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Abstract: A multi-approach study has been designed to evaluate the mannerist-style masterpiece
of the Christ of the Expiration (Museum Brotherhood, Seville, Spain), a polychrome wooden paste
sculpture of the 16th Century that was restored in the Andalusian Historical Heritage Institute (IAPH).
During its intervention, a combination of two non-destructive prototypes were used to evaluate
the different color in its feet regarding its legs and torso and its cause. A portable equipment that
combined X-ray diffraction (XRD) and X-ray fluorescence (XRF) was employed to analyze chemical
composition and mineralogical characterization of pigments. This equipment allowed obtaining
simultaneously XRF and XRD at the same point without sampling. X-ray techniques identified
cerussite, hydrocerussite and barite in different layers. The presence of zinc oxide from a recent
restoration was also detected. Additionally, laser induced fluorescence (LIF) was employed to assess
the presence of different fluorescent compounds on the surface. This technique showed the use of
acrylic products in the feet, loincloth and torso of Christ from previous restoration and allowed to
detect spectral difference on the feet and a high ration of the acrylic product on feet, both could be the
cause of the differential degradation between the feet and torso. This multi-approach study based on
portable and non-destructive techniques allowed restoration monitoring and helped restorers to take
decisions without sampling.
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1. Introduction

Traditionally, the diagnosis of artworks required sampling to characterize its materials and
evaluate its state of conservation. Nevertheless, it is important to develop multi-approach studies that
avoid sampling and allow on-site analysis. For that, it is necessary to choose non-destructive and
portable techniques whose results are complementary and help restorers to take decisions.

Laser-induced fluorescence (LIF) is a non-destructive technique successfully used to characterize
painted surfaces analysis including pigments, organic binders or acrylic resins [1–5] and consolidants [1,6],
including the diagnosis on painted surfaces [7,8]. The LIF prototype from ENEA (LidArt), is a lidar
fluorosensor (optical radar detecting LIF signals) capable to collect and to analyze the fluorescence
induced by ultraviolet laser on remote surfaces [9].
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LIF has been combined with Fourier Transform Raman Spectroscopy (FT-RS) to identify pigments
and patinas [10–12]. In this paper, LIF has been combined with a prototype from the Centre de Recherche
et de Restauration des Musées de France (C2RMF CNRS) that combined X-ray diffraction (XRD) and
X-ray fluorescence (XRF) [13,14], capable to measure XRD and XRF at the same point without sampling.

XRD and XRF techniques are broadly employed for the characterization of artworks [15,16],
and they are complementary because the first gets crystallographic phases of minerals and the second
analyses the chemical composition of materials. Their integration in one instrument performs both
analyses simultaneously, using the same radiation source. This equipment have been useful to characterize
archaeological materials [17,18], pigments [19,20], ceramics [21] and other materials present such as metal
alloys in decorate lacquered furniture or the distribution of silver crystallites in daguerreotypes [22].

In this case, this multi-approach study was carried out in the Christ of Expiration (Figure 1a) a
wooden paste sculpture made in 1575. It is a mannerism masterpiece of the sculptor Marcos Cabrera,
likely inspired by a drawing of Michelangelo for Vittoria Colonna in 1540, which was well-known in
Spain during those years. The image represents the last moments of Christ just before his death on the
cross. It was considered an innovation at that time because it was made with lightweight materials
(wooden paste) to minimize the weight during its translation in the city on Holy Week and because it
was made at full size [23].
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Figure 1. Christ of Expiration (1,875 m) under visible light (a) and ultraviolet light (b). Ultraviolet 
light was used to detect previous interventions due to the different fluorescence of the materials. Inset, 
a detail of the leg of the sculpture where was possible to see the last intervention (darkening areas). 

This wooden paste has clearly an intangible value as it was designed for processional purpose. 
Even nowadays, after four centuries, the Museum Brotherhood from Seville (Spain) maintains the 
devotion and its processional use on Monday during Holy Week. 

The image suffered several interventions between 1893 and 1895, which fixed the current profile 
of the sculpture. Afterwards, several restorations have been documented: (a) Manuel Gutierrez Reyes 
Cano made a new loincloth in 1895, (b) Francisco Peláez Del Espino carried out several interventions 
in 1978, 1985 and 1988. From April 1990 to March 1991 the Institute of Conservation and Restoration 
of Cultural Heritage (IPCE) restored the image. Luis Alvarez Duarte repaired the damage on feet and 
legs due to the dents suffered after a blow in 2008 [23]. 

Figure 1. Christ of Expiration (1875 m) under visible light (a) and ultraviolet light (b). Ultraviolet
light was used to detect previous interventions due to the different fluorescence of the materials. Inset,
a detail of the leg of the sculpture where was possible to see the last intervention (darkening areas).

This wooden paste has clearly an intangible value as it was designed for processional purpose.
Even nowadays, after four centuries, the Museum Brotherhood from Seville (Spain) maintains the
devotion and its processional use on Monday during Holy Week.

The image suffered several interventions between 1893 and 1895, which fixed the current profile
of the sculpture. Afterwards, several restorations have been documented: (a) Manuel Gutierrez Reyes
Cano made a new loincloth in 1895, (b) Francisco Peláez Del Espino carried out several interventions
in 1978, 1985 and 1988. From April 1990 to March 1991 the Institute of Conservation and Restoration of
Cultural Heritage (IPCE) restored the image. Luis Alvarez Duarte repaired the damage on feet and
legs due to the dents suffered after a blow in 2008 [23].

The image showed a differential alteration of the painted layers from different interventions, that
produce a yellowish tone, mainly located on legs and feet. These interventions are not clearly located
by ultraviolet light (Figure 1b). It was necessary to characterize the pigments and varnishes on the
whole surface without taking samples. Therefore, chemical and mineralogical information should be



Crystals 2020, 10, 708 3 of 14

obtained by means of non-destructive analytical techniques, improving diagnosis of the artwork before
and during its intervention [24].

The use of both techniques, LF and XRF-XRD, was a challenge due to the shape and the nature
(wooden paste) of the sculpture [20] and this multi-approach was compared with the classical
methodology based on sampling and traditional techniques in order to assess the improvement of
diagnosis of an artwork before and during its interventions. These traditional techniques were optical
microscopy, scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX) and
infrared spectroscopy (FTIR) applied on samples taken from zones with cracks and fissures.

2. Materials and Methods

2.1. Study by Traditional Techniques (OM, FTIR and SEM-EDX)

In order to compare the results of LIF and XRF-XRD techniques with traditional techniques used
in the diagnosis of Cultural Heritage, a few samples were taken in cracks or lagoon borders, according
to the European standard EN 16085 [25]. Samples were embedded in methyl-methacrylate resin to
observe the cross-section and were studied with a stereoscopic microscope, an optical microscope
(OM) with reflected light Leika DM5500 (Leika Microsystem, Seville, Spain) using normal light and
ultraviolet light (UV (360 nm), Leika A 106 Z, Leika Microsystem, Seville, Spain) and a scanning
electron microscope (SEM) JSM 5600 LV (JEOL, Seville, Spain) with elemental microanalysis by energy
dispersive X-ray (EDX) Inca X-Sight (Oxford Instruments, Seville, Spain) to determine the elemental
composition of the pigments and inorganic fillers.

Infrared spectroscopy with Fourier Transform Perkin Elmer Spectrum 100 was carried out to
study coatings or varnishes. Analyses were performed between 4400 cm−1 and 370 cm−1, with KBr
pellets or by surface analysis using UATR (Universal Attenuated Total Reflectance) technique.

Eight samples were taken from the sculpture to evaluate the color palette of polychromies and to
identify the constituent materials (EXPQx, Figure 2). Unfortunately, as could be seen later, there was
no sample on the feet due to the lack of any crack or lagoon in this area.Crystals 2020, 10, x FOR PEER REVIEW 4 of 15 
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2.2. Study by Laser Induced Fluorescence

A Laser Induced Fluorescence prototype from ENEA [9], that collects hyperspectral fluorescence
images induced by a laser beam, was used in this study. The system scans a zone to identify the
fluorescence signature of surface without sample taking [6,26–30]. This prototype was used to evaluate
the varnish applied during the last restoration that was getting darker on legs and feet [31,32], as this
could not be identified by classic techniques as UV photography (Figure 1b) [24].

The system was set up to detect the spectral signature of sculpture surface in its own church before
the restoration. To this end, the laser was set up to emit in the UV at 266 nm, while detector acquired
the full spectrum from 200 nm to 850 nm with a spectral resolution of 2.5 nm. The Laser average power
was 0.9 mJ/pulse at 20Hz, the energy density at target plane 0.2 mW/cm2, the Spectrograph was a
Horiba CP-140 and the detector an ICCD Andor DH734-18F.

Successive scans have been performed on the images with the aim to measure both the reflectance
and the laser induced fluorescence. All reflectance images were acquired in low resolution mode, since
they were only used to better identify the scanned portion.

The detection of the emitted fluorescence identified the presence of substances excited by UV
radiation: biodeterioration, pollutant, waxes, pigments and surface treatments [6,31,32].

2.3. Study by XRF-XRD

A portable XRD and XRF apparatus has been used to characterize chemical and mineralogical
composition of the pigments. This equipment allows simultaneously crystallographic structure
identification and elemental chemical analysis in the same place without sample taking. The portable
XRF-XRD system was developed by the C2RMF with the support of the European projects EU-ARTECH
(EU FP 6 RII3-CT-2004-506171, [33]) and has been used within MOLAB (EU CHARISMA program
FP7-228330 [34]).

X-rays are produced with a Cu anode source. XRF elemental analysis is performed with a SDD
detector with a resolution of 150 eV FWHM at 5.9 KeV. X-ray diffractograms are collected in reflection
with the beam at 10◦ from the surface. The beam spot on the surface is about 3 mm in diameter [13,14].
Figure 3 shows the experimental system.
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Figure 3. Experimental system of the prototype developed by the C2RMF to analyze simultaneously
elemental chemical analysis (XRF) and crystallographic structure identification (XRD).

With this prototype and conditions, the thickness of analyzed materials is directly related to the
penetration of X-rays. Taking into account the angle between the incident X-ray beam and the object
surface (≈10◦), we estimate that XRD (8.05 keV) is performed on a 20 µm thick layer of containing
mostly light elements (Al, Si, K, . . . ) and 5 µm for heavy elements (Pb, Hg, Sn, . . . ) [14].

For XRF, depth of analysis depends not only on the elements, but also on the X-ray energies
that are used. As an example, a 100 µm thick organic layer is transparent to Pb-L X-rays (10–15 keV
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energy) and opaque to Pb-M X-ray (about 2 keV). The additional challenge in this case is to check if it is
possible obtain information of the various layers due to interventions without taking samples during
the restoration processes, as stratigraphies showed a preparation layer of 200 µm, a lead white layer of
200 µm and then the color layer of 200–220 µm [35].

In the painting surface were analyzed four areas with different varnishes and the original layer by
XRF-XRD. A total of eight measures were taken in the sculpture (CRISTxx, Figure 2). XRF-XRD selected
points depended on the palette, the restorations, the curvature of the sculpture and the dimensions of
the equipment, which are best adapted to analysis in flat zones.

A stratigraphic analysis was made in three of the studied areas corresponding to zones where
varnishes and repaintings were progressively cleaned away, one on the leg, one on the thigh and one
on the loincloth (Figure 2). In each case, we have compared the level at the bottom of the cleaned
zone with the current surface of cleaning tests. It was possible because during the cleaning tests,
the restorers removed successive polychrome layers in small areas. This allows analyzing the different
layers by these non-destructive techniques (XRF-XRD). The first cleaning test was performed in the left
thigh. The varnish layer (CRIST01), the outer unvarnished polychrome layer (CRIST02), the following
polychrome layer (CRIST03) and the layer considered as original polychrome (CRIST04) were analyzed.
The second cleaning test has been made in the loincloth where we have analyzed two points (CRIST05
and CRIST06). The third cleaning test was performed in the left calf where dirty surface has been
removed and measurements have been performed in the darkened area and the cleaned one (CRIST07
and CRIST08) (Figure 2). The last point has been analyzed in the big toe of his right foot (CRIST09),
with all the layers.

3. Results and Discussion

3.1. Study by Traditional Techniques (OM, FTIR and SEM-EDX)

UV and visible light microscope observation showed a preparation layer consisting of animal glue,
detected by FTIR, while SEM-EDX showed the signal of sulfur and calcium, likely due to plaster [36]
(Figure 4 and Table 1).

The color palette identified by traditional techniques (FTIR and SEM-EDX) appears in Table 1.
For example, red colors were due to red lake and iron, although the presence of silicon and aluminum
were likely due to red earth. Red lake is a general term that includes lakes with different compositions
and origins, such as cochineal lake, madder lake, etc. In this study, it was possible to identify
a red pigment as red lake because of the lakes have a characteristic fluorescence under UV light
(OM equipped with UV light). Inorganic red pigments, such as hematite, vermillion or minium, do not
have fluorescence. Additionally, this identification was confirmed by FTIR, and the calcium detected
by SEM-EDX probably correspond to calcite, an usual substrate to the dyestuff [37].
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Table 1. Results of traditional techniques (OM, SEM-EDX, FTIR).

Sample Description OM
Stratigraphy Thickness µm Elements Detected

by SEM-EDX * Suggested Materials

EXPQ5 Carnation left arm

Brown primer 50 Ca, S Gypsum,
animal glue

Pink layer 200 Pb, Al, Ca, K, Si
Lead white, red lake,

calcite grains,
quartz grains

White layer 200–220 Pb, Si, Ca, Lead White, calcite
grains, quartz grains

Pink layer 30 Pb, Si, Fe, Ca, Al,
K, Mn

Lead White, earth
red pigment,

hematite, red lake,
calcite grains, quartz

grains, raw umber

Pink layer 25 Pb, Si, Fe, Ca, Al, K

Lead White, earth
red pigment,

hematite, red lake,
calcite grains,
quartz grains

EXPQ6
Transparent-yellowish

final layer. Varnish
scraped with scalpel

Ca, Fe, Mn, Si, S, Ba,
Zn, P, Al, Na, K

Hematite, earth red
pigment, barite and

zinc white, raw
umber, bone black

(known commercially
as Vandyke brown)

EXPQ7 Carnation left arm

Brown primer 90–200 Ca, S Gypsum,
animal glue

white layer 45–125 Pb, Ca, K, Si Lead white, calcite
grains, quartz grains

Pink layer 200–225 Pb, Fe, al, Si, K, Ca,

Lead White,
hematite, earth red
pigment, red lake,

calcite grains,
quartz grains

Pink layer 30 Pb, Si, Fe, Ca, Al,
K, Mn

Lead White, earth
red pigment,

hematite, red lake,
calcite grains,
quartz grains

* Elements reported in bold characters are the most abundant in the layer.

Considering the polychromatic sequence, the original carnation consists on white lead and red
lake and iron oxide pigments with small amounts of calcite and quartz grains. The thickness of this
layer varies between 90 and 200 µm. Every sample showed a second layer composed of lead white,
grains of quartz and calcite with a thickness ranging between 45 and 200 µm. On this layer a double
layer made by white lead, red lake, red earth and hematite with some grains of calcite and quartz was
located. This third layer has a thickness between 200 and 225 µm. The outermost painting layer has a
composition very similar to the above composition, consisting on white lead, red lake, red earth and
hematite with some grains of calcite and quartz, but applied roughly with a small thickness, between
25 and 30 µm. The presence of white pigments based on barite and zinc white was interpreted as a
repainting layer (EXPQ06).

Varnishes were identified by FTIR (Table 2). Between the second painting layer and the last one
two layers of acrylic resin with iron oxide pigments were identified. These layers may be applied to
homogenize the color in the last restoration [39].
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Table 2. Results of IR.

Sample Description Characteristic Infrared Bands cm−1 Suggested Materials

EXPQ1 Transparent-yellowish final layer.
Varnish scraped with scalpel.

2918, 2850, 1723, 1448, 1383, 1244,
1140, 1115, 1023, 679 Acrylic resin

EXPQ2
Second layer of varnish,
Transparent-yellowish
(scraped with scalpel).

2918, 2850, 1723, 1448, 1383, 1244,
1140, 1115, 1023, 679 Acrylic resin

EXPQ3 Transparent-yellowish final layer.
Varnish scraped with scalpel.

2918, 2850, 1723, 1448, 1383, 1244,
1140, 1115, 1023, 679 Acrylic resin

EXPQ4
Second layer of varnish,
Transparent-yellowish
(scraped with scalpel).

2918, 2850, 1723, 1448, 1383, 1244,
1140, 1115, 1023, 679 Acrylic resin

3.2. Study by Laser Induced Fluorescence

Figure 5 shows the reflectance images and scanning LIF image taken from the right angle on the
altar of Christ of Expiration in his Chapel Museum. This technique allowed working on-site avoiding
the risk of transport and manipulation of artworks.

The reflectance image shows the cloth covering the altar and generates a strong fluorescence
signal which has forced to reduce areas of statistical analysis to avoid the influence of this background.
Therefore, LIF image has framed the area of study (Figure 5c). This zone has been subjected to spectral
study and similarities by PCA [40–42].
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Figure 5. (a). Reflectance image. (b) LIF image with the zone for PCA study. (c). Zones for Spectral
scanning body (A), loincloth (B), cross (C). (d). LIF spectra taken from different areas of the Christ body
(A), loincloth (B), cross (C).

Statistical studies of spectral similarity reveal a product in the torso and the loincloth that is not
on the cross (Figure 5d). This product is characterized by a signal 370 nm, that could be due to a weak
presence of acrylic resins [30,35]. All the zones of study present a large emission at 480 nm that need data
base for further studies [1,4,10]. The darkening agent observed by naked eye, dominating on Christ’s
body and loincloth but absent on the cross, might be related to a degraded product of the acrylic resin
(small signature at 370 nm and large visible emission at 480 nm). The presence of acrylic resin agrees
with the results obtained by the traditional techniques (FTIR), as could be seen later. For that, LIF results
allowed taking decisions to the restorers based on a whole analysis instead on samples.

In order to understand the differences between the feet and body, Figure 6 includes a RBG image
from reflectance measurement with the purpose of matching the pixel spectral features with the exact
location in the scanned image (a), a false color LIF image of the scanned body from a perspective
view showing the head, body, loincloth and legs (b), full detailed LIF image (as before) including the
background (c), and finally, a cumulative content of peak intensity at 370 nm obtained from PC2 along
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a line from the head trough the torso, the loincloth and the legs (d). The false color LIF image has been
obtained associating the RGB channels to the components 1, 2 and 3 of the PCA.

Yellowish areas observed on feet are mostly correlated with prominence of the peak at 370 nm.
The LIF results show difference between the concentrations of this acrylic product, as the ratio to the
visible component is much different between the torso and the feet. Indeed, the ratio was roughly
1:3 on the torso, while on the feet it was much larger 1:1 (Figure 6b). This might suggest that the feet
were more heavily restored in a former treatment and may be the cause of the darkening in this zone.
In order to improve the rightmost plot of Figure 6, it would be necessary to have a better deconvolution
of the peak at 370 nm.
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The analysis shows a rather large difference (more than double) in the integrated intensity of
the principal component (PC2) associated with the F370 peak. The spectral difference of the torso/leg
shows a prominent peak at 370 nm, which is consistent with use of varnished layer on the surface.
Moreover, a strong dissimilarity on legs and on torso was revealed by Figure 6e, which implies different
restoration products on the feet or degradation processes, though the current databases do not allow
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further identification. It would be presumably the result of a chemical interaction with constituents on
the inner layers and/or other superficial chemicals; in any case, it shows almost the same effects as an
accelerated ageing.

The conclusion is that the superficial layer has undergo to a deterioration process caused by the
accelerated ageing of acrylic products. LIF analysis gives a strong indication that the layer composition
is different on the torso and in the legs, and this may explain the change in visible color that could not
be studied by traditional techniques. In this sense, the color changes in the sculpture were caused by
the ageing of the protective products (superficial layer) and no by the deterioration of the polychrome.
This information was very valuable for restorers to design the cleaning process during the restoration.

3.3. Study by XRF-XRD and Comparison with Traditional Techniques

On-site XRF spectra detect the presence of Ca, Fe, Pb, Zn, Ba, Mn and Sr. Most of them have been
confirmed by SEM-EDX, while Sr was not detected by the SEM-EDX.

On site XRD showed the following minerals: hydrocerussite (2PbCO3·Pb(OH)2), cerussite (PbCO3),
hematite (Fe2O3), calcite (CaCO3), zinc white or zinc oxide (ZnO), barite (BaSO4) and manganese
oxide (MnO). The chemical elements identified by SEM-EDX, and their interpretation, confirmed the
presence of lead white, calcite, zinc white and hematite.

Red earth (aluminosilicates with iron) could not be detected by our XRF-XRD prototype, as the
device is not able to detect the level signals of clays and X-ray of low energy (<2 Kev), unless this
element were in high concentration [18].

XRF of two cleaned areas in Christ’s leg shows that the calcium line is the strongest in the lowest
layer (likely preparation layer) and lead white appears in all the layers according to stratigraphies.
The results show that the L lines of lead (Pb-L) are identical at all points analyzed, while the M lines of
lead become more intense as we reach the cleaned zone (Figure 7). The Pb-M line has been absorbed
by the upper layer and its intensity is reduced according to Lognoli et al. [26], this indicates that there
is no (or less) Pb in the first layer (varnish and/or last restoration) while it is present on the deep layers
(original and previous restoration) [43].
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Figure 7. XRF spectrum of samples Crist01-Crist04, from the upper layer to the cleanest zone (Crist04).
Pb has maximum concentration in the cleanest layer; conversely, Ba, Mn, Fe and Zn have minimum
concentration in the cleaned layer.

Similar results appeared on the toe surface. The XRF spectrum shows a Pb-L line very weak in
comparison with Pb-M line, which shows that white lead is not on the most external layer. Therefore,
an additional layer was added in the restoration of Luis Alvarez Duarte in 2008.

The toes XRD results reveal a high content of barite with average amounts of calcite and zinc
white. This has been confirmed by EDX-SEM and OM (Figure 4). White lead minerals are not detected
in the toe restoration by XRD because it is in small quantity and/or below the barite layer.
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Ba, Mn, Fe and Zn XRF lines present maximum intensity in uncleaned zones indicating that these
elements are part of the varnish used in the lasts restoration to homogenize the color according to
traditional techniques that employed hematite and fillers mixed with varnishes to provide color.

The analyses of X-ray fluorescence in loincloth points also indicate that the coating contains Ca,
Fe and Zn, with a high content of Ba. These results might imply that also the loincloth was retouched
in a previous restoration or it may be included by Manuel Gutierrez Reyes Cano in 1895, as white zinc
began to substitute lead white for its toxicity. Nevertheless, lead white has been detected by XRD.

Figure 8a shows the XRD spectra acquired in the cleaned zone without varnish (CRIST07, black
line) and in the area with varnish (CRIST08; red line). Both diagrams are almost identical, with the
presence of hidrocerussite/cerussite (white lead) and barite in both. The presence of white lead in the
uncleaned zone is due to the acquisition conditions where diffractogram acquires not only the varnish
signal but also comes from the deeper layers, which contain this compound according to the results
obtained in the XRF spectrum.
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Figure 8. (a). XRD diagram shows the presence of hidrocerussite (red vertical lines), cerussite (blue
vertical lines) and barite (green vertical lines) in CRIST07 (black spectra) and CRIST08 (red spectra)
zones. (b). XRD diagram shows the presence of calcite (purple vertical lines), barite (green vertical
lines) and zinc oxide (red vertical lines) in CRIST09 zone.
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XRD diagrams are dominated by cerussite and hydrocerussite which implies that acid products
are not admissible during the restoration, as they are composed by carbonates. These results, crucial for
restorers, usually are estimated by SEM-EDX as lead is detected by traditional techniques as SEM-EDX,
thought the mineralogical composition is not known. Conversely, FRX-XRD prototype allow both
chemical and mineralogical information.

Finally, XRF of a repainting area on the toe contains mainly Ca, Ba and Zn that correspond with
calcite, barite and zinc oxide (Figure 8b). Barite appears in small quantities and it is most likely located
in the varnish layer. The lack of iron might be due to the use of organic pigments, such as the red lake
detected by IR on other zones.

The natural oxidation of the varnish and a possible alteration of the red lake could be the cause
of the yellowish tone, mostly on legs and feet that began to get a darker tone than the rest of the
image. This alteration may be worsened by added pigments to give color to the varnish during the
last restoration.

Table 3 summarizes the results obtained by traditional techniques and XRF-XRD prototype.

Table 3. Main color composition detected by XRF-XRD prototype and comparison with traditional
techniques (OM, FTIR and SEM-EDX).

Color XRF-XRD Traditional Techniques (FTIR, OM, SEM-EDX)

White Barite, hidrocerussite and cerussite,
calcite, zinc oxide. white lead calcite, zinc white

Red Fe in XRF (hematite) Red lake, red earth, hematite

Brown Mn in XRF manganese oxide (MnO) Manganese oxide

NOTE: White lead or hydrocerussite (2PbCO3·Pb(OH)2), calcite (CaCO3), zinc white or zinc oxide (ZnO), barite
(BaSO4), cerrussite (PbCO3), red lake (organic pigment), red earth (aluminosilicates with iron), manganese
oxide (MnO).

4. Conclusions

The combination between LIF and portable XRF-XRD allows to assess the presence of some
original, restoration and repainting products whose information is very useful for restoration and
could reduce the number of samples.

The LIF study made over the sculpture surface shows specific difference on spectral signatures.
In this case, a product with a similar nature was applied on the loincloth and torso of Christ and,
in more quantity, on feet. Furthermore, LIF results suggested a differential alteration of the acrylic
resins what allowed restorers to conclude that the color difference was not due to the alteration of
the polychrome.

XRD and XRF portable prototype performed minerals and chemical analysis without sampling and
in the same point. In this case, cerussite, hydrocerussite and barite were identified at different layers,
in comparison with traditional techniques that only allowed assuming the presence of lead white and
barite. Furthermore, ZnO was also detected and associated to the last restoration. The interpretation of
the stratigraphic helped to restorers to decide what layers were associated to previous interventions
and which should be removed.

The combination of these two prototypes (LIF and XRF-XRD) is advisable for good diagnosis
practice before and during the cleaning test, to perform the chemical and mineralogical characterization
of the surface without risk of damage the artwork and without sampling. This information was used
by restorers to design the restoration of the sculpture, especially the cleaning process.
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