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ABSTRACT: Radical polymerization of N-methyl-N-(2-pyridyl)acrylamide 

(MPyAAm) was carried out in dichloromethane at low temperatures in the presence of 

trifluoroacetic acid (TFA). The m dyad contents of the polymers obtained at 0°C 

increased linearly from 37% to 60% with increase in the [TFA]0/[MPyAAm]0 ratio from 

unity to 5. NMR analysis of MPyAAm-TFA mixtures in dichloromethane-d2 revealed 

that the favorable conformation in terms of the pyridyl group to the carbonyl group in 

MPyAAm switched from s-trans to s-cis by protonation. The results suggest that 

controlling the conformation of MPyAAm resulted in control of the stereospecificity in 

radical polymerization of the monomer. 
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INTRODUCTION 

Radical polymerization of N-monosubstituted acrylamide generally gives atactic 

polymer. To prepare stereoregular polymers of N-monosubstituted acrylamide, it is 

necessary to use Lewis acids,1,2 Lewis bases,3,4 alkyl alcohols5,6 or fluorinated 

alcohols7,8 as an additive to the polymerization mixture. On the other hand, radical 

polymerization of N,N-disubstituted acrylamide affords stereoregular polymer without 

an additive. The stereospecificity in the polymerization depends on the structure of the 

N-substituent in the monomer; radical polymerization of N,N-dimethylacrylamide 

(DMAAm) provides isotactic polymer, whereas polymerization of 

N,N-diphenylacrylamide (DPhAAm) gives syndiotactic polymer.9  

 Recently we found that radical polymerization of 

N-methyl-N-phenylacrylamide (MPhAAm) gave syndiotactic polymer.10 According to 

the conformational analysis of N-aryl-N-methylamide,11-15 an N-aryl substituent favors 

the form s-trans to the carbonyl group and perpendicular to the planar amide group. This 

suggests that the N-substituent s-trans to the carbonyl group of N,N-disubstituted 

acrylamide should play a determining role in the stereospecificity of the radical 

polymerization. 
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Monomer conformation can be one of important factors in the 

stereospecificity of radical polymerization. In fact, it is known that monomer 

conformation affects the stereochemistry in the propagating reaction in the radical 

polymerization of 1,1-disubstituted vinyl monomers with an optically active ester group, 

near the ceiling temperature.16 Thus, it is assumed that stereospecificity of radical 

polymerization of N-aryl-N-methylacrylamides can be controlled by strategically 

controlling the monomer conformation, even when achiral monomers are used. 

Recently, it was reported that N-methyl-N-(2-pyridyl)amides switched their 

conformation from s-trans to s-cis O=C-N-Py with protonation.17,18 If 

N-methyl-N-(2-pyridyl)acrylamide (MPyAAm) undergoes similar conformational 

switching, addition of acid to the radical polymerization of MPyAAm is expected to 

change the stereospecificity from syndiotactic to isotactic. In this paper, we report the 

effect of trifluoroacetic acid (TFA) and methanesulfonic acid (MSA) on the 

stereospecificity of radical polymerization of MPyAAm. Conformational switching of 

MPyAAm with protonation is also discussed on the basis of NMR analysis of mixtures 
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of MPyAAm and TFA.  

 

EXPERIMENTAL 

Materials 

MPhAAm was prepared according to literature methods.10 Dimethyl 

2,2’-azobisisobutyrate (MAIB) (supplied by Otsuka Chemical Co., Ltd, Japan) was 

recrystallized from methanol. Acryloyl chloride, triethylamine, anhydrous 

dichloromethane, anhydrous tetrahydrofuran (THF), anhydrous acetonitrile, HCl 

aqueous solution (12 N)  (Kanto Chemical Co., Inc., Japan), trifluoroacetic acid (TFA), 

methanesulfonic acid (MSA), 2-(methylamino)pyridine (Tokyo Chemical Industry Co., 

Ltd, Japan), diethyl ether, methanol, and ethyl acetate (Kishida Chemical Co., Ltd, 

Japan) were used without further purification.  

 

Synthesis of MPyAAm 

 To a stirred solution of acryloyl chloride (36.2 g, 0.40 mol) in THF (300 mL) 

were added 2-(methylamino)pyridine (21.6 g, 0.20 mol) and triethylamine (40.5 g, 0.40 

mol) in THF (150 ml) dropwise at 3-5°C.  After stirring the mixture for 24 h at room 

temperature, the solid precipitate that had formed was removed by filtration, and the 

solvent was evaporated.  The residue was chromatographed (silica gel, ethyl acetate) to 

give 14.9 g of MPyAAm (46 %): red orange oil; 1H NMR (400 MHz, CDCl3 at 35°C), δ 

8.51 (m, 1H), 7.74 (m, 1H), 7.21 (m, 1H), 7.19 (m, 1H), 6.41 (dd, 1H, 2J = 2.0 Hz, 3J = 

16.8 Hz), 6.25 (dd, 1H, 3J = 10.2 Hz, 3J = 16.8 Hz), 5.61 (dd, 1H, 2J = 2.0 Hz, 3J = 10.2 
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Hz), 3.46 (s, 3H); 13C NMR (100 MHz, CDCl3 at 35°C), δ 166.22, 155.90, 149.23, 

138.16, 129.27, 127.89, 121.76, 120.92, 35.36. Anal. Calc. for C9H10NO: C, 66.64; H, 

6.22; N, 17.28. Found: C, 66.38; H, 6.13; N, 17.22. 

 

Polymerization 

A typical polymerization procedure was as follows. MPyAAm (1.0948 g, 6.75 mmol) 

was dissolved in CH2Cl2 to prepare 3 mL of solution, and TFA (0.7697 g, 6.75 mmol) 

was dissolved in CH2Cl2 to prepare 3 mL of solution. Two milliliters of each solution 

were transferred to a glass ampoule cooled to 0°C. MAIB (0.0104 g, 4.52×10–2 mmol) 

was dissolved in CH2Cl2 to prepare 1 mL of solution and 0.5 mL of this solution was 

added to the mixture of MPyAAm and TFA in CH2Cl2 at 0°C, giving final 

concentrations: [MPyAAm]0=1.0 mol L–1, [TFA]0=1.0 mol L–1, [MAIB]0=5.0×10–3 mol 

L–1. The glass ampoule was degassed and filled with nitrogen three times. The mixture 

was irradiated at a distance of ~5cm from an UV-LED lamp (375nm, Optocode Co., 

Japan) to initiate polymerization. After 16 h, the polymerization mixture was poured 

into diethyl ether (500 mL). The precipitated polymer was collected by centrifugation, 

and dried in vacuo. The polymer yield was determined gravimetrically. 

 

Measurements 

1H NMR spectra of the polymers were obtained using an EX-400 spectrometer (JEOL 

Ltd.). The tacticity of the polymers was determined from the 1H NMR signals of the 

methylene groups in the main chain, as measured in deuterated dimethyl sulfoxide 
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(DMSO-d6) at 150°C. 1H and 13C NMR spectra of MPyAAm monomer in the presence 

or absence of TFA were measured in CD2Cl2 at 0°C with an ECX-400 spectrometer 

(JEOL Ltd.) operated at 400 MHz for 1H and 100 MHz for 13C.   

The molecular weights and molecular weight distributions of the polymers 

were determined by size exclusion chromatography (SEC), using polystyrene samples 

as molecular weight standards. SEC was performed with an HLC 8220 chromatograph 

(Tosoh Co.) equipped with TSK gel columns (SuperHM-M (6.5 mm ID×150 mm) and 

SuperHM-H (6.5 mm ID×150 mm), Tosoh Co.) and UV detector (UV-8220, Tosoh Co.). 

Dimethylformamide containing LiBr (10 mmol L-1) was used as eluent at 40°C with 

flow rate 0.35 mL min-1. The initial polymer concentration was 1.0 mg mL-1.  

 No peaks were observed in the chromatograms of poly(MPyAAm)s, probably 

because polymers containing pyridyl groups were absorbed by the stationary phase. 

Thus, the molecular weights of poly(MPyAAm)s were measured after poly(MPyAAm)s 

were converted into hydrochloride salts. 

 

Preparation of poly(MPyAAm) hydrochloride 

Poly(MPyAAm) (ca. 30 mg, 0.19 mmol of monomeric unit) was dissolved in 

2 mL of HCl methanol solution (2.0 N, 4.0 mmol of HCl), and 4 mL of diethyl ether 

was added dropwise to the solution. After removal of the supernatant solution by 

decantation, the precipitated polymer was dried in vacuo.  Signals of the pyridinium 

protons were not observed in the 1H NMR spectrum of the precipitated polymer 

measured in DMSO-d6 at 25°C, probably because of exchange with H2O. However, the 
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signals of the pyridyl group exhibited a slight down-field shift after treatment with HCl, 

suggesting that the pyridyl groups in poly(MPyAAm)s were converted into HCl salts. 

 

 

RESULTS AND DISCUSSION 

Radical Polymerization of MPyAAm in CH3CN at 0 or –40°C in the Presence of 

TFA or MSA 

Radical polymerization of MPyAAm was carried out in CH3CN at 0°C in the 

absence of acids; however, no polymer was obtained. The polymerization was then 

carried out in CH3CN in the presence of TFA (Table 1, runs 1-3), and polymers were 

obtained in moderate yields. The fact that hydrogen bonding formation between C=O 

and –OH significantly enhances kp in radical polymerization of α,β-unsaturated ester 

monomers,19-22 suggested that at least the carbonyl group in MPyAAm was protonated, 

resulting in formation of polymers.  

Polymer with m dyad content 38% was obtained in the presence of an 

equimolar amount of TFA. This value (38%) is comparable to the m dyad content (34%) 

of poly(MPhAAm) prepared in CH2Cl2 at 0°C (cf. Table 3), suggesting that MPyAAm 

essentially favored the s-trans O=C-N-Py conformation and gave syndiotactic-rich 

polymers by a mechanism similar to that proposed for the MPhAAm polymerization10. 

The m dyad content increased to 44% with increase in the amount of added TFA. 

However, isotactic specificity was not induced even in the presence of a 5-fold amount 

of TFA, suggesting that only partial conformational switching of MPyAAm occurred in 
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the presence of excess amounts of TFA at 0°C. Thus, the polymerization temperature 

was reduced to –40°C, in anticipation of an enhanced effect of TFA (Table 1, runs 4-6). 

A slight increase in the m dyad content of poly(MPyAAm) was observed regardless of 

the amount of added TFA, though the m dyad content did not exceed 50%. 

 

<Table 1> 

 

  The effect of MSA (pKa: 1.6 in DMSO23), which is a stronger acid than TFA 

(pKa: 3.45 in DMSO23), was then examined (Table 1, runs 7-12). The m dyad content 

reached 49% in the presence of excess amounts of MSA at 0°C. By lowering the 

temperature to –40°C, however, the m dyad content decreased in the presence of excess 

MSA.  

  

Radical Polymerization of MPyAAm in CH2Cl2 at Low Temperatures in the 

Presence of TFA 

 The radical polymerization of MPyAAm was carried out in CH2Cl2, a less 

polar solvent than CH3CN, at 0°C in the presence or absence of TFA. As for 

polymerization in CH3CN, no polymer was obtained in the absence of TFA and 

polymers were obtained in moderate yields in the presence of TFA (Table 2, runs 1-5). 

The addition of TFA significantly affected the stereoregularity of the poly(MPyAAm) 

obtained. The m dyad content of the polymer increased linearly with the amount of 

added TFA and reached 60%, although 4-fold and 5-fold amounts of TFA showed 
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similar effects (Figure 1). The value (m=60 %) is comparable with the m dyad content 

(62%) of poly(DMAAm) prepared in toluene at 0°C.24 This result suggested that 

MPyAAm favored the s-cis O=C-N-Py conformation in CH2Cl2 in the presence of 

excess amounts of TFA, and gave isotactic-rich polymers by a mechanism similar to 

that proposed for DMAAm polymerization24.  

 

<Table 2> 

<Figure 1> 

 

 To confirm the involvement of the pyridyl group in the induction of isotactic 

specificity by TFA, radical polymerization of MPhAAm was carried out under the same 

conditions (Table 3). The addition of TFA scarcely influenced the stereoregularities of 

the polymers obtained, although slight decreases in the m dyad contents of the polymers 

obtained in the presence of equimolar and 2-fold amounts of TFA were observed. Thus, 

it is further suggested that the conformational switching of MPyAAm by protonation 

was responsible for the acid-induced isotactic specific polymerization, as expected.  

 

<Table 3> 

 

 To examine the effect of the polymerization temperature on isotactic 

specificity, MPyAAm polymerizations in CH2Cl2 were carried out at –60°C to –20°C 

(Table 2, runs 6-20). Decrease in temperature slightly enhanced the isotactic specificity, 
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but excess amounts of TFA were required to significantly induce isotactic specificity 

even at –60°C (Figure 2). The conformational switching of MPyAAm by protonation is 

assumed to proceed via multi-step and not single-step processes, as discussed later. 

 

<Figure 2> 

 

 The tendency of increase in number-averaged molecular weight (Mn) of 

poly(MPyAAm) with increase in the amount of the added TFA was observed, although 

the addition of 5-fold amount of TFA decreased Mn compared with 4-fold amount of 

TFA. This tendency implies that polymerization was accelerated by protonation of the 

carbonyl group in MPyAAm as mentioned above and/or the rate of syndiotactic 

propagation differs from the rate of isotactic propagation, although the Mns determined 

by SEC of poly(MPyAAm) hydrochlorides are not accurate enough to be discussed 

quantitatively. 

 

NMR Analysis of Conformational Switching of MPyAAm 

 To further investigate the conformational switching of MPyAAm, we 

conducted 1H NMR analysis of MPyAAm ([MPyAAm]0=0.1 mol L–1) in CD2Cl2 at 0°C 

in the absence or presence of TFA (Figure 3). The signals of pyridyl and vinyl groups 

shifted significantly upon adding TFA, suggesting interaction between MPyAAm and 

TFA. In the pyridyl group resonances, small signals were observed on adding an 

equimolar amount of TFA. The small signals were also observed in the presence of 2- 
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and 3-fold amounts, but disappeared in the presence of 4- and 5-fold amounts of TFA. It 

was assumed that the small signals were assignable to the pyridyl groups in the s-cis 

O=C-N-Py conformer that is in equilibrium with the original s-trans O=C-N-Py 

conformer, and the equilibrium exchange rate was enhanced by excess TFA. The details 

are discussed later. 

 

<Figure 3> 

 

 In the vinyl group resonances, signals assignable to the s-cis O=C-N-Py 

conformer were not clearly observed, probably because of overlap of the signals due to 

the two conformers. Protonation of the carbonyl group would result in a down-field 

shift of the signals of the vinylidene protons and an up-field shift of the signal of the 

methine proton.25 Indeed, the signals of the vinylidene protons moved gradually towards 

lower magnetic field with an increase in the amount of added TFA. However, the 

methine proton signal moved slightly towards higher magnetic field upon adding an 

equimolar amount of TFA, then moved towards lower magnetic field upon adding 

excess TFA. The down-field shift in the presence of excess TFA suggests 

conformational switching of MPyAAm by protonation, because the methine proton 

should become free from the shielding effect of the pyridyl ring in the s-trans 

O=C-N-Py conformation when conformational switching takes place.26  

 NOE difference spectroscopy was performed to confirm the conformational 

switching. Saturation of the N-methyl group led to significant NOE enhancement for 
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both the Hc in the vinyl group and the Hd proton at the 3-position in the pyridyl group in 

the presence of TFA, although no NOE was observed in the absence of TFA (Figure 4). 

Furthermore, the NOE enhancement increased linearly with increase in the amount of 

added TFA, although 4-fold and 5-fold amounts of TFA exhibited similar NOE 

enhancements (Figure 5). It should be noted that this tendency was similar to the 

dependence of the m dyad content on the amount of the added TFA (cf. Figure 2). 

 

<Figure 4> 

<Figure 5> 

 

 13C NMR spectra of MPyAAm ([MPyAAm]0=0.1 mol L–1) in the absence or 

presence of TFA were also measured in CD2Cl2 at 0°C. The 13C NMR signals of 

MPyAAm shifted significantly on adding TFA as well as the 1H NMR signals. Figure 6 

displays the changes in the chemical shifts of the acryl group and the pyridyl group on 

adding TFA.  

 

<Figure 6> 

 

 By adding equimolar and 2-fold amounts of TFA, the signals of the vinylidene 

and carbonyl carbons exhibited down-field shifts. This result supports protonation of the 

carbonyl group. Furthermore, the signal of the carbon at the 4-position in the pyridyl 

group exhibited a down-field shift, and those at the 2- and 6-positions in the pyridyl 
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group exhibited up-field shifts. These results indicate that the pyridyl group was also 

protonated.27  

 By adding a 3-fold amount of TFA, the changes in the chemical shifts of all of 

the carbons were substantial. However, significant changes were not observed between 

4-fold and 5-fold amounts of TFA. These results imply that the conformational 

switching of MPyAAm required at least a 3-fold amount of TFA. 

 

Proposed Mechanism for Conformational Switching of MPyAAm with Protonation 

 It has been proposed that N-aryl-N-methylamides favor the s-trans O=C-N-Ar 

conformation, because the s-cis O=C-N-Ar conformation is destabilized by the 

electronic repulsion between the carbonyl lone-pair electrons and the aryl π-electrons in 

the aryl ring twisted by steric hindrance between the N-methyl group and the aryl 

ring.15,28 In fact, the major conformation dramatically changed from the s-trans 

O=C-N-Ar to the s-cis O=C-N-Ar upon addition of TFA in the case of 

N-[3,5-bis(dimethylamino)phenyl]-N-methylacetamide, probably because of the 

decrease in the electronic repulsion with protonation at the amino groups.28 

 In the present system, conformational switching could occur via the following 

mechanism (Scheme 1): 

1. both the carbonyl and pyridyl groups of structure A are protonated to become 

structure C via structure B or B’, resulting in a decrease in the electronic repulsion 

between the carbonyl and pyridyl groups; 

2. the conformational switching of structure C will occur, but the repulsion between 
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the positive charges prevents structure C from converting; 

3. however, structure C is transformed into structure D, accompanied by abstraction of 

one of the protons in structure C, probably catalyzed by the conjugate base of the 

third acid, to form double protonations of both the carbonyl and pyridyl groups by 

one proton. 

 If the conjugate base of the third acid catalyzed the conformational switching, 

excess TFA should enhance the equilibrium exchange. This corresponds to the result 

that the 1H NMR signals of the s-trans and s-cis O=C-N-Py conformers were not 

distinguished in the presence of 4-fold and 5-fold amounts of TFA (cf. Figure 3). 

Furthermore, it is explicable that MSA exhibited the isotactic-specificity-inducing effect 

to a lesser extent than TFA (cf. Table 1). 

 When conformational switching takes place via the structure B, the 

concentration of D can be expressed by the following equation: 

[D]=K1BK2BK3[A][H+] 

where K1B, K2B, and K3 are the equilibrium constants for the protonation of A to B, and 

for B to C, and for conformational switching of C to D, respectively. Even when the 

conformational switching takes place via the structure B’, the concentration of D can be 

expressed by a similar equation: 

[D]=K1BK2BK3[A][H+] 

 These equations indicate that the concentration of D is proportional to the 

concentrations of A and H+. This corresponds to linear increases of the m dyad content 

of the polymers obtained (cf. Figure 2) and of the NOE enhancement in 1H NMR of 
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MPyAAm (cf. Figure 5), with the amount of added TFA. Furthermore, the 

conformational switching of C to D accompanies release of one of two H+ in C. This 

means that increase in the concentration of H+ dose not simply result in acceleration of 

the conformational switching, even though the conjugate base of the third acid catalyzed 

the conformational switching. Consequently, excess amount, such as 5-fold amount, of 

TFA was required to significantly induce the conformational switching. 

 

CONCLUSION 

MPyAAm was designed as a monomer that is conformationally switchable by 

protonation.  The stereospecificity of radical polymerization of MPyAAm was 

changed from syndiotactic to isotactic by adding TFA in CH2Cl2 at low temperatures, as 

expected. NMR analysis of mixtures of MPyAAm and TFA revealed that MPyAAm 

favored the s-cis O=C-N-Py conformation in the presence of excess TFA, and the 

s-trans O=C-N-Py conformation in the absence of TFA. Consequently, it is suggested 

that conformational switching of the monomer with protonation was responsible for the 

change in the stereospecificity of the radical polymerization of MPyAAm. Successful 

control of stereospecificity of radical polymerization by conformational switching of 

monomer would allow development of novel methodology for control of 

stereospecificity of radical polymerization. 
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Table 1.  Radical polymerization of MPyAAm in CH3CN at low temperatures for 16 h in 
the presence of TFA or MSA.a 
Run Temp. Additive [Additive]0 Yield Dyad / %b Mn

c Mw/Mn
 c 

 °C  mol L–1 % m r × 10–4  
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

0 
0 
0 

–40 
–40 
–40 

0 
0 
0 

–40 
–40 
–40 

TFA 
TFA 
TFA 
TFA 
TFA 
TFA 
MSA 
MSA 
MSA 
MSA 
MSA 
MSA 

1.0 
3.0 
5.0 
1.0 
3.0 
5.0 
1.0 
3.0 
5.0 
1.0 
3.0 
5.0 

48 
55 
50 
60 
54 
30 

>99 
58 

>99 
29 
49 
51 

38 
44 
44 
44 
47 
47 
42 
49 
49 
45 
48 
47 

62 
56 
56 
56 
53 
53 
58 
51 
51 
55 
52 
53 

0.63 
2.05 
4.36 
2.59 
3.75 
5.20 
1.26 
1.82 
3.08 
ndd 
0.73 
0.93 

1.8 
3.1 
3.1 
2.6 
3.2 
4.4 
3.2 
4.7 
5.1 
ndd 
2.9 
2.3 

a. [MPyAAm]0=1.0 mol L–1, [MAIB]0=5.0×10–3 mol L–1.  
b. Determined from the 1H NMR signals of the main-chain methylene groups. 
c. Determined by SEC (polystyrene standards) for poly(MPyAAm) hydrochloride. 
d. Not determined. 
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Table 2.  Radical polymerization of MPyAAm in CH2Cl2 at low temperatures for 16 h in 
the presence of TFAa. 
Run Temp. [TFA]0 Yield Dyad / %b Mn

c Mw/Mn
 c 

 °C mol L–1 % m r × 10–4  
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

0 
0 
0 
0 
0 

–20 
–20 
–20 
–20 
–20 
–40 
–40 
–40 
–40 
–40 
–60 
–60 
–60 
–60 
–60 

1.0 
2.0 
3.0 
4.0 
5.0 
1.0 
2.0 
3.0 
4.0 
5.0 
1.0 
2.0 
3.0 
4.0 
5.0 
1.0 
2.0 
3.0 
4.0 
5.0 

80 
88 
46 
34 
49 
84 
59 
37 
33 
57 
50 
26 
29 
40 
28 
66 
40 
44 
25 
14 

37 
45 
54 
59 
60 
39 
49 
57 
62 
63 
41 
50 
58 
65 
65 
40 
49 
57 
66 
66 

63 
55 
46 
41 
40 
61 
51 
43 
38 
37 
59 
50 
42 
35 
35 
60 
51 
43 
34 
34 

0.33 
4.76 
1.71 
3.45 
4.18 
2.57 
4.28 
7.44 
9.67 
5.22 
5.70  
3.87  
7.90 
8.28  
4.03 
6.13 
4.39 

13.8 
17.5 
7.59 

1.5 
1.9 
2.4 
3.4 
4.4 
4.3 
3.0  
4.2 
4.5 
4.9 
3.8 
6.2 
4.6 
3.5 
4.4 
4.4 
8.0  
4.1 
3.7 
3.6 

a. [MPyAAm]0=1.0 mol L–1, [MAIB]0=5.0×10–3 mol L–1.  
b. Determined from the 1H NMR signals of the main-chain methylene groups. 
c. Determined by SEC (polystyrene standards) for poly(MPyAAm) hydrochloride. 
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Table 3.  Radical polymerization of MPhAAm in CH2Cl2 at 0°C for 16 h in the presence 
or absence of TFAa. 
Run [TFA]0 Yield Dyad / %b Mn

c Mw/Mn
 c 

 mol L–1 % m r × 10–4  
1 
2 
3 
4 
5 
6 

0.0 
1.0 
2.0 
3.0 
4.0 
5.0 

57 
84 
61 
37 
32 
21 

34 
27 
29 
32 
33 
35 

66 
73 
71 
68 
67 
65 

5.29 
5.26 
3.91 
2.76 
2.25 
1.96 

1.6 
1.9 
1.8 
1.7 
1.5 
1.4 

a. [MPhAAm]0=1.0 mol L–1, [MAIB]0=5.0×10–3 mol L–1.  
b. Determined from the 1H NMR signals of the main-chain methylene groups. 
c. Determined by SEC (polystyrene standards). 
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Figure 1.  1H NMR spectra of the methylene groups in the main chain of 

poly(MPyAAm)s prepared in CH2Cl2 at 0°C in the presence of (a) 1 equiv., (b) 2 equiv., 

(c) 3 equiv., (d) 4 equiv., and (e) 5 equiv. of TFA, as measured in DMSO-d6 at 150°C. 
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Figure 2.  Relationship between the [TFA]0/[MPyAAm]0 ratio and the m dyad contents 

of poly(MPyAAm)s prepared at –60°C to 0°C. The inset shows 1H NMR spectrum of the 

methylene group in the main chain of poly(MPyAAm) prepared in CH2Cl2 at –60°C in the 

presence of 5 equiv. of TFA, as measured in DMSO-d6 at 150°C. 
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Figure 3.  Expanded 1H NMR signals of the vinyl group and the pyridyl group of 

MPyAAm (0.1 mol L–1) in CD2Cl2 at 0°C. ([TFA]0: (a) 0.0 mol L–1, (b) 0.1 mol L–1, (c) 

0.2 mol L–1, (d) 0.3 mol L–1, (e) 0.4 mol L–1, and (f) 0.5 mol L–1) 
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Figure 4.  1H and NOE difference spectra of MPyAAm in CD2Cl2 at 0°C in the (a, b) 

absence or (c, d) presence of a 5-fold amount of TFA, saturating the signal of the 

N-methyl group.  
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Figure 5.  Relationship between the [TFA]0/[MPyAAm]0 ratio and the NOE 

enhancements observed for the Hc in the vinyl group and the Hd in the pyridyl group.  
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Figure 6.  Chemical shift changes in 13C NMR spectra of (a) acryloyl group and (b) 

pyridyl group in MPyAAm upon addition of TFA.  
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Scheme 1.  Proposed mechanism for the conformational switching of MPyAAm with 

protonation.  
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