.1. Literature Overview 3

the literature. For an overview see Föllmer and Schied (2016). In order to apply the
concept to MDP and preserve Markovian value functions, Ruszczyński (2010) constructed
the subclass of so-called Markov risk measures. A different approach was taken by Bäuerle
and Jaśkiewicz (2017, 2018) and Asienkiewicz and Jaśkiewicz (2017), who recursively apply
a static risk measure, namely the entropic risk measure, at each stage. Here, a value
iteration holds by construction. While the recursive procedure induces sensible decisions
at each stage, it lacks a global interpretation of the objective function. The approach is
motivated by the economic literature, where the representation of preferences by recursive
utility functions (here exponential ones) has been widely studied with notable contributions
by Kreps and Porteus (1978) and Epstein and Zin (1989). For an overview see Chapter
20 in Miao (2014). The key feature of recursive utilities is that they allow separating
intertemporal preferences from risk aversion. The risk-sensitive recursive approach turns
out to induce the same optimal policy as the robust approach in many cases. Through this
connection, a global interpretation of the recursively defined objective function as a risk
measure can be obtained. Osogami (2012) and Shapiro (2012) outlined this connection
exemplarily in stylized settings.

Research on the static counterpart of our actuarial application dates back to the 1960s.
The objective is to minimize an insurance company’s cost of capital or capital requirement
for the retained loss including the cost of reinsurance. The capital requirement is determined
by a risk measure applied to the effective risk after reinsurance and the cost of capital is
given as a cost of capital rate times the capital requirement. Borch (1960) proved that
a stop-loss reinsurance treaty minimizes the variance of the retained loss of the insurer
given the reinsurance premium is calculated with the expected value principle. A similar
result has been derived in Arrow (1963) where the insurer’s expected utility of terminal
wealth has been maximized. Since then a lot of generalizations of this problem have been
considered. For a comprehensive literature overview, we refer to Albrecher et al. (2017).
Due to developments in the regulatory framework like Solvency II, the risk measures
Value-at-Risk and Expected Shortfall are of special interest since the 2000s. Cai and Tan
(2007) optimized the retention levels of stop-loss contracts for these risk measures under
the expected premium principle. Later on, Chi and Tan (2013) identified layer reinsurance
contracts as optimal within a large nonparametric class of treaties under general premium
principles. Their results were extended to general distortion risk measures by Cui et al.
(2013). Other generalizations concerned additional constraints, see e.g. Lo (2017) for quite
general results, or multidimensional settings induced by a macroeconomic perspective, see
Bäuerle and Glauner (2018).
For dynamic extensions of the optimal reinsurance problem, it is necessary to model

the development of the insurer’s surplus over time. Until now, such problems were almost
exclusively studied in continuous time. A very popular optimality criterion is to maximize
the expected total dividend payments to the insurance company’s shareholders. Albrecher
and Thonhauser (2009) provide a good overview of the relevant literature. The only
treatment of this problem in discrete time we are aware of is Chen and Assa (2019). Cost
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of capital minimization has so far not been studied in a dynamic setting.

1.2. Outline of the Thesis

This thesis is structured as follows. In Chapter 2, we recall some important results about
risk measures and with regard to our application also about the related concept of premium
principles. We mainly focus on the large class of distortion risk measures and its subclass
of spectral risk measures. The most widely used risk measures in practice, Value-at-Risk
and Expected Shortfall, belong to this class. Of particular interest for our purposes are
continuity properties (Section 2.2) and dual representations (Section 2.3).
In Chapter 3, we introduce the Markov Decision Model which we are working with

throughout. It has Borel state and action spaces and allows for unbounded cost functions.
Since it is more convenient in our setting, we are using a functional representation for the
dynamics of the state process. The general continuity and compactness properties with
variants for special cases of the model are stated. In Section 3.2, a dynamic reinsurance
model in discrete time is introduced in two versions. One with a focus on cost of capital
and the other one with dividend payments. The latter one is similar to the model in Chen
and Assa (2019). Since reinsurance treaties are typically written for one year (Albrecher
et al.; 2017, p. 1) and dividends are paid annually, modeling in discrete time is appropriate
when focusing on the management of the insurer’s surplus by means of reinsurance and
dividend payments while neglecting the possible use of capital market instruments.

Chapter 4 treats robust minimization of the expected total cost with ambiguity concerning
the distribution of the disturbances generalizing the results of Iyengar (2005) to a model with
Borel spaces and unbounded cost function. In order to deal with the arising measurability
issues, we borrow from the dynamic game setup in González-Trejo et al. (2002) and
Jaśkiewicz and Nowak (2011). The major difference of our contribution compared to these
two papers is the design of the distributional ambiguity where we replace the topology
of convergence in distribution on the ambiguity sets by the weak* topology σ(Lq, Lp).
Our formulation leads to a Stackelberg game against nature. Under suitable integrability
assumptions and a finite planning horizon, we derive a robust cost iteration for a fixed
policy of the decision-maker and a Bellman equation for the robust optimization problem.
Moreover, we show the existence of optimal deterministic policies for both players. This
is in contrast to classical zero-sum games where one usually obtains randomized optimal
policies. The results are then extended to an infinite planning horizon. In Section 4.3, we
study the special case that the state space is the real line, which allows us to introduce
monotonicity properties for the model data and weaken the continuity assumption. Under
additional convexity assumptions, we show that it is possible to interchange infimum and
supremum in the Bellman equation and outline the game-theoretical implications. Finally,
we discuss special choices for the ambiguity sets which have computational advantages
and where the robust optimization problem coincides with the minimization of a coherent
risk measure. As applications, we consider a robust LQ problem and robust maximization
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of the expected total dividend payment for an insurance company. Here, we prove the
existence of an optimal dividend and reinsurance policy. For the setting of Chen and Assa
(2019), whose proof contains a fundamental error, the existence is verified as a special case.

In the subsequent Chapter 5, we study risk-sensitive recursive cost minimization in
our decision model. Under a finite planning horizon and some integrability assumptions,
we extend the findings of Bäuerle and Jaśkiewicz (2017, 2018) and Asienkiewicz and
Jaśkiewicz (2017) to general law-invariant monetary risk measures with the Fatou property.
A corresponding Bellman equation is derived and the existence of Markovian optimal
policies ensured. For infinite planning horizons, we additionally have to require coherence
to obtain a contracting model and can use the weaker initial assumptions only in special
cases. As in the previous chapter, the real line as state space allows us to introduce
monotonicity properties for the model data and weaken the continuity assumption. In
Section 5.3, we discuss connections to the distributionally robust cost minimization. Under
some technical assumptions, the two optimality criteria are indeed equivalent. Thus, we
obtain a global interpretation of the recursively defined objective functions. The comparison
is more general than in Osogami (2012) and Shapiro (2012). Especially, we find that the
corresponding global (or composite) risk measure depends on the controller’s policy apart
from special cases. As an application, we study the cost of capital minimization of an
insurance company in discrete time closing a gap in the actuarial literature. We ensure
the existence of an optimal reinsurance policy under general conditions and determine it
explicitly for Value-at-Risk as risk measure. Here, the optimal reinsurance treaties have a
one-layer form.
The final Chapter 6 treats the minimization of a spectral risk measure applied to the

total cost. This can be seen as a reverse approach to the minimization of a recursively
applied spectral risk measure, which is in some cases equivalent to the minimization
of a non-standard risk measure applied to the total cost, cf. Section 4.3.2. We adopt
the approach of Bäuerle and Ott (2011) to separate the minimization in an outer and
inner problem and extend their findings to general spectral risk measures with bounded
spectrum and unbounded above costs. The inner optimization problem is solved as an
ordinary MDP on an extended state space under both finite and infinite horizon given
some integrability assumptions. The real line as state space allows again to introduce
monotonicity properties for the model data and weaken the continuity assumption. For
spectral risk measures, the outer optimization problem becomes infinite dimensional. We
ensure existence in the general setting. We also discuss an algorithmic approximation for
bounded cost functions and prove its convergences. As an application, we introduce an
alternative dynamic extension in discrete time of the static cost of capital minimization
problem for an insurance company. The existence of an optimal reinsurance policy is
proven under general conditions. For the expected premium principle we show that it is
optimal to choose stop-loss contracts.





CHAPTER 2

Risk Measures and Premium Principles

Let an atomless probability space (Ω,A,P) and a real number p ∈ [1,∞) be fixed. With
q ∈ (1,∞] we denote the conjugate index satisfying 1

p + 1
q = 1 under the convention 1

∞ = 0.
Henceforth, Lp = Lp(Ω,A,P) denotes the vector space of real-valued random variables
thereon which have an integrable p-th moment. Lp+ is the subset of non-negative random
variables. We follow the convention of the actuarial literature that positive realizations
of random variables represent losses and negative ones gains. With R+ we denote the
non-negative real numbers.

A risk measure is a functional ρ : Lp → R̄. The notion of a premium principle π : Lp+ → R̄
is mathematically closely related but the applications are different. While the former
determines the necessary solvency capital to bear a risk, the latter gives the price of
(re)insuring it. In contrast to general financial risks, insurance risks are typically non-
negative. Hence, it suffices to consider premium principles on Lp+. The properties of risk
measures discussed in the sequel apply to premium principles analogously.

Definition 2.1. A risk measure ρ : Lp → R̄ is called
a) law-invariant if ρ(X) = ρ(Y ) for random variables X,Y with the same distribution.
b) monotone if X ≤ Y implies ρ(X) ≤ ρ(Y ).
c) translation invariant if ρ(X +m) = ρ(X) +m for all m ∈ R.
d) positive homogeneous if ρ(λX) = λρ(X) for all λ ∈ R+.
e) normalized if ρ(0) = 0.
f) finite if ρ(Lp) ⊆ R.
g) comonotonic additive if ρ(X+Y ) = ρ(X)+ρ(Y ) for all comonotonic random variables

X,Y .
h) subadditive if ρ(X + Y ) ≤ ρ(X) + ρ(Y ) for all random variables X,Y .



8 Chapter 2. Risk Measures and Premium Principles

i) convex if ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ) for λ ∈ [0, 1].

Throughout, we will only consider law-invariant risk measures and premium principles. A
risk measure is called monetary if it is monotone and translation invariant. It appears to be
consensus in the literature that these two properties are a necessary minimal requirement
for any risk measure. However, the attribute monetary is rather unusual for premium
principles since most of them are monotone but often not translation invariant. Monetary
risk measures which are additionally positive homogeneous and subadditive are referred to
as coherent. Further, note that
• given law invariance, monotonicity is equivalent to preservation of the usual stochastic

order.
• due to translation invariance, assuming normalization is no structural restriction for

a monetary risk measure.
• positive homogeneity implies normalization.
• given positive homogeneity, convexity and subadditivity are equivalent.

The next Lemma derives another property from the axioms discussed above.

Lemma 2.2 (Pichler; 2013, Prop. 6). A coherent risk measure ρ satisfies the triangular
inequality

|ρ(X)− ρ(Y )| ≤ ρ(|X − Y |).

Proof. Using subadditivity and monotonicity one obatains

ρ(X) = ρ (Y + (X − Y )) ≤ ρ(Y ) + ρ(X − Y ) ≤ ρ(Y ) + ρ(|X − Y |).

Consequently, it holds ρ(X) − ρ(Y ) ≤ ρ(|X − Y |). Interchanging the roles of X and Y
yields the assertion.

2.1. Distortion Risk Measures

Many established risk measures and premium principles belong to the large class of distortion
risk measures. This class is based on the well-known representation of the expectation of
X ∈ Lp

E[X] =
∫ ∞

0
SX(x) dx−

∫ 0

−∞
1− SX(x) dx,

where SX(x) = 1− FX(x) = P(X > x), x ∈ R, denotes the survival function of X.

Definition 2.3. a) An increasing function g : [0, 1]→ [0, 1] with g(0) = 0 and g(1) = 1
is called distortion function.

b) For a distortion function g, the function

g(SX) : R→ [0, 1], x 7→ g(SX(x))
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is called distorted survival function.
c) The distortion risk measure w.r.t. a distortion function g is defined by ρg : Lp → R̄,

ρg(X) =
∫ ∞

0
g(SX(x)) dx−

∫ 0

−∞
1− g(SX(x)) dx

whenever at least one of the integrals is finite.
d) The Wang premium principle w.r.t. a distortion function g is defined by πg : Lp+ → R̄,

πg(X) = (1 + θ)
∫ ∞

0
g(SX(x)) dx, θ ≥ 0.

Note that for left-continuous g the distorted survival function is itself a survival function.
While expectation is usually not regarded as an appropriate risk measure since it does not
distinguish between gain and loss, ρg and πg can outweigh this by an appropriate distortion
function. For simplicity the following discussion is in terms of distortion risk measures.
Mutatis mutandis the results apply to Wang premium principles as well.
There is an alternative representation of distortion risk measures in terms of Lebesgue-

Stieltjes integrals based on the quantile function F−1
X (u) = inf{x ∈ R : FX(x) ≥ u}, u ∈

(0, 1) in lieu of the survival function. Following the convention in Klenke (2014) we consider
the Lebesgue-Stieltjes integral for right-continuous integrators and on half-open intervals
of the form (a, b] for real numbers a ≤ b. I.e.

∫ b

a
f(x) d g(x) =

∫
(a,b]

f(x)µg(dx),

where µg denotes the Lebesgue-Stieltjes measure on (R,B(R)) induced by an increasing and
right-continuous function g through µg((a, b]) = g(b)− g(a). There are different versions
of the following result, where the necessary requirement of a directional continuity of g
is often neglected in the literature. A precise proof of two other versions can be found in
Dhaene et al. (2012) as Theorems 4 and 6.

Proposition 2.4. For a distortion risk measure ρg with left-continuous distortion function
g it holds

ρg(X) =
∫ 1

0
F−1
X (u) d ḡ(u), (2.1)

where ḡ(u) = 1− g(1− u), u ∈ [0, 1], is the dual distortion function.

Proof. First note that g is left-continuous if and only if ḡ is right continuous. By definition
of the Lebesgue-Stieltjes integral we have∫ 1

1−SX(x)
d ḡ(u) = ḡ(1)− ḡ(1− SX(x)) = g(SX(x)),∫ 1−SX(x)

0
d ḡ(u) = ḡ(1− SX(x))− ḡ(0) = 1− g(SX(x)).
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Inserting this in the definition of the distortion risk measure, we get

ρg(X) =
∫ ∞

0

∫ 1

1−SX(x)
d ḡ(u) dx−

∫ 0

−∞

∫ 1−SX(x)

0
d ḡ(u) dx

=
∫ ∞

0

∫ 1

0
1{FX(x) < u} d ḡ(u) dx−

∫ 0

−∞

∫ 1

0
1{u ≤ FX(x)} d ḡ(u) dx

=
∫ ∞

0

∫ 1

0
1{x < F−1

X (u)} d ḡ(u) dx−
∫ 0

−∞

∫ 1

0
1{F−1

X (u) ≤ x} d ḡ(u) dx

=
∫ 1

0

(∫ ∞
0

1{x < F−1
X (u)}dx−

∫ 0

−∞
1{F−1

X (u) ≤ x} dx
)

d ḡ(u)

=
∫ 1

0
F−1
X (u) d ḡ(u).

Here, the third equality is by Lemma B.8 and the fourth by Tonelli’s Theorem B.2.

Many of the properties introduced in Definition 2.1 are fulfilled by distortion risk
measures.

Lemma 2.5 (Sereda et al.; 2010, 25.4). a) The distortion risk measure is law invariant,
monotone, positive homogeneous and comonotonic additive.

b) The distortion risk measure is additionally translation invariant, i.e. monetary. The
Wang premium principle has this property only if θ = 0.

c) A distortion risk measure with concave distortion function g preserves the increasing
convex order, i.e. X ≤icx Y ⇒ ρg(X) ≤ ρg(Y ).

d) A distortion risk measure is subadditive if and only if the distortion function g is
concave.

The proof of parts a) and b) is by simple calculations which can be found in the cited
reference. Part d) is more involved. It was proven by Dhaene and Wang (1998) relying
on an incorrect proof of part c) by Wang (1996). Part c) was correctly proven later on by
Dhaene et al. (2000).

Remark 2.6. Some authors refer to the dual distortion function ḡ in Lemma 2.4 as the
distortion function. Then subadditivity holds for convex distortions. This ambiguity can
be avoided by using a different Lebesgue-Stieltjes representation

ρg(X) =
∫ 1

0
F−1
X (1− u) d g(u) (2.2)

of distortion risk measures with left-continuous distortion function which does not involve
the dual distortion function, cf. Dhaene et al. (2012). However, (2.2) requires another notion
of Lebesgue-Stieltjes integrals and is less convenient when working with the parametrization
of Value-at-Risk and Expected Shortfall commonly used in insurance (see below). So we
will stick to (2.1).

Part d) of the Lemma 2.5 gives rise to defining a subclass of distortion risk measures.
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Remark and Definition 2.7. For a continuous concave distortion function g : [0, 1]→
[0, 1], the dual distortion function ḡ : [0, 1]→ [0, 1] is continuous convex and can be written
as ḡ(u) =

∫ u
0 φ(s) d s for an increasing right-continuous function φ : [0, 1]→ R+, which is

called spectrum. By the properties of the Lebesgue-Stieltjes integral, (2.1) can then be
transformed to

ρg(X) = ρφ(X) =
∫ 1

0
F−1
X (u)φ(u) du. (2.3)

Therefore, distortion risk measures with continuous concave distortion function are referred
to as spectral risk measures. Note that continuity of g is an additional requirement only in
0, since an increasing concave function on [0, 1] is already continuous on (0, 1].
Originally, spectral risk measures were defined by Acerbi (2002) without explicitly

considering the dual distortion function. For this approach, every increasing right-continuous
function φ : [0, 1]→ R+ with

∫ 1
0 φ(u) du = 1 is an admissible spectrum.

In the following example, the best-known distortion risk measures and Wang premium
principles are introduced.

Example 2.8. The most widely used risk measure in finance and insurance Value-at-Risk

VaRα(X) = F−1
X (α), α ∈ (0, 1),

is a distortion risk measure with distortion function g(u) = 1(1−α,1](u). Since the distortion
function is not concave, Value-at-Risk is not coherent and especially not a spectral risk
measure. Within our parametrization, which is standard in insurance (cf. e.g. Denuit
et al.; 2005; Rüschendorf; 2013), α is chosen close to 1. For instance, Solvency II requires
α = 0.995. The frequently criticized lack of coherence can be overcome by using Expected
Shortfall

ESα(X) = 1
1− α

∫ 1

α
F−1
X (u) du, α ∈ [0, 1).

The corresponding distortion function g(u) = min{ u
1−α , 1} is concave and Expected Shortfall

thus coherent. It is also spectral with φ(u) = 1
1−α1[α,1](u).

The Proportional Hazard (PH) premium principle

π(X) = (1 + θ)
∫ ∞

0
SX(x)γ dx, θ ≥ 0, γ ∈ (0, 1],

is a well-known example from the class of Wang premium principles. Note that the
distortion function g(x) = xγ , γ ∈ (0, 1] is concave. For γ = 1 the Expected premium
principle

π(X) = (1 + θ)E(X), θ ≥ 0,

is a special case.

Every spectral risk measure can be expressed as a mixture of Expected Shortfall over
different confidence levels. The following result combines Proposition 8.18 of McNeil
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et al. (2015) and Remark 3 in Shapiro (2013). Fix a spectrum φ : [0, 1] → R+. Then
ν([0, t]) = φ(t) defines a Borel measure on [0, 1] since φ is increasing and right continuous.
Let us define a further measure µ by dµ

dν (α) = (1− α).

Proposition 2.9. a) Let ρφ be a spectral risk measure. Then µ is a probability measure
on [0, 1] and ρφ has the representation

ρφ(X) =
∫ 1

0
ESα(X)µ(dα).

b) Conversely, if a risk measure ρ can be represented as in a) with a probability measure
µ, it is spectral and the spectrum φ : [0, 1]→ R+ is given by

φ(u) =
∫ u

0

1
1− αµ(dα).

Proof. a) Using the integration by parts rule for Lebesgue-Stieltjes integrals, one gets

µ([0, 1]) =
∫ 1

0
1− α ν(dα) =

∫ 1

0
1− α dφ(α) = φ(1)−

∫ 1

0
α dφ(α)

= φ(1)− [αφ(α)]10 +
∫ 1

0
φ(α) dα = ḡ(1) = 1,

i.e. µ is a probability measure. Now, we have∫ 1

0
ESα(X)µ(dα) =

∫ 1

0

( 1
1− α

∫ 1

α
F−1
X (u) du

)
(1− α) ν(dα)

=
∫ 1

0

∫ 1

0
F−1
X (u)1{α ≤ u} du ν(dα)

=
∫ 1

0

∫ 1

0
F−1
X (u)1{α ≤ u} ν(dα) du

=
∫ 1

0
F−1
X (u)

∫ u

0
ν(dα) du

=
∫ 1

0
F−1
X (u)φ(u) du.

The third equality is by Funini’s theorem which can be applied since X ∈ Lp.

b) Define a Borel measure ν on [0, 1] by dν
dµ(α) = 1

1−α . Then∫ u

0
ν(dα) =

∫ u

0

1
1− αµ(dα)

and the assertion follows from the calculation in the proof of part a).

Remark 2.10. It has been shown by Shapiro (2013, Theorem 2) that every finite, law-
invariant, coherent and comonotonic additive risk measure on Lp is already spectral. Note
that comonotonic additivity is a natural extension of the properties translation invariance
and positive homogeneity which are already included in coherence. Therefore, it is not
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a strong restriction to focus on spectral risk measures instead of considering a general
coherent risk measure.

Especially in optimization, an infimum representation of Expected Shortfall going back
to Rockafellar and Uryasev (2000) is very useful:

ESα(X) = inf
q∈R

{
q + 1

1− αE[(X − q)+]
}
, X ∈ Lp, (2.4)

where the infimum is attained at q = F−1
X (α). Pichler (2015) has proven an infimum

representation for spectral risk measures generalizing the one of Expected Shortfall. We
give an adapted version of the result which does not require φ ∈ Lq.

Proposition 2.11. Let ρφ be a spectral risk measure and X ∈ Lp a random variable which
is bounded from below. With G we denote the set of increasing convex functions g : R→ R.
Then it holds

ρφ(X) = inf
g∈G

{
E[g(X)] +

∫ 1

0
g∗(φ(u)) du

}
,

where g∗ denotes the convex conjugate of g ∈ G.

Proof. Let g ∈ G, X ∈ Lp and UX ∼ U(0, 1) be the generalized distributional transform
of X. By the definition of the convex conjugate it holds g(X) + g∗(φ(UX)) ≥ X φ(UX).
Hence, we have

E[g(X)] + E[g∗(φ(UX))] ≥ E[X φ(UX)]

= E[F−1
X (UX)φ(UX)]

=
∫ 1

0
F−1
X (u)φ(u) du = ρφ(X)

whenever the expectations on the left hand side exist. Since g ∈ G was arbitrary, it follows

ρφ(X) ≤ inf
g∈G

{
E[g(X)] +

∫ 1

0
g∗(φ(u)) du

}
. (2.5)

The function gφ,X : R→ R, gφ,X(x) =
∫ 1
0 F

−1
X (α) + 1

1−α

(
x− F−1

X (α)
)+

µ(dα) with µ from
Proposition 2.9 is increasing and convex. Using this proposition one obtains

ρφ(X) =
∫ 1

0
ESα(X)µ(dα)

=
∫ 1

0
F−1
X (α) + 1

1− αE[(X − F−1
X (α))+]µ(dα)

= E
[∫ 1

0
F−1
X (α) + 1

1− α(X − F−1
X (α))+µ(dα)

]
= E [gφ,X(X)] .

(2.6)

Here, the second equality is due to (2.4) and the third due to Tonelli’s Theorem B.2 since
the integrand is bounded from below. Again, by Tonelli’s Theorem B.2 and Lemma B.8 we
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have ∫ 1

0

1
1− α

(
x− F−1

X (α)
)+

µ(dα) =
∫ 1

0

∫ x

−∞

1
1− α1

{
F−1
X (α) ≤ z

}
d z µ(dα)

=
∫ x

−∞

∫ 1

0

1
1− α1 {α ≤ FX(z)}µ(dα) d z

=
∫ x

−∞

∫ FX(z)

0

1
1− αµ(dα) d z.

Hence, g′φ,X(x) =
∫ FX(x)

0
1

1−αµ(dα) = φ(FX(x)) a.e., where the last equality is due to
the definition of µ. For the convex conjugate g∗φ,X(φ(u)) = supx∈R{φ(u)x− gφ,X(x)} the
supremum is therefore attained at every x satisfying φ(u) = g′φ,X(x) = φ(FX(x)), i.e.

g∗φ,X(φ(u)) = φ(u)F−1
X (u)− gφ,X

(
F−1
X (u)

)
a.e.

Integrating with respect to u and using (2.6) yields

∫ 1

0
g∗φ,X(φ(u)) du = ρφ(X)− E [gφ,X(X)] = 0.

Consequently, the lower bound in (2.5) is attained and the proof is complete.

Besides Wang premium principles, so-called certainty equivalents are another large class
of premium principles. Recall that a disutility function is a strictly increasing, continuous
and convex function u : R+ → R+. A certainty equivalent is a deterministic outcome c
that yields the same disutility as a risk X ∈ Lp, i.e.

u(c) = E[u(X)]. (2.7)

Since u can be inverted, we have the following definition.

Definition 2.12. The certainty equivalent (CE) premium principle with respect to a
disutility function u is given by π : Lp+ → R̄,

π(X) = u−1 (E[u(X)]) .

Clearly, CE premium principles are law-invariant and monotone. However, it was shown
by Müller (2007) that they are translation invariant only if u is either affine or exponential
and coherent only if u is the identity. Therefore, certainty equivalents are rather used as
premium principles than as risk measures, with one notable exception.

Example 2.13. The exponential disutility function u(x) = exp(γx), γ > 0, is well-defined
for x ∈ R. The respective certainty equivalent

X 7→ 1
γ

logE
[
eγX

]
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is translation invariant and referred to as entropic risk measure for X ∈ Lp as well as
exponential premium principle for X ∈ Lp+.

Remark 2.14. We have seen that both Wang premium principles and certainty equivalents
yield reasonable premiums by modifying expectation: The former adjust probabilities while
the latter adjust outcomes. The two approaches are unified by so-called rank-dependent
expected disutilities

π(u(X)) = (1 + θ)
∫ ∞

0
g(P(u(X) > x)) dx

where π is a Wang premium principle and u a disutility function. The concept naturally
generalizes to risk measures.

2.2. Continuity Properties

The properties of risk measures and premium principles discussed so far have an obvious
economic interpretation. In this section, we will consider two continuity properties which
are mainly of mathematical interest.

Definition 2.15. A risk measure ρ : Lp → R̄ has the
a) Fatou property if for every sequence {Xn}n∈N ⊆ Lp with |Xn| ≤ Y P-a.s. for some

Y ∈ Lp and Xn → X P-a.s. for some X ∈ Lp it holds

lim inf
n→∞

ρ(Xn) ≥ ρ(X).

b) Lebesgue property if for every sequence {Xn}n∈N ⊆ Lp with |Xn| ≤ Y P-a.s. for some
Y ∈ Lp and Xn → X P-a.s. for some X ∈ Lp it holds

lim
n→∞

ρ(Xn) = ρ(X).

Proposition 2.16. Finite convex risk measures ρ : Lp → R have both the Fatou and the
Lebesgue property.

For a proof we refer to Rüschendorf (2013), Theorem 7.24. This result covers many
spectral risk measures and including Expected Shortfall.

Corollary 2.17. Spectral risk measures ρφ : Lp → R̄ with spectrum φ ∈ Lq have both the
Fatou and the Lebesgue property.

Proof. In order to apply Proposition 2.16, we only have to show that ρφ is finite on Lp. It
follows from Hölder’s inequality that

|ρφ(X)| =
∣∣∣∣∫ 1

0
F−1
X (u)φ(u) du

∣∣∣∣ ≤ ∫ 1

0
|F−1
X (u)|φ(u) du =

(
E|F−1

X (U)|p
) 1
p
(
E|φ(U)|q

) 1
q <∞

where U ∼ U([0, 1]) is arbitrary.
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To the best of our knowledge, it has surprisingly not been investigated in the literature
whether Value-at-Risk as the most widely used risk measure has the Fatou property.

Proposition 2.18. Value-at-Risk has the Fatou property.

Proof. Assume the contrary. Then there exists a sequence {Xn}n∈N ⊆ Lp with |Xn| ≤ Y
P-a.s. for some Y ∈ Lp and Xn → X P-a.s. for some X ∈ Lp such that

lim inf
n→∞

VaRα(Xn) < VaRα(X).

I.e. there is an ε > 0 such that for every δ ∈ (0, ε)

lim inf
n→∞

F−1
Xn

(α) ≤ F−1
X (α)− δ.

Hence, there exists a subsequence {F−1
XNk

(α)}k∈N such that for all k ∈ N and δ ∈ (0, ε)

F−1
Xnk

(α) ≤ F−1
X (α)− δ

or equivalently (cf. Lemma B.8)

α ≤ FXnk (F−1
X (α)− δ).

Since FX has at most countably many discontinuities, we can choose δ0 ∈ (0, ε) such that
F−1
X (α) − δ0 is a point of continuity of FX . Then, by the definition of convergence in

distribution
α ≤ lim

k→∞
FXnk (F−1

X (α)− δ0) = FX(F−1
X (α)− δ0).

Again by Lemma B.8 this is equivalent to

F−1
X (α) ≤ F−1

X (α)− δ0,

a contradiction.

Since premium principles are applied to non-negative risks, Fatou’s Lemma B.1 yields
the following continuity properties.

Lemma 2.19. a) For a left-continuous distortion function g, the Wang premium prin-
ciple has the Fatou property.

b) The CE premium principle has the Fatou property.

Proof. Let {Xn}n∈N ⊆ Lp+ with Xn ≤ Y P-a.s. for some Y ∈ Lp+ and Xn → X P-a.s. for
X ∈ Lp+.

a) Especially, Xn → X in distribution. Therefore, SXn(x) → SX(x) for almost every
x ∈ R+. Since g is left-continuous and increasing it is lower semicontinuous, i.e.
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lim infn→∞ g(SXn(x)) ≥ g(SX(x)) for almost every x ∈ R+. Now by Fatou’s Lemma
B.1,

lim inf
n→∞

π(Xn) = lim inf
n→∞

(1 + θ)
∫ ∞

0
g(SXn(x)) dx

≥ (1 + θ)
∫ ∞

0
g(SX(x)) dx = π(X).

b) By the continuous mapping theorem, u(Xn)→ u(X) P-a.s. Then Fatou’s Lemma B.1
yields lim infn→∞ E[u(Xn)] ≥ E[u(X)]. Since u−1 is continuous as well, we finally
have

lim inf
n→∞

π(Xn) = lim inf
n→∞

u−1(E[u(Xn)]) ≥ u−1(E[u(X)]) = π(X).

2.3. Dual Representation

Convex risk measures can be expressed as worst-case expectations minus a penalty term.
Often, this is referred to as robust representation. For coherent risk measures the represen-
tation becomes particularly nice since the penalty term vanishes. These observations were
first made for risk measures defined on L∞. A detailed account can be found in Föllmer
and Schied (2016). The results were later generalized to Lp-spaces with p ∈ [1,∞] using
the Fenchel-Moreau Theorem from convex analysis. This connection to duality gives rise to
the alternative denomination of robust representations in the headline. With regard to our
purposes the following presentation is restricted to risk measures on Lp with p ∈ [1,∞).
Denote byM1(Ω,A,P) the set of probability measures on (Ω,A) which are absolutely

continuous with respect to P and let

Mq
1(Ω,A,P) =

{
Q ∈M1(Ω,A,P) : dQ

dP ∈ L
q(Ω,A,P)

}
.

Moreover, recall that a R̄-valued convex functional is called proper if it never attains −∞
and is strictly smaller than +∞ in at least one point.

Proposition 2.20 (Rüschendorf; 2013, 7.14). Let ρ : Lp → R̄ be a proper convex risk
measure with the Fatou property, then

ρ(X) = sup
Q∈Mq

1(Ω,A,P)

(
EQ[X]− ρ∗(Q)

)
, X ∈ Lp.

Here, ρ∗(Q) = supX∈Lp
(
EQ[X]− ρ(X)

)
denotes the convex conjugate of ρ.

Proof. The result is an immediate consequence of the Fenchel-Moreau Theorem.

The representation simplifies if the risk measure is additionally positive homogeneous.

Proposition 2.21 (Rüschendorf; 2013, 7.20). A functional ρ : Lp → R̄ is a proper coherent
risk measure with the Fatou property if and only if there exists a subset Q ⊆Mq

1(Ω,A,P)
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such that

ρ(X) = sup
Q∈Q

EQ[X], X ∈ Lp. (2.8)

The supremum is attained since the subset Q ⊆ Mq
1(Ω,A,P) can be chosen σ(Lq, Lp)-

compact and the functional Q 7→ EQ[X] is σ(Lq, Lp)-continuous.

Proof. Let ρ : Lp → R̄ be a proper coherent risk measure with the Fatou property. Due to
the positive homogeneity of ρ it holds for all Q ∈Mq

1(Ω,A,P) and λ ∈ R+ that

ρ∗(Q) = sup
X∈Lp

EQ[X]− ρ(X)

= sup
λX∈Lp

EQ[λX]− ρ(λX)

= λρ∗(Q),

i.e. ρ∗(Q) ∈ {0,∞}. Setting

Q = {Q ∈M q
1 (Ω,A,P) : ρ∗(Q) = 0},

Proposition 2.20 yields
ρ(X) = sup

Q∈Q
EQ[X], X ∈ Lp,

and it remains to show that the supremum is attained. The functional Q 7→ EQ[X] is
continuous for every X ∈ Lp by definition of the weak* topology σ(Lq, Lp). In Proposition
7.19 of Rüschendorf (2013) it is shown that Q is σ(Lq, Lp)-compact. Hence, Weierstraß’
Extreme Value Theorem yields the assertion.
Conversely, let ρ : Lp → R̄ be representable as in (2.8) with some σ(Lq, Lp)-compact

subset Q ⊆ Mq
1(Ω,A,P). Then it is a coherent risk measure since the properties of

monotonicity, translation invariance, positive homogeneity and additivity are trivially
satisfied. As the supremum is attained in (2.8), we find for fixed X ∈ Lp a probability
measure QX ∈ Q such that

ρ(|X|) = EQX |X| ≤ (E|X|p)
1
p

(
E
∣∣∣∣dQXdP

∣∣∣∣q) 1
q

<∞.

Hence, ρ is finite by Lemma 2.2 and especially proper. Due to finiteness, the Fatou property
follows from Proposition 2.16.

Remark 2.22. Since ρ∗ is convex as a conjugate function and takes values in {0,∞}, the
set

Q = {Q ∈M q
1 (Ω,A,P) : ρ∗(Q) = 0} = {Q ∈M q

1 (Ω,A,P) : ρ∗(Q) ≤ 0}

of the dual representation is convex, too, as a sublevel set of a convex function.



2.3. Dual Representation 19

With the dual representation (2.8) we can prove a complementary inequality to subaddi-
tivity.

Lemma 2.23. A proper coherent risk measure with the Fatou property ρ : Lp → R̄ satisfies
the inequality

ρ(X + Y ) ≥ ρ(X)− ρ(−Y ) for all X,Y ∈ Lp.

Proof. By Proposition 2.21 it holds for X,Y ∈ Lp

ρ(X + Y ) = sup
Q∈Q

EQ[X + Y ] = sup
Q∈Q

(
EQ[X] + EQ[Y ]

)
≥ sup
Q∈Q

(
EQ[X] + inf

Q∈Q
EQ[Y ]

)
= sup
Q∈Q

(
EQ[X]− sup

Q∈Q
EQ[−Y ]

)
= sup
Q∈Q

(
EQ[X]− ρ(−Y )

)
= sup
Q∈Q

EQ[X]− ρ(−Y )

= ρ(X)− ρ(−Y ).

For spectral risk measures the dual representation becomes more explicit. The original
proof by Pichler (2015) is along the line of the general case, i.e. a calculation of the convex
conjugate ρ∗φ and its null set. That means part (iii) of the following Proposition was proven
first and the other parts where then derived as Corollaries. Proceeding the other way
round, we give a shorter alternative proof.

Proposition 2.24. A spectral risk measure ρφ : Lp → R with spectrum φ ∈ Lq can be
represented as
(i)

ρφ(X) = sup
U∼U(0,1)

E[Xφ(U)].

(ii)
ρφ(X) = sup

{
E[XY ] : Y ∈ Lq, Y ≤cx φ(U), U ∼ U(0, 1)

}
.

(iii)

ρφ(X) = sup
{
E[XY ] : Y ∈ Lq, E[Y ] = 1,

ESα(Y ) ≤ 1
1− α

∫ 1

α
φ(u) du, 0 ≤ α ≤ 1

}

The suprema are attained and the maximizer is given by φ(UX), where UX is the generalized
distributional transform of X.

Proof. (i) We can reformulate the definition of a spectral risk measure to

ρφ(X) =
∫ 1

0
F−1
X (u)φ(u) du = E

[
F−1
X (UX)φ(UX)

]
= E [Xφ(UX)] ,
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where the last equality is by Lemma B.10. For random vectors (X1, X2) and (Y1, Y2)
with the same marginals it follows from the upper Fréchet-Hoeffding bound that

E[X1X2] ≤ E[Y1Y2]

if (Y1, Y2) is comonotonic and the expectations exist, cf. Müller and Stoyan (2002,
3.1.1, 3.8.2). Recalling that X and UX are comonotonic and φ is increasing yields (i)
and the assertion regarding the maximizer.

(ii) Let X ∈ Lp and Y ∈ Lq with Y ≤cx φ(U), U ∼ U(0, 1). We proceed in three steps.

Step 1: X ≥ 0

Then σ : [0, 1]→ R+, σ(u) = q+
X(u)
E[X] is increasing and right continuous with normed

integral, i.e. a spectrum. Therefore,

E[XY ] ≤ E[q+
X(UY )Y ] = E[X] · ρσ(Y )

≤ E[X] · ρσ(φ(UY )) = E[q+
X(UY )φ(UY )]

= E[Xφ(UX)]

The first inequality is by the same argument as in (i) and the second one holds since
the spectral risk measure ρσ : Lq → R has the Fatou property (Proposition 2.17 for
q <∞ or Jouini et al. (2006) for q =∞) and therefore preserves the convex order
(Bäuerle and Müller; 2006, 4.3).

Step 2: X ≥ −N for some N ∈ N
Since Y is a density by Remark 2.25 it follows from step 1 that

E[XY ] = E[(X +N)Y ]−N ≤ E[(X +N)φ(UX)]−N = E[Xφ(UX)].

Step 3: general case
By step 2 it holds

E[max{X,−N}Y ] ≤ E[max{X,−N}φ(UX)], N ∈ N.

Since |max{X,−N}| ≤ X ∈ Lp, N ∈ N and max{X,−N} → X P-a.s. as N → ∞,
the claim follows with dominated convergence.

(iii) It holds E[φ(U)] =
∫ 1

0 φ(u) du = 1 by the definition of a spectrum. Moreover, φ is
increasing and right-continuous, i.e. an upper quantile function function. Now, (iii) is
only a reformulation of the convex order ≤cx in terms of ordered integrated quantile
functions and equal means, cf. Shaked and Shanthikumar (2007, 3.A.5). Note that
we replaced the lower quantile function of φ(U) with the upper one which is given by
φ. Due to equality a.e. this does not change the integrals.



2.3. Dual Representation 21

Remark 2.25. The ordering Y ≤cx φ(U) implies E[Y ] = E[φ(U)] = 1 and Y ≥ 0 P-a.s.
Indeed, assume that α = 1

2P(Y < 0) > 0. Then F−1
Y (α) = inf{x ∈ R : FY (x) ≥ α} < 0 and

since quantile functions are increasing
∫ α

0 F−1
Y (d) du < 0. But by the quantile representation

of the convex order one gets∫ α

0
F−1
Y (u) du = 1−

∫ 1

α
F−1
Y (u) du ≥ 1−

∫ 1

α
φ(u) du ≥ 0,

a contradiction. Consequently, all suprema in Proposition 2.24 are taken over densities
and we have a dual representation in the classical sense.

The well-known dual representation of Expected Shortfall is a special case.

Corollary 2.26. The Expected Shortfall can be represented as

ESα(X) = sup
Q∈Qα

EQ[X], X ∈ L1,

where Qα = {Q ∈M∞1 (Ω,A,P) : dQ
dP ≤

1
1−α}.

Proof. Expected Shortfall has the spectrum φ(u) = 1
1−α1[α, 1](u), i.e. the representation

in Proposition 2.24 becomes

ESα(X) = sup
{
E[XY ] : Y ∈ L∞, E[Y ] = 1,

(1− β) ESβ(Y ) ≤ 1
1− α

∫ 1

max{α,β}
du, 0 ≤ β ≤ 1

}
.

The last constraint is equivalent to

(1− β) ESβ(Y ) ≤ min{1− α, 1− β}
1− α

⇐⇒ (1− β) ESβ(Y ) ≤


1−β
1−α , β ≥ α

1, β < α

⇐⇒

ESβ(Y ) ≤ 1
1−α , β ≥ α∫ 1

β F
−1
Y (u) du ≤ 1 β < α.

Since ESβ is increasing in β, the constraint in the first case is equivalent to

ES1(Y ) = ess sup(Y ) ≤ 1
1− α.

Moreover, the constraint in the second case is redundant because β 7→
∫ 1
β F

−1
Y (u) du is

decreasing for non-negative Y and E[Y ] =
∫ 1

0 F
−1
Y (u)du = 1 holds for every density Y .





CHAPTER 3

Markov Decision Model

We consider stochastic systems which evolve in discrete time and can be influenced by
sequential decisions of a controller. The decisions incur a cost at each stage and influence
the conditions for future decision-making. This is formalized by a state process with random
transitions. Given the current state, the controller chooses an admissible action which
influences the transition to the next state. The cost incurred at each stage may depend on
the current state, the chosen action, and the next state. Hence, the decision-maker has to
take into account the impact of his action on the current as well as on future costs and
balance possible opposite effects.
In this chapter, we first introduce an abstract cost model which will subsequently be

considered under different optimality criteria. Furthermore, we specify the decision-making
of the controller. The dynamic reinsurance model introduced afterward is a special case and
will serve as a running example. From the actuarial perspective, it is novel and therefore
of interest on its own.

3.1. Abstract Cost Model

Under the term Borel space we understand a Borel subset S of a Polish space, i.e. complete,
separable metric space equipped with the metric and the Borel σ-algebra B(S). Note that
in the literature such spaces are occasionally referred to as Standard Borel spaces when
Borel space only means topological space with Borel σ-algebra.

The abstract cost model is a Markov Decision Model with general Borel state and action
spaces. We define the model components (or model data) distinguishing finite and infinite
planning horizon. Properties of the components which are listed here are required to
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hold throughout all subsequent chapters, unless explicitly stated otherwise. Additional
assumptions will be made later on specifically for the different optimality criteria.
The model with finite planning horizon N ∈ N has the following components for

n = 0, . . . , N − 1:

• The state space E is a Borel space with Borel σ-algebra B(E). The elements x ∈ E
are called states.

• The action space A is a Borel space with Borel σ-Algebra B(A). The elements a ∈ A
are referred to as actions.

• The possible state-action combinations Dn at time n form a measurable subset of
E × A such that Dn contains the graph of a measurable mapping E → A. The
x-section of Dn,

Dn(x) = {a ∈ A : (x, a) ∈ Dn},

is the set of admissible actions in state x ∈ E at time n. It induces a set-valued
mapping E 3 x 7→ Dn(x).

• The disturbances Z1, . . . , ZN are independent random elements on a common proba-
bility space (Ω,A,P) with values in a measurable space (Z,Z). Their influence on the
next state is formalized by a measurable transition function Tn : Dn×Z → E. When
the current state is xn, the controller chooses action an and zn+1 is the realization of
Zn+1, then the next state is given by

xn+1 = Tn(xn, an, zn+1).

• The one-stage cost function cn : Dn × E → R gives the cost cn(x, a, x′) which the
controller incurs for choosing action a if the system is in state x at time n and the
next state is x′.

• The terminal cost function cN : E → R gives the cost cN (x) which the controller
incurs if the system terminates in state x.

Since Dn contains the graph of a measurable map, the set of admissible actions Dn(x) is
non-empty for every state x ∈ E. Moreover,

Dn = {(x, a) ∈ E ×A : a ∈ Dn(x)},

i.e. Dn is the graph of the set-valued mapping Dn(·).
The model data is supposed to have the following continuity and compactness properties.

In the subsequent chapters it will be stated explicitly, which of the three assumptions is
made on the transition function.

Properties 3.1. (i) The set-valued mapping E 3 x 7→ Dn(x) is upper semicontinuous
(see Definition A.12) and compact-valued for n = 0, . . . , N − 1.
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(ii) Regarding the transition function we distinguish three cases:

Case 1: Tn is continuous in (x, a) for n = 0, . . . , N − 1.
Case 2: Tn is lower semicontinuous in (x, a) for n = 0, . . . , N − 1.
Case 3: Tn is upper semicontinuous in (x, a) for n = 0, . . . , N − 1.

(iii) The one-stage cost Dn 3 (x, a) 7→ cn(x, a, Tn(x, a, z)) is lower semicontinuous for
every z ∈ Z and n = 0, . . . , N−1 and so is the terminal cost function E 3 x 7→ cN (x).

Note that in Case 1 it is sufficient due to Lemma A.4 a) to require that the one-stage cost
function cn : Dn × E → R is lower semicontinuous in order to obtain lower semicontinuity
of the composition cn(·, ·, Tn(·, ·, z)).

The abstract cost model is called stationary if D, T do not depend on n, the disturbances
are identically distributed, the one-stage cost functions are of the form cn = βnc, n =
0, . . . , N − 1, and the terminal cost function is βNcN , where β ∈ (0, 1] is a discount factor.
In that case, Z denotes a representative of the disturbance distribution. If the model is
stationary and the terminal cost is zero, we allow for an infinite time horizon N =∞. For
a non-stationary model, one may think of the discount factor being included in the cost
functions.
For n ∈ N0 we denote by Hn the set of feasible histories of the decision process up to

time n

hn =

x0, if n = 0,

(x0, a0, x1, . . . , xn), if n ≥ 1,

where ak ∈ D(xk) for k ∈ N0. The set H∞ is defined accordingly. In order for the
controller’s decisions to be implementable, they must be based on the information available
at the time of decision-making, i.e. be functions of the history of the decision process. This
axiomatic requirement is referred to as non-anticipativity.

Definition 3.2. a) A randomized policy is a sequence π = (π0, π1, . . . ) of stochastic
kernels πn from Hn to the action space A satisfying the constraint

πn(D(xn)|hn) = 1, hn ∈ Hn.

A finite sequence π = (π0, . . . , πN−1) is referred to as randomized N -stage policy.
b) A measurable mapping dn : Hn → A with dn(hn) ∈ D(xn) for every hn ∈ Hn is

called decision rule at time n.
c) A decision rule at time n is called Markov if it only depends on the current state, i.e.

dn(hn) = dn(xn) for all hn ∈ Hn.
d) A sequence of decision rules π = (d0, d1, . . . ) is called deterministic policy and a finite

sequence π = (d0, . . . , dN−1) is called deterministic N -stage policy.
e) If all decision rules are Markov, the deterministic (N -stage) policy is called Markov.
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f) An (N -stage) Markov policy π is called stationary if π = (d, d, . . . ) (or π = (d, . . . , d)
respectively) for some Markov decision rule d.

For convenience, deterministic policies may simply be referred to as policy. With
ΠR ⊇ Π ⊇ ΠM ⊇ ΠS we denote the sets of all randomized policies, deterministic policies,
Markov policies and stationary policies. The first inclusion is by identifying deterministic
decision rules dn with the corresponding Dirac kernels

πn(·|hn) = δdn(hn)(·), hn ∈ Hn.

It will be clear from the context if N -stage or infinite stage policies are meant. An admissible
policy always exists since Dn contains the graph of a measurable mapping.
At each stage n ∈ N0, the transition function Tn and the disturbance Zn+1 induce a

stochastic kernel

Qn(B|x, a) =
∫
1B

(
Tn(x, a, Zn+1(ω))

)
P(dω), B ∈ B(E), (x, a) ∈ Dn (3.1)

from Dn to E characterizing the transition law. Note that (3.1) indeed defines a stochastic
kernel: Firstly, Qn(·|x, a) defines a probability measure on (R,B(R)) for every (x, a) ∈
Dn. Secondly, the function Dn × Ω 3 (x, a, ω) 7→ 1B

(
Tn(x, a, Z(ω))

)
is measurable as a

composition of measurable functions and hence Dn 3 (x, a) 7→ Qn(B|x, a) is measurable
for every B ∈ B(E) by Tonelli’s Theorem B.2. The decision process (Xn)n∈N0 can now be
defined by the following canonical construction as for instance in Hernández-Lerma and
Lasserre (1996). We directly consider an infinite time horizon with the N -stage version
simply being a truncation. Define a measurable space by the sample space H∞ = (E×A)∞

and the product σ-algebra
∞⊗
n=0

(
B(E)⊗ B(A)

)
.

Elements of H∞ are of the form ω = (x0, a0, x1, a1, . . . ). We define the state process
(Xn)n∈N0 and the action process (An)n∈N0 on H∞ as projections

Xn(ω) = xn, An(ω) = an, n ∈ N0.

The process (Hn)n∈N0 denotes the history of the decision process viewed as a random
element, i.e.

H0 = X0, H1 =
(
X0, A0, X1

)
, H2 =

(
X0, A0, X1, A1, X2

)
, . . .

By the Theorem of Ionescu-Tulcea (Klenke; 2014, 14.32), each initial state x ∈ E and
policy π ∈ ΠR of the controller induce a unique probability measure

Qπx = δx ⊗ π0 ⊗Q0 ⊗ π1 ⊗Q1 ⊗ . . . (3.2)
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on H∞ called the law of motion. It satisfies for all n ∈ N0, B ∈ B(E) and C ∈ B(A)

Qπx(X0 ∈ B) = δx(B),

Qπx(An ∈ C|Hn = hn) = πn(C|hn),

Qπx(Xn+1 ∈ B|Hn = hn, An = an) = Qn(B|xn, an).

Henceforth, we denote with Eπx the expectation operator with respect to Qπx and with
Eπnhn or Eπnx the respective conditional expectation given Hn = hn or Xn = x. Clearly,
for this canonical construction it was not necessary to define disturbances and transition
functions since one could more generally start directly with transition kernels Qn. In the
following chapters, we will, however, rely on this functional representation of the transition
law. The canonical construction is only needed to allow for randomized policies. Under a
deterministic policy π = (d0, d1, . . . ) ∈ Π we do not need to specify a law of motion but
can define the decision process directly by the functional representation

Xπ
0 = x0, Xπ

n+1 = T (Xπ
n , dn(Hπ

n ), Zn+1). (3.3)

In this setting, expectations can be calculated with respect to the probability measure of
the underlying probability space (Ω,A,P) of the disturbances. Hence, we index the decision
process and its random history with the policy rather than the expectation operator.

3.2. Dynamic Reinsurance Model

As an application, we study dynamic reinsurance of an insurance company in discrete time.
Optimality criteria are minimization of solvency capital requirements or cost of solvency
capital as well as robust maximization of expected total dividends. Since reinsurance
treaties are typically written for one year (Albrecher et al.; 2017, p. 1) and dividends are
paid annually, modeling in discrete time is appropriate when focusing on the management
of the insurer’s surplus by means of reinsurance and dividend payments while neglecting
the possible use of capital market instruments.

3.2.1. Solvency Capital

The cost of solvency capital is given by the solvency capital requirement times the insurer’s
cost of capital rate. Hence, minimizing the two quantities is structurally the same. The
model introduced here is a dynamic generalization of a static optimal reinsurance problem
extensively studied in the literature, starting with Cai and Tan (2007) and generalizations
i.a. by Chi and Tan (2013) and Cui et al. (2013). The insurer is endowed with an initial
capital x ∈ R+. At the end of each period [n, n+ 1), n ∈ N0, he incurs aggregate claims
Yn+1 for that period and receives the total premium income Zn+1 for the next period. Both
quantities are stochastic and therefore modeled by non-negative random variables. Thus,



28 Chapter 3. Markov Decision Model

the insurer’s uncontrolled surplus process is given recursively by

X0 = x, Xn+1 = Xn − Yn+1 + Zn+1.

In order to reduce the downside risk of its surplus process, the insurance company can
underwrite a reinsurance treaty at the beginning of each period. A reinsurance treaty is
described by a retained loss function f : R+ → R+. When purchasing reinsurance fn at
time n, the insurance company retains the portion fn(Yn+1) of the claims Yn+1 arriving at
time n+ 1 and the reinsurer covers Yn+1 − fn(Yn+1). In return, the insurer has to pay a
reinsurance premium πR

(
Yn+1 − fn(Yn+1)

)
. The admissible retained loss functions are

F = {f : R+ → R+ | f(t) ≤ t ∀t ∈ R+, f increasing, idR+ −f increasing}.

The first condition 0 ≤ f ≤ idR+ ⇔ 0 ≤ idR+ −f ≤ idR+ ensures that only actual losses
can be reinsured. The second and third condition ensure that the retained loss fn(Yn+1)
and the ceded loss Yn+1 − fn(Yn+1) are comonotonic random variables, i.e. that both the
insurer and the reinsurer suffer from higher claims. Otherwise, the insurer might have an
incentive to misreport losses or accept unjustified claims. This form of moral hazard is
precluded by the constraint which is also referred to as incentive compatibility condition in
the literature. Additionally, one may introduce a budget constraint. The dynamic of the
controlled surplus process is given by

X0 = x, Xn+1 = Xn − fn(Yn+1)− πR
(
Yn+1 − fn(Yn+1)

)
+ Zn+1.

Let us now formulate the reinsurance model as a stationary Markov Decision Process
and embed it in the abstract cost model. Important properties are summarized below in
Lemma 3.3.

• The state space is the real line R with Borel σ-algebra B(R).

• The action space is F with Borel σ-algebra B(F).

• The disturbance space is R2
+ with Borel σ-algebra B(R2

+) and the disturbances are
(Yn, Zn)n∈N. It is assumed that claims (Yn)n∈N and premium income (Zn)n∈N are
non-negative, independent and defined on a common atomless probability space
(Ω,A,P) as well as

Y1, Y2, . . .
iid∼ Y ∈ Lp(Ω,A,P)

Z1, Z2, . . .
iid∼ Z ∈ L∞(Ω,A,P)

for some p ∈ [1,∞).
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• The transition function T : R×F × R+ × R+ → R is given by

T (x, f, y, z) = x− f(y)− πR(f) + z.

Here, πR : Lp+ → R̄ is a law-invariant, monotone and normalized premium principle
having the Fatou property and satisfying πR(Y ) < ∞. Due to the identical distri-
bution of the claims we can use the shorthand notation πR(f) = πR

(
Y − fn(Y )

)
,

f ∈ F .

• Regarding the admissible actions D(x) in state x ∈ R we will consider two cases:

Unconstrained: D(x) = F for all x ∈ R.

Budget-constrained: D(x) = {f ∈ F : πR(f) ≤ x+} for all x ∈ R.

The set of all state-action combinations is D = {(x, f) ∈ R × F : f ∈ D(x)}. It
contains the graph of the constant measurable map R 3 x 7→ idR+ .

• Regarding the one-stage cost function c : D × R→ R we also consider two cases:

Cumulative loss: c(x, f, x′) = −x′.

Incremental loss: c(x, f, x′) = −(x′ − x) = x− x′.

There is no terminal cost.

Under a finite planning horizon, one could of course formulate a non-stationary version of
the model. Mathematically, there is no difficulty so we omit this for notational convenience.
Requiring that the aggregate losses are independent and fulfill some integrability condition
is standard in actuarial science. Often, the premium income is assumed to be deterministic.
Here, we allow for some uncertainty or fluctuation but in practice one will at least know
an upper bound (complete and timely payment by all policyholders). The assumption
πR(Y ) < ∞, meaning that the risk can be fully ceded at each stage, is natural for a
model with a passive reinsurer. The budget constraint implies that reinsurance cannot be
purchased on credit but a temporarily negative capital is allowed.

Lemma 3.3. a) All retained loss functions f ∈ F are Lipschitz continuous with constant
L ≤ 1.

b) F is a Borel space as a compact subset of the metric space (C(R+),m) of continuous
real-valued functions on R+ with metric

m(f, g) =
∞∑
j=1

2−j max0≤t≤j |f(t)− g(t)|
1 + max0≤t≤j |f(t)− g(t)| .

c) The functional πR : F → R+, f 7→ πR(f) is lower semicontinuous.
d) The transition function T is upper semicontinuous and hence measurable.
e) D(x) is a compact subset of F for all x ∈ R.
f) The set-valued mapping R 3 x→ D(x) is upper semicontinuous.
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g) The one-stage cost D 3 (x, f) 7→ c(x, f, T (x, f, y, z)) is lower semicontinuous for
every (y, z) ∈ R2

+.

Proof. a) Let f ∈ F . Since idR+ −f is increasing, it holds for 0 ≤ x ≤ y that x−f(x) ≤
y − f(y). Rearranging and using that f is increasing, too, yields

|f(x)− f(y)| = f(y)− f(x) ≤ y − x = |x− y|.

b) Let {fk}k∈N be a convergent sequence in F with limit f . Then, fk(x) → f(x) for
all x ∈ R+. Now it is easily checked that f ∈ F , i.e. F is closed. Moreover, F is
relatively compact by the Arzelà-Ascoli Theorem A.32 together with Remark A.33
since f ≤ idR+ for all f ∈ F and the functions in F have a common Lipschitz constant
by part a). Hence, (F ,m) is a compact metric space and as such also complete and
separable (Aliprantis and Border; 2006, 3.26, 3.28). I.e. (F ,B(F)) is a Borel space.

c) Let {fk}k∈N be a sequence in F such that fk → f ∈ F . Especially, it holds
fk(x)→ f(x) for all x ∈ R+ and Y − fk(Y )→ Y − f(Y ) P-a.s. Since Y − fk(Y ) ≤
Y ∈ Lp(Ω,A,P) for all k ∈ N, the Fatou property of πR implies

lim inf
k→∞

πR(fk) = lim inf
k→∞

πR
(
Y − fk(Y )

)
≥ πR

(
Y − f(Y )

)
= πR(f).

d) We show that the mapping F×R+ 3 (f, y) 7→ f(y) is continuous. Then, the transition
function T is upper semicontinuous as a sum of upper semicontinuous functions due
to part c). Let {(fk, yk)}k∈N be a convergent sequence in F × R+ with limit (f, y).
Since convergence w.r.t. the metric m implies pointwise convergence and all fk have
the Lipschitz constant L = 1, it follows

|fk(yk)− f(y)| = |fk(yk)− fk(y) + fk(y)− f(y)|

≤ |fk(yk)− fk(y)|+ |fk(y)− f(y)|

≤ |yk − y|+ |fk(y)− f(y)| → 0 as k →∞.

e) Due to b), we only have to consider the budget-constrained case. Since F is compact
it suffices to show that D(x) is closed. Now, D(x) = {f ∈ F : πR(f) ≤ (x)+} is closed
as a sublevel set of the lower semicontinuous function πR : F → R+, cf. Lemma A.2.

f) In case of no budget constraint this follows directly from Lemma A.15 b). If there is
a budget constraint, we have to show that D is closed to obtain the assertion from
part a) of the same lemma. D(0) is closed by part e). From the lower semicontinuity
of πR : F → R+ it follows that the epigraph

epi(πR) = {(f, x) ∈ F × R+ : πR(f) ≤ x}

is closed. Thus, D = {(x, f) : (f, x) ∈ epi(πR)} ∪ (R− ×D(0)) is closed, too.
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g) In the total loss case, we have c(x, f, T (x, f, y, z)) = −T (x, f, y, z) which is lower
semicontinuous in (x, f) by part d). In the incremental loss case, c(x, f, T (x, f, y, z)) =
x− T (x, f, y, z) is lower semicontinuous in (x, f) as a sum of lower semicontinuous
functions.

Hence, all assumptions of the abstract cost model of Section 3.1, especially the Continuity
and Compactness Properties 3.1, are satisfied by the dynamic reinsurance model.

3.2.2. Dividends

A model similar to the one of Section 3.2.1 that additionally incorporates dividend payments
was introduced by Chen and Assa (2019). However, their results contain a fundamental
error in Section 4.2 disregarding the dynamic nature of the optimization problem. We give
here a slightly modified version of their model which represents another special case of the
abstract cost model. The solution to the optimization problem is studied in Section 4.4.1.

The insurer is again endowed with an initial capital x ∈ R+. He incurs aggregate claims
Yn+1 at the end of each period [n, n+ 1), n ∈ N0, and receives a deterministic premium
income z ∈ R+ for the next period. Thus, the insurer’s uncontrolled surplus process is
given recursively by

X0 = x, Xn+1 = Xn − Yn+1 + z.

As in Section 3.2.1, the insurance company can underwrite a reinsurance treaty fn at the
beginning of each period. Moreover, it can now pay a dividend an ∈ R+ to its shareholders
at the beginning of each period. Hence, the dynamic of the controlled surplus process is
given by

X0 = x, Xn+1 = Xn + z − an − fn(Yn+1)− πR
(
Yn+1 − fn(Yn+1)

)
.

The corresponding stationary Markov Decision Model has the following components:

• The state space is the real line R with Borel σ-algebra B(R).

• The action space is R+×F with Borel σ-algebra B(R+)⊗B(F). The first component
represents the dividend and the second one the retained loss function.

• The disturbance space is R+ with Borel σ-algebra B(R+) and the disturbances are
(Yn)n∈N. It is assumed that the claims (Yn)n∈N are non-negative random variables
defined on a common atomless probability space (Ω,A,P) satisfying

Y1, Y2, . . .
iid∼ Y ∈ Lp(Ω,A,P)

for some p ∈ [1,∞).

• The transition function T : R+ × R+ ×F × R+ → R is given by

T (x, a, f, y) = x+ z − a− f(y)− πR(f).
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Here, z ∈ R+ is a constant representing the premium income and πR : Lp+ → R̄
is a law-invariant, monotone and normalized premium principle having the Fatou
property. Due to the identical distribution of the claims we use again the shorthand
notation πR(f) = πR

(
Y − fn(Y )

)
, f ∈ F .

• The admissible actions in state x ∈ R are

D(x) =
{

(a, f) ∈ R+ ×F : a ≤ x+, ρ(f(Y )) ≤ x+ + z − a− πR(f)
}
.

The normalized monetary risk measure ρ : Lp → R̄ is required to have the Fatou
property. It is assumed that there is a retained loss function f̂ ∈ F such that

ρ(f̂(Y )) + π(f̂) ≤ z. (3.4)

Therefore, the set of admissible state-action combinationsD = {(x, a, f) ∈ R×R+×F :
(a, f) ∈ D(x)} contains the graph of the constant measurable map R 3 x 7→ (0, f̂).

• The continuous one-stage cost function c : D × R→ R is given by c(x, a, f, x′) = −a,
i.e. a profit for the shareholders is regarded as a negative cost.

• Under a finite planning horizon, one has the continuous terminal cost function
cN (x) = −x+ meaning that all remaining capital is distributed as a dividend.

The constraint comprises two conditions. Firstly, dividends can only be paid if the
insurer has a positive capital. Secondly, the capital requirement for the retained risk
calculated by the risk measure ρ must not exceed the insurer’s capital at the end of the
respective period excluding possible claims. This is an appropriate requirement since the
purpose of the solvency capital is to buffer claims arriving at the end of the period. In case
of a non-positive capital, no dividend can be paid and the solvency condition is reduced
to ρ(f(Y )) ≤ z − πR(f). There is at least one reinsurance treaty f̂ which satisfies this
condition due to (3.4). This assumption means that the premium income together with
the possibility to use reinsurance suffices to bear the risk of the claims. In the special case
f̂ = idR+ (full retention), the premium income alone suffices due to the normalization of
πR.

Due to Lemma 3.3 d) it follows directly that also the transition function of the dividends
model is upper semicontinuous and hence measurable. The one-stage cost D 3 (x, a) 7→
c(x, a, T (x, a, y)) = −a is continuous for every y ∈ R+. Together with the following result
we can conclude that all assumptions of the abstract cost model of Section 3.1, especially
the Continuity and Compactness Properties 3.1, are satisfied.

Lemma 3.4. The set-valued mapping R 3 x 7→ D(x) is compact-valued and upper semi-
continuous.

Proof. The map F 3 f 7→ ρ(f(Y )) + πR(f) is lower semicontinuos by the same arguments
as in the proof Lemma 3.3 c). Thus, φ : R+ ×F 7→ R, (a, f) 7→ ρ(f(Y )) + πR(f) + a− z is
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lower semicontinuous as a sum of lower semicontinuous functions and by Lemma A.2 c)

epiφ = {(a, f, x) ∈ R+ ×F × R : φ(a, f) ≤ x}

is closed. This is the graph of the set-valued mapping

R 3 x 7→ D1(x) = {(a, f) ∈ R+ ×F : φ(a, f) ≤ x}, x ∈ R.

Obviously, the set-valued mapping

R 3 x 7→ D2(x) = {a ∈ R+ : a ≤ x}

has compact values, a closed graph and is upper semicontinuous. Hence,

R 3 x 7→ D3(x) = D2(x)×F

has the same properties. The first two are clear and upper semicontinuity follows from
Proposition A.15 a). The graph of

R 3 x 7→ D4(x) = D1(x) ∩D3(x) = {(a, f) ∈ R+ ×F : a ≤ x, φ(a, f) ≤ x}

is the intersection of the graphs of D1(·) and D2(·) and hence closed, too. Moreover,
D4(·) is upper semicontinuous by Lemma A.14 and compact-valued since closed subsets of
compact sets are compact. Finally, D(·) is compact-valued since D4(·) is and it is upper
semicontinuous as the composition of D4(·) and the upper semicontinuous single-valued
set-valued map R 3 x 7→ {x+}, cf. Lemma A.17.





CHAPTER 4

Distributionally Robust Expected Total Cost
Minimization

Minimizing the expected total cost has evolved into the standard optimality criterion for
Markov Decision Processes. Under this optimality criterion, models similar to the one
introduced in Chapter 3.1 have been studied already in the 1960s and 1970s by Blackwell
(1965), Hinderer (1970) and Bertsekas and Shreve (1978), only to name a few major
contributions.

The novel feature here is that the transition law is no longer assumed to be fully known.
In the literature this is referred to as ambiguity whereas uncertainty relates to random
quantities with known distribution. In many applications, the transition law has to be
estimated from historical data and is therefore subject to statistical errors. One way of
dealing with this ambiguity is the worst-case approach, where the controller selects a policy
which is optimal with respect to the most adverse transition law in each scenario. This
setting can also be interpreted as a dynamic Stackelberg game with the controller as mover
and nature as follower.

The worst-case approach is empirically justified by the so-called Ellsberg Paradox. The
experiment suggested by Ellsberg (1961) has shown that agents tend to be ambiguity averse.
Epstein and Schneider (2003) investigated the question whether ambiguity aversion can
be incorporated in an axiomatic model of intertemporal utility. The representation of the
preferences turned out to be some worst case expected utility, i.e. the minimal expected
utility over an appropriate set of probability measures. This set of probability measures
needs to satisfy some rectangularity condition for the utility to have a recursive structure
making it time consistent.
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The rectangularity property has been taken up by Iyengar (2005) as a key assumption for
being able to derive a Bellman equation for a distributionally robust MDP with countable
state and action spaces. Contemporaneously, Nilim and El Ghaoui (2005) reached similar
findings, however, limited to finite state and action spaces. In the following, we will
generalize the results of Iyengar (2005) to a model with general Borel spaces. In order
to deal with the arising measurability issues, we borrow from the dynamic game setup
in González-Trejo et al. (2002) and Jaśkiewicz and Nowak (2011). The major difference
between our contribution and these two works is the design of the distributional ambiguity.
We replace the topology of convergence in distribution on the ambiguity set by the weak*
topology σ(Lq, Lp) in order to obtain connections to recursive risk measures in Section 5.3.
Moreover, we rigorously derive a Bellman equation.

4.1. Finite Planning Horizon

We consider the non-stationary version of the abstract cost model of Section 3.1 under a
finite planning horizon N ∈ N. Let p ∈ [1,∞) with conjugate index q ∈ (1,∞]. Due to
the independence of the disturbances, we may without loss of generality assume that the
probability space has a product structure

(Ω,A,P) =
N⊗
n=1

(Ωn,An,Pn)

with Zn(ω̄) = Zn(ωn) only depending on component ωn of ω̄ = (ω1, . . . , ωN ) ∈ Ω for
n = 1, . . . , N . When writing shorthand Zn(ω) for Zn(ωn) we mean by ω the component of
ω̄ = (ω1, . . . , ωN ) that Zn actually depends on.

One may think of (Ω,A,P) as the canonical construction, i.e.

(Ωn,An,Pn) =
(
Z,Z,PZn

)
and Zn(ω̄) = ωn, ω̄ = (ω1, . . . , ωN ) ∈ Ω

for all n = 1, . . . , N . In the sequel, we will require Pn to be separable (see Appendix B.2 for
a definition). Additionally, we will assume for some results that (Ωn,An,Pn) is atomless in
order to support a generalized distributional transform. Hence, a canonical construction
entails constraints on the choice of the disturbance space, cf. Appendix B.2.

Let n ∈ {0, . . . , N − 1} be a stage of the decision process. Due to the product structure
of (Ω,A,P), the representation of the transition kernel in (3.1) simplifies to

Qn(B|x, a) =
∫
1B

(
Tn(x, a, Zn+1(ω))

)
Pn+1(dω), B ∈ B(E), (x, a) ∈ Dn. (4.1)

We denote by M1(Ωn,An,Pn) the set of probability measures on (Ωn,An) which are
absolutely continuous with respect to Pn and define

Mq
1(Ωn,An,Pn) =

{
Q ∈M1(Ωn,An,Pn) : dQ

dPn
∈ Lq(Ωn,An,Pn)

}
.
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Henceforth, we fix a non-empty subset Qn ⊆ Mq
1(Ωn,An,Pn) which is referred to as

ambiguity set at stage n. Due to absolute continuity, we can identify Qn with the set of
corresponding densities w.r.t. Pn

Qdn =
{ dQ

dPn
∈ Lq(Ωn,An,Pn) : Q ∈ Qn

}
.

Accordingly, we view Qn as a subset of Lq(Ωn,An,Pn) and endow it with the trace topolgy
of the weak* topolgy σ(Lq, Lp) on Lq(Ωn,An,Pn). The weak* topology in turn induces a
Borel σ-algebra on Qn making it a measurable space.

Lemma 4.1. Let the ambiguity set be norm-bounded and the probability measure Pn on
(Ωn,An) be separable. Then Qn endowed with the weak* topology σ(Lq, Lp) is a separable
metrizable space. If Qn is additionally weak* closed, it is even a compact Borel space.

Proof. Recall that we identify Qn with the set of the corresponding densities Qdn. The
closure Qdn of Qdn remains norm bounded. This can be seen as follows: Let X ∈ Qdn. Then
there exists a net {Xα}α∈I ⊆ Qdn such that Xα

w∗→ X. Hence,

E[XαY ]→ E[XY ] for all Y ∈ Lp(Ωn,An,Pn) with ‖Y ‖Lp = 1.

By Hölder’s inequality we have for all α ∈ I

|E[XαY ]| ≤ E|XαY | ≤ ‖Xα‖Lq‖Y ‖Lp = ‖Xα‖Lq ≤ K.

Thus, |E[XY ]| ≤ K. Finally, due to duality it follows

‖X‖Lq = sup
‖Y ‖Lp=1

|E[XY ]| ≤ K.

The separability of the probability measure Pn makes Lp(Ωn,An,Pn) a separable Banach
space, cf. Lemma B.6. Consequently, the weak* topology is metrizable on the norm bounded
set Qdn (Morrison; 2001, p. 157). The trace topology on the subset Qdn ⊆ Q

d
n coincides with

the topology induced by the restriction of the metric (Ó Searcóid; 2007, 4.4.1), i.e. Qdn is
metrizable, too.

Since Qdn is norm bounded and weak* closed, the Theorem of Banach-Alaoglu (Aliprantis
and Border; 2006, 6.21) yields that it is weak* compact. As a compact metrizable space Qdn
is complete (Aliprantis and Border; 2006, 3.28) and also separable (Aliprantis and Border;
2006, 3.26). Hence, Qdn is a Borel Space. The set of densities Qdn is also separable as a
subspace of a separable metrizable space (Aliprantis and Border; 2006, 3.5).

In our abstract cost model, we allow for any norm-bounded ambiguity set Qn ⊆
Mq

1(Ωn,An,Pn). For applications, a meaningful way of choosing Qn (within a norm
bound) is to take all probability measures in Mq

1(Ωn,An,Pn) which are in some sense
close to Pn. In an insurance context, Birghila and Pflug (2019) recently suggested taking
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either the convex hull of a finite number of probability measures or a neighborhood of
the reference probability measure w.r.t. the (contorted) Wasserstein distance. The latter
approach may be extended to any metric for probability measures. In our setting, that
requires absolute continuity, the Kullback–Leibler divergence

DKL(Q‖Pn) =
∫

log
( dQ

dPn

)
dQ, Q ∈Mq

1(Ωn,An,Pn),

is a natural choice.
For n = 0, . . . , N − 1 we denote by H∗n = D0 × · · · × Dn the set of extended feasible

histories of the decision process up to time n. A generic element of H∗n has the form
h∗n = (x0, a0, . . . , xn, an). The controller only knows that the transition kernel (4.1) at
each stage is defined by some Q ∈ Qn+1 instead of Pn+1 but not which one exactly. From
the perspective of a dynamic game against nature this means that nature reacts to the
controller’s action an in scenario hn ∈ Hn with a decision rule γn : H∗n → Qn+1. A policy
of nature is a sequence of such decision rules γ = (γ0, . . . , γN−1). Let Γ be the set of all
policies of nature. Since nature is an unobserved theoretical opponent of the controller,
her actions are not considered to be part of the history of the decision process. A Markov
decision rule of nature at time n is a measurable mapping γn : Dn → Qn+1 and a Markov
policy of nature is a sequence γ = (γ0, . . . , γN−1) of such decision rules. The set of Markov
policies of nature is denoted by ΓM .

Lemma 4.2. For n = 0, . . . , N − 1 a decision rule γn : H∗n → Qn+1 induces a stochastic
kernel from H∗n to Ωn+1 by

γn(B|h∗n) = γn(h∗n)(B), B ∈ An+1, h
∗
n ∈ H∗n.

Proof. By definition, γn(·|h∗n) is a probability measure for every h∗n ∈ H∗n. Now fix
B ∈ An+1. The map δ : Qn+1 → [0, 1], δ(Q) = EQ[1B] is weak* continuous since
1B ∈ Lp(Ωn+1,An+1,Pn+1) and hence Borel measurable. Therefore,

H∗n 3 h∗n 7→ γn(B|h∗n) = δ ◦ γn(h∗n)

is measurable as a composition of measurable maps.

In the sequel, it will be clear from the context where we refer to γn as a decision rule or as
a stochastic kernel. Lemma 4.2 is a well-known result, of which even the converse holds for
probability measures on Borel spaces, cf. Proposition 7.26 in Bertsekas and Shreve (1978).
However, here this is not applicable since firstly (Ωn+1,An+1) can be any measurable space
and secondly the Borel σ-algebra on Qn+1 is induced by the weak* topology σ(Lq, Lp) and
not the topology of convergence in distribution.
The probability measure γn(·|h∗n), which is unknown for the controller, now takes the
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role of Pn+1 in defining the transition kernel of the decision process in (4.1). Let

Qγn(B|h∗n) =
∫
1B

(
Tn(xn, an, Zn+1(ω))

)
γn(dω|h∗n), B ∈ B(E), h∗n ∈ H∗n.

As in the case without ambiguity, the Theorem of Ionescu-Tulcea (Klenke; 2014, 14.32)
yields that each starting point x ∈ E and pair of policies of the controller and nature
(π, γ) ∈ ΠR × Γ induce a unique law of motion

Qπγx = δx ⊗ π0 ⊗Qγ0 ⊗ π1 ⊗Qγ1 ⊗ . . . (4.2)

on H∞ satisfying

Qπγx (X0 ∈ B) = δx(B),

Qπγx (An ∈ C|Hn = hn) = πn(C|hn),

Qπγx (Xn+1 ∈ B|H∗n = h∗n) = Qγn(B|h∗n)

for all B ∈ B(E) and C ∈ B(A). In the usual way, we denote with Eπγx the expectation
operator with respect to Qπγx and with Eπγnhn or Eπγnx the respective conditional expectation
given Hn = hn or Xn = x.

The value of a policy pair (π, γ) ∈ ΠR × Γ at time n = 0, . . . , N is defined as

VNπγ(hN ) = cN (xN ), hN ∈ HN ,

Vnπγ(hn) = Eπγnhn

[
N−1∑
k=n

ck(Xk, Ak, Xk+1) + cN (XN )
]
, hn ∈ Hn.

(4.3)

Since the controller is unaware which probability measure in the ambiguity set determines
the transition law in each scenario, it is prudential to minimize the expected cost under
the assumption to be confronted with the most adverse probability measure. The value
functions are thus given by

Vn(hn) = inf
π∈ΠR

sup
γ∈Γ

Vnπγ(hn), hn ∈ Hn,

and this section’s optimization objective is

V0(x) = inf
π∈ΠR

sup
γ∈Γ

V0πγ(x), x ∈ E. (4.4)

In game-theoretic terminology this is the upper value of a dynamic zero-sum game. If
nature were to act first, i.e. if infimum and supremum were interchanged, one would obtain
the game’s lower value. If the two values agree and the infimum and supremum are attained,
the games has a Nash equilibrium, see also Section 4.3.1.

Iyengar (2005) does not model nature to make active decisions, but instead defines the
set of all possible laws of motion. When each law of motion is of the form (4.2), he calls
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the set rectangular. Shapiro (2016) devotes an entire paper to the rectangularity property.
Our approach with active decisions of nature, based on González-Trejo et al. (2002) and
Jaśkiewicz and Nowak (2011), is needed to construct stochastic kernels as in Lemma 4.2
with probability measures from a given ambiguity set. When state and action spaces are
countable as in Iyengar (2005), the technical problem of measurability does not arise and
one can directly construct an ambiguous law of motion by simply multiplying conditional
probabilities.
Our model feature that there is no ambiguity in the transition functions is justified in

many applications. Typically, transition functions describe a technical process or economic
calculation (e.g. the calculation of the insurer’s surplus in Section 3.2) which is known
ex-ante and does not have to be estimated. The same applies to the cost function.
In order to have well-defined value functions, we need some integrability condition.

Together with all other assumptions of this section, it is listed here.

Assumption 4.3. (i) The model data has the Continuity and Compactness Properties
3.1 with the transition function Tn being continuous in (x, a) for all n = 0, . . . , N − 1
(case 1).

(ii) There exist α,
¯
ε, ε̄ ≥ 0 with

¯
ε+ ε̄ = 1 and measurable functions

¯
b : E → (−∞,−

¯
ε], b̄ :

E → [ε̄,∞) such that it holds for all n = 0, . . . , N − 1, Q ∈ Qn+1 and (x, a) ∈ Dn

EQ
[
−c−n (x, a, Tn(x, a, Zn+1))

]
≥

¯
b(x), EQ [

¯
b(Tn(x, a, Zn+1))] ≥ α

¯
b(x),

EQ
[
c+
n (x, a, Tn(x, a, Zn+1))

]
≤ b̄(x), EQ

[
b̄(Tn(x, a, Zn+1))

]
≤ αb̄(x).

Furthermore, it holds
¯
b(x) ≤ cN (x) ≤ b̄(x) for all x ∈ E.

(iii) We define b : E → [1,∞), b(x) = b̄(x) −
¯
b(x). For all n = 0, . . . , N − 1 and

(x̄, ā) ∈ Dn there exists an ε > 0 and measurable functions Θx̄,ā
n,1,Θ

x̄,ā
n,2 : Z → R+ such

that Θx̄,ā
n,1(Zn+1),Θx̄,ā

n,2(Zn+1) ∈ Lp(Ωn+1,An+1,Pn+1) and

|cn(x, a, Tn(x, a, z))| ≤ Θx̄,ā
n,1(z), b(Tn(x, a, z)) ≤ Θx̄,ā

n,2(z)

for all z ∈ Z and (x, a) ∈ Bε(x̄, ā) ∩ Dn. Here, Bε(x̄, ā) is the closed ball around
(x̄, ā) w.r.t. an arbitrary product metric on E ×A.

(iv) The probability measure Pn on (Ωn,An) is separable for all n = 1, . . . , N .
(v) The ambiguity sets Qn are norm bounded, i.e. there exists K ∈ [1,∞) such that

E
∣∣∣∣ dQ
dPn

∣∣∣∣q ≤ K
for all Q ∈ Qn and n = 1, . . . , N .

The next remark summarizes some notes on the model assumptions.

Remark 4.4. a)
¯
b, b̄ are called lower and upper bounding function, respectively, while

b is referred to as bounding function. As the absolute value is the sum of positive
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and negative part, b satisfies

EQ [|cn(x, a, Tn(x, a, Zn+1))|] ≤ b(x) and EQ [|b(Tn(x, a, Zn+1))|] ≤ αb(x)

for all n = 0, . . . , N − 1, Q ∈ Qn+1 and (x, a) ∈ Dn.

b) Assumptions 4.3 (ii) and (iii) are satisfied if the cost functions are bounded.

c) If p = 1 and hence q =∞, it is technically sufficient if part (ii) of Assumption 4.3
holds under the reference probability measure Pn. Using Hölder’s inequality and part
(v) we get for every Q ∈ Qn+1

EQ
[
−c−n (x, a, Tn(x, a, Zn+1))

]
≥ E

[
−c−n (x, a, Tn(x, a, Zn+1))

]
ess sup dQ

dPn+1

≥ K
¯
b(x),

EQ [
¯
b(Tn(x, a, Zn+1))] ≥ E [

¯
b(Tn(x, a, Zn+1))] ess sup dQ

dPn+1

≥ αK
¯
b(x)

and analogous results for the upper bounding function. I.e. one simply has to
replace α by Kα. However, the factor Kα may be unnecessarily crude. Since its
magnitude matters under an infinite planning horizon (Section 4.2), we allow for a
better estimate.

d) Separability of a finite measure is defined in Appendix B.2. For probability measures
a countably generated σ-algebra is sufficient (Lemma B.5). The Borel σ-algebra of a
second countable topological space, e.g. a separable metric space, has this property.

The next lemma shows that due to Assumption 4.3 (ii) the value (4.3) of a policy pair
(π, γ) ∈ ΠR × Γ is well-defined at all stages n = 0, . . . , N . One can see that the existence
of either a lower or an upper bounding function is sufficient for the policy value to be
well-defined since the integral exists if either the negative or positive part of the integrand is
integrable. However, for the existence of an optimal policy pair we will need the integral to
exist with finite value and therefore require both a lower and an upper bounding function.

Lemma 4.5. Under Assumption 4.3 it holds for all policy pairs (π, γ) ∈ ΠR × Γ, time
points n = 0, . . . , N and histories hn ∈ Hn
(i)

Vnπγ(hn) ≥ Eπγnhn

[
N−1∑
k=n
−c−k (Xk, Ak, Xk+1)− c−N (XN )

]
≥

N∑
k=n

αk−n
¯
b(xn).

(ii)

Vnπγ(hn) ≤ Eπγnhn

[
N−1∑
k=n

c+
k (Xk, Ak, Xk+1) + c+

N (XN )
]
≤

N∑
k=n

αk−nb̄(xn).
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(iii)

|Vnπγ(hn)| ≤ Eπγnhn

[
N−1∑
k=n
|ck(Xk, Ak, Xk+1)|+ |cN (XN )|

]
≤

N∑
k=n

αk−nb(xn).

Proof. We only prove (i). Part (ii) is analogous and part (iii) follows from combining the
first two parts. The first inequality is obvious. Regarding the second one we use that

Eπγnhn

[
N−1∑
k=n
−c−k (Xk, Ak, Xk+1)− c−N (XN )

]
=
N−1∑
k=n

Eπγnhn
[
−c−k (Xk, Ak, Xk+1)

]
+ EπγNhN

[
−c−N (XN )

]
and consider the summands individually. We have EπγNhN

[
−c−N (XN )

]
≥ EπγNhN [

¯
b(XN )] by

Assumption 4.3 (ii). Since γk is a mapping to Qk+1 it follows from the first inequality of
Assumption 4.3 (ii) that

Eπγnhn
[
−c−k (Xk, Ak, Xk+1)

]
=
∫
Eπγkhk

[
−c−k (Xk, Ak, Xk+1)

]
Qπγx (dhk|Hn = hn)

=
∫∫∫

−c−k
(
xk, ak, Tk(xk, ak, Zk+1(ω))

)
γk(dω|h∗k)πk(d ak|hk)Qπγx (dhk|Hn = hn)

≥
∫

¯
b(xk)Qπγx (dhk|Hn = hn)

= Eπγnhn [
¯
b(Xk)]

for k = n, . . . , N − 1. Now, the second inequality of Assumption 4.3 (ii) yields for k ≥ n+ 1

Eπγnhn [
¯
b(Xk)]

=
∫
Ek−1hk−1 [

¯
b(Xk)]Qπγx (dhk−1|Hn = hn)

=
∫∫∫

¯
b
(
Tk−1(xk−1, ak−1, Zk(ω))

)
γk−1(dω|h∗k−1)πk−1(dak−1|hk−1)Qπγx (dhk−1|Hn=hn)

≥ α
∫

¯
b(xk−1)Qπγx (dhk−1|Hn = hn)

= αEπγnhn [
¯
b(Xk−1)] .

Iterating this argument, one obtains

Eπγnhn
[
−c−N (XN )

]
≥ αN−n

¯
b(xn) and Eπγnhn

[
−c−k (Xk, Ak, Xk+1)

]
≥ αk−n

¯
b(xn).

Finally, summation over k yields

Eπγnhn

[
N−1∑
k=n
−c−k (Xk, Ak, Xk+1)− c−N (XN )

]
≥

N∑
k=n

αk−n
¯
b(xn)

as claimed.
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Having ensured that the policy values are well-defined, we can now proceed to deriving
a value iteration.

Proposition 4.6. Under Assumption 4.3 the value of a policy pair (π, γ) ∈ ΠR × Γ can be
calculated recursively for n = 0, . . . , N and hn ∈ Hn as

VNπγ(hN ) = cN (xN ),

Vnπγ(hn) =
∫∫

cn
(
xn, an, Tn(xn, an, Zn+1(ω))

)
+ Vn+1πγ

(
h∗n, T (xn, an, Zn+1(ω))

)
γn(dω|h∗n)πn(d an|hn).

Proof. The proof is by backward induction. At time N there is nothing to show. Now
assume the assertion holds for n+ 1, then the tower property of conditional expectation
yields at time n

Vnπγ(hn)

= Eπγnhn

[
N−1∑
k=n

ck(Xk, Ak, Xk+1) + cN (XN )
]

= Eπγnhn

cn(Xn, An, Xn+1) +
N−1∑
k=n+1

ck(Xk, Ak, Xk+1) + cN (XN )


= Eπγnhn

cn(Xn, An, Xn+1) + Eπγn+1hnAnXn+1

 N−1∑
k=n+1

ck(Xk, Ak, Xk+1) + cN (XN )


=
∫∫

cn(xn, an, xn+1)

+ Eπγn+1hnanxn+1

 N−1∑
k=n+1

ck(Xk, Ak, Xk+1) + cN (XN )

Qγn(dxn+1|h∗n)πn(d an|hn)

=
∫∫

cn(xn, an, xn+1) + Vn+1πγ(hn+1) Qγn(dxn+1|h∗n)πn(d an|hn)

=
∫∫

cn
(
xn, an, Tn(xn, an, Zn+1(ω))

)
+ Vn+1πγ

(
h∗n, Tn(xn, an, Zn+1(ω))

)
γn(dω|h∗n)πn(d an|hn)

for all hn ∈ Hn.

With the bounding function b we define the function space

Bb = {v : E → R | v measurable with λ ∈ R+ s.t. |v(x)| ≤ λ b(x) for all x ∈ E} .

Endowing Bb with the weighted supremum norm

‖v‖b = sup
x∈E

|v(x)|
b(x)
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makes (Bb, ‖ · ‖b) a Banach space, cf. Proposition 7.2.1 in Hernández-Lerma and Lasserre
(1999). The following consequence of Assumption 4.3 (iii) is needed in several proofs.

Lemma 4.7. Let v ∈ Bb and n ∈ {0, . . . , N−1}. Under Assumption 4.3 (iii) each sequence
of random variables

Ck = cn
(
xk, ak, Tn(xk, ak, Zn+1)

)
+ v

(
Tn(xk, ak, Zn+1)

)
induced by a convergent sequence {(xk, ak)}k∈N in Dn has an Lp-bound C̄, i.e. |Ck| ≤ C̄ ∈
Lp(Ωn+1,An+1,Pn+1) for all k ∈ N.

Proof. There exists a constant λ ∈ R+ such that |v| ≤ λb. Since Dn is closed by Lemma
A.16, the limit point (x0, a0) of {(xk, ak)}k∈N lies in Dn. Let ε > 0 be the constant from
Assumption 4.3 (iii) corresponding to (x0, a0). Since the sequence is convergent, there exists
m ∈ N such that (xk, ak) ∈ Bε(x0, a0) ∩Dn for all k > m. For the finite number of points
(x0, a0), (x1, a1), . . . , (xm, am) there exist bounding functions Θxi,ai

n,1 ,Θxi,ai
n,2 by Assumption

4.3 (iii). Thus, the random variable

C̄ = max
i=0,...,m

(
Θxi,ai
n,1 (Zn+1) + λΘxi,ai

n,2 (Zn+1)
)

is an Lp-bound as desired.

Now, we evaluate a policy of the controller under the worst-case scenario regarding
nature’s reaction. We define the robust value of a policy π ∈ ΠR at time n = 0, . . . , N as

Vnπ(hn) = sup
γ∈Γ

Vnπγ(hn), hn ∈ Hn.

To minimize this quantity is the controller’s optimization objective. For the robust policy
value, a value iteration holds, too. With regard to a policy of nature this is a Bellman
equation given a fixed policy of the controller.

Theorem 4.8. Let Assumption 4.3 be satisfied.
a) The robust value of a policy π ∈ ΠR is a measurable function of hn ∈ Hn for

n = 0, . . . , N . It can be calculated recursively as

VNπ(hN ) = cN (xN ),

Vnπ(hn) =
∫

sup
Q∈Qn+1

∫
cn
(
xn, an, Tn(xn, an, Zn+1(ω))

)
+ Vn+1π

(
h∗n, Tn(xn, an, Zn+1(ω))

)
Q(dω)πn(d an|hn).

b) If the ambiguity set Qn+1 is weak* closed, there exists a maximizing decision rule γ∗n
of nature at time n = 0, . . . , N − 1, i.e.

Vnπ(hn) =
∫∫

cn
(
xn, an, Tn(xn, an, Zn+1(ω))

)
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+ Vn+1π
(
h∗n, Tn(xn, an, Zn+1(ω))

)
γ∗n(dω|h∗n)πn(d an|hn).

Each sequence of such decision rules γ∗ = (γ∗1 , . . . , γ∗N−1) ∈ Γ is an optimal response
of nature to the controller’s policy in the sense that

Vnπ = Vnπγ∗ , n = 0, . . . , N − 1.

Proof. a) The proof is by backward induction. At time N there is nothing to show.
Now assume the assertion holds at time n+ 1, i.e. that Vn+1π is measurable and that
for every ε > 0 there exists an ε-optimal strategy γ̂ = (γ̂n+1, . . . , γ̂N−1) of nature. By
Proposition 4.6 we have at time n

Vnπ(hn)

= sup
γ∈Γ

Vnπγ(hn)

= sup
γ∈Γ

∫∫
cn
(
xn, an, Tn(xn, an, Zn+1(ω))

)
+ Vn+1πγ

(
hn, an, Tn(xn, an, Zn+1(ω))

)
γn(dω|h∗n)πn(d an|hn)

≤ sup
γ∈Γ

∫∫
cn
(
xn, an, Tn(xn, an, Zn+1(ω))

)
+ Vn+1π

(
hn, an, Tn(xn, an, Zn+1(ω))

)
γn(dω|h∗n)πn(d an|hn).

Given action an ∈ Dn(xn) the maximization only depends on γn(·|h∗n) ∈ Qn+1.
Assuming measurability one can estimate the integrand by

≤
∫

sup
Q∈Qn+1

∫
cn
(
xn, an, Tn(xn, an, Zn+1(ω))

)
+ Vn+1π

(
hn, an, Tn(xn, an, Zn+1(ω))

)
Q(dω)πn(d an|hn). (4.5)

Let ε > 0 be arbitrary. Given the existence of a measurable ε
2 -maximizer γ̂n : H∗n →

Qn+1 we have the inequality

≤
∫∫

cn
(
xn, an, Tn(xn, an, Zn+1(ω))

)
+ Vn+1π

(
hn, an, Tn(xn, an, Zn+1(ω))

)
γ̂n(dω|h∗n)πn(d an|hn) + ε

2 . (4.6)

By the induction hypothesis, this is bounded by

≤
∫∫

cn
(
xn, an, Tn(xn, an, Zn+1(ω))

)
+ Vn+1πγ̂

(
hn, an, Tn(xn, an, Zn+1(ω))

)
γ̂n(dω|h∗n)πn(d an|hn) + ε.
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Again by Proposition 4.6, it equals

= Vnπγ̂(hn) + ε

≤ Vnπ(hn) + ε.

Since ε > 0 is arbitrary, equality holds. It remains to show the measurability of the
outer integrand at (4.5) and the existence of an ε

2 -maximizer at (4.6). Our aim is to
apply the general result by Rieder (1978) on optimal measurable selection stated in
Theorem A.22. To that end, we first show that the function

f(h∗n,Q) =
∫
cn
(
xn, an, Tn(xn, an, Zn+1)

)
+ Vn+1π

(
h∗n, Tn(xn, an, Zn+1)

)
dQ,

h∗n ∈ H∗n, Q ∈ Qn+1, is jointly measurable. The integrand is a measurable function
of (h∗n, ω) as a composition of measurable functions and in Lp(Ωn+1,An+1,Pn+1)
for every h∗n ∈ H∗n by Lemma 4.5 (iii). Hence, Fubini’s Theorem B.2 yields that
h∗n 7→ f(h∗n,Q) is measurable for every Q ∈ Qn+1 and by the definition of the weak*
topology Q 7→ f(h∗n,Q) is continuous for every h∗n ∈ H∗n. I.e. f is a Carathéodory
function. Since Qn+1 is a separable metrizable space (see Lemma 4.1), Lemma 4.51
in Aliprantis and Border (2006) yields that f is jointly measurable. Consequently,

{(h∗n,Q) ∈ H∗n ×Qn+1 : f(h∗n,Q) ≥ η} ∈ {S ×Q : S ∈ B(H∗n), Q ⊆ Qn+1} .

for every η ∈ R. The right hand side is a selection class as defined in Appendix A.3.
Obviously, it holds

H∗n ×Qn+1 ∈ {S ×Q : S ∈ B(H∗n), Q ⊆ Qn+1} .

Now, Theorem A.22 yields that

H∗n 3 h∗n 7→ sup
Q∈Qn+1

f(h∗n,Q)

is measurable and for every ε > 0 there exists an ε-maximizer γn : H∗n → Qn+1.

b) We have to show that there exists not only a ε-maximizer at (4.6) but a maximizer.
This follows from Theorem A.23. The additional requirements are that Qn+1 is a
separable metrizable space, which holds by Lemma 4.1, and that the set

{Q ∈ Qn+1 : f(h∗n,Q) ≥ η}

is compact for every η ∈ R and h∗n ∈ H∗n. By assumption, Qn+1 is weakly closed
and therefore compact by Lemma 4.1. In part a) we have seen that Q 7→ f(h∗n,Q)
is continuous for every h∗n ∈ H∗n. Hence, {Q ∈ Qn+1 : f(h∗n,Q) ≥ η} is closed as the
preimage of a closed set. Since closed subsets of compact sets are compact, the proof
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is complete.

So far we only considered the case that the ambiguity set may depend on the time
index but not on the state of the decision process. This covers many applications, e.g. the
connection to risk measures in Section 5.3. Moreover, we can allow any norm bounded
ambiguity sets as long as it is independent of the state using the optimal selection theorem
by Rieder (1978) in Theorem 4.8. If the ambiguity set is weak* closed, the following
generalization is possible.

Corollary 4.9. For n = 0, . . . , N − 1 let Qn+1 be weak* closed and

Dn 3 (x, a) 7→ Qn+1(x, a) ⊆ Qn+1

be a non-empty- and closed-valued set-valued mapping giving the potential probability
measures at time n in state x ∈ E if the controller chooses a ∈ Dn(x). Then the assertion
of Theorem 4.8 b) still holds.

Proof. We have to show the existence of a measurable maximizer at (4.6). The rest of the
Theorem’s proof is not affected. Since Qn+1 is weak* closed, it is a compact Borel space
by Lemma 4.1. Consequently, the set-valued mapping Qn+1(·) is compact-valued, as closed
subsets of compact sets are compact. In the proof of the theorem it has been shown that
the function f(h∗n,Q) is jointly measurable and continuous in Q. Hence, Proposition A.24
yields the existence of a measurable maximizer.

In fact, the set-valued mapping Qn+1(·) may depend on the entire extended history
h∗n ∈ H∗n but then we cannot expect the optimal policy of nature to be Markovian given a
Markov policy of the controller, cf. Corollary 4.11 below.
State-dependent ambiguity sets are a possibility to make the distributionally robust

optimality criterion less conservative. E.g. they allow to incorporate learning about the
unknown disturbance distribution. We refer the reader to Bielecki et al. (2019) for an
interesting example where the ambiguity sets are recursive confidence regions for an
unknown parameter of the disturbance distribution.

Let us now consider specifically deterministic Markov policies π ∈ ΠM of the controller.
The subspace

B = {v ∈ Bb : v lower semicontinuous}

of (Bb, ‖·‖b) turns out to be the set of potential value functions under such policies. (B, ‖·‖b)
is a complete metric space since the subset of lower semicontinuous functions is closed in
(Bb, ‖ · ‖b) by Lemma A.10. We define the following operators on Bb and especially on B.

Definition 4.10. For v ∈ Bb and Markov decision rules d : E → A, γ : Dn → Qn+1 let

Lnv(x, a,Q) =
∫
cn(x, a, Tn(x, a, Zn+1)) + v(Tn(x, a, Zn+1)) dQ, (x, a,Q) ∈ Dn ×Qn+1,

L̂nv(x, a) = sup
Q∈Qn+1

Lnv(x, a,Q), (x, a) ∈ Dn,



48 Chapter 4. Distributionally Robust Cost Minimization

Tndγv(x) = Lnv
(
x, d(x), γ(x, d(x))

)
, x ∈ E,

Tndv(x) = L̂nv(x, d(x)), x ∈ E,

Tnv(x) = inf
a∈Dn(x)

sup
Q∈Qn+1

Lnv(x, a,Q), x ∈ E.

Note that the operators are monotone in v. Under Markov policies π = (d0, . . . , dN−1) ∈
ΠM of the controller and γ = (γ0, . . . , γN−1) ∈ ΓM of nature, the value iteration can be
expressed with the operators. In order to distinguish from the history-dependent case,
we denote policy values here with J . Setting JNπγ(x) = cN (x), x ∈ E, we obtain for
n = 0, . . . , N − 1 and x ∈ E

Jnπγ(x) =
∫
cn
(
x, dn(x), Tn(x, dn(x), Zn+1(ω))

)
+ Jn+1πγ

(
Tn(x, dn(x), Zn+1(ω))

)
γn(dω|x, dn(x))

= TndnγnJn+1πγ(x).

We define the robust value of Markov policy π ∈ ΠM of the controller as

Jnπ(x) = sup
γ∈ΓM

Jnπγ(x), x ∈ E.

For the robust value of a Markov policy of the controller, a robust value iteration as in
Theorem 4.8 holds, too.

Corollary 4.11. Let π ∈ ΠM . It holds for n = 0, . . . , N that Jnπ(xn) = Vnπ(hn), hn ∈ Hn.
I.e., we have the robust value iteration

Jnπ(x) = sup
Q∈Qn+1

∫
cn
(
x, dn(x), Tn(x, dn(x), Zn+1)

)
+ Jn+1π

(
Tn(x, dn(x), Zn+1)

)
dQ

= TndnJn+1π(x).

Moreover, there exists a Markovian ε-optimal policy of nature and if the ambiguity sets
Qn+1 are all weak* closed, even a Markovian optimal policy.

Proof. For n = N the assertion is trivial. Assuming it holds at time n+ 1, it follows at
time n from Theorem 4.8 that

Vnπ(hn) = sup
Q∈Qn+1

∫
cn
(
x, dn(x), Tn(x, dn(x), Zn+1)

)
+ Jn+1π

(
Tn(x, dn(x), Zn+1)

)
dQ

= Jnπ(xn).

To show the last equality, one replaces H∗n by Dn and verifies the existence of an (ε-)
optimal Markov policy of nature by the same arguments as in the proof of Theorem 4.8.
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Let us further define for n = 0, . . . , N the Markov value function

Jn(x) = inf
π∈ΠM

sup
γ∈ΓM

Jnπγ(x), x ∈ E.

The next result shows that Vn satisfies a Bellman equation and proves that an optimal
policy of the controller exists and is Markov.

Theorem 4.12. Let Assumption 4.3 be satisfied.

a) For n = 0, . . . , N − 1, it suffices to consider deterministic Markov policies both for
the controller and nature, i.e. Vn(hn) = Jn(xn) for all hn ∈ Hn. The value function
Jn lies in B and satisfies the Bellman equation

JN (x) = cN (x),

Jn(x) = TnJn+1(x), x ∈ E.

Furthermore, for n = 0, . . . , N−1 there exist Markov decision rules d∗n with Tnd∗nJn+1 =
TnJn+1 and every sequence of such minimizers constitutes an optimal policy π∗ =
(d∗0, . . . , d∗N−1) ∈ ΠM of the controller.

b) If the one-stage ambiguity set Qn+1 is weak* closed, there exists a Markov decision
rule γ∗n of nature with Jn = Td∗nγ∗nJn+1 and every sequence of such maximizers induces
an optimal policy γ∗ = (γ∗0 , . . . , γ∗N−1) ∈ ΓM of nature satisfying Jn = Jnπ∗γ∗.

Proof. a) We proceed by backward induction. At time N we have VN = JN = cN which
is in B due to semicontinuity and Assumption 4.3 (ii). Now assume the assertion
holds at time n+ 1. Using the robust value iteration (Theorem 4.8), one obtains at
time n:

Vn(hn) = inf
π∈ΠR

sup
γ∈Γ

Vnπγ(hn)

= inf
π∈ΠR

Vnπ(hn)

= inf
π∈ΠR

∫
sup

Q∈Qn+1

∫
cn
(
xn, an, Tn(xn, an, Zn+1(ω))

)
+ Vn+1π

(
h∗n, Tn(xn, an, Zn+1(ω))

)
Q(dω)πn(d an|hn).

By the induction hypothesis, Vn+1 is lower semicontinuous and especially measurable.
Hence, we can estimate

≥ inf
π∈ΠR

∫
sup

Q∈Qn+1

∫
cn
(
xn, an, Tn(xn, an, Zn+1(ω))

)
+ Vn+1

(
h∗n, Tn(xn, an, Zn+1(ω))

)
Q(dω)πn(d an|hn).
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This equals by the induction hypothesis

= inf
π∈ΠR

∫
sup

Q∈Qn+1

∫
cn
(
xn, an, Tn(xn, an, Zn+1(ω))

)
+ Jn+1

(
Tn(xn, an, Zn+1(ω))

)
Q(dω)πn(d an|hn).

The outer integral can be estimated by the infimum of the integrand

≥ inf
an∈Dn(xn)

sup
Q∈Qn+1

∫
cn
(
xn, an, Tn(xn, an, Zn+1(ω))

)
+ Jn+1

(
Tn(xn, an, Zn+1(ω))

)
Q(dω)

= TnJn+1(xn).

Here, objective and constraint depend on the history of the process only through
xn. Thus, given existence of a minimizing Markov decision rule d∗n, one obtains the
identity

= Tnd∗nJn+1(xn). (4.7)

Again by the induction hypothesis, there exists an optimal Markov policy π∗ =
(d∗n+1, . . . , d

∗
N−1) ∈ ΠM such that

= Tnd∗nJn+1π∗(xn),

which equals by Corollary 4.11

= Jnπ∗(xn)

≥ Jn(xn)

≥ Vn(hn).

It remains to show the existence of a minimizing Markov decision rule d∗n at (4.7)
and that Jn ∈ B. We want to apply Proposition A.25. The set-valued mapping
E 3 x 7→ Dn(x) is compact-valued and upper semicontinuous. Next, we show that
Dn 3 (x, a) 7→ L̂nv(x, a) is lower semicontinuous for every v ∈ B. Let {(xk, ak)}k∈N
be a convergent sequence in Dn with limit (x∗, a∗) ∈ Dn. By Lemma A.4 a) the
function Dn 3 (x, a) 7→ cn

(
x, a, Tn(x, a, Zn+1(ω))

)
+ v

(
Tn(x, a, Zn+1(ω))

)
is lower

semicontinuous for every ω ∈ Ωn+1. Consequently,

lim inf
k→∞

cn
(
xk, ak, Tn(xk, ak, Zn+1(ω))

)
+ v

(
Tn(xk, ak, Zn+1(ω))

)
≥ cn

(
x∗, a∗, Tn(x∗, a∗, Zn+1(ω))

)
+ v

(
Tn(x∗, a∗, Zn+1(ω))

)
, ω ∈ Ω. (4.8)
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The sequence of random variables {Ck}n∈N given by

Ck(ω) = cn
(
xk, ak, Tn(xk, ak, Zn+1(ω))

)
+ v

(
Tn(xk, ak, Zn+1(ω))

)
, ω ∈ Ωn+1

is bounded by some C̄ ∈ Lp(Ωn+1,An+1,Pn+1) due to Lemma 4.7. Now, Fatou’s
Lemma B.1 yields for every Q ∈ Qn+1

lim inf
k→∞

Lnv(xk, ak,Q) = lim inf
k→∞

EQ
[
cn
(
xk, ak, Tn(xk, ak, Zn+1)

)
+ v

(
Tn(xk, ak, Zn+1)

)]
≥ EQ

[
lim inf
k→∞

cn
(
xk, ak, Tn(xk, ak, Zn+1)

)
+ v

(
Tn(xk, ak, Zn+1)

)]
≥ EQ

[
cn
(
x∗, a∗, Tn(x∗, a∗, Zn+1)

)
+ v

(
Tn(x∗, a∗, Zn+1)

)]
= Lnv(x∗, a∗,Q),

where the last inequality is by (4.8). Thus, the function Dn 3 (x, a) 7→ Lnv(x, a,Q) is
lower semicontinuous for every Q ∈ Qn+1 and consequentlyDn 3 (x, a) 7→ L̂nv(x, a) is
lower semicontinuous as a supremum of lower semicontinuous functions, cf. Corollary
A.3. Now, Proposition A.25 yields the existence of a minimizing Markov decision rule
d∗n at (4.7) and that Jn = TnJn+1 is lower semicontinuous. Furthermore, Jn bounded
by λb for some λ ∈ R+ due to Lemma 4.5. Thus Jn ∈ B.

b) This follows from Theorem 4.8 b).

4.2. Infinite Planning Horizon

In this section, we consider the distributionally robust cost minimization problem under an
infinite planning horizon. This is a reasonable approach if the terminal period is unknown.
It can also be seen as an approximation of a model with large but finite planning horizon.
Solving the infinite horizon problem will turn out to be easier since it admits a stationary
optimal policy.
In the following, we assume the abstract cost model to be stationary and the terminal

cost to be zero, i.e. D, T,Q do not depend on n, the disturbances are identically distributed,
the one-stage cost functions are of the form cn = βnc with some discount factor β ∈ (0, 1]
and cN ≡ 0. Let Z be a representative of the disturbance distribution. Due to stationarity,
the probability space is given by

(Ω,A,P) =
∞⊗
n=1

(Ω1,A1,P1).

The model with infinite planning horizon is derived as a limit of the one with finite horizon.
So besides a stationary version of Assumption 4.3 we have to assume that the discount
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factor β satisfies αβ < 1 to ensure convergence of the value functions when the planning
horizon tends to infinity. For clarity, all assumptions of this section are summarized below.

Assumption 4.13. (i) The model data has the Continuity and Compactness Properties
3.1 with the transition function T being continuous (case 1).

(ii) There exist α,
¯
ε, ε̄ ≥ 0 with

¯
ε+ ε̄ = 1 and measurable functions

¯
b : E → (−∞,−

¯
ε], b̄ :

E → [ε̄,∞) such that it holds for all Q ∈ Q and (x, a) ∈ D

EQ
[
−c−(x, a, T (x, a, Z))

]
≥

¯
b(x), EQ [

¯
b(T (x, a, Z))] ≥ α

¯
b(x),

EQ
[
c+(x, a, T (x, a, Z))

]
≤ b̄(x), EQ

[
b̄(T (x, a, Z))

]
≤ αb̄(x).

(iii) We define b : E → [1,∞), b(x) = b̄(x) −
¯
b(x). For all (x̄, ā) ∈ D there exists an

ε > 0 and measurable functions Θx̄,ā
1 ,Θx̄,ā

2 : Z → R+ such that Θx̄,ā
1 (Z),Θx̄,ā

2 (Z) ∈
Lp(Ω1,A1,P1) and

|c(x, a, T (x, a, z))| ≤ Θx̄,ā
1 (z), b(T (x, a, z)) ≤ Θx̄,ā

2 (z)

for all z ∈ Z and (x, a) ∈ Bε(x̄, ā) ∩D. Here, Bε(x̄, ā) is the closed ball around (x̄, ā)
w.r.t an arbitrary product metric on E ×A.

(iv) The probability measure P1 on (Ω1,A1) is separable.
(v) The ambiguity set Q is norm bounded, i.e. there exists K ∈ [1,∞) such that

E
∣∣∣∣ dQ
dP1

∣∣∣∣q ≤ K
for all Q ∈ Q.

(vi) The discount factor β satisfies αβ < 1.

Since the infinite horizon model is constructed as a limit of one with finite horizon, the
consideration can be restricted to deterministic Markov policies π = (d1, d2, . . . ) ∈ ΠM of
the controller and γ = (γ1, γ2, . . . ) ∈ ΓM of nature due to Corollary 4.11 and Theorem
4.12. When calculating limits it is more convenient to index the value functions with the
distance to the time horizon rather than the point in time. With regard to the value
iteration, this is also called forward form. It is only possible under Markov policies in a
stationary model. There, the two ways of indexing are equivalent. In a non-stationary
model or under a history-depended policy in a stationary model, the distance-to-horizon
indexing is not possible and a change of notation is therefore inevitable. The value of a
policy pair (π, γ) ∈ ΠM × ΓM up to a planning horizon N ∈ N now is

JNπγ(x) = Eπγ0x

[
N−1∑
k=0

βkc(Xk, dk(Xk), Xk+1)
]
, x ∈ E. (4.9)

Remark 4.14. A stationary model is a special case of a non-stationary one. In a non-
stationary formulation of the stationary model, the discounting is included in the cost
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functions which can vary over time. However, this makes it necessary to calibrate the
discounting w.r.t. a fixed reference time, usually the initial stage. If the value functions are
considered at a later point in time, the non-stationary and stationary version differ by a
discounting factor:

Jnon-stat
n (x) = βnJ stat

N−n(x), x ∈ E, n = 0, . . . , N.

The difference has only interpretational implications, for the optimization it is irrelevant.

The reformulation (4.9) makes it necessary to write the value iteration in terms of the
shifted policies ~π = (d1, d2, . . . ) corresponding to π = (d0, d1, . . . ) ∈ ΠM and ~γ = (γ1, γ2, . . . )
corresponding to γ = (γ0, γ1, . . . ) ∈ ΓM :

JNπγ(x) =
∫
c
(
x, d0(x), T (x, d0(x), Z(ω))

)
+ βJn+1~π~γ

(
T (x, d0(x), Z(ω)

)
) γ0(dω|x, d0(x))

= Td0γ0JN−1~π~γ(x), (4.10)

x ∈ E. Due to Theorem 4.8 and Corollary 4.11, the robust value JNπ = supγ∈ΓM JNπγ of
a policy π ∈ ΠM of the controller satisfies a robust value iteration. It has to be expressed
in terms of the shifted policy as well:

JNπ(x) = sup
Q∈Q

∫
c
(
x, d0(x), T (x, d0(x), Z(ω))

)
+ βJn+1~π(T (x, d0(x), Z(ω))

)
Q(dω)

= Td0JN−1~π(x), (4.11)

x ∈ E. The value function JN = infπ∈ΠM JNπ under planning horizon N ∈ N satisfies due
to Theorem 4.12 the Bellman equation

JN (x) = T JN−1(x) = T N0(x), x ∈ E. (4.12)

The value of a policy pair (π, γ) ∈ ΠM ×ΓM under an infinite planning horizon is defined
as

J∞πγ(x) = Eπγ0x

[ ∞∑
k=0

βkc(Xk, dk(Xk), Xk+1)
]
, x ∈ E, (4.13)

and the corresponding robust value of a policy π ∈ ΠM of the controller as

J∞π(x) = sup
γ∈ΓM

J∞πγ(x), x ∈ E.

Hence, this section’s optimality criterion is

J∞(x) = inf
π∈ΠM

J∞π(x), x ∈ E. (4.14)

Lemma 4.15. Under Assumption 4.13, the sequences {JNπγ}N∈N, {JNπ}N∈N, {JN}N∈N
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are weakly increasing. Hence, they converge pointwise for every policy pair (π, γ) ∈ ΠM×ΓM

to limits which are bounded by 1
1−αβ¯

b below and 1
1−αβ b̄ above. Moreover, it holds

lim
N→∞

JNπγ = J∞πγ(x), x ∈ E.

Proof. We have for 1 ≤ m ≤ N

JNπγ(x) = Eπγ0x

[
N−1∑
k=0

βkc(Xk, dk(Xk), Xk+1)
]

= Eπγ0x

[
m−1∑
k=0

βkc(Xk, dk(Xk), Xk+1)
]

+ Eπγ0x

 N−1∑
k=m+1

βkc(Xk, dk(Xk), Xk+1)


= Jmπγ(x) +

N−1∑
k=m+1

βkEπγ0x [c(Xk, dk(Xk), Xk+1)]

≥ Jmπγ(x) +
N−1∑

k=m+1
βkEπγ0x

[
−c−(Xk, dk(Xk), Xk+1)

]
≥ Jmπγ(x) +

¯
b(x)

N−1∑
k=m+1

(αβ)k

≥ Jmπγ(x) + δm(x) (4.15)

where the second inequality follows as in the proof of Lemma 4.5 and

δm : R→ (−∞, 0], δm(x) =
¯
b(x)

∞∑
k=m

(αβ)k

is a non-positive function with limm→∞ δm(x) = 0 for all x ∈ E. Hence, the sequence of
functions {JNπγ}N∈N is weakly increasing. Taking the supremum over γ (and the infimum
over π) on both sides of (4.15), yields that the sequences {JNπ}N∈N and {JN}N∈N are
weakly increasing, too. By Lemma A.9 a) all three sequences are convergent.

To due Lemma 4.5 (ii), we can apply Theorem B.3 which yields

J∞πγ(x) = Eπγ0x

[ ∞∑
k=0

βkc(Xk, dk(Xk), Xk+1)
]

= lim
N→∞

Eπγ0x

[
N−1∑
k=0

βkc(Xk, dk(Xk), Xk+1)
]

= lim
N→∞

JNπγ(x).

Observing the discounting and zero terminal cost, it follows from Lemma 4.5 that

N−1∑
k=0

(αβ)k
¯
b(x) ≤ JNπγ(x) ≤

N−1∑
k=0

(αβ)k b̄(x).
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Taking the limit N →∞ yields

1
1− αβ¯

b(x) ≤ J∞πγ(x) ≤ 1
1− αβ b̄(x).

For the other limits the bounds hold, too.

The fact that {JNπγ}N∈N is weakly increasing is exploited to show the convergence of
{JNπ}N∈N and {JN}N∈N. The convergence of {JNπγ}N∈N itself can directly be inferred
from Theorem B.3. The pointwise limits

Jπ(x) = lim
N→∞

JNπ(x) and J(x) = lim
N→∞

JN (x), x ∈ E,

are referred to as limit robust policy value of π ∈ ΠM and limit value function, respectively.

Remark 4.16. The robust policy values and value functions have the following relations.
a) It holds for any policy pair (π, γ) ∈ ΠM × ΓM that JNπγ ≤ JNπ. By taking the limit

N →∞ it follows J∞πγ ≤ Jπ and finally by taking the supremum over γ ∈ ΓM

J∞π(x) ≤ Jπ(x), x ∈ E.

b) It holds for any policy π ∈ Π that JN ≤ JNπ. Taking limits yields

J(x) ≤ Jπ(x), x ∈ E.

Lemma 4.17. Given Assumption 4.13, the Bellman operator T is a contraction on B with
modulus αβ ∈ (0, 1).

Proof. Let v ∈ B. It has been established in the proof of Theorem 4.12 that T v is lower
semicontinuous. Furthermore,

|T v(x)| =
∣∣∣∣∣ inf
a∈D(x)

sup
Q∈Q

EQ
[
c
(
x, a, T (x, a, Z)

)
+ βv

(
T (x, a, Z)

)]∣∣∣∣∣
≤ inf

a∈D(x)
sup
Q∈Q

EQ
[∣∣c(x, a, T (x, a, Z)

)∣∣]+ βEQ
[∣∣v(T (x, a, Z)

)∣∣]
≤ inf

a∈D(x)
sup
Q∈Q

EQ
[∣∣c(x, a, T (x, a, Z))

)∣∣]+ βEQ
[
b
(
T (x, a, Z)

)]
≤ (1 + αβ)b(x),

where the last inequality is by Remark 4.4. Hence, the operator T is an endofunction on B
and it remains to verify the Lipschitz constant αβ. It holds for v1, v2 ∈ B

T v1(x)− T v2(x) ≤ sup
a∈D(x)

(
sup
Q∈Q

EQ
[
c
(
x, a, T (x, a, Z)

)
+ βv1

(
T (x, a, Z)

)]
− sup
Q∈Q

EQ
[
c
(
x, a, T (x, a, Z))

)
+ βv2

(
T (x, a, Z)

)] )
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≤ β sup
a∈D(x)

sup
Q∈Q

EQ
[
v1
(
T (x, a, Z)

)
− v2

(
T (x, a, Z)

)]
≤ β‖v1 − v2‖b sup

a∈D(x)
sup
Q∈Q

EQ
[
b
(
T (x, a, Z)

)]
≤ αβ‖v1 − v2‖bb(x).

The first two inequalities follow from Lemma A.31 and the last one from Remark 4.4.
Interchanging the roles of v1 and v2 yields

|T v1(x)− T v2(x)| ≤ αβ‖v1 − v2‖bb(x).

Now, dividing by b(x) and taking the supremum over x ∈ E on the left hand side completes
the proof.

Under a finite planning horizon N ∈ N we have characterized the value function with
the Bellman equation (4.12). Theorem 4.18 below shows that this is compatible with the
infinite horizon optimality criterion (4.14).

Theorem 4.18. Let Assumption 4.13 be satisfied.
a) The limit value function J is the unique fixed point of the Bellman operator T in B.
b) There exists a Markov decision rule d∗ : E → A of the controller such that

Td∗J(x) = T J(x), x ∈ E.

Moreover, for every ε > 0 there exists an ε-optimal Markov decision rule γ̂0 : D → Q
of nature such that

Td∗γ̂0J(x) + ε ≥ T J(x), x ∈ E.

c) If the ambiguity set Q is weak* closed, there exists an optimal Markov decision rule
γ∗0 : D → Q of nature such that

Td∗γ∗0J(x) = T J(x), x ∈ E.

d) Each stationary policy π∗ = (d∗, d∗, . . . ) induced by a Markov decision rule d∗ as in
part b) is optimal for optimization problem (4.14) and it holds J∞ = J .

e) If the ambiguity set Q is weak* closed, each stationary policy γ∗ = (γ∗0 , γ∗0 , . . . )
induced by a decision rule γ∗0 as in part c) is an optimal response of nature to π∗, i.e.
J∞π∗γ∗ = J∞.

Proof. a) The fact that J is the unique fixed point of the operator T in B follows directly
from Banach’s Fixed Point Theorem using Lemma 4.17.

b) The existence of a minimizing Markov decision rule of the controller and an ε-optimal
Markov decision rule of nature follow from the respective results in the finite horizon
case, cf. Theorem 4.12 a) and Corollary 4.11.
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c) This follows analogously from Theorem 4.12 b).

d) Let d∗, γ̂0 be Markov decision rules as in part b) and π∗ = (d∗, d∗, . . . ), γ̂ =
(γ̂0, γ̂0, . . . ). It has to be shown that

J∞π∗(x) = J∞(x) = J(x), x ∈ E. (4.16)

We proceed in two steps. Firstly, we prove that

J(x) ≥ Jπ∗(x), x ∈ E (4.17)

and secondly we prove that

J(x) ≤ J∞π(x), x ∈ E, for all π ∈ ΠM . (4.18)

Combining (4.17) and Remark 4.16 a), we get J ≥ J∞π∗ ≥ J∞. On the other hand,
taking the infimum over π ∈ ΠM in (4.18) yields J ≤ J∞. Together, these inequalities
imply (4.16) and the assertion is proven.

Step 1: We show by induction that for all N ∈ N0

J(x) ≥ JNπ∗(x) + (αβ)N

1− αβ¯
b(x), x ∈ E.

Then letting N →∞ yields (4.17). Regarding the base case N = 0 consider Lemma
4.5 (i). Taking into account the discounting and zero terminal cost, we have

JN (x) ≥
N−1∑
k=0

(αβ)k
¯
b(x)

Letting N →∞ yields J(x) ≥ 1
1−αβ¯

b(x), i.e. the claim holds for N = 0. For N ≥ 1
it follows from the induction hypothesis

J(x) = Td∗J(x)

= sup
Q∈Q

EQ
[
c
(
x, d∗(x), T (x, d∗(x), Z)

)
+ βJ

(
T (x, d∗(x), Z)

)]
≥ sup
Q∈Q

EQ
[
c
(
x, d∗(x), T (x, d∗(x), Z)

)
+ βJN−1π∗

(
T (x, d∗(x), Z)

)
+ β

(αβ)N−1

1− αβ ¯
b
(
T (x, d∗(x), Z)

)]

= sup
Q∈Q

EQ
[
c
(
x, d∗(x), T (x, d∗(x), Z)

)
+ βJN−1π∗

(
T (x, d∗(x), Z)

)]

+ β
(αβ)N−1

1− αβ E
Q
[
¯
b
(
T (x, d∗(x), Z)

)]
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≥ sup
Q∈Q

EQ
[
c
(
x, d∗(x), T (x, d∗(x), Z)

)
+ βJN−1π∗

(
T (x, d∗(x), Z)

)]

+ (αβ)N

1− αβ¯
b(x)

= JNπ∗(x) + (αβ)N

1− αβ¯
b(x).

Note that the last inequality is by Assumption 4.13 (ii) and the last equality by the
robust value iteration (4.11).

Step 2: Let π = (d0, d1, . . . ) ∈ ΠM be arbitrary. We show by induction that for all
N ∈ N0

J(x) ≤ JNπγ̂(x) + ε

1− β + (αβ)N

1− αβ b̄(x), x ∈ E.

Then letting N → ∞ yields J ≤ J∞πγ̂ + ε
1−β . Since ε > 0 is arbitrarily small, it

follows J ≤ J∞π, i.e. (4.18) holds. The base case N = 0 follows analogously from
Lemma 4.5 (ii). For N ≥ 1 we have

J(x) = T J(x)

≤ Td0J(x)

≤ Td0γ̂0J(x) + ε

≤ Td0γ̂0

(
JN−1~πγ̂(x) + ε

1− β + (αβ)N−1

1− αβ b̄(x)
)

+ ε

=
∫
c
(
x, d0(x), T (x, d0(x), Z(ω))

)
+ βJN−1~πγ̂

(
T (x, d0(x), Z(ω))

)
+ β

(αβ)N−1

1− αβ b̄
(
T (x, d0(x), Z(ω))

)
γ̂0(dω|x, d0(x)) +

(
1 + β

1− β

)
ε

= JNπγ̂(x) + β
(αβ)N−1

1− αβ

∫
b̄
(
T (x, d0(x), Z(ω))

)
γ̂0(dω|x, d0(x)) + ε

1− β

≤ JNπγ̂(x) + β
(αβ)N−1

1− αβ sup
Q∈Q

EQ
[
b̄
(
T (x, d0(x), Z)

)]
+ ε

1− β

≤ JNπγ̂(x) + (αβ)N

1− αβ b̄(x) + ε

1− β .

The second inequality is by Theorem 4.8 a) and the third one by the induction
hypothesis. There, we also used that π ∈ ΠM is arbitrary, so it is no problem to
switch to the shifted policy ~π. The third equality is by the value iteration (4.10) and
the last inequality by Assumption 4.13 (ii).

e) Replacing the ε-optimal decision rule γ̂0 by the optimal one γ∗0 in step 2 of part d)
yields J ≤ J∞πγ∗ for all π ∈ ΠM , so especially J ≤ J∞π∗γ∗ . Combining this with
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(4.16), we get
J ≤ J∞π∗γ∗ ≤ J∞π∗ = J∞ = J,

which concludes the proof.

Iyengar (2005, 3.3) observed for his model with countable state and action spaces that if
the controller chooses a stationary policy under an infinite planning horizon, it is optimal
for nature to react with a stationary policy. Part e) of Theorem 4.18 shows that this holds
for more general state and action spaces, too. An ambiguity model, where nature has to
apply the same disturbance distribution each time a state action combination is revisited,
was termed static.

4.3. Real Line as State Space

The abstract cost model has been introduced in Section 3.1 with a general Borel space
as state space. In order to solve the distributionally robust cost minimization problem
in Sections 4.1 and 4.2 we needed a continuous transition function despite having a
semicontinuous model, cf. the proof of Theorem 4.12 together with Lemma A.17 a). This
assumption on the transition function can be relaxed to semicontinuity if the state space is
the real line and the transition and one-stage cost function have some form of monotonicity.
In some applications, see e.g. Section 4.4.1, this relaxation of the continuity assumption is
relevant. Furthermore, a real state space can be exploited to address the distributionally
robust cost minimization problem with more specific techniques.
To ease the notational burden, we consider the stationary model with no terminal cost

under both finite and infinite horizon in this section. All results can be transferred to a
non-stationary setting by mere notational changes if the planning horizon is finite. We
make the following assumptions in this section.

Assumption 4.19. (i) The state space is the real line E = R.
(ii) The model data has the Continuity and Compactness Properties 3.1 with the transition

function T being lower semicontinuous (case 2).
(iii) The model data has the following monotonicity properties:

(iii a) The set-valued mapping R 3 x 7→ D(x) is decreasing.
(iii b) The transition function T is increasing in x.
(iii c) The function R 3 x 7→ c(x, a, T (x, a, z)) is increasing for all (a, z).

(iv) Assumptions 4.13 (ii) to (vi) hold.

Requiring that the one-stage cost function c is increasing both in x and x′ is sufficient
for Assumption 4.19 (iii c) to hold since the transition function is increasing in x. Besides,
if c is increasing in x′, it is sufficient for Continuity and Compactness Properties 3.1 (iii)
that c is lower semicontinuous due to Lemma A.4 b). With the real line as state space, a
simple separation condition is sufficient for Assumption 4.13 (iii).
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Corollary 4.20. Let there be upper semicontinuous functions ϑ1, ϑ2 : D → R+ and
measurable functions Θ1,Θ2 : Z → R+ which fulfill Θ1(Z),Θ2(Z) ∈ Lp(Ω1,A1,P1) and

|c(x, a, T (x, a, z))| ≤ ϑ1(x, a) + Θ1(z), b(T (x, a, z)) ≤ ϑ2(x, a) + Θ2(z)

for every (x, a, z) ∈ D ×Z. Then Assumption 4.13 (iii) is satisfied.

Proof. Let (x̄, ā) ∈ D. We can choose ε > 0 arbitrarily. The set S = [x̄− ε, x̄+ ε]×D(x̄− ε)
is compact w.r.t. the product topology by the Tychonoff Product Theorem (Aliprantis
and Border; 2006, 2.61). Moreover, Bε(x̄, ā) ∩D ⊆ S since the set-valued mapping D(·)
is decreasing. Due to upper semicontinuity there exist (xi, ai) ∈ S such that ϑi(xi, ai) =
sup(x,a)∈S ϑi(x, a), i = 1, 2. Hence, one can define

Θx̄,ā
i (·) = ϑi(xi, ai) + Θi(·), i = 1, 2

and Assumption 4.13 (iii) is satisfied.

The question is how replacing Assumption 4.13 (i) by Assumption 4.19 (i) to (iii) affects
the validity of all previous results. The only two results that were proven using the
continuity of the transition function T in (x, a) and not only its measurability are Theorems
4.12 and 4.18. All other statements are unaffected.

Proposition 4.21. The assertions of Theorems 4.12 and 4.18 hold under Assumption
4.19, too. Moreover, the value functions Jn and J are increasing. The set of potential value
functions can therefore be replaced by

B = {v ∈ Bb : v lower semicontinuous and increasing}.

Proof. The subset of increasing functions in {v ∈ Bb : v lower semicontinuous} is closed
w.r.t. pointwise convergence, so especially w.r.t. ‖ ·‖b. Hence, (B, ‖ ·‖b) is a complete metric
space as a closed subset of complete metric space.
The proof of Theorem 4.18 uses the continuity of T only indirectly through Theorem

4.12. Thus, we only have to validate the assertion of the latter. There, the continuity of T
is used to show that D 3 (x, a) 7→ Lv(x, a) is lower semicontinuous for every v ∈ B. Due
to the monotonicity assumptions, the integrand

D 3 (x, a) 7→ c
(
x, a, T (x, a, Z(ω))

)
+ βv

(
T (x, a, Z(ω))

)
is lower semicontinuous for every ω ∈ Ω1 by part b) of Lemma A.4 (instead of part a) which is
used in the proof of Theorem 4.12). Now, the lower semicontinuity of D 3 (x, a) 7→ Lv(x, a)
and the existence of a minimizing decision rule follow as in the proof of Theorem 4.12. The
fact that T v is increasing for every v ∈ B follows from Lemma A.19.

The monotonicity requirements in Assumption 4.19 (iii) are only one option. The
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following alternative is relevant i.a. for the dynamic reinsurance models introduced in
Section 3.2.

Corollary 4.22. Assumptions 4.19 (ii) and (iii) can be replaced by
(ii’) The model data has the Continuity and Compactness Properties 3.1 with the transition

function T being upper semicontinuous (case 3).
(iii’) The model data has the following monotonicity properties:

(iii’ a) The set-valued mapping R 3 x 7→ D(x) is increasing.
(iii’ b) The transition function T is increasing in x.
(iii’ c) The function R 3 x 7→ c(x, a, T (x, a, z)) is decreasing for all (a, z).

Then, the assertions of Theorems 4.12 and 4.18 still hold. Moreover, the value functions
Jn and J are decreasing and the set of potential value functions is

B = {v ∈ Bb : v lower semicontinuous and decreasing}.

Proof. One argues analogously to the proof of Proposition 4.21. In order to show that
D 3 (x, a) 7→ Lv(x, a) is lower semicontinuous for every v ∈ B, one uses Remark A.5 to
verify that the integrand

D 3 (x, a) 7→ c
(
x, a, T (x, a, Z(ω))

)
+ βv

(
T (x, a, Z(ω))

)
is lower semicontinuous for every ω ∈ Ω1.

Requiring that the one-stage cost function c is decreasing both in x and x′ is sufficient
for (iii’ c) to hold since the transition function is increasing in x. Besides, if c is decreasing
in x′, it is sufficient for Continuity and Compactness Assumption 3.1 (iii) that c is lower
semicontinuous due to Remark A.5.

In the following Section 4.3.1, we use a minimax approach as an alternative way to solve
the Bellman equation of the distributionally robust cost minimization problem and to study
its game-theoretical properties. Subsequently in Section 4.3.2, we consider special choices
of the ambiguity set which are advantageous for solving the optimization problem.

4.3.1. Minimax Approach and Game Theory

Compared to a risk-neutral Markov Decision Model, the Bellman equation of the robust
model

JN (x) = 0,

Jn(x) = inf
a∈D(x)

sup
Q∈Q

EQ
[
c
(
x, a, T (x, a, Z)

)
+ βJn+1

(
T (x, a, Z)

)]
, x ∈ R,

(4.19)

has the additional complication that a supremum over possibly uncountably many ex-
pectations needs to be calculated. This can be a quite challenging task. Therefore, it
may be advantageous to interchange the infimum and supremum in (4.19). For instance,
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in concrete applications it may be possible to infer structural properties of the optimal
actions independently from the probability measure Q after the interchange. Based on the
minimax theorem by Sion (1958), cf. Appendix A.4, this section presents a criterion under
which the interchange of infimum and supremum is possible.

Lemma 4.23. Let A be a subset of a vector space, the admissible state-action-combinations
D be a convex set, the transition function T be convex in (x, a) and the composition
D 3 (x, a) 7→ c(x, a, T (x, a, z)) be a convex function for every z ∈ Z. Then the value
functions Jn and the limit value function J are convex.

Proof. The proof is by backward induction. JN is convex as a constant function. Now
assume that Jn+1 is convex. Recall that Jn+1 is increasing (Proposition 4.21). Hence, for
every ω ∈ Ω the function

D 3 (x, a) 7→ c
(
x, a, T (x, a, Z(ω))

)
+ βJn+1

(
T (x, a, Z(ω))

)
is convex as the second summand is a composition of an increasing convex with a convex
function. By the linearity of expectation,

D 3 (x, a) 7→ EQ
[
c
(
x, a, T (x, a, Z)

)
+ βJn+1

(
T (x, a, Z)

)]
(4.20)

is convex for every Q ∈ Q. As the pointwise supremum of a collection of convex functions
is convex, we obtain convexity of D 3 (x, a) 7→ L̂Jn+1(x, a). Now, Proposition 2.4.18 in
Bäuerle and Rieder (2011) yields the assertion.

The assumptions of Lemma 4.23 are subsequently referred to as convex model.

Theorem 4.24. In a convex model we have for all n = 0, . . . , N − 1

Jn(x) = inf
a∈D(x)

sup
Q∈Q

LJn+1(x, a,Q) = sup
Q∈Q

inf
a∈D(x)

LJn+1(x, a,Q), x ∈ R.

Proof. Let x ∈ R be fixed and define f : D(x)×Q → R,

f(a,Q) = Lv(x, a,Q) = EQ
[
c
(
x, a, T (x, a, Z)

)
+ βJn+1

(
T (x, a, Z)

)]
.

The function f is convex in a by (4.20) and linear in Q, i.e. especially concave. Furthermore,
the set D(x) is compact and it has been shown in the proof of Theorem 4.12 that f is
lower semicontinuous in a. Hence, the assertion follows from Theorem A.27 a).

Remark 4.25. The interchange of infimum and supremum in Theorem 4.24 is based on
Sion’s Minimax Theorem A.27, which requires convexity of the function

a 7→
∫
c
(
x, a, T (x, a, Z(ω))

)
+ βJn+1

(
T (x, a, Z(ω))

)
Q(dω) (4.21)
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for every (x,Q) ∈ R × Q. This can be guaranteed by a convex model (cf. Lemma 4.23)
which means that several components of the decision model need to have some convexity
property. However, these assumptions are quite restrictive. Resorting to randomized
actions is a standard approach to convexify (or more precisely linearize) the function (4.21)
without assumptions on the model components. Let P(D(x)) be the set of all probability
measures on D(x). Then it follows from Sion’s Theorem A.27 that

inf
µ∈P(D(x))

sup
Q∈Q

∫∫
c
(
x, a, T (x, a, Z(ω))

)
+ βJn+1

(
T (x, a, Z(ω))

)
Q(dω)µ(d a) (4.22)

= sup
Q∈Q

inf
µ∈P(D(x))

∫∫
c
(
x, a, T (x, a, Z(ω))

)
+ βJn+1

(
T (x, a, Z(ω))

)
Q(dω)µ(d a)

= sup
Q∈Q

inf
a∈D(x)

∫
c
(
x, a, T (x, a, Z(ω))

)
+ βJn+1

(
T (x, a, Z(ω))

)
Q(dω). (4.23)

The last equality holds since a 7→ c
(
x, a, T (x, a, Z)

)
+ βJn+1

(
T (x, a, Z)

)
is lower semicon-

tinuous (cf. the proof of Theorem 4.12) and D(x) is compact. This appears to be a very
elegant solution for the interchange problem but unfortunately the Bellman equation of
the distributionally robust cost minimization problem (4.4) under a randomized action of
the controller is given by

Jn(x) = inf
µ∈P(D(x))

∫
sup
Q∈Q

∫
c
(
x, a, T (x, a, Z(ω))

)
+ βJn+1

(
T (x, a, Z(ω))

)
Q(dω)µ(d a)

(4.24)

= inf
a∈D(x)

sup
Q∈Q

∫
c
(
x, a, T (x, a, Z(ω))

)
+ βJn+1

(
T (x, a, Z(ω))

)
Q(dω),

cf. Theorems 4.8 and 4.12. Equation (4.22) does in general not equal (4.24). Recall that in
our model nature is allowed to react to any realization of the controllers action. This was
crucial to obtain a robust value iteration in Theorem 4.8. In contrast to that, (4.22) means
that nature maximizes only knowing the distribution of the controller’s action. In order
to formally see that (4.22) 6= (4.24) consider the simple static counter example N = 1,
E = R, A = [0, 1], D = R × A, Z ∼ Bin(1, p), p ∈ [0, 1] = Q, T (x, a, z) = −(a − z)2 and
c(x, a, x′) = x′. It is readily checked that Assumption 4.19 is satisfied. Especially, one has
constant bounding functions. In this example (4.24) equals

inf
a∈[0,1]

sup
p∈[0,1]

Ep
[
c(x, a, T (x, a, Z))

]
= inf

a∈[0,1]
sup
p∈[0,1]

−(1− p)a2 − p(a− 1)2

= − sup
a∈[0,1]

inf
p∈[0,1]

(1− p)a2 + p(a− 1)2

= − sup
a∈[0,1]

min{a2, (1− a)2} = −1
4 .
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If controller chooses µ ∼ U(0, 1), then (4.22) must be lower or equal than

sup
p∈[0,1]

∫ 1

0
−(1− p)a2 − p(a− 1)2 d a = sup

p∈[0,1]
−1

3(1− p)− 1
3p = −1

3 .

In fact, by solving (4.23), one sees that (4.22) equals

sup
p∈[0,1]

inf
a∈[0,1]

−(1− p)a2 − p(a− 1)2 = − inf
p∈[0,1]

max{1− p, p} = −1
2 .

The approach to interchange infimum and supremum through a linearization with random-
ized actions is used by Bäuerle and Rieder (2019) for a problem similar to (4.22). It works
when nature only observes the distribution and not the realization of the controller’s action.
In this case, it matters whether the controller can use randomized decisions. Only after
the interchange of infimum and supremum, i.e. when he can react to any state of nature,
he can resort to deterministic decisions without increasing his cost.

As mentioned before, the distributionally robust cost minimization model can be inter-
preted as a dynamic game with nature as the controllers opponent. Since nature chooses
her action after the controller, observing his action but not being restricted by it, there
is a (weak) second-mover advantage by construction of the game. The fact that infimum
and supremum in the Bellman equation can be interchanged means that the second-mover
advantage vanishes in the special case of a convex model.
Let additionally the ambiguity set Q be weak* closed. This is e.g. the case if Q is

induced by the dual representation of a proper coherent risk measure with the Fatou
property, cf. Proposition 2.21. Now, the conditions of Theorem A.27 b) are fulfilled, too,
since the ambiguity set is weak* compact by Lemma 4.1 and by Lemma 4.7 we have
that c

(
x, a, T (x, a, Z)

)
+ βJn+1

(
T (x, a, Z)

)
is in Lp. Thus, Q 7→ LJn+1(x, a,Q) is weak*

continuous for every (x, a) ∈ D. Remark A.28 yields that (a,Q) 7→ LJn+1(x, a,Q) satisfies
the minimax equality

min
a∈D(x)

max
Q∈Q

LJn+1(x, a,Q) = max
Q∈Q

min
a∈D(x)

LJn+1(x, a,Q)

and Lemma implies A.30 that for every x ∈ R the function has a saddle point (a∗,Q∗), i.e.

LJn+1(x, a∗,Q) ≤ LJn+1(x, a∗,Q∗) ≤ LJn+1(x, a,Q∗)

for all a ∈ D(x) and Q ∈ Q. Such a saddle point constitutes a Nash equilibrium in the
subgame scenario Xn = x. We will show that Nash equilibria exist not only in one-stage
subgames but also globally.

Before, let us introduce a modification of the game against nature where nature instead
of the controller moves first, i.e. supγ infπ Vnπγ . Given a policy of nature, the controller
faces an arbitrary but fixed probability measure in each scenario Xn = x. Thus, the
inner optimization problem is a risk-neutral MDP and it follows from standard theory (cf.
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e.g. Hernández-Lerma and Lasserre; 1996) that is suffices for the controller to consider
deterministic Markov policies. Therefore, we can directly use a forward (or distance to
horizon) indexation. Clearly, the controller’s optimal policy will depend on the policy
that nature has chosen before. It will turn out to be a pointwise dependence on the
actions of nature. To clarify this and for comparability with the original game (4.4), where
the controller moves first, we distinguish the following types of Markov strategies of the
controller

Π(R) = ΠM = {π = (d0, d1, . . . )| dn : R→ A measurable, dn(x) ∈ D(x), x ∈ R}

Π(R,Q) = {π = (d0, d1, . . . )| dn : R×Q → A measurable, dn(x,Q) ∈ D(x), x ∈ R}

and of nature

Γ(R) = {γ = (γ0, γ1, . . . )| γn : R→ Q measurable}

Γ(R, A) = ΓM = {γ = (γ0, γ1, . . . )| γn : R×A→ Q measurable} .

The sets of corresponding stationary strategies will be denoted by a superscript S. The
value JNπγ of a pair of Markov policies (γ, π) ∈ Γ(R)× Π(R,Q) is defined as in (4.9) with
forward indexation. The bounds in Lemma 4.5 and the value iteration (4.10) apply since
the proofs do not use properties of the policies. The game under consideration is

J̃N (x) = sup
γ∈Γ(R)

inf
π∈Π(R,Q)

JNπγ(x), x ∈ R, N ∈ N0. (4.25)

For clarity, we mark all quantities of the game where nature moves first which differ from
the respective quantity of the original game with a tilde. The value of a policy of nature
γ ∈ Γ(R) at time N ∈ N0 is defined as

J̃Nγ(x) = inf
π∈Π(R,Q)

JNπγ(x), x ∈ R.

The Bellman operator on B can be introduced in the usual way:

T̃ v(x) = sup
Q∈Q

inf
a∈D(x)

Lv(x, a,Q)

= sup
Q∈Q

inf
a∈D(x)

∫
c
(
x, a, T (x, a, Z(ω))

)
+ βv

(
T (x, a, Z(ω))

)
Q(dω), x ∈ R.

The infinite horizon value J∞πγ of a policy pair (γ, π) ∈ Γ(R)× Π(R,Q) is defined as in
(4.13). Consequently, the pointwise convergence is ensured by Lemma 4.15. Accordingly,
one defines the infinite horizon value of a policy of nature γ ∈ Γ(R) as

J̃∞γ(x) = inf
π∈Π(R,Q)

J∞πγ(x), x ∈ R,
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and the value function under an infinite planning horizon as

J̃∞(x) = sup
γ∈Γ(R)

J̃∞γ(x), x ∈ R. (4.26)

The limit value function is also defined in the usual way

J̃(x) = lim
N→∞

J̃N (x) = lim
N→∞

T̃ N0(x), x ∈ R,

as the limit of the finite horizon value function.

Theorem 4.26. Let Assumption 4.19 be satisfied, the ambiguity set Q be weak* closed
and the model be convex.

a) For N ∈ N0 the value function J̃N lies in B and satisfies the Bellman equation

J̃0(x) = 0,

J̃N (x) = T̃ J̃N−1(x), x ∈ R.

There exist optimal decision rules γ̃0 : R→ Q of nature and d̃0 : R×Q → A of the
controller such that J̃N (x) = Td̃0γ̃0

J̃N−1(x). All sequences of optimal decision rules
induce an optimal policy pair γ̃ = (γ̃0, . . . , γ̃N−1) ∈ Γ(R) and π̃ = (d̃0, . . . , d̃N−1) ∈
Π(R,Q) satisfying J̃N = JNπ̃γ̃.

b) For N ∈ N0 it holds J̃N = JN .
c) The Bellman operator T̃ is a contraction on B with modulus αβ ∈ (0, 1) and the limit

value function J̃ its unique fixed point in B. It equals J .
d) There exist decision rules γ̃0 : R→ Q of nature and d̃ : R×Q → A of the controller

such that J̃ = Td̃γ̃0
J̃ . Each pair of stationary policies γ̃ = (γ̃0, γ̃0, . . . ) ∈ ΓS(R) and

π̃ = (d̃, d̃, . . . ) ∈ ΠS(R,Q) induced by such decision rules is optimal for the infinite
horizon optimization problem (4.26), i.e. J̃∞ = J∞π̃γ̃. Furthermore, it holds J̃∞ = J̃ .

Proof. a,b) We have for N ∈ N0 and x ∈ R

JN (x) = inf
π∈Π(R)

sup
γ∈Γ(R,A)

JNπγ(x) ≥ inf
π∈Π(R)

sup
γ∈Γ(R)

JNπγ(x)

≥ sup
γ∈Γ(R)

inf
π∈Π(R)

JNπγ(x)

≥ sup
γ∈Γ(R)

inf
π∈Π(R,Q)

JNπγ(x) = J̃N (x). (4.27)

Note that the second inequality holds generally for the interchange of infimum and
supremum. Let π∗ = (d∗0, . . . , d∗N−1) ∈ Π(R) and γ∗ = (γ∗0 , . . . , γ∗N−1) ∈ Γ(R, A)
be optimal strategies for the original game (4.4). The existence is guaranteed by
Theorem 4.12. Then γ̃ = (γ̃0, . . . , γ̃N−1) defined by γ̃n = γ∗n(·, d∗n(·)) lies in Γ(R) since
the decision rules are well-defined as compositions of measurable maps.

By (forward) induction we prove a) and b) and that γ̃ constitutes an optimal policy
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of nature in (4.25). For N = 0 there is nothing to show. Now assume the assertion
holds at time N − 1. With the forward form of the value iteration (4.10) one obtains

J̃Nγ̃(x) = inf
π∈Π(R,Q)

JNπγ̃(x)

= inf
π∈Π(R,Q)

∫
c
(
x, d0(x, γ̃0(x)), T (x, d0(x, γ̃0(x)), Z(ω))

)
+ βJ̃N−1~π~̃γ

(
T (x, d0(x, γ̃0(x)), Z(ω))

)
γ̃0(dω|x).

By the induction hypothesis J̃N−1~̃γ = J̃N−1 = JN−1 is measurable as a lower
semicontinuous function. Hence, we can estimate

≥ inf
d0

∫
c
(
x, d0(x, γ̃0(x)), T (x, d0(x, γ̃0(x)), Z(ω))

)
+ βJ̃N−1~̃γ

(
T (x, d0(x, γ̃0(x)), Z(ω))

)
γ̃0(dω|x).

The minimization only depends on d0(x, γ0(x)) ∈ D(x), i.e.

= inf
a∈D(x)

∫
c
(
x, a, T (x, a, Z(ω))

)
+ βJ̃N−1~̃γ

(
T (x, a, Z(ω))

)
γ̃0(dω|x)

=
∫

inf
a∈D(x)

∫
c
(
x, a, T (x, a, Z(ω))

)
+ βJ̃N−1~̃γ

(
T (x, a, Z(ω))

)
Q(dω) δγ̃0(x)(dQ).

Given existence of a minimizing decision rule d̃0 : R×Q→ A one ontains the identity

= T̃d̃0γ0
J̃N−1~̃γ(x). (4.28)

Again by the induction hypothesis, there is an optimal policy ~̃π = (d̃1, . . . , d̃N−1) ∈
Π(R,Q) such that

= T̃d̃0γ̃0
JN−1~̃π~̃γ(x),

which equals by the forward form of the value iteration (4.10)

= JNπ̃γ̃(x)

≥ J̃Nγ̃(x).

Next, we verify the existence of a minimizing decision rule d̃0 at (4.28). To that end,
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we show that the function

R×A×Q 3 (x, a,Q) 7→ Lv(x, a,Q) =
∫
c
(
x, a, T (x, a, z)

)
+βv

(
T (x, a, Z(ω))

)
Q(dω)

is jointly lower semicontinuous for any v ∈ B. Recall that Q endowed with the weak*
topology is a compact Borel space due to Lemma 4.1. Let {(xn, an,Qn)}n∈N be a
convergent sequence in R×A×Q with limit (x∗, a∗,Q∗). The increasing sequence of
random variables {Cn}n∈N given by

Cn(ω) = inf
k≥n

c
(
xk, ak, T (xk, ak, Z(ω))

)
+ βv

(
T (xk, ak, Z(ω))

)
, ω ∈ Ω1

has an absolute bound in Lp(Ω1,A1,P1) according to Lemma 4.7 and is therefore
convergent. By Lemma A.4 b) the function D 3 (x, a) 7→ c

(
x, a, T (x, a, Z(ω))

)
+

v
(
T (x, a, Z(ω))

)
is lower semicontinuous for every ω ∈ Ω1. Consequently,

C∗(ω) = lim
n→∞

Cn(ω) ≥ c
(
x∗, a∗, T (x∗, a∗, Z(ω))

)
+ βv

(
T (x∗, a∗, Z(ω))

)
, ω ∈ Ω1.

By dominated convergence we get

Cn
Lp−→ C∗ ≥ c

(
x∗, a∗, T (x∗, a∗, Z)

)
+ βv

(
T (x∗, a∗, Z))

)
.

Since Q is norm bounded, Corollary 6.40 in Aliprantis and Border (2006) yields that
the duality

(X,Q) 7→ EQ[X]

restricted to Lp(Ω1,A1,P1)×Q is jointly continuous, where Lp(Ω1,A1,P1) is consid-
ered with the norm topology and Q with the weak* topology. Thus, we get

lim inf
n→∞

Lv(xn, an,Qn) = lim inf
n→∞

EQn
[
c
(
xn, an, T (xn, an, Z)

)
+ βv

(
T (xn, an, Z)

)]
≥ lim inf

n→∞
EQn

[
inf
k≥n

c
(
xk, ak, T (xk, ak, Z)

)
+ βv

(
T (xk, ak, Z)

)]
= lim

n→∞
EQn [Cn]

= EQ
∗ [C∗]

≥ EQ∗
[
c
(
x∗, a∗, T (x∗, a∗, Z)

)
+ βv

(
T (x∗, a∗, Z)

)]
= Lv(x∗, a∗,Q∗),

which establishes the joint lower semicontinuity of Lv(·). Note that J̃N−1~̃γ ∈ B and
(x,Q) 7→ D(x) is a compact-valued and upper semicontinuous. Hence, it follows from
Theorem A.25 that there exists a a minimizing decision rule d̃0 : R×Q → A at (4.28)
and that

R×Q 3 (x,Q) 7→ inf
a∈D(x)

LJ̃N−1~̃γ(x, a,Q) = LJ̃N−1~̃γ(x, d̃0(x,Q),Q)
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is lower semicontinuous.

By the induction hypothesis we have J̃N−1 = JN−1. From Theorem 4.24 and
subsequent remarks together with Proposition 4.21 and Theorem 4.12 it follows that
(d∗0(x), γ̃0(x)) = (d∗0(x), γ∗0(x, d∗0(x))) is a saddle point of (a,Q) 7→ LJ̃N−1(x, a,Q) for
every x ∈ R, i.e.

JN (x) = LJ̃N−1(x, d∗0(x), γ̃0(x)) ≤ LJ̃N−1(x, a, γ̃0(x)), for all a ∈ D(x).

Hence, JN (x) ≤ infa∈D(x) LJ̃N−1~̃γ(x, a, γ̃0(x)) = J̃Nγ̃(x) for all x ∈ R. Due to (4.27)
it follows JN = J̃N = J̃Nγ̃ , i.e. the policy γ̃ must be optimal for nature. Especially,
J̃Nγ̃ is in B.

Since JN = J̃N , the joint Bellman equation for the controller and nature J̃N = T̃ J̃N−1

follows from Theorem 4.24.

c) Due to Theorem 4.24 the Bellman Operators T and T̃ coincide. Thus, the assertion
follows from Theorem 4.18 a).

d) The existence of decision rules γ̃0 and d̃ such that J̃ = Td̃γ̃0
J̃ is due to part a). Finally,

the existence of a stationary optimal policy pair follows analogously to the proof of
Theorem 4.18.

As a direct consequence, we get the existence of Nash equilibria on policy level.

Corollary 4.27. Consider a convex model with weak* closed ambiguity set Q and Assump-
tion 4.19 fulfilled.

a) Let the planning horizon N ∈ N0 be finite. Then it holds for x ∈ R

JN (x) = min
π∈Π(R)

max
γ∈Γ(R,A)

JNπγ(x) = max
γ∈Γ(R)

min
π∈Π(R,Q)

JNπγ(x) = J̃N (x).

Consequently, it even holds

JN (x) = min
π∈Π(R)

max
γ∈Γ(R)

JNπγ(x) = max
γ∈Γ(R)

min
π∈Π(R)

JNπγ(x).

b) The statement of part a) holds for an infinite planning horizon, too. However, Markov
strategies can be replaced by stationary ones.

Proof. a) Theorem 4.26 implies equality in (4.27), i.e.

JN (x) = min
π∈Π(R)

max
γ∈Γ(R,A)

JNπγ(x)

= inf
π∈Π(R)

sup
γ∈Γ(R)

JNπγ(x)

= sup
γ∈Γ(R)

inf
π∈Π(R)

JNπγ(x)
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= max
γ∈Γ(R)

min
π∈Π(R,Q)

JNπγ(x) = J̃N (x). (4.29)

It remains to find optimal policies for the second and third line of (4.29). Let

π∗ = (d∗0, . . . , d∗N−1) ∈ Π(R), γ∗ = (γ∗0 , . . . , γ∗N−1) ∈ Γ(R, A)

and γ̃ = (γ̃0, . . . , γ̃N−1) ∈ Γ(R) π̃ = (d̃0, . . . , d̃N−1) ∈ Π(R,Q)

be optimal strategies for the first and forth line of (4.29), respectively, which exist by
Proposition 4.21 and Theorem 4.26. Then

inf
π∈Π(R)

sup
γ∈Γ(R)

JNπγ = sup
γ∈Γ(R)

inf
π∈Π(R)

JNπγ

is attained by the admissible strategy pair (π̂, γ̂) ∈ Π(R)×Γ(R) which can be defined
by d̂n = d∗n and γ̂n = γ∗n(·, d∗n(·)) or alternatively by d̂n = d̃n(·, γ̃n(·)) and γ̂n = γ̃n for
n = 0, . . . , N − 1.

b) One can apply the same arguments as in a).

The game-theoretic interpretation of Corollary 4.27 is that in a convex model our original
game (4.4), where the controller moves first, yields the same optimal expected cost as a
corresponding game (4.25) where the controller reacts to a move of nature. Moreover, it
states that the corresponding game where the controller and nature move simultaneously
and unaware of the other’s action has a Nash equilibrium in deterministic Markov (or
stationary in case of an infinite planning horizon) strategies. The expected cost in this
equilibrium is also equal to the optimal expected cost of our original game.

Since the assertion of Corollary 4.27 holds for every point in time, the simultaneous move
game does not only have a Nash equilibrium but a subgame perfect equilibrium in the sense
of Selten (1975), i.e. there is a strategy pair inducing a Nash equilibrium in any subgame
that starts at some time point n conditional on an arbitrary admissible history hn. More
specifically, we have a (stationary) Markov perfect equilibrium as defined by Maskin and
Tirole (1988).

The fact that in a convex model our game against nature is equivalent to a simultaneous
move game is closely related to the concept of s-rectangularity of ambiguity sets which
was introduced by Wiesemann et al. (2012) in the context of robust Markov Decision
Processes. While a rectangular ambiguity set in the sense of Iyengar (2005) allows nature to
assign at each point in time to each state-action combination (x, a) ∈ D the most adverse
disturbance distribution, an s-rectangular ambiguity set allows only for a statewise change
of the disturbance distribution at each stage.
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4.3.2. Special Ambiguity Sets

In this section, we consider some special choices for the ambiguity set Q which simplify
solving the Markov Decision Problems (4.4) and (4.14) or allow for structural statements
about the solution.

Convex hull. It does not change the optimal value of the optimization problems if
a given ambiguity set Q is replaced by its convex hull conv(Q) or its closed convex hull
conv(Q), where the closure is with respect to the weak* topology. To demonstrate this, it
suffices to compare the corresponding Bellman equations.

Lemma 4.28. Let Q be any norm bounded ambiguity set. Then it holds for all v ∈ B and
x ∈ R

inf
a∈D(x)

sup
Q∈Q

Lv(x, a,Q) = inf
a∈D(x)

sup
Q∈conv(Q)

Lv(x, a,Q) = inf
a∈D(x)

sup
Q∈conv(Q)

Lv(x, a,Q).

Proof. Fix (x, a) ∈ D. The function Q 7→ Lv(x, a,Q) is linear. Thus, for a generic element
Q =

∑n
i=1 λiQi ∈ conv(Q) we have

Lv

(
x, a,

n∑
i=1

λiQi

)
=

n∑
i=1

λiLv(x, a,Qi) ≤ max
i=1,...,n

Lv(x, a,Qi),

i.e. there can be no improvement of the supremum on the convex hull. With the same
arguments as in the proof of Lemma 4.1, we find that conv(Q) is metrizable and therefore
coincides with the limit points of sequences in conv(Q). Since Q 7→ Lv(x, a,Q) is weak*
continuous (cf. proof of Theorem 4.8), the supremum cannot be improved on the closure
either.

From Theorem 2.21 and Remark 2.22 we know that ambiguity sets induced by the dual
representation of a coherent risk measure with the Fatou property coincide with their closed
convex hull. Nonetheless, Lemma 4.28 has a useful application. In the context of optimal
(re)insurance, Birghila and Pflug (2019) suggested constructing an ambiguity set as the
convex hull of a finite number of probability measures Q = conv{Q1, . . . ,Qm}. E.g. this is
an obvious choice when different “scenarios” for the disturbance distribution are derived
from expert opinions. With such an ambiguity set, the Bellman equation simplifies to

Jn(x) = inf
a∈D(x)

max
i=1,...,m

EQi
[
c
(
x, a, T (x, a, Z)

)
+ βJn+1

(
T (x, a, Z)

)]
, x ∈ R.

From a computational perspective, this is an advantageous situation. Note that the
conclusions hold for general state spaces, too.

Integral stochastic orders on Q. Following an idea of Müller (1997), one can define
integral stochastic orders on the ambiguity Q set by

Q1 ≤B,x,a Q2 :⇐⇒
∫
c
(
x, a, T (x, a, Z(ω))

)
+ βv

(
T (x, a, Z(ω))

)
Q1(dω)
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≤
∫
c
(
x, a, T (x, a, Z(ω))

)
+ βv

(
T (x, a, Z(ω))

)
Q2(dω) for all v ∈ B

where (x, a) ∈ D is fixed and

Q1 ≤B Q2 :⇐⇒ Q1 ≤B,x,a Q2 for all (x, a) ∈ D.

If there exists a maximal element with respect to one of these stochastic orders, this
probability measure is an optimal action for nature (in the respective scenario).

Lemma 4.29. a) If there exists a maximal element Qx,a ∈ Q w.r.t. ≤B,x,a for every
(x, a) ∈ D, then γ = (γ0, γ1, . . . ) with γn(x, a) = Qx,a defines a stationary optimal
policy of nature in both (4.4) and (4.14).

b) If there exists a maximal element Q∗ ∈ Q w.r.t. ≤B, then γ = (γ0, γ1, . . . ) with
γn ≡ Q∗ defines a constant optimal action of nature. That is, (4.4) and (4.14) can
be reformulated to risk-neutral MDP under the probability measure Q∗.

Proof. a) Fix (x, a) ∈ D and let n ∈ {0, . . . , N − 1} and Q ∈ Q be arbitrary. Since
Jn+1 ∈ B by Theorem 4.12, Q ≤B,x,a Qx,a implies

LJn+1(x, a,Q) =
∫
c
(
x, a, T (x, a, Z(ω))

)
+ βv

(
T (x, a, Z(ω))

)
Q(dω)

≤
∫
c
(
x, a, (T (x, a, Z(ω))

)
+ βv

(
T (x, a, Z(ω))

)
Qx,a(dω)

= LJn+1(x, a,Qx,a).

Hence, Qx,a is a maximizing action of nature and the selection γn(x, a) = Qx,a is
measurable by Theorem 4.8. Letting N → ∞ yields the assertion for the infinite
horizon case.

b) This follows directly from a).

In fact, Lemma 4.29 holds for any state space. But it is only a reformulation of what is
an optimal action for nature. However, under Assumption 4.19 it has practical relevance
when a simpler sufficient condition for the integral stochastic order ≤B is fulfilled. We give
three exemplary criteria:

1. Let the one-stage cost function c be increasing in x′. Further, let Z be a partially
ordered space, e.g. Z = Rm, and assume that the transition function is increasing in
z. Then the functions

Z 3 z 7→ c(x, a, T (x, a, z)) + βv(T (x, a, z)), v ∈ B, (x, a) ∈ D (4.30)

are increasing. Thus, Q1 ≤B Q2 is implied by the usual stochastic order of the
disturbance distributions QZ1 ≤st QZ2 and a maximal element of Q w.r.t. ≤st allows
the same conclusion as in Lemma 4.29 b).
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2. Let the one-stage cost function c be increasing in x′, let Z be a real vector space,
assume a convex model (cf. Lemma 4.23) and let the transition function T additionally
be convex in z. For T this means that it is (jointly) convex in (x, a) and convex in z,
i.e. componentwise convex as a function with two arguments. Simply requiring T to
be convex is of course sufficient.
Now, Lemma 4.23 yields that the functions (4.30) are convex as compositions of
increasing convex and convex mappings. Consequently, ≤B is implied by the convex
order ≤cx of the disturbance distributions QZ .

3. Combining the requirements of 1. and 2., the sufficient condition can be weakened to
the increasing convex order ≤icx.

Convex order on the set of densities. Since the probability measures in Q are abso-
lutely continuous with respect to the reference probability measure P1, we can alternatively
consider the set of densities

Qd =
{ dQ

dP1
∈ Lq(Ω1,A1,P1) : Q ∈ Q

}
.

In general, one has to take care both of the marginal distribution of the density and the
dependence structure with the random cost when searching for a maximizing density of
the Bellman equation

inf
a∈D(x)

sup
Y ∈Qd

E
[(
c
(
x, a, T (x, a, Z)

)
+ βJn+1

(
T (x, a, Z)

))
Y
]
.

However, if Qd is sufficiently rich, the maximization reduces to comparing marginal
distributions.

Definition 4.30. The set of densities Qd is called law invariant if for Y1 ∈ Qd every
Y2 ∈ Lq(Ω1,A1,P1) with Y2 ∼ Y1 is in Qd, too.

Lemma 4.31. Let Assumption 4.19 be satisfied and the one-stage cost function c be
increasing in x′. If Qd is law invariant, the supremum

sup
Y ∈Qd

E
[(
c
(
x, a, T (x, a, Z)

)
+ βv

(
T (x, a, Z)

))
Y
]
, (x, a) ∈ D, v ∈ B,

is not changed by restricting the maximization to densities which are comonotonic to the
random variable T (x, a, Z).

Proof. For random vectors (X1, X2) and (Y1, Y2) with the same marginals it follows from
the upper Fréchet-Hoeffding bound that

E[X1X2] ≤ E[Y1Y2]

if (Y1, Y2) is comonotonic and the expectations exist, cf. Müller and Stoyan (2002, 3.1.1,
3.8.2). By Lemma 4.7 the random variable c

(
x, a, T (x, a, Z)

)
+ βv

(
T (x, a, Z)

)
is in
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Lp(Ω1,A1,P1) for all (x, a) ∈ D. Thus the expectation

E
[(
c
(
x, a, T (x, a, Z)

)
+ βv

(
T (x, a, Z)

))
Y
]

exists for all Y ∈ Lq(Z,Z,PZ). I.e. due to the law invariance of Qd we can find for every
Y ∈ Qd some Y ′ ∈ Qd comonotonic to c

(
x, a, T (x, a, Z)

)
+βv

(
T (x, a, Z)

)
such that Y ′ ∼ Y

and

E
[(
c
(
x, a, T (x, a, Z)

)
+ βv

(
T (x, a, Z)

))
Y
]
≤ E

[(
c
(
x, a, T (x, a, Z)

)
+ βv

(
T (x, a, Z)

))
Y ′
]
.

Since, the function R 3 x′ 7→ c
(
x, a, x′

)
+ βv

(
x′
)
is increasing, this is the same as requiring

comonotonicity to T (x, a, Z).

For the comparison of marginal distributions one would naturally think of stochastic
orders. Here, the convex order yields a sufficient criterion for optimality.

Lemma 4.32. Let Assumption 4.19 be satisfied, the one-stage cost function c be increasing
in x′, Qd be law invariant and suppose there exists a maximal element Y ∗ of Qd w.r.t. the
convex order ≤cx.

a) Then

ρφ(X) = sup
Y ∈Qd

E[XY ], X ∈ Lp(Ω1,A1,P1),

defines a spectral risk measure with spectrum φ(u) = q+
Y ∗(u), u ∈ [0, 1]. In this case,

γ = (γ0, γ1, . . . ) with γn(x, a) = φ(UT (x,a,Z)) is a stationary optimal strategy of nature
in both (4.4) and (4.14). Here, q+

Y ∗ denotes the upper quantile function of Y ∗ and
UT (x,a,Z) the distributional transform of T (x, a, Z).

b) If additionally the disturbance space is the real line Z = R and the transition
function T is increasing and lower semicontinuous in z, γ = (γ0, γ1, . . . ) with γn ≡
φ(UZ) defines a constant optimal action of nature. That is, (4.4) and (4.14) can be
reformulated to a risk-neutral MDP with probability measures dQ = φ(UZ) dP1.

Proof. a) It holds Y ∗ = q+
Y ∗(UY ∗) P-a.s. by Lemma B.10. Therefore,

Qd ⊆ {Y ∈ Lq(Ω1,A1,P1) : Y ≤cx φ(U), U ∼ U(0, 1)} ,

and the random variables φ(U), U ∼ U(0, 1) are contained in both sets due to law
invariance. By Proposition 2.24 ρφ indeed defines a spectral risk measure and φ(Ũ)
is an optimal action of nature at time n given (x, a), where Ũ is the distributional
transform of the random variable

c
(
x, a, T (x, a, Z)

)
+ βJn+1

(
T (x, a, Z)

)
.

Since the function R 3 x′ 7→ c
(
x, a, x′

)
+βv

(
x′
)
is increasing and lower semicontinuous,
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i.e. left continuous by Lemma A.6, it follows from Lemma B.11 that Ũ = UT (x,a,Z).

b) Under the additional assumptions we have again by Lemma B.11 that UT (x,a,Z) =
UZ .

Recall that the probability space under consideration is the product space

(Ω,A,P) =
∞⊗
k=1

(Ω1,A1,P1).

Under the assumptions of Lemma 4.32 b) we can replace the probability measure P by

Q̂ =
∞⊗
k=1

Q∗, dQ∗ = φ(UZ) dP1

and the optimization problems (4.4) and (4.14) can be equivalently written as

inf
π∈ΠM

EQ̂
[
N−1∑
k=0

βkc(Xk, dk(Xk), Xk+1)
]
, (4.31)

where N ∈ N∪{∞}. With the reversed argumentation of Lemma 4.32, a robust formulation
of (4.31) is given by

inf
π∈ΠM

sup
Q∈Q

EQ
[
N−1∑
k=0

βkc(Xk, dk(Xk), Xk+1)
]

(4.32)

where

Q =
{ ∞⊗
k=1

Qk : dQk = Yk dP1, Yk ∈ Lq(Ω1,A1,P1), Yk ≤cx φ(U), U ∼ U(0, 1)
}
.

The Yk, k ∈ N, are indeed densities by Remark 2.25. Now, (4.32) can be interpreted as
the minimization of the coherent risk measure

ρ̃(X) = sup
Q∈Q

EQ[X], X ∈ Lp(Ω,A,P) (4.33)

on the product space (Ω,A,P) applied to the discounted total cost.

4.4. Applications

In this section, we study the distributionally robust maximization of the expected dividend
payment for an insurance company in the dynamic reinsurance model of Section 3.2.2 as a
concrete actuarial application. Moreover, we apply the distributionally robust optimality
criterion to the class of stochastic linear-quadratic problems.
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4.4.1. Robust Dividend Maximization of an Insurance Company

Chen and Assa (2019) introduced a dynamic reinsurance model with the maximization of
the discounted lifetime dividends of the insurance company as optimality criterion. This
optimality criterion can be interpreted in two ways: Either as the insurer’s actual objective.
In this case, one is especially interested in the optimal reinsurance and dividend policy.
Alternatively, this optimality criterion is used for the valuation of the insurer’s portfolio
(Dividend Discount Model). In this case, one is only interested in the value of the objective
function.
The results of Chen and Assa (2019) contain a fundamental error in Section 4.2 disre-

garding the dynamic nature of the optimization problem. In Section 3.2.2 we gave a slightly
modified version of their model, which can be seen as a special case of our abstract cost
model. Hence, the results of Chapter 4 can be applied to correctly ensure the existence
of an optimal reinsurance and dividend policy. Risk-neutral (or unambiguous) dividend
maximization as in Chen and Assa (2019) is the special case when the ambiguity set is a
singleton.

Under a finite planning horizon, the value of a policy pair (π, γ) ∈ ΠR × Γ of the insurer
and nature at time n = 0, . . . , N − 1 is defined as

VNπγ(hN ) = −x+
N , hN ∈ HN ,

Vnπγ(hn) = Eπγnhn

[
−
N−1∑
k=n

βk−nAk − βN−nX+
N

]
, hn ∈ Hn,

since we want to treat the dividends as negative costs. The corresponding value functions
are

Vn(hn) = inf
π∈ΠR

sup
γ∈Γ

Vnπγ(hn), hn ∈ Hn,

and the optimization objective is to determine the robust maximal discounted dividend

V0(x) = inf
π∈ΠR

sup
γ∈Γ

V0πγ(x), x ∈ R. (4.34)

Due to the real state space we want to apply Corollary 4.22 for solving the finite horizon
optimization problem. Let us verify the assumptions. The numbering is as in the corollary.

(i) The state space is the real line E = R.

(ii’) The Continuity and Compactness Properties 3.1 with upper semicontinuous transition
function have been verified in Section 3.2.2.

(iii’) Monotonicity properties:

(iii’ a) The set-valued mapping

R 3 x 7→ D(x) =
{

(a, f) ∈ R+ ×F : a ≤ x+, ρ(f(Y )) ≤ x+ + z − a− πR(f)
}
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is increasing.
(iii’ b) The transition function T : R× F × R+ × R+ → R, T (x, f, y, z) = x+ z −

a− f(y)− πR(f) is increasing in x.
(iii’ c) The terminal cost function cN (x) = −x+ is decreasing and the composition

R 3 x 7→ c(x, a, f, T (x, a, f, y)) = −a is decreasing for all (a, f, y).

(iv) Obviously, b̄ ≡ 0 is an upper bounding function for every α ≥ 1. We now show that

¯
b(x) = − x+

1− β −
z

(1− β)2 , x ∈ R,

is a lower bounding function, where α = 1−(1−β)2

β . We have for all (x, a, f) ∈ D and
Q ∈ Q:

−c−N (x) = −x+ ≥
¯
b(x),

−c−(x, a, f, T (x, a, f, Y ))
)

= −a ≥ −x+ ≥
¯
b(x),

EQ [
¯
b(T (x, a, f, Y ))] = − z

(1− β)2 −
1

1− βE
Q
[
(x+ z − a− f(Y )− πR(f))+

]
≥ − z

(1− β)2 −
1

1− βE
Q
[
(x+ z)+

]
≥ −z

( 1
1− β + 1

(1− β)2

)
− x+

1− β

= −x+ 1
β

( 1
1− β − 1

)
− z 1

β

( 1
(1− β)2 − 1

)
= 1
β

(
¯
b(x) + x+ + z

)
≥ 1
β

(
¯
b(x) + (1− β)x+ + z

)
= 1− (1− β)2

β ¯
b(x).

The second equality holds since

1
1− β = 1 + β

1− β and 1 + β

1− β + β

(1− β)2 = 1
(1− β)2 .

The (absolute) bounding function is given by b = b̄−
¯
b = −

¯
b.

(v) Here, we use the separation condition of Lemma 4.20:

|c(x, a, f, T (x, a, f, Y ))| = a ≤ x+

i.e ϑ1(x) = x+, which is continuous, and Θ1(Y ) = 0 ∈ Lp(Ω,A,P). Furthermore,

b(T (x, a, f, Y ) = z

(1− β)2 + 1
1− β

(
x+ z − a− f(Y )− πR(f)

)+
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≤ z

(1− β)2 + 1
1− β (x+ z)+

implying that ϑ2(x) = z
(1−β)2 + 1

1−β (x+ z)+, which is continuous, and Θ2(Y ) = 0 ∈
Lp(Ω,A,P).

(vi) The probability measure P1 on (Ω1,A1) can w.l.o.g. assumed to be separable since
B(R+) is countably generated (apply Lemma B.5 and a canonical construction).

(vii) We assume that the ambiguity set Q is norm bounded, i.e. there exists K ∈ [1,∞)
such that

E
∣∣∣∣ dQ
dP1

∣∣∣∣q ≤ K
for all Q ∈ Q.

(viii) The discount factor β satisfies αβ = 1− (1− β)2 < 1 for all β ∈ (0, 1).

Hence, Corollary 4.22 implies that it is sufficient for the insurer to minimize over all
Markov policies, the value functions lie in

B = {v : R→ R : v lower semicontinuous and decreasing}

and satisfy the Bellman equation

JN (x) = −x+,

Jn(x) = inf
(a,f)∈D(x)

sup
Q∈Q
−a+ βEQ [Jn+1(x+ z − a− f(Y )− πR(f))] , x ∈ R,

for n = 0, . . . , N − 1. There exists a Markov Decision rule d∗n : R→ R+ × F minimizing
Jn+1 and every sequence π = (d∗0, . . . , d∗N−1) ∈ ΠM of such minimizers is a solution to
(4.34).

Under an infinite planning horizon there is no terminal cost and it suffices to consider
Markov policies due to the respective results in the finite horizon case. The optimization
objective is

J∞(x) = inf
π∈ΠM

sup
γ∈ΓM

Eπγ
[
−
∞∑
k=0

βkAk

]
.

Corollary 4.22 states that the Bellman operator

T : B→ B, T v(x) = inf
(a,f)∈D(x)

sup
Q∈Q
−a+ βEQ [Jn+1(x+ z − a− f(Y )− πR(f))]

is a contraction with modulus 1−(1−β)2 and J∞ is its unique fixed point. Every stationary
policy π = (d∗, d∗, . . . ) ∈ ΠS induced by a minimizer d∗ of J∞ is optimal for the insurer
under an infinite planning horizon.
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4.4.2. Robust Linear-Quadratic Programming

The term linear-quadratic (LQ) problem refers to Markov decision problems with linear
transition function and quadratic one-stage cost function. Such models occur i.a. in
automatic control of motions, where one wants to keep the object close to the origin. The
unambiguous stochastic LQ problem has been studied extensively in the literature. For
a particularly detailed account see Bertsekas (2017, 2012). The popularity is due to the
nice feature that the value functions retain the quadratic structure of the one-stage cost
functions and the optimal decision rules are linear and can be determined analytically.
The state and action space are E = Rm and A = Rd. There is no constraint.

Let U1, . . . , Un, V1, . . . , VN be Rm×m- and Rm×d-valued random matrices, respectively,
and W1, . . . ,WN be random vectors with values in Rm. The random elements {Zn =
(Un, Vn,Wn)}1≤n≤N are independent and the n-th element is defined on (Ωn,An,Pn). It
is supposed that the disturbances {Zn}1≤n≤N have finite 2p-th moments, p ≥ 1. The
transition function is given by

Tn(x, a, Zn+1) = Un+1x+ Vn+1a+Wn+1

for n = 0, . . . , N−1. Furthermore, let there be deterministic positive semidefinite symmetric
matrices Q0, . . . , QN ∈ Rm×m and deterministic positive definite symmetric matrices
R0, . . . , RN−1 ∈ Rd×d. The one-stage cost functions are

cn(x, a, x′) = x>Qnx+ a>Rna

and the terminal cost function is cN (x) = x>QNx. Hence, the optimization problem under
consideration is

inf
π∈ΠR

sup
γ∈Γ

Eπγ0x

[
N−1∑
k=0

X>k QkXk +A>k RkAk +X>NQNXN

]
. (4.35)

Policy values and value functions are defined in the usual way.
Since the matrices Qn and Rn are positive semidefinite,

¯
b ≡ 0 is a lower bounding function

and the one-stage costs are at least quasi-integrable. In the sequel, we will determine the
value functions and optimal policy by elementary calculations and will show that the value
functions are convex and therefore continuous. Hence, we can dispense with an upper
bounding function and compactness of the action space.

In contrast to the risk-neutral case, the quadratic structure of the one-stage cost functions
is in general not inherited by the value functions under the robust optimality criterion.
Then, explicit solutions can no longer be expected. Therefore, we will study special cases
of ambiguity where the LQ structure is preserved. Since the Borel σ-algebra of a finite
dimensional euclidean space is countably generated, it is no restriction to assume that the
probability measures Pn are separable (canonical construction, Lemma B.5). Further, we
assume that for n = 0, . . . , N − 1
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• the ambiguity sets Qn+1 ⊆ Mq
1(Ωn+1,An+1,Pn+1) are norm bounded and weak*

closed.
• it holds EQ[Wn+1] = 0 for all Q ∈ Qn+1.

I.e. Assumption 4.3 is satisfied apart from upper bounding. Theorems 4.8 and 4.12 use the
bounding, continuity and compactness assumptions only to prove the existence of optimal
decision rules. Thus, we can employ the Bellman equation and restrict the consideration
to Markov policies as long as we are able to prove the existence of optimal decision rules
on each stage. We proceed backwards.
At stage N , no action has to be chosen and the value function is JN (x) = x>QNx.
At stage N − 1, we have to solve the Bellman equation

JN−1(x) = inf
a∈A

sup
Q∈QN

c(x, a) + EQ [JN (T (x, a, Zn+1))]

= inf
a∈A

sup
Q∈QN

x>QN−1x+ a>RN−1a

+ EQ
[
(UNx+ VNa+WN )>QN (UNx+ VNa+WN )

]
= inf

a∈A
sup
Q∈QN

x>QN−1x+ a>RN−1a+ EQ
[
x>U>NQNUNx+ a>V >N QNVNa

+2x>U>NQNVNa+W>NQNWN

]
(4.36)

For the last equality we used the symmetry of QN and that EQ
[
2W>NQN (UNx+ VNa)

]
= 0

by assumption. Since RN−1 and QN are positive (semi-)definite, the objective function
(4.36) is strictly convex in a. Moreover, it is linear and especially concave in Q. Finally,
QN is weak* compact by the Theorem of Banach-Alaoglu (Aliprantis and Border; 2006,
6.21). The objective function (4.36) is continuous in Q by definition of the weak* topology
since the integrand is in Lp(Ωn+1,An+1,Pn+1). Thus, the requirements of Sion’s Minimax
Theorem A.27 b) are satisfied and we can interchange infimum and supremum in (4.36),
i.e.

JN−1(x) = sup
Q∈QN

inf
a∈A

x>QN−1x+ a>RN−1a+ EQ
[
x>U>NQNUNx+ a>V >N QNVNa

+2x>U>NQNVNa+W>NQNWN

]
= sup
Q∈QN

inf
a∈A

x>QN−1x+ a>RN−1a+ x>EQ[U>NQNUN ]x+ a>EQ[V >N QNVN ]a

+ 2x>EQ[U>NQNVN ]a+ EQ[W>NQNWN ] (4.37)

In oder to solve the inner minimization problem it suffices due to strict convexity and
smoothness to determine the unique zero of the gradient of the objective function.

0 = 2RN−1a+ 2EQ[V >N QNVN ]a+ 2x>EQ[V >N QNUN ]

⇐⇒ a = −
(
RN−1 + EQ[V >N QNVN ]

)−1EQ[V >N QNUN ]x.
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Note that the matrix
(
RN−1 + EQ[V >N QNVN ]

)
is positive definite and therefore invertible

due to the positive (semi-)definiteness of RN−1 and QN . Setting

LQN−1 = −
(
RN−1 + EQ[V >N QNVN ]

)−1
EQ[V >N QNUN ]

and inserting in (4.37) gives

JN−1(x) = sup
Q∈QN

EQ[W>NQNWN ] + x>
(
QN−1 + EQ[U>NQNUN ] + LQ>N−1RN−1L

Q
N−1

+ LQ>N−1E
Q[V >N QNVN ]LQN−1 + 2EQ[U>NQNVN ]LQN−1

)
x

= sup
Q∈QN

EQ[W>NQNWN ] + x>
(
QN−1 + EQ[U>NQNUN ]

+ EQ[U>NQNVN ]
(
RN−1 + EQ[V >N QNVN ]

)−1
EQ[V >N QNUN ]

− 2EQ[U>NQNVN ]
(
RN−1 + EQ[V >N QNVN ]

)−1
EQ[V >N QNUN ]

)
x

= sup
Q∈QN

EQ[W>NQNWN ] + x>
(
QN−1 + EQ[U>NQNUN ]

− EQ[U>NQNVN ]
(
RN−1 + EQ[V >N QNVN ]

)−1
EQ[V >N QNUN ]

)
x

= sup
Q∈QN

EQ[W>NQNWN ] + x>KQ
N−1x. (4.38)

The matrix

KQ
N−1 = QN−1 + EQ[U>NQNUN ]

− EQ[U>NQNVN ]
(
RN−1 + EQ[V >N QNVN ]

)−1
EQ[V >N QNUN ]

is obviously symmetric. Since QN−1 and RN−1 are positive semidefinite, the second line of
(4.36) shows that JN−1 is non-negative. Hence, KQ

N−1 is positive semidefinite, i.e. it has
the same properties as QN . So if there is no ambiguity (|QN | = 1), we have solved the
stochastic LQ problem at stage N − 1. The previous stage N − 2 is analogous, one just
has to replace QN by KN−1 and so on.

The ambiguous case is more intricate. As the supremum of a family of convex functions
is convex, we directly have convexity of JN−1. We have noted before that the ambiguity
set QN is weak* compact and that the objective function (4.36) is weak* continuous in
Q. Since the infimum of a family of continuous functions is at least upper semicontinuous
(Corollary A.3 is applicable as the weak* topology is metrizable due to Lemma 4.1), we can
guarantee the existence of a maximizing probability measure with Weierstraß’ Theorem
A.7. But in contrast to the unambiguous case, the quadratic structure of the value function
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JN−1 will be lost in general. So our technique will fail on any previous stage and there is
no reason to expect explicit solutions.

In the sequel, we will therefore present two special cases where the quadratic structure
of the value function is preserved under ambiguity. This can only be expected if the
maximizing probability measure in (4.38) does not depend on x, implying that after a
stage-wise change of measure the problem can be reduced to the unambiguous case.

Case 1. UN , VN are deterministic.
Then KN−1 = KQ

N−1 and the optimal decision rule of the controller d∗N−1(x) = LN−1x =
LQN−1x do not depend on the probability measure and Q∗N = argmaxQ∈QN E

Q[W>NQNWN ]
is an optimal action of nature independently of x. The value function is therefore given by

JN−1(x) = EQ
∗ [W>NQNWN ] + x>KN−1x.

Previous stages are analogous, one just has to replace QN by KN−1 and so on.

Case 2. WN is deterministic and m = 1.
That is, WN = 0 and the state space is the real line but the action space remains arbitrary.
Consequently, KQ

N−1 is a non-negative real number,

JN−1(x) = x2 sup
Q∈QN

KQ
N−1

and the optimal decision rule is d∗N−1(x) = L
Q∗N
N−1x with Q∗N = argmaxQ∈QN K

Q
N−1. Earlier

stages are again analogous.

In most cases, the quadratic structure of the value function will not be preserved
under ambiguity. If the ambiguity set is the convex hull of two probability measures, we
can at least give an optimal quadratic upper bound for the value function. First, note
that by Lemma 4.28 and subsequent remarks, the convex hull has no impact and we
can focus on an ambiguity set with two elements QN = {Q1,Q2}. We write shorthand
Ki
N−1 = KQi

N−1, i = 1, 2.

As a real symmetric matrix, K1
N−1 −K2

N−1 is orthogonally diagonalizable, i.e there is
an orthogonal matrix P ∈ Rm×m such that P>(K1

N−1 −K2
N−1)P = diag(λ1, . . . , λm). We

define |K1
N−1 −K2

N−1| = P diag(|λ1|, . . . , |λm|)P> and

K̂N−1 = max{K1
N−1, K

2
N−1} = 1

2
(
K1
N−1 +K2

N−1 + |K1
N−1 −K2

N−1|
)
.

It holds for all x ∈ Rm

x>K̂N−1x− x>K1
N−1x = 1

2x
>
(
K2
N−1 −K1

N−1 + |K1
N−1 −K2

N−1|
)
x

= 1
2x
>P
(

diag(|λ1|, . . . , |λm|)− diag(λ1, . . . , λm)
)
P>x

≥ 0
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and analogously x>K̂N−1x− x>K2
N−1x ≥ 0. The upper bound is optimal in the sense that

if x>Ki
N−1x ≥ x>K

j
N−1x for all x ∈ Rm, i.e. if Ki

N−1 � K
j
N−1 in the Loewner order, then

it holds K̂N−1 = Ki
N−1.

Note that K̂N−1 is symmetric and positive semidefinite. So we can continue with

ĴN−1(x) = max
{
EQ1 [W>CQNWN ],EQ2 [W>NQNWN ]

}
+ x>K̂N−1x

instead of JN−1 on the previous stage and recursively obtain an optimal upper bound for
the value function. In principle, this procedure works for any ambiguity set which consists
of (the convex hull of) a finite number of probability measures. But the upper bound will
in general depend on the order in which the pairwise maxima of matrices are taken and
might therefore be not optimal.

Remark 4.33. The (robust) LQ problem defines a convex model in the sense of Lemma
4.23 despite having no monotonicity properties. This is possible due to the linear transition
function.





CHAPTER 5

Risk-Sensitive Recursive Cost Minimization

A shortcoming of the expected total cost criterion commonly used for MDP is that it cannot
take into account risk aversion of the controller. A natural generalization is therefore to
replace the expectation by some risk measure. Usually, static risk measures do not have a
tower property like conditional expectation. However, this property is crucial to derive a
value iteration and solve the optimization problem by means of dynamic programming.

Dynamic risk measures (see Chapter 11 of Föllmer and Schied (2016) for details) often
have such a property but typically they rely on conditioning with respect to some filtration.
As noted in Ruszczyński (2010), this implies that at each time step the value function
may depend on the entire history of the process. Hence, one cannot expect to obtain
Markov optimal policies making the problem computationally intractable. Ruszczyński
(2010) avoids that by constructing so-called Markov risk measures. However, this approach
is rather technical, requires coherence, and the dynamic risk measures are only obtained in
a dual representation.

A different approach is taken by Bäuerle and Jaśkiewicz (2017, 2018) and Asienkiewicz
and Jaśkiewicz (2017). They do not define the optimality criterion based on the total cost
but start with the value iteration

Vnπ(hn) = Enhn
[
cn
(
Xπ
n , dn(Hπ

n ), Xπ
n+1

)
+ Vn+1π

(
Hπ
n , dn(Hπ

n ), Xπ
n+1

)]
= E

[
cn
(
xn, dn(hn), Tn(xn, dn(hn), Zn+1)

)
+ Vn+1π

(
hn, dn(hn), Tn(xn, dn(hn), Zn+1)

)]
of the expected total cost criterion and replace the factorization of the conditional expecta-
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tion by some risk measure ρn : Lp(Ω,A,P)→ R̄. The value iteration then reads

Vnπ(hn) = ρn
(
cn
(
xn, dn(hn), Tn(xn, dn(hn), Zn+1)

)
+ Vn+1π

(
hn, dn(hn), Tn(xn, dn(hn), Zn+1)

))
and dynamic programming techniques can be applied by construction. It can be ensured
by suitable model components that the value function at each time step does not depend
on the history of the process and hence Markov optimal policies can be obtained. The
advantage of the recursive approach is one can use general static risk measures at each
stage like the well-established Value-at-Risk or Expected Shortfall.
Both Bäuerle and Jaśkiewicz (2017, 2018) and Asienkiewicz and Jaśkiewicz (2017)

considered specifically the entropic risk measure. This choice originates from the fact
that the entropic risk measure is the certainty equivalent of an exponential utility. In the
economic literature, the representation of preferences by recursive utility functions has
been widely studied with notable contributions by Kreps and Porteus (1978) and Epstein
and Zin (1989). A comprehensive presentation can be found in Miao (2014, Ch. 20). The
key feature of recursive utilities is that they allow separating intertemporal preferences
from risk aversion. An early application to optimal control is the paper of Hansen and
Sargent (1995). We extend their results to general law-invariant monetary risk measures
with the Fatou property.

Locally at each stage, the recursive approach provides an intuitive and transparent
decision criterion. However globally, there is no closed-form expression for the objective
function and no obvious interpretation. In many cases that shortcoming can be overcome
by reformulating the optimization problem to a distributionally robust MDP, see Section
5.3.

5.1. Finite Planning Horizon

Under a finite planning horizon N ∈ N, we consider the non-stationary version of the
abstract cost model of Section 3.1. In this chapter only deterministic policies π ∈ Π of the
controller will be considered. The Markov Decision Process therefore has the functional
representation (3.3). Here, it is more convenient to index the process and its random
history with the policy since we will not explicitly refer to the law of motion. Let p ∈ [1,∞)
with conjugate index q ∈ [1,∞] and let ρ0, . . . , ρN−1 : Lp(Ω,A,P)→ R̄ be monetary risk
measures. We define the value of a policy π = (d0, . . . , dN−1) ∈ Π at time n = 0, . . . , N
given history hn ∈ Hn recursively as

VNπ(hN ) = cN (xN )

Vnπ(hn) = ρn
(
cn
(
xn, dn(hn), Xπ

n+1
)

+ Vn+1π
(
hn, dn(hn), Xπ

n+1
))

(5.1)

= ρn
(
cn
(
xn, dn(hn), Tn(xn, dn(hn), Zn+1)

)
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+ Vn+1π
(
hn, dn(hn), Tn(xn, dn(hn), Zn+1)

))
.

Slightly abusing the notation, we write Xπ
n+1 in (5.1) instead of the random variable

Xπ
n+1|Hπ

n = hn with the conditional distribution given the history up to time n. In the
special case that the one-stage cost functions cn do not depend on the next state of the
process, the value of a policy simplifies to

Vnπ(hn) = cn(xn, dn(hn)) + ρn
(
Vn+1π(hn, dn(hn), Xπ

n+1)
)
, hn ∈ Hn,

for n = 0, . . . , N − 1 due to the translation invariance of monetary risk measures.

Remark 5.1. For the recursive definition of the policy values to be meaningful, we need
to make sure that the risk measures are applied to elements of Lp(Ω,A,P). This has two
aspects: integrability will be ensured by Assumption 5.2, but first of all Vnπ needs to be a
measurable function for all π ∈ Π and n = 0, . . . , N . For most risk measures with practical
relevance, this is fulfilled:

• In the risk-neutral case, i.e. for ρ = E, and also for the entropic risk measure ργ the
measurability is obvious.

• For distortion risk measures, the measurability is guaranteed, too. To see this, we
proceed backwards. For N there is noting to show and if Vn+1π is measurable, the
function

f(hn, z) = cn
(
xn, dn(hn), Tn(xn, dn(hn), z)

)
+Vn+1π

(
hn, dn(hn), Tn(xn, dn(hn), z)

is measurable as a composition of measurable maps. Then, Fubini’s Theorem B.2
yields that the survival function of f(hn, Zn+1)

S(t|hn) =
∫
1{f(hn, Zn+1(ω)) > t}P(dω)

is measurable. A distortion function g is increasing and hence measurable. So again
by Fubini we obtain the measurability of

Vnπ(hn) = ρg(f(hn, Zn+1)) =
∫ ∞

0
g(S(t|hn)) d t−

∫ 0

−∞
1− g(S(t|hn)) d t

since the integrands are non-negative and compositions of measurable maps.

• For proper coherent risk measures with the Fatou property one can insert the dual
representation of Proposition 2.21. Then, an optimal measurable selection argument
as in Theorem 4.8 yields the measurability.

Throughout, it is implicitly assumed that the risk measures are chosen such that all policy
values are measurable.
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The value functions are given by

Vn(hn) = inf
π∈Π

Vnπ(hn), hn ∈ Hn,

for n = 0, . . . , N and the controller’s optimization objective is

V0(x) = inf
π∈Π

V0π(x), x ∈ E. (5.2)

In order to have well-defined value functions, we need some finiteness conditions as well
as some technical conditions for measurability and optimization. All assumptions of this
section are listed here.

Assumption 5.2. (i) The model data has the Continuity and Compactness Properties
3.1 with the transition function Tn being continuous in (x, a) for all n = 0, . . . , N − 1
(case 1).

(ii) There exist
¯
ε, ε̄ ≥ 0 with

¯
ε+ ε̄ = 1 and measurable functions

¯
b : E → (−∞,−

¯
ε] and

b̄ : E → [ε̄,∞) such that it holds for all policies π ∈ Π and all n = 0, . . . , N

¯
b(xn) ≤ Vnπ(hn) ≤ b̄(xn), hn ∈ Hn.

(iii) We define b : E → [1,∞), b(x) = b̄(x) −
¯
b(x). For all n = 0, . . . , N − 1 and

(x̄, ā) ∈ Dn there exists an ε > 0 and measurable functions Θx̄,ā
n,1,Θ

x̄,ā
n,2 : Z → R+ such

that Θx̄,ā
n,1(Zn+1),Θx̄,ā

n,2(Zn+1) ∈ Lp(Ω,A,P) and

|cn(x, a, Tn(x, a, z))| ≤ Θx̄,ā
n,1(z), b(Tn(x, a, z)) ≤ Θx̄,ā

n,2(z)

for all z ∈ Z and (x, a) ∈ Bε(x̄, ā) ∩ Dn. Here, Bε(x̄, ā) is the closed ball around
(x̄, ā) w.r.t. an arbitrary product metric on E ×A.

(iv) The monetary risk measures ρ0, . . . , ρN−1 : Lp(Ω,A,P) → R̄ are law invariant and
have the Fatou property.

Remark 5.3.
¯
b, b̄ are called (global) lower and upper bounding function, respectively,

while b is referred to as (global) bounding function. Since
¯
b is non-positive and b̄ is

non-negative it holds

¯
b(xn) ≤ −V −nπ(hn) ≤ Vnπ(hn) ≤ V +

nπ(hn) ≤ b̄(xn), hn ∈ Hn,

and consequently
|Vnπ(hn)| ≤ b(xn), hn ∈ Hn.

Bold print is used to distinguish these global bounding functions from corresponding
stage-wise bounding functions as in Chapter 4. Such stage-wise bounding functions can be
introduced for the risk-sensitive recursive optimality criterion, too, if the risk measures
have additional properties.
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Lemma 5.4. Let ρ0, . . . , ρN−1 be proper coherent risk measures with the Fatou property.
If there exist

¯
ε, ε̄ ≥ 0 with

¯
ε+ ε̄ = 1, measurable functions

¯
b : E → (−∞,−

¯
ε], b̄ : E → [ε̄,∞)

and a constant α ∈ (0, 1) such that

ρn
(
cn(x, a, Tn(x, a, Zn+1))

)
≥

¯
b(x), ρn

(
−

¯
b(Tn(x, a, Zn+1))

)
≤ −α

¯
b(x),

ρn
(
cn(x, a, Tn(x, a, Zn+1))

)
≤ b̄(x), ρn

(
b̄(Tn(x, a, Zn+1))

)
≤ αb̄(x),

for all n = 0, . . . , N − 1 and (x, a) ∈ Dn as well as
¯
b(x) ≤ cN (x) ≤ b̄(x) for all x ∈ E, then

¯
b = 1

1− α¯
b, b̄ = 1

1− αb̄ and b = 1
1− αb

are global bounding functions satisfying Assumption 5.2 (ii).

Proof. We proceed by backward induction. At time N we have

¯
b(xN ) ≤

¯
b(xN ) ≤ cN (xN ) = Vnπ(hN ) ≤ b̄(xN ) ≤ b̄(xN ), hN ∈ HN .

Assuming the assertion holds for time n+ 1 it follows for time n:

Vnπ(hn) = ρn
(
cn
(
xn, dn(hn), Tn(xn, dn(hn), Zn+1)

)
+ Vn+1π

(
hn, dn(hn), Tn(xn, dn(hn), Zn+1)

))
≥ ρn

(
cn
(
xn, dn(hn), Tn(xn, dn(hn), Zn+1)

)
+ 1

1− α¯
b
(
Tn(xn, dn(hn), Zn+1)

))
≥ ρn

(
cn
(
xn, dn(hn), Tn(xn, dn(hn), Zn+1)

))
− 1

1− αρn
(
−

¯
b
(
Tn(xn, dn(hn), Zn+1)

))
≥

¯
b(xn) + α

1− α¯
b(xn)

=
¯
b(xn).

The first inequality is by the induction hypothesis and the monotonicity of ρn and the
second one is by Lemma 2.23. Additionally, we have used positive homogeneity. Finally,
the third inequality is by assumption. Regarding the upper bounding function one can
argue similarly using the subadditivity of ρn instead of Lemma 2.23:

Vnπ(hn) = ρn
(
cn
(
xn, dn(hn), Tn(xn, dn(hn), Zn+1)

)
+ Vn+1π

(
hn, dn(hn), Tn(xn, dn(hn), Zn+1)

))
≤ ρn

(
cn
(
xn, dn(hn), Tn(xn, dn(hn), Zn+1)

)
+ 1

1− αb̄
(
Tn(xn, dn(hn), Zn+1)

))
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≤ ρn
(
cn
(
xn, dn(hn), Tn(xn, dn(hn), Zn+1)

))
+ 1

1− αρn
(
b̄
(
Tn(xn, dn(hn), Zn+1)

))
≤ b̄(xn) + α

1− αb̄(xn)

= b̄(xn).

Remark 5.5. Regarding the requirements on a stage-wise lower bounding function in
Lemma 5.4 it should be noted that ρn

(
−

¯
b(Tn(x, a, Zn+1))

)
≤ −α

¯
b(x) is a stronger

assumption than

ρn
(̄
b(Tn(x, a, Zn+1))

)
≥ α

¯
b(x). (5.3)

Indeed, since
¯
b ≤ 0 the monotonicity and normalization of ρn yields ρn

(̄
b(Tn(x, a, Zn+1))

)
≤

0. Consequently, we have

−ρn
(̄
b(Tn(x, a, Zn+1))

)
=
∣∣ρn(̄b(Tn(x, a, Zn+1))

)∣∣ ≤ ρn( ∣∣̄b(Tn(x, a, Zn+1)
)∣∣ )

= ρn
(
−

¯
b
(
Tn(x, a, Zn+1)

))
≤ −α

¯
b(x).

The first inequality is Lemma 2.2 and the second one by assumption. Multiplying with
(−1) yields (5.3).

If the one-stage cost functions are bounded and the monetary risk measures ρ0, . . . , ρN−1

normalized, the stage-wise bounding functions
¯
b, b̄ can be chosen constant. Where we

have used Lemma 2.23 or subadditivity in the proof of Lemma 5.4, one can then simply
argue with translation invariance. Recall that normalization is no structural restriction for
monetary risk measures due to the translation invariance.
With the bounding function b we define the function space

Bb = {v : E → R | v measurable with λ ∈ R+ s.t. |v(x)| ≤ λb(x) for all x ∈ E}

as in Section 4.1. Endowing Bb with the weighted supremum norm

‖v‖b = sup
x∈E

|v(x)|
b(x)

makes (Bb, ‖ · ‖b) a Banach space, cf. Proposition 7.2.1 in Hernández-Lerma and Lasserre
(1999). In case we have stage-wise bounding functions as in Lemma 5.4, it holds

Bb = {v : E → R | v measurable with λ ∈ R+ s.t. |v(x)| ≤ λb(x) for all x ∈ E}

= {v : E → R | v measurable with λ ∈ R+ s.t. |v(x)| ≤ λ b(x) for all x ∈ E}

= Bb

and the weighted supremum norms ‖ · ‖b, ‖ · ‖b are equivalent.
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Note that Assumption 5.2 (iii) is exactly the same as Assumption 4.3 (iii). It does not
depend on where the bounding function b originates from and is in this sense independent
of the optimality criterion. Thus, with the same arguments one can show that the statement
of Lemma 4.7 holds here, too.

Lemma 5.6. Let v ∈ Bb and n ∈ {0, . . . , N−1}. Under Assumption 5.2 (iii) each sequence
of random variables

Ck = cn
(
xk, ak, Tn(xk, ak, Zn+1)

)
+ v

(
Tn(xk, ak, Zn+1)

)
induced by a convergent sequence {(xk, ak)}k∈N in Dn has an Lp-bound C̄, i.e. |Ck| ≤ C̄ ∈
Lp(Ω,A,P) for all k ∈ N.

Let us now consider specifically Markov policies π ∈ ΠM of the controller. The subspace

B = {v ∈ Bb : v lower semicontinuous}

of (Bb, ‖ · ‖b) turns out to be the set of potential value functions under such policies.
(B, ‖ · ‖b) is a complete metric space since the subset of lower semicontinuous functions
is closed in (Bb, ‖ · ‖b) by Lemma A.10. When we consider intervals [

¯
v, v̄] ⊆ B with

¯
v, v̄ : E → R s.t.

¯
v(x) ≤ v̄(x) for all x ∈ E, they are to be understood pointwise

[
¯
v, v̄] = {v ∈ B :

¯
v(x) ≤ v(x) ≤ v̄(x) for all x ∈ E}.

Note that
¯
v, v̄ need not be in B. Such intervals are closed even w.r.t. pointwise convergence

and therefore form a complete metric space as a closed subset of (B, ‖ · ‖b). In the sequel,
the interval

I =
[
¯
b, b̄

]
will be of interest. We define the following operators on Bb and especially on B.

Definition 5.7. For v ∈ Bb and a Markov decision rule d let

Lnv(x, a) = ρn
(
cn
(
x, a, Tn(x, a, Zn+1)

)
+ v

(
Tn(x, a, Zn+1)

))
, (x, a) ∈ Dn,

Tndv(x) = Lnv(x, d(x)), x ∈ E,

Tnv(x) = inf
a∈Dn(x)

Lnv(x, a), x ∈ E.

Note that the operators are monotone in v. Under a Markov policy π = (d0, . . . , dN−1) ∈
ΠM , the value iteration can be expressed with the operators. In order to distinguish
from the history-dependent case, we denote policy values here with J . Setting JNπ(x) =
cN (x), x ∈ E, we obtain for n = 0, . . . , N − 1 and x ∈ E

Jnπ(x) = ρn
(
cn
(
x, dn(x), Tn(x, dn(x), Zn+1)

)
+ Jn+1π

(
Tn(x, dn(x), Zn+1)

))
= TndnJn+1π(x).
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Let us further define for n = 0, . . . , N − 1 the Markov value function

Jn(x) = inf
π∈ΠM

Jnπ(x), x ∈ E.

The next result shows that Vn satisfies a Bellman equation and proves that an optimal
policy exists and is Markov.

Theorem 5.8. Let Assumption 5.2 be satisfied. Then, for n = 0, . . . , N , the value function
Vn only depends on xn, i.e. Vn(hn) = Jn(xn) for all hn ∈ Hn, lies in I =

[
¯
b, b̄

]
⊆ B and

satisfies the Bellman equation

JN (x) = cN (x),

Jn(x) = TnJn+1(x), x ∈ E.

Furthermore, for n = 0, . . . , N − 1 there exist Markov decision rules d∗n with Tnd∗nJn+1 =
TnJn+1 and every sequence of such minimizers constitutes an optimal policy π = (d∗0, . . . , d∗N−1).

Proof. The proof is by backward induction. At time N we have VN = JN = cN which is in
B by Assumption 5.2 (ii). Assuming the assertion holds at time n+ 1, we have at time n:

Vn(hn) = inf
π∈Π

Vnπ(hn)

= inf
π∈Π

ρn
(
cn
(
xn, dn(hn), Xπ

n+1
)

+ Vn+1π
(
hn, dn(hn), Xπ

n+1
))

≥ inf
π∈Π

ρn
(
cn
(
xn, dn(hn), Xπ

n+1
)

+ Vn+1
(
hn, dn(hn), Xπ

n+1
))

which equals by the induction hypothesis

= inf
π∈Π

ρn
(
cn
(
xn, dn(hn), Xπ

n+1
)

+ Jn+1
(
Xπ
n+1

))
= inf

π∈Π
ρn
(
cn
(
xn, dn(hn), Tn(xn, dn(hn), Zn+1)

)
+ Jn+1

(
Tn(xn, dn(hn), Zn+1)

))
.

Since the minimization does not depend on the entire policy but only on an = dn(hn), this
equals

= inf
an∈D(xn)

ρn
(
cn
(
xn, an, Tn(xn, an, Zn+1)

)
+ Jn+1

(
Tn(xn, an, Zn+1)

))
.

Here, objective and constraint depend on the history of the process only through xn. Thus,
given existence of a minimizing Markov decision rule d∗n, one ontains the identity

= Tnd∗nJn+1(xn). (5.4)
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Again by the induction hypothesis there exists an optimal Markov policy π∗ ∈ ΠM such
that

= Tnd∗nJn+1π∗(xn)

= Jnπ∗(xn)

≥ Jn(xn)

≥ Vn(hn).

It remains to show the existence of a minimizing Markov decision rule d∗n at (5.4) and
that Jn ∈ B. We want to apply Proposition A.25. The set-valued mapping E 3 x 7→
Dn(x) is compact-valued and upper semicontinuous. Next, we show that Dn 3 (x, a) 7→
Lnv(x, a) is lower semicontinuous for every v ∈ B. Let {(xk, ak)}k∈N be a convergent
sequence in Dn with limit (x∗, a∗) ∈ Dn. By Lemma A.4 a) the function Dn 3 (x, a) 7→
cn
(
x, a, Tn(x, a, Zn+1(ω))

)
+ v

(
Tn(x, a, Zn+1(ω))

)
is lower semicontinuous for every ω ∈ Ω.

Consequently,

lim
k→∞

inf
`≥k

cn
(
x`, a`, Tn(x`, a`, Zn+1)

)
+ v

(
Tn(x`, a`, Zn+1)

)
= lim inf

k→∞
cn
(
xk, ak, Tn(xk, ak, Zn+1)

)
+ v

(
Tn(xk, ak, Zn+1)

)
≥ cn

(
x∗, a∗, Tn(x∗, a∗, Zn+1)

)
+ v

(
Tn(x∗, a∗, Zn+1)

)
. (5.5)

The sequence of random variables {Ck}k∈N with

Ck(ω) = inf
`≥k

cn
(
x`, a`, Tn(x`, a`, Zn+1(ω))

)
+ v

(
Tn(x`, a`, Zn+1(ω))

)
is increasing for every ω ∈ Ω. Recall here that the ω-wise infimum of a countable number
of random variables Y1, Y2, . . . is again a random variable since{

inf
k∈N

Yk ≤ y
}

=
⋃
n∈N
{Yk ≤ y}

is measurable. By Lemma 5.6, there exists a nonnegative random variable C̄ ∈ Lp(Ω,A,P)
such that |Ck| ≤ C̄ for all k ∈ N. Hence, {Ck}k∈N converges almost surely to some
C∗ ∈ Lp(Ω,A,P). The Fatou property of the risk measure ρn implies

lim inf
k→∞

Lnv(xk, ak) = lim inf
k→∞

ρn
(
cn
(
xk, ak, Tn(xk, ak, Zn+1)

)
+ v

(
Tn(xk, ak, Zn+1)

))
≥ lim inf

k→∞
ρn
(

inf
`≥k

cn
(
x`, a`, Tn(x`, a`, Zn+1)

)
+ v

(
Tn(x`, a`, Zn+1)

))
= lim inf

k→∞
ρn(Ck)

≥ ρn(C∗)

≥ ρn
(
cn
(
x∗, a∗, Tn(x∗, a∗, Zn+1)

)
+ v

(
Tn(x∗, a∗, Zn+1)

))



94 Chapter 5. Risk-Sensitive Recursive Cost Minimization

= Lnv(x∗, a∗).

The last inequality follows from (5.5) and the monotonicity of ρn. So we have shown the
lower semicontinuity of Dn 3 (x, a) 7→ Lnv(x, a). Proposition A.25 yields the existence of a
minimizing Markov decision rule d∗n at (5.4) and that Jn = TJn+1 is lower semicontinuous.
Furthermore, Jn is bounded by

¯
b and b̄ according to Assumption 5.2 (ii). Thus, Jn ∈ I

and the proof is complete.

5.2. Infinite Planning Horizon

In this section, we consider the risk-sensitive recursive cost minimization problem under an
infinite planning horizon. To reiterate, this approach is reasonable if the terminal period is
unknown or if one wants to approximate a model with a large but finite planning horizon.
Solving the infinite horizon problem will turn out to be easier since it admits a stationary
optimal policy.
We study the stationary version of the abstract cost model with no terminal cost, i.e.

D,T, ρ do not depend on n, the disturbances are identically distributed, the one-stage cost
functions are of the form cn = βnc with some discount factor β ∈ (0, 1] and cN ≡ 0. Let
Z be a representative of the disturbance distribution. The model with infinite planning
horizon is derived as a limit of the one with finite horizon. So besides a stationary version
of Assumption 5.2 we need some condition to ensure convergence of the value functions
when the planning horizon tends to infinity.

For the risk measure ρ we require coherence as an additional property. Note that if ρ is
finite on Lp(Ω,A,P), the Fatou property is already implied by coherence, cf. Proposition
2.16. Within the wide class of distortion risk measures, which covers many of the risk
measures with practical relevance, requiring coherence essentially means a restriction to
spectral risk measures (Lemma 2.5 and Remark 2.7). For spectral risk measures, finiteness
is guaranteed if the spectrum φ lies in Lq. We will see that in case the one-stage cost
function is bounded, coherence can be dropped as a requirement on the risk measure. Then,
i.a. all distortion risk measures with the Fatou property are admissible. For clarity, all
assumptions of this section are summarized below.

Assumption 5.9. (i) The model data has the Continuity and Compactness Properties
3.1 with the transition function T being continuous (case 1).

(ii) There exist α,
¯
ε, ε̄ ≥ 0 with

¯
ε + ε̄ = 1 and measurable functions

¯
b : E → (−∞,−

¯
ε],

b̄ : E → [ε̄,∞) such that for all (x, a) ∈ D

ρ
(
c(x, a, T (x, a, Z))

)
≥

¯
b(x), ρ

(
−

¯
b(T (x, a, Z))

)
≤ −α

¯
b(x),

ρ
(
c(x, a, T (x, a, Z))

)
≤ b̄(x), ρ

(
b̄(T (x, a, Z))

)
≤ αb̄(x).

(iii) We define b : E → [1,∞), b(x) = b̄(x) −
¯
b(x). For all (x̄, ā) ∈ D there exists an

ε > 0 and measurable functions Θx̄,ā
1 ,Θx̄,ā

2 : Z → R+ such that Θx̄,ā
1 (Z),Θx̄,ā

2 (Z) ∈
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Lp(Ω,A,P) and

|c(x, a, T (x, a, z))| ≤ Θx̄,ā
1 (z), b(T (x, a, z)) ≤ Θx̄,ā

2 (z)

for all z ∈ Z and (x, a) ∈ Bε(x̄, ā) ∩D. Here, Bε(x̄, ā) is the closed ball around (x̄, ā)
w.r.t. an arbitrary product metric on E ×A.

(iv) The law-invariant risk measure ρ : Lp(Ω,A,P)→ R̄ is proper, coherent and has the
Fatou property.

(v) The discount factor β satisfies αβ < 1.

The second column of Assumption 5.9 (ii) is needed to ensure convergence of the value
functions when the planning horizon tends to infinity. Given the need for such a condition
and the coherence of ρ, it is natural to introduce stage-wise bounding functions as in
Lemma 5.4. Due to discounting, the corresponding global bounding function are given by

¯
b = 1

1− αβ¯
b, b̄ = 1

1− αβ b̄ and b = 1
1− αβ b. (5.6)

This can be seen as in the proof of Lemma 5.4.

Since the model with infinite planning horizon will be derived as a limit of the one with
finite horizon, the consideration can be restricted to Markov policies π = (d1, d2, . . . ) ∈ ΠM

due to Theorem 5.8. When calculating limits, it is more convenient to index the value
functions with the distance to the time horizon rather than the point in time. This is also
referred to as forward form of the value iteration. It is only possible under Markov policies
in a stationary model. There, the two ways of indexing are equivalent. In a non-stationary
model or under a history-depended policy in a stationary model the distance-to-horizon
indexing is not possible and a change of notation is therefore inevitable. The value of a
policy π = (d0, d1 . . . ) ∈ ΠM up to a planning horizon N ∈ N now is

JNπ(x) = Td0 ◦ · · · ◦ TdN−10(x), x ∈ E. (5.7)

Note that Remark 4.14 applies here, too. In a non-stationary formulation the discounting
is included in the one-stage cost functions and therefore calibrated w.r.t. the fixed reference
time zero. Hence, it holds

Jnon-stat
n (x) = βnJ stat

N−n(x), x ∈ E, n = 0, . . . , N.

The reformulation (5.7) makes it necessary to write the value iteration in terms of the
shifted policy ~π = (d1, d2, . . . ) corresponding to π = (d0, d1, . . . ) ∈ ΠM :

JNπ(x) = ρ
(
c
(
x, d0(x), T (x, d0(x), Z)

)
+ βJN−1~π

(
T (x, d0(x), Z)

))
= Td0JN−1~π(x),
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x ∈ E. The value function under planning horizon N ∈ N is given by

JN (x) = inf
π∈ΠM

JNπ(x), x ∈ E.

By Theorem 5.8, the value function satisfies the Bellman equation

JN (x) = T JN−1(x) = T N0(x), x ∈ E. (5.8)

When the planning horizon is infinite, we define the value of a policy π ∈ ΠM as

J∞π(x) = lim
N→∞

JNπ(x), x ∈ E. (5.9)

Hence, the optimality criterion considered in this section is

J∞(x) = inf
π∈ΠM

J∞π(x), x ∈ E. (5.10)

The next lemma shows that the infinite horizon policy value (5.9) and value function (5.10)
are well-defined.

Lemma 5.10. Under Assumption 5.9, the sequence {JNπ}N∈N converges pointwise for
every Markov policy π ∈ ΠM and the limit function J∞π is bounded by

¯
b and b̄.

Proof. First, we show by induction that for all N ∈ N

JNπ(x) ≥ JN−1π(x) + (αβ)N−1
¯
b(x), x ∈ E. (5.11)

For N = 1 we have by Assumption 5.9 (ii)

J1π(x) ≥
¯
b(x) = J0π(x) + (αβ)0

¯
b(x).

For N ≥ 2 it follows

JNπ(x) = Td0JN−1~π(x)

= ρ
(
c
(
x, d0(x), T (x, d0(x), Z

)
+ βJN−1~π

(
T (x, d0(x), Z)

))
≥ ρ

(
c
(
x, d0(x), T (x, d0(x), Z

)
+ βJN−2~π

(
T (x, d0(x), Z)

)
+ β(αβ)N−2

¯
b
(
T (x, d0(x), Z)

))
≥ ρ

(
c
(
x, d0(x), T (x, d0(x), Z

)
+ βJN−2~π

(
T (x, d0(x), Z)

))
− β(αβ)N−2ρ

(
−

¯
b
(
T (x, d0(x), Z)

))
≥ ρ

(
c
(
x, d0(x), T (x, d0(x), Z

)
+ βJN−2~π

(
T (x, d0(x), Z)

))
+ (αβ)N−1

¯
b(x)

= JN−1π(x) + (αβ)N−1
¯
b(x).

The first inequality is by the induction hypothesis, the second one is by Lemma 2.23
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together with the positive homogeneity of ρ and the third one is due to Assumption 5.9
(ii). Thus, (5.11) holds. Applying this inequality repeatedly for N,N − 1, . . . ,m yields

JNπ(x) ≥ Jmπ(x) +
N−1∑
k=m

(αβ)k
¯
b(x) ≥ Jmπ(x) + δm(x),

where
δm : E → (−∞, 0], δm(x) =

¯
b(x)

∞∑
k=m

(αβ)k, m ∈ N

are non-positive functions with limm→∞ δm(x) = 0 for all x ∈ E. Hence, the sequence
of functions {JNπ}N∈N is weakly increasing and by Lemma A.9 a) convergent to a limit
function J∞π. Clearly, the global bounds (5.6) also apply to the limit J∞π.

Lemma 5.11. Given Assumption 5.9, the Bellman operator T is a contraction on I = [
¯
b, b̄]

with modulus αβ ∈ (0, 1).

Proof. Let v ∈ I. It has been established in the proof of Theorem 5.8 that T v is lower
semicontinuous. Furthermore,

T v(x) = inf
a∈D(x)

ρ
(
c
(
x, a, T (x, a, Z)

)
+ βv

(
T (x, a, Z)

))
≥ inf

a∈D(x)
ρ
(
c
(
x, a, T (x, a, Z)

)
+ β

1− αβ¯
b
(
T (x, a, Z)

))
≥ inf

a∈D(x)
ρ
(
c
(
x, a, T (x, a, Z)

))
− β

1− αβρ
(
−

¯
b
(
T (x, a, Z)

))
≥

¯
b(x) + αβ

1− αβ¯
b(x)

=
¯
b(x).

The first inequality is by the monotonicity of ρ, the second one is by Lemma 2.23 together
with the positive homogeneity of ρ and the third one is due to Assumption 5.9 (ii). Regarding
the upper bounding function one can argue similarly, using the subadditivity of ρ instead
of Lemma 2.23:

T v(x) = inf
a∈D(x)

ρ
(
c
(
x, a, T (x, a, Z)

)
+ βv

(
T (x, a, Z)

))
≤ inf

a∈D(x)
ρ
(
c
(
x, a, T (x, a, Z)

)
+ β

1− αβ b̄
(
T (x, a, Z)

))
≤ inf

a∈D(x)
ρ
(
c
(
x, a, T (x, a, Z)

))
+ β

1− αβρ
(
b̄
(
T (x, a, Z)

))
≤ b̄(x) + αβ

1− αβ b̄(x)

= b̄(x).

Hence, the operator T is an endofunction on I and it remains to verify the Lipschitz
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constant αβ. For v1, v2 ∈ I it holds

|T v1(x)− T v2(x)| ≤ sup
a∈D(x)

∣∣∣ρ(c(x, a, T (x, a, Z)
)

+ βv1
(
T (x, a, Z)

))
−ρ
(
c
(
x, a, T (x, a, Z)

)
+ βv2

(
T (x, a, Z)

))∣∣∣
≤ β sup

a∈D(x)
ρ
( ∣∣v1

(
T (x, a, Z)

)
− v2

(
T (x, a, Z)

)∣∣ )
≤ β sup

a∈D(x)
ρ
(
‖v1 − v2‖bb

(
T (x, a, Z)

))
= β‖v1 − v2‖b sup

a∈D(x)
ρ
(
b
(
T (x, a, Z)

))
= β‖v1 − v2‖b sup

a∈D(x)
ρ
(
b̄
(
T (x, a, Z)

)
−

¯
b
(
T (x, a, Z)

))

≤ β‖v1 − v2‖b sup
a∈D(x)

(
ρ
(
b̄
(
T (x, a, Z)

))
+ ρ

(
−

¯
b
(
T (x, a, Z)

)))

≤ αβ‖v1 − v2‖b
(
b̄(x)−

¯
b(x)

)
= αβ‖v1 − v2‖bb(x).

Dividing by b(x) and taking the supremum over x ∈ E on the left hand side completes the
proof. Note that the first inequality is by Lemma A.31, the second one is by Lemma 2.2,
the third one is by definition of the weighted supremum norm, the fourth one is due to the
subadditivity of ρ and the last one is by Assumption 5.9 (ii).

Under a finite planning horizon N ∈ N we have characterized the value function with the
Bellman equation (5.8). We will show that this is compatible with the optimality criterion
of the infinite horizon model (5.10). To this end, we define the limit value function

J(x) = lim
N→∞

JN (x), x ∈ E.

If existent, the limit value function lies in I due to Theorem 5.8. The existence follows
from Theorem 5.12 below, which is the main result of this section.

Theorem 5.12. Let Assumption 5.9 be satisfied. Then it holds:
a) The limit value function J is the unique fixed point of the Bellman operator T in

I = [
¯
b, b̄].

b) There exists a Markov decision rule d∗ such that

Td∗J(x) = T J(x), x ∈ E.

c) Each stationary policy π∗ = (d∗, d∗, . . . ) induced by a Markov decision rule d∗ as in
part b) is optimal for optimization problem (5.10) and it holds J∞ = J .

Proof. a) The fact that J is the unique fixed point of the operator T in I follows directly
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from Banach’s Fixed Point Theorem using Lemma 5.11.

b) The existence of a minimizing Markov decision rule follows from the respective result
in the finite horizon case, cf. Theorem 5.8.

c) Let d∗ be a Markov decision rule as in part b) and π∗ = (d∗, d∗, . . . ). Then it holds

J(x) ≤ J∞(x) ≤ J∞π∗(x), x ∈ E.

The second inequality holds by definition. Regarding the first one note that for
any π ∈ ΠM we have JN (x) ≤ JNπ(x) for all N ∈ N0. Letting N → ∞ yields
J(x) ≤ J∞π(x). Since π ∈ ΠM was arbitrary we get J(x) ≤ infπ∈ΠM J∞π(x) = J∞(x).
It remains to show that

J∞π∗(x) ≤ J(x), x ∈ E. (5.12)

To that end, we will prove by induction that for all N ∈ N0 and x ∈ E

J(x) ≥ JNπ∗(x) + (αβ)N

1− αβ¯
b(x). (5.13)

Letting N →∞ in (5.13) yields (5.12) and concludes the proof.

For N = 0 equation (5.13) reduces to J(x) ≥ 1
1−αβ¯

b(x) =
¯
b(x), which holds by part

a). Now let N ≥ 1. Then parts a) and b) together with the induction hypothesis
yield

J(x) = Td∗J(x)

= ρ
(
c
(
x, d∗(x), T (x, d∗(x), Z)

)
+ βJ

(
T (x, d∗(x), Z)

))
≥ ρ

(
c
(
x, d∗(x), T (x, d∗(x), Z)

)
+ βJN−1π∗

(
T (x, d∗(x), Z)

)
+ β

(αβ)N−1

1− αβ ¯
b
(
T (x, d∗(x), Z)

))
≥ ρ

(
c
(
x, d∗(x), T (x, d∗(x), Z)

)
+ βJN−1π∗

(
T (x, d∗(x), Z)

))
− β (αβ)N−1

1− αβ ρ
(
−

¯
b
(
T (x, d∗(x), Z)

))
≥ ρ

(
c
(
x, d∗(x), T (x, d∗(x), Z)

)
+ βJN−1π∗

(
T (x, d∗(x), Z)

))
+ (αβ)N

1− αβ¯
b(x)

= JNπ∗(x) + (αβ)N

1− αβ¯
b(x).

The second inequality is by Lemma 2.23 together with the positive homogeneity of ρ
and the last one is by Assumption 5.9 (ii).

Let us now consider the special case that the one-stage cost is bounded, i.e.
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(B) there exist
¯
b ∈ R− and b̄ ∈ R+ such that b = b̄−

¯
b > 0 and

¯
b ≤ c

(
x, a, T (x, a, Z)

)
≤ b̄

P-f.s. for all (x, a) ∈ D.

Then, Assumption 5.9 (ii), (iii) are satisfied with α = 1 for every normalized monetary risk
measure. Part (v) of the assumption reduces to β < 1. In fact, all results of this section
then hold for normalized monetary risk measures with the Fatou property.

Corollary 5.13. Given (B), Lemmata 5.10, 5.11 and Theorem 5.12 hold for any normalized
monetary risk measure with the Fatou property.

Proof. The steps in the proofs that where justified by Lemma 2.23, subadditivity, positive
homogeneity or Assumption 5.9 (ii) now all hold due to translation invariance and nor-
malization. Apart from that, nothing has to be changed. Results from Section 5.1 can be
applied since ρ has the necessary properties.

5.3. Connection to Distributionally Robust Cost
Minimization

We consider the stationary version of the abstract cost model with no terminal cost under
both finite and infinite horizon in this section. If the planning horizon is finite, stationarity
is only assumed for convenience and everything can be transferred to a non-stationary
setting purely by notational changes. Let the risk measure ρ be proper and coherent with
the Fatou property. By inserting the dual representation ρ(X) = supQ∈Q EQ[X], X ∈ Lp,
in the Bellman equation

JN (x) = 0,

Jn(x) = inf
a∈D(x)

ρ
(
c
(
x, a, T (x, a, Z)

)
+ βJn+1

(
T (x, a, Z)

))
, x ∈ E,

we get

JN (x) = 0,

Jn(x) = inf
a∈D(x)

sup
Q∈Q

EQ
[
c
(
x, a, T (x, a, Z)

)
+ βJn+1

(
T (x, a, Z)

)]
, x ∈ E,

i.e. the Bellman equation of the distributionally robust model of Chapter 4. Under some
minor technical assumptions the two models can indeed be seen as special cases of each other.
That is, the two optimality criteria induce the same optimal policy and the Markovian
value functions coincide. This allows us to give a global interpretation of the recursively
(locally) defined risk-sensitive optimality criterion.

Due to stationarity it is natural to make the following comparison based on the Assump-
tions 4.13 and 5.9 of the respective infinite horizon setting. Regarding the differences when
the assumptions of the finite horizon case are taken as a basis, see Remark 5.15.



5.3. Connection to Distributionally Robust Cost Minimization 101

Theorem 5.14. a) Consider the distributionally robust cost minimization of Chapter 4
with Assumption 4.13 being fulfilled. Let the ambiguity set Q be weak* closed, then
we have a special case of the risk-sensitive recursive cost minimization of Chapter
5. That is, Assumption 5.9 is fulfilled and the value functions and the controller’s
optimal policies coincide.

b) Consider the risk-sensitive recursive cost minimization of Chapter 5. Let Assumption
5.9 be fulfilled with the following tightening in part (ii):

ρ
(
c−(x, a, T (x, a, Z))

)
≤ −

¯
b(x), ρ

(
c+(x, a, T (x, a, Z))

)
≤ b̄(x), (x, a) ∈ D.

Furthermore, let the underlying probability space have a product structure

(Ω,A,P) =
∞⊗
n=1

(Ω1,A1,P1)

with Zn(ω̄) = Zn(ωn) only depending on component ωn of ω̄ = (ω1, ω2, . . . ) ∈ Ω and
let the probability measure P1 on (Ω1,A1) be separable. Then we have a special case
of the distributionally robust cost minimization of Chapter 4. That is, Assumption
4.13 is fulfilled and the value functions and the controller’s optimal policies coincide.

c) Given a fixed policy π ∈ ΠM of the controller, the recursive risk measure constitutes
in both cases a coherent risk measure

ρ̃(X) = sup
Q∈Qπ

EQ[X], X ∈ Lp(Ω,A,P)

on the product space (Ω,A,P) with ambiguity set Qπ = {Qπγx : γ ∈ Γ}. It is applied
to the discounted total cost

∞∑
k=0

βkc(Xπ
k , dk(Xπ

k ), Xπ
k+1).

Proof. a) The ambiguity set is norm bounded and weak* closed, i.e. weak* compact by
the Theorem of Banach-Alaoglu (Aliprantis and Border; 2006, 6.21). By Proposition
2.21, ρ : Lp(Ω1,A1,P1)→ R defined by

ρ(X) = max
Q∈Q

EQ[X]

is a law-invariant, proper coherent risk measure with the Fatou property. Hence, the
Bellman equations are equivalent and it remains to verify Assumption 5.9.

(i) This equals Assumption 4.13 (i).
(ii) It holds by Assumption 4.13 (ii) for all Q ∈ Q and (x, a) ∈ D

EQ
[
−c−(x, a, T (x, a, Z))

]
≥

¯
b(x), EQ [

¯
b(T (x, a, Z))] ≥ α

¯
b(x),

EQ
[
c+(x, a, T (x, a, Z))

]
≤ b̄(x), EQ

[
b̄(T (x, a, Z))

]
≤ αb̄(x).
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The first inequality implies

ρ
(
c(x, a, T (x, a, Z))

)
≥ ρ

(
− c−(x, a, T (x, a, Z))

)
= sup
Q∈Q

EQ
[
−c−(x, a, T (x, a, Z))

]
≥

¯
b(x),

the second one directly yields ρ
(
−

¯
b(T (x, a, Z))

)
≤ −α

¯
b(x), the third one implies

ρ
(
c(x, a, T (x, a, Z))

)
≤ ρ

(
c+(x, a, T (x, a, Z))

)
= sup
Q∈Q

EQ
[
c+(x, a, T (x, a, Z))

]
≤ b̄(x)

and the fourth inequality again directly yields ρ
(
b̄(T (x, a, Z))

)
≤ αb̄(x). Hence,

part (ii) is satisfied.
(iii) This equals Assumption 4.13 (iii).
(iv) The properties of the risk measure have been verified above.
(v) This equals Assumption 4.13 (vi).

b) By Proposition 2.21, ρ has a dual representation

ρ(X) = max
Q∈Q

EQ[X],

where Q ⊆ Mq
1(Ω,A,P) is weak* compact and therefore norm bounded by the

Theorem of Banach-Alaoglu (Aliprantis and Border; 2006, 6.21). Thus, the Bellman
equations are equivalent and it remains to check the Assumption 4.13:

(i) This equals Assumption 5.9 (i).
(ii) It holds by Assumption 5.9 (ii) with the required tightening for all (x, a) ∈ D

ρ
(
c−(x, a, T (x, a, Z))

)
≤ −

¯
b(x), ρ

(
−

¯
b(T (x, a, Z))

)
≤ −α

¯
b(x),

ρ
(
c+(x, a, T (x, a, Z))

)
≤ b̄(x), ρ

(
b̄(T (x, a, Z))

)
≤ αb̄(x).

The first inequality implies for all Q ∈ Q

EQ
[
−c−(x, a, T (x, a, Z))

]
≥ inf
Q∈Q

EQ
[
−c−(x, a, T (x, a, Z))

]
= − sup

Q∈Q
EQ

[
c−(x, a, T (x, a, Z))

]
= −ρ

(
c−(x, a, T (x, a, Z))

)
≥

¯
b(x).
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The second inequality implies for all Q ∈ Q

EQ [
¯
b(T (x, a, Z))] ≥ inf

Q∈Q
EQ [

¯
b(T (x, a, Z))]

= − sup
Q∈Q

EQ [−
¯
b(T (x, a, Z))]

= −ρ
(
−

¯
b(T (x, a, Z))

)
≥ α

¯
b(x).

The third inequality implies for all Q ∈ Q

EQ
[
c+(x, a, T (x, a, Z))

]
≤ sup
Q∈Q

EQ
[
c+(x, a, T (x, a, Z))

]
= ρ

(
c+(x, a, T (x, a, Z))

)
≤

¯
b(x).

Finally, the last inequality yields for all Q ∈ Q

EQ
[
b̄(T (x, a, Z))

]
≤ sup
Q∈Q

EQ
[
b̄(T (x, a, Z))

]
= ρ

(
b̄(T (x, a, Z))

)
≤ αb̄(x).

Thus, part (ii) is satisfied.
(iii) This equals Assumption 5.9 (iii).
(iv) This holds as a prerequisite.
(v) It has been verified above that Q is norm bounded.
(vi) This equals Assumption 5.9 (v).

c) The axioms of a coherent risk measure are readily checked for ρ̃. Note that compact-
ness of the ambiguity set is only needed for finiteness and continuity properties.

The prerequisite of Theorem 5.14 b) is indeed a tightening of Assumption 5.9 (ii) since
it implies Assumption 4.13 by part b) of the theorem which in turn implies Assumption
5.9 by part a) of the theorem.

Remark 5.15. a) For the comparison of the distributionally robust and the risk-
sensitive recursive cost minimization to make sense, one needs a weak* closed am-
biguity set or a proper coherent risk measure with the Fatou property, respectively.
Then the bounding function of the risk-sensitive recursive model can be constructed
stage-wise, cf. Lemma 5.4. Now, the equivalence of the two optimality criteria can
also be shown in the non-stationary case with finite planning horizon analogously to
Theorem 5.14.

b) Under a finite planning horizon, the risk-sensitive recursive optimality criterion allows
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us to work with risk measures which do not possess a dual representation. In that
sense, the recursive model is more general. On the other hand, the distributionally
robust optimality criterion allows for non-compact ambiguity sets.

c) Ambiguity sets induced by a coherent risk measure guarantee the existence of an
optimal policy of nature, cf. Proposition 2.21 and Theorem 4.12.

d) The global ambiguity set Qπ is rectangular in the sense of Iyengar (2005) or Shapiro
(2016). Its elements are absolutely continuous w.r.t. P due to component-wise absolute
continuity. Note that there are no "π-factors" in (4.2) under a deterministic Markov
policy.

5.4. Real Line as State Space

As for the distributionally robust model of Chapter 4, the continuity assumption on the
transition functions can be relaxed to semicontinuity if the state space is the real line and
the transition and one-stage cost function satisfy some form of monotonicity. For some
applications as e.g. in Section 5.5, this relaxation is relevant. Moreover, the monotonicity
properties allow for weaker assumptions on the risk measure if the one-stage cost function
is bounded from below. To ease the notational burden, we consider the stationary model
with no terminal cost under both finite and infinite horizon in this section.

5.4.1. Finite Planning Horizon

If the planning horizon is finite, all results can be transferred to a non-stationary setting
by mere notational changes. We make the following assumptions.

Assumption 5.16. (i) The state space is the real line E = R.
(ii) The model data has the Continuity and Compactness Properties 3.1 with the transition

function T being lower semicontinuous (case 2).
(iii) The model data has the following monotonicity properties:

(iii a) The set-valued mapping R 3 x 7→ D(x) is decreasing.
(iii b) The transition function T is increasing in x.
(iii c) The function R 3 x 7→ c(x, a, T (x, a, z)) is increasing for all (a, z).

(iv) There exist
¯
ε, ε̄ ≥ 0 with

¯
ε + ε̄ = 1 and measurable functions

¯
b : R → (−∞,−

¯
ε],

b̄ : R→ [ε̄,∞) such that it holds for all policies π ∈ Π and all n = 0, . . . , N

¯
b(xn) ≤ Vnπ(hn) ≤ b̄(xn), hn ∈ Hn.

(v) We define b : R → [1,∞), b(x) = b̄(x) −
¯
b(x). For all (x̄, ā) ∈ D there exists an

ε > 0 and measurable functions Θx̄,ā
1 ,Θx̄,ā

2 : Z → R+ such that Θx̄,ā
1 (Z),Θx̄,ā

2 (Z) ∈
Lp(Ω,A,P) and

|c(x, a, T (x, a, z))| ≤ Θx̄,ā
1 (z), b(T (x, a, z)) ≤ Θx̄,ā

2 (z)
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for all z ∈ Z and (x, a) ∈ Bε(x̄, ā) ∩D. Here, Bε(x̄, ā) is the closed ball around (x̄, ā)
w.r.t. an arbitrary product metric on R×A.

(vi) The monetary risk measures ρ : Lp(Ω,A,P)→ R̄ is law invariant and has the Fatou
property.

The one-stage cost function c being increasing both in x and x′ is sufficient for Assumption
5.16 (iii c) to hold since the transition function is increasing in x. Besides, if c is increasing
in x′, it is sufficient for Continuity and Compactness Assumption 3.1 (iii) that c is
lower semicontinuous due to Lemma A.4 b). If the risk measure is additionally positive
homogeneous and comonotonic additive, the existence of a global upper and lower bounding
function can be guaranteed by suitable stage-wise bounding functions. This is similar to
Lemma 5.4, however due to the real state space and monotonicity properties of the model,
weaker conditions on the risk measure are sufficient. E.g. all distortion risk measures with
the Fatou property are allowed.

Lemma 5.17. Instead of Assumption 5.16 (iii c) let the one-stage cost function c be
increasing in x, x′ and in addition to (vi) let ρ be positive homogeneous and comonotonic
additive. If there exist

¯
ε, ε̄ ≥ 0 with

¯
ε + ε̄ = 1, increasing functions

¯
b : R → (−∞,−

¯
ε],

b̄ : R→ [ε̄,∞) and a constant α > 0 such that αβ ∈ (0, 1) and

ρ
(
c(x, a, T (x, a, Z))

)
≥

¯
b(x), ρ

(̄
b(T (x, a, Z))

)
≥ α

¯
b(x),

ρ
(
c(x, a, T (x, a, Z))

)
≤ b̄(x), ρ

(
b̄(T (x, a, Z))

)
≤ αb̄(x),

for all (x, a) ∈ D, then

¯
b = 1

1− αβ¯
b and b̄ = 1

1− αβ b̄

is a global lower and upper bounding function, respectively, and Assumption 5.16 (iv) holds.

Proof. We proceed by backward induction. At time N there is nothing to show. Assuming
the assertion holds at time n+ 1, it follows for time n:

Vnπ(hn) = ρ
(
c
(
xn, dn(hn), T (xn, dn(hn), Z)

)
+ βVn+1π

(
hn, dn(hn), T (xn, dn(hn), Z)

))
≥ ρ

(
c
(
xn, dn(hn), T (xn, dn(hn), Z)

)
+ β

1− αβ¯
b
(
T (xn, dn(hn), Z)

))
= ρ

(
c
(
xn, dn(hn), T (xn, dn(hn), Z)

))
+ β

1− αβρ
(
¯
b
(
T (xn, dn(hn), Z)

))
≥

¯
b(xn) + αβ

1− αβ¯
b(xn)

=
¯
b(xn),

π ∈ Π, hn ∈ Hn. The first inequality is by the induction hypothesis and the monotonicity
of ρ. The equality thereafter is by the comonotonic additivity and positive homogeneity of
ρ. Regarding the upper bounding function one argues analogously.
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In Lemma 5.17, the stage-wise bounding functions are assumed to be increasing, which
was not necessary in Lemma 5.4. Note that increasing functions are Borel measurable.
Moreover, note that we only have to require ρ

(̄
b(T (x, a, Z))

)
≥ α

¯
b(x), (x, a) ∈ D which

is weaker than the corresponding assumption for the model with general state space, cf.
Lemma 5.4 and Remark 5.5.
Since Assumption 5.16 (v) equals Assumption 4.13 (iii) and is independent of the

optimality criterion, the separation condition of Corollary 4.20 applies here, too. The proof
is exactly the same.

Corollary 5.18. Let there be upper semicontinuous functions ϑ1, ϑ2 : D → R+ and
measurable functions Θ1,Θ2 : Z → R+ which fulfill Θ1(Z),Θ2(Z) ∈ Lp(Ω,A,P) and

|c(x, a, T (x, a, z))| ≤ ϑ1(x, a) + Θ1(z), b(T (x, a, z)) ≤ ϑ2(x, a) + Θ2(z)

for every (x, a, z) ∈ D ×Z. Then Assumption 5.16 (v) is satisfied.

Apart from stationarity, Assumptions 5.2 and 5.16 differ only to the extend that the
continuity of the transition function has been replaced by Assumption 5.16 (i) to (iii). How
does this affect the validity of the results in Section 5.1? Lemmata 5.4 and 5.6 were proven
without using the continuity of T . Thus, only Theorem 5.8 needs to be looked at.

Proposition 5.19. The assertion of Theorem 5.8 remains true under Assumption 5.16.
Moreover, the value functions Jn are increasing and the set of potential value functions can
therefore be replaced by

B = {v ∈ Bb : v lower semicontinuous and increasing}.

Proof. The subset of increasing functions in {v ∈ Bb : v lower semicontinuous} is closed
w.r.t. pointwise convergence, so especially w.r.t. ‖ · ‖b. Hence, (B, ‖ · ‖b) is a complete
metric space as a closed subset of complete metric space.

The proof of Theorem 5.8 uses the continuity of T only to show thatD 3 (x, a) 7→ Lv(x, a)
is lower semicontinuous for every v ∈ B. Due to the monotonicity assumptions,

D 3 (x, a) 7→ c
(
x, a, T (x, a, Z(ω))

)
+ βv

(
T (x, a, Z(ω))

)
is lower semicontinuous for every ω ∈ Ω by part b) of Lemma A.4 (instead of part a) which is
used in the proof of Theorem 5.8). Now, the lower semicontinuity of D 3 (x, a) 7→ Lv(x, a)
and the existence of a minimizing decision rule follow as in the proof of Theorem 5.8. The
fact that T v is increasing for every v ∈ B follows from Lemma A.19.

When we refer to the interval I = [
¯
b, b̄] in the following, it is to be understood as a

subset of the modified function space B as in Proposition 5.19, i.e. it consists of increasing
functions.
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5.4.2. Infinite Planning Horizon

Now, let us consider an infinite planning horizon. Again the question is, how replacing the
continuity of the transition function by Assumption 5.16 (i) to (iii) affects the results of
Section 5.2. In detail, our assumptions are

Assumption 5.20. (i) The state space is the real line E = R.
(ii) The model data has the Continuity and Compactness Properties 3.1 with the transition

function T being lower semicontinuous (case 2).
(iii) The model data has the following monotonicity properties:

(iii a) The set-valued mapping R 3 x 7→ D(x) is decreasing.
(iii b) The transition function T is increasing in x.
(iii c) The function R 3 x 7→ c(x, a, T (x, a, z)) is increasing for all (a, z).

(iv) There exist α,
¯
ε, ε̄ ≥ 0 with

¯
ε + ε̄ = 1 and measurable functions

¯
b : R → (−∞,−

¯
ε],

b̄ : R→ [ε̄,∞) such that for all (x, a) ∈ D

ρ
(
c(x, a, T (x, a, Z))

)
≥

¯
b(x), ρ

(
−

¯
b(T (x, a, Z))

)
≤ −α

¯
b(x),

ρ
(
c(x, a, T (x, a, Z))

)
≤ b̄(x), ρ

(
b̄(T (x, a, Z))

)
≤ αb̄(x).

(v) We define b : R → [1,∞), b(x) = b̄(x) −
¯
b(x). For all (x̄, ā) ∈ D there exists an

ε > 0 and measurable functions Θx̄,ā
1 ,Θx̄,ā

2 : Z → R+ such that Θx̄,ā
1 (Z),Θx̄,ā

2 (Z) ∈
Lp(Ω,A,P) and

|c(x, a, T (x, a, z))| ≤ Θx̄,ā
1 (z), b(T (x, a, z)) ≤ Θx̄,ā

2 (z)

for all z ∈ Z and (x, a) ∈ Bε(x̄, ā) ∩D. Here, Bε(x̄, ā) is the closed ball around (x̄, ā)
w.r.t. an arbitrary product metric on R×A.

(vi) The law-invariant risk measure ρ : Lp(Ω,A,P)→ R̄ is proper, coherent and has the
Fatou property.

(vii) The discount factor β satisfies αβ < 1.

The proofs of Lemmata 5.10 and 5.11 and Corollary 5.13 do not rely on the continuity
of the transition function. Theorem 5.12 uses to continuity of T only indirectly through
Theorem 5.8. In view of Proposition 5.19 we can conclude the following without proof.

Proposition 5.21. Lemmata 5.10, 5.11, Theorem 5.12 and Corollary 5.13 hold under
Assumption 5.20, too.

In case the one-stage cost is bounded, Corollary 5.13 shows that a coherent risk measure is
not necessary to solve the infinite horizon risk-sensitive recursive cost minimization problem.
This result is very general regarding the risk measure but very restrictive concerning the
one-stage cost. The monotone model with real state space allows for a middle course.

(B−) There exist
¯
b ≤ 0, ε̄ ≥ 0 and α ≥ 1 with ε̄ −

¯
b = 1 and an increasing function



108 Chapter 5. Risk-Sensitive Recursive Cost Minimization

b̄ : R→ [ε̄,∞) such that c
(
x, a, T (x, a, Z)

)
≥

¯
b P-f.s. and

ρ
(
c(x, a, T (x, a, Z))

)
≤ b̄(x), ρ

(
b̄(T (x, a, Z))

)
≤ αb̄(x).

for all (x, a) ∈ D.

W.l.o.g. we assume α ≥ 1 since then ρ(−
¯
b) = −

¯
b ≤ α

¯
b due to translation invariance

and normalization. Otherwise one would need separate alphas for the lower and upper
stage-wise bounding function.
If the one-stage cost function c is increasing in x′ and the risk measure is comonotonic

additive and positive homogeneous, the objective function is globally bounded under (B−)
due to Lemma 5.17. In that case Assumption 5.16 (iv) for the finite horizon can be replaced
by (B−) and the assertion of Theorem 5.8 remains true. Under an infinite planning horizon,
Assumption 5.20 (iv) is clearly implied by (B−). In that case, the results of Section 5.2 can
be proven without requiring a coherent risk measure.

Proposition 5.22. Let the one-stage cost function c be increasing in x′ and let the
Assumption 5.20 be satisfied with the modification that part (iv) is replaced by (B−) and
part (vi) by the requirement that ρ is a law invariant, comonotonic additive and positive
homogeneous monetary risk measure with the Fatou property. Then it holds:

a) The sequence {JNπ}N∈N converges pointwise for every Markov policy π ∈ ΠM and
the limit function J∞π is bounded by

¯
b and b̄.

b) The Bellman operator T is a contraction on I = [
¯
b, b̄] ⊆ B with modulus αβ ∈ (0, 1)

and the limit value function J is the unique fixed point of T in I.
c) There exists a Markov decision rule d∗ such that

Td∗J(x) = T J(x), x ∈ R.

Each stationary policy π∗ = (d∗, d∗, . . . ) induced by such a Markov decision rule is
optimal for optimization problem (5.10) and it holds J∞ = J .

Proof. a) We show by induction that for all N ∈ N

JNπ(x) ≥ JN−1π(x) + (αβ)N−1
¯
b, x ∈ R. (5.14)

For N = 1 it holds due to (B−) that J1π(x) ≥
¯
b = J0π(x) + (αβ)0

¯
b. For N ≥ 2 it

follows with the monotonicity and translation invariance of ρ that

JNπ(x) = Td0JN−1~π(x)

= ρ
(
c
(
x, d0(x), T (x, d0(x), Z

)
+ βJN−1~π

(
T (x, d0(x), Z)

))
≥ ρ

(
c
(
x, d0(x), T (x, d0(x), Z

)
+ βJN−2~π

(
T (x, d0(x), Z)

)
+ β(αβ)N−2

¯
b
)

= ρ
(
c
(
x, d0(x), T (x, d0(x), Z

)
+ βJN−2~π

(
T (x, d0(x), Z)

))
+ β(αβ)N−2

¯
b
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≥ ρ
(
c
(
x, d0(x), T (x, d0(x), Z

)
+ βJN−2~π

(
T (x, d0(x), Z)

))
+ (αβ)N−1

¯
b

= JN−1π(x) + (αβ)N−1
¯
b.

Thus, (5.14) holds. Applying this inequality repeatedly for N,N − 1, . . . ,m yields

JNπ(x) ≥ Jmπ(x) +
N−1∑
k=m

(αβ)k
¯
b ≥ Jmπ(x) +

∞∑
k=m

(αβ)k
¯
b.

Since
∑∞
k=m(αβ)k

¯
b is non-positive and converges to zero for m→∞, the sequence

{JNπ}N∈N is weakly increasing and by Lemma A.9 a) convergent to a limit function
J∞π. Clearly, the global bounds

¯
b, b̄(·) also apply to the limit J∞π.

b) Let v ∈ I. Due to Proposition 5.19 T v is increasing and lower semicontinuous.
Furthermore, the monotonicity and translation invariance of ρ imply

T v(x) = inf
a∈D(x)

ρ
(
c
(
x, a, T (x, a, Z)

)
+ βv

(
T (x, a, Z)

))
≥ inf

a∈D(x)
ρ
(
c
(
x, a, T (x, a, Z)

)
+ β

1− αβ¯
b
)

= inf
a∈D(x)

ρ
(
c
(
x, a, T (x, a, Z)

))
+ β

1− αβ¯
b

≥
¯
b+ αβ

1− αβ¯
b =

¯
b.

Regarding the upper bounding function it holds

T v(x) = inf
a∈D(x)

ρ
(
c
(
x, a, T (x, a, Z)

)
+ βv

(
T (x, a, Z)

))
≤ inf

a∈D(x)
ρ
(
c
(
x, a, T (x, a, Z)

)
+ β

1− αβ b̄
(
T (x, a, Z)

))
= inf

a∈D(x)
ρ
(
c
(
x, a, T (x, a, Z)

))
+ β

1− αβρ
(
b̄
(
T (x, a, Z)

))
≤ b̄(x) + αβ

1− αβ b̄(x) = b̄(x).

Here, the second equality is by the comonotonic additivity and positive homogeneity
of the risk measure. Thus, the operator T is an endofunction on I and it remains to
verify the Lipschitz constant αβ. For v1, v2 ∈ I it holds

T v1(x)− T v2(x) ≤ sup
a∈D(x)

ρ
(
c
(
x, a, T (x, a, Z)

)
+ βv1

(
T (x, a, Z)

))
− ρ

(
c
(
x, a, T (x, a, Z)

)
+ βv2

(
T (x, a, Z)

))
= β sup

a∈D(x)
ρ
(
v1
(
T (x, a, Z)

))
− ρ

(
v2
(
T (x, a, Z)

))
= β sup

a∈D(x)
ρ
(
v1
(
T (x, a, Z)

)
− v2

(
T (x, a, Z)

)
+ v2

(
T (x, a, Z)

))



110 Chapter 5. Risk-Sensitive Recursive Cost Minimization

− ρ
(
v2
(
T (x, a, Z)

))
≤ β sup

a∈D(x)
ρ
(
‖v1 − v2‖bb

(
T (x, a, Z)

)
+ v2

(
T (x, a, Z)

))
− ρ

(
v2
(
T (x, a, Z)

))
= β sup

a∈D(x)
ρ
(
‖v1 − v2‖bb

(
T (x, a, Z)

))
+ ρ

(
v2
(
T (x, a, Z)

))
− ρ

(
v2
(
T (x, a, Z)

))
= ‖v1 − v2‖bβ sup

a∈D(x)
ρ
(
b
(
T (x, a, Z)

))

= ‖v1 − v2‖bβ sup
a∈D(x)

(
ρ
(
b̄
(
T (x, a, Z)

))
−

¯
b

)
≤ αβ‖v1 − v2‖b(b̄(x)−

¯
b)

= αβ‖v1 − v2‖bb(x).

The first inequality is by Lemma A.31 and the equality thereafter is by comonotonic
additivity and positive homogeneity. Since

¯
b is constant, b(·) = b̄(·)−

¯
b is an increasing

function and so is v2. Therefore, the third equality is again by comonotonic additivity.
The last inequality is by (B−) using α ≥ 1. Interchanging the roles of v1 and v2 yields

|T v1(x)− T v2(x)| ≤ αβ‖v1 − v2‖bb(x).

Finally, dividing by b(x) and taking the supremum over x ∈ R on the left hand side
gives

‖T v1 − T v2‖b ≤ αβ‖v1 − v2‖b.

Now, Banach’s Fixed Point Theorem states that J is the unique fixed point of T in I.

c) The existence of a minimizing Markov decision rule follows from the finite horizon
case, cf. Proposition 5.19.

With the same argument as in the proof of Theorem 5.12, the relation J ≤ J∞ ≤ J∞π
holds for any policy and it remains to show that J∞π∗ ≤ J for the specific policy π∗.
To that end, we will prove by induction that for all N ∈ N0 and x ∈ R

J(x) ≥ JNπ∗(x) + (αβ)N

1− αβ¯
b.

Then, letting N →∞ concludes the proof. The case N = 0, i.e. J(x) ≥ 1
1−αβ¯

b, holds
by part b). For N ≥ 1 we have

J(x) = Td∗J(x)

= ρ
(
c
(
x, d∗(x), T (x, d∗(x), Z)

)
+ βJ

(
T (x, d∗(x), Z)

))
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≥ ρ
(
c
(
x, d∗(x), T (x, d∗(x), Z)

)
+ βJN−1π∗

(
T (x, d∗(x), Z)

)
+ β

(αβ)N−1

1− αβ ¯
b
)

= ρ
(
c
(
x, d∗(x), T (x, d∗(x), Z)

)
+ βJN−1π∗

(
T (x, d∗(x), Z)

))
+ β

(αβ)N−1

1− αβ ¯
b

≥ ρ
(
c
(
x, d∗(x), T (x, d∗(x), Z)

)
+ βJN−1π∗

(
T (x, d∗(x), Z)

))
+ (αβ)N

1− αβ¯
b

= JNπ∗(x) + (αβ)N

1− αβ¯
b.

The first inequality is by the induction hypothesis and the monotonicity of ρ, the
equality thereafter is by translation invariance and the second inequality holds since
α ≥ 1.

The prerequisite of Proposition 5.22 is satisfied by any distortion risk measure with the
Fatou property due to Lemma 2.5. As in Section 4.3, the monotonicity requirements in
Assumptions 5.16 and 5.20 are only one option. The following alternative is relevant i.a.
for the dynamic reinsurance models introduced in Section 3.2.

Corollary 5.23. Assumption 5.16 (ii) and (iii) and Assumption 5.20 (ii) to (iii) can be
replaced by
(ii’) The model data has the Continuity and Compactness Properties 3.1 with the transition

function T being upper semicontinuous (case 3).
(iii’) The model data has the following monotonicity properties:

(iii’ a) The set-valued mapping R 3 x 7→ D(x) is increasing.
(iii’ b) The transition function T is increasing in x.
(iii’ c) The function R 3 x 7→ c(x, a, T (x, a, z)) is decreasing for all (a, z).

Then, the assertion of Theorems 5.8 and 5.12 still hold. Moreover, the value functions Jn
are decreasing and the set of potential value functions is

B = {v ∈ Bb : v lower semicontinuous and decreasing}.

Lemma 5.17 and Proposition 5.22 remain true, too, with the adaption that the stage-wise
bounding functions need to be decreasing in x.

The proof is analogous to the one of Corollary 4.22. Requiring that the one-stage
cost function c is decreasing both in x and x′ is sufficient for (iii’ c) since the transition
function is increasing in x. While this condition might seem more natural, assuming the
monotonicity only for the composition is relevant for some applications. E.g. in the dynamic
reinsurance model for minimization of the cost of solvency capital (Section 3.2.1), the
incremental version of one-stage cost function c(x, f, x′) = x − x′ is not decreasing in x
but the composition c(x, f, T (x, f, y, z)) = f(y) + πR(f)− z is. Besides, if c is decreasing
in x′, it is sufficient for Continuity and Compactness Assumption 3.1 (iii) that c is lower
semicontinuous due to Remark A.5.



112 Chapter 5. Risk-Sensitive Recursive Cost Minimization

5.5. Cost of Capital Minimization of an Insurance
Company

As an application of the risk-sensitive recursive cost minimization we consider the minimiza-
tion of the cost of capital of an insurance company in the dynamic reinsurance model of
Section 3.2.1. This is a dynamic extension in discrete time of the static optimal reinsurance
problem

min
f∈F

rCoC · ρ
(
f(Y ) + πR(f)

)
, (5.15)

which has been studied extensively in the literature, starting with Cai and Tan (2007) and
generalizations i.a. by Chi and Tan (2013) and Cui et al. (2013). Here, the cost of solvency
capital is calculated as the cost of capital rate rCoC ∈ (0, 1] times the solvency capital
requirement which is determined by applying the risk measure ρ to the insurer’s effective
risk after reinsurance consisting of the retained loss and the cost of reinsurance.

In the terminal period [N − 1, N) of the dynamic reinsurance model of Section 3.2.1, the
insurer faces the same problem: minimizing the cost of solvency capital

JN−1(x) = min
f∈D(x)

rCoC · ρ
(
f(YN ) + πR(f)− ZN − x

)
for the effective risk consisting of the retained loss and the cost of reinsurance minus the
premium income during the period and the capital at the beginning of the period, i.e. the
state of the surplus process, over all admissible reinsurance treaties f ∈ D(x). In terms of
the abstract cost model this means that the one-stage cost function is given by the loss
(negative surplus) of the next stage c(x, f, x′) = −x′.

In any earlier period [n, n+ 1), the effective risk consists of the risk for that period plus
the discounted future cost of capital which is a random variable as a measurable function of
the next state of the surplus process. To simplify the notation, we assume that the cost of
capital rate rCoC is included in the discount factor β and obtain the minimization problem

Jn(x) = min
f∈D(x)

ρ
(
f(Yn+1) + πR(f)− Zn+1 − x+ βJn+1

(
x+ Zn+1 − f(Yn+1)− πR(f)

))
.

In the first period, one has to multiply once more with the cost of capital rate in order to
obtain the overall recursive cost of capital, but for the minimization this is of course not
relevant.

Remark 5.24. Assuming that the cost of capital rate is included in the discount factor
means that β is of the form

β = rCoC ·
1

1 + r
,

where r ∈ (0, 1] is the risk-free interest rate per period. Hence, the discount factor still is a
quantity in (0, 1] and our simplification of the notation entails no restriction.
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It has been shown in Lemma 3.3 that the dynamic reinsurance model of Section 3.2.1
is a special case of the abstract cost model of Section 3.1. In order to formally introduce
the dynamic optimal reinsurance problem as a special case of the abstract risk-sensitive
recursive cost minimization, we have to specify the value of a policy π = (d0, . . . , dN−1) ∈ Π
with dn : Hn → F s.t. dn(hn) ∈ D(xn) for all hn ∈ Hn:

VN (hN ) = 0,

Vnπ(hn) = ρ
(
−Xπ

n+1 + βVn+1π(hn, dn(hn), Xπ
n+1)

)
= ρ

(
dn(hn)(Yn+1) + πR(dn(hn))− Zn+1 − xn

+ βVn+1π
(
hn, dn(hn), xn + Zn+1 − dn(hn)(Yn+1)− πR(dn(hn))

))
.

The corresponding value functions are

Vn(hn) = inf
π∈Π

Vnπ(hn), hn ∈ Hn,

and the optimization objective is to determine the optimal recursive cost of solvency capital

V0(x) = inf
π∈Π

V0π(x), x ∈ R. (5.16)

Due to the real state space we want to apply Corollary 5.23 for solving the optimization
problem. Let us verify the assumptions. The numbering is as in the corollary.

(i) The state space is the real line E = R.

(ii’) The Continuity and Compactness Properties 3.1 with upper semicontinuous transition
function have been verified in Section 3.2.1.

(iii’) Monotonicity properties:

(iii’ a) The set-valued mapping R 3 x 7→ D(x) = {f ∈ F : πR(f) ≤ x+} is increasing.
(iii’ b) The transition function T : R×F ×R+×R+ → R, T (x, f, y, z) = x− f(y)−

πR(f) + z is increasing in x.
(iii’ c) The one-stage cost function c : R×F ×R→ R, c(x, f, x′) = −x′ is decreasing

in x′ and the composition R 3 x 7→ c(x, f, T (x, f, y, z)) = f(y) + πR(f)− z − x
is decreasing for all (f, y, z).

(iv) It will be shown that

¯
b(x) = −1

1− βx
+ + 1

(1− β)2¯
η,

¯
η = − ess sup(Z) < 0,

b̄(x) = 1
1− βx

− + 1
(1− β)2 η̄, η̄ = ρ(Y ) + πR(Y ) > 0,

b(x) = b̄(x)−
¯
b(x) = 1

1− β |x|+
1

(1− β)2 η, η = ρ(Y ) + πR(Y ) + ess sup(Z)
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x ∈ R, are decreasing stage-wise bounding functions in the sense of Lemma 5.17 and
Assumption 5.20 (iv), where α = 1−(1−β)2

β . Note that the risk measure ρ has the
necessary properties for a stage-wise bounding approach, see (vii), and that β ∈ (0, 1),
see (viii). For normalization of the weighted supremum norm we assume w.l.o.g.
η ≥ 1. It holds for (x, f) ∈ D:

ρ
(
c(x, f, T (x, f, Y, Z))

)
= ρ

(
f(Y ) + πR(f)− Z − x

)
≥ ρ(−Z)− x

≥
¯
b(x),

ρ
(̄
b(T (x, f, Y, Z))

)
= ¯

η

(1− β)2 + 1
1− β ρ

(
min{f(Y ) + πR(f)− Z − x, 0}

)
≥ ¯

η

(1− β)2 + 1
1− β ρ

(
− Z − x+)

≥ −x
+

1− β +
¯
η

( 1
1− β + 1

(1− β)2

)
= −x+ 1

β

( 1
1− β − 1

)
+

¯
η

1
β

( 1
(1− β)2 − 1

)
= 1
β

(
¯
b(x) + x+ −

¯
η
)

≥ 1
β

(
¯
b(x) + (1− β)x+ −

¯
η
)

= 1− (1− β)2

β ¯
b(x).

The second equality holds since

1
1− β = 1 + β

1− β and 1 + β

1− β + β

(1− β)2 = 1
(1− β)2 .

Regarding the upper bounding function one argues analogously:

ρ
(
c(x, f, T (x, f, Y, Z))

)
= ρ

(
f(Y ) + πR(f)− Z − x

)
≤ ρ(Y ) + πR(Y )− x

≤ b̄(x),

ρ
(
b̄(T (x, f, Y, Z))

)
= η̄

(1− β)2 + 1
1− βρ

(
max{f(Y ) + πR(f)− Z − x, 0}

)
≤ η̄

(1− β)2 + 1
1− β

(
ρ(Y ) + πR(Y ) + x−

)
= x−

1− β + η̄

( 1
1− β + 1

(1− β)2

)
= x−

1
β

( 1
1− β − 1

)
+ η̄

1
β

( 1
(1− β)2 − 1

)
= 1
β

(
b̄(x)− x− − η̄

)
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≤ 1
β

(
b̄(x)− (1− β)x− − η̄

)
= 1− (1− β)2

β
b̄(x).

(v) Here, we use the separation condition of Lemma 5.18:

|c(x, f, T (x, f, Y, Z))| = |f(Y ) + πR(f)− Z − x|

≤ f(Y ) + πR(f) + Z + |x|

≤ Y + Z + π(Y ) + |x|,

i.e ϑ1(x) = π(Y ) + |x|, which is continuous, and Θ1(y, z) = y + z, which satisfies
Θ1(Y, Z) ∈ Lp(Ω,A,P). Furthermore,

b(T (x, f, Y, Z) = η

(1− β)2 + 1
1− β |x+ Z − f(Y )− πR(f)|

≤ η

(1− β)2 + 1
1− β (|x|+ Z + Y + πR(Y ))

= Y + Z

1− β + η

(1− β)2 + |x|+ πR(Y )
1− β ,

implying that ϑ2(x) = η
(1−β)2 + |x|+πR(Y )

1−β , which is continuous, and Θ2(y, z) = y+z
1−β ,

which satisfies Θ2(Y,Z) ∈ Lp(Ω,A,P).

(vi) We assume that ρ is a law-invariant monetary risk measure with the Fatou property.
Under a finite planning horizon we have to require positive homogeneity and comono-
tonic additivity as additional properties, while under an infinite planning horizon
we require properness and coherence. Possible examples include all distortion risk
measures with the Fatou property under a finite planning horizon and all spectral
risk measures with a spectrum in Lq under an infinite planning horizon, cf. Lemma
2.5 and Corollary 2.17.

(vii) We assume β ∈ (0, 1). Thus, it holds for the modulus of the Bellman operator
αβ = 1− (1− β)2 ∈ (0, 1).

Hence, Corollary 5.23 implies that it is sufficient for the insurer to minimize over all
Markov policies, the value functions lie in the interval I = [

¯
b, b̄] =

[
¯
b

(1−β)2 ,
b̄

(1−β)2

]
and

satisfy the Bellman equation

JN (x) = 0,

Jn(x) = inf
f∈D(x)

ρ
(
f(Y ) + πR(f)− Z − x+ βJn+1

(
x+ Z − f(Y )− πR(f)

))
, x ∈ R,

for n = 0, . . . , N − 1. There exists a Markov Decision rule d∗n : R → F minimizing Jn+1

and every sequence π = (d∗0, . . . , d∗N−1) ∈ ΠM of such minimizers is at solution to (5.16).
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Furthermore, under the necessary assumptions for an infinite planning horizon the
Bellman operator

T : I → I, T v(x) = inf
f∈D(x)

ρ
(
f(Y ) + πR(f)− Z − x+ βv

(
x+ Z − f(Y )− πR(f)

))
is a contraction with modulus 1− (1−β)2 and the limit value function J is its unique fixed
point. Every stationary policy π = (d∗, d∗, . . . ) ∈ ΠS induced by a minimizer d∗ of J is
optimal for the insurer under an infinite planning horizon.

Remark 5.25. Here, we have the special situation that
¯
b, b̄ are even global bounding

functions. This can be seen by backward induction. Let π ∈ Π be arbitrary. Obviously, it
holds

¯
b(xN ) ≤ VNπ(hN ) = 0 ≤ b̄(xN ) for all hN ∈ HN . Now assuming the assertion holds

at time n+ 1, it follows at time n for all hn ∈ Hn

Vnπ(hn) = ρ
(
−Xπ

n+1 + βVn+1π(hn, dn(hn), Xπ
n+1)

)
≥ ρ

(
−Xπ

n+1 + β
¯
b(Xπ

n+1)
)

= ρ
(
−Xπ

n+1
)

+ βρ
(̄
b(Xπ

n+1)
)

= ρ
(
dn(hn)(Y ) + πR(dn(hn))− Z − xn

)
+ βρ

(
¯
b
(
xn + Z − dn(hn)(Y )− πR(dn(hn)

))
≥

¯
η − xn + βρ

(
¯
b
(
xn + Z

))
=

¯
η − xn + βρ

(
¯
η

(1− β)2 + min{−Z − xn, 0}
1− β

)
≥

¯
η

(
1 + β

1− β + β

(1− β)2

)
− x+

n

(
1 + β

1− β

)
=

¯
b(xn).

For the second equality we used comonotonic additivity and positive homogeneity. If ρ is
coherent one argues instead with Lemma 2.23. Analogously, one can show Vnπ(hn) ≤ b̄(xn).
Consequently, the value functions Jn and J lie in the smaller subinterval [

¯
b, b̄] ⊆ I.

In Lemmata 5.4 and 5.17 it has been shown that every stage-wise (lower/ upper) bounding
function induces a global one through the relation

¯
b = 1

(1− β)2¯
b and b̄ = 1

(1− β)2 b̄.

Here, we can see that the converse is not true in general:
¯
b, b̄ are global bounding functions,

but (1− β)2
¯
b, (1− β)2b̄ are not stage-wise bounding functions. E.g.

ρ
(
c(x, f, T (x, f, Y, Z))

)
= ρ

(
f(Y ) + πR(f)− Z

)
− x � −(1− β)x+ +

¯
η

for sufficiently large x ≥ 0.

In Section 3.2.1, we introduced the possibility of no budget constraint in the dynamic
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reinsurance model. It significantly simplifies the optimization problem.

Remark 5.26. In case of no budget constraint D(x) = F for all x ∈ R, the dynamic
optimization problem (5.16) reduces to a static problem and there is a constant optimal
action. This can be seen by backward induction. At time N − 1, the Bellman equation
reads due to the translation invariance of ρ

JN−1(x) = min
f∈F

ρ
(
f(Y )− Z

)
+ πR(f)− x,

i.e. the minimization does not depend on the state of the surplus process x. Therefore, the
value function is of the form

JN−1(x) = c− x

with a constant c = minf∈F ρ(f(Y ) − Z) + πR(f) and the optimal decision rule d∗N−1 is
constant

d∗N−1(x) = argminf∈F ρ(f(Y )− Z) + πR(f) =: f∗, x ∈ R.

Proceeding to the previous time step, we get due to translation invariance and positive
homogeneity of ρ

JN−2(x) = min
f∈F

ρ
(
f(Y ) + πR(f)− Z − x+ βJN−1

(
x+ Z − f(Y )− πR(f)

))
= min

f∈F
ρ
(
f(Y ) + πR(f)− Z − x+ β

(
c+ f(Y ) + πR(f)− Z − x

))
= min

f∈F
(1 + β)

(
ρ
(
f(Y )− Z

)
+ πR(f)

)
− (1 + β)x+ βc.

Again, the minimization does not depend on x, the value function is given by

JN−2(x) = (1 + 2β)c− (1 + β)x

and the optimal decision rule is d∗N−2 ≡ f∗. Proceeding with the induction, one finds that
the value functions are affine and structurally related to the bounding functions

Jn(x) = c
N−n−1∑
k=0

(k + 1)βk − x
N−n−1∑
k=0

βk, x ∈ R, n = 0, . . . , N − 1,

J(x) = c

(1− β)2 −
x

1− β , x ∈ R.

Moreover, there is a retained loss function f∗ ∈ F which is optimal at each point in time
independently from the state of the surplus process. It can be determined by solving the
classical static optimal reinsurance problem

min
f∈F

ρ
(
f(Y )− Z

)
+ πR(f).

In order to prove this, it remains to verify the induction step. Due to translation invariance
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and positive homogeneity of ρ it follows

Jn(x) = min
f∈F

ρ
(
f(Y ) + πR(f)− Z − x+ βJn+1

(
x+ Z − f(Y )− πR(f)

))
= min

f∈F
ρ
(
f(Y ) + πR(f)− Z − x+ cβ

N−n−2∑
k=0

(k + 1)βk

+ β
(
f(Y ) + πR(f)− Z − x

)N−n−2∑
k=0

βk
)

= min
f∈F

(
ρ
(
f(Y )− Z

)
+ πR(f)

)N−n−1∑
k=0

βk + cβ
N−n−2∑
k=0

(k + 1)βk − x
N−n−1∑
k=0

βk

= c

(
N−n−1∑
k=0

βk + β
N−n−2∑
k=0

(k + 1)βk
)
− x

N−n−1∑
k=0

βk

= c
N−n−1∑
k=0

(k + 1)βk − x
N−n−1∑
k=0

βk.

Having a constant optimal action in case of no budget constraint especially means that
the optimal policy is myopic. The following example studies Value-at-Risk as a concrete
choice for the risk measure ρ. This choice has particular practical relevance with regard to
Solvency II. Due to specific properties of Value-at-Risk, we obtain a myopic optimal policy
even in combination with a budget constraint, but not a constant optimal action.

Example 5.27. Let ρ = VaRα. We consider an arbitrary premium principle from the
large class of Wang premium principles

πR(X) = (1 + θ)
∫ ∞

0
g(SX(x)) dx, θ ≥ 0,

where we only assume that the distortion function g is left-continuous. This includes any
PH premium, especially the expected premium principle. Furthermore, it is assumed that
the insurer’s premium income is deterministic, i.e. Z ≡ z ∈ R+. Economically, this means
that the insurer either has customers with a good credit rating or a large homogeneous
portfolio such that fluctuations of individual premium payments (approximately) cancel
out.
We have to solve the Bellman equation

Jn(x) = inf
f∈D(x)

VaRα

(
f(Y ) + πR(f)− z − x+ βJn+1

(
− (f(Y ) + πR(f)− z − x)

))
= inf

f∈D(x)
VaRα

(
h
(
f(Y ) + πR(f)− z − x

))
= inf

f∈D(x)
h
(

VaRα
(
f(Y ) + πR(f)− z − x

))
= inf

f∈D(x)
h
(
f
(

VaRα(Y )
)

+ πR(f)− z − x
)
.

Here, we defined h(x) = x+ βJn+1(−x) and applied Lemma B.9. Note that h is increasing
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and left-continuous since x 7→ Jn+1(−x) is increasing and lower semicontinuous, cf. Lemma
A.6. The increasing transformation h can be dropped and it remains to solve

inf
f∈D(x)

f
(

VaRα(Y )
)

+ πR(f). (5.17)

This is a static optimal reinsurance problem with budget constraint. I.e., the dynamic
reinsurance problem (5.16) possesses a myopic and stationary optimal policy.

We will first reduce (5.17) to a finite dimensional problem, extending an approach used
in Chi and Tan (2013) and Bäuerle and Glauner (2018) to problems with constraints. Then,
we will derive an explicit solution of the reduced problem. Define

ha(x) = max {min{a, x}, x−VaRα(Y ) + a} , x ∈ R+, 0 ≤ a ≤ VaRα(Y ).

This is the retained loss function corresponding to a layer reinsurance treaty with deductible
a and upper bound VaRα(Y ) − a. Clearly, ha ∈ F for all a ∈ [0,VaRα(Y )]. Fix f ∈ F .
We write hf short hand for ha when a = f(VaRα(Y )). Observe that f(VaRα(Y )) ∈
[0,VaRα(Y )]. Simply by inserting we get

hf (VaRα(Y )) = max
{

min{f(VaRα(Y )),VaRα(Y )},

VaRα(Y )−VaRα(Y ) + f(VaRα(Y ))
}

= f(VaRα(Y )).

Moreover, it holds πR(hf ) ≤ πR(f). This can be seen as follows. If 0 ≤ x < f(VaRα(Y )),
then hf (x) = x ≥ f(x) as f is bounded by the identity. If f(VaRα(Y )) ≤ x < VaRα(Y ),
then hf (x) = f(VaRα(Y )) ≥ f(x) since f is increasing. Finally if x ≥ VaRα(Y ), then
hf (x) = x − VaRα(Y ) + f(VaRα(Y )) ≥ f(x) as f is 1-Lipschitz, cf. Lemma 3.3 a).
Consequently, Y − hf (Y ) ≤ Y − f(Y ) and by monotonicity πR(hf ) ≤ πR(f). I.e. hf is
weakly better than f with respect to the objective function of (5.17) and satisfies the
constraint if f does. Therefore, it suffices to consider the reduced problem

inf
0≤a≤VaRα(Y )

a+ πR(ha) such that πR(ha) ≤ x+. (5.18)

In order to determine the premium, let us consider the survival function of Y − ha(Y ) =
min{(Y − a)+,VaRα(Y )− a}:

P(Y − ha(Y ) > y) =

P
(
(Y − a)+ > y

)
= SY (y + a), 0 ≤ y < VaRα(Y )− a,

0, y ≥ VaRα(Y )− a.

It follows

πR(ha) = (1 + θ)
∫ ∞

0
g
(
P(Y − ha(Y ) > y)

)
d y
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= (1 + θ)
∫ VaRα(Y )−a

0
g
(
SY (y + a)

)
d y

= (1 + θ)
∫ VaRα(Y )

a
g
(
SY (y)

)
d y

The derivative of the objective function

ψ(a) = a+ (1 + θ)
∫ VaRα(Y )

a
g
(
SY (y)

)
d y, 0 ≤ a ≤ VaRα(Y )

is given by ψ′(a) = 1− (1 + θ)g(SY (a)). Since the distortion function g is left-continuous,
g ◦ SY is itself a survival function. Thus, ψ′ is increasing and right continuous. I.e. its
generalized inverse

ψ
′−1(z) = inf{a ∈ [0,VaRα(Y )] : ψ′(a) ≥ z}

is well-defined for every z in the range of ψ′. Let us distinguish two cases:
Case 1: g(1− α) < 1

1+θ
By Lemma B.8 we have SY (VaRα(Y )) ≤ 1− α. Since g is increasing it follows

ψ′(VaRα(Y )) = 1− (1 + θ)g
(
SY (VaRα(Y ))

)
≥ 1− (1 + θ)g(1− α)

> 1− (1 + θ) 1
1 + θ

= 0.

Hence, ψ is strictly increasing on [ψ′−1(0),VaRα(Y )].
Case 2: g(1− α) ≥ 1

1+θ
Let a < VaRα(Y ). Then SY (a) > 1− α by Lemma B.8 and as g is increasing

ψ′(a) = 1− (1 + θ)g
(
SY (a)

)
≤ 1− (1 + θ)g(1− α)

≤ 1− (1 + θ) 1
1 + θ

= 0.

I.e., ψ is decreasing on [0,VaRα(Y )].
Note that in practice α is chosen very close to 1 and θ smaller than 1, so only the first case
is actually relevant. Let us define

a∗ =

ψ
′−1(0), if g(1− α) < 1

1+θ ,

VaRα(Y ), otherwise.

Note that a = VaRα(Y ) is always feasible for optimization problem (5.18) and that
a 7→ πR(ha,n) is a continuous mapping. Therefore, taking into account the budget constraint
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we obtain as an optimal solution of (5.18):

δ(x) = min{a ∈ [a∗,VaRα(Y )] : πR(ha) ≤ x+}.

Consequently, an optimal policy for the dynamic reinsurance problem (5.16) is given by
π = (d∗, . . . , d∗), where d∗(x) = hδ(x). We have seen that it is an optimal policy to buy a
layer reinsurance treaty at each time step where the single parameter is chosen as close
to the optimal parameter of the corresponding problem without constraint as the current
surplus allows. For a low surplus, this means that the insurer should invest all capital in
reinsurance to mitigate future insurance claims rather than saving capital to pay for them
himself. Consequently, it is sufficient to act optimally in every period as if the optimization
problem were static. Long term planning is not necessary.

Our second example studies the behavior of coherent and especially spectral risk measures
in the cost of capital minimization problem (5.16) using the connection to distributionally
robust MDP discussed in Section 5.3.

Example 5.28. Let ρ be a proper coherent risk measure with the Fatou property. We want
to apply Theorem 5.14 b) in order to treat the recursive cost of capital minimization as a
distributionally robust MDP. Since the claims Y1, Y2, . . . and premium income Z1, Z2, . . .

are i.i.d. we can w.l.o.g. assume that the probability space has a product structure

(Ω,A,P) =
∞⊗
n=1

(Ω1,A1,P1)

with (Yn, Zn)(ω̄) = (Yn, Zn)(ωn) only depending on component ωn of ω̄ = (ω1, ω2, . . . ) ∈ Ω.
The probability measure P1 on (Ω1,A1) can be assumed as separable since B(R2

+) is
countably generated (apply Lemma B.5 and a canonical construction). Also the additional
assumptions on the one-stage bounding functions are satisfied:

ρ
(
c−(x, f, T (x, f, Y, Z))

)
= ρ

(
max{0, x+ Z − f(Y )− πR(f)}

)
≤ x+ + ess sup(Z)

≤ −
¯
b(x),

ρ
(
c+(x, f, T (x, f, Y, z))

)
= ρ

(
max{0, f(Y ) + πR(f)− z − x}

)
≤ ρ(Y ) + π(Y ) + x−

≤ b̄(x),

for all (x, a) ∈ D. Hence, we have a special case of the distributionally robust cost
minimization of Chapter 4 and get an expression in closed from for the recursively defined
optimality criterion (5.16):

inf
π∈ΠM

sup
γ∈ΓM

Eπγ0x

[
N−1∑
k=0

βk
(
dk(Xk)(Yk+1) + πR(dk(Xk))− Zk+1 −Xk

)]
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= − sup
π∈ΠM

inf
γ∈ΓM

Eπγ0x

[
N−1∑
k=0

βk
(
Xk + Zk+1 − dk(Xk)(Yk+1)− πR(dk(Xk))

)]

=
N−1∑
k=0

βkx

− sup
π∈ΠM

inf
γ∈ΓM

Eπγ
N−1∑
k=0

(N−1∑
j=k

βj
)(
Zk+1 − dk(Xk)(Yk+1)− πR(dk(Xk))

) . (5.19)

The second equality can be obtained inductively by inserting the representation

Xk = Xk−1 + Zk − dk−1(Xk−1)(Yk)− πR(dk−1(Xk−1)), k = 1, . . . , N − 1

given by the transition function. Here, we have a robust maximization of total profit
with higher weights on earlier periods. This addresses a fundamental criticism of cost of
capital minimization as an optimality criterion for reinsurance design by Albrecher et al.
(2017, Sec. 8.4). The authors state that if the minimization of the cost of capital was the
driving criterion of the insurer, it would be optimal in the long run to stay out of business
altogether and thereby achieve zero cost of capital. This viewpoint brings the suitability of
the recursive optimality criterion (5.16) into question since it would be applied over several
periods. However, under a coherent risk measure the calculations above show that the
recursive criterion is indeed in accordance with the primary target of any insurer: profit
maximization.

Now consider the special case that ρ is a spectral risk measure with spectrum φ ∈ Lq

and the premium income Z ≡ z is deterministic. By Lemma 4.32 and the monotonicity
properties of the model, φ(UY ) defines a constant optimal action for nature and it remains
to solve a risk-neutral MDP with disturbance distribution dQ∗ = φ(UY ) dPY . I.e. the
recursive cost of capital is given by the expected discounted loss under a new probability
measure Q̂ =

⊗∞
k=1Q∗. Furthermore, optimization problem (5.16) is equivalent to

inf
π∈ΠM

ρ

(
N−1∑
k=0

βk
(
dk(Xk)(Yk+1) + πR(dk(Xk))− z −Xk

))

with a coherent risk measure ρ̂(X) = supQ∈Q EQ[X], X ∈ Lp(Ω,A,P), as in (4.33) where

Q =
{ ∞⊗
k=1

Qk : dQk = Yk dP1, Yk ∈ Lq(Ω1,A1,P1), Yk ≤cx φ(U), U ∼ U(0, 1)
}
.

Here, it might seem unnatural to sum over states of the surplus process. As we have seen
in (5.19), this gives a higher weight to income and claims of earlier periods. An alternative
is to use the other one-stage cost function c(x, f, x′) = x′ − x introduced in Section 3.2.1.
Then the cost of capital or capital requirement is calculated for the present value of the
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total loss

inf
π∈ΠM

ρ

(
N−1∑
k=0

βk
(
dk(Xk)(Yk+1) + πR(dk(Xk))− z

))
− x0.

Globally, this approach might be more natural. But stage-wise, we have the Bellman
equation

Jn(x) = inf
f∈D(x)

ρ
(
f(Y ) + πR(f)− Z + βJn+1

(
x+ Z − f(Y )− πR(f)

))
,

i.e. the insurer’s current capital is no longer directly taken into account for determining
the recursive capital requirement. Only the initial capital reduces the capital requirement
at time zero.





CHAPTER 6

Risk-Sensitive Total Cost Minimization

In Lemma 4.32 and subsequent remarks together with Theorem 5.14 we have seen that,
given a product structure of the underlying probability space and sufficient monotonicity
properties of the Markov decision model, the distributionally robust cost minimization of
Chapter 4 with an ambiguity set induced by a spectral risk measure or equivalently the
risk-sensitive recursive cost minimization of Chapter 5 with a spectral risk measure can be
perceived as the minimization of some non-standard coherent risk measure ρ̃ applied to
the total discounted cost

inf
π∈Π

ρ̃

(
N−1∑
k=0

βkck(Xπ
k , dk(Hπ

k ), Xπ
k+1)

)
,

where ρ̃(X) = supQ∈Q EQ[X], X ∈ Lp(Ω,A,P) and

Q =
{ ∞⊗
k=1

Qk : dQk = Yk dP1, Yk ∈ Lq(Ω1,A1,P1), Yk ≤cx φ(U), U ∼ U(0, 1)
}
.

Example 5.28 illustrated this observation with the dynamic cost of capital minimization of
an insurance company.

In this chapter, we proceed in the reverse order and consider the minimization of a
spectral risk measure ρφ applied to the total discounted cost

inf
π∈Π

ρφ

(
N−1∑
k=0

βkck(Xπ
k , dk(Hπ

k ), Xπ
k+1)

)
. (6.1)

Dynamic programming techniques cannot be applied straightforwardly to problem (6.1)
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since it does not admit a value iteration. This is due to the fact that spectral risk measures
in general lack a tower property like the one of conditional expectation. In Chapter
5, this difficulty was avoided since when applying the risk measure recursively a value
iteration holds by construction. Due to the dual representation of spectral risk measures in
Proposition 2.24 one can reformulate (6.1) to

inf
π∈Π

sup
Q∈Q

EQ
[
N−1∑
k=0

βkck(Xπ
k , dk(Hπ

k ), Xπ
k+1)

]

with Q = {Q ∈ Mq
1(Ω,A,P) : dQ

dP ≤cx φ(U), U ∼ U(0, 1)}, i.e. a distributionally robust
cost minimization, however with a non-rectangular ambiguity set in the sense of Iyengar
(2005). Hence, the results of Chapter 4 do not apply and we will therefore not consider the
problem from a robust viewpoint.

Optimization problem (6.1) has been studied by Bäuerle and Ott (2011) in the special
case that ρφ is the Expected Shortfall. Using the infimum representation (2.4) of Expected
Shortfall and interchanging infima

inf
π∈Π

ESα

(
N−1∑
k=0

βkck(Xπ
k , dk(Hπ

k ), Xπ
k+1)

)

= inf
π∈Π

inf
q∈R

q + 1
1− αE

(N−1∑
k=0

βkck(Xπ
k , dk(Hπ

k ), Xπ
k+1)− q

)+
= inf

q∈R
inf
π∈Π

q + 1
1− αE

(N−1∑
k=0

βkck(Xπ
k , dk(Hπ

k ), Xπ
k+1)− q

)+
= inf

q∈R

q + 1
1− α inf

π∈Π
E

(N−1∑
k=0

βkck(Xπ
k , dk(Hπ

k ), Xπ
k+1)− q

)+ (6.2)

they showed that the inner optimization problem of (6.2) can be solved as an ordinary
Markov Decision Process on an extended state space. Earlier, Bäuerle and Mundt (2009)
solved a mean-Expected Shortfall problem for an investor in a binomial financial market.
There, the risk measure appears in the constraint but becomes part of the objective function
through a Lagrangian approach.

Here, we are going to generalize the results of Bäuerle and Ott (2011) to spectral risk
measures. Moreover, we are able to relax their assumptions on the one-stage cost functions
and allow for unbounded above costs. In principle, the approach remains the same: We
will use the infimum representation for spectral risk measures of Proposition 2.11 instead
of equation (2.4). In the inner optimization problem, the functions R 3 x 7→ (x − q)+

are then replaced by general increasing convex functions g : R→ R. Therefore, also the
outer optimization problem becomes harder since it is no longer parametric but one has
to minimize over an infinite dimensional function space. For the new outer problem we
discuss both existence and an algorithmic approximation.
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6.1. Inner Problem

In this section, we separate (6.1) into an inner and outer problem and solve the inner one
using a state space extension. First, we consider a finite planning horizon in Section 6.1.1
and then an infinite planning horizon in Section 6.1.2. Additional model properties in case
of a real state space are studied in Section 6.1.3.

6.1.1. Finite Planning Horizon

Under a finite planning horizon N ∈ N, we consider the non-stationary version of the
abstract cost model introduced in Section 3.1 with deterministic policies π ∈ Π of the
controller. The Markov Decision Process therefore has the functional representation (3.3).
Here, it is more convenient to index the process and its random history with the policy since
we will not explicitly refer to the law of motion. Even though the model is non-stationary
we will explicitly introduce discounting by a factor β ∈ (0, 1] since for the following state
space extension it is relevant if there is discounting. Otherwise, stationary models with
discounting would have to be treated separately. The total discounted cost generated by a
policy π ∈ Π if the initial state is Xπ

0 = x, is denoted by

CπxN =
N−1∑
k=0

βkck(Xπ
k , dk(Hπ

k ), Xπ
k+1) + βNcN (Xπ

N ).

In the following, it is assumed that the one-stage cost cn(x, a, Tn(x, a, Zn+1)) is bounded
below by a constant

¯
c ∈ R for all (x, a) ∈ Dn, n = 0, . . . , N − 1 and the same applies to the

terminal cost cN (TN−1(x, a, ZN )) for all (x, a) ∈ DN−1. Due to the translation invariance
of ρφ, we have for every policy π ∈ Π

ρφ(CπxN ) = ρφ

(
N−1∑
k=0

βk
(
ck(Xπ

k , dk(Hπ
k ), Xπ

k+1)−
¯
c
)

+ βN
(
cN (Xπ

N −¯
c)
))

+
N∑
k=0

βk
¯
c.

Since cn(x, a, Tn(x, a, Zn+1)) −
¯
c ≥ 0, k = 0, . . . , N − 1 and cN (TN−1(x, a, ZN )) −

¯
c ≥ 0,

we can assume w.l.o.g. that the one-stage and terminal cost is non-negative.

Using Proposition 2.11, we can reformulate optimization problem (6.1) to

inf
π∈Π

ρφ (CπxN ) = inf
π∈Π

inf
g∈G

{
E[g(CπxN )] +

∫ 1

0
g∗(φ(u)) du

}
= inf

g∈G
inf
π∈Π

{
E[g(CπxN )] +

∫ 1

0
g∗(φ(u)) du

}
= inf

g∈G

{
inf
π∈Π

E[g(CπxN )] +
∫ 1

0
g∗(φ(u)) du

}
, (6.3)

where G denotes the set of increasing convex functions g : R→ R. For fixed g ∈ G we will



128 Chapter 6. Risk-Sensitive Total Cost Minimization

refer to

inf
π∈Π

E[g(CπxN )] (6.4)

as inner optimization problem. Since an increasing convex function g : R → R can be
viewed as a disutility function, optimality criterion (6.4) implies that the expected disutility
of the total discounted cost in minimized. If g is strictly increasing, the optimization
problem is not changed by applying g−1, i.e. minimizing the corresponding certainty
equivalent g−1(E[g(CπxN )]

)
. For bounded one-stage cost functions, such problems are solved

in Bäuerle and Rieder (2014). The special case of the exponential disutility function
g(x) = exp(γx), γ > 0, has been studied first by Howard and Matheson (1972) in a decision
model with finite state and action space. The term risk-sensitive MDP goes back to them.
The certainty equivalent corresponding to an exponential disutility is the entropic risk
measure

ρ(X) = 1
γ

logE
[
eγX

]
,

see Example 2.13. It has been shown by Müller (2007) that an exponential disutility is
the only case where the certainty equivalent defines a monetary risk measure apart from
expectation itself (linear disutility).
The concepts of spectral risk measures and expected disutilities (or corresponding

certainty equivalents) can be combined to so-called rank-dependent expected disutilities of
the form ρφ(u(X)), where u is a disutility function. The corresponding certainty equivalent
is u−1(ρφ(u(X))

)
. In fact, this concept works more generally for distortion risk measures

and incorporates both expected disutilities (identity as distortion function) and distortion
risk measures (identity as disutility function). The idea is that the expected disutility is
calculated w.r.t. a distorted probability instead of the original probability measure. As long
as the distorted probability is spectral, using a rank dependent disutility instead of ρφ leads
to structurally the same inner problem as (6.4), only g is replaced by g(u(·)). At least for
bounded costs, our results apply here, too. The certainty equivalent of a rank-dependent
expected disutility combining an exponential disutility with a spectral risk measure is itself
a convex (but not coherent) risk measure. It has been introduced by Tsanakas and Desli
(2003) as distortion-exponential risk measure. In this special case, our results apply without
further conditions.
The following assumptions are made in this section.

Assumption 6.1. (i) The model data has the Continuity and Compactness Properties
3.1 with the transition function Tn being continuous in (x, a) for n = 0, . . . , N − 1
(case 1).

(ii) The one-stage cost cn(x, a, Tn(x, a, Zn+1)) and the terminal cost cN (TN−1(x, a, ZN ))
are non-negative for all (x, a) ∈ Dn, n = 0, . . . , N − 1.

(iii) The family of random variables {CπxN : π ∈ Π, x ∈ E} is uniformly integrable.
(iv) The spectrum φ is bounded, i.e. φ(1) <∞.
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Since spectral risk measures preserve the increasing convex order (Lemma 2.5), the
following equivalent characterization of Assumption 6.1 (iii) will be useful.

Lemma 6.2. Let Assumption 6.1 (ii) be statisfied. Then, Assumption 6.1 (iii) is equivalent
to the existence of a non-negative random variable C̄ ∈ L1

+ on some probability space such
that

CπxN ≤icx C̄

for all policies π ∈ Π and initial states x ∈ E.

Proof. By Assumption 6.1 (ii) the random variables CπxN , π ∈ Π, x ∈ E, are non-negative.
Now the assertion follows from Theorem 1 in Leskelä and Vihola (2013).

Assumption 6.1 (iii) is rather general. The next lemma gives a sufficient condition in
terms of properties of the model data.

Lemma 6.3. If there exists a measurable function c̄ : Z → R+ such that

cn(x, a, Tn(x, a, z)) ≤ c̄(z), (x, a, z) ∈ Dn ×Z, n = 0, . . . , N − 1,

cN (TN−1(x, a, z)) ≤ c̄(z), (x, a, z) ∈ DN−1 ×Z,

and c̄(Zn+1) ∈ L1(Ω,A,P), n = 0, . . . , N − 1, then Assumption 6.1 (iii) is satisfied.

Proof. We have for all policies π ∈ Π, initial states x ∈ E and time points n = 0, . . . , N − 1

cn(Xπ
n , dn(Hπ

n ), Xπ
n+1) = cn(Xπ

n , dn(Hπ
n ), Tn(Xπ

n , dn(Hπ
n ), Zn+1)) ≤ c̄(Zn+1).

The inequality for the terminal cost in analogous. It follows

CπxN =
N−1∑
k=0

βkck(Xπ
k , dk(Hπ

k ), Xπ
k+1)+βNcN (Xπ

N ) ≤
N−1∑
k=0

βk c̄(Zk+1)+βN c̄(ZN ) =: C̄ ∈ L1.

A common integrable majorant is sufficient for uniform integrability.

Spectral risk measures are finite for risks in Lp if the spectrum is in Lq, see Lemma 2.17.
Since we require the spectrum φ to be bounded, there is no need to restrict the cost to Lp

for some p > 1. Hence, we only require integrability or C̄ ∈ L1.
The bounded spectrum enables us to reduce the function space G. The reduction

guarantees finite policy values in (6.4). Moreover, it will be needed under an infinite
planning horizon and to solve the outer optimization problem (6.3).

Lemma 6.4. Under Assumption 6.1 it is sufficient to consider functions g ∈ G which are
φ(1)-Lipschitz and satisfy 0 ≤ g(s) ≤ ḡ(s), s ∈ R, where

ḡ(s) = φ(1)s+ + ρφ(C̄).

The space of such functions is denoted by G.
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Proof. Fix π ∈ Π, x ∈ E and set C = CπxN to simplify the notation. We know from the
proof of Proposition 2.11 that the optimal g ∈ G corresponding to C is

gφ,C(s) =
∫ 1

0
F−1
C (α) + 1

1− α
(
s− F−1

C (α)
)+

µ(dα), x ∈ R,

with µ from Proposition 2.9. Clearly, it is sufficient to consider functions g ∈ G which are
optimal for at least one C = CπxN . Since C ≥ 0 it follows

gφ,C(s) ≥
∫ 1

0
F−1
C (α)µ(dα) ≥ 0.

Furthermore, we have

gφ,C(s) =
∫ 1

0
F−1
C (α)µ(dα) +

∫ 1

0

1
1− α

(
s− F−1

C (α)
)+

µ(dα)

≤
∫ 1

0
ESα(C)µ(dα) + s+

∫ 1

0

1
1− αµ(dα)

= ρφ(C) + φ(1)s+

≤ ρφ(C̄) + φ(1)s+

= ḡ(s).

The first inequality uses F−1
C (α) = VaRα(C) ≤ ESα(C) and C ≥ 0. The identity

∫ 1

0

1
1− αµ(dα) = φ(1)

is by definition of µ. The second inequality holds due to Lemma 6.2, since spectral risk
measures preserve the increasing convex order (Lemma 2.5). As a convex function, gφ,C is
almost everywhere differentiable with derivative g′φ,C(s) = φ(FC(s)) ≤ φ(1), cf. the proof
of Proposition 2.11. This establishes the Lipschitz continuity with constant L = φ(1).

In the sequel, we are going to solve the inner optimization problem (6.4) for an arbitrary
but fixed function g ∈ G. Lemma 6.4 guarantees that the optimization problem is well-
defined under Assumption 6.1. Indeed, we have for every initial state x ∈ E, policy π ∈ Π
and g ∈ G

E[g−(CπxN )] ≥ 0,

E[g+(CπxN )] ≤ E[g+(C̄)] ≤ E[ḡ(C̄)] = φ(1)E[C̄] + ρφ(C̄) <∞

since C̄ ∈ L1. Here, we have used that g+ is increasing convex and ḡ non-negative.
As the functions g ∈ G are in general non-linear, the inner optimization problem (6.4)

does not directly admit a value iteration. This can be overcome by extending the state
space to

Ê = E × R+ × (0, 1]
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with corresponding Borel σ-algebra following Bäuerle and Rieder (2014). A generic element
of Ê is denoted by (x, s, t). The idea is that s summarizes the cost accumulated to far and
that t keeps track of the discounting. The action space A and the admissible state-action
combinations Dn, n = 0, . . . , N − 1 remain unchanged. Formally, one defines

D̂n = {(x, s, t, a) ∈ Ê ×A : a ∈ Dn(x)}, n = 0, . . . , N − 1

implying D̂n(x, s, t) = Dn(x), (x, s, t) ∈ Ê. The transition function on the new state space
is given by T̂n : D̂n ×Z → Ê,

T̂n(x, s, t, a, z) =


Tn(x, a, z)

s+ tcn(x, a, Tn(x, a, z))
βt

 , n = 0, . . . , N − 1.

Feasible histories of the decision model with extended state space up to time n have the
form

hn =

(x0, s0, t0), n = 0,

(x0, s0, t0, a0, x1, s1, t1, a1, . . . , xn, sn, tn), n ≥ 1,

where ak ∈ D̂k(xk, sk, tk), k = 0, . . . , N − 1, and the set of such histories is denoted by
Ĥn. With Π̂ and Π̂M we denote the sets of history-dependent and Markov policies for the
decision model with extended state space. We will write Enhn for a conditional expectation
given Hπ

n = hn, hn ∈ Ĥn. The value of a policy π ∈ Π̂ at time n = 0, . . . , N is defined as

VNπ(hN ) = g(sN + tNcN (xN )),

Vnπ(hn) = Enhn

[
g

(
sn + tn

(
N−1∑
k=n

βk−nck(Xπ
k , dk(Hπ

k ), Xπ
k+1) + βN−ncN (Xπ

N )
))]

,

(6.5)

where hn ∈ Ĥn. The corresponding value functions are

Vn(hn) = inf
π∈Π̂

Vnπ(hn), hn ∈ Ĥn. (6.6)

In the end, the quantity of interest is V0(x, 0, 1) which agrees with the infimal value of the
original inner optimization problem (6.4). But how do we get an optimal policy for problem
(6.4)? When starting in (x0, 0, 1) ∈ Ê, a history (x0, a0, x1, a1, . . . , xN ) ∈ HN of the original
decision model uniquely determines the history (x0, s0, t0, a0, x1, s1, t1, a1, . . . , xN , sN , tN ) ∈
ĤN of the decision model with extended state space through

sn =
n−1∑
k=0

βkck(xk, ak, xk+1) and tn = βn, n = 0, . . . , N.

Hence, for the initial state (x0, 0, 1) ∈ Ê, a Markov policy π = (d0, . . . , dN−1) ∈ Π̂M
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with dn : Ê → A, which will turn out to be optimal for (6.6), can be perceived as a
history-dependent policy π′ = (d′0, . . . , d′N−1) ∈ Π of the original decision model, since we
can find measurable functions d′n : Hn → A satisfying d′n(hn) ∈ Dn(xn) and

d′n(x0, a0, x1, . . . , xn) = dn

(
xn,

n−1∑
k=0

βkck(xk, ak, xk+1), βn
)
.

Analogously, a history-dependent policy π ∈ Π̂ can be regarded as a history-dependent
policy of the original decision model.
We can now proceed to deriving an iteration for the policy values (6.5).

Proposition 6.5. Under Assumption 6.1 the value of a policy π ∈ Π̂ can be calculated
recursively for n = 0, . . . , N − 1 and hn ∈ Ĥn as

VNπ(hN ) = g(sN + tNcN (xN ))

Vnπ(hn) = E
[
Vn+1π

(
hn, dn(hn), T̂n(xn, sn, tn, dn(hn), Zn+1)

)]
= E

[
Vn+1π

(
hn, dn(hn), Tn(xn, dn(hn), Zn+1),

sn + tncn(xn, dn(hn), Tn(xn, dn(hn), Zn+1)), βt
)]
.

Proof. The proof is by backward induction. At time N there is nothing to show. Now
assume the assertion holds for n+ 1, then the tower property of conditional expectation
yields for time n

Vnπ(hn) = Enhn

[
g

(
sn + tn

(
N−1∑
k=n

βk−nck(Xπ
k , dk(Hπ

k ), Xπ
k+1) + βN−ncN (Xπ

N )
))]

= Enhn

[
g

(
sn + tncn(xn, dn(hn), Tn(xn, dn(hn), Zn+1))

+ tnβ

(
N−1∑
k=n+1

βk−(n+1)ck(Xπ
k , dk(Hπ

k ), Xπ
k+1) + βN−ncN (Xπ

N )
))]

= Enhn

[
E
n+1(hn,dn(hn),T̂n(xn,sn,tn,dn(hn),Zn+1))

[

g

(
sn + tncn(xn, dn(hn), Tn(xn, dn(hn), Zn+1))

+ tnβ

(
N−1∑
k=n+1

βk−(n+1)ck(Xπ
k , dk(Hπ

k ), Xπ
k+1) + βN−ncN (Xπ

N )
))]]

= Enhn

[
Vn+1π

(
hn, dn(hn), T̂n(xn, sn, tn, dn(hn), Zn+1)

)]

= E
[
Vn+1π

(
hn, dn(hn), T̂n(xn, sn, tn, dn(hn), Zn+1)

)]
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= E
[
Vn+1π

(
hn, dn(hn), Tn(xn, dn(hn), Zn+1),

sn + tncn(xn, dn(hn), Tn(xn, dn(hn), Zn+1)), βt
)]
.

Remark 6.6. If there is no discounting or if the discounting is included in the non-
stationary one-stage cost functions, the second summary variable t is obviously not needed.
In the special case that ρφ is Expected Shortfall, one only has to consider the functions
gq(x) = (x− q)+, q ∈ R. Due to their positive homogeneity in (x, q), it suffices to extend
the state space by only one real-valued summary variable even if there is discounting, cf.
Bäuerle and Ott (2011).

Let us now consider specifically Markov policies π ∈ Π̂M . The function space

M =
{
v : Ê → R | v is lower semicontinuous,

v(x, ·, ·) is continuous and increasing for all x ∈ E,

v(x, s, t) ≥ g(s) for (x, s, t) ∈ Ê
}

turns out to be the set of potential value functions under such policies. In order to simplify
the notation, we introduce the usual operators on M. Note that all v ∈M are non-negative
and thus at least quasi-integrable.

Definition 6.7. For v ∈M and a Markov decision rule d : Ê→ A we define

Lnv(x, s, t, a) = E
[
v
(
T̂n(x, s, t, a, Zn+1)

)]
= E

[
v
(
Tn(x, a, Zn+1), s+ tcn(x, a, Tn(x, a, Zn+1)), βt

)]
, (x, s, t, a) ∈ D̂n,

Tndv(x, s, t) = Lnv(x, s, t, d(x, s, t)), (x, s, t) ∈ Ê,

Tnv(x, s, t) = inf
a∈D(x)

Lnv(x, s, t, a), (x, s, t) ∈ Ê.

Note that the operators are monotone in v. Under a Markov policy π = (d0, . . . , dN−1) ∈
Π̂ the value iteration can be expressed with the operators. In order to distinguish from
the history-depended case, we denote the policy values with J . Setting JNπ(x, s, t) =
g(s+ tcN (x)), (x, s, t) ∈ Ê, we obtain for n = 0, . . . , N − 1 and (x, s, t) ∈ Ê

Jnπ(x, s, t) = E
[
Jn+1π

(
Tn(x, dn(x), Zn+1), s+ tcn(x, dn(x), Tn(x, dn(x), Zn+1)), βt

)]
= TndnJn+1π(x, s, t).

The corresponding Markov value functions are defined for n = 0, . . . , N as

Jn(x, s, t) = inf
π∈ΠM

Jnπ(x, s, t), (x, s, t) ∈ Ê.
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The next result shows that Vn satisfies a Bellman equation and proves that an optimal
policy exists and is Markov.

Theorem 6.8. Let Assumption 6.1 be satisfied. Then, for n = 0, . . . , N the value function
Vn only depends on (xn, sn, tn), i.e. Vn(hn) = Jn(xn, sn, tn) for all hn ∈ Ĥn, lies in M and
satisfies the Bellman equation

JN (x, s, t) = g(s+ tcN (x)),

Jn(x, s, t) = TnJn+1(x, s, t), (x, s, t) ∈ Ê.

Furthermore, for n = 0, . . . , N − 1 there exist Markov decision rules d∗n : Ê → A with
Tnd∗nJn+1 = TnJn+1 and every sequence of such minimizers constitutes an optimal policy
π = (d∗0, . . . , d∗N−1) ∈ Π̂M .

Proof. The proof is by backward induction. At timeN we have VN (hN ) = JN (xN , sN , tN ) =
g(sN + tNcN (xN )), hN ∈ Ĥn, which is
• lower semicontinuous by Lemma A.4 b) since g is increasing and continuous (as a

convex function on R) and cN is lower semicontinuous,
• continuous and increasing in (sN , tN ) since g is continuous and increasing and cN is

non-negative,
• bounded below by g(sN ) since g is increasing and tNcN (xN ) ≥ 0,

i.e. in M. Assuming the assertion holds at time n+ 1 we have at time n for hn ∈ Ĥn

Vn(hn) = inf
π∈Π̂

Vnπ(hn)

= inf
π∈Π̂

E
[
Vn+1π

(
hn, dn(hn), T̂n(xn, sn, tn, dn(hn), Zn+1)

)]
≥ inf

π∈Π̂
E
[
Vn+1

(
hn, dn(hn), T̂n(xn, sn, tn, dn(hn), Zn+1)

)]

which equals by the induction hypothesis

= inf
π∈Π̂

E
[
Jn+1

(
T̂n(xn, sn, tn, dn(hn), Zn+1)

)]
.

Since the minimization here does not depend on the entire policy but only on an = dn(hn),
this equals

= inf
an∈Dn(xn)

E
[
Jn+1

(
T̂n(xn, sn, tn, an, Zn+1)

)]
.

Here, objective and constraint depend on the history of the process only through xn. Thus,
given existence of a minimizing Markov decision rule d∗n : Ê → A, one ontains the identity

= Tnd∗nJn+1(xn, sn, tn). (6.7)
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Again by the induction hypothesis, there exists an optimal Markov policy π∗ ∈ Π̂M such
that

= Tnd∗nJn+1π∗(xn, sn, tn)

= Jnπ∗(xn, sn, tn)

≥ Jn(xn, sn, tn)

≥ Vn(hn).

It remains to show the existence of a minimizing Markov decision rule d∗n at (6.7) and that
Jn ∈M. We want to apply Proposition A.25. The set-valued mapping Ê 3 (x, s, t) 7→ Dn(x)
is compact-valued and upper semicontinuous. Next, we show that D̂n 3 (x, s, t, a) 7→
Lnv(x, s, t, a) is lower semicontinuous for every v ∈ M. Let {(xk, sk, tk, ak)}k∈N be a
convergent sequence in D̂n with limit (x∗, s∗, t∗, a∗) ∈ D̂n. The mapping

D̂n 3 (x, s, t, a) 7→ v
(
Tn(x, a, Zn+1(ω)), s+ tcn(x, a, Tn(x, a, Zn+1(ω))), βt

)
is lower semicontinuous for every Ω ∈ Ω by Lemma A.4 a,b) applied simultaneously. Since
v ≥ g ≥ 0, we can apply Fatou’s Lemma B.1 which yields

lim inf
k→∞

Lnv(xk, sk, tk, ak)

= lim inf
k→∞

E
[
v
(
Tn(xk, ak, Zn+1), sk + tkcn(xk, ak, Tn(xk, ak, Zn+1)), βtk

)]
≥ E

[
lim inf
k→∞

v
(
Tn(xk, ak, Zn+1), sk + tkcn(xk, ak, Tn(xk, ak, Zn+1)), βtk

)]
≥ E

[
v
(
Tn(x∗, a∗, Zn+1), s∗ + t∗cn(x∗, a∗, Tn(x∗, a∗, Zn+1)), βt∗

)]
= Lnv(x∗, s∗, t∗, a∗).

I.e. Lnv is lower semicontinuous. With Proposition A.25 follows the existence of a minimizing
decision rule d∗n at (6.7) and the lower semicontinuity of Tnv.

Now fix (x, a) ∈ Dn. By the monotonicity of expectation (s, t) 7→ Lnv(x, s, t, a) is
increasing. Consequently, (s, t) 7→ Tnv(x, s, t) is increasing by Lemma A.19. To see that
this mapping is continuous it suffices to show upper semicontinuity or equivalently right
continuity (Lemma A.6). Let (sk, tk) ↓ (s∗, t∗) as k →∞. Then the sequence{

v
(
Tn(x, a, Zn+1), sk + tkcn(x, a, Tn(x, a, Zn+1)), βtk

)}
k∈N

is decreasing and it follows from monotone convergence that

lim
k→∞

Lnv(x, sk, tk, a)

= lim
k→∞

E
[
v
(
Tn(x, a, Zn+1), sk + tkcn(x, a, Tn(x, a, Zn+1)), βtk

)]
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= E
[

lim
k→∞

v
(
Tn(x, a, Zn+1), sk + tkcn(x, a, Tn(x, a, Zn+1)), βtk

)]
= Lnv(x, s∗, t∗, a),

where the last inequality is due to the continuity of v in the second and third argument.
I.e. (s, t) 7→ Lnv(x, s, t, a) is continuous and especially upper semicontinuous. Hence,
(s, t) 7→ Tnv(x, s, t) is upper semicontinuous as an infimum of upper semicontinuous
functions (Corollary A.3).
The inequality Tnv(x, s, t) ≥ g(s), (x, s, t) ∈ Ê, is obvious. Taken together, we have
Tnv ∈M and the proof is complete.

Remark 6.9. From Theorem 6.8 it follows that the sequence {(xn, sn, tn)}N−1
n=0 with

(sn, tn) =
(
n−1∑
k=0

βkck(xk, ak, xk+1), βn
)

is a sufficient statistic of the decision model with the original state space in the sense of
Hinderer (1970).

6.1.2. Infinite Planning Horizon

In this section, we consider the inner optimization problem of the risk-sensitive total cost
minimization under an infinite planning horizon. To reiterate, this approach is reasonable
if the terminal period is unknown or if one wants to approximate a model with a large but
finite planning horizon. Solving the infinite horizon problem will turn out to be easier since
it admits a stationary optimal policy.

We study the stationary version of abstract cost model with no terminal cost, i.e. D,T, c
do not depend on n, cN ≡ 0, the disturbances are identically distributed and the discount
factor β lies in (0, 1). Let Z be a representative of the disturbance distribution. The model
with infinite planning horizon is derived as a limit of the one with finite horizon, i.e. the
total discounted cost under a policy π ∈ Π for initial state x ∈ E is given by

Cπx∞ =
∞∑
k=0

βkc(Xπ
k , dk(Hπ

k ), Xπ
k+1).

As in Section 6.1.1, we assume that the one-stage cost c(x, a, T (x, a, Z)) is bounded below
by a constant

¯
c ∈ R for all (x, a) ∈ D. Due to the translation invariance of ρφ we have

w.l.o.g.
¯
c = 0 and Cπx∞ ≥ 0, π ∈ Π. Theorem B.3 guarantees that Cπx∞ is well-defined as an

almost sure limit.
With Proposition 2.11, the initial optimization problem under an infinite planning

inf
π∈Π

ρφ(Cπx∞ ) (6.8)
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can again be reformulated to

inf
π∈Π

ρφ (Cπx∞ ) = inf
π∈Π

inf
g∈G

{
E[g(Cπx∞ )] +

∫ 1

0
g∗(φ(u)) du

}
= inf

g∈G
inf
π∈Π

{
E[g(Cπx∞ )] +

∫ 1

0
g∗(φ(u)) du

}
= inf

g∈G

{
inf
π∈Π

E[g(Cπx∞ )] +
∫ 1

0
g∗(φ(u)) du

}
, (6.9)

where G denotes the set of increasing convex functions g : R→ R. For fixed g ∈ G we will
refer to

inf
π∈Π

E[g(Cπx∞ )] (6.10)

as infinite horizon inner optimization problem. The remarks in Section 6.1.1 regarding
connections to the minimization of (rank-dependent) expected disutilities and corresponding
certainty equivalents apply in the infinite horizon case as well. The following assumptions
are made in this section.

Assumption 6.10. (i) The model data has the Continuity and Compactness Properties
3.1 with the transition function T being continuous in (x, a) (case 1).

(ii) The one-stage cost c(x, a, T (x, a, Z)) is non-negative for all (x, a) ∈ D.
(iii) The family of random variables {Cπx∞ : π ∈ Π, x ∈ E} is uniformly integrable.
(iv) The spectrum φ is bounded, i.e. φ(1) <∞.
(v) The discount factor β lies in (0, 1).

As in the finite horizon case, Assumption 6.10 (iii) can be equivalently characterized in
terms of the increasing convex order. The proof is the same as for Lemma 6.2.

Lemma 6.11. Let Assumption 6.10 (ii) be statisfied. Then, Assumption 6.10 (iii) is
equivalent to the existence of a non-negative random variable C̄ ∈ L1

+ on some probability
space such that

Cπx∞ ≤icx C̄

for all policies π ∈ Π and initial states x ∈ E.

Also the sufficient condition for Assumption 6.1 (iii) in Lemma 6.3 applies to Assumption
6.10 analogously.

Lemma 6.12. If there exists a measurable function c̄ : Z → R+ such that

c(x, a, T (x, a, z)) ≤ c̄(z), (x, a, z) ∈ D ×Z

and c̄(Z) ∈ L1(Ω,A,P), then Assumption 6.10 (iii) is satisfied.

Proof. We have for all policies π ∈ Π and initial states x ∈ E

c(Xπ
n , dn(Hπ

n ), Xπ
n+1) = c(Xπ

n , dn(Hπ
n ), T (Xπ

n , dn(Hπ
n ), Zn+1)) ≤ c̄(Zn+1).
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It follows
Cπx∞ =

∞∑
k=0

βkc(Xπ
k , dk(Hπ

k ), Xπ
k+1) ≤

∞∑
k=0

βk c̄(Zk+1) =: C̄

Since c̄(Z) is non-negative and in L1(Ω,A,P) it follows from Theorem B.3 that C̄ is
well-defined as an almost sure limit and

E[C̄] =
∞∑
k=0

βkE[c̄(Zk+1)] = E[c̄(Z)]
1− β <∞,

i.e. C̄ ∈ L1
+(Ω,A,P). A common integrable majorant is clearly sufficient for uniform

integrability.

Due to the bounded spectrum, the function space G can again be reduced. The proof is
the same as for Lemma 6.4. Recall that ρφ(C̄) is finite since C̄ ∈ L1(Ω,A,P).

Lemma 6.13. Under Assumption 6.10 it is sufficient to consider functions g ∈ G which
are φ(1)-Lipschitz and satisfy 0 ≤ g(s) ≤ ḡ(s), s ∈ R, where

ḡ(s) = φ(1)s+ + ρφ(C̄).

The space of such functions is denoted by G.

We are now going to solve the infinite horizon inner optimization problem (6.10) for an
arbitrary but fixed function g ∈ G. Lemma 6.13 guarantees that the optimization problem
is well-defined under Assumption 6.10. As under a finite planning horizon, we have for
every initial state x ∈ E, policy π ∈ Π and g ∈ G

E[g−(Cπ∞)] ≥ 0 and E[g+(Cπ∞)] ≤ φ(1)E[C̄] + ρφ(C̄) <∞.

In order to obtain a value iteration, the state space is extended to Ê = E×R+× (0, 1] as
in Section 6.1.1. The action space A and the admissible state-action combinations D remain
unchanged, i.e. D̂ = {(x, s, t, a) ∈ Ê ×A : a ∈ D(x)} and D̂(x, s, t) = D(x), (x, s, t) ∈ Ê.
The transition function on the new state space is given by T̂ : D̂ ×Z → Ê,

T̂ (x, s, t, a, z) =


T (x, a, z)

s+ tc(x, a, T (x, a, z))
βt

 .
Since the model with infinite planning horizon will be derived as a limit of the one with

finite horizon, the consideration can be restricted to Markov policies π = (d1, d2, . . . ) ∈ Π̂M

due to Theorem 6.8. For the relevant initial state (x0, 0, 1) ∈ Ê, a Markov policy π ∈ Π̂M

can be perceived as a history-dependent policy of the original decision model, cf. Section
6.1.1. When calculating limits, it is more convenient to index the value functions with
the distance to the time horizon rather than the point in time. This is also referred to
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as forward form of the value iteration and is only possible under Markov policies in a
stationary model. There, the two ways of indexing are equivalent. The value of a policy
π = (d0, d1 . . . ) ∈ Π̂M up to a planning horizon N ∈ N now is

J0π(x, s, t) = g(s)

JNπ(x, s, t) = E0x

[
g

(
s+ t

N−1∑
k=0

βkc(Xπ
k , dk(Xπ

k , sπk , tπk), Xπ
k+1)

)]
,

where (Xπ
n , sπn, tπn)n∈N is the extended decision process under policy π ∈ Π̂M with initial

state (x, s, t) ∈ Ê. The change of indexing makes it necessary to write the value iteration
in terms the shifted policy ~π = (d1, d2, . . . ) corresponding to π = (d0, d1, . . . ) ∈ Π̂M :

JNπ(x, s, t) = E
[
JN−1~π

(
T (x, d0(x, s, t), Z), s+ tc(x, d0(x, s, t), T (x, d0(x, s, t), Z)), βt

)]
= Td0JN−1~π(x), (6.11)

(x, s, t) ∈ Ê. The value function for finite planning horizon N ∈ N is given by

JN (x, s, t) = inf
π∈Π̂M

JNπ(x, s, t), (x, s, t) ∈ Ê,

and satisfies due to Theorem 6.8 the Bellman equation

JN (x, s, t) = T JN−1(x, s, t) = T N0(x, s, t), (x, s, t) ∈ Ê.

The value of a policy π ∈ Π̂M under an infinite planning horizon is defined as

J∞π(x, s, t) = E0x

[
g

(
s+ t

∞∑
k=0

βkc(Xπ
k , dk(Xπ

k , sπk , tπk), Xπ
k+1)

)]
,

(x, s, t) ∈ Ê. Note that J∞π is well-defined due to Theorem B.3. This section’s optimality
criterion is

J∞(x, s, t) = inf
π∈ΠM

J∞π(x, s, t), (x, s, t) ∈ Ê. (6.12)

Lemma 6.14. Under Assumption 6.10 the sequences {JNπ}N∈N, π ∈ Π̂M , and {JN}N∈N
are increasing and pointwise convergent. It holds limN→∞ JNπ = J∞π.

Proof. Since the one-stage cost is non-negative, {JNπ}N∈N and hence {JN}N∈N are increas-
ing. They converge by Lemma A.9 a). Also the sequence of random variables

N−1∑
k=0

βkc(Xπ
k , dk(Xπ

k , sπk , tπk), Xπ
k+1), n ∈ N,

is increasing and converges almost surely to
∑∞
k=0 β

kc(Xπ
k , dk(Xπ

k , sπk , tπk), Xπ
k+1) by Theo-



140 Chapter 6. Risk-Sensitive Total Cost Minimization

rem B.3. Thus, monotone convergence yields

lim
N→∞

JNπ(x, s, t) = E0x

[
lim
N→∞

g

(
s+ t

N−1∑
k=0

βkc(Xπ
k , dk(Xπ

k , sπk , tπk), Xπ
k+1)

)]

= E0x

[
g

(
s+ t lim

N→∞

N−1∑
k=0

βkc(Xπ
k , dk(Xπ

k , sπk , tπk), Xπ
k+1)

)]
= J∞π(x, s, t),

where the second equality is by the Continuous Mapping Theorem.

The yet unknown limit J(x) = limN→∞ JN (x), x ∈ E, is referred to as limit value
function. We introduce an upper bounding function b̄ : R+ × (0, 1]→ R given by

b̄(s, t) = E
[
g

(
s+ t

C̄

1− β

)]
.

Note that b̄ is well-defined since for g ∈ G we have by Lemma 6.13

E
[
g

(
s+ t

C̄

1− β

)]
≤ φ(1)

(
s+ t

E[C̄]
1− β

)
+ ρφ(C̄) <∞

for all (s, t) ∈ R+ × (0, 1] as C̄ ∈ L1(Ω,A,P). We will see that if C̄ has a structure as in
Lemma 6.12, it is not necessary to divide C̄ by 1− β in the definition of b̄. Finally note
that b̄ is indeed an upper bounding function and a lower one is not needed: It holds

g(s) ≤ JNπ(x, s, t) ≤ J∞π(x, s, t) ≤ b̄(s, t) (6.13)

for all N ∈ N0, π ∈ ΠM and (x, s, t) ∈ Ê. The first inequality is by the non-negativity of
the one-stage cost, the second one by Lemma 6.14 and the third one by Lemma 6.11 and
the definition of the increasing convex order.

Theorem 6.15. Let Assumption 6.10 be satisfied. Then it holds:
a) The infinite horizon value function J∞ is the unique fixed point of the Bellman

operator T in B = {v ∈ M : v(x, s, t) ≤ b̄(s, t) for all (x, s, t) ∈ Ê} and J∞ = J .
Moreover, we have T Ng ↑ J∞ and T N b̄ ↓ J∞ as N →∞.

b) There exists a Markov decision rule d∗ such that

Td∗J∞(x, s, t) = T J∞(x, s, t), (x, s, t) ∈ Ê.

c) Each stationary policy π∗ = (d∗, d∗, . . . ) induced by a Markov decision rule d∗ as in
part b) is optimal for optimization problem (6.12).

Proof. a) First, we show that J∞ = J . Since the function g : R → R+ is convex, it
is almost everywhere differentiable and in these points the derivative agrees with
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the everywhere existing right derivative g′+. By Lemma 6.13 we have g′+ ≤ φ(1).
Consequently,

g(s1 + s2) = g(s1) +
∫ s1+s2

s1
g′+(s) d s

= g(s1) +
( 1
s2

∫ s1+s2

s1
g′+(s) d s

)
s2

≤ g(s1) + φ(1)s2 (6.14)

for all s1 ∈ R and s2 > 0. For s2 = 0 the inequality holds trivially. It follows for
every N ∈ N0, (x, s, t) ∈ Ê and π ∈ Π̂M

JN (x, s, t) ≤ JNπ(x, s, t)

≤ J∞π(x, s, t)

= E0x

[
g

(
s+ t

∞∑
k=0

βkc(Xπ
k , dk(Xπ

k , sπk , tπk), Xπ
k+1)

)]

= E0x

[
g

(
s+ t

N−1∑
k=0

βkc(Xπ
k , dk(Xπ

k , sπk , tπk), Xπ
k+1)

+t
∞∑
k=N

βkc(Xπ
k , dk(Xπ

k , sπk , tπk), Xπ
k+1)

)]

≤ E0x

[
g

(
s+ t

N−1∑
k=0

βkc(Xπ
k , dk(Xπ

k , sπk , tπk), Xπ
k+1)

)]

+ φ(1)tβNE0x

[ ∞∑
k=N

βk−Nc(Xπ
k , dk(Xπ

k , sπk , tπk), Xπ
k+1)

]

= JNπ(x, s, t) + φ(1)tβNE0x

[ ∞∑
k=N

βk−Nc(Xπ
k , dk(Xπ

k , sπk , tπk), Xπ
k+1)

]
≤ JNπ(x, s, t) + φ(1)βNE[C̄]. (6.15)

The last inequality is true since t ∈ (0, 1] and

E0x

[ ∞∑
k=N

βk−Nc(Xπ
k , dk(Xπ

k , sπk , tπk), Xπ
k+1)

]

=
∫
ENhN

[ ∞∑
k=N

βk−Nc(Xπ
k , dk(Xπ

k , sπk , tπk), Xπ
k+1)

]
Qπ(x,s,t)(dhN )

=
∫
E0(xN ,sN ,tN ) [CπxN∞ ]Qπ(x,s,t)(dhN )

≤ E[C̄],

where the second equality is by the stationarity of the model and the inequality by
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Lemma 6.11. Taking the infimum over π ∈ Π̂M in (6.15) and letting N →∞ yields

J(x, s, t) ≤ J∞(x, s, t) ≤ J(x, s, t), (x, s, t) ∈ Ê.

By Lemma 6.14, it follows T Ng ↑ J∞.

Next, we show that T N b̄ ↓ J∞. Let (X1, X2) be a random vector and (Xc
1, X

c
2) be a

comonotonic random vector with the same marginal distributions. Then X1 +X2 ≤icx
Xc

1 +Xc
2, cf. Müller and Stoyan (2002, 8.3.4). Also note that b̄ is increasing convex

in s. Hence,

T b̄(s, t) = inf
a∈D(x)

E
[
b̄
(
s+ tc(x, a, T (x, a, Z)), βt

)]
≤ inf

a∈D(x)
E
[
b̄
(
s+ tC̄, βt

)]
=
∫∫

g

(
s+ tc2 + βt

c1
1− β

)
PC̄(d c1)PC̄(d c2)

≤
∫∫

g

(
s+ tc2 + βt

c1
1− β

)
P(C̄c,C̄c)(d(c1, c2))

=
∫
g

(
s+ t

c

1− β

)
PC̄(d c)

= b̄(s, t)

where the first inequality is by Lemma 6.11. Now the monotonicity of the operator T
implies that the sequence {T N b̄}N∈N is decreasing and convergent since 0 is a lower
bound. Note that b̄ ∈M. Therefore, Theorem 6.8 yields that

T N b̄(x, s, t) = inf
π∈Π̂M

E0x

[
b̄

(
s+ t

N−1∑
k=0

βkc(Xπ
k , dk(Xπ

k , sπk , tπk), Xπ
k+1), βN t

)]
= inf

π∈Π̂M
E0x[b̄(s+ tCπxN , βN t)].

Consequently, we have by Lemma A.31 a), Tonelli’s Theorem B.2 and equation (6.14)

0 ≤ T N b̄(x, s, t)− JN (x, s, t)

= T N b̄(x, s, t)− T Ng(x, s, t)

≤ sup
π∈Π̂M

E0x
[
b̄(s+ tCπxN , βN t)− g(s+ tCπxN )

]
= sup

π∈Π̂M

∫∫
g(s+ tc2 + tβN

c1
1− β )− g(s+ tc2)PC̄(d c1)PCπxN (d c2)

≤ φ(1) tβ
N

1− βE[C̄]→ 0 as N →∞.

Hence, it holds limN→∞ T N b̄ = J∞.

Finally, we show that J∞ is the unique fixed point of T in B. By Theorem 6.8 and
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(6.13) we have JN ∈ B for all N ∈ N. Hence, g(s) ≤ J∞(x, s, t) ≤ b̄(s, t), (x, s, t) ∈ Ê.
Moreover, J∞ is lower semicontinuous by Lemma A.9 b). We already noted that
b̄ ∈ M, i.e. the function (s, t) 7→ b̄(s, t) is upper semicontinuous and increasing. By
monotone convergence (s, t) 7→ E0x[b̄(s+ tCπxN , βN t)] is upper semicontinuous, too,
and

(s, t) 7→ T N b̄ = inf
π∈Π̂M

E0x[b̄(s+ tCπxN , βN t)]

remains so as an infimum of upper semicontinuous functions. Since T N b̄ ↓ J∞, Lemma
A.9 b) (mutatis mutandis) yields that (s, t) 7→ J∞(x, s, t) is upper semicontinuous for
all x ∈ E. To sum up, we have J∞ ∈ B.
As the sequence {JN}N∈N is increasing, it holds JN ≤ J∞ for all N ∈ N. Now the
monotonicity of T yields JN+1 = T JN ≤ T J∞ and implying J∞ ≤ T J∞ as N →∞.
Conversely, by taking the infimum over π ∈ ΠM in (6.15) and then applying T we get

JN+1 + φ(1)βNE[C̄] = T
(
JN + φ(1)βNE[C̄]

)
≥ T J∞

implying J∞ ≥ T J∞ as N →∞. It remains to verify that the fixed point is unique.
Assume v ∈ B is a further one. Then g(s) ≤ v(x, s, t) ≤ b̄(s, t), (x, s, t) ∈ Ê, and by
the monotonicity of T

T Ng ≤ TNv = v = T Nv ≤ T N b̄.

Letting N →∞ yields J∞ ≤ v ≤ J∞.

b) Since J∞ ∈ B ⊆M, the existence of a minimizing Markov decision rule follows from
Theorem 6.8.

c) It holds J∞(x, s, t) ≥ g(s), (x, s, t) ∈ Ê, since J∞ ∈M. Consequently, we have

J∞ = lim
N→∞

T Nd∗ J∞ ≥ lim
N→∞

T Nd∗ g = lim
N→∞

JNπ∗ = J∞π∗ ≥ J∞,

i.e. π∗ is optimal. The first equality is by parts a) and b), the inequality thereafter
by the monotonicity of the operator Td∗ , the second equality by the value iteration
(6.11) and the third one by Lemma 6.14.

Note that inequality (6.14) differs from the standard inequality for convex functions
g(s1 + s2) ≥ g(s1) + g′+(s1)s2, s1, s2 ∈ R, only by a parallel translation of the tangent.

6.1.3. Real Line as State Space

As for the distributionally robust and the risk-sensitive recursive cost minimization of
Chapters 4 and 5, the continuity assumption on the transition functions can be relaxed
to semicontinuity if the state space is the real line and the transition and one-stage cost
function satisfy some form of monotonicity. For some applications as e.g. in Section 6.3
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this relaxation is relevant. To ease the notational burden, we consider the stationary model
with no terminal cost under both finite and infinite horizon in this section. The results
can be transferred to a non-stationary setting by mere notational changes if the planning
horizon is finite.

Assumption 6.16. (i) The original state space is the real line E = R.
(ii) The model data has the Continuity and Compactness Properties 3.1 with the transition

function T being lower semicontinuous in (x, a) (case 2).
(iii) The model data has the following monotonicity properties:

(iii a) The set-valued mapping R 3 x 7→ D(x) is decreasing.
(iii b) The transition function T is increasing in x.
(iii c) The function R 3 x 7→ c(x, a, T (x, a, z)) is increasing for all (a, z).

(iv) Assumptions 6.10 (ii) to (v) hold.

Requiring that the one-stage cost function c is increasing both in x and x′ is sufficient
for Assumption 6.16 (iii c) to hold since the transition function is increasing in x. Besides,
if c is increasing in x′, it is sufficient for Continuity and Compactness Assumption 3.1 (iii)
that c is lower semicontinuous due to Lemma A.4 b).
The question is, how replacing Assumption 6.10 (i) by Assumption 6.16 (i) to (iii)

affects the validity of all previous results. The only two results that were proven using
the continuity of the transition function T in (x, a) and not only its measurability are
Theorems 6.8 and 6.15. All other statements are unaffected.

Proposition 6.17. The assertions of Theorems 6.8 and 6.15 hold under Assumption 6.16,
too. Moreover, the value functions Jn and J∞ are increasing. The set of potential value
functions can therefore be replaced by

B =
{
v : Ê → R | v is lower semicontinuous and increasing,

v(x, ·, ·) is continuous for all x ∈ R,

g(s) ≤ v(x, s, t) ≤ b̄(s, t) for (x, s, t) ∈ Ê
}
.

Proof. In Theorem 6.8, the continuity of T is used to show that D̂ 3 (x, s, t, a) 7→
Lv(x, s, t, a) is lower semicontinuous for every v ∈ B. Due to the monotonicity assumptions,
the mapping

D̂n 3 (x, s, t, a) 7→ v
(
T (x, a, Z(ω)), s+ tc(x, a, T (x, a, Z(ω))), βt

)
is lower semicontinuous by Lemma A.4 b). Now, the lower semicontinuity of D̂ 3
(x, s, t, a) 7→ Lv(x, s, t, a) and the existence of a minimizing decision rule follow as in
the proof of Theorem 6.8. The fact that T v is increasing for every v ∈ B follows from
Lemma A.19.

In Theorem 6.15, the continuity of T is only used indirectly through Theorem 6.8. One
only has to note that J∞ ∈ B since the pointwise limit of increasing functions remains
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increasing.

The monotonicity requirements in Assumption 6.16 (iii) are only one option. The
following alternative is relevant i.a. for the dynamic reinsurance models introduced in
Section 3.2.

Corollary 6.18. Assumptions 6.16 (ii) and (iii) can be replaced by
(ii’) The model data has the Continuity and Compactness Properties 3.1 with the transition

function T being upper semicontinuous (case 3).
(iii’) The model data has the following monotonicity properties:

(iii’ a) The set-valued mapping R 3 x 7→ D(x) is increasing.
(iii’ b) The transition function T is increasing in x.
(iii’ c) The function R 3 x 7→ c(x, a, T (x, a, z)) is decreasing for all (a, z).

Then, the assertions of Theorems 6.8 and 6.15 still hold. Moreover, the value functions Jn
and J∞ are decreasing in x and increasing in (s, t). The set of potential value functions is
therefore

B =
{
v : Ê → R | v is lower semicontinuous,

v(·, s, t) is decreasing for all (s, t) ∈ R+ × (0, 1],

v(x, ·, ·) is continuous and increasing for all x ∈ R,

g(s) ≤ v(x, s, t) ≤ b̄(s, t) for (x, s, t) ∈ Ê
}
.

Proof. One argues analogously to the proof of Proposition 6.17. In order to show that
D̂ 3 (x, s, t, a) 7→ Lv(x, s, t, a) is lower semicontinuous for every v ∈ B one uses Remark
A.5 for proving that the mapping

D̂n 3 (x, s, t, a) 7→ v
(
T (x, a, Z(ω)), s+ tc(x, a, T (x, a, Z(ω))), βt

)
is lower semicontinuous.

Requiring that the one-stage cost function c is decreasing both in x and x′ is sufficient
for (iii’ c) to hold since the transition function is increasing in x. Besides, if c is decreasing
in x′, it is sufficient for Continuity and Compactness Assumption 3.1 (iii) that c is lower
semicontinuous due to Remark A.5.

The monotonicity properties of Assumption 6.16 (iii) can be used to construct a convex
model. Due to the state space extension, Proposition 2.4.18 of Bäuerle and Rieder (2011)
cannot be applied directly as in Lemma 4.23 but has to be slightly modified.

Lemma 6.19. Let Assumption 6.16 be satisfied, A be a subset of a vector space, the
admissible state-action-combinations D be a convex set, the transition function T be convex
in (x, a) and the composition D 3 (x, a) 7→ c(x, a, T (x, a, z)) be a convex function for every
z ∈ Z. Then the value functions Jn(·, ·, t) and J∞(·, ·, t) are convex for every t ∈ (0, 1].
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Proof. We prove by backward induction that Jn is convex in (x, s) for n = 0, . . . , N . Then
J∞ is convex as a pointwise limit of convex functions (after switching to forward indexing).

For n = N we know that JN (x, s, t) = g(s) is convex in (x, s). Now assume that Jn+1 is
convex in (x, s). Recall that Jn+1 increasing by Proposition 6.17. Hence, for every ω ∈ Ω
and t ∈ (0, 1] the function

(x, s, a) 7→ Jn+1
(
T (x, a, Z(ω)), s+ tc(x, a, T (x, a, Z(ω))), βt

)
is convex as a composition of an increasing convex with a convex function. By the linearity
of expectation (x, s, a) 7→ LJn+1(x, s, t, a) is convex, too, for every t ∈ (0, 1]. Fix t ∈ (0, 1]
and let (x1, s1), (x2, s2) ∈ R × R+ and λ ∈ [0, 1]. By Theorem 6.8 there exist ai ∈ D(xi)
such that LJn+1(xi, si, t, ai) = T Jn+1(xi, si, t), i = 1, 2. The convexity of D implies
λa1 + (1− λ)a2 ∈ D(λx1 + (1− λ)x2). Hence, we have

T Jn+1
(
λx1 + (1− λ)x2, λs1 + (1− λ)s2, t

)
= inf

a∈D(λx1+(1−λ)x2)
LJn+1

(
λx1 + (1− λ)x2, λs1 + (1− λ)s2, t, a

)
≤ LJn+1

(
λx1 + (1− λ)x2, λs1 + (1− λ)s2, t, λa1 + (1− λ)a2

)
≤ λLJn+1(x1, s1, t, a1) + (1− λ)LJn+1(x2, s2, t, a2)

= λT Jn+1(x1, s1, t) + (1− λ)T Jn+1(x2, s2, t).

If c is increasing in x′, it is sufficient to require that c and T are convex in (x, a). In the
decreasing setting of Corollary 6.18, one needs a concave transition function in order to
obtain a convex model.

Corollary 6.20. Let the assumptions of Corollary 6.18 be satisfied, A be a subset of a
vector space, the admissible state-action-combinations D be a convex set, the transition
function T be concave in (x, a) and the composition D 3 (x, a) 7→ c(x, a, T (x, a, z)) be a
convex function for every z ∈ Z. Then the value functions Jn(·, ·, t) and J∞(·, ·, t) are
convex for every t ∈ (0, 1].

6.2. Outer Problem

In this Section, we discuss the solution of the outer optimization problem (6.3) for a finite
and (6.9) for an infinite planning horizon. Given a solution of the respective inner problem
for every g ∈ G, the two outer problems are essentially the same and therefore treated
together. For a fixed policy π ∈ Π̂M the optimal solution of the outer problem is already
given by Proposition 2.11 as

gφ,CπxN (s) =
∫ 1

0
F−1
CπxN

(α) + 1
1− α

(
s− F−1

CπxN
(α)
)+

µ(dα), s ∈ R, N ∈ N ∪ {∞}.
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However, we solved the inner problem for arbitrary but fixed g ∈ G. Hence, the optimal
policy depends on g and Proposition 2.11 is not helpful. First, we consider the existence of
a solution to the outer problem in Section 6.2.1 and then its algorithmic approximation in
Section 6.2.2.

6.2.1. Existence

As a first step in ensuring the existence of a solution of the outer problem, we study the
dependence of the value functions of the inner problem on g. In order to do so, we need
some structure on G.

Lemma 6.21. (G,m) is a compact metric space, where

m(g1, g2) =
∞∑
j=1

2−j
max|s|≤j |g1(s)− g2(s)|

1 + max|s|≤j |g1(s)− g2(s)|

is the metric of compact convergence.

Proof. Since G ⊆ C(R,R), it suffices to show that G is closed w.r.t. m and verify the
assumptions of the Arzelà-Ascoli Theorem A.32. Note that convergence w.r.t. m implies
pointwise convergence. Convexity, monotonicity, the common Lipschitz constant φ(1),
non-negativity and the pointwise upper bound ḡ are all preserved even under pointwise
convergence. Hence, G is closed w.r.t. m. Non-negativity and the pointwise upper bound ḡ
imply that assumption (i) of Theorem A.32 is satisfied and the common Lipschitz constant
that assumption (ii) holds.

For clarity we index the value functions with g. The value functions Jg0 of the finite
horizon inner problem and Jg∞ of the infinite horizon inner problem depend semicontinuously
on g.

Lemma 6.22. Let Assumption 6.1 be satisfied. Then the functional G × Ê 3 (g, x, s, t) 7→
Jgn(x, s, t) is lower semicontinuous for all n = 0, . . . , N .

Proof. The proof is by backward induction. At time N we have to verify that JgN (x, s, t) =
g(s+ tcN (x)) is lower semicontinuous in (g, x, s, t). First, note that G ×R+ 3 (g, s) 7→ g(s)
is continuous since if (gk, sk)→ (g, s), then g converges especially pointwise and

|gk(sk)− g(s)| = |gk(sk)− gk(s) + gk(s)− g(s)|

≤ |gk(sk)− gk(s)|+ |gk(s)− g(s)|

≤ φ(1) |sk − s|+ |gk(s)− g(s)| → 0 as k →∞.

Now let (gk, xk, sk, tk) → (g, x, s, t) and define the increasing sequence {ck}k∈N through
ck = inf`≥k cN (x`).
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Case 1: {ck}k∈N is bounded above and therefore convergent with limit ĉ. Then

ĉ = lim
k→∞

ck = lim
k→∞

inf
`≥k

cN (x`) = lim inf
k→∞

cN (xk) ≥ cN (x)

since cN is lower semicontinuous. As the functions {gk}k∈N and g are all increasing, we get

lim inf
k→∞

gk(sk + tkcN (xk)) ≥ lim
k→∞

gk(sk + tkck)

= g(s+ tĉ)

≥ g(s+ tcN (x)).

Case 2: {ck}k∈N is unbounded above. Then there exists K ∈ N such that ck ≥ cN (x) for
all k ≥ K and

lim inf
k→∞

gk(sk + tkcN (xk)) ≥ lim inf
k→∞

gk(sk + tkck)

≥ lim
k→∞

gk(sk + tkcN (x))

= g(s+ tcN (x)).

Now assume the assertion holds for n+ 1. By Theorem 6.8 we have at time n

Jgn(x, s, t) = inf
a∈D(x)

E
[
Jgn+1

(
Tn(x, a, Zn+1), s+ tcn(x, a, Tn(x, a, Zn+1)), βt

)]
.

The integrand Jgn+1

(
Tn(x, a, Zn+1(ω)), s+tcn(x, a, Tn(x, a, Zn+1(ω))), βt

)
is lower semicon-

tinuous in (g, x, s, t, a) for every ω ∈ Ω by the induction hypothesis and Lemma A.4. Hence,
if (gk, xk, sk, tk) → (g, x, s, t), Fatou’s Lemma B.1 and the monotonicity of expectation
yield

lim inf
k→∞

E
[
Jgkn+1

(
Tn(xk, ak, Zn+1), sk + tkcn(xk, ak, Tn(xk, ak, Zn+1)), βtk

)]
≥ E

[
lim inf
k→∞

Jgkn+1

(
Tn(x, a, Zn+1), s+ tcn(x, a, Tn(x, a, Zn+1)), βt

)]
≥ E

[
Jgn+1

(
Tn(x, a, Zn+1), s+ tcn(x, a, Tn(x, a, Zn+1)), βt

)]
I.e. (g, x, s, t) 7→ LnJ

g
n+1(x, s, t, a) is lower semicontinuous. As the set-valued mapping

E 3 x 7→ D(x) is compact valued and upper semicontinuous,

(g, x, s, t) 7→ Jgn(x, s, t, a) = inf
a∈D(x)

LnJ
g
n+1(x, s, t, a)

is lower semicontinuous by Proposition A.25.

If there is an almost sure integrable upper bound for the integrand (e.g. under the
conditions of Lemma 6.3), the value functions are continuous in g by dominated convergence
and Lemma A.3 b) additionally to the joint lower semicontinuity.
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Lemma 6.23. Let Assumption 6.10 be satisfied. Then the functional G × Ê 3 (g, x, s, t) 7→
Jg∞(x, s, t) is lower semicontinuous for all (x, s, t) ∈ Ê.

Proof. Under an infinite planning horizon we consider a stationary model and use forward
indexing for the value functions JgN . They are lower semicontinuous in (g, x, s, t) by Lemma
6.22. Note that the induction basis holds especially for cN ≡ 0. Since JgN ↑ Jg∞ as N →∞
by Lemma 6.14 and Theorem 6.15, the assertion follows from Lemma A.9 b).

Under the conditions of Lemma 6.12, the infinite horizon value function Jg∞ is continuous
in g, too. This follows by applying Lemma A.9 b) mutatis mutandis to the decreasing
sequence of upper semicontinuous functions g 7→ T N b̄ which converges to Jg∞ as N →∞
by Theorem 6.15.

For initial state x ∈ E and finite planning horizon N ∈ N the outer problem (6.3) is given
by infg∈G Jg0 (x, 0, 1) +

∫ 1
0 g
∗(φ(u)) du and for infinite planning horizon the outer problem

(6.9) is given by infg∈G Jg∞(x, 0, 1) +
∫ 1

0 g
∗(φ(u)) du. In the following, we will only use the

semicontinuity of the value functions in g. Hence, we write

inf
g∈G

J(g) +
∫ 1

0
g∗(φ(u)) du (6.16)

for a generic outer problem and suppress initial state and planning horizon.

Theorem 6.24. Under Assumption 6.1 or 6.10, respectively, there exists a solution for
the the outer optimization problem (6.16).

Proof. We want to apply Weierstraß’ extrem value Theorem A.7. In view of Lemmata 6.21,
6.22 and 6.23 it suffices to show that the functional

G 3 g 7→
∫ 1

0
g∗(φ(u)) du

is lower semicontinuous. Let {gk}k∈N ⊆ G be a convergent sequence with limit g ∈ G. It
holds for all u ∈ [0, 1]

lim inf
k→∞

g∗k(φ(u)) = lim
k→∞

inf
`≥k

g∗` (φ(u))

= lim
k→∞

inf
`≥k

sup
s∈R

{
φ(u)s− g`(s)

}
≥ lim

k→∞
sup
s∈R

inf
`≥k

{
φ(u)s− g`(s)

}
= sup

s∈R
lim
k→∞

inf
`≥k

{
φ(u)s− g`(s)

}
= sup

s∈R

{
φ(u)s− lim sup

k→∞
gk(s)

}
= sup

s∈R

{
φ(u)s− g(s)

}
= g∗(φ(u)). (6.17)
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The inequality holds generally for the interchange of infimum and supremum, the equality
thereafter by Lemma A.9 c) and the last but one equality since the sequence {gk}k∈N is
especially pointwise convergent. Moreover note that for all k ∈ N and u ∈ [0, 1] it holds

g∗k(φ(u)) = sup
s∈R

{
φ(u)s− gk(s)

}
≥ −gk(0) ≥ −ḡ(0) > −∞.

Now, Fatou’s Lemma B.1 and (6.17) yield with

lim inf
k→∞

∫
g∗k(φ(u)) du ≥

∫
lim inf
k→∞

g∗k(φ(u)) du ≥
∫
g∗(φ(u)) du

the assertion.

6.2.2. Numerical Approximation

As we know now that a solution to the outer optimization problem (6.16) exists, this section
aims to determine the solution numerically. The idea is to approximate the functions g ∈ G
by piecewise linear ones and thereby obtain a finite dimensional optimization problem
which can be solved with classical methods of global optimization. We are going to show
that the minimal values converge when the approximation is continuously refined and
give an error bound. Regarding the second summand of the objective function (6.16) our
method coincides with the Fast Legendre-Fenchel Transform (FLT) algorithm studied i.a.
by Corrias (1996).
For unbounded cost CπxN with N ∈ N ∪ {∞}, π ∈ Π, x ∈ E, the functions g ∈ G would

have to be approximated on the whole non-negative real line. This is numerically not
feasible.

Assumption 6.25. IfN ∈ N, we require additionally to Assumption 6.1 that the conditions
of Lemma 6.3 are satisfied with constant c̄. If N = ∞, we require that additionally to
Assumption 6.10 the conditions of Lemma 6.12 are satisfied with constant c̄.

Consequently, it holds 0 ≤ CπxN ≤ ĉ for all N ∈ N ∪ {∞}, π ∈ Π and x ∈ E, where we
define

ĉ =


∑N
k=0 β

k c̄ for finite planning horizon N ∈ N,
c̄

1−β for infinite planning horizon N =∞.

The bounded cost allows for a further reduction of the feasible set of the outer problem.
On the reduced feasible set, the second summand of the objective function is guaranteed to
be finite and easier to calculate. Recall that the convex conjugate of g ∈ G is an R̄-valued
function defined by g∗(y) = sups∈R{sy − g(s)}, y ∈ R.

Lemma 6.26. a) Under Assumption 6.25, a minimizer of the outer optimization prob-
lem (6.16) lies in

Ĝ = {g ∈ G : g(s) = g(0) for s < 0 and g(s) = g(ĉ) + φ(1)(s− ĉ) for s > ĉ} .
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b) For g ∈ G and y ∈ [0, φ(1)] it holds g∗(y) = maxs∈[0,ĉ]{sy − g(s)} <∞.

Proof. a) Fix π ∈ Π, x ∈ E and set C = CπxN to simplify the notation. We know from
the proof of Proposition 2.11 that the optimal g ∈ G corresponding to C is

gφ,C(s) =
∫ 1

0
F−1
C (α) + 1

1− α
(
s− F−1

C (α)
)+

µ(dα), s ∈ R,

with µ from Proposition 2.9. Clearly, it is sufficient to consider functions g ∈ G which
are optimal for at least one C = CπxN . Since 0 ≤ C ≤ ĉ we have 0 ≤ F−1

C (α) ≤ ĉ.
Consequently, it holds for s < 0

gφ,C(s) =
∫ 1

0
F−1
C (α)µ(dα) = g(0).

As a convex function, gφ,C is almost everywhere differentiable with derivative g′φ,C(s) =
φ(FC(s)), cf. the proof of Proposition 2.11, and for s > ĉ it holds FC(s) = 1

b) Let g ∈ Ĝ and y ∈ [0, φ(1)]. For s ≥ ĉ the function

s 7→ sy − g(s) = (y − φ(1))s− g(ĉ) + φ(1)ĉ

is decreasing and for s ≤ 0 the function

s 7→ sy − g(s) = sy − g(0)

is increasing. Hence, it suffices to consider the supremum over [0, ĉ].

The fact that the supremum of the convex conjugate reduces to the maximum of a
continuous function over a compact set, opens the door for a numerical approximation
with the FLT algorithm. By definition of Ĝ, it is sufficient to approximate the functions
g ∈ Ĝ on the interval [0, ĉ]. For the value iteration in Lemma 6.5 and equation (6.11) it
may be necessary to evaluate g in some s > ĉ, but here the function is determined as
a linear continuation with slope φ(1). On the interval I = [0, ĉ], the metric of compact
convergence reduces to the supremum norm ‖ · ‖∞. For the piecewise linear approximation
we consider equidistant partitions 0 = s1 < s2 < · · · < sm = ĉ, i.e. sk = (k − 1) ĉ

m−1 , k =
1, . . . ,m, m ≥ 2. Let us define the mapping

pm(g)(s) = g(sk) + g(sk+1)− g(sk)
sk+1 − sk

(s− sk), s ∈ [sk, sk+1], k = 1, . . . ,m− 1,

which projects a function g ∈ Ĝ to its piecewise linear approximation and its image

Ĝm = {pm(g) : g ∈ Ĝ}.

For considering the restriction of the outer optimization problem (6.16) to Ĝm it is convenient
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to define for g ∈ Ĝ

Km(g) = J(pm(g)) +
∫
pm(g)∗(φ(u)) du,

K(g) = J(g) +
∫
g∗(φ(u)) du.

Proposition 6.27. It holds∣∣∣∣∣ inf
g∈Ĝ

Km(g)− inf
g∈Ĝ

K(g)
∣∣∣∣∣ ≤ sup

g∈Ĝ
|Km(g)−K(g)| ≤ 2φ(1) ĉ

m− 1 .

Proof. The first inequality follows from Lemma A.31 b) and it remains to prove the second.
We have for N ∈ N ∪ {∞}, x ∈ E and g ∈ Ĝ

|Jm(g)− J(g)| =
∣∣∣∣ inf
π∈Π

E[pm(g)(CπxN )]− inf
π∈Π

E[g(CπxN )]
∣∣∣∣

≤ sup
π∈Π

E |pm(g)(CπxN )− g(CπxN )|

≤ sup
s∈I
|pm(g)(s)− g(s)|.

Also by Lemma A.31 b) it holds for y ∈ [0, φ(1)]

|pm(g)∗(y)− g∗(y)| =
∣∣∣∣∣sup
s∈I
{sy − g(s)} − sup

s∈I
{sy − pm(g)(s)}

∣∣∣∣∣
≤ sup

s∈I
|pm(g)(s)− g(s)|.

Finally, the assertion follows with

|Km(g)−K(g)| ≤ |Jm(g)− J(g)|+
∫
|pm(g)∗(φ(u))− g∗(φ(u))|du

≤ 2 sup
s∈I
|pm(g)(s)− g(s)|

= 2 max
k=1,...,m−1

max
s∈[sk,sk+1]

∣∣∣∣g(s)− g(sk)−
g(sk+1)− g(sk)
sk+1 − sk

(s− sk)
∣∣∣∣

≤ 2 max
k=1,...,m−1

|g(sk+1)− g(sk)|

≤ 2φ(1) ĉ

m− 1 .

The proposition shows that the infimum of Km converges to the one of K. The error of
restricting the outer problem (6.16) to Ĝm is bounded by 2φ(1) ĉ

m−1 . The piecewise linear
functions g ∈ Ĝm are uniquely determined by their values in the kinks s1, . . . , sm. Hence,
we can identify Ĝm with the compact set

Γm =
{

(y1, . . . , ym) ∈ Rm : y1 ∈ I, 0 ≤ y2 − y1
s2 − s1

≤ · · · ≤ ym − ym−1
sm − sm−1

≤ φ(1)
}
.
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Note that due to translation invariance of ρφ it holds under Assumption 6.25 for g ∈ Ĝ that
g(0) ≤ ḡ(0) = ρ(C̄) = ρ(ĉ) = ĉ. Thus, the outer problem (6.16) restricted to Ĝm becomes
finite dimensional:

inf
y∈Γm

J(gy) +
∫ 1

0
g∗y(φ(u)), (6.18)

where gy ∈ Ĝm is the piecewise linear function induced by y ∈ Γm, i.e.

gy(s) = yk + yk+1 − yk
sk+1 − sk

(s− sk), s ∈ [sk, sk+1], k = 1, . . . ,m− 1.

How to evaluate J(·) in gy, y ∈ Γm, has been discussed in Sections 6.1.1 and 6.1.2. The
next Lemma simplifies the evaluation of the second summand of the objective function
(6.18) to calculating the integrals∫ uk+1

uk

φ(u) du, k = 0, . . . ,m,

where u0 = 0, uk = φ−1
(
yk+1−yk
sk+1−sk

)
, k = 1, . . . ,m− 1 and um = φ(1).

Lemma 6.28. The convex conjugate of gy, y ∈ Γm, in ξ ∈ [0, φ(1)] is given by

g∗y(ξ) =


−y1, 0 ≤ ξ < y2−y1

s2−s1
,

sk+1ξ − yk+1,
yk+1−yk
sk+1−sk ≤ ξ ≤

yk+2−yk+1
sk+2−sk+1

, k = 1, . . . ,m− 2

smξ − ym, ym−ym−1
sm−sm−1

< ξ ≤ φ(1).

Proof. By Lemma 6.26 b) we have g∗y(ξ) = maxs∈I{sξ − gy(s)}. Note that the slopes
ck = yk+1−yk

sk+1−sk , k = 1, . . . ,m− 1, are increasing. It follows

g∗y(ξ) = sup
s∈[0,ĉ]

{sξ − gy(s)}

= max
k=1,...,m−1

max
s∈[sk,sk+1]

{sξ − yk − ck(s− sk)}

= max
k=1,...,m−1

max
s∈[sk,sk+1]

{s(ξ − ck)− yk + cksk}.

Let us distinguish three cases. Firstly, assume ξ ∈ [c`, c`+1] for some ` ∈ {1, . . . ,m − 2}.
Then

g∗y(ξ) = max
{

max
k=1,...,`

sk+1(ξ − ck)− yk + cksk, max
k=`+1,...,m−1

sk(ξ − ck)− yk + cksk
}

= max
{

max
k=1,...,`

sk+1ξ − yk+1, max
k=`+1,...,m−1

skξ − yk
}

= s`+1ξ − y`+1.

The last equality holds, since c1 ≤ · · · ≤ cm−1 and c` ≤ ξ ≤ c`+1 is equivalent to
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ξs` − y` ≤ ξs`+1 − y`+1 ≥ ξs`+2 − y`+2. Secondly, assume ξ < c1. Then

g∗y(ξ) = max
k=1,...,m−1

{sk(ξ − ck)− yk + cksk} = max
k=1,...,m−1

{skξ − yk} = s1ξ − y1 = −y1.

Again, ξ < c1 is equivalent to ξs2 − y2 < ξs1 − y1. Since c1 ≤ · · · ≤ cm−1, this implies the
last equality. The third case cm−1 < ξ is analogous.

The results of this section can be summarized in the following schematic algorithm.

Algorithm: Outer problem
Data: Markov Decision Model
Result: Optimal policy π∗, minimal risk-sensitive cost ρφ(Cπ∗xN )
1. Select an approximation error ε > 0 and set m =

⌈
2φ(1)ĉ
ε

⌉
+ 1.

2. Solve (6.18) with an algorithm for global optimization.
if N ∈ N then For each evaluation of J(·) solve the inner problem (6.4) with
Theorem 6.8.
if N =∞ then For each evaluation of J(·) solve the inner problem (6.10)
with Theorem 6.15.

6.3. Cost of Capital Minimization of an Insurance
Company

In Section 5.5, a dynamic extension in discrete time of the classical static reinsurance
problem (5.15) has been developed by applying the risk-sensitive recursive optimality
criterion to the dynamic reinsurance model of Section 3.2.1. In this section, we construct
an alternative dynamic extension based on the risk-sensitive total cost criterion. The aim is
to choose the reinsurance treaties such that the cost of capital for the total discounted loss

inf
π∈Π

rCoC · ρφ

(
N−1∑
k=0

βk
(
dk(Hπ

k )(Yk+1) + πR(dk(Hπ
k ))− Zk+1

))
(6.19)

is minimized under a spectral risk measure ρφ with bounded spectrum. As it is irrelevant
for the minimization, we will in the sequel omit the cost of capital rate rCoC and instead
minimize the capital requirement. Recall that in the dynamic reinsurance model the
decision process describes the development of the insurer’s surplus, i.e. the transition
function is given by T (x, f, y, z) = x− f(y)− πR(f) + z, where f ∈ F is the reinsurance
contract, y the claims arriving at the end of the period, πR(f) the cost of reinsurance and z
the premium income at the beginning of the next period. Here, the one-stage cost function
is given by the incremental loss c(x, f, x′) = x− x′. As discussed in Example 5.28, this is
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the natural choice for a total loss optimization criterion. For β = 1 we have

N−1∑
k=0

dk(Hπ
k )(Yk+1) + πR(dk(Hπ

k ))− Zk+1 =
N−1∑
k=0

Xπ
k −Xπ

k+1 = x−Xπ
N ,

i.e. due to translation invariance of spectral risk measures the objective reduces to minimizing
the capital requirement for the loss at the planing horizon −Xπ

N . This is reminiscent of the
static reinsurance problem (5.15), however here the loss distribution at the planing horizon
can be controlled by interim action.

Throughout the chapter, we have required that the one-stage cost c(x, f, T (x, f, Y, Z)) =
f(Y ) + πR(f) − Z is non-negative. As f(Y ) and πR(f) are non-negative for all f ∈ F
and c(x, idR+ , T (x, idR+ , Y, Z)) = Y − Z due to normalization of πR, the premium income
Z would have to be non-positive. This makes no sense from an actuarial point of view,
but since ρφ is translation invariant and Z ∈ L∞(Ω,A,P) we can add

∑N−1
k=0 βk ess sup(Z)

without influencing the minimization. This means that the one-stage cost function is
changed to ĉ(x, f, x′) = x − x′ + ess sup(Z). The economic interpretation is that the
one-stage cost

ĉ(x, f, T (x, f, Y, Z)) = f(Y ) + πR(f) + ess sup(Z)− Z

now depends on the deviation from the maximal possible income instead of the actual
income. However, note that this is not a change of the disturbance and the transition
function still depends on the actual premium income, i.e. the current state still equals the
current surplus. For brevity we write ẑ = ess sup(Z).

As in (6.3) we separate an inner and outer reinsurance problem. For a structural analysis
we focus on the inner optimization problem

inf
π∈Π

E
[
g

(
N−1∑
k=0

βk
(
dk(Hπ

k )(Yk+1) + πR(dk(Hπ
k )) + ẑ − Zk+1

))]
(6.20)

with arbitrary g ∈ G, cf. Lemma 6.4. On the extended state space Ê = R× R+ × (0, 1],
the value of a policy π ∈ Π̂ is defined as

VNπ(hN ) = g(sN ),

Vnπ(hn) = Enhn

[
g

(
sn + tn

N−1∑
k=n

βk−n
(
dk(Hπ

k )(Yk+1) + πR(dk(Hπ
k )) + ẑ − Zk+1

))]
,

for n = 0, . . . , N and hn ∈ Ĥn. The corresponding value functions are

Vn(hn) = inf
π∈Π̂

Vnπ(hn), hn ∈ Ĥn.

Due to the real state space we want to apply Corollary 6.18 for solving the optimization
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problem. Let us verify the assumptions. The numbering is as in the corollary.
(i) The (original) state space is the real line E = R.

(ii’) The Continuity and Compactness Properties 3.1 with upper semicontinuous transition
function have been verified in Section 3.2.1.

(iii’) Monotonicity properties:
(iii’ a) The set-valued mapping R 3 x 7→ D(x) = {f ∈ F : πR(f) ≤ x+} is increasing.
(iii’ b) The transition function T : R×F ×R+×R+ → R, T (x, f, y, z) = x− f(y)−

πR(f) + z is increasing in x.
(iii’ c) The composition R 3 x 7→ ĉ(x, f, T (x, f, y, z)) = f(y) + πR(f) + ẑ − z is

independent of x and especially decreasing for all (f, y, z).
(iv) The modified one-stage cost ĉ(x, f, T (x, f, Y, Z)) = f(Y ) + πR(f) + ẑ − Z is non-

negative.
(v) It holds 0 ≤ f ≤ idR+ for all f ∈ F and πR(f) = πR(Y − f(Y )) ≤ πR(Y ) by the

monotonicity of πR. Thus,

ĉ(x, f, T (x, f, Y, Z)) = f(Y ) + πR(f) + ẑ − Z ≤ Y + πR(Y ) + ẑ.

Consequently, the conditions of Lemma 6.12 are satisfied with c̄(y) = y + πR(Y ) + ẑ

since Y ∈ L1(Ω,A,P).
(vi) The spectrum φ is bounded by assumption.
(vii) At least for an infinite planning horizon we require β < 1.
Hence, Corollary 6.18 yields that it is sufficient to minimize over all Markov policies, the
value functions are in B and satisfy the Bellman equation

JN (x, s, t) = g(s),

Jn(x, s, t) = inf
f∈D(x)

E
[
Jn+1

(
x− f(Y )− πR(f) + Z, s+ t

(
f(Y ) + πR(f) + ẑ − Z

)
, βt

)]

for (x, s, t) ∈ Ê and n = 0, . . . , N − 1. Moreover, there exists a Markov Decision rule
d∗n : Ê → F minimizing Jn+1 and every sequence π = (d∗0, . . . , d∗N−1) ∈ Π̂M of such
minimizers is a solution to (6.20).
If the planning horizon is infinite and β < 1, we use forward indexation for the finite

horizon value functions Jn. The infinite horizon value function J∞ is the pointwise
limit of the sequence {Jn}n∈N and also characterized as the unique fixed point of the
Bellman operator T in B. Every minimizer d∗ of J∞ induces a stationary optimal policy
π∗ = (d∗, d∗, . . . ) ∈ Π̂S .
All structural properties of the optimal policy which do not depend on g are inherited

by the optimal solution of the cost of capital minimization problem (6.19). The structural
properties we will focus on in the rest of this section are induced by convexity. Therefore,
we assume that the premium principle πR is convex and that there is no budget constraint.
The latter is a necessary assumption to obtain a convex model since even for convex πR,
the set of admissible state-action combinations in case of a budget constraint D = {(x, f) ∈
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R×F : πR(f) ≤ x+} is not convex. Moreover note that the absence of a budget constraint
does not make the problem myopic as it is the case for the risk-sensitive recursive optimality
criterion (see Remark 5.26) since the objective here does not become time-separable.

If πR is convex and there is no budget constraint, we have indeed a convex model: D is
trivially convex, the transition function T (x, f, y, z) = x− f(y)− πR(f) + z is concave in
(x, f) as a sum of concave functions, the one-stage cost

(x, f) 7→ ĉ(x, f, T (x, f, y, z)) = f(y) + πR(f) + ẑ − z

is convex as a sum of convex functions and we have already verified the conditions of
Corollary 6.18. Now, Corollary 6.20 yields that the value functions Jn and J∞ are convex.
Note that for a convex function x 7→ h(x) also x 7→ h(−x) is convex. Hence, we can infer
from the Bellman equation

Jn(x, s, t) = inf
f∈F

E
[
Jn+1

(
x− f(Y )− πR(f) + Z, s+ t

(
f(Y ) + πR(f) + ẑ − Z

)
, βt

)]
that the reinsurance treaty f1 is better than f2 independently from time and state if

f1(Y ) + πR(f1) ≤cx f2(Y ) + πR(f2) (6.21)

I.e. a minimal element w.r.t. this order would be an optimal reinsurance treaty in every
scenario. Even if such a minimal element does not exist, (6.21) can be used to reduce the
optimization problem to a finite dimensional one in special cases.

Example 6.29. Let πR(·) = (1 + θ)E[·] be the expected premium principle with safety
loading θ > 0 and assume there is no budget constraint. We will now show that the optimal
reinsurance treaties (i.e. retained loss functions) can be chosen from the class of stop-loss
treaties

f(x) = min{x, a}, a ∈ [0,∞].

Due to (6.21) and the fact that Y1 ≤cx Y2 implies E[Y1] = E[Y2], it suffices to find an
af ∈ [0,∞] such that

min{Y, af} ≤cx f(Y ). (6.22)

The mapping [0,∞] → R+, a 7→ min{Y (ω), a} is continuous for all ω ∈ Ω and 0 ≤
min{Y, a} ≤ Y ∈ L1. Thus, it follows from dominated convergence that [0,∞]→ R+, a 7→
E[min{Y, a}] is continuous. Furthermore,

E[min{Y, 0}] ≤ E[f(Y )] ≤ E[min{Y, ess sup(Y )}].

Hence, by the intermediate value theorem there is an af ∈ [0,∞] such that E[f(Y )] =
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E[min{Y, af}]. Let us compare the survival functions:

Smin{Y,af}(y) = P(min{Y, af} > y) = P(Y > y)1{af > y},

Sf(Y )(y) = P(f(Y ) > y) ≤ P(Y > y).

The inequality holds since f ≤ idR+ . Hence, we have Smin{Y,af}(y) ≥ Sf(Y )(y) for y < af

and Smin{Y,af}(y) ≤ Sf(Y )(y) for y ≥ af . The cut criterion (Müller and Stoyan; 2002,
1.5.17) implies min{Y, af} ≤icx f(Y ) and due to the equality in expectation follows (6.22),
cf. Müller and Stoyan (2002, 1.5.3). So the inner optimization problem (6.20) is reduced to
finding an optimal nonnegative parameter at every stage. If the claims (Yn) are bounded,
one can apply the algorithm in Section 6.2.2 and approximate the optimal reinsurance
problem (6.19) by an entirely finite dimensional problem.

6.4. Outlook

Due to the subadditivity and positive homogeneity of spectral risk measures, a more
conservative alternative to minimizing the risk capital for the total discounted cost (6.1) is
to consider the total discounted risk capital for the one-stage costs

inf
π∈Π

N−1∑
k=0

βkρφ
(
ck(Xπ

k , dk(Hπ
k ), Xπ

k+1)
)
. (6.23)

In order to simplify the exposition, we directly omit terminal costs here. Optimization
problem (6.23) can be addressed with similar techniques than (6.1). Given that the one-
stage costs are bounded below, one can apply Proposition 2.11, interchange infima and
separate an inner and outer problem:

inf
π∈Π

N−1∑
k=0

βkρφ
(
ck(Xπ

k , dk(Hπ
k ), Xπ

k+1)
)

= inf
π∈Π

N−1∑
k=0

βk
(

inf
gk∈G

E
[
gk
(
ck(Xπ

k , dk(Hπ
k ), Xπ

k+1)
)]

+
∫ 1

0
g∗k(φ(u)) du

)

= inf
π∈Π

inf
(g0,...,gN−1)∈GN

(
E
[
N−1∑
k=0

βkgk
(
ck(Xπ

k , dk(Hπ
k ), Xπ

k+1)
)]

+
N−1∑
k=0

βk
∫ 1

0
g∗k(φ(u)) du

)

= inf
(g0,...,gN−1)∈GN

(
inf
π∈Π

E
[
N−1∑
k=0

βkgk
(
ck(Xπ

k , dk(Hπ
k ), Xπ

k+1)
)]

+
N−1∑
k=0

βk
∫ 1

0
g∗k(φ(u)) du

)

For fixed functions g = (g0, . . . , gN−1) ∈ GN the resulting inner optimization problem

V g
0 (x) = inf

π∈Π
E
[
N−1∑
k=0

βkgk
(
ck(Xπ

k , dk(Hπ
k ), Xπ

k+1)
)]
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is a risk-neutral MDP with one-stage cost functions (x, a, x′) 7→ gk(ck(x, a, x′)). I.e. it can
be solved without a state space extension using standard methods. The outer optimization
problem

inf
g=(g0,...,gN−1)∈GN

V g
0 (x) +

N−1∑
k=0

βk
∫ 1

0
g∗k(φ(u)) du

becomes more complicated than the one in Section 6.2 but has still a similar structure. I.e.
existence of an optimal solution can be guaranteed with analogous arguments.

For an infinite planning horizon, however, suitable convergence conditions are needed to
enable the separation into an inner and outer problem as above. Moreover, one is faced
with additional technical difficulties to guarantee the existence of a solution for the outer
problem. A comprehensive study remains open to further research.





APPENDIX A

Complements of Analysis

A.1. Semicontinuous Functions

Let (E, d) be a metric space.

Definition A.1. a) A function v : E → R̄ is called lower semicontinuous (l.s.c.) if for
all sequences {xn}n∈N ⊆ E with limn→∞ xn = x ∈ E it holds

lim inf
n→∞

v(xn) ≥ v(x).

b) A function v : E → R̄ is called upper semicontinuous (u.s.c.) if −f is lower semicon-
tinuous.

Lower and upper semicontinuity together imply continuity. The following considerations
are restricted to lower semicontinuous functions. Mutatis mutandis, they apply to upper
semicontinuous functions as well.

Lemma A.2 (Hernández-Lerma and Lasserre; 1996, A.1). The following are equivalent:
a) v : E → R̄ is lower semicontinuous.
b) For all x ∈ E and ε > 0 there exists δ > 0 such that v(y) ≥ v(x) − ε for all y ∈ E

with d(x, y) ≤ δ.
c) The epigraph epi(v) = {(x, y) ∈ E × R : v(x) ≤ y} is closed (w.r.t. the product

topology).
d) The sublevel sets lev≤α(v) = {x ∈ E : v(x) ≤ α} are closed for every α ∈ R.

Corollary A.3. a) Lower semicontinuous functions are Borel measurable.
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b) Let I be any index set and vi : E → R̄ be lower semicontinuous, i ∈ I. Then
E 3 x 7→ supi∈I vi(x) is lower semicontinuous.

Proof. a) Follows directly from part d) of Lemma A.2.

b) Note that {
x ∈ E : sup

i∈I
vi(x) ≤ α

}
=
⋂
i∈I
{x ∈ E : vi(x) ≤ α}.

Now the claim follows again from part d) of Lemma A.2 since the intersection of an
arbitrary number of closed sets is closed.

Lemma A.4. Let E,E′ be metric spaces.
a) If u : E → E′ is continuous and v : E × E′ → R is lower semicontinuous, then the

composition v( · , u( · )) : E → R is lower semicontinuous.
b) If u : E → R is lower semicontinuous and v : E × R → R is lower semicontinuous

and increasing in the second argument, then the composition v( · , u( · )) : E → R is
lower semicontinuous.

Proof. Let {xn}n∈N ⊆ E be a sequence with limn→∞ xn = x ∈ E.

a) It holds (xn, u(xn)) → (x, u(x)) ∈ E × E′ due to the continuity of u. Hence, the
lower semicontinuity of v implies

lim inf
n→∞

v(xn, u(xn)) ≥ v(x, u(x)).

b) We define the increasing sequence {un}n∈N ⊆ R by un = infk≥n u(xk). First, assume
that {un}n∈N is bounded from above. Then, the sequence is convergent with limit,
say, û and it holds

û = lim
n→∞

un = lim
n→∞

inf
k≥n

u(xk) = lim inf
n→∞

u(xn) ≥ u(x),

since u is lower semicontinuous. Now the lower semicontinuity and monotonicity in
the second argument of v imply

lim inf
n→∞

v(xn, u(xn)) ≥ lim inf
n→∞

v(xn, inf
k≥n

u(xk))

= lim inf
n→∞

v(xn, un)

≥ v(x, û)

≥ v(x, u(x)).

If, however, {un}n∈N is unbounded from above, then there is an N ∈ N such that
un ≥ u(x) for all n ≥ N . Consequently,

lim inf
n→∞

v(xn, u(xn)) ≥ lim inf
n→∞

v(xn, inf
k≥n

u(xn))



A.1. Semicontinuous Functions 163

= lim inf
n→∞

v(xn, un)

≥ lim inf
n→∞

v(xn, u(x))

≥ v(x, u(x)),

as v is increasing in the second argument and lower semicontinuous in the first.

Remark A.5. If in Lemma A.4 b) the inner function u is upper semicontinuous and
the outer function v is lower semicontinuous and decreasing in the second argument, the
assertion holds, too.

Lemma A.6. a) Let v : R→ R be increasing. Then v is lower semicontinuous if and
only if it is left-continuous.

b) Let v : R → R be decreasing. Then v is lower semicontinuous if and only if it is
right-continuous.

Proof. a) Let v be left-continuous and xn → x. If xn > x for almost all n ∈ N , then
by monotonicity v(xn) ≥ v(x) for these n and lim infn→∞ v(xn) ≥ v(x). Otherwise,
{xnk}k∈N with {nk}k∈N = {n ∈ N : xn ≤ x} defines a subsequence. Since v
is left-continuous and increasing it holds lim infn→∞ v(xn) ≥ lim infk→∞ v(xnk) =
limk→∞ v(xnk) = v(x). Hence, v is lower semicontinuous.
Now, let v be lower semicontinuous and xn ↑ x. As v is increasing, v(xn) ≤ v(x) for
all n ∈ N. Together with the lower semicontinuity we get

v(x) ≤ lim inf
n→∞

v(xn) ≤ lim sup
n→∞

v(xn) ≤ v(x),

i.e. v is left-continuous.

b) Let v be decreasing. Then ṽ(x) = v(−x) is increasing. Furthermore, ṽ is lower-
semicontinuous if and only if v has this property and ṽ is left-continuous if and only
if v is right-continuous. So the assertion follows from part a).

Due to the following version of Weierstraß’ extrem value theorem, semicontinuous
functions play an important role in optimization.

Theorem A.7 (Bäuerle and Rieder; 2011, A.1.2). Let E be compact and v : E → R̄ be
lower semicontinuous. Then v attains its infimum.

Definition A.8. A sequence {vn}n∈N of functions vn : E → R is called weakly increasing
if there exists another sequence {δn}n∈N of functions δn : E → R− with limn→∞ δn(x) = 0
for all x ∈ E such that

vn(x) ≥ vm(x) + δm(x) for all x ∈ E and n ≥ m.

Lemma A.9 (Bäuerle and Rieder; 2011, A.1.4, A.1.6). Let {vn}n∈N be a sequence of
weakly increasing functions vn : E → R and {δn}n∈N as in the previous definition.
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a) The pointwise limit v∞ = limn→∞ vn exists.
b) If the functions vn and δn are lower semicontinuous for all n ∈ N, then so is v∞.
c) If δm does not depend on x for all m ∈ N, then

lim
n→∞

sup
x∈E

vn(x) = sup
x∈E

lim
n→∞

vn(x) = sup
x∈E

v∞(x).

Let b : E → [1,∞) and consider the set

B = {v : E → R | v lower semicontinuous with λ ∈ R+ s.t. |v(x)| ≤ λ b(x) for all x ∈ E}

endowed with the weighted supremum norm

‖v‖b = sup
x∈E

|v(x)|
b(x) .

Lemma A.10. The set B is closed w.r.t. ‖ · ‖b.

Proof. We have to show the lower semicontinuity of the limit v of a sequence of lower
semicontinuous functions {vn}n∈N that is convergent w.r.t ‖ · ‖b. Let ε > 0 and x, y ∈ E
s.t. d(x, y) ≤ δ for sufficiently small δ > 0. Due to convergence w.r.t. ‖ · ‖b there exists
N ∈ N s.t.

‖vn − v‖b ≤
ε

3 max{b(x), b(y)} for all n ≥ N,

i.e.

v(z)− εb(z)
3 max{b(x), b(y)} ≤ vn(z) ≤ v(z) + εb(z)

3 max{b(x), b(y)} for all n ≥ N and z ∈ E.

Consequently, we have for n ≥ N

v(y) ≥ vn(y)− εb(y)
3 max{b(x), b(y)}

≥ vn(y)− ε

3
≥ vn(x)− ε

3 −
ε

3

≥ v(x)− ε

3 −
ε

3 −
εb(x)

3 max{b(x), b(y)}
≥ v(x)− ε.

Here, the third inequality is by Lemma A.2 b) since vn is lower semicontinuous and δ

sufficiently small. Now, by the same lemma v is lower semicontinuous.

A.2. Set-Valued Mappings

Let E and A be non-empty Borel spaces.
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Definition A.11. A set-valued mapping (also known as multifunction or correspondence)
D(·) from E to A is a function such that D(x) is a non-empty subset of A for every x ∈ E.

By D = {(x, a) ∈ E ×A : a ∈ D(x)} we denote the graph of a set-valued mapping D(·)
from E to A. A set valued mapping D(·) is called closed, if its graph D is closed and
closed-valued if D(x) is closed for all x ∈ E.

We define for a subset S ⊆ A the upper inverse Du(S) = {x ∈ E : D(x) ⊆ S} and the
lower inverse D`(S) = {x ∈ E : D(x) ∩ S 6= ∅}. Based on these inverses, we define the
following continuity properties of set-valued mappings.

Definition A.12. A set-valued mapping D(·) from E to A is called
a) upper semicontinuous if Du(S) is open for every open subset S ⊂ A.
b) lower semicontinuous if D`(S) is open for every open subset S ⊂ A.
c) continuous if it is both upper and lower semicontinuous.

Note that some authors refer to these properties as hemicontinuity in order to distinguish
them from the respective properties of singleton-valued functions. Also note that singleton-
valued mappings are upper semicontinuous if and only if they are lower semicontinuous if
and only if they are continuous if and only if they are continuous viewed as a function. We
have the following characterizations of semicontinuity.

Proposition A.13 (Aliprantis and Border; 2006, 17.20, 17.21). a) A set-valued map-
ping D(·) from E to A with compact values is upper semicontinuous if and only if
it has the following property for every x ∈ E: If xn → x and an ∈ D(xn) for every
n ∈ N, then {an}n∈N has an accumulation point in D(x).

b) A set-valued mapping D(·) from E to A is lower semicontinuous if and only if it
has the following property for every x ∈ E: If xn → x then every a ∈ D(x) is an
accumulation point of a sequence of a sequence {an}n∈N with an ∈ D(xn).

There are also different sufficient conditions for semicontinuity.

Lemma A.14 (Aliprantis and Border; 2006, 17.18). Let D1(·) be an upper semicontinuous
and compact-valued set-valued mapping from E to A. If D2(·) is another set-valued map
from E to A with a closed graph satisfying D2(x) ⊆ D1(x) for all x ∈ E, then D2(·) is
upper semicontinuous, too.

Lemma A.15 (Aliprantis and Border; 2006, 17.11). Let A be compact and D(·) a set-valued
mapping from E to A.

a) D(·) is upper semicontinuous and closed-valued if and only if D is closed.
b) If D(x) = A for all x ∈ E then D(·) is continuous.

The converse of Lemma A.15 a) does not require A to be compact.

Lemma A.16 (Hernández-Lerma and Lasserre; 1996, D.3). A closed-valued and upper
semicontinuous set-valued mapping is closed.
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Semicontinuity is preserved by compositions.

Lemma A.17 (Aliprantis and Border; 2006, 17.23). Let A,B,C be non-empty Borel spaces,
D1(·) be an upper (lower) semicontinuous set-valued mapping from A to B and D2(·) be
an upper (lower) semicontinuous set-valued mapping from B to C. Then the composition

(D2 ◦D1)(x) =
⋃

y∈D1(x)
D2(y)

is an upper (lower) semicontinuous set-valued mapping from A to C.

Definition A.18. A set-valued mapping D(·) from R to A is called increasing if D(x) ⊆
D(y) for x ≤ y and decreasing if D(x) ⊇ D(y) for x ≤ y.

Lemma A.19. Let D(·) a set-valued mapping from R to A and {va}a∈A a family of
functions va : R→ R.

a) If D(·) is increasing and the functions {va}a∈A are decreasing, then the function

R 3 x 7→ inf
a∈D(x)

va(x)

is decreasing.
b) If D(·) is decreasing and the functions {va}a∈A are increasing, then the function

R 3 x 7→ inf
a∈D(x)

va(x)

is increasing.

Proof. For part a) let x ≤ y, then va(x) ≥ va(y) for every a ∈ A. Consequently,

inf
a∈D(x)

va(x) ≥ inf
a∈D(x)

va(y) ≥ inf
a∈D(y)

va(y).

Part b) follows analogously.

A.3. Optimal Measurable Selection

The following results on optimal measurable selection are based on Rieder (1978) with the
error outlined in Wagner (1980) taken into account. Let (E, E) and (A,A) be measurable
spaces. For a subset C ⊆ E × A we denote by pC = {x ∈ E : (x, a) ∈ C} the projection
onto E and by C(x) = {a ∈ A : (x, a) ∈ C} the x-section.

Definition A.20. A family L of subsets of E ×A is called selection class for (E ,A) if
(i) C ∈ L implies pC ∈ E
(ii) and every non-empty C ∈ L admits a measurable selection, i.e. there is a measurable

map d : pC → A with d(x) ∈ C(x) for all x ∈ pC.
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The map d is called measurable selector. The family {X×Y : X ∈ E , Y ⊆ A} is always a
selection class since it admits constant selectors. Henceforth, fix D ⊆ E×A and a selection
class L for (E ,A). Let u : D → R̄ and define v, w : pD → R̄ as

v(x) = inf
a∈D(x)

u(x, a) and w(x) = sup
a∈D(x)

u(x, a).

Definition A.21. Let ε > 0. A measurable selector d : pD → A is called
a) ε-minimizer of u if for all x ∈ pD

u(x, d(x)) ≤

v(x) + ε, if v(x) > −∞,

−1
ε , if v(x) = −∞,

and ε-maximizer of u if for all x ∈ pD

u(x, d(x)) ≥

w(x)− ε, if v(x) <∞,
1
ε , if v(x) =∞.

b) minimizer ormaximizer of u if for all x ∈ pD it holds u(x, d(x)) = v(x) or u(x, d(x)) =
w(x), respectively.

Theorem A.22 (Rieder; 1978, 3.2). If D ∈ L and

{(x, a) ∈ D : u(x, a) ≤ c} ∈ L for all c ∈ R,

then v is measurable and for every ε > 0 there exist an ε-minimizer. Replacing ≤ by ≥
yields the existence of an ε-maximizer.

Theorem A.23 (Rieder; 1978, 3.7). Let A be a separable metric space and A = B(A) the
Borel σ-algebra. If
(i) D ∈ L,
(ii) {(x, a) ∈ D : u(x, a) ≤ c} ∈ L for all c ∈ R,
(iii) {a ∈ D(x) : u(x, a) ≤ c} is compact for all c ∈ R, x ∈ pD,
then v is measurable and there exist a minimizer. Replacing ≤ by ≥ yields the existence of
a maximizer.

The following result is a special case.

Proposition A.24 (Hernández-Lerma and Lasserre; 1996, D.5). Let E and A be Borel
spaces, u measurable, u(x, ·) lower semicontinuous for each x ∈ E and E 3 x 7→ D(x)
compact-valued. Then v is measurable and there exists a measurable minimizer. Alterna-
tively, if u(x, ·) is upper semicontinuous for all x ∈ E, then w is measurable and there
exists a measurable maximizer.

The next Proposition makes stronger conclusions if certain continuity properties are
fulfilled.
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Proposition A.25 (Bäuerle and Rieder; 2011, 2.4.3). Let E and A be Borel spaces, u
lower semicontinuous and E 3 x 7→ D(x) upper semicontinuous and compact-valued.
Then v is lower semicontinuous and there exists a minimizer. Alternatively, if u is upper
semicontinuous on D, then w is upper semicontinuous and there exists a maximizer.

A.4. Minimax Theorem

An extended-real-valued function defined on the product of two convex subsets of real
vector spaces is called concave-convex if it is concave in the fist argument and convex in
the second. This property can be generalized to domains without linear structure. Let
X,Y be non-empty sets.

Definition A.26. A function f : X×Y → R̄ is called concave-convex-like if it is concavelike
in the first argument and convexlike in the second, i.e. if for every x1, x2 ∈ X and λ ∈ [0, 1]
there is an x3 ∈ X such that

λf(x1, y) + (1− λ)f(x2, y) ≤ f(x3, y) for all y ∈ Y,

and for all y1, y2 ∈ Y and λ ∈ [0, 1] there is an y3 ∈ Y such that

λf(x, y1) + (1− λ)f(x, y2) ≥ f(x, y3) for all x ∈ X.

Note that a concave–convex function is concave–convex-like. In the next theorem, we
implicitly require for semicontinuous functions that their domain is the subset of a metric
space.

Theorem A.27 (Sion; 1958, 4.1, 4.2). a) Let X be any set, Y compact and f : X ×
Y → R̄ concave-convex-like and lower semicontinuous in the second argument, then

sup
x∈X

inf
y∈Y

f(x, y) = inf
y∈Y

sup
x∈X

f(x, y).

b) Let X be compact, Y any set and f : X × Y → R̄ concave-convex-like and upper
semicontinuous in the first argument, then

sup
x∈X

inf
y∈Y

f(x, y) = inf
y∈Y

sup
x∈X

f(x, y).

For a detailed account of different minimax theorems see Chapter 2.3 in Barbu and
Precupanu (2012).

Remark A.28. The assumptions of Theorem A.27 a) imply that the infimum on both
sides is attained, since the supremum of a collection of lower semicontinuous functions is
lower semicontinuous (Lemma A.3). Likewise, in part b) the suprema are attained. If both
the infima and the suprema are attained, e.g. if both the conditions of parts a) and b) are
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fulfilled, the function f is said to satisfy the minimax equality

max
x∈X

min
y∈Y

f(x, y) = min
y∈Y

max
x∈X

f(x, y).

The minimax equality is related to the notion of a saddle point.

Definition A.29. A pair (x̃, ỹ) ∈ X × Y is a saddle point of the function f : X × Y → R̄,
if

f(x, ỹ) ≤ f(x̃, ỹ) ≤ f(x̃, y) for all (x, y) ∈ X × Y.

Lemma A.30 (Barbu and Precupanu; 2012, 2.105). A function f : X × Y → R̄ satisfies
the minimax equality if and only if it has a saddle point.

A.5. Miscellaneous

Lemma A.31. Let E be a non-empty set and u, v : E → R bounded functions. Then
a)

inf
x∈E

u(x)− inf
x∈E

v(x) ≤ sup
x∈E

u(x)− v(x),

b) ∣∣∣∣ inf
x∈E

u(x)− inf
x∈E

v(x)
∣∣∣∣ ≤ sup

x∈E
|u(x)− v(x)| .

c)
sup
x∈E

u(x)− sup
x∈E

v(x) ≤ sup
x∈E

u(x)− v(x),

d) ∣∣∣∣∣sup
x∈E

u(x)− sup
x∈E

v(x)
∣∣∣∣∣ ≤ sup

x∈E
|u(x)− v(x)| .

Proof. We only proof parts a) and b). The rest follows analogously.

a) From v = v − u+ u it follows

inf
x∈E

v(x) = inf
x∈E

v(x)− u(x) + u(x)

≥ inf
x∈E

v(x)− u(x) + inf
x∈E

u(x)

and by subtraction

inf
x∈E

v(x)− inf
x∈E

u(x) ≥ inf
x∈E

v(x)− u(x).

Multiplying this inequality with (−1) yields the assertion:

inf
x∈E

u(x)− inf
x∈E

v(x) ≤ − inf
x∈E

v(x)− u(x)

= sup
x∈E

u(x)− v(x).
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b) From part a) we have

inf
x∈E

u(x)− inf
x∈E

v(x) ≤ sup
x∈E

u(x)− v(x)

≤ sup
x∈E
|u(x)− v(x)| .

Interchanging the roles of u and v completes the proof.

Consider the space C(R,R) of continuous real valued functions on R endowed with the
metric

m(f, g) =
∞∑
j=1

2−j
max|t|≤j |f(t)− g(t)|

1 + max|t|≤j |f(t)− g(t)| .

m metricizes the topology of compact convergence on C(R,R), i.e. m(fn, f) → 0 if and
only if fn converges uniformly to f on every compact subset of R. We need the following
version of the Arzelà-Ascoli Theorem.

Theorem A.32 (Pugh; 2015, 4.18). A subset F ⊆ C(R,R) is relatively compact if and
only if
(i) {f(x) : f ∈ F} is bounded for all x ∈ R and
(ii) limδ→0 supf∈F supx,y∈{[−j,j]: |x−y|<δ} |f(x)− f(y)| = 0 for all j ∈ N.

Remark A.33. a) Theorem A.32 remains true in C(I,R), where I ⊆ R is any closed
interval. Regarding the metric m, the sequence {[−j, j]}j∈N can then be replaced by
any ascending sequence of subsets of I whose union is I.

b) The second condition of the theorem means that the familiy F is uniformly equicon-
tinuous. A common Lipschitz constant is sufficient.
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Complements of Measure and Probability
Theory

B.1. Integration

First, we state the most suitable version of Fatou’s Lemma for our purposes.

Theorem B.1 (Klenke; 2014, 4.21). Let (Ω,A, µ) be a measure space, v ∈ L1(Ω,A, µ).
For measurable functions v1, v2, . . . with vn ≥ v µ-a.e. (n ∈ N) it holds∫ (

lim inf
n→∞

vn
)

dµ ≤ lim inf
n→∞

∫
vn dµ.

Note that if µ is a probability measure, a constant lower bound is sufficient. In a similar
way, the classical setting of Tonelli’s Theorem with non-negative random variables can be
extended to quasi-integrable ones.

Theorem B.2. Let (Ωi,Ai, µi) be σ-finite measure spaces, i = 1, 2. Further, let u, v :
Ω1 × Ω2 → R̄ be measurable with respect to A1 ⊗A2 and u ∈ L1. If v ≥ u µ-a.e., then

ω1 7→
∫

Ω2
v(ω1, ω2) µ2(dω2) is A1-measurable,

ω2 7→
∫

Ω1
v(ω1, ω2) µ1(dω1) is A2-measurable,

and it holds ∫
Ω1×Ω2

v µ1 ⊗ µ2(dω) =
∫

Ω1

(∫
Ω2
v(ω1, ω2) µ2(dω2)

)
µ1(dω1)
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=
∫

Ω2

(∫
Ω1
v(ω1, ω2) µ1(dω1)

)
µ2(dω2).

Proof. Apply Tonelli’s/ Fubini’s theorem (Klenke; 2014, 14.16) to the non-negative function
v − u and add the finite value∫

Ω1

(∫
Ω2
u(ω1, ω2)µ2(dω2)

)
µ1(dω1)

on both sides.

Again, for probability measures constant lower bounds are sufficient. Finally, we need a
result to interchange series and integrals.

Theorem B.3 (Hinderer; 1970, A3). Let X1, X2, . . . be extended real-valued random
variables such that

∑∞
n=1 EX+

n <∞ or
∑∞
n=1 EX−n <∞. Then

a)
∑N
n=1Xn converges a.s. to a quasi-integrable random variable.

b)
∑N
n=1 EXn converges to

∑∞
n=1 EX+

n −
∑∞
n=1 EX−n as N →∞ and

∞∑
n=1

E[Xn] = E
[ ∞∑
n=1

Xn

]
.

B.2. Separability of Lebesgue Spaces

Let (Ω,A, µ) be a measure space with finite measure and define

d(A,B) = µ(A4B) = µ((A ∪B) \ (A ∩B)), A,B ∈ A.

Sets A,B ∈ A with differ only by a null set if and only if d(A,B) = 0. The collection of
equivalence classes A/µ endowed with d forms a metric space, the so called metric Boolean
algebra generated by (A, µ), cf. Bogachev (2007, 1.12(iii)).

Definition B.4. A finite measure µ is called separable if the metric space (A/µ, d) is
separable.

Lemma B.5 (Bogachev; 2007, 1.12.102). Let P be a probability measure on a measurable
space (Ω,A). If the σ-algebra A is countably generated, the probability measure P is
separable.

Lemma B.6 (Bogachev; 2007, 4.7.63). Let (Ω,A, µ) be a measure space with finite measure.
Then the Banach space Lp(Ω,A, µ), 1 ≤ p <∞, is separable if and only if µ is separable.

B.3. Quantiles

Definition B.7. Let FX be the distribution function of a real-valued random variable X.
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a) The (lower) quantile function of X is the left-continuous generalized inverse of FX

F−1
X (α) = q−X(α) = inf{x ∈ R : FX(x) ≥ α}, α ∈ (0, 1).

b) The upper quantile function of X is the right-continuous generalized inverse inverse
of FX

q+
X(α) = inf{x ∈ R : FX(x) > α}, α ∈ (0, 1).

It is standard in the literature that the short form quantile function refers to the lower
quantile function. The following properties can be found in Embrechts and Hofert (2013,
Prop. 1) and Föllmer and Schied (2016, A.3).

Lemma B.8. Let X be a real-valued random variable with distribution function FX , x ∈ R
and α ∈ (0, 1).

a) It holds q−x (α) ≤ q+
x (α) and they coincide Lebesgue a.e.

b) q−X is increasing, left-continuous and admits limits from the right.
c) q+

X is increasing, right-continuous and admits limits from the left.
d) It holds q−X(α) ≤ x⇔ α ≤ FX(x).
e) It holds q+

X(α) ≥ x⇔ α ≥ FX(x).
f) q−X(FX(x)) ≤ x ≤ q+

X(FX(x)).
g) α ≤ FX(q−X(α)) ≤ FX(q+

X(α)). If FX is continuous, then α = FX(q−X(α)) =
FX(q+

X(α)).
h) FX is strictly increasing if and only if both q−X and q+

X are continuous. In this case,
FX is invertible in the usual sense and q−X = q+

X is the inverse function.
i) FX is continuous if and only if both q−X and q+

X are strictly increasing.

Lemma B.9 (Dhaene et al.; 2002, Theorem 1). Let h : R → R be increasing and left-
continuous. Then

F−1
h(X)(α) = h

(
F−1
X (α)

)
, α ∈ (0, 1).

It is easy to see that q−X(U) ∼ q+
X(U) ∼ X for any U ∼ U(0, 1). The following result

shows that one can find a suitable U = UX such that equality in distribution strengthens to
almost sure equality. The random variable UX is referred to as (generalized) distributional
transform of X.

Lemma B.10 (Rüschendorf; 2009, 2.1). For any random variable X on an atomless
probability space there exists a random variable UX ∼ U(0, 1) such that

q−X(UX) = q+
X(UX) = X P-a.s.

Corollary B.11. Let X be a random variable and h : R→ R increasing and left-continuous.
Then X and h(X) have the same distributional transform.

The distributional transform is related to the following dependence concept for random
vectors.
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Definition B.12. Let X = (X1, . . . , Xn) be a random vector and let F−1
1 , . . . , F−1

n be the
quantile functions of its components. X is called comonotonic if there exists a random
variable U ∼ U(0, 1) such that

(X1, . . . , Xn) =
(
F−1

1 (U), . . . , F−1
n (U)

)
P-a.s.

Proposition B.13 (Rüschendorf; 2013, 2.14). Let X = (X1, . . . , Xn) be a random vector
with distribution function F . Then the following are equivalent.
(i) X is comonotonic.
(ii) F is the upper Fréchet-Hoeffding bound

F (x) = min{F1(x1), . . . , Fn(xn)}.

(iii) There is a random variable Z and increasing functions f1, . . . , fn such that

X = (f1(Z), . . . , fn(Z)) P-a.s.

(iv) For all i, j = 1, . . . , n and almost all ω, ω′ ∈ Ω it holds

Xi(ω) ≤ Xi(ω′)⇒ Xj(ω) ≤ Xj(ω′).
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