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ABSTRACT

Diseases caused by alterations of ionic concentrations are frequently observed challenges and play an important role in clinical practice. The
clinically established method for the diagnosis of electrolyte concentration imbalance is blood tests. A rapid and non-invasive point-of-care
method is yet needed. The electrocardiogram (ECG) could meet this need and becomes an established diagnostic tool allowing home moni-
toring of the electrolyte concentration also by wearable devices. In this review, we present the current state of potassium and calcium concen-
tration monitoring using the ECG and summarize results from previous work. Selected clinical studies are presented, supporting or
questioning the use of the ECG for the monitoring of electrolyte concentration imbalances. Differences in the findings from automatic moni-
toring studies are discussed, and current studies utilizing machine learning are presented demonstrating the potential of the deep learning
approach. Furthermore, we demonstrate the potential of computational modeling approaches to gain insight into the mechanisms of relevant
clinical findings and as a tool to obtain synthetic data for methodical improvements in monitoring approaches.

VC 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0018504

I. INTRODUCTION AND BACKGROUND

Impairment of potassium homeostasis is common and can be iat-
rogenic, for example, caused by the use of diuretic drugs or due to dis-
eases, e.g., chronic kidney disease (CKD), myocardial infarction, etc.1,2

Similar to potassium, the impairment of other electrolyte concentra-
tions is also highly relevant in clinical practice,1 and for all use cases, a
rapid non-invasive point-of-care (POC) diagnostic tool is desirable.
This could allow for early diagnosis and improvement of strategies to
optimize treatment and consequently improve patient outcomes in
emergency settings.1 Apart from an emergency setting, (clinical) stud-
ies could also benefit from a non-invasive, rapid, and cost-efficient
tool for diagnosis of electrolyte imbalance. Interesting examples in this

context are studies in haemodialysis (HD) patients. This patient popu-
lation is known to suffer from a 14-fold increased risk of dying from
sudden cardiac death (SCD) compared to patients with cardiovascular
diseases without known renal impairment.3 The reasons for this ele-
vated mortality risk are multi-factorial and not entirely clearly distin-
guishable, but factors such as fluid overload, long-standing elevated
blood pressure and cardiac strain, and electrolyte impairments are in
large part responsible. Complications such as tachy- and bradycardia
are frequently observed, not only during HD session but also during
the inter-dialytic intervals, in particular, during the first short interdia-
lytic interval and at the end of the long interdialytic interval when
patients are at home.4–6 The hypothesis of alterations in plasma elec-
trolyte concentrations being at least partly responsible for the
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increased death rate stands confirmed by much of the published
data.7–10 Since currently only blood sample assessment provides elec-
trolyte concentration values, a non-invasive diagnosis technique appli-
cable at the POC, at home (or even retrospectively with pre-existing
measurements), could allow for insight into the connection between
arrhythmia, including SCD, and the alterations of plasma electrolyte
concentrations.11 If the electrocardiogram (ECG) could be utilized for
plasma electrolyte concentration monitoring, a continuous or retro-
spective assessment of the plasma electrolyte concentration values
could also be possible. This idea is linked to the strong dependency of
plasma electrolytes (mainly potassium and calcium) that are involved
in the genesis of cardiomyocyte action potentials (APs) and ECG pat-
tern changes.12 Besides the usefulness in electrolyte monitoring, the
ease-of-use and ubiquitous availability of the ECG as a measuring
technique are of note. ECG is commonly employed and considered
well established in other diagnostic domains, where it is, for example,
common practice to monitor patients at home using Holter ECG mea-
surements. Moreover, a trend toward home monitoring with smart
devices, notably many of those with an ECG monitor functionality,
substantiates the attractiveness of this diagnostic monitoring tech-
nique, as pioneered by studies successfully using the ECG for the esti-
mation of electrolyte concentrations.13–15 Generally, HD patients are
not only of special interest due to their increased risk of SCD but also
as in this population, ECG data with concomitant assessments of elec-
trolyte concentrations seem relatively easy to obtain. Nevertheless, we
should keep in mind that the standard and benchmark method for
concentration measurements, i.e., blood testing, is associated with con-
siderable uncertainty as well.16 Until now, we only considered electro-
lyte concentration estimation without more precisely defining what
estimation implies in this field. Estimation of plasma electrolyte con-
centrations describes the application of either regression or classifica-
tion to detect an impaired electrolyte homeostasis. When performing
regression, we are interested in the exact plasma electrolyte concentra-
tion value, i.e., we are quantifying. We can measure mean errors and
standard deviation of errors in mmol/l for every used estimation
method. With classification, however, we are only interested in a diag-
nosis; we are not (e.g., “hyperkalemia”), or only roughly (e.g., “severe
hyperkalemia”), quantifying the concentration. In the latter case, the
greater interest is in sensitivity and specificity rather than performance

indices. We will discuss both approaches and provide typical applica-
tions for each.

This review article is written with a particular focus on potassium
and calcium concentration imbalances, mainly because these two ions
have been considered highly relevant in recent clinical, modeling, and
reconstruction studies. The effects of these ion concentrations on ECG
patterns have been reviewed previously.17–23 We provide a focus on
how computational models can be used to explain and discuss theories
on the underlying mechanisms of ECG changes in relationship to elec-
trolyte disorders. Moreover, we summarize how findings from clinical
and modeling studies were used to reconstruct potassium concentra-
tions from the ECG (Fig. 1).

A. Structure of this article

In Sec. II, we focus on recent studies with more than 60 subjects
investigating the incidence of ECG feature changes caused by concen-
tration shifts. For most studies, the ECGs were evaluated manually.
We also consider studies proposing new feature extraction approaches
that will potentially be relevant for automatic reconstruction in the
future. In Sec. III, we summarize how modeling can help to under-
stand certain questions and effects that are observed clinically. In
Sec. IV, the actual assessment of electrolyte concentrations from ECG
analysis is reviewed. First, it is discussed if automatic reconstruction is
feasible. Afterward, studies that attempted to reconstruct values or to
classify the concentration disorder manually are presented. Further,
we report on recent advances in automatic reconstruction and classifi-
cation. In the final section, we point out open questions and propose
further steps to take from a macroscopic view of the field. The general
structure is shown in Fig. 1.

II. CLINICAL IMPACT OF ECG CHANGES CAUSED BY
ELECTROLYTE PLASMA CONCENTRATION
MODIFICATIONS

Over the last few years, many clinical publications have been pre-
senting ECG changes caused by electrolyte imbalances (partly)
observed for decades.17–23 Typical changes caused by potassium and
calcium imbalances are reported for the P wave, QRS complex, ST seg-
ment, T wave, and possible U waves (some exemplary features captur-
ing these changes are shown in Fig. 2). However, the ECG changes

FIG. 1. Each section of this work can be
attributed to at least one of the topics in
the green boxes. Although they are sepa-
rated in this diagram, they are closely con-
nected and depend on each other. That is
why collaboration between the fields is of
paramount importance.
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resulting from these studies, the incidence of these changes, and theo-
ries behind them are still discussed controversially as described in the
Subsection IIA. Apart from the single beat features, non-obvious
rhythmical (meta) features such as heart rate variability (HRV) param-
eters are studied as well. In this section, we do not aim to summarize
all the known ECG changes regarding morphological and temporal
features due to electrolyte concentration changes as these have been
reviewed elsewhere.17–23 We rather focus on the recent discussion
regarding the incidence of feature changes in large clinical studies and
the approaches for capturing features apart from the common tempo-
ral and morphological ones as well as on the special interest in the QT
interval. We also include studies comparing the pre- and post-dialysis
state of a patient because of the changes in potassium concentrations
during most of the treatments.

A. ECG changes as a diagnostic tool

Over the last few years, studies have discussed the incidence of
electrolyte change-induced ECG abnormalities and the idea of using
the ECG as a monitoring tool to prevent adverse outcomes. Works
considered in this section comprise more than 60 patients each and
are based on manual feature detection.

In a recent meta-analysis, Noordam et al. evaluated five ECG
intervals with respect to their dependency (among others) on potassium
and calcium plasma concentrations:24 QT, QRS, PR, RR, and JT interval
(being the difference between QT and QRS). The study included

153 014 individuals from 33 studies. They showed that potassium and
calcium plasma concentrations influenced all these ECG features; how-
ever, in the case of calcium concentration variation, RR, QT, and JT
intervals were influenced the strongest. Regarding potassium concentra-
tion variations, QRS interval changes were the only being more promi-
nent than those for calcium. Both ions influenced all ECG features,
which will be relevant for estimation. As the authors admit, causality
was not attempted to be determined in their meta-analysis. Further
drawbacks were discussed by Olshansky in a letter.25 They state that
with such huge numbers of analyzed patients, which can be seen as a
strength of this study at first sight, even small changes in the features
become significant. This is in accordance with conclusions in the work
of Khalilzadeh and Tasci.26 When interpreting the results, one needs to
bear in mind that even if significant, small changes (the found b coeffi-
cient quantifying the influence of potassium variations on the QT inter-
val was approximately 2ms/mmol, for calcium variations 15–20ms/
mmol, both significant) might be clinically irrelevant since it will be
impossible to capture them with sufficient accuracy and robustness.

Apart from interval changes, there are typical morphological fea-
tures described in the literature, especially in the case of potassium var-
iation. An et al. studied 923 patients with severe hyperkalemia.27

Spiked, tall T waves with an increase in T wave amplitude as well as
sine wave-shaped QRS complexes were reported in hyperkalemic
patients. However, these changes only occurred in 36.7% of the
patients. This was little surprising as the most common underlying

FIG. 2. Typical ECG features evaluated to determine concentration changes. The figure visualizes only a subset of 33 features that were analyzed in this work. Reprinted with
permission from Dillon et al., J. Electrocardiol. 48(1), 12–18 (2015). Copyright 2015, Elsevier.

APL Bioengineering REVIEW scitation.org/journal/apb

APL Bioeng. 4, 041501 (2020); doi: 10.1063/5.0018504 4, 041501-3

VC Author(s) 2020

https://scitation.org/journal/apb


clinical condition was chronic kidney disease (CKD); it is well known
that patients with CKD often present with a reduced incidence of ECG
modifications during elevated plasma potassium concentrations as
reported in a study of 74 subjects by Aslam et al.28 Similar findings
were reported by Montague et al.,29 where in 90 patients (48% with
chronic renal failure), no diagnostic threshold could be established for
changes in T wave amplitude and T wave peaking as a means to distin-
guish between normo- and hyperkalemia. Of note, however, T wave
peaking was measured subjectively, and thus, intra- and inter-observer
variability might have affected the results. Consistently, Yoon et al.
reported an analysis of 124 238 ECGs with a corresponding concentra-
tion measurement within five minutes from ECG acquisition30 and
concluded that manual ECG diagnosis was not capable of predicting
the serum potassium level. Notably, they used T wave amplitude, T
wave right slope, and the amplitude normalized slope for reconstruc-
tion (Sec. IVC) and only considered measurements with consistent
annotation from two independent experts.

Finally, a study comprising 62 HD patients, conducted by Astan
et al.,31 reports an increase in the following parameters: P wave ampli-
tude, QRS amplitude, QRS duration, QTc dispersion, sum of ampli-
tudes of the S peak in V1 and of the R peak in V5, and total QRS
amplitude from pre- to post-HD session, where serum potassium is sig-
nificantly reduced in a majority of patients. Additionally, a decrease in
the T wave amplitude and QTc duration was shown. In this study, P
and QRS amplitude changes were hypothesized to be caused by a vol-
ume loss, which lead to an impedance increase and, therefore, to an
increase in both amplitudes. This theory was substantiated on the one
hand by the fact that patients with edema had a lower amplitude
change. On the other hand, Kinoshita et al. hypothesized that while
QRS changes could also be caused by the extracellular volume change,32

T wave amplitude decreased after HD rather due to other factors com-
pared to a direct effect of the volume loss, e.g., a concentration shift.

The hypotheses of Astan and Kinoshita suggest reasons for why
the use of the ECG for concentration monitoring in a clinical setting
can create equivocal and sometimes even contradictory results. Cross-
dependencies from other effects may impede the adequate detection of
concentration changes with the ECG. Whereas some authors of the
presented studies took a more skeptical stand toward the interpreta-
tion of ECG changes,31,32 even further complicated by inter-annotator
variability, mainly, the study reported by Noordam et al.24 promoted a
possible use case for the application of ECGs to monitor electrolyte
changes. Picking up the problem of inter-annotator variability, the
study by Yoon et al.30 tried to increase the objectivity of ECG assess-
ments by incorporating rating by two annotators, morphological fea-
tures like the slope were only determined manually and are, therefore,
prone to intra- and inter-annotator variability. A clear view on the
problem of ECG-based reconstruction of ion concentrations cannot be
conveyed from the presented studies as many of them suffer from
drawbacks regarding objectivity and reproducibility, which is, of
course, hard to guarantee in a clinical context. However, one should
keep in mind that semi-automatic or fully automatic approaches can
overcome drawbacks from these studies at least in terms of consis-
tency, robustness, transparency, and reproducibility.

B. ECG features related to cardiac rhythm

The feature extraction methods from the studies mentioned
before comprised the analysis of single waves regarding their

morphology. Apart from that, it is also possible to analyze the time
series of beats yielding rhythmical features. This was done by Lerma
et al.,33 who employed Poincar�e plot analysis to circumvent the draw-
backs of classical HRV features capturing only the magnitude of varia-
tions. Their study comprised ten healthy subjects and ten HD patients.
This analysis technique reveals non-linear structures in the time series.
Exactly, these structures were found to be reduced in HD patients after
dialysis compared to the pre-dialysis state. The loss of this non-linear
behavior of HRV could be interpreted as a reduced capability of the
patients to respond to changed conditions. Risk stratification using
HRV was reported by Chen et al.34 They compared the dynamics of
HRV parameters before and after HD in 182 patients. In a follow-up,
they repeated this comparison and analyzed if the HRV change from
pre- to post-dialysis is associated with the risk of death based on the
data of 29 deaths that occurred during the follow-up period. Four
HRV parameters [very low frequency band power (VLF), low fre-
quency band power divided by total power VLF in percent (LF%),
high frequency band power divided total power VLF in percent
(HF%), and low frequency band power divided by high frequency
band power (LF/HF)] significantly changed comparing pre- and post-
HD settings. For one parameter (DLF%, pre- vs post-HD session),
they were able to establish a prediction for total and cardiovascular
mortality. To overcome the drawback of HRV being dependent on
several beats, Gonz�alez et al.35 proposed using recurrence plot analysis
to capture changes also in short-time ECGs. They were able to show in
a study with 19 HD patients and 20 healthy subjects that HRV dynam-
ics were different between these two groups.

All these studies indicate that rhythmical features change
between pre- and post-HD settings. Comparing pre- and post-HD set-
tings, the plasma electrolyte concentration usually changes, too. The
connection between rhythm and a change of plasma electrolyte con-
centrations was also reported by El-Sherif and Turitto.23 Therefore,
rhythmical features are worth to be considered during estimation as
they might deliver additional information about the dynamics of the
rhythm. To this point, however, the parameters discussed in this sec-
tion were not used in the studies presented in Sec. IV and still need to
be proven to deliver an additional benefit to the problem of concentra-
tion estimation in clinical practice.

C. QT interval changes and electrolyte concentration
imbalances

Generally, the QT interval is of special interest for researchers
and clinicians since a QT interval prolongation is known to correlate
with arrhythmia and SCD.3,36 As stated before, the SCD rate is
increased in HD patients suffering from frequent electrolyte plasma
concentration imbalances and the question remains if there is a direct
connection between concentration changes, SCD occurrence, and
changes of the QT interval.

Kim et al. screened 330 HD patients in the pre-dialysis phase and
showed that the QT adjusted for heart rate (QTc) prolongation,
observed in 47% of the patients, was related to the changed calcium
and potassium plasma concentration.37 A one year follow-up exami-
nation revealed that 31% of patients had persistent QTc prolongation
and the association with the changed plasma electrolyte concentrations
of calcium and potassium still existed. The authors concluded that
these concentrations should be closely monitored to allow us to com-
pensate the risk for QTc prolongation. If the QT interval change was
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prevented, arrhythmia risk could be, too. Consequently, the risk for
SCD would be reduced as well.36,38

The influence of HD vintage on the QTc interval was studied by
Matsumoto et al.39 in ECGs of 102 HD patients and a control group of
68 age-matched patients, analyzed at HD initiation and one, four, and
seven years later. The average QTc after four and seven years in the
HD group was significantly longer than in the first year after HD initi-
ation, whereas in the control group, such a relation could not be
observed. This fact substantiates the need for screening QTc intervals
in HD patients as already suggested by Kim et al. Additionally, the
corrected calcium level and presence of diabetes were associated with
longer QTc, which is of particular interest for calcium concentration
estimation and for SCD risk stratification. In a study comprising 29
patients, the RR-QT ratio varied during HD.40 Moreover, changes in
the plasma calcium concentration during HD sessions were inversely
correlated with the QTc duration. The same authors showed that dif-
ferent combinations of potassium and calcium concentrations in the
dialysate lead to different modifications of the QT interval duration.41

This finding was also confirmed by Severi et al.42

Apart from QT and QTc, QTc dispersion was considered in the
study by Cupisti et al. comprising ten uremic patients.43 To show the
influence of the potassium removal rate on QTc dispersion, dialysates
and ultrafiltration rates were changed during HD sessions. The authors
concluded that QTc dispersion increased with lower potassium plasma
levels in connection with the ultrafiltration rate. Thus, not only the
absolute concentration seems to be relevant but also the rate of change.

Although most clinical studies focus on HD, peritoneal dialysis
(PD) also showed an influence on QTc similar to those that occur
during an HD session.44 In 15 PD patients, two manual PD exchanges
were performed with different calcium dialysate concentrations. The
potassium concentration was inversely correlated with QTc changes
(r¼�0.81). Computer models confirmed this finding. However, the
changes in the QT interval observed during a PD exchange were less
important than those observed during an HD session. The authors
conclude: as significant QT interval changes could be correlated with
an increased risk of arrhythmia, PD should be preferred to HD in end-
stage renal disease (ESRD) patients at high cardiovascular risk.

QT, QTc, and QT dispersion seem to be closely related to potas-
sium and calcium plasma concentrations or, at least for potassium,
their rate of change, which can be influenced in HD patients also by
the dialysate potassium concentration. As QT interval changes are
associated with SCD, an optimized monitoring of plasma electrolyte
concentrations could be a tool to fight the high mortality rate in HD
patients with electrolyte imbalance. Regarding the actual ECG-based
concentration monitoring, the relation between the QT interval and
the ionic concentration could be exploited. Until today, no study
directly reconstructed potassium concentrations from the changes in
the QT interval, which could be connected to the many other influenc-
ing factors on the QT interval (e.g., HD vintage). Nevertheless, QT
changes were shown to be sensitive to concentration changes, leading
to an additional eligible feature for automatic reconstruction provided
that other influencing factors can be corrected.

D. Model parameters as robust ECG-derived features

On the way to automatic feature evaluation, robustness and preci-
sion are of greatest importance. However, at all levels, from beat anno-
tation to feature calculation, errors are possible. Specifically, ECG wave

boundaries (beginning and end) and the way of capturing morphologi-
cal variation are not always as robust as expected. Methods trying to
solve the problem of detecting T wave boundaries and features have
been sought: Rodrigues et al., for example, utilized the parameters of
model functions for the quantification of T wave morphology
changes.45 To account for the asymmetrical shape of T waves, the sum
of a mirrored lognormal curve and a Gaussian function was fitted, and
so the analysis of the T wave results in the computation of two parame-
ters for one functional term. In this way, one takes advantage of the fact
that, by fitting a predefined curve, a priori knowledge about the shape
of the T wave can be utilized. Furthermore, it reduces the variations to
the expected shape of the wave, which renders the evaluations more
robust. All the four parameters, which are parameterizing the two
model functions, were then used to assess T wave peakedness combin-
ing them to one parameter, which was shown to qualitatively change
with changes in the serum potassium concentration. However, no
quantification, e.g., by calculating correlation values, was conducted.
Very similarly, the method of T wave warping was recently presented
by Palmieri et al.46 The idea behind it can be summarized as follows:
two waves are different if a lot of warping of one is needed to fit the sec-
ond. The measured degree of warping, i.e., the difference of the waves,
with respect to a patient-specific mean wave can be correlated with the
serum potassium concentration change. This led to median correlation
values of 0.9 (interquartile range 0.3) in a study with twelve patients.

Both approaches presented in this section might be a great step
toward robust feature extraction having the potential to be applicable
for serum potassium concentration estimation from the ECG as they
were explicitly developed for this purpose. Nonetheless, the methods
need to be validated in larger cohorts to be finally translated to clinical
practice.

III. MODELING ELECTROLYTE DISORDERS

As described in Sec. II, patients exhibit heterogeneous ECG
changes in response to electrolyte concentration changes. Large-scale
studies are required to draw robust conclusions on the reliability of the
ECG as a tool for concentration estimation. However, it is impossible
to exclude every confounding factor to fully understand underlying
causality. Computational modeling, however, offers a possibility to
minimize the effect of uncontrollable influences. Here, we have the
opportunity to adjust analyses for parameters and observe their spe-
cific influences under controlled conditions. Furthermore, modeling
may enable us to non-invasively study influences of diseases, anatomi-
cal variations, etc. One should keep in mind that published models
were built for a certain purpose and are not always applicable to new
problems. They usually need to be fitted to the application. The pro-
posed models for plasma electrolyte concentration change simulation
are summarized in Subsection IIIA. We focus mainly on the results
obtained from models regarding electrolyte concentration-induced
modifications in the ECG. Works with a focus on the actual optimiza-
tion process, as, e.g., the work of Carro et al.,47 are not discussed. In
Subsection III B, we present application examples of modeling techni-
ques to optimize signal processing and reconstruction methods in the
field of plasma electrolyte concentration estimation.

A. Modeling as a means to understand phenomena

Modeling can be used to confirm and mechanistically underpin
empirical findings, as it was done in the aforementioned studies by
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Severi et al.42 and Genovesi et al.44 In both works, a ventricular action
potential (AP) model (a modified ten Tusscher et al.48 and the more
recent O’Hara et al.model,49 respectively) was used to capture cardiac
repolarization changes caused by dialysis observed as QT interval
changes in the ECG of a patient cohort. In both cases, the AP duration
changed when electrolyte concentrations were changed according to
the alterations observed in patients. The simulation results were in line
with the clinically observed QT changes and were used to substantiate
the findings and hypotheses of the cause for the observed phenomena.
Modeling can also help to investigate the question of contradictory
inter-patient feature changes for an electrolyte disorder. The influence
of transmural heterogeneity on T wave features was shown by Bukhari
et al.50 The group quantified how surface ECG features present for 19
different transmural distributions of endo-, mid-, and epi-cardial cells.
The authors report that a different distribution alone can lead to differ-
ences in the features. This could partly explain different findings in
study populations as we expect variability of spatial ion channel distri-
bution in different patients.51 As a last example, modeling can be used
for early hypothesis testing. Both tachy- and bradycardia are observed
in the interdialytic phase of HD patients. As Loewe et al. showed with
a human sinus node cell model, hypocalcemia has a marked effect on
the excitation rate of the sinus node.10 With the decreasing calcium
concentration, the heart rate decreased, too. This offers a possible
explanation for the observed bradycardia sudden death events in HD
patients. As pronounced inter-species differences in the response to
hypocalcemia exist,52 a human study is strongly recommended. Here
again, ECG-based electrolyte monitoring could facilitate such studies.

From the presented studies, we can appreciate how modeling can
be utilized to gain mechanistic insight into clinical findings, validate
them, and setup new hypotheses. We consider modeling and simulat-
ing a very promising and valuable approach to follow when evaluating
studies and planning future experiments. This is also of special interest
for ECG-based concentration estimation. Potential features can be
found and explained. As well, cross-dependencies of features (e.g., as
already explained with the QT interval) with other diseases can easily
be identified and in a further step corrected during concentration
estimation.

B. Modeling to optimize methods

Modeling, however, can be used not only for the retrospective
analysis of findings but also to generate hypotheses. The model of
O’Hara et al. was used by Kharche et al. to study the influence of the
extracellular potassium concentration on APs and on a pseudo-ECG.53

However, appropriate AP changes caused by calcium modifications
are not reproducible with the model since calcium-dependent inactiva-
tion of the L-type calcium channel is not strong enough.54 Severi et al.
found that many of the most popular cardiac cellular models were not
able to model these calcium concentration-induced AP changes.55

Thus, Bartolucci et al. proposed a novel model of human ventricular
AP to account for this problem.56 L-type calcium channels, exchang-
ers, diffusion, and further currents were refined, and the adapted
model faithfully reproduces AP shortening caused upon increased cal-
cium concentration. Himeno et al. proposed a cell model with refined
calcium handling.57 In contrast to the model of O’Hara et al., which
served as the basis, the model of Himeno et al. predicts AP shortening
based on the extracellular calcium concentration increase,57 which is
in line with clinical and experimental findings and particularly

important for studying the influence of a calcium concentration
change. To reproduce the repolarization change on the ECG level
appropriately, model extensions were required since the proposed
method is single cell only. Loewe et al. proposed a heterogeneous for-
mulation of the model for the simulation of body surface ECGs.58 The
introduction of epi- and M-formulations and an apico-basal gradient
for the IKs current (as described by Keller et al.59) paved the way for
ECG simulation and a realistic change of the QT interval dependent
on the calcium concentration change. A more detailed analysis of the
changes was done by Hern�andez-Mesa et al. regarding AP and ECG
features.60 Here, the authors captured changes of five AP and twelve
ECG features, all calculated automatically. Several temporal and mor-
phological AP and ECG features showed changes, e.g., an increase in
the calcium concentrations resulted in an AP duration decrease (as
described in Ref. 61) and an ST-segment amplitude increase in the sur-
face ECG (as clinically observed in Refs. 61–63). These changes could
be a basis for ion concentration reconstruction. The simulated ECGs
by Hern�andez-Mesa et al. can be used not only for assessing the
concentration-induced changes in AP and ECG but also to improve
signal processing methods. Hern�andez-Mesa et al. studied the optimal
ECG leads for feature extraction regarding a following reconstruc-
tion.64 During automatic analysis, this is usually overcome by using
lead transforms like principal component analysis (PCA). For two sim-
ple exemplary reconstruction methods, the choice of a particular stan-
dard lead or transformed lead influenced the concentration estimation
performance for calcium and potassium. Standard leads were perform-
ing well only in the case of noise-free signals. When noise was added
to the signals, PCA improved the result dramatically due to its filtering
properties. Lead transform also influenced the feature concentration
relationship, e.g., changing it from nearly linear (good results with a
linear fit) to a non-linear dependence (poor results with a linear fit).

The presented examples show the quality and potential of model-
ing being an enabler for methodological improvement, e.g., regarding
feature determination, preprocessing, or finding the optimal work-flow
for concentration estimation. Using those optimizedmethods, the accu-
racy of concentration estimation methods can further be improved.

IV. QUANTIFICATION AND CLASSIFICATION OF
CONCENTRATION DISORDERS FROM THE ECG

After clinical trials based on manual feature extraction presented
in Sec. II raised doubts whether the ECG is an appropriate readout for
concentration monitoring, this needs to be re-evaluated. Works on
evaluating the feasibility of automatic concentration estimation will be
presented in Subsection IVA. The reconstruction of calcium was only
performed on simulated data so far. These proof-of-concept studies
are described in Subsection IVA. Section IVB presents earlier
attempts using manual or semi-automatic potassium estimation
approaches, which is particularly interesting to be able to benchmark
the automatic approaches that are presented in Sec. IVC.

A. Feasibility and limits of automatic reconstruction

Extensive feature analysis was performed by Dillon et al. to assess
the potential of the ECG for plasma electrolyte concentration recon-
struction.65 The researchers investigated whether small changes in the
plasma potassium concentrations were quantifiable in available ECG
measurements using one baseline measurement per patient and
whether estimation could be applicable in a clinical context. 12-lead
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ECG templates from twelve HD patients were used to calculate the
Akaike Information Criterion (AIC) for ranking fitted linear mixed
models utilizing five features across all leads. The features were T
downslope, T amplitude, the center of gravity of the T wave and of the
last fourth of the T wave, and the ratio between the T wave and R peak
amplitude. The lowest overall AIC rank (i.e., showing the best feature
concentration relation) was found in V4. However, as the authors
state, leads were not statistically different. Across all features, the T
downslope was the parameter showing the highest dependence on the
plasma potassium concentration, followed by the two center of gravity
features. Both amplitude features provided a significantly different
(comparing different patients) regression line slope, meaning that the
remaining features might be more appropriate for a patient-
independent fitting. By applying fuzzy clustering to a reduced set of
PCA coefficients of each ECG, Dillon et al. evaluated the ECG varia-
tions independent of calculated features. The authors found 0.2mmol/
l as the smallest detectable change.

The issue of calcium concentration estimation was addressed in a
multi-scale simulation study66 based on the cellular model of Himeno
et al.,57 extending a previous work67 based on the ten models of ten
Tusscher and Panfilov,68 with the former being a more realistic model
regarding the intracellular calcium handling. 71 simulated 12-lead
ECGs with different calcium and potassium concentrations were used
to consider cross-dependencies between both electrolyte changes.
Following a lead reduction technique transforming the eight indepen-
dent standard ECG leads into the direction of maximum T wave
amplitude, ten single beat features were extracted and subsequently
reduced using canonical correlation analysis: T amplitude, T upslope,
the energy of the first half of the T wave (normalized to the energy of
the whole T wave) and the ratio between R peak energy (signal energy
of the R peak) and R peak amplitude, and the ST center (measuring an
ST change) were identified as the five most linearly independent fea-
tures. To prevent overfitting, an artificial neural network (ANN) with
regularization and only four neurons was used for reconstruction
being able to fit highly non-linear relationships in arbitrary dimen-
sional spaces. Using the selected features, the potassium estimation
errors were �0.016 0.14mmol/l in the noise-free case and
�0.036 0.46mmol/l in the case of distorted simulated ECG beats
(30 dB signal-to-noise ratio). For calcium, the errors were
0.016 0.11mmol/l and 0.026 0.17mmol/l, respectively. To the best
of our knowledge, this is the first study representing a proof-of-con-
cept of calcium concentration reconstruction.

The presented studies underline feasibility and limits of the ECG-
based concentration estimation. For potassium concentration estima-
tion, a change as small as 0.2mmol/l seems to be detectable in recorded
ECGs. For calcium concentration estimation, only simulated data
were evaluated, suggesting the general feasibility of the method.
Nevertheless, clinical ECGs need to be analyzed to finally proof the per-
formance of the method. For this purpose, only human ECGs showing
calcium concentration changes of more than 0.2mmol/l would be of
values since effects can vary among species.52

B. Manual and semi-automatic approaches

Early approaches to reconstruct concentrations or diagnose
potassium disorders were mostly based on manual evaluations of the
ECG. Frohnert et al.69 evaluated ECG changes in 16 patients during
HD. Systematically, they measured RR, PR, QU, and QT intervals, T

and P wave duration and amplitudes, the amplitude of S, R, U waves,
and Ton�Tpeak times, ST change, and T75% times (i.e., the time point
of 75% increase/decrease in T wave amplitude). They derived a for-
mula for the calculation of the potassium concentrations from the T
wave amplitude and T maximum time. This was presumably the first
attempt to systematically estimate plasma potassium concentrations
based on ECG measurements, however, with manual feature determi-
nation and without performance evaluation. The model was built with
all the available data, i.e., no independent validation was performed.

Another early study was published by Johansson and Larsson
analyzing two ECG features for diagnosing hypokalemia.70 They iden-
tified the sum of ST depression and U wave amplitude in II and V3 as
the most relevant features in a cohort of 22 hypokalemic patients.
Interestingly, a correction by subtraction of values during normokale-
mia of the respective patient was performed to account for inter-
patient variability. Accurate prediction of mild hypokalemia
(2.7–3.4mmol/l) appeared impossible with the proposed method. In
this early work, the need—at least for the chosen feature combina-
tion—for a patient-specific model was already visible. This is mostly
not considered, especially in the studies discussed in Sec. II.

Wrenn et al. evaluated the ability of physicians to detect hyperka-
lemia just from the ECG.71 In their study comprising 220 patients, two
annotators were involved, and sensitivity, specificity, and positive and
negative predictive values (PPV/NPV) were computed. The results
(best result for each parameter separately) were a sensitivity of 0.43, a
PPV of 0.65, a specificity of 0.86, and a NPV of 0.69. The calculation
of those standard classification performance indices is notable and
generally boosts the impact of a study since such performance parame-
ters make studies and methods comparable.

Very similar to the study by Wrenn et al. and aiming at expand-
ing the work of Frohnert et al. to non-HD patients, Velagapudi et al.
conducted a study trying to diagnose hyperkalemic patients.72 They
used the T wave slope and T wave and QRS duration to build a regres-
sion model (coefficients were provided) for potassium concentration
estimation. Features were determined manually in 84 patients (236
ECGs) for training and 23 patients (97 ECGs) for testing. Receiver
operating characteristic (ROC) curve analysis revealed a maximum
sensitivity (74%) and specificity (76%) product at 5.75mmol/l, and the
equilibrium point was at 5.74mmol/l (both sensitivity and specificity
74%). Interestingly, this decision threshold is different from the estab-
lished intervals for normo- and hyperkalemia (Sec. IVC, Table I). The
area under the ROC curve (AUC) was 0.783. However, the authors
give two sets of performance values for the test set (they call it the vali-
dation set). It seems that the first mentioned set of values is the ones
from the training set (compare paper’s supplement72).

Regolisti et al. utilized manually determined ECG features and
used them to quantify serum potassium levels and to classify hyperka-
lemic ECGs.73 Using the Bayesian information criterion and leave-
one-out cross-validation, they selected two out of 28 categorical and
continuous features. Some were evaluated subjectively, like the peaked-
ness of the T wave. The root mean squared error was 0.96mmol/l using
linear regression of T wave amplitude and a categorical offset term in
the case of the use of diuretics. Logistic regression was used to classify
hyperkalemia with the same inputs as before. They achieved a ROC-
AUC of 0.74.

In this section, we gave an overview on manual and semi-
automatic approaches for the detection of concentration disorders
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with the ECG. Over time, standard classification benchmark parame-
ters were also applied in the clinical studies. As an example, the highest
sensitivity among the presented studies was 0.74 with a corresponding
specificity of 0.76 and a ROC-AUC of 0.783.72 Using these measures
makes the studies comparable to the ones presented in Sec. IVC. We
will see that results presented here are already in the range of the stud-
ies utilizing automatic approaches (Table I).

C. Automatic approaches

The next step is of course automatic diagnosis (classification,
Table I) and quantification (regression, Table II) of electrolyte disor-
ders. The two main approaches for solving the problem are summa-
rized in Fig. 3. We can distinguish between methods relying on hand-
crafted features and subsequent model creation on the one hand and
deep learning methods where feature extraction is inherently inte-
grated in the model creation on the other hand. Compared to the
approaches in the last section, works in this section do not rely on
manual feature extraction. In 2003, Wu et al. used a two-stage artificial
neural network for hyperkalemia classification.74 The P wave ampli-
tude and duration in lead II, PR interval, QTc, and QRS complex
width were the inputs for the first stage and T wave amplitudes and
widths from V1 to V6 for the second stage. Thus, a total of 16 features
was used and yielded an accuracy of 65.5%, a sensitivity of 60%, and a

specificity of 65% in a patient cohort with 30 normokalemic and 30
hyperkalemic patients. However, no information regarding the valida-
tion technique is provided, and so overfitting cannot be excluded. In
particular, the rather small number of samples (patients) used with 16
features paired with a complex model (in total 200 hidden neurons in
the networks) is likely to be prone to overfitting.76 Although the given
sensitivity is better than that in the study by Wrenn et al.,71 specificity
is worse, which could be a result of overfitting. In a follow-up study,
Tzeng et al. decreased the number of used features and also chose a
less complex model.75 97 cases, of which 41 were hyperkalemic, were
used to train a two-stage k-mean classifier. Two T wave volume fea-
tures obtained from limb and chest leads were fed to the first stage and
PR interval and QT interval and QRS complex width to the second.
Interestingly, the classification was based on four classes with three of
them representing hyperkalemia and one representing normokalemia.
This might underline the different phenotypes of hyperkalemia since it
was not possible to aggregate the hyperkalemia class clusters in the fea-
ture space to one connected cluster. The sensitivity increased com-
pared to Wu et al.74 to 0.85 and specificity to 0.79. Again, no
information regarding cross-validation to prevent overfitting was
given. Nevertheless, model complexity was decreased, which is always
recommended for small sample sizes.76,77 In contrast to the aforemen-
tioned works, the studies by Corsi and Severi et al. systematically eval-
uated the estimation of potassium concentration values instead of

TABLE I. Automatic classification methods for dyskalemia. As the methods by Galloway were evaluated on three different datasets from three different hospitals, intervals of the
respective evaluation method are given. Furthermore, they tuned classification thresholds by two different approaches. First, they chose the equilibrium point of sensitivity and
specificity (lines three and four). The evaluation with the threshold determined at a sensitivity of 0.9 is denoted by an S in the first column. The different classification tasks (CT)
are given by: K "a hyperkalemia (>5.3 mmol/l), K "b hyperkalemia (>5.5 mmol/l), and K# hypokalemia (<3.5 mmol/l). ANN: artificial neural network, CNN: convolutional neural
network, accuracy in %, Se: sensitivity in %, Sp: specificity in %, PPV/NPV: positive/negative predictive value in %, ROC-AUC: area under receiver operating characteristic
curve, NPat: number of patients, and n/a: not available/given.

Work CT Lead (s) Features Model Accuracy Se Sp PPV NPV ROC-AUC NPat

Wu et al.74 K "a 12-Lead TA, PA, PR, ANN 62.5 60 65 n/a n/a n/a 50
QTc, QRSw

Tzeng et al.75 K "a 12-Lead Tvol, PR, K-means n/a 85 79 n/a n/a n/a 97
QT, QRSw

Galloway et al.14 K "b I, II CNN CNN 76.1–80.4 78.1–80.5 75.2–81.3 13.8–18.1 97.6–98.5 0.85–0.88 61 965
Galloway et al.14 K "b I, II, V3, V5 CNN CNN 77.4–82.6 81.3–84.0 77.1–84.2 11.0–15.4 98.9–99.4 0.88–0.90 61 965
Galloway et al.14,S K "b I, II CNN CNN 57.8–64.2 88.9–91.3 54.7–63.2 6.0–9.2 99.0–99.6 0.85–0.88 61 965
Galloway et al.14,S K "b I, II, V3, V5 CNN CNN 63.9–69.0 89.3–92.6 60.3–70.0 7.2–10.5 99.4–99.6 0.88–0.90 61 965
Lin et al.15 K "b 12-Lead CNN CNN n/a 50.8 96.0 26.9 98.5 0.91 40 180
Lin et al.15 K# 12-Lead CNN CNN n/a 50.7 81.6 44.7 85.0 0.75 40 180

TABLE II. Automatic regression methods for the potassium concentration. CNN: convolutional neural network, TS=A : T downslope divided by T amplitude TS=
ffiffi

A
p : T downslope

divided by the square root of T amplitude, result: mean 6 standard deviation of signed errors in mmol/l, result (abs): mean 6 standard deviation of absolute values of errors in
mmol/l, NPat: number of patients, NSess: number of HD sessions, n/r: not relevant if data were not from HD sessions, and n/a: not available/given.

Work Lead (s) Features Model Result (mmol/l) Result (abs) (mmol/l) Dataset (mmol/l) NPat NSess

Corsi et al.13 PCA TS=A Polynomial second order �0.096 0.59 0.466 0.39 n/a 45 128
Attia et al.81 personalized V3�V5 TS=

ffiffiffi

A
p Polynomial first order n/a 0.366 0.34 4.26 0.95 26 113

Attia et al.81 global V3–V5 TS=
ffiffiffi

A
p Polynomial first order n/a 0.506 0.42 3.96 0.8 26 113

Yasin et al.82 I TS=
ffiffiffi

A
p Polynomial first order n/a 0.386 0.32 4.36 0.8 18 n/a

Lin et al.15 12-Lead CNN CNN n/a 0.53 6 n/a n/a 40 180 n/r
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classifying the disorder.13,78–80 As the ECG feature, the ratio between
the T wave downslope and amplitude was used. This feature was cal-
culated from the two most significant PCA eigenleads of the 12-lead
ECG using a template of the T wave computed on each two-minute
window. Additionally, after building a general model, patient-specific
bias correction was introduced using the first and last measurement of
the first session of a specific patient. The regression models were poly-
nomials of first order78 and second order.13,79,80 The latter technique
was validated in a cohort of 45 patients (128 HD sessions) using leave-
one-patient-out cross-validation, preventing overfitting and yielding
an error of �0.096 0.59mmol/l (mean absolute error of
0.466 0.39mmol/l).13 In a parallel work, Attia et al. used a slightly
modified approach.81 First, they changed the feature to the T down-
slope divided by the square root of T amplitude, while also the feature
calculation was adjusted: templates of a 72 second ECG snippet were
used for feature estimation and an additional Kalman filter was imple-
mented to attenuate abrupt feature changes that cannot be related to a
potassium change. They did not use the PCA of a 12-lead ECG signal
but selected the lead with the highest T wave amplitude from V4 to
V6. For regression, a first order polynomial was fitted. Second, for
patient-specific calibration, they did not build a general model and
added a patient-specific bias term. Instead, they built individual linear
models with the chosen feature in the first session and applied them to
the other sessions of an individual patient. This yielded a mean abso-
lute error of 0.366 0.34mmol/l in their cohort of 26 patients.
Moreover, they compared this result with the general model, fitting
the model with a training (26 patients, estimation error
0.446 0.47mmol/l) and a validation cohort (19 patients, estimation
error 0.56 0.42mmol/l). The proposed method was also applied to
data from a handheld device by the same group.82 This time, lead
selection was not necessary anymore. 21 HD patients were screened
using the ECG captured using a commercially available ECG electrode
system measuring between two fingertips of both hands. This setup
yielded an error of 0.386 0.32mmol/l using patient-specific models,
which is in the range of the performance of the approach using a

standard 12-lead ECG. Beyond the extraction of hand-crafted features
for training a method, convolutional neural networks (CNNs) learn
the feature extraction in addition to the actual classification or regres-
sion task. The approach relies on the network identifying the best fea-
tures itself.83 This is usually achieved through a serial and parallel
combination of 1D, 2D, or 3D filters (convolutions) on 1D, 2D, or 3D
input data. The structure of this convolutional network can be opti-
mized regarding the given task. In the example of ECG-based concen-
tration estimation, a 2D input could consist of several ECG leads with
the lead number forming one dimension and the time forming the
other. The image is processed in the filtering layers yielding intermedi-
ate outputs. Finally, all filtering results are connected within a final
fully connected layer delivering the classification or regression result.
This fully connected layer is optimized together with all the filtering
kernels in the convolutional layers delivering an optimal result for the
desired application. This approach, however, is often criticized for the
non-transparency since, on the one hand, the extracted features might
not be interpretable for humans and, on the other hand, the huge
number of layers and features might not allow an interpretation. This
setup is often referred to as deep neural network or more commonly
as a deep learning method/network. Galloway et al. propose a deep
learning method for the classification of hyperkalemia.14 Two models
comprising ten convolutional layers for feature extraction and one
fully connected layer were trained with ten second ECGs using leads I
and II, or I, II, V3, and V5. Data used for training included approxi-
mately 1.5 � 106 ECGs out of which approximately 2% were from
hyperkalemic patients (potassium concentration �5.5mmol/l, at least
one blood-test was available within twelve hours before or after the
ECG measurement). Since neural networks are fuzzy classifiers, ROC
curves could be obtained for different classification thresholds. A com-
mon point to select is the equilibrium of sensitivity and specificity. The
authors evaluated the proposed algorithm with data from three differ-
ent centers showing that accuracy for two lead evaluation was between
76.1% and 80.4%, sensitivity between 78.1% and 80.5%, and specificity
between 75.2% and 81.3%. The ROC-AUC was 0.883. The four lead

FIG. 3. Overview of the two approaches for automatic concentration estimation found in the literature. In contrast to the classical approach where lead selection, feature selec-
tion, and model fitting are separated, in the deep learning approach, they are inherently integrated.
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approach improved results by 1%–2%, and ROC-AUC was 0.901. To
use this method as a screening method, the authors proposed to select
the point in the ROC curve showing a 90% sensitivity. This led to false
negative rates of 0.3%–0.6% for the two lead approach and 0.3%–0.4%
for the four lead network. In the supplement, the authors address the
transparency of the algorithm. They applied feature visualization tech-
niques to trace back possible patterns that cause the network as a fuzzy
classifier to predict a high likelihood for hyperkalemia. They show
three example beats in the supplement of their work, stating that one
of them looks very atypical for a hyperkalemic ECG beat. The authors
conclude that the deep learning method recognized additional mor-
phological features being relevant for the classification, which are not
apparent on visual screening.

The latest work was published in 2020 by Lin et al. and goes one
step further.15 They propose a deep learning model, called ECG12Net
comprising 80 convolutional layers and extracting 864 meta-features
from the standard 12-lead ECG, aiming to diagnose dyskalemia. The
model was based on 66 321 ECGs with a potassium measurement
within one hour before or after ECG recording. After training with
32 176 ECGs, 8004 new samples were used for testing the method: the
hypokalemia detection sensitivity was 50.7%, specificity 81.6%, posi-
tive predictive value 44.7%, and negative predictive value 85.0%,
whereas the values for hyperkalemia were 50.8%, 96.0%, 26.9%, and
98.5%, respectively. The ROC-AUC values for hypokalemia detection
(against others) were 0.75, and for hyperkalemia, it was 0.91. Adding a

feed forward network fed with features calculated using a commer-
cially available ECG device (heart rate, PR, QRS, QT interval, QTc, P
wave axis, RS wave axis, and T wave axis) did not improve perfor-
mance. Apart from the classification, a mean absolute error of
0.531mmol/l is reported for regression (no standard deviation given;
nevertheless, the 95% confidence interval is reported to be
0.523–0.539mmol/l). In the work of Lin et al., data from three emer-
gency physicians and three cardiologists of different experience levels
to classify 300 ECGs from the test data partition are compared. While
the cardiologists showed similar performance compared to other stud-
ies, the proposed ECG12Net outperformed even the most experienced
physicians regarding almost all performance parameters. Apart from
the estimation method and the performance measures, the authors
provide several further interesting points in their study. First, they
visualized the parts in an ECG trace being relevant for the classifica-
tion results (Fig. 4). This is interesting regarding two points: first, the
importance of the ECG wave properties is visualized. Here, some sin-
gle leads are not/less of interest, but others are more/highly relevant.
All waveforms seem to deliver information used for the classification;
nevertheless, T waves seem to be most frequently marked as impor-
tant. Short-term rhythmical properties could be of relevance, too, since
the input of the network was always several beats. The second impor-
tant point connected with this visualization approach addresses the
widely discussed topic of artificial intelligence explainability.84,85 This
procedure is a promising step toward opening the “black box” of deep

FIG. 4. Explainability approach by visualization of parts of the input ECG being relevant for the classification and quantification of the potassium disorder. Important/unimportant
parts of the ECG traces are visualized with bright and dark red bars under the traces. The rhythm classification is shown with black/greed/yellow backgrounds.15 Reproduced
with permission from Lin et al., JMIR Med. Inf. 8(3), e15931 (2020). Copyright 2020, Authors licensed under a Creative Commons Attribution (CC BY) license.
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learning and helping to establish such a method in clinical practice.
Furthermore, the authors provide a lot of relevant information regard-
ing the network, its training, additionally tested methods, and evalua-
tions in the supplement of their publication. The issue of an unequally
distributed dataset and its handling was addressed as well.

From the two latter studies, both utilizing convolutional neural
networks, one can appreciate the potential of automatic feature extrac-
tion. Regarding the dyskalemia classification accuracy, the methods
outperform those using hand-crafted features as input regarding most
of the performance parameters even when using only two Einthoven
leads (compare Table I). However, the diagnostic performance of a
concentration estimation is interesting and relevant as well. Although
Lin et al. provide a mean absolute error, they do not report variability
of the estimation errors. Thus, a comparison is hardly possible from
this aspect. Nevertheless, from what we know, the performance is in
the upper range of errors compared to the methods with hand-crafted
features (Table II). However, the model by Lin et al. does not need to
be individually adjusted for each patient as, e.g., the approach by Corsi
et al.13

We generally encourage the community to report the frequently
used standard performance measures (for concentration estimation,
these are mean values and standard deviations of the errors and abso-
lute errors; for classification, these are sensitivity, specificity, negative/
positive predictive value, AUC-ROC, and accuracy). Additionally, we
encourage providing additional measures like confidence intervals,
interquartile ranges, F-values, and, most importantly, detailed infor-
mation on the distribution of concentration values and pathologies in
the dataset. Of course, the optimal condition would be to have open
datasets to compare methods. As this need is not met at the moment,
the least we can do is providing as much information on the dataset as

possible. The significance of this fact is exemplarily shown in Fig. 5:
depending on the underlying distribution of potassium concentrations
in the dataset, different fits of different qualities are achieved.
However, it is shown that the performance measures do not reflect the
actual quality of the fit. From this example, we can clearly conclude
that first, a comparison is hardly possible without knowing the con-
centration distribution in the dataset. Second, only a standardized
dataset enables reliable comparisons of different methods. Without the
latter, the comparison of the methods shown in Tables I and II is com-
plicated. Apart from the used datasets, e.g., Bland–Altman plots can
help to assess the model’s capability to estimate extremely high or low
concentrations. The Bland–Altman plot in the study by Corsi et al.13

(Fig. 6) implies that the chosen model and feature combination were
less accurate for extremely high or low concentrations. This could be
related to the fact that the concentration distribution in the dataset
was not considered during model fitting. Nevertheless, we want to
emphasize that this can be legitimated if one wants to find the model
being most suitable for the majority of concentration values, i.e., being
more accurate for cases of mild hyper/hypokalemia and normokale-
mia at the expense of worse estimation for severe dyskalemia. In con-
trast, if one wants to detect higher values with an increased accuracy,
either errors should be weighted in the fitting process based on the
underlying distribution (as exemplarily performed in Ref. 86), or
equally distributed concentration values in the training dataset are
required. Only the mean and standard deviation values of the concen-
tration distribution in the dataset or of the estimation errors do not
provide enough information to setup a nearly comparable setting.
However, this is important to really be able to evaluate a newly pro-
posed concentration estimation approach and to be able to benchmark
it with others.

FIG. 5. An example to illustrate the problem of using mean and standard deviation as sole performance parameters. (a) Two exemplary datasets D1 and D2 with a uniform
and normal distribution, respectively. (b) An exemplary linear feature concentration dependence. For the subsequent fitting, feature values were randomly distorted by up to
5.5%. (c) The result of two regression methods. Method M1 is a fit with a constant minimizing the error, and model M2 is a linear fit in the least squares sense. The light red
(dataset D2) and light blue (dataset D1) point clouds visualize the noisy feature inputs for the fitting yielding the models in red and blue, respectively. The dashed line is the
real noise-free relation. (d) Results of both methods on both datasets. Although the combination of M2/D1 reconstructs the underlying dependency over the whole interval best,
it is outperformed by the combination M2/D2 and M1/D2 when considering the mean absolute error. Within a dataset, the linear model (M2) always outperforms the constant
(M1) as expected.
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V. CURRENT STATE AND FUTURE STEPS

At the beginning of this paper, we discussed the relationship
between clinical observations and manual ECG assessment, an
approach that rather discourages one to use the ECG as a diagnostic
tool for the estimation of plasma electrolyte concentrations. Results
from modeling studies, on the other hand, contradict this conclusion
and raise optimism for the applicability of ECG-based concentration
estimation. Finally, the most important argument for concentration
estimation with the ECG is the successful application of different
approaches using a semi- or fully automatic reconstruction. Over time,
they gained more and more precision dispelling the aforementioned
doubts. The fact that automatic concentration estimation—either as
classification or regression—yields results that are not only far away
from chance but also showing accuracies for hyperkalemia detection
of up to 82.6%,14 a maximum sensitivity above 92%,14 and a specificity
of 96%15 (Table I), outperforming detection rates by physicians found
in the presented works in Sec. IVB, which only underline this.
Nevertheless, in the current state, we have automatic methods showing
very promising results but still entailing many open questions. To
tackle those, we see the urgent need for closer collaboration between
clinicians and engineers to overcome open questions (e.g., about the
compensation of cross-dependencies) and make further progress in
this challenging field.

From the clinical side, we encourage to provide data and clinical
experience as well as, in a future step, the acceptance for implementing
new technologies in the clinical routine to build up a feedback loop to
the engineers being the developers of the methods.

Engineers are in need to provide transparent and reproducible
fully or semi-automatic algorithms to be used in a clinical environ-
ment (e.g., for feature extraction to overcome subjectivity in feature
quantification and to increase precision of the resulting features that
are sometimes still measured on paper). We want to suggest publish-
ing results always together with data to foster comparability. A possible
procedure including the documentation of parameters used during
model creation and exact dataset properties was spearheaded by

Lin et al. in the supplement.15 In addition, trained models could be
provided to be able to compare the performance of new methods with
those already existing. The same holds for the data used for evaluation.
Furthermore, engineers should provide simulation models ready to
contribute to answering clinical questions regarding the pathophysio-
logical mechanisms that are not fully understood mechanistically.
Having facilitated the latter, feature selection for the application in
reconstruction techniques becomes easier as it could be more obvious
what to look for. On the other hand, and not needing features, deep
learning methods were shown to be beneficial for reconstructing the
ion concentrations. This technique should further be exploited to find
descriptive and interpretative features. A backtracing to the actual rele-
vant changes in the ECG was done by Lin et al.15 and can be extended
and further exploited using further explainability techniques.84,85

Moreover, the inclusion of features from rhythmical parameters as
HRV could be fruitful for deep learning and the classical approaches
since they are mostly utilizing short ECG segments neglecting possibly
relevant long-term changes. Also, features from model fitting
approaches seem to enable a more robust feature extraction and,
therefore, more reliable results. Methods are already available, but their
potential for concentration estimation still needs to be evaluated.

Joint forces are needed to find the exact reasons for current algo-
rithms to fail (see the errors in Tables I and II). This could be caused
by patient- or situation-specific confounding factors that were not
accounted for, such as the amount of extracellular fluid as an impor-
tant factor for amplitude changes,87 long QT2 syndrome affecting
features used for concentration estimation,13 or other controlling
mechanisms being more relevant for the ECG change than the actual
concentration change. Large inter-patient variations that were already
observed in an early study88 or inappropriate feature selection and
determination could be reasons for suboptimal results as well. Further
challenges comprise small sample sizes in most of the regression stud-
ies (Table II), biased datasets (ideally, an open standard dataset for
training and evaluation is established), unknown confounding factors,
and a benchmark method not always being as precise as expected.16

FIG. 6. Potassium concentration estimation results by Corsi et al.13 Left: relation of the selected feature T wave downslope divided by T amplitude and the potassium blood
measurement including a patient specific bias. Right: Bland–Altman plot of the estimation error. It is apparent that the method does not perform well for higher concentrations.
Reproduced with permission from Corsi et al., Sci. Rep. 7, 42492 (2017). Copyright 2017, Authors licensed under a Creative Commons Attribution (CC BY) license.
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The latter fact is particularly problematic since we cannot be sure if
the concentration estimation errors are caused by a methodological
problem or by an inaccurate benchmark method.

Finally, there are two further topics staying in the background of
current works and are worth to be researched more in-depth: auto-
matic hypokalemia detection and plasma calcium concentration esti-
mation. An automatic hypokalemia detection method was only
proposed in one study15 and performed clearly worse than hyperkale-
mia detection (Table I). Nevertheless, hypokalemia was shown to be
observed more frequently in hospitalized patients than hyperkalemia.1

The same holds for plasma calcium concentration estimation being at
its beginning. Clinical data representing the relevant range of calcium
concentration changes are still rare or not available. However, for
developing and training an ECG-based calcium concentration evalua-
tion method, these data are necessarily required. Such a tool could
pave the way for elucidating the connection between the plasma cal-
cium concentration and sudden cardiac deaths.

Many promising works from the clinical and the engineering
domain were shown to contribute to a reliable ECG-based concentra-
tion estimation. The presented results not only support the feasibility
of ECG-based concentration estimation but also are clearly heading
toward a clinical application. If we strengthen collaboration between
engineers and clinicians and perform goal-oriented experiments and
studies, it is a clearly accomplishable goal to overcome current draw-
backs and bring automatic concentration estimation to a level being
applicable in clinical routine.
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