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Background: Identification of signaling pathways altered at early stages after cardiac ischemia/reperfusion

(I/R) is crucial to develop timely therapies aimed at reducing I/R injury. The expression of G protein-

coupled receptor kinase 2 (GRK2), a key signaling hub, is up-regulated in the long-term in patients and in

experimental models of heart failure. However, whether GRK2 levels change at early time points following

myocardial I/R and its functional impact during this period remain to be established.

Methods: We have investigated the temporal changes of GRK2 expression and their potential relation-

ships with the cardioprotective AKT pathway in isolated rat hearts and porcine preclinical models of I/R.

Findings: Contrary to the maladaptive up-regulation of GRK2 reported at later times after myocardial

infarction, successive GRK2 phosphorylation at specific sites during ischemia and early reperfusion elic-

its GRK2 degradation by the proteasome and calpains, respectively, thus keeping GRK2 levels low during

early I/R in rat hearts. Concurrently, I/R promotes decay of the prolyl-isomerase Pin1, a positive regulator

of AKT stability, and a marked loss of total AKT protein, resulting in an overall decreased activity of this

pro-survival pathway. A similar pattern of concomitant down-modulation of GRK2/AKT/Pin1 protein levels

in early I/R was observed in pig hearts. Calpain and proteasome inhibition prevents GRK2/Pin1/AKT degra-

dation, restores bulk AKT pathway activity and attenuates myocardial I/R injury in isolated rat hearts.

Interpretation: Preventing transient degradation of GRK2 and AKT during early I/R might improve the

potential of endogenous cardioprotection mechanisms and of conditioning strategies.

© 2019 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license.
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Research in context

Evidence before this study

Acute myocardial infarction (MI) is a major cause of death
and disability. Prompt restoration of blood flow to the is-
chemic area is key for reducing infarct size and mortality,
but can itself trigger additional myocardial damage, termed
reperfusion injury. Despite advances in the protocols allowing
rapid and effective reperfusion in MI patients, therapies ad-
equately targeting reperfusion injury remain elusive. There-
fore, it is crucial to gather information about the status of key
cardiac signaling pathways at early stages after I/R to identify
potential new targets for intervention. G protein-coupled re-
ceptor kinase 2 (GRK2) is a very relevant signaling hub in car-
diac physiopathology, reported to be upregulated in the long-
term in patients and in experimental models of heart failure.
However, whether GRK2 protein levels are altered at early
time points following myocardial I/R, the molecular mech-
anisms involved and the impact of such changes in GRK2-
related signaling networks has not been fully investigated.

Added value of this study

We find that, contrary to the up-regulation taking place
at later time points after MI, GRK2 levels are transiently
reduced during ischemia and at the onset of reperfusion
in rat and porcine preclinical models. GRK2 proteolysis is
achieved by the combined action of proteasome and calpain
protein degradation pathways, by mechanisms involving dy-
namic changes in the phosphorylation status of GRK2. More-
over, we suggest that such early GRK2 proteolysis would have
an impact on the levels of the AKT kinase, a very impor-
tant component of the cardioprotective pathways triggered
in such pathological contexts. GRK2 proteolysis in early I/R
would favor concurrent degradation of the functionally re-
lated Pin1 prolyl-isomerase and AKT proteins, leading to im-
paired overall AKT catalytic ability despite hyper-activation of
remaining protein, resulting in reduced global capacity of this
pathway to counteract cardiac injury. Importantly, preventing
early GRK2/Pin1/AKT degradation by the combined admin-
istration of proteasome and calpain inhibitors can attenuate
I/R-myocardial injury in isolated rat heart models.

Implications

The timely use of calpain and proteasome inhibition may
help to reinforce therapeutic strategies aimed at reducing I/R
injury.

1. Introduction

Acute myocardial infarction (MI) as a result of coronary artery

occlusion is a major cause of death and disability [1,2]. Prompt

restoration of blood flow by means of thrombolytic or primary per-

cutaneous coronary intervention (PPCI) is key for reducing infarct

size and mortality. However, the process of restoring blood flow

can itself trigger additional myocardial damage (termed reperfu-

sion injury), as a result of abrupt changes in pH and calcium home-

ostasis, alterations in metabolic and inflammatory mediators and

sudden burst of reactive oxygen species. These changes can pro-

mote ventricular arrhythmiasmicrovascular obstruction, myocardial

stunning or myocardial death, leading to increased prevalence of

chronic heart failure (HF) in surviving patients [1,3–6].

Whereas the development of systems of care for emergent my-

ocardial reperfusion and advances in PPCI technology are increas-

ingly allowing rapid and effective reperfusion in MI patients, ther-
pies adequately targeting reperfusion injury remain elusive and

onstitute one of the top unmet needs in cardiology [2,7,8]. Brief

ycles of myocardial I/R applied either before (ischemic precon-

itioning) a prolonged coronary artery occlusion plus reperfusion

vent or immediately after reflow (ischemic post-conditioning) in

xperimental models can reduce infarct size by activating different

ombinations of endogenous cardioprotective pathways [1,2,4,9].

ctivation of kinases such as AKT and ERK1/2, important com-

onents of the so-called reperfusion injury salvage kinase path-

ay (RISK) pathway, plays a key cardioprotective role, and modula-

ion of this pathway by endogenous mediators or pharmacological

gents has been postulated as a relevant strategy to prevent I/R

njury [1,4,10,11]. Given the limited efficacy of these current ther-

peutic strategies, it is crucial to gather information about the sta-

us of key cardiac signaling pathways at early stages after I/R [6]

o identify potential new targets for intervention.

G protein-coupled receptor kinase 2 (GRK2) is a central regu-

ator of beta–adrenergic and many other G protein-coupled recep-

ors (GPCRs) involved in cardiovascular physiopathology. In addi-

ion, data in different cell types put forward GRK2 as a key regu-

atory node in non-GPCR pathways via the modulation of insulin

nd growth factor signaling, the PI3K/AKT route, MAPK cascades,

O bioavailability or mitochondrial function, which are also instru-

ental in cardiac function and dysfunction (reviewed in [12–17].

n particular, myocardial GRK2 has been reported to participate

n apoptotic pathways after I/R by mechanisms involving its mi-

ochondrial targeting [18,19]. Maladaptive increased GRK2 expres-

ion has been described in the failing human heart of patients and

n experimental models of HF due to chronic hypertensive or is-

hemic disease, and its genetic ablation or inhibition has been re-

orted to be cardioprotective in the long-term in animal models

y reducing adverse post-infarction remodeling, purportedly as a

esult of the integrated actions of GRK2 in myocardial contractile

unction and cardiac metabolism (reviewed in [15,20–23]. How-

ver, whether GRK2 protein levels are altered at early time points

ollowing myocardial I/R, the molecular mechanisms involved and

he impact of such changes in GRK2-related signaling networks has

ot been fully investigated.

We report that, contrary to the up-regulation reported at later

ime points after MI, GRK2 levels are transiently reduced during

schemia and at the onset of reperfusion in preclinical models,

ue to the combined action of proteasome and calpain pathways,

y mechanisms involving dynamic changes in the phosphoryla-

ion status of GRK2. Our data suggest that such early GRK2 pro-

eolysis would favor concurrent degradation of the functionally re-

ated Pin1 prolyl-isomerase and AKT proteins, thus impairing over-

ll AKT functionality and cardioprotection, whereas the combined

dministration of proteasome and calpain inhibitors prevents early

RK2/Pin1/AKT degradation and counteracts I/R myocardial injury.

. Materials and methods

.1. Experimental protocol of ischemia/reperfusion in rats

The experimental procedures conformed to the Guide for the

are and Use of Laboratory Animals published by the United

tates National Institute of Health (NIH Publication Eighth Edi-

ion, 2011) and were approved by the Research Commission on

thics of the Hospital Vall d’Hebron. Male Sprague-Dawley rats

Charles River,Barcelona, Spain) weighing 250 to 300 g were anaes-

hetized with sodium pentobarbital (100 mg/kg). Hearts were re-

oved, mounted onto a Langendorff apparatus, and perfused with

modified Krebs-Henseleit bicarbonate buffer as previously de-

cribed. Hearts were perfused normoxically for 60 min (Nx group)

r for 20 min and then subjected to 40 min of global ischemia fol-

owed by reperfusion of different duration (I/R group). Ischemic
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reconditioning protocol consisted of two cycles of 5 min of is-

hemia and 5 min of reperfusion applied before index ischemia

PreCo group). Ischemic postconditioning was achieved with a

reviously established protocol commenced immediately after is-

hemia consisting of 6 cycles of 10-second reperfusion-10-second

cclusion (PosCo group) [24–26]. In additional groups of hearts,

he membrane-permeable calpain inhibitor SNJ-1945 (Senju Phar-

aceutical Co,Ltd) at 10 μM [27], the proteosome inhibitor borte-

omib (Cell Signaling Technology) at 1 μM and 10 μM, the PI3K in-

ibitor LY-294002 (10 μM, Sigma-Aldrich), or the indicated combi-

ations of SNJ-1945; LY-294002 and 10 μM bortezomib or their ve-

icle (0.01% DMSO) were added to the perfusion media during the

0 min prior to 40 min of ischemia and the first 10 min of reperfu-

ion.

The selective contractile inhibitor blebbistatin (10 μM, Merck)

as added during the first 5 min of reperfusion in all the experi-

ents involving ischemia/reperfusion, except in those experiments

pecifically aimed to assess cell death and infarct size. Blebbistatin

revents cell death by reducing the mechanical stress caused by

he excessive and irreversible contractile activation occurring at the

nset of reperfusion. It was used to discard the possibility that any

ariation on the measured parameters was a mere consequence of

ifferences in cell death associated with sarcolemmal disruption

26].

.2. Experimental protocol of ischemia/reperfusion in pigs

Transient myocardial ischemia in pigs was performed as pre-

iously described [28]. Farm pigs (25–30 kg) were pre-medicated

ith tiletamine–zolazepam (4–6 mg/kg, IM) and xylazine (1–

mg/kg, IM), anaesthetised with propofol-lipuro 1% (1.5–2.5 mg/kg,

V, followed by continuous infusion at 11 mg/kg/h) and fentanyl

5 mg/kg, IV, followed by continuous infusion at 3–6 mg/kg/h), and

echanically ventilated. A mid-sternotomy was performed, and the

eft anterior descending (LAD) coronary artery was dissected free

t its midpoint. Lead II of ECG, left ventricular (LV) pressure and

V dP/dt, coronary bloodflow, and regional myocardial function

ere continuously recorded. LAD coronary artery was occluded for

0 min followed by 5 min or 120 min of reperfusion. At the end of

he experiment, animals were sacrificed by a pentobarbital over-

ose (100 mg/kg, IV) and myocardial tissue samples from both, the

ontrol region and the area at risk were quickly excised and frozen

n liquid nitrogen.

.3. Myocardial tissue processing

Myocardial rat or porcine tissue was minced and homoge-

ized in 4 vol (v:w) 20 mm Tris-HCl (pH 7.5), 5 mm EDTA, 5 mm

GTA, and protease inhibitors. The homogenate was centrifuged

2000 ×g, 5 min, 4 °C) to obtain a clarified post-nuclear super-

atant designated as crude cytoplasmic fraction (SB1). The pellet

as rinsed in the same buffer (1/5 of the initial volume) sup-

lemented with 0.5% NP40, extensively vortexed and centrifuged

850 ×g, 10 min, 4 °C) after 15 min ice-cold incubation to obtain a

P40-extracted nuclear fraction (SB2). For determination of GRK2

evels in some conditions, crude cytoplasmic fractions were pre-

iously enriched in GRK2 protein by incubating these fractions in

he presence of 200–250 mmol/L NaCl, followed by centrifugation

t 250,000 ×g for 60 min and desalting by using Amicon Ultra-

.5 Centrifugal Filter Devices according to the manufacturer’s in-

tructions. For detection of redox states of PKA RIα, myocardial

amples were homogenized using a Polytron grinder with a hypo-

onic buffer as above but supplemented with 100 mM maleimide,

nd protein lysates electrophoresed with non-reducing SDS sample

uffer (100 mM Tris HCl pH 6.8, 4% SDS, 20% glycerol, bromophenol
lue with 100 mM maleimide) or reducing SDS sample buffer (i.e.

upplemented with 5% β-mercaptoethanol).

.4. Western blot and dot blot analysis

Proteins were separated by SDS-PAGE for Western blot anal-

sis or applied directly on nitrocellulose membranes in a single

pot for immunodetection (dot-blot) as previously described [29].

rotein bands were detected by the chemiluminescence method

ECL, Amersham Pharmacia Biotech) or with the Odyssey Imag-

ng Systems (LI-COR Biosciences). Bands were quantified by laser-

canner densitometry with a Biorad GS-700 scanner or by the soft-

are included in the Odyssey Infrared Imaging System. The rab-

it polyclonal antibodies raised against phosho-Ser/Thr-PKA sub-

trate, phosho-Ser/Thr-AKT substrate, pSer473-AKT and AKT and

he mouse monoclonal anti-Acetylated-Lysine antibody were all

rom Cell Signaling Technologies. Rabbit primary antibodies raised

gainst ERK1/2, Lamin B1 and PKA catalytic subunit were from

anta Cruz Biotechnology Inc. (Santa Cruz, CA, USA). Mouse anti-

KA RI-subunit was from BD Transduction Laboratories. Anti-Pin1

abbit polyclonal and GAPDH mouse monoclonal (6C5) antibodies

ere provided by Upstate Biotechnology and Abcam, respectively.

nti-pSer670-GRK2 and anti-pSer685-GRK2 polyclonal antibodies

ere from Biosource International and from Immunoway. Anti-

cetyl-K40-tubulin and anti-tubulin antibodies were purchased

rom SIGMA. GRK2 protein was immunodetected with a rabbit

olyclonal antibody Ab C-15 (sc-562) (Santa Cruz). Vertical dotted

ines in western blots indicate juxtaposed lanes that come from the

ame gel but were non-adjacent.

.5. Determination of Pin1 acetylation

Myocardial tissue was lysed in immunoprecipitation buffer

50 mM HEPES pH 7.5, 150 mM NaCl, 1%Triton, 10% Glycerol, 10 mM

aF,1 mM sodium orthovanadate, plus protease inhibitors). Upon

entrifugation (15,000 ×g, 10 min), supernatants were incubated

ith a specific anti-Pin1 polyclonal antibody (Upstate Biotech-

ology or Millipore). Immune complexes were resolved in 15%

DS/PAGE and transferred to nitrocellulose membranes. After in-

ubation with antibody anti-Acetyl lysine (Clone 4G12, Millipore),

lots were stripped and reproved with a polyclonal antibodies di-

ected against the immunoprecipitated Pin1 [30]. The amount of

in1 acetylation was normalized to the amount of the immuno-

recipitated protein, and data were represented as the fold over

ontrol normoxic conditions [29,30].

.6. Cell culture and transfection and protein degradation assays

HEK293 were obtained from the American Type Culture Collec-

ion (ATCC) and maintained in DMEM supplemented with 10% (v/v)

oetal bovine serum (FBS) at 37 °C in a humidified 5% CO2 atmo-

phere. Transient transfections with the indicated combinations of

DNA were performed using the Lipofectamine/Plus method, fol-

owing manufacturer’s instructions.

Metabolic labelling and pulse-chase experiments were per-

ormed as described [31]. HEK293 cells previously co-transfected

ith PKA catalytic subunit or empty vector and GRK2wt, GRK2-

220R or GRK2-S685A constructs were labeled by keeping the

ells for 2 h in methionine and cysteine-free Dulbecco’s modi-

ed Eagle’s medium (DMEM) and then incubated for 15–30 min

n DMEM supplemented with 250 μCi/ml of [35S]methionine and

35S]cysteine labeling mixture (NEN Life Science Products).The

lates were washed with phosphate-buffered saline and chased for

he indicated times in DMEM plus 10% fetal bovine serum. The

roteolysis inhibitors lactacystin (Calbiochem, La Jolla, CA), ALLN

Sigma), or PD150606 (Calbiochem), the PKA activator Forskolin
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(Sigma) or the PKA inhibitor PKI (Calbiochem) were added 90 min

before metabolic labeling and maintained during the chase peri-

ods. At different chase times (1−3h), cells were harvested using ra-

dioimmune precipitation assay lysis buffer (20 mm Tris-HCl, pH 7.5,

150 mm NaCl, 1% sodium deoxycholate, 0.5% Nonidet P-40, 0.1%

SDS, with a mixture of protease inhibitors). GRK2 protein was im-

munoprecipitated with a specific rabbit polyclonal antibody AbFP1

previously validated [32]. Immunoprecipitates were resolved by

SDS/PAGE and transferred to PVDF membranes to be treated with

the Enhancer Autoradiography Starter Kit (EABiotech Ltd.) accord-

ing to the manufacturer’s protocol. Band density of 35S-labeled

GRK2 was quantified by laser densitometry analysis and data were

corrected according to total GRK2 protein detected by immunoblot-

ting [32].

2.7. Quantification of cell death

Lactate dehydrogenase (LDH) activity was spectrophotometri-

cally measured in the coronary effluent throughout the reperfusion

period. After 60 min of reperfusion, heart slices were incubated at

37 °C for 10 min in 1% 2,3,5-triphenyltetrazolium chloride and im-

aged under white light to outline the area of necrosis as previously

described [25]. Previous studies demonstrated that in the Langen-

dorff rat model, reperfusion for 60 min is sufficient for acute as-

sessment of infarct size [26,33].

2.8. Statistical analysis

Data analysis was performed using GraphPad Prism for Win-

dows. Means between groups were compared by 2-way or one-
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. Results

.1. GRK2 is degraded in ischemia and reperfusion conditions by

ifferent mechanisms

Potential changes in GRK2 levels were analyzed during my-

cardial ischemia and the early time points following reperfu-

ion, by using a well-established experimental model of cardiac is-

hemia/reperfusion (IR) in isolated rat hearts [24,25,34]. Notably,

0 min of ischemia promoted a marked decay in cardiac GRK2

rotein levels compared to control conditions, and GRK2 down-

egulation was maintained after 30 min of reperfusion, when a

irca 50% decrease compared to normoxic GRK2 expression was

oted (Fig. 1A). Neither pre- nor post-conditioning conditions, per-

ormed as described previously [24,25], were able to prevent the

schemia-promoted GRK2 down-regulation. These treatments did

ot fully restore GRK2 protein levels during the 30 min of reperfu-

ion, although slightly higher kinase levels at early (precondition-

ng) or later (post-conditioning) reperfusion times were observed.

o overt changes in the subcellular distribution of the kinase were

bserved in either I or in I/R experimental conditions (Fig. S1), sug-

esting that the rapid down-modulation of GRK2 levels was related

o protein degradation.

GRK2 can be rapidly degraded by the proteasome, in a pro-
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Fig. 2. Cardiac ischemia/reperfusion induces rapid and transient oxidation-dependent activation of PKA. (A) Global PKA activity was assessed in lysates from normoxic or

reperfused isolated rat hearts (40 min of sustained ischemia followed by the indicated reperfusion times) by dot-blot, using a pan-specific phospho-substrate antibody that

broadly detects phosphorylated proteins by PKA as indicated in Methods. GAPDH expression was used as loading control. Data are mean ± SEM, n = 3–4 rats per condition.
∗∗p < .01; ∗∗∗p < .001 compared to I/R 30 min [1-way ANOVA and Tukey’s post hoc test]. A representative dot-blot is shown. (B) I/R promotes oxidation-related dimerization

of the regulatory PKA-RIα subunit in parallel to global PKA activation. Lysates as in panel A were probed with a specific PKA-RI antibody that recognizes both monomers

and dimers of this regulatory subunit linked by disulfide bond formation. The dimer formation detected in non-reducing SDS-PAGE resolving conditions was fully reversed

in the presence of 2-mercaptoethanol (reducing SDS-PAGE). The expression of the PKA catalytic subunit and of GAPDH was used as loading controls. Data are mean ± SEM,

n = 3–4 rats per condition. ∗p < .05 for the indicated comparisons [Student’s t-test]. Representative blots are shown.
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esidue [35,36]. Interestingly, a dramatic increase of GRK2 S670-

hosphorylation status was noted in ischemic conditions (Fig. 1B),

pattern consistent with the involvement of the S670-GRK2 phos-

horylation/proteasome pathway in kinase downmodulation dur-

ng this period. However, S670 phosphorylation rapidly returned

o normoxic levels upon reperfusion in all conditions tested, sug-

esting that additional mechanisms were involved in maintaining

RK2 protein levels low during the initial phase of reperfusion.

We searched for other regulatory post-translational modifica-

ions during this period. GRK2 is phosphorylated by PKA on S685,

residue highly conserved across species, leading to increased

inding to Gβγ subunits and subsequent translocation to the

lasma membrane [37]. We uncovered a rapid (1 min) and tran-

ient (peak at 5 min) increase of GRK2 phosphorylation at S685

pon reperfusion (Fig. 1C). A similar pattern was observed un-

er pre- or post-conditioning conditions, although the extent of

685 phosphorylation was slightly but significantly decreased (pre-

onditioning) or enhanced (post-conditioning) at early reperfusion

imes. The pattern of phospho-S685 GRK2 during early reperfusion

railed the rapid and transient increase in total PKA activity de-

ected in these cardiac samples (Fig. 2A), consistent with previous

eports of PKA activation during I/R as a result of GPCR stimula-

ion or oxidative stress [38,39]. Oxidation-dependent formation of

disulfide bond between the RIα subunit of PKA leading to dimer-

zation can promote PKA activation independently of cAMP [39].

otably, the transient changes in global PKA activity in reperfused

solated rat heart were parallel to those observed in the dimeriza-

ion status of PKA-RIα (Fig. 2B), suggesting that this mechanism of

KA stimulation might play a relevant role in such early reperfu-
ion contexts. p
The pattern of total and phospho-S685 GRK2 levels during

eperfusion suggested that this phosphorylation might help to keep

RK2 downregulated. Pulse-chase experiments in HEK-293 cells, a

ell-established model for characterizing GRK2 degradation mech-

nisms [20,35,40], indicated that forskolin (FO), a direct stimu-

ator of adenylyl cyclase activity, and thus of the PKA pathway,

ncreased the basal turnover of GRK2 (Fig. 3A), as well as trig-

ered phosphorylation of GRK2 on S685 (Fig. S2). Interestingly, FO

lso enhanced the degradation of the catalytically-inactive GRK2-

220R mutant (Fig. 3A), previously reported to be impaired in

PCR-induced proteasome-mediated degradation [41]. This sug-

ested that the GRK2-destabilizing effect of FO involved alternative

roteolytic pathways.

It is worth noting that the fostering effect of FO in GRK2 degra-

ation was fully prevented upon addition of a PKA inhibitor (Fig.

2B), whereas over-expression of the catalytic subunit of PKA en-

anced the decay of both wild-type GRK2 and the K220R mutant

Fig. 3B), confirming the involvement of PKA downstream of FO in

he modulation of GRK2 stability. Moreover, a GRK2-S685A mutant

unable to be phosphorylated by PKA) displayed a stability simi-

ar to WT GRK2 in basal conditions, but lacked the PKA-stimulated

omponent of GRK2 degradation, demonstrating that phosphoryla-

ion on S685 was required for PKA activity-induced GRK2 down-

egulation (Fig. 3C).

Consistent with the involvement of alternative PKA-dependent

roteolytic pathways, the proteasome inhibitor lactacystin fully in-

ibited the basal degradation of wt GRK2, whereas only partially

ttenuated GRK2 proteolysis in the presence of FO stimulation (Fig.

D). On the other hand, PKA-triggered GRK2 degradation was com-

letely abrogated upon addition of broad spectrum (ALLN, Fig. 3D)
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Fig. 3. PKA-mediated phosphorylation stimulates GRK2 degradation in a calpain-dependent manner. (A) Activation of endogenous PKA increases the turnover of both wild-

type GRK2 (GRK2-wt) andof the catalytically inactive GRK2-K220R mutant. HEK-293 cells were transiently transfected with GRK2 or GRK2-K220R constructs and the turnover

of these proteins in the presence or absence of forskolin (FO, 20 μM), a stimulator of the PKA pathway, was assessed by metabolic labeling with 35S followed by GRK2

immunoprecipitation with a specific antibody and fluorography detection of 35S-labeled GRK2 (35S-GRK2) as described in Methods. (B) GRK2 degradation is enhanced in

the presence of the constitutively active PKA catalytic subunit. HEK-293 cells were co-transfected with the indicated constructs and GRK2 turnover monitored as above. (C)
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Representative gel fluorographies are shown.
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c

or specific (PD150606, Fig. S2C) inhibitors of calpains, a family

of Ca2 + -dependent cysteine proteases reportedly over-activated in

myocardial reperfusion, leading to myocardial injury through the

proteolysis of different proteins [42–44], suggesting that calpain-

mediated proteolyisis of phospho-S685-GRK2 might take place in

early I/R conditions.

Overall, our data suggested that dynamic and sequential phos-

phorylation of GRK2 at S670 and S685 during ischemia and in early

reperfusion would trigger GRK2 degradation by the proteasome

and via calpains, respectively, thus maintaining low GRK2 protein

levels during such initial period after heart damage.

3.2. AKT degradation takes place in early I/R resulting in decreased

overall activity of this pathway

We investigated whether such transient GRK2 downmodulation

was related to changes in other key cardiac signaling pathways. To-

tal ERK1/2 protein levels were not significantly altered during I/R

or upon pre- or post-conditioning (Fig. S3A), indicating that I/R

does not promote a general decay in signaling proteins. Interest-

ingly however, total AKT protein levels were markedly diminished

by ischemia and maintained low during the first 30 min of reper-

fusion (Fig. 4A), with a pattern similar to that detected for GRK2.

Moreover, AKT and GRK2 protein levels displayed a similar trend

of changes upon pre- conditioning, which led to a less marked
KT decrease after ischemia and at very early reperfusion times

Fig. 4A). As for GRK2, no manifest changes in the nu-

lear/cytoplasmic distribution of AKT were observed in either I or

n I/R experimental conditions (Fig. S3B), suggesting the occurrence

f protein degradation processes.

Such pattern of decreased AKT protein levels during I/R was

uzzling, since the cardio-protective and pro-survival AKT path-

ay is considered to be robustly enhanced in these conditions

o counterbalance I/R-promoted injury, as inferred from enhanced

KT phosphorylation at activating residues [1,4,11]. In our exper-

mental setting, we also detected such marked increase of stim-

lated (phosphor-S473) AKT during reperfusion and upon pre- or

ost-conditioning conditions (Fig. 4B). However, the concurrent al-

eration in total AKT protein levels appears to have been disre-

arded or not addressed in detail in other studies. Our data point

o a more complex scenario in which I/R triggers both AKT pro-

ein downmodulation and activation of the remaining kinase. No-

ably, when the “global” or bulk AKT activity was tested in car-

iac extracts using a pan-AKT substrate antibody, we observed a

arked decrease throughout the I/R period considered (Fig. 4C),

ith a similar pattern upon post- or pre-conditioning, although the

ater condition allowed slightly higher substrate phosphorylation at

min after reperfusion. Our data indicated that hyper-activation of

he remaining AKT during reperfusion might notbe able to fully

ompensate for the decay in protein levels, leading to a clear over-
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Fig. 4. Ischemia/reperfusion promotes a marked loss of total AKT protein and an overall decrease in global AKT-mediated substrate phosphorylation, despite the robust

stimulation status of the remaining AKT protein. Rat heart lysates as in Fig. 1 were analyzed with specific antibodies for total AKT (A) or for AKT phosphorylated at Ser473

(B) as detailed in Methods. Data were normalized by GAPDH (panel A) or total AKT (panel B) loading. (C) Global activity of AKT towards its substrates was assessed in cardiac

lysates from the indicated conditions by dot-blot, using a pan phospho-AKT substrate-specific antibody, and data normalized by GAPDH loading. In all panels, normalized

data were represented as fold-change with respect to normoxic situation and are mean ± SEM, n = 3–4 rats per condition. Data were analyzed by comparing the different

experimental situations (I/R, I/R-PreCo and I/R-PosCo) to the normoxic condition (2-way ANOVA followed by Bonferroni’s post-hoc test, †p < .05; ††p < .01, †††p < .001). In

addition, we compared I/R pre-Co and I/R post-Co conditions versus I/R alone (∗p < .05; ∗∗∗p < .001) or between conditioning situations (#p < .05; ##p < .01, ###p < .001)

[1-way ANOVA and Tukey’s post hoc test]. Representative blots are shown.
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G

G

r

l

ll downmodulation of the “catalytic potency” of this key cardio-

rotective pathway in early I/R contexts, what would counteract

he beneficial effects of treatments specifically aimed at enhancing

he AKT activation status.

In search of molecular mechanisms underlying AKT protein de-

ay and potentially connecting transient GRK2 and AKT downmod-

lation, we focused on the prolyl-isomerase Pin1, a central player

n the control of folding, activity, and stability of proteins [45,46].

in1 is a critical positive factor in the regulation of AKT stability in

ancer cells by binding to activated AKT and preserving the protein

rom degradation by the proteasome [46,47]. Pin1 has also been

escribed as a relevant factor in cardiac hypertrophy, directly bind-

ng to AKT and MEK and fostering hypertrophic signaling [48]. In-

erestingly, we found a clear reduction of Pin1 levels after ischemia

nd during early reperfusion times (Fig. 5A), with a pattern resem-

ling that of AKT protein, suggesting a link between Pin1 loss and

ecreased AKT stability. A similar pattern of Pin1 changes was ev-

dent in nuclear and cytoplasmic cellular fractions, consistent with

in1 degradation events (Fig. S3C).

Interestingly, GRK2 is a regulator of Pin1 stability and function-

lity in other cell types [30]. GRK2 activates HDAC6, a cytoplas-

ic lysine deacetylase targeting tubulin and many other proteins,

hus triggering de-acetylation of Pin1 at a specific residue, there-

ore favoring Pin1 protein stabilization and stimulation of prolyl-

somerase activity [30,49]. We thus assessed whether Pin1 acety-

ation might be triggered upon GRK2 downregulation during I/R.

his treatment induced a marked increase in Pin1 protein acetyla-

ion, which peaked at 5 min of reperfusion (Fig. 5B). A similar pat-

ern was detected for the acetylation levels of the canonical HDAC6

ubstrate tubulin (Fig. 5C), strongly suggesting an impaired HDAC6

ctivation by GRK2 in I/R conditions.
Importantly, a comparable pattern of concurrent down-

odulation of GRK2, AKT, and Pin1 protein levels in early stages

f myocardial reperfusion was also detected in porcine hearts sub-

ected to in situ transient ischemia. The levels of these proteins in

he area at risk were significantly decreased at 5 min of reperfu-

ion with respect to control area of the same animal (Fig. 6A–D).

fter 120 min of reperfusion, total AKT and Pin1 protein expres-

ion values were still slightly lower than those of the matched con-

rol area, whereas a marked GRK2 down-modulation remained. In

ine with the mechanistic role of PKA in promoting GRK2 down-

odulation observed in the rat model, increased levels of PKA-

hosphorylated substrates were detected at 120 min of reperfu-

ion (Fig. S4). Of note, although an enhanced AKT phosphoryla-

ion status was apparent at these I/R stages (Fig. 6C) as previ-

usly reported in such conditions [50,51], the global or bulk ca-

acity of active AKT to phosphorylate its targets was markedly re-

uced (Fig. 6E), akin to the observed decline in total AKT protein

evels and in line with our data in the isolated rat heart model

see Fig. 4). Although whether such early and dynamic changes

n GRK2/AKT/Pin1 levels take place in patients during cardiac I/R

annot be directly investigated, the data obtained in this relevant

ranslational large animal model supports the potential clinical rel-

vance of these alterations.

.3. Combined use of proteasome and calpain inhibitors prevents

RK2/Pin1/AKT degradation and attenuates I/R myocardial injury

Overall, our data suggested a complex interconnection among

RK2, Pin1 and AKT in early cardiac I/R. Changes in the phospho-

ylation status of GRK2 would trigger transient reduction of kinase

evels by the combined action of proteasome and calpain path-
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Fig. 5. Ischemia/reperfusion alters the protein levels and the acetylation status of the prolyl-isomerase Pin1. (A) Total content of Pin1 protein was analyzed with a specific

anti-Pin1 antibody in the indicated conditions. GAPDH expression was used as loading control (B). The acetylation status of Pin1 in the same experimental conditions was

determined with a pan anti-Acetyl lysine antibody after immunoprecipitation of total Pin1 from myocardial lysates as detailed in Methods. The amount of Pin1 acetylation

was normalized to the amount of the immunoprecipitated protein. (C) Ischemia-reperfusion causes strong hyper-acetylation of myocardial α-tubulin. The levels of acetylated

and total α-tubulin in the indicated conditions were analyzed with site-specific anti-acetyl-K40-tubulin and total anti-tubulin antibodies. Total α-tubulin and GAPDH served

as loading controls. In all panels, normalized data were represented as fold-change with respect to the normoxic situation, and are the mean ± SEM, n = 3–4 rats per condition.
∗p < .05, ∗∗∗p < .001 compared to normoxia [1-way ANOVA and Tukey’s post hoc test]. Representative blots are shown.
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2

ays. GRK2 degradation would favor Pin1 proteolysis by altering

ts acetylation status, which in turn would facilitate AKT degra-

ation, leading to impaired overall AKT catalytic ability despite

yper-activation of remaining protein, resulting in reduced global

apacity to counteract cardiac injury.

We therefore tested the effect of the administration of the clin-

cally used proteasome inhibitor Bortezomib (Bz) and/or the cal-

ain inhibitor SNJ-1945 (SNJ) on cardiac GRK2, Pin1 and AKT levels

n isolated heartsrats subjected to 40 min of ischemia and reper-

usion for 10 min. A slight significant prevention of AKT degrada-

ion was observed in the presence of BZ, and a tendency was de-

ected for GRK2 and AKT protection upon administration of SNJ,

ut only the combined treatment with BZ and SNJ fully prevented

he downregulation of GRK2, Pin1 and AKT in such conditions (Fig.

A-C), allowing the maintenance of levels close to those detected

n normoxic conditions. Importantly, the administration of protea-

ome or calpain inhibitors or their combined delivery significantly

escued bulk AKT functionality, as assessed by the overall phos-

horylation of AKT substrates during reperfusion (Fig. 7D). This

s consistent with the fact that these treatments tend to protect

KT protein from degradation while preserving kinase activation

riggered by reperfusion, as indicated by AKT phospho-S473 sta-

us (see representative blot in Fig. 7C), thus allowing a normaliza-

ion of pAKT/AKT ratios. Moreover, the administration of the SNJ

alpain inhibitor or the combined delivery of SNJ and the protea-

ome inhibitor BZ prior to a protocol of 40 min of ischemia fol-

owed by 60 min of reperfusion significantly decreased infarct size

nd LDH release. Of note, this effect was not observed in the pres-

nce of a PI3K inhibitor, indicating that calpain and proteasome

nhibitors exert its protective action by mechanism involving the

I3K/Akt pathway (Fig. 8A). Overall, our results postulate that pre-

enting GRK2/Pin1/AKT degradation at early times in I/R may help

o counteract myocardial injury.
. Discussion

Our data reveal several unforeseen alterations taking place in

elevant cardiac signaling pathways during the early stages of I/R

n rat and porcine experimental models that might provide a ra-

ionale for therapeutic strategies aimed at fostering cardioprotec-

ion mechanisms. First, we uncover that, contrary to the reported

p-regulation of cardiac GRK2 taking place at later times after

I [21–23], successive GRK2 phosphorylation at specific sites dur-

ng ischemia and in early reperfusion would sequentially elicit

RK2 degradation by the proteasome and calpains, respectively,

hus keeping GRK2 protein levels low during early I/R. Second,

e unveil a marked and previously uncharacterized decrease of

KT protein levels during this period, likely related to concurrent

hanges in the Prolyl isomerase Pin1 (a known AKT stabilizing fac-

or), which results in an overall down-modulation of this key car-

ioprotective pathway in early I/R contexts, despite the high ac-

ivation status of the remaining AKT upon reperfusion. Third, we

how that hindering GRK2/Pin1/AKT degradation by the combined

dministration of proteasome and calpain inhibitors can attenu-

te I/R-myocardial injury in isolated ratheart experimental models

scheme in Fig. 8B).

The prevailing view to date is that GRK2 levels are in-

reased in the heart of chronic HF patients with dilated or

schemic cardiomyopathy, as a result of sympathetic nervous

ystem hyperactivity, leading to enhanced GRK2 mRNA expres-

ion. Such augmented GRK2 levels may initially help the my-

cardium to counterbalance the beta-adrenergic overdrive and re-

uce the risk of tachyarrhythmia, but persisting high GRK2 activ-

ty is maladaptive, resulting in GPCR desensitization and down-

egulation, defective contractility, insulin resistance, mitochon-

rial dysfunction and apoptosis, paving the way to HF [13,21,

3].
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Fig. 8. Cardiac ischemia-reperfusion injury is attenuated by combined-inhibition of proteasome and calpain activities. (A) Isolated rat hearts were treated during the 10 min

prior to ischemia (40 min) and the first 10 min of a total period of 60 min reperfusion with the indicated combinations of the calpain inhibitor SNJ-1945 (SNJ, 10 μM), the

proteasome inhibitor Bortezomib (BZ) (10 μM) and the PI3K inhibitor LY-294002 (10 μM). After the reperfusion period, total LDH released during reperfusion (expressed as

units of activity released per gram of dry weight during the first 60 min of reperfusion, U/gdw/60 min) and infarct size (expressed as the percentage of ventricular mass in

the different experimental groups) were determined as detailed in Methods. Data are the mean ± SEM, n = 6–9 rats per condition. ∗p < .05 vs untreated I/R control group [1-

way ANOVA and Tukey’s post-hoc test]. (B) Scheme of the molecular mechanisms underlying GRK2/Pin1/AKT degradation during myocardial ischemia and early reperfusion.

See text for details.
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Strikingly, we find that following myocardial I/R, GRK2 pro-

tein levels markedly decrease during the ischemic phase and are

kept low during the early phase of reperfusion. Our data sug-

gest that enhanced Ser670-GRK2 phosphorylation during ischemia

would trigger its degradation by the proteasome, whereas phos-

phorylation at Ser685 taking place in early reperfusion would favor

calpain-mediated GRK2 proteolysis. Of note, these phosphorylation

sites are highly conserved across species, (murine, dog, pig and hu-

mans), consistent with preserved modulatory mechanisms.

To our knowledge, the pattern of GRK2 protein levels at such

initial times of I/R has not been previously described. In murine

models, cardiac GRK2 protein upregulation has been reported as

early as 3 and 7 days after acute myocardial injury [13,52]. How-

ever, in line with our results, in a canine model of MI GRK2 levels

were decreased in the subepicardial border and the infarct zone

at 6 and 24 h after ligation of the coronary artery, without ap-

parent changes in mRNA levels, and such GRK2 decrease in is-

chemic cardiac tissue was blocked by treatment with proteasome

inhibitors, resulting in a significant cardioprotection against ma-

lignant ventricular tachyarrhythmias [53–55]. In the brain, oxygen

deprivation triggers a marked decrease in GRK2 content along en-

hanced GRK2 phosphorylation at Ser670 in the absence of changes

in mRNA levels, in a process blocked by proteasome inhibitors

[56,57].

Upon phosphorylation at S670 GRK2 can be rapidly degraded

by the proteasome [31,35], and GPCR stimulation facilitates β-

arrestin-dependent ERK1/2 activation and subsequent phosphory-

lation of GRK2 at this residue [35]. Thus, the observed burst in

phospho-Ser670 GRK2 after ischemia points to the occurrence of

a very active proteasome-dependent degradation of the kinase in

this condition. Although an ischemia-triggered inhibition of GRK2

transcription and/or translation cannot be ruled out, a previous

report showed that during stop-flow and low flow ischemia in

the isolated perfused rat heart GRK2 mRNA even increased af-

ter 20 min of ischemia and then returned to baseline after 40 min
f ischemia onset [58], further supporting a predominant role for

RK2 proteolysis in this context.

GRK2 is phosphorylated at S670 by several kinases in a

ontext-and stimulus-dependent way, including ERK1/2 [49,59,60],

38MAPK [61] or Cdk2 [31]. CDK2 is highly activated during my-

cardial ischemia [10,62] and CDK2-mediated GRK2 S670 phospho-

ylation can trigger proteasome-dependent GRK2 degradation in a

PCR-independent way [31], suggesting that this regulatory axis

ould be active during the ischemic phase.

The fact that GRK2 protein levels remained low during early

eperfusion in the absence of enhanced S670 phosphorylation sug-

ested the involvement of an alternative degradation pathway. We

nd that GRK2 is rapidly and transiently phosphorylated by PKA

t S685 upon reperfusion, and that PKA stimulation can trigger

alpain-dependent GRK2 proteolysis in a cellular model. Consistent

ith sequential proteasome and calpain GRK2 degradation during

/R, the combined inhibition of these proteolytic pathways com-

letely prevents GRK2 protein decay in vivo.

Calpains are ubiquitous Ca2 + -dependent cysteine proteases ac-

ivated in pathological conditions associated with Ca2+ overload.

alpains are thus strongly activated at the onset of myocardial

eperfusion, contributing to myocardial injury through the prote-

lysis of key structural membrane, cytoskeletal components and

egulatory enzymes [42,44,63]. Notably, PKA-phosphorylated GRK2

ould only be targeted by calpains during the reperfusion phase

pon intracellular pH normalization, since during ischemia ongo-

ng acidosis inhibits these proteases [42].

However, the functional relationships among PKA stimulation,

alpain activation status and GRK2 degradation are not straightfor-

ard and may involve additional regulatory layers. While phospho-

ylation of GRK2 by PKA switches on degradation by calpain, PKA

as been reported to inhibit calpains upon βAR-triggered cAMP

timulation, and such mechanism appears to participate in the

olecular mechanisms of cardioprotection upon ischemic precon-

itioning [64]. This apparent paradox may be reconciled by the
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xistence of compartmentalized pools of these proteins and of dis-

inct localization and activation mechanisms of PKA isoforms via

egulatory anchoring proteins termed AKAPs [65]. In the vicinity of

he plasma membrane, βAR-dependent production of cyclic-AMP

eportedly promotes activation of AKAP79-bound type II PKA II

eading to phosphorylation of GRK2 [37] and potentially also cal-

ains, which subsequent inhibition would partially protect sub-

trates such as fodrin and receptor-bound GRK2 from proteoly-

is in such locations. On the other hand, we find that reperfu-

ion, in parallel to increased global PKA activity and S685-GRK2

hosphorylation, enhances the oxidation-dependent dimerization

tatus of PKA-RIα, an event leading to PKA activation indepen-

ently of cAMP and driving its localization at the myofilament

ompartment [39,66], where a significant pool of GRK2 protein

s present via association with sarcomeric a-actinin [67]. We pos-

ulate that PKA-mediated GRK2 phosphorylation at such location

ould particularly favor its subsequent degradation by nearby

alpains, less likely to be targeted there by the reported βAR-

KA inhibitory phosphorylation mechanism. Interestingly, at early

eperfusion times after preconditioning we observed comparatively

igher GRK2 levels and decreased S685 phosphorylation status,

onsistent with diminished oxidation-dependent PKA activation in

uch conditions due to decreased ROS production [68], despite en-

anced βAR-PKA stimulation also taking place in such conditions

64].

The cardio-protective and pro-survival AKT pathway is consid-

red to be up-regulated during reperfusion to compensate I/R-

romoted injury, and enhanced stimulatory AKT phosphorylation

s found in such conditions. Activation of the Akt cascade is cen-

ral to several conditioning strategies and plays a relevant cardio-

rotective role within the reperfusion injury salvage kinase path-

ay (RISK) pathway, whereas inhibitors of the upstream kinase

I3K block conditioning and cardioprotection [1,4,10,11]. However,

e uncover that a concurrent and marked reduction in total AKT

rotein levels is triggered by ischemia and maintained during the

rst 30 min of reperfusion, resulting in an overall decrease of

lobal AKT activity in cardiac extracts. The fact that such changes

n total Akt levels at early times of I/R has not been investigated

n detail before may be explained by the circumstance that in

his type of studies total AKT levels are usually employed as load-

ng controls to normalize the pAkt phosphorylation status, with-

ut direct comparison to other loading controls that would allow

ssessing possible changes in Akt protein levels (for instance see

11,51,69–71] However, a few reports do show an apparent de-

rease in total Akt levels compared to normoxia in I/R-related con-

itions [26,72,73] although this fact or the mechanisms involved

ere not discussed in detail.

Our results indicate that hyper-stimulation of the remaining

KT enzyme during reperfusion might not be able to fully com-

ensate for the decay in protein levels taking place during early

/R. Such Akt protein down modulation would thus likely coun-

eract the beneficial effects of therapeutic approaches specifically

imed at fostering Akt stimulation, suggesting that preventing

RK2/Pin1/Akt degradation would safeguard global Akt catalytic

nd foster the efficacy of cardioprotective drugs or conditioning

trategies (see section below).

We postulate that GRK2-related changes in the Prolyl isomerase

in1 may provide functionally link altered GRK2 and AKT protein

evels during I/R. AKT undergoes proteasomal degradation in dif-

erent cell types, and phosphorylation by mTORC2 at S473 can de-

rease AKT stability in addition to allowing full kinase activation

47,74]. Of note, Pin1, a known modulator of protein folding, ac-

ivity and stability [45] and a relevant player in cardiac hypertro-

hy [48] and cardiac calcium handling [75], reportedly acts as a

ey positive factor in the regulation of AKT stability in cancer cells

y binding to Ser473-activated AKT and protecting it from degra-
ation by the proteasome, so decreased Pin1 expression facilitates

KT degradation [46,47]. Pin1 can also be degraded by the pro-

easome [76,77], and decreased expression takes place in liver I/R

y unknown mechanisms [78]). GRK2 controls Pin1 stability and

unctionality in cancer cells by modulating its acetylation status

ia HDAC6, so decreased GRK2 expression fosters Pin1 acetylation

nd favors its degradation [30]. Consistently, we find that cardiac

RK2 downregulation during I/R correlates with a marked reduc-

ion in total Pin1 levels, along with its enhanced acetylation. Such

ecrease in this AKT stabilizing factor would in turn facilitate the

bserved concurrent AKT degradation.

Supporting a potential clinical relevance of our findings, a pat-

ern of concomitant down-modulation of GRK2/AKT/Pin1 protein

evels in early stages of cardiac I/R was also observed in pigs,

very relevant large animal model used in translational studies

28,51,79]. One limitation of our study is the relatively low number

f animals per condition, arising from the logistic complexity of

his type of experiments, including comparison of expression levels

uring myocardial ischemia and different early time points follow-

ng reperfusion, as well as pre- or post-conditioning conditions in

he rat model, However, the fact that the key changes reported are

bserved at different time points, in independent experiments in

ther rat cohorts using calpain and proteasome inhibitors and in a

arge animal pig model support the main conclusions of this work.

Consistent with this notion of related proteolysis events of

RK2 (via both proteasome and calpains), Pin1 and AKT (mostly

ia proteasome) during I/R, the combined inhibition of these

egradation pathways prior to I/R fully prevents the degradation

f GRK2, Pin1 and AKT, rescues global AKT functionality in rat car-

iac extracts, and significantly decreases infarct size and LDH re-

ease. Both calpain [42–44] and the proteasome [80,81] have been

eported to target a variety of cardiac substrates, including com-

onents of several signaling cascades. The susceptibility of specific

ubstrates for degradation may vary depending on their subcel-

ular localization, whereas different proteasome inhibitors inhibit

ardiac proteasome subtypes to a different extent [82]. Thus, it is

ikely that the combined effect of SNJ-1945 and bortezomib may

lter the levels of other cardiac signaling pathways in addition to

he GRK2/Pin1/AKT axis. However, the fact that the protective ef-

ect of these inhibitors in I/R-induced cardiac damage is lost in the

resence of an inhibitor of the PI3K/Akt pathway strongly suggests

hat preventing GRK2/Pin1/AKT degradation in cardiac cell types at

arly times in I/R and the parallel rescue of global AKT functional-

ty play a relevant role in helping reduce myocardial injury.

Our observation that AKT protein levels fall during early I/R, re-

ulting in an overall decrease of the functionality of this key car-

ioprotective pathway despite the stimulated status of the remain-

ng AKT upon reperfusion puts forward a strong impediment for

reatment approaches aimed only to enhance AKT activation sta-

us, as is the case for a variety of conditioning and pharmacologi-

al strategies [1,4,9–11], and suggest that treatments using a com-

ination of calpain and proteasome inhibitors at the time of flow

estoration in order to inhibit GRK2 and AKT degradation would

oster the efficacy of endogenous cardioprotection, cardioprotective

rugs or conditioning strategies.

In addition to helping preserve global AKT functionality, shield-

ng GRK2 from degradation during early reperfusion might also

rotect against malignant ventricular tachyarrhythmias [53–55]

nd adrenergic-mediated myocardial injury [38]. However, given

he reported increase in GRK2 expression at later time points

fter MI and their overall maladaptive role in cardiac remodel-

ng and progression to HF [12,13,15,16,23], the therapeutic win-

ow for strategies aimed at decreasing GRK2 degradation should

e carefully established. In mouse models, genetic GRK2 ablation

0 days after MI [83] or treatment with the GRK2 catalytic in-

ibitor paroxetine initiated 2 weeks after MI [22] improved cardiac
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function and reduced the adverse remodeling of ischemic nature.

In this regard, permanent down-regulation of GRK2 in cardiac-

specific knock-out animals protects [18], whereas increased GRK2

protein levels in cardiac transgenic GRK2 mice at the onset of

MI aggravates [84] the injury caused by I/R, reportedly related to

pro-apoptotic signaling triggered by enhanced targeting of GRK2

to the mitochondrial compartment, likely initiated during the is-

chemic phase of MI injury, as GRK2 mitochondrial shuttling de-

pends on S670 phosphorylation, which is induced by ischemia. Al-

though such data are consistent with a maladaptive role of high

GRK2 levels in the long term, these models do not recapitulate

the dynamic changes in GRK2 levels occurring at different phases

of ischemia/reperfusion/remodeling and do not rule out a protec-

tive role for timely prevention of GRK2 degradation at early points

of reperfusion. Interestingly, adenoviral delivery or cardiac trans-

genic expression of the C-terminal region of GRK2 (βARKct con-

struct, aa 495–689) has a clear cardio-protective effect in both HF

and acute MI experimental settings in murine or porcine preclini-

cal models, by mechanisms involving prevention of the interaction

and activation of GRK2 by Gβγ subunits released upon GPCR acti-

vation and interference with GRK2 phosphorylation at Ser670 and

maladaptive targeting to mitochondria (reviewed in [13,21,23]). In

other cell types, expression of βARKct also inhibits phosphoryla-

tion of endogenous GRK2 at Ser-670 by CDK2 and Pin1/GRK2 asso-

ciation, thus preventing down-regulation of endogenous GRK2 dur-

ing cell cycle progression [31]. It is thus tempting to suggest that in

the cardiac context an additional therapeutic effect of the ectopic

expression of βARKct (which bears both the Ser670 and Ser685-

related GRK2 phosphodegrons, highly conserved across species)

would be to compete with endogenous GRK2 in the phosphory-

lation by the respective kinases and the action of the degradation

machinery during I/R. Therefore, βARKct would contribute to the

stabilization of the full-length endogenous GRK2 protein and thus

of its cardioprotective Pin1 and AKT partners in the early phase

after acute myocardial injury, while still acting as a modulator of

GRK2 subcellular distribution and as a potent inhibitor of GRK2

functionality once the maladaptive increase in GRK2 takes place at

later stages.

In sum, our data uncover dynamic changes in the central GRK2

and AKT cardiac signaling nodes at early stages after I/R, and sug-

gest that the timely use of calpain and proteasome inhibition in

these contexts may be an amenable way to reinforce therapeutic

strategies aimed at reducing I/R injury.
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