
Institut National des Sciences Appliquées
of Toulouse The University of Tokushima

Numerical Method of Bifurcation Analysis
for Hybrid Systems

by

Quentin BRANDON

Supervisors:

Danièle Fournier-Prunaret Tetsushi Ueta

September 2009

Abstract

In the field of dynamical system analysis, piecewise-smooth models have grown in
popularity due to there greater flexibility and accuracy in representing some hybrid
systems in applications such as electronics or mechanics. Hybrid dynamical systems
have two sets of variables, one which evolve in a continuous space, and the other in a
discrete one.

Most analytical methods require the orbit to be smooth during objective intervals,
so that some special treatments are inevitable to study the existence and stability of
solutions in hybrid dynamical systems.

Based on a piecewise-smooth model, where the orbit of the system is broken down
into locally smooth pieces, and a hybrid bifurcation analysis method, using a Poincare
map with sections ruled by the switching conditions of the system, we review the
analysis process in details.

Then we apply it to various extensions of the Alpazur oscillator, originally a non-
smooth 2-dimension switching oscillator. The original Alpazur oscillator, as a simple
nonlinear switching system, was a perfect candidate to prove the efficiency of the
approach. Each of its extensions shows a new scenario and how it can be handled,
in order to illustrate the generality of the model. Finally, and in order to show more
of the implementation we used for our own computer-based analysis tool, some of the
most relevant numerical methods we used are introduced.

It is noteworthy that the emphasis has been put on autonomous systems because
the treatment of non-autonomous ones only requires a simplification (no time varia-
tion). This study brings a strong and general framework for the bifurcation analysis of
nonlinear hybrid dynamical systems, illustrated by some results. Among them, some
interesting local and global properties of the Alpazur Oscillator are revealed, such as
the presence of a cascade of cusps in the bifurcation diagram. Our work resulted in the
implementation of an analysis tool, implemented in C++, using the numerical methods
that we chose for this particular purpose, such as the numerical approximation of the
second derivative elements in the Jacobian matrix.

Acknowledgment

This thesis is the final achievement of 4 years of studies in Japan. The opportunity
to engage in this dual PhD. program actually comes with both a great academic, and
human experience. So I would like to thank all the people who helped me and made
this adventure possible.

First, I want to thank my supervisors, Tetsushi Ueta and Danièle Fournier-Prunaret,
for believing in me and supporting me from beginning to the end.

I am also very grateful to the reviewers of this thesis, Jean-Pierre Barbot and
Hiroyuki Kitajima, who took the time to read my work, and to give me extremely
helpful feedback. This also applies to the jury of my defense who kindly listened and
asked very constructive questions.

Of course, all this could not have been possible without both the University of
Tokushima and INSA Toulouse. I thank all the teachers, and all the students. Also I
am particularly obliged to the Japanese ministry of education, culture, sports, science
and technology (MEXT), which financed my studies in Japan through their scholarship
program.

I thank my friends, most of whom I met here in Tokushima, for all the great times
we had and the help so many of them provided me. This group includes the interna-
tional students, my lab-mates and many others who will recognize themselves.

Last but not the least, I thank my family, for supporting me and visiting me up to
the most remote places on this planet. A special mention to my wife as she is the most
precious treasure I got to find in Tokushima, where life became twice as beautiful since
the day our paths came together.

i

Contents

1 Introduction 1

2 Bifurcation analysis method for piecewise-smooth dynamical systems 4

2.1 Differential equations model featuring switching thresholds 5
2.2 Integration of the solutions . 7
2.3 Poincaré map and Newton method for fixed points 8
2.4 Critical parameter values at bifurcation points 10

3 Alpazur oscillator 11

3.1 Review of the original Alpazur oscillator 12
3.1.1 Presentation . 12
3.1.2 Analysis formulation . 14
3.1.3 Fixed points . 15
3.1.4 Bifurcation points . 16

3.2 3-state Alpazur oscillator . 19
3.2.1 Model description . 19
3.2.2 Fixed points . 22
3.2.3 Bifurcation points . 23
3.2.4 Results review . 23

3.3 Varieties of switching thresholds . 32
3.3.1 2-state Alpazur oscillator with affine switching condition 32
3.3.2 2-state Alpazur oscillator with nonlinear switching condition . . 35
3.3.3 2-state Alpazur oscillator with non-smooth switching condition . 38

3.4 3D Alpazur oscillator . 42
3.4.1 Model description . 42
3.4.2 Analysis formulation . 44
3.4.3 Fixed points . 45
3.4.4 Bifurcation points . 46

3.5 Recap . 48

4 Detail of relevant numerical methods 49

4.1 Numerical differentiation for derivation approximation 50
4.2 Variable step Runge-Kutta based method 53

ii

Contents

4.2.1 Standard variable step Runge-Kutta method 53
4.2.2 n-iteration windowed RK4 . 54

4.3 Linear prediction and tracing algorithm 57
4.3.1 Prediction approach . 57
4.3.2 Step size control . 58

5 Conclusion 60

A C++ code for Runge-Kutta integration of ODE 65

B Algorithm for prediction and tracing 68

C C++ header of the system object 70

iii

Chapter 1

Introduction

The analysis of dynamical systems, particularly complex systems, dramatically evolved
at the introduction of the first computer-based mathematical tools, only a couple
decades ago. Meanwhile, the discovery of seemingly random behavior in dynamical
systems lead to the further study of what became the chaos theory. Such chaotic sys-
tems display a variety of behaviors: when described as oscillators, the same system
may have stable orbits, but changes applied to one or several parameters could induce
changes of these orbits to states of equilibrium, change in the number of periods, or
even reach instability. Those changes are called bifurcations, and when the dynamics
of the system become so sensitive to the initial conditions that the evolution of the
system can no longer be predicted on the long run, while remaining in a finite interval,
it belongs to the group of chaotic systems. The next question that comes naturally
when trying to understand chaotic systems is what are the causes of chaotic motions.
As it appears that bifurcations occurring in the parameters space trigger the transition
from and to chaotic dynamics, they became of major interest. While bifurcation types
are determined by their effect on the system, they can also be grouped by how they
occur, which is usually directly related to their causes. Without getting too much into
details, the two groups usually considered are local bifurcations, where the topological
change in the phase portrait is limited to a small neighborhood of the bifurcation fixed
point; and global bifurcations where such variation cannot be delimited.

In order to study these phenomena among dynamical systems, most existing math-
ematical approaches have been established on the base of simple models either in a
continuous or discrete time space. However, in many cases of “real-world problems”
of dynamical systems analysis, purely continuous or discrete models are insufficiently
precise approximations. Systems showing continuous and discrete dimensions exist in
many domains such as mechanical (apparition of frictions, impacts) or electronic sys-
tems (switching component). Though the solution function of such systems is some-
times continuous, it presents points of non-derivability where discrete changes occur,
thus falling into the category of piecewise smooth functions. Some argue that there
is no such thing as discrete changes in natural dynamics. This affirmation is sup-

1

Chapter 1. Introduction

ported by the idea that any event appears smooth if one can measure its appearance
at the appropriate time scale (an impact observed in slow motion can appear smooth if
slowed-down enough). When modeling a system on the other hand, it is important to
consider the overall timescale of its dynamics, and when an event occurs fast enough,
it becomes relevant to consider it discrete.

Some of the most widely studied applications that use such models are usually
related to electrical engineering, such as power converters investigated as piecewise
smooth systems by di Bernardo & Tse [1], Tse [2], Banerjee & Chakrabarty [3] or
Banerjee & Karthick et al [4]; or some PLL models as introduced by Acco [5], referring
to this type of model as “hybrid sequential.”As for mechanical systems, a general
methodology was introduced by Wiercigroch & De Kraker [6]. Also, complete and
up-to-date information about piecewise-smooth dynamical systems in general can be
found in the book by di Bernardo et al [7].

On the other hand, little work has been done in the bifurcation analysis of nonlinear
piecewise-smooth models, except by Kawakami & Lozi [8] and Kousaka et al [9], who
later introduced some chaos control applications [10]. As for linear piecewise-smooth
models, they can be analyzed by using rigorous analytical methods, so exact solutions
are obtained and used for analysis of the total dynamical behavior, as did Kabe et al
[11]. However the nonlinear characteristics of many systems make this option possible
for approximations only. At this point, computer tools become of great help. Despite
the inherent limitation in precision and the need to integrate continuous variations
using discrete methods, the performance and results are mostly satisfactory for the
purpose of simulation and analysis, and often better than the analytical alternative, at
least with regard to performance.

Dankowicz [12] proposes coarsening smooth vector fields into piecewise-smooth ap-
proximations which seems to be a good adaptation of traditional methods to systems
subject to grazing bifurcations. Combined with our analysis method, we can imagine
applications to a much wider range of dynamical systems. Hiskens and Pai [13] rely
on the Newton method to obtain a discrete approximation and study the system’s
sensitivity at switching points in the scope of trajectory sensitivity analysis which can
give a good insight of the switching aspect of such systems, but need to be completed
by other methods to obtain a general bifurcation analysis, particularly for parameters
which do not influence the switching conditions.

On our side, we focus on numerical methods, with the aim of detailing how to
make a computer based tool for such analysis. The hardware used was a multi-core
workstation, so we tried to keep the possibility of optimization in mind, particularly
since the last few years propelled parallel computing to the front of the scene as the
present and future of computers. Even so, there was no supercomputer involved and
any mainstream computer is able to sustain a proper performance level for the program
derived from this analysis framework to deliver precise results within a more than
acceptable time lapse.

On the mathematical aspect, differential equations are used to model nonlinear

2

Chapter 1. Introduction

autonomous systems for each of their discrete states. We paid a particular attention
to systems where the variable domains determine the state of the system, which in
turn determines the differential equations that characterize the system locally. This
is a very flexible scenario which can be adapted to other cases, such as time-based
switching where all is required is a simplification.

By fixing the state sequence, we fix the boundaries of the problem. Therefore this
type of model belongs to the “hybrid sequential” category.

We propose using a Poincaré map in order to obtain a discrete map and conduct
the bifurcation analysis using conventional methods: in other words, a hybrid method
to solve a hybrid problem. This complements and update the work of Kousaka and
al. [9] which introduced the originally proposed method for piecewise smooth system
analysis. We first review the method, detailing each step of the process from modeling,
to solving fixed and bifurcation points, using a piecewise analysis and a discrete map
to combine the local results. Next we apply it to multiple versions of the Alpazur
oscillator in order to illustrate concrete analysis and results. Finally, we consider some
key algorithms we used as part of the computer based tool we implemented. The ma-
jor improvement we introduce concerns a numerical alternative approach to obtain the
Jacobian matrix in order to avoid the complexity of the analytical method suggested
in [9], which clearly presented that point as a major candidate for improvement. We
also consider non trivial Poincare section with variable switching conditions illustrated
by affine, non-linear, and even non-smooth switching thresholds in the Alpazur oscil-
lator. Regarding the results, the analysis of the Alpazur oscillator reveals an unusual
bifurcation structure: the interactions between the equilibrium point at some state and
the corresponding switching condition generate a fractal bifurcation structure, with an
infinite number of bifurcation curves focusing towards a limit set. We consider the
line, constituting this limit set, as a global bifurcation line. It appears to involve each
variant of the Alpazur oscillator we have analyzed so far. Similar structures have been
found and studied by Carcasses & Mira [14] and Mira & Taha [15], in piecewise linear
dynamical systems, putting the accent on the existence of “cascades of cusps”.

3

Chapter 2

Bifurcation analysis method for

piecewise-smooth dynamical

systems

Let us first make a few remarks about the context and state of mind in which our work
has been carried out. Our intend is to present a bifurcation analysis approach that
overcomes the shortcomings of methods purely discrete or purely continuous oriented.
It should also be possible to implement this method in a computer program. This
means we need a description model as flexible as possible, in order to handle as many
kinds of systems as possible, while limiting the model complexity to its minimum for
technical and usability reasons.

As we will see later on, the key steps of our approach are based on a Poincaré map,
and Newton’s method. We will almost exclusively consider local bifurcations for two
reasons: eigenvalues on which most of our study is based, are only relevant to local
bifurcations; the large variety of global bifurcations and their very tight dependency to
the system itself require case by case studies, impractical when conceiving a general-
purpose algorithm.

In order to make the analysis possibilities flexible, yet technically achievable in a
reasonable amount of time and effort, we chose to not only model the system, but
also part of its local behavior. Such boundaries make the analysis simpler and more
targeted, and though it requires some minimum knowledge about the system prior to
processing its model, it helps speeding and focus the analysis to some of its specific
properties.

From now on, by model, we will mean the qualitative description of the system and
the necessary information about its local behavior.

4

Chapter 2. Bifurcation analysis method for piecewise-smooth dynamical systems

2.1 Differential equations model featuring switch-

ing thresholds

Let us consider a system described by a set of differential equations such that for each
state i:

dX

dt
= fi(X), i = 1, · · ·m, where X(t) = (x1, · · ·xn) ∈ Rn. (2.1)

Each state dependent function fi is piecewise-smooth. Within each state i, there is
a local solution function that we have to obtain through numerical integration, and
which can be written as:

X(t) = ϕi(t, Xi−1) with X(0) = Xi−1, (2.2)

where Xi−1 is the initial value at state i.
In order to complete our model, we will need to fix a sequence of states that will

describe a period of our system, and the switching condition from each state to the next
one. Here, we will focus on the case of autonomous systems. Now, a couple of remarks
can be made: first, this can easily be adapted to non-autonomous (or by extension
autonomously-hybrid) systems given that the case of a switch determined by time is
a much simpler and straight forward case as we will see further; second, though we
do not mention it in the equations, note that applying some linear transformation is
possible when switching from one state to another, which is often the case in concrete
systems.

We can now consider a Poincaré map, placing its sections at the switching points
Xi. In the case of an autonomous system, the switching condition can be expressed as
a function of the system variables. We write the function determining the switching
condition from state i to the next one: qi(X) = 0.

According to Kawakami and Lozi [8], the sequence of transformation that will
compose the Poincaré map is therefore expressed as

Πi = {Xi ∈ Rn | qi = 0}

Ti : Πi−1 → Πi

Xi−1 7→ Xi = ϕi(τi, Xi−1).

(2.3)

Using such definition, we can perform a local analysis over each segment of orbit
delimited by those Poincaré sections. Then, the Poincaré mapping is defined as a
differentiable map:

T = Tm ◦ · · · ◦ T1 ◦ T0.

T : Π0 → Π0

X0 7→ Xm = ϕ(τ, X0).

(2.4)

5

Chapter 2. Bifurcation analysis method for piecewise-smooth dynamical systems

The last step is to use a projection p based on qm in order to handle a discrete
approximation of the periodic orbit:

p : Π0 → Σ0

X 7→ U

hence Tl = p ◦ T ◦ p−1.

(2.5)

Figure 2.1 gives an abstract representation of such model.

n

p

p
-1

R

Σ

R
n-1

T

T

lΠ

Π
Π1

2

3

0

1

Tm

Tm-1

T2

T3

Π0 U0

X0

X1X2

X3 Xm
Um

Xm−1

Πm−1

Figure 2.1: Abstract representation of the Poincaré map

Note that one simple way of handling k-periodic orbits is to modify this model to
have a state sequence repeating its original pattern k times. While being a simple
approach it is also very scalable and easy to automatize.

6

Chapter 2. Bifurcation analysis method for piecewise-smooth dynamical systems

2.2 Integration of the solutions

Whether we want to run a simulation of the system or study its local properties, we will
need to use a numerical integration method. For precision and performance reasons, we
generally use a Runge-Kutta based method which we will detail later on in the section
4.2. For now, we will focus on the mathematical aspect more then the numerical one.
With respect to the previously exposed model, we simply integrate X using (2.1).

If the system model, parameters and initial conditions are right, we are able to
integrate each portion of orbit within each state; the last point of each piece of orbit
becoming the initial point of the next state after the switch occurs. Depending on the
system, the switching operation may alter the solution’s continuity, and most of the
time make it at least non-smooth, but this affects only the Poincaré map. Each piece of
the orbit corresponding to a single state is smooth and derivable. This way, we obtain
Xm = ϕ(τ, X0).

In order to conduct further analysis, as we will see later on, we also need the
derivatives of this solution. We will use two different approaches, the first one being
based on an analytically obtained expression of the Jacobian of fi, and another one
more numerical which will be detailed in the section 4.1.

We proceed by integrating the partial derivatives of the differential equations. In
the case of ∂ϕi(τi, Xi−1)/∂Xi−1:

d

dt

∂ϕi

∂Xi−1

=
∂fi

∂X

∂ϕi

∂Xi−1

with
∂ϕi

∂Xi−1

t=0

= In, (2.6)

where In is the identity matrix.
Note also that for the sake of readability we replace ϕi(τi, Xi−1) by ϕi. When

necessary, this will be pointed out in the following sections.
When taking into account the influence of a particular parameter λ of fi, the idea

is the same:

d

dt

∂ϕi

∂λ
=

∂fi

∂X

∂ϕi

∂λ
+

∂fi

∂λ
with

∂ϕi

∂λ

t=0

= 0 zero vector of n elements. (2.7)

We use those elements as an approximation of the first derivative of the solution,
assuming that its local behavior is nearly linear.

The next section explains how.

7

Chapter 2. Bifurcation analysis method for piecewise-smooth dynamical systems

2.3 Poincaré map and Newton method for fixed

points

Using a phase portrait plotter one can appreciate the system’s behavior and find a set
of initial conditions and parameter values worth considering further.

The next step is to find a closed orbit, that is, from the perspective of the Poincaré
map, a fixed point. Using the Poincaré map expressed earlier, we will look for a fixed
point within Σ0.

Um = Tl(U0) = U0. (2.8)

We then use the Newton method to refine the given set of initial conditions and pa-
rameter values. This assumes the input is close enough to the solution to fall within
the convergence domain.

Let us consider the case of corrections applied to U0, we then need to apply the
Newton method using ∂Um/∂U0. It can be derived from ∂Xm/∂X0 thanks to p.

∂Xm

∂X0
=

m
∏

i=1

∂Xi

∂Xi−1
. (2.9)

Now we will use the local Jacobian of the solution, integrated as in section 2.2, to
compute each ∂Xi/∂Xi−1:

∂Xi

∂Xi−1

=
∂ϕi

∂Xi−1

+
dXi

dt

∂τi

∂Xi−1

. (2.10)

The expression of ∂τi/∂Xi−1 depends on the switching condition. It is important to
stress two things:

• This element takes the variation of τ a unit of time, which shows how much easier
things get when dealing with non-autonomous systems.

• For systems with switch induced phenomena (such as jumps in some neuron
models like the one introduced by Izhikevich [16]), this is the equation that
requires adjustments.

In most of the systems we have been studying, the expression of ∂τi/∂Xi−1 takes into
account the following terms and functions: ∂ϕi/∂Xi−1, qi(X), and fi(X).

The corrected value of U0 is given by:

U∗
0 = U0 −

(

∂Um

∂U0
− In−1

)−1

(Um − U0). (2.11)

When attempting to apply a correction to one of the system parameters, let us call
it λ, to find fixed points, the process is the same. One of the elements of U0 has to
become static, and the Jacobian matrix completed with the partial derivative ∂Um/∂λ.

8

Chapter 2. Bifurcation analysis method for piecewise-smooth dynamical systems

Because it can be hard to explore a system’s behavior by randomly changing initial
values and parameters and plot the result, we usually find a single fixed point, then
find all the contiguous ones by applying small variations to a chosen parameter. We
obtain a curve of fixed points in the U0/λ space, which usually extends until reaching
a collision bifurcation or some other global bifurcation.

As we will see in section 2.4, we will pay a particular attention to the eigenvalues,
which can be monitored along such fixed points curve in order to find some candidate
bifurcation points to be refined using the following approach.

9

Chapter 2. Bifurcation analysis method for piecewise-smooth dynamical systems

2.4 Critical parameter values at bifurcation points

The study of local bifurcations can be performed numerically. We can determine what
eigenvalue µ to seek based on the decided bifurcation type. Then we need to find
precise values of U0 ans λ to have:

χl(µ) = det

(

∂Um

∂U0
− µIn−1

)

= 0, (2.12)

where χl is the characteristic equation.
This added to the fixed point constraint, and we obtain the following expression:

F (U0, λ) =

[

Um − U0

χl(µ)

]

= 0. (2.13)

In order to compute the appropriate corrections of U0 and λ, we will need the
following type of Jacobian matrix:

∂Um

∂U0
− In−1

∂Um

∂λ

∂χl

∂U0

∂χl

∂λ

(2.14)

In order to obtain a bifurcation diagram, we actually choose two parameters λ1 and
λ2, then trace a bifurcation line by applying small variations to one parameter while
correcting the other one along with U0.

To reduce the number of iterations necessary to convergence at each computation,
prediction algorithms can be integrated to the tracing process as we will see in section
4.3.

Also, in order to handle the various shapes of bifurcation curves possible, we some-
times need to switch role between λ1 and λ2, or even correct both at a time while fixing
one element of U0, like in the case of cusp points. The Jacobian matrix then needs to
be adapted accordingly.

You will notice that Eq. (2.14) requires the derivation of the characteristic equation
χl, which is a function of ∂Um/∂U0 (sometimes also noted DTl for readability). This
means we need to compute the second derivative of the solution in order to obtain
∂2Um/∂U2

o or ∂2Um/∂Uo∂λ.
While deriving (2.10) and integrating each of the necessary elements has been

proved possible by Kousaka [10], it also appeared to be a painful process requiring
many, indeed elegant, yet time consuming tasks on both the analytical and numerical
sides. Because we do not mind the computer working extra hard to relieve the user of a
few pages of manual derivation, we developed a numerical approach that does exactly
that and introduce it in section 4.1.

10

Chapter 3

Alpazur oscillator

The Alpazur oscillator is a power electronic circuit introduced by Kawakami and Lozi
[8]. It is composed of a Rayleigh oscillator unit and a dc power supply controlled by a
switch (itself controlled through a feedback loop). Though a nonlinear resistor is rare
in real-world applications, this simple circuit is:

• nonlinear

• piecewise-smooth

• chaotic

It can be both easily modeled and easily implemented making it a perfect academic
case for the study of autonomous piecewise-smooth nonlinear dynamical systems.

In this chapter, we will review the original Alpazur oscillator, introduce and study
some extended systems based on it, and analyze the results we obtained.

11

Chapter 3. Alpazur oscillator

3.1 Review of the original Alpazur oscillator

Alpazur oscillator was introduced in 1992 by Kawakami and Lozi in [8]. Its bifurcations
have been analyzed using numerical methods by Kousaka in [10], who confirmed his
results with an actual circuit implementation.

3.1.1 Presentation

Figure 3.1: Electronic implementation of the Alpazur oscillator.

A simple RLC oscillator is connected to a nonlinear resistor G and a power supply.
The characteristics of the latter change discretely based on the position of the switch
SW (as shown in Fig. 3.1.)

The variables considered are i and v, the current running through the coil and the
voltage at the capacitor C. In the original Alpazur, the switching rule of SW is a set
of thresholds of v. This implies a discrete state, hence the hybrid caracteristic of this
system: two continuous dimension and a discrete one.

L
di

dt
= −ri − v

C
dv

dt
= i − g(v) +

Ej − v

R0 + Rj

with j = 1, 2. (3.1)

The characteristic of the nonlinear-resistor is chosen as:

g(v) = −a1v + a3v
3, where a1, a3 > 0 (3.2)

In order to model the system, the following variable change and assumptions will
be made:

12

Chapter 3. Alpazur oscillator

X =

(

x
y

)

x = i
√

L y = v
√

C

τ =
t√
LC

r = r

√

C

L

b = a1

√

L

C
c =

3a3

C

√

L

C

Aj =

√

L

C

1

R0 + Rj
Bj =

√
L

Ej

R0 + Rj

(3.3)

Finally, we pick the following parameter values b = c = 1.

This results in the equation set:

dx

dτ
= −rx − y

dy

dτ
= x + (1 − Ai)y − 1

3
y3 + Bi

with the discrete state i = 1, 2. (3.4)

The switching conditions are:

qi(X) = y − hi, with h1 = −1, and h2 = −0.1. (3.5)

Consequently, this system presents an hysteresis (see Fig. 3.2,) potentially yielding
stable chaotic orbits (as shown in Fig. 3.3.)

state 1

state 2

x

X

X1

X1

0X2

X2

y

y = h
1

y = h 2

Figure 3.2: Typical period of the Alpazur oscillator in the hybrid space, refer to (3.6)
for the switching point notation Xi.

In some parameter regions, this system exhibits chaotic orbits. By tuning parame-
ters Ai and Bi through arbitrary values, we obtain chaotic behavior as seen in Fig.3.3.
r = 0.1 A1 = 0.2 A2 = 2.0 B1 = −0.2 B2 = 1.0

13

Chapter 3. Alpazur oscillator

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

x

Alpazur oscillator

y

Switching limit 1 (q (X) = 0)
Switching limit 2 (q (X) = 0)

1

2

Figure 3.3: Phase portrait of a chaotic orbit. The chaotic behavior is due to the
presence of a discrete state on top of the two continuous dimensions.

3.1.2 Analysis formulation

We naturally consider the Poincaré map as follows:

T1 : Π0 → Π1

X0 7→ X1 =

(

x1

y1

)

=

(

ϕ1

φ1

)

(τ1, X0)

T2 : Π1 → Π0

X1 7→ X2 =

(

x2

y2

)

=

(

ϕ2

φ2

)

(τ2, X1)

T = T2 ◦ T1 : Π0 → Π0

X0 7→ X2

where Π0 = {X ∈ ℜ2|q2(X) = 0} and Π1 = {X ∈ ℜ2|q1(X) = 0} .

(3.6)

Considering the switching conditions, we define the projection p:

p : Π0 → Σ0

X 7→ x
(3.7)

The equation set can be written as follows for the state i:

dx

dτ
= fi(x, y) = −rx − y

dy

dτ
= gi(x, y) = x + (1 − Ai)y − 1

3
y3 + Bi

with i = 1, 2. (3.8)

14

Chapter 3. Alpazur oscillator

3.1.3 Fixed points

The first step to conduct our analysis is determining fixed points.
As previously explained, the problem of fixed points is finding x0 so that:

x2 − x0 = 0. (3.9)

In order to achieve the appropriate correction using Newton’s method, we need to
compute:

∂x2

∂x0

=
∂x2

∂x1

∂x1

∂x0

. (3.10)

For each State i we compute:

dxi

dxi−1
=

∂ϕi

∂xi−1
+ fi(xi, yi)

∂τi

∂xi−1

where
∂τi

∂xi−1
=

− ∂φi

∂xi−1

gi(xi, yi)
,

(3.11)

numerically integrate the required elements:

d

dt

[

xi

yi

]

=

[

fi(x, y)
gi(x, y)

] State 1: from

[

x0

b

]

State 2: from

[

x1

h

]

d

dt

∂ϕi

∂xi−1
∂φi

∂xi−1

=

∂fi

∂x

∂fi

∂y
∂gi

∂x

∂gi

∂y

∂ϕi

∂xi−1
∂φi

∂xi−1

where

∂ϕi

∂xi−1
∂φi

∂xi−1

t=0

=

[

1
0

]

.

(3.12)

Note that we could drop

∂ϕi

∂yi−1
∂φi

∂yi−1

since yi values are fixed by the switching limits

(3.5). We now use the Newton method to compute x′
0, the correction to be applied:

x′
0 = x0 −

x2 − x0

∂x2

∂x0
− 1

. (3.13)

We obtain a diagram of fixed points (such as in Fig. 3.4.)

15

Chapter 3. Alpazur oscillator

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4

B

x
0

1

Figure 3.4: Fixed points for the original Alpazur oscillator (B2 = 1). The limit point at
the center of the spiral is materialized by a red dot (explanations about this structure
in sub-section 3.2.4).

3.1.4 Bifurcation points

The characteristic equation is simple:

χ(µ) = det(DTl − µ) = 0, (3.14)

hence the Jacobian matrix:

∂x2

∂x0
− 1

∂x2

∂λ

∂DTl

∂x0

∂DTl

∂λ

(3.15)

Given the projection U = x, we can write DTl = ∂x2/∂x0, hence ∂DTl/∂x0 =
∂2x2/∂x2

0. For this analysis, we have chosen λ as either B1 or B2.
We compute the Jacobian elements using a numerical differentiation, as explained in

16

Chapter 3. Alpazur oscillator

section 2.4 and 4.1:

∂x2

∂x0
≈ x2(x0 + ∆x, λ) − x2(x0, λ)

∆x
∂x2

∂λ
≈ x2(x0, λ + ∆λ) − x2(x0, λ)

∆λ

∂DTl

∂x0
≈

∂x2

∂x0
(x0 + ∆x, λ) − ∂x2

∂x0
(x0, λ)

∆x

∂DTl

∂λ
≈

∂x2

∂x0
(x0, λ + ∆λ) − ∂x2

∂x0
(x0, λ)

∆λ
.

(3.16)

In our case, we have computed a large number of fixed points and their associated
eigenvalues. By simply picking the ones close to a bifurcation point and refining them
by applying Newton’s method, we obtain a number of bifurcation points for a fixed
parameter value (in Fig.3.4, B2 is fixed).

We then used these points as origin of the bifurcation curves we wanted to compute,
applying minute variations to B2 and correcting x0 and B1.

Doing so, we obtained the bifurcation diagram shown in Fig. 3.5.

-2

-1.5

-1

-0.5

 0

 0.5

 1

-2 -1.5 -1 -0.5 0 0.5

B
2

B1

SN bif.
PD bif.

Limit set

Figure 3.5: Original Alpazur oscillator bifurcation diagram.

The results match the ones available in [9], where an application to collision bi-
furcation analysis, based on this method, is also detailed. Collision bifurcations occur

17

Chapter 3. Alpazur oscillator

when the trajectory of the solution collides with one of the switching lines, under the
influence of a parameter change. More considerations about collision bifurcations and
their analysis method can be found in the work of Banerjee and al. [4].

Our objective is not to conduct an extensive analysis of the Alpazur oscillator, so
the orbits considered are only of one type: (1, 1) periodic orbits, for one sequence per
period, and one period for the considered fixed orbit. The definition of such (m, n)
orbits has been detailed by Peterka in [19].

18

Chapter 3. Alpazur oscillator

3.2 3-state Alpazur oscillator

This is the first extension of the Alpazur oscillator we have studied. The purpose of such
analysis is evaluating the influence of the number and quality of switching conditions,
and also to confirm the relevance and flexibility of our method in such cases.

3.2.1 Model description

We extend the original Alpazur oscillator from [8] to 3-state (see Fig. 3.6) for examina-
tion of the computing method proposed in [9] from a universality point of view, while
demonstrating the efficiency of the differentiation approach we used (quickly presented
in (3.29), but further detailed in section 4.1).

Figure 3.6: Electronic implementation of the 3-state Alpazur oscillator

Still according to the position of the switch, we have the following differential equa-
tions:

fi(X) =

(

fi(x, y)
gi(x, y)

)

, i = 1, 2, 3.

For state 1: (terminal a in SW on Fig. 3.6)

dx

dt
= f1(x, y) = −rx − y

dy

dt
= g1(x, y) = x + (1 − A1)y − 1

3
y3 + B1.

(3.17)

For state 2: (terminal b in SW on Fig. 3.6)

dx

dt
= f2(x, y) = −rx − y

dy

dt
= g2(x, y) = x + (1 − A2)y − 1

3
y3 + B2.

(3.18)

19

Chapter 3. Alpazur oscillator

For state 3: (terminal c in SW on Fig. 3.6)

dx

dt
= f3(x, y) = −rx − y

dy

dt
= g3(x, y) = x + (1 − A3)y − 1

3
y3 + B3.

(3.19)

The switching rules are:
q1(x, y) = y − h
q2(x, y) = y − b
q3(x, y) = y − m,

(3.20)

with a fixed switching sequence for a period: state 1, state 2, state 3.

State 1

State 2

State 3

q (X)=0
1

q (X)=0
3

q (X)=0
2

Figure 3.7: Petri diagram of the 3-state Alpazur oscillator discrete sequence.

This results in phase portraits in the hybrid space (state-associated planes as shown
in Fig. 3.8.)

Figure 3.8: Hysteresis of the switching constraints of Alpazur oscillator

The resulting system exhibits chaotic orbits at particular parameter values, as shown

20

Chapter 3. Alpazur oscillator

-1

-0.5

 0

 0.5

 1

 1.5

-1 -0.5 0 0.5 1 1.5

y

x

3-state Alpazur oscillator
Switching limit 1 (q (X) = 0)
Switching limit 2 (q (X) = 0)

1

2
Switching limit 3 (q (X) = 0)

3

Figure 3.9: Sample phase portrait of chaotic behavior

in Fig. 3.9, where we used the following set of parameters:
r = 0.1 A1 = 0.2 A2 = 2.0 A3 = 0.8 B1 = −0.6
B2 = 1.0 B3 = −0.1 m = −0.1 b = −0.3 h = −1.0

This model is convenient because the mapping is straight forward: even within
the local maps, y values are fixed due to the switching conditions. Therefore, we can
extract the mapped variable U = x. We define the map:

T1 : Π0 → Π1

x0 7→ x1 = ϕ1(τ0, x0, y0)
y0 7→ y1 = φ1(τ0, x0, y0) = h

T2 : Π1 → Π2

x1 7→ x2 = ϕ2(τ1, x1, y1)
y1 7→ y2 = φ2(τ1, x1, y1) = b

T3 : Π2 → Π0

x2 7→ x3 = ϕ3(τ2, x2, y2)
y2 7→ y3 = φ3(τ2, x2, y2) = m

T = T3 ◦ T2 ◦ T1 : Π0 → Π0

x0 7→ x3 = ϕ(τ, x0).

(3.21)

21

Chapter 3. Alpazur oscillator

3.2.2 Fixed points

The problem of fixed points corresponds to finding x0 so that:

x3 − x0 = 0. (3.22)

In order to achieve the appropriate correction, we need to compute:

DTl =
dx3

dx0

=
dx3

dx2

dx2

dx1

dx1

dx0

. (3.23)

For each State i we compute:

dxi

dxi−1

=
∂ϕi

∂xi−1

+ fi(xi, yi)
∂τi

∂xi−1

∂τi

∂xi−1

=

− ∂φi

∂xi−1

gi(xi, yi)
,

(3.24)

where we numerically integrate the required elements:

d

dt

[

xi

yi

]

=

[

fi(x, y)
gi(x, y)

]

State 1: from

[

x0

m

]

State 2: from

[

x1

h

]

State 3: from

[

x2

b

]

d

dt

∂ϕi

∂xi−1
∂φi

∂xi−1

=

∂fi

∂x

∂fi

∂y
∂gi

∂x

∂gi

∂y

∂ϕi

∂xi−1
∂φi

∂xi−1

where

∂ϕi

∂xi−1
∂φi

∂xi−1

t=0

=

[

1
0

]

.

(3.25)

Note that we could drop

∂ϕi

∂yi−1
∂φi

∂yi−1

since yi values are fixed.

We now use the Newton method to compute the next x0 value:

x′
0 = x0 −

x3 − x0

dx3

dx0
− 1

. (3.26)

22

Chapter 3. Alpazur oscillator

3.2.3 Bifurcation points

The characteristic equation is:

χ(µ) = det(DTl − µ) = 0, (3.27)

hence the Jacobian matrix:

∂x3

∂x0
− 1

∂x3

∂λ

∂DTl

∂x0

∂DTl

∂λ

(3.28)

DTl = ∂x3/∂x0, hence ∂DTl/∂x0 = ∂2x3/∂x2
0. λ still corresponds to B1 or B2.

We compute the Jacobian elements:

∂x3

∂x0

≈ x3(x0 + ∆x, λ) − x3(x0, λ)

∆x
∂x3

∂λ
≈ x3(x0, λ + ∆λ) − x3(x0, λ)

∆λ

∂DTl

∂x0
≈

∂x3

∂x0

(x0 + ∆x, λ) − ∂x3

∂x0

(x0, λ)

∆x

∂DTl

∂λ
≈

∂x3

∂x0

(x0, λ + ∆λ) − ∂x3

∂x0

(x0, λ)

∆λ
.

(3.29)

Then, we obtain the bifurcation diagram seen in Fig. 3.10.

3.2.4 Results review

By looking at the bifurcation diagram Fig.3.10, we can see a redundant bifurcation
pattern (enlargement in Fig.3.11) in the neighborhood of a particular value of B1 (to
which we will refer as the limit value B∗

1).
Due to precision limitations inherent to numerical methods, it gets more and more
difficult to compute the bifurcation lines as we get closer to the limit value, but we can
conjecture this structure is infinite.
Such a bifurcation structure has been previously identified and studied by Carcasses

& Mira [14], in a 3-dimensional linear system. In the case of the considered linear
system, it has been proved that cusp points exist in the the parameter plane. The
existence of cusp points in the parameter plane is related to the existence of specific
structures such as dovetail structure, spring and cross-road areas [14]. The switching
characteristic of the system makes possible for the orbit to return to an unstable slow
motion region after a state switch.
To understand this structure, we will consider various results:
First, let us fix a value for B2, and compute a fixed points line γ in the B1 / x0 plane
(see Fig.3.12).

23

Chapter 3. Alpazur oscillator

-2

-1.5

-1

-0.5

 0

 0.5

 1

-2 -1.5 -1 -0.5 0 0.5

B
2

B1

SN bif.
PD bif.

Limit set

Figure 3.10: 3-state Alpazur oscillator bifurcation diagram.

If we compute the phase portraits along this curve (visible in Fig.3.13), we can see
that the solution is gradually wrapping itself around an equilibrium point at state 1:
f1(X) = 0.
We can see what is referred to by Carcasses & Mira in [14] as “slow motions part of the
trajectory” in the phase portraits, with a limit: the center of the spiral in Fig. 3.12.
At this point, the equilibrium point is on the initial switching line, and the initial point
(X0) merges with this equilibrium point, leading to these slow motions.
It results in the following equation set:

f1(X0) =

[

−rx0 − y0

x0 + (1 − A1)y0 − 1
3
y3

0 + B∗
1

]

=

[

0
0

]

y0 = m
(3.30)

where r, A1, and m are known fixed parameters; in our case r = 0.1, A1 = 0.2 and
m = −0.1.
Thus we obtain:

x0 = −m

r
= 1

B∗
1 = m

(

1

r
− 1 + A1 +

m2

3

)

= −2761

3000

(3.31)

24

Chapter 3. Alpazur oscillator

−1.05 −1 −0.95 −0.9 −0.85 −0.8 −0.75 −0.7 −0.65

−1.1

−1

−0.9

−0.8

−0.7

−0.6

−0.5

Stable At SN bif. Unstable

At PD bif.

Dbl period

At limit set

I

I

G

At PD bif.

B*

G

B2

B1
1

Figure 3.11: Enlargement of the 3-state Alpazur oscillator bifurcation diagram around
the limit set area.

If we try to compute the limit phase portrait using such values, we fail because the
initial point is an equilibrium point. Instead, we used reversed-time to compute the
limit phase portrait at an arbitrary value of B2 (see Fig. 3.14.)
If we monitor the characteristic (3.27) along the curve Fig. 3.12, we find eigenvalues
corresponding to local bifurcations. For instance, we can confirm that each point where
the curve’s tangent verifies ∂γ/∂B1 = 0, is a saddle-node bifurcation point, close to
which we can find a period doubling bifurcation point. Starting from those bifurcation
points, we compute bifurcation lines in the B1 / B2 plane, resulting in the structure
in Fig. 3.10. From what we have seen of the bifurcations around the limit set defined
by B1 = B∗

1 , we can conjecture that for each bifurcation line, we can find another one
closer to this limit set. This is visible if we mix Fig. 3.12 with the bifurcation diagram
Fig. 3.10 as in Fig. 3.15 (also illustrated in Fig. 3.16 for better visibility), where we
can associate the infinite amount of loops in the spiral of γ to the infinite number of
bifurcation lines.
As for the cusps on the saddle-node bifurcation lines, we can compute precisely their

25

Chapter 3. Alpazur oscillator

−1.3 −1.2 −1.1 −1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4

0.5

1

1.5

a

b

x

collision bifurcation

B1

Figure 3.12: Fixed points line γ at an arbitrary value B2 = 1.92, in the plane B1 / x0.
We can see the fixed points curve forms a spiral.

26

Chapter 3. Alpazur oscillator

−0. 5 0 0. 5 1 1. 5
−1

−0. 8

−0. 6

−0. 4

−0. 2

0

0. 2

0. 4

0. 6

x

eq. pt.

a

y

−0. 5 0 0. 5 1 1. 5
−1

−0. 8

−0. 6

−0. 4

−0. 2

0

0. 2

0. 4

0. 6

x

eq. pt.

b

y

Figure 3.13: Transition between fixed points with eigenvalues corresponding to saddle-
node bifurcation (see Fig.3.12). Each loop in the spiral corresponds to an extra loop
around the equilibrium point in the phase portraits.

27

Chapter 3. Alpazur oscillator

−0. 5 0 0. 5 1 1. 5
−1

−0. 8

−0. 6

−0. 4

−0. 2

0

0. 2

0. 4

0. 6

x

y

eq.point

Figure 3.14: Phase portrait of a fixed point on the limit set B1 = B∗
1 . This is actu-

ally a limit orbit computed using reversed time, since the initial point is an unstable
equilibrium point at state 1. The resulting focus is tending to the equilibrium point in
such slow motion area , suggesting a period τ → ∞.

28

Chapter 3. Alpazur oscillator

−1.6
−1.4

−1.2
−1

−0.8
−0.6 −2

−1
0

1
20.6

0.8

1

1.2

1.4

1.6

1.8

Period

Doubling
Saddle-

node

Limit

set

Fixed pts

@ B2=1.92

x

B *

B1

B21

Figure 3.15: Bifurcation diagram put against the fixed points set at B2 = 1.92

29

Chapter 3. Alpazur oscillator

x

B1

B2

B1

Fixed points

SN bifurcation

Limit set

B1
*

Figure 3.16: Schematic view of Fig.3.15.

30

Chapter 3. Alpazur oscillator

position by solving the following:

∂x3

∂x0

= 1

∂DTl

∂B1

= 0

∂DTl

∂B2

= 0

(3.32)

We can find a useful method to compute the bifurcation lines through cusps flawlessly
proposed by Kitajima and Kawakami in [21]. In the scope of cusp generation pattern
analysis, it appears possible to take advantage of the structure’s relative monotony,
and use a linearized model as did Carcasses & Mira [14].

The fact that this bifurcation structure seems to be more dependent from the
interactions between equilibrium points and switching limits rather than the nature of
the switching conditions means that we can expect to find this kind of structure in
bifurcation diagrams of other circuits if we carefully choose parameters. It also reveals
that, if we want to study this type of bifurcation structure more into details, linear
switching conditions appear sufficient.

31

Chapter 3. Alpazur oscillator

3.3 Varieties of switching thresholds

The next step in testing out analysis method is to change the switching conditions, not
in quantity but in quality. As we study a variety of switching conditions, we can see
how the Poincaré map helps us handling various system scenarios.

3.3.1 2-state Alpazur oscillator with affine switching condition

This is the same oscillator as the original 2-state version but we modified the switching
conditions:

q1(x, y) = y + 1.0 − 0.2x
q2(x, y) = y + 0.1,

(3.33)

Note that the first switching condition is an affine function of both x and y.
This system exhibits chaotic orbits at parameter values such as:

r = 0.1 A1 = 0.2 A2 = 2.0 B1 = −0.2 B2 = 1.0

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

y

x

Linear switching limit Alpazur oscillator
Switching limit 1 (q (X) = 0)
Switching limit 2 (q (X) = 0)

1

2

Figure 3.17: Sample phase portrait of chaotic behavior

32

Chapter 3. Alpazur oscillator

This time, y1 do vary, which mean we have to take it into account:

DTl =
∂x2

∂x0

=
∂x2

∂X1

∂X1

∂X0

∂X0

∂x0

=
∂x2

∂x1

∂x1

∂X0

∂X0

∂x0
+

∂x2

∂y1

∂y1

∂X0

∂X0

∂x0

=
∂x2

∂x1

∂x1

∂x0
+

∂x2

∂y1

∂y1

∂x0
.

(3.34)

For each State i we compute:

∂xi

∂xi−1
=

∂ϕi

∂xi−1
+ fi(xi, yi)

∂τi

∂xi−1

∂τi

∂xi−1
= −

∂ϕi

∂xi−1
qiy −

∂φi

∂xi−1
qix

fi(xi, yi)qiy − gi(xi, yi)qix

(3.35)

∂xi

∂yi−1
=

∂ϕi

∂yi−1
+ fi(xi, yi)

∂τi

∂yi−1

∂τi

∂yi−1
= −

∂ϕi

∂yi−1
qiy −

∂φi

∂yi−1
qix

fi(xi, yi)qiy − gi(xi, yi)qix

, (3.36)

where ∂yi/∂xi = ∂yi/∂x|qi(xi,yi)=0 and x=xi
; qix and qiy are the components of a vector

tangent to the switching curve at Xi.
Then there are two ways of calculating ∂y1/∂x0:

∂y1

∂x0
=

∂φ1

∂x0
+ g1(x1, y1)

∂τ1

∂x0

=
∂y1

∂x1

∂x1

∂x0

(3.37)

We numerically integrate the required elements:

d

dt

[

xi

yi

]

=

[

fi(x, y)
gi(x, y)

]

State 1: from x0

State 2: from x1

d

dt

∂ϕi

∂xi−1

∂ϕi

∂yi−1
∂φi

∂xi−1

∂φi

∂yi−1

=

∂fi

∂x

∂fi

∂y
∂gi

∂x

∂gi

∂y

∂ϕi

∂xi−1

∂ϕi

∂yi−1
∂φi

∂xi−1

∂φi

∂yi−1

where

∂ϕi

∂xi−1

∂ϕi

∂yi−1
∂φi

∂xi−1

∂φi

∂yi−1

t=0

=

[

1 0
0 1

]

.

(3.38)

33

Chapter 3. Alpazur oscillator

The Newton method can then be applied the same way as before to compute the
correction.

Computing the Jacobian matrix with the numerical method we describe in section
4.1 greatly simplifies the process as there is no need to take into account the change
of switching condition any further. Then, we obtain the bifurcation diagram in Fig.
3.18.

-2

-1.5

-1

-0.5

 0

 0.5

 1

-2 -1.5 -1 -0.5 0 0.5

B
2

B1

SN bif.
PD bif.

Limit set

Figure 3.18: 2-state Alpazur oscillator with affine switching condition bifurcation dia-
gram.

34

Chapter 3. Alpazur oscillator

3.3.2 2-state Alpazur oscillator with nonlinear switching con-

dition

We still base this system on the original 2-state Alpazur oscillator, only this time we
will use nonlinear switching conditions:

q1(x, y) = y + 1.0 − 0.2 sin x
q2(x, y) = y + 0.1 − 0.2x2,

(3.39)

Such switching conditions are indeed very unlikely, but they demonstrate the efficiency
of the method even for complex switching cases. This system exhibits chaotic orbits
at similar parameter values as with affine switching limits (see Fig. 3.19.)

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

y

x

Nonlinear switching limit Alpazur oscillator
Switching limit 1 (q (X) = 0)
Switching limit 2 (q (X) = 0)

1

2

Figure 3.19: Sample phase portrait of chaotic behavior

35

Chapter 3. Alpazur oscillator

A change in the switching limit leads to a new expression of DTl:

DTl =
∂x2

∂x0

=
∂x2

∂X1

∂X1

∂X0

∂X0

∂x0

=
∂x2

∂x1

∂x1

∂X0

∂X0

∂x0

+
∂x2

∂y1

∂y1

∂X0

∂X0

∂x0

=
∂x2

∂x1

(

∂x1

∂x0

+
∂x1

∂y0

∂y0

∂x0

)

+
∂x2

∂y1

(

∂y1

∂x0

+
∂y1

∂y0

∂y0

∂x0

)

.

(3.40)

For each state i we compute:

∂xi

∂xi−1
=

∂ϕi

∂xi−1
+ fi(xi, yi)

∂τi

∂xi−1

∂τi

∂xi−1

= −

∂ϕi

∂xi−1

qiy −
∂φi

∂xi−1

qix

fi(xi, yi)qiy − gi(xi, yi)qix

(3.41)

∂xi

∂yi−1

=
∂ϕi

∂yi−1

+ fi(xi, yi)
∂τi

∂yi−1

∂τi

∂yi−1
= −

∂ϕi

∂yi−1
qiy −

∂φi

∂yi−1
qix

fi(xi, yi)qiy − gi(xi, yi)qix

, (3.42)

where ∂yi/∂xi = ∂yi/∂x|qi(xi,yi)=0 and x=xi
; qix and qiy are the components of a vector

tangent to the switching curve at Xi.
Then there are two ways of calculating ∂yi/∂xi−1 and ∂yi/∂yi−1:

∂yi

∂xi−1
=

∂φi

∂xi−1
+ gi(xi, yi)

∂τi

∂xi−1

=
∂yi

∂xi

∂xi

∂xi−1

(3.43)

∂yi

∂yi−1
=

∂φi

∂yi−1
+ gi(xi, yi)

∂τi

∂yi−1

=
∂yi

∂xi

∂xi

∂yi−1

. (3.44)

36

Chapter 3. Alpazur oscillator

We numerically integrate the required elements:

d

dt

[

xi

yi

]

=

[

fi(x, y)
gi(x, y)

]

State 1: from x0

State 2: from x1

d

dt

∂ϕi

∂xi−1

∂ϕi

∂yi−1
∂φi

∂xi−1

∂φi

∂yi−1

=

∂fi

∂x

∂fi

∂y
∂gi

∂x

∂gi

∂y

∂ϕi

∂xi−1

∂ϕi

∂yi−1
∂φi

∂xi−1

∂φi

∂yi−1

where

∂ϕi

∂xi−1

∂ϕi

∂yi−1
∂φi

∂xi−1

∂φi

∂yi−1

t=0

=

[

1 0
0 1

]

.

(3.45)

As in the previous case, even with complex switching conditions, the numerical
differentiation used to obtain second derivatives lifts the need to change the equations
any further. At this step, getting an general expression of elements such as ∂2x2/∂x2

0,
∂2x2/∂x0∂λ and so on would become a real issue. Instead using the same approach as
with previous version of Alpazur oscillator, we easily obtain the bifurcation diagram
Fig. 3.20.

37

Chapter 3. Alpazur oscillator

-2

-1.5

-1

-0.5

 0

 0.5

 1

-2 -1.5 -1 -0.5 0 0.5

B
2

B1

SN bif.
PD bif.

Limit set

Figure 3.20: 2-state Alpazur oscillator with affine switching condition bifurcation dia-
gram.

3.3.3 2-state Alpazur oscillator with non-smooth switching

condition

The switching rules are as follows:

q1(x, y) = y + 1.1 − 0.2x for x ≤ 0.5
q1(x, y) = y + 1.0 for x ≥ 0.5
q2(x, y) = y + 0.1,

(3.46)

This system exhibits chaotic orbits at particular parameter values such as the following
set:
r = 0.1 A1 = 0.2 A2 = 2.0 B1 = −1.0 B2 = −0.9

In order to achieve the appropriate correction, we need to compute:

DTl =
∂x2

∂x0
=

∂x2

∂x1

∂x1

∂x0
+

∂x2

∂y1

∂y1

∂x0
. (3.47)

This is the same complexity as (3.34). Also note that for x1 ≥ 0.5, ∂y1/∂x0 = 0
simplifying the process to the analysis of an orbit of the standard Alpazur Oscillator
3.10.

38

Chapter 3. Alpazur oscillator

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1 -0.5 0 0.5 1 1.5 2 2.5

y

x

Nonsmooth switching limit Alpazur oscillator
Switching limit 1 (q (X) = 0)
Switching limit 2 (q (X) = 0)

1

2

Figure 3.21: Sample phase portrait of chaotic behavior

For each State i we compute:

∂xi

∂xi−1

=
∂ϕi

∂xi−1

+ fi(xi, yi)
∂τi

∂xi−1

∂τi

∂xi−1
= −

∂ϕi

∂xi−1
qiy −

∂φi

∂xi−1
qix

fi(xi, yi)qiy − gi(xi, yi)qix

(3.48)

∂xi

∂yi−1
=

∂ϕi

∂yi−1
+ fi(xi, yi)

∂τi

∂yi−1

∂τi

∂yi−1
= −

∂ϕi

∂yi−1
qiy −

∂φi

∂yi−1
qix

fi(xi, yi)qiy − gi(xi, yi)qix

, (3.49)

∂yi/∂xi = ∂yi/∂x|qi(xi,yi)=0 and x=xi
; qix and qiy are the components of a vector

tangent to the switching line.
Then ∂y1/∂x0 = ∂y1/∂x1.∂x1/∂x0.

39

Chapter 3. Alpazur oscillator

-2

-1.5

-1

-0.5

 0

 0.5

 1

-2 -1.5 -1 -0.5 0 0.5

B
2

B1

Limit set

SN x0≥0.5

SN x0≤0.5

PD x0≥0.5

PD x0≤0.5

Fixed points x0=0.5

A
B

Figure 3.22: Bifurcation diagram in the B1/B2 parameter plan

We numerically integrate the required elements:

d

dt

[

xi

yi

]

=

[

fi(x, y)
gi(x, y)

]

State 1: from x0

State 2: from x1

d

dt

∂ϕi

∂xi−1

∂ϕi

∂yi−1
∂φi

∂xi−1

∂φi

∂yi−1

=

∂fi(X)

∂X

∂ϕi

∂xi−1

∂ϕi

∂yi−1
∂φi

∂xi−1

∂φi

∂yi−1

where

∂ϕi

∂xi−1

∂ϕi

∂yi−1
∂φi

∂xi−1

∂φi

∂yi−1

t=0

=

[

1 0
0 1

]

.

(3.50)

Along the bifurcation curves, not only B1 and B2, but also x0 = x2, hence x1 and
y1 vary as well. As long as x1 ≥ 0.5, we treat the system just like the standard Alpazur
Oscillator. When x1 ≤ 0.5, we take the change of switching condition into account and
treat it with the equations previously introduced. Remains the case of all the orbits
that go through exactly x1 = 0.5 which corresponds to the non-smooth point of the the
switching threshold and requires a special treatment. For all these orbits, we can take
both the left and right side of the first switching limit, resulting in two eigenvalues.
There are many curves in the {B1, B2, x0} space that describe such fixed points, so we
chose to display just one in our bifurcation diagram (see Fig. 3.22.) Each point having
two eigenvalues, we can find two different points along this curve corresponding to a

40

Chapter 3. Alpazur oscillator

saddle-node bifurcation (example with points A and B in Fig. 3.23). The first one
will correspond to the end of the SN bifurcation curve of orbits with x1 ≥ 0.5, and the
other one will correspond to the beginning of the SN bifurcation curve with x1 ≤ 0.5.
In between, there exist fixed points, but there is no parameter values corresponding to
a SN bifurcation.

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

y

x

A

Switching condition 1
Switching condition 2

B

x1 = 0.5

Figure 3.23: A and B points (from Fig. 3.22) at x1 = 0.5

In order to compute the precise parameter values corresponding to those points,
we used the Poincaré map to our advantage: instead of starting from X0, we started
from X1 = {0.5,−1.0}, and then computed the parameter values corresponding to a
SN bifurcation, once using q1(x, y) = y + 1.1 − 0.2x and once using q1(x, y) = y + 1.0.

Note that in Fig. 3.22, some points are so close to each other that the distinction is
not visible at this scale. In this system, the closer we get to the limit set at B1 ≈ −0.92,
the stronger the influence of B1 becomes, making the influence of the switching limit
on the bifurcation line appear relatively weak. Yet, the discontinuity exists.

One more note, the degree of non-smoothness, or even the gap (in case of a dis-
continuity) in the switching threshold obviously has a strong impact on the resulting
discontinuity of the bifurcation diagram. We can easily imagine that some collision
bifurcation might occur when reaching such point, making the bifurcation line stop.

41

Chapter 3. Alpazur oscillator

3.4 3D Alpazur oscillator

The Alpazur oscillator evolves in a hybrid space, with two continuous variables which
we named so far x and y, and one discrete variable represented by what we called state
1 and 2 (referred as i). Though this is enough to obtain chaos, we will now increase the
dimension of the continuous space in order to show how to apply the Poincaré sections
and handle the resulting 2D map. This should be enough to prove the generality of
the method and illustrate higher dimensional systems analysis.

3.4.1 Model description

In order to extend the Alpazur oscillator into a 3-dimensional system, we add an extra
capacitor C2 (as shown Fig. 3.24.)

Figure 3.24: Electronic implementation of the 3D Alpazur oscillator.

This makes it look closer to a Chua circuit, only the nonlinear component G is on
the side of the capacitor C1 rather than C2.

We have now 3 continuous variables: i, v1, and v2; while the discrete variable is
still the state i (∈ {1; 2}).

L
di

dt
= −ri − v1

C1
dv1

dt

= i − g(v1) +
v2 − v1

R0

C2
dv2

dt
=

v1 − v2

R0
+

Ei − v2

Ri

(3.51)

where the nonlinear resistor characteristic is:

g(v1) = −a1v1 + a3v
3
1, with a1, a3 > 0. (3.52)

The variables are normalized:

42

Chapter 3. Alpazur oscillator

X =

x
y
z

x = i
√

L y = v1

√

C1 z = v2

√

C2

r = r

√

C1

L
τ =

t√
LC1

α =
C2

C1

b =
(

a1 − 1
R0

)

√

L

C1
c = 3

a3

C1

√

L

C1
d =

1

R0

√

L

C1

Ai =
(

1
R0

+ 1
Ri

)

√

L

C1
Bi =

√
L

Ei

Ri

Which results in the following set:

dx

dt
= −rx − y

dy

dt
= x + by − c

3
y3 +

d√
α

z

dz

dt
=

1√
α

(

dy − Ai√
α
z + Bi

)

.

Finally, let us fix a few parameters:

a1

√

L

C1
= 1 =⇒ b = (1 − d)

c = 1 Ai =
1

Ri

√

L

C1
+ d

d =
1

10
α =

1

100
.

Then we obtain:

dx

dt
= fi(x, y, z) = −rx − y

dy

dt
= gi(x, y, z) = x +

9

10
y − 1

3
y3 + z

dz

dt
= hi(x, y, z) = y − 100Aiz + 10Bi.

(3.53)

By choosing the capacity C2 to a value small enough in comparison with C1, we
can expect the dynamics involving v2 to be much faster than those of v1. This way, we
keep the overall behavior of the system close to the original Alpazur oscillator.

The switching conditions are kept unchanged:

qi(X) = y − hi, with h1 = −1, and h2 = −0.1. (3.54)

And given the right parameter values, the system exhibits chaotic orbits, as ex-
pected (see Fig. 3.25):

r = 0.1 A1 = 0.15 A2 = 1.3 B1 = 1.044 B2 = 50

43

Chapter 3. Alpazur oscillator

-3
-2.5

-2
-1.5

-1
-0.5

 0
 0.5

 1-1.5
-1

-0.5
 0

 0.5
 1

 1.5
 2

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4 3d Alpazur oscillator

x
y

z

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1

y

x

3d Alpazur oscillator

(a) In x/y it is very close to the original Alpazur

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0.5 1 1.5 2 2.5 3 3.5 4

y

z

3d Alpazur oscillator

(b) In z/y we can clearly see the hysteresis

Figure 3.25: Sample of chaotic orbit of the 3D Alpazur oscillator.

3.4.2 Analysis formulation

We naturally consider the Poincaré map as follows:

T1 : Π0 → Π1

X0 7→ X1

T2 : Π1 → Π0

X1 7→ X2

T = T2 ◦ T1 : Π0 → Π0

X0 7→ X2

(3.55)

44

Chapter 3. Alpazur oscillator

Considering the switching conditions, we define the projection p:

p : Π0 → Σ0

X 7→ U =

[

x
z

]

(3.56)

3.4.3 Fixed points

Beside the extra dimension (having to deal with matrices instead of real numbers), the
approach is still the same: computing dU2/dU0.

∂U2

∂U0

=
∂U2

∂U1

∂U1

∂U0

. (3.57)

For each State i we compute:

dUi

dUi−1

=
∂ϕi

∂Ui−1

+

[

fi(xi, yi, zi)
hi(xi, yi, zi)

]

∂τi

∂Ui−1

∂τi

∂Ui−1
=

− ∂φi

∂Ui−1

gi(xi, yi, zi)
.

(3.58)

Note here that ϕ is 2-dimensional (for x and z).
We numerically integrate the required elements as follows:

d

dt

xi

yi

zi

 =

fi(x, y, z)
gi(x, y, z)
hi(x, y, z)

State 1: from

x0

b
z0

State 2: from

x1

h
z1

d

dt

∂ϕi

∂Ui−1
∂φi

∂Ui−1

=

∂fi

∂x

∂fi

∂y

∂fi

∂z
∂hi

∂x

∂hi

∂y

∂hi

∂z
∂gi

∂x

∂gi

∂y

∂gi

∂z

∂ϕi

∂Ui−1
∂φi

∂Ui−1

where

∂ϕi

∂Ui−1
∂φi

∂Ui−1

t=0

=

1 0
0 1
0 0

 .

(3.59)

We now use the Newton method to compute the correction to be applied:

U ′
0 = U0 −

U2 − U0

∂U2

∂U0

− 1

. (3.60)

45

Chapter 3. Alpazur oscillator

-0.79

-0.785

-0.78

-0.775

-0.77

-0.765

-0.76

-0.755

 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05

Fixed points

B1

0
x

Figure 3.26: Fixed points for the 3d Alpazur oscillator (B2 = 50).

We obtain a diagram of fixed points (such as in Fig. 3.26.)
Though incomplete, this portion of fixed points curve clearly reminds us of the kind

we found in the original Alpazur oscillator. The kind of fixed point orbit calculated
Fig. 3.27 also shows signs of interactions between equilibrium point at state 1 and the
second switching limit. It would be a possible work in the future to investigate the
influence of C2 over the bifurcation structure, particularly on the cusps cascade.

3.4.4 Bifurcation points

This time, DTl is a matrix, so we actually need to compute the determinant for χ(µ):

χl(µ) = det

(

∂Um

∂U0
− µI2

)

= 0. (3.61)

As before, monitoring the eigenvalues reveals candidate bifurcation points.
By proceeding exactly as in the previous systems, we compute the Jacobian matrix:

dx2

dx0

dx2

dz0

dx2

dB1

dz2

dx0

dz2

dz0

dz2

dB1

dχ
dx0

dχ
dz0

dχ
dB1

 with µ = 1. (3.62)

46

Chapter 3. Alpazur oscillator

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

-1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4

Phase portrait at Fixed point

x

y

Figure 3.27: The influence of the unstable equilibrium point is visible at the initial
point.

We converged to the following point and parameter value:

x0 = −7.6071586869e− 01
z0 = 3.8452087045e + 00
B1 = 9.7701187477e− 01

Which is the exact extreme B1 value of the fixed points curve (see Fig 3.26.)
This demonstrates the efficiency and flexibility of our method in terms of n-dimensional

systems. The complete analysis of this system may be the topic of a separate publica-
tion, and the results gathering should be straight forward from this point on.

47

Chapter 3. Alpazur oscillator

3.5 Recap

In this chapter, we have put the analysis method to use and showed how it can be
adapted to apply to a variety of scenarios. We naturally put the accent on the switching
conditions which are the very essence of hybrid systems: increased the number of
discrete states, used linear and nonlinear switching thresholds, and even unsmooth
ones. The latter case is very close to discontinuous cases which can be handled in a
similar way. Eventually, the 3-dimensional version of the system shows the method
can be scaled to n-dimensional systems easily.

Overall, these systems are very similar in their structure and behavior, so they
naturally appear to have comparable bifurcation structures. We have briefly addressed
the question of the presence of a limit set with a cascade of cusps in Sec. 3.2, which
was found in all versions of the Alpazur oscillator. There are too few results for the 3D
version to confirm such structure, but the study of the influence of the extra capacity
over the limit set could be an interesting opportunity for future work.

This framework is simple, yet proved efficient, flexible, and easy to implement as
part of a computer program, which has been so far our major concerns.

48

Chapter 4

Detail of relevant numerical

methods

This section is dedicated to the quick review of a few useful numerical tools and ap-
proaches we used to obtain our results. It is not meant to be exhaustive and might not
be optimal in all considerations, but it is there to provide a set of accessible methods
to handle some of the key steps of the numerical bifurcation analysis we consider.

The first one is a numerical differentiation, which may appear as a quite naive
approach, but turned out so efficient at addressing one of the main drawbacks of our
method (second derivative elements) that we decided to try and integrate it.

The second numerical method we used is the well known variable step-size Runge
Kutta. We review it and introduce a slight modification in an attempt to improve the
precision and gain some numerical error control.

The last section is simply a few considerations concerning tracing algorithm when
solving diagrams.

49

Chapter 4. Detail of relevant numerical methods

4.1 Numerical differentiation for derivation approx-

imation

Obtaining an analytical expression for the second row of the matrix (14) like in the
Eq. (8) is possible, and this is how Kousaka et al [1999] obtained his results.

However, we can see in Eq. 8 that some elements such as ∂τi/∂Xi−1 are heavily
depending on the switching conditions, making it difficult to express in a general form.
In order to obtain the Jacobian matrix (14), such terms must be derived once more.

The complexity of the resulting equation depends mainly on the complexity of the
switching condition qi(X). Even when expressing the Jacobian matrix of the 2 state
Alpazur Oscillator (very simple switching conditions), one must spend a fair amount
of time and paper to write all the equations down. The complexity of ∂τi/∂Xi−1 in
Eq. (8) is already impossible to generalize without fixing some restrictions on the type
of possible switching conditions, while its second derivatives such as ∂2τi/∂X2

i−1 or
∂2τi/(∂Xi−1∂λ) require double the effort, most likely presenting a lot of case by case
issues.

By making use of numerical integration, we are certain that a computer algorithm
will be involved in any usage of this method. Hence we want to make it:

• easy to implement and generalize;

• easy to use;

• fitted to computer-based tools in an efficient way.

To generalize all the possible switching scenarios and then implement them is com-
plicated; and asking the user to input his own equations for the Jacobian matrix is
far from being user friendly. Also, such sequential calculations are no longer fitted to
recent hardware that tends to handle parallelized computations better and better.

We propose a simple, yet efficient method which consists in approaching the tangent
by differentiation, performing a multiple integration using shifted input variables or
parameters.

We compute the following elements the same way we would in the fixed point
algorithm:

Um(U0, λ), Um(U0 + ∆U, λ), Um(U0, λ + ∆λ),
DTl(U0, λ), DTl(U0 + ∆U, λ), DTl(U0, λ + ∆λ).

(4.1)

50

Chapter 4. Detail of relevant numerical methods

We derive the Jacobian matrix elements by differentiation:

∂Um

∂U0
≈ Um(U0 + ∆U, λ) − Um(U0, λ)

∆U

∂Um

∂λ
≈ Um(U0, λ + ∆λ) − Um(U0, λ)

∆λ
∂DTl

∂U0
≈ DTl(U0 + ∆U, λ) − DTl(U0, λ)

∆U

∂DTl

∂λ
≈ DTl(U0, λ + ∆λ) − DTl(U0, λ)

∆λ
.

(4.2)

Such approach introduces some questions, such as how to determine a relevant ∆U or
∆λ. Though it is not a truly refined approach, we use at this point a fraction of the
correction of U and λ as ∆U and ∆λ for the next iteration. Based on the assumption
that we do converge to the solution, the next correction is expected to be smaller than
the previous one, hence a smaller differentiation step: the closer ∆X and ∆λ gets to
the desired correction, the faster we converge.

The next method to determine ∆U and ∆λ that we consider will take into account
the precision achieved numerically and the precision expected by the user to choose
relevant values. This implies error control concepts not in the scope of this paper, and
the results associated are yet to be gathered, so this topic will be addressed in another
publication.

Such a method is simple and adapted to numerical algorithms. It is easily paral-
lelized: one process can be assigned to the computation of one element, and U0 being
a vector, ∂DTl/∂U0 means n elements. Those n elements would need to be integrated
anyways if we were using the analytical approach. This means that, from a computa-
tion amount perspective, we are not wasting as much computation time as one might
think when considering multiple integrations. During our analysis, we used a multi-
threaded program which was able to exploit all 4 cores of the machine on which it was
running, yielding more than satisfying performance.

51

Chapter 4. Detail of relevant numerical methods

Method Elements to integrate Elements count
Numerical X, n + 1

∂ϕ

∂x0
· · · ∂ϕ

∂xn−1

Analytical X,
n(n + 5)

2
+ 2

∂ϕ

∂x0

· · · ∂ϕ

∂xn−1

,

∂2ϕ

∂x2
0

· · · ∂2ϕ

∂x0∂xn−1
,

...
∂2ϕ

∂x2
n−1

The expression of ∂2Xi/∂X2
i−1, from which ∂DTl/∂U0 is derived, is non trivial in its

analytical form. Also, the numerical method is a trade-off: reducing the complexity
by increasing the amount of computations. Fewer and simpler elements are integrated
multiple (n+2) times with shifted initial values or parameters. This becomes an asset
if we parallelize these integrations, returning results faster for two or more threads.

52

Chapter 4. Detail of relevant numerical methods

4.2 Variable step Runge-Kutta based method

The Runge-Kutta method is well known for its precision and efficiency. For our analysis
tools, we need both precision, and adaptability to various systems. In order to dynam-
ically adapt the precision / computation time ratio, we will need an adaptive-step
approach. Fig.4.1 illustrates this point.

4.2.1 Standard variable step Runge-Kutta method

Some of the main benefits of a variable step integration method are error estimation
and control, and increase in processing speed.

The idea is to regularly evaluate the integration error in order to optimize the step
size based on two constraints: we want the step to be as large as possible to reduce the
necessary CPU time, we want this step size to be small enough to preserve a certain
precision level.

In other words, in regions of near-linearity, the step size can increase for better
performance without sacrificing too much precision. In regions of strong nonlinearity,
we will reduce the step size to reduce the integration error.

The following approach is based on a Runge-Kutta 4 (RK4) method. We compute
the next value twice:

• once in a single step of size h: X(1)(t + h) = RK4 (X(t), h)

• once in two steps of size h/2: X(2)(t + h) = RK4
(

RK4 (X(t), h/2) , h/2
)

as illustrated in Fig. 4.2.
When considering the error resulting from a RK4 integration step, we figure that

the error expression is of the form: ε = ch5, where c is nearly constant.
We establish a target error εt and call the error estimation εe.

εe = ‖X(2) − X(1)‖

εe = c(h)5 and εt = c(h∗)5 ⇒ h∗ = h

(

εt

εe

)1/5

,

(4.3)

Where h∗ is a step size closer to the optimal value.
Finally, in order to increase the tolerance, an arbitrary coefficient is introduced:

h∗ = 0.9 × h

(

εt

εe

)1/5

(4.4)

53

Chapter 4. Detail of relevant numerical methods

(a) A step-size too big will introduce numerical error.

(b) A step-size too small will waste CPU time by performing an unnecessary
amount of computation, hence negatively affect the performance. In extreme cases,
it also introduces and accumulates unnecessary numerical error.

(c) A proper variable step-size approach
will adapt to the system to obtain both ac-
ceptable precision and good performance.

Figure 4.1: A few scenarios to show how precision needs may vary.

4.2.2 n-iteration windowed RK4

For simple simulations, the previous method usually offers satisfying performance, while
keeping the error under tolerable levels.

54

Chapter 4. Detail of relevant numerical methods

X (t)

X (t+Δ/2)

X (t+Δ)

X’ (t+Δ)

Figure 4.2: Computation of the same point with two different precisions in order to
obtain an approximation of the error.

On the other hand, a bifurcation analysis requires a more significant degree of
precision. In many highly non-linear systems, this becomes a challenge due to numerical
error and related phenomena (machine epsilon, error propagation and others).

More specifically, in the standard variable step Runge-Kutta method, the operation
where we divide by ‖X(2) − X(1)‖ often leads to division by zero issues.

To ensure a more significant difference, we propose using a windowed approach,
with the computation of the n next points instead of just one, as shown in Fig.4.3.
The drawback is, if the result fails to comply with the desired precision requirements,
the whole window of points has to be recomputed with higher precision, instead of one
single point.

εeX (t)

X (t+Δ/2)
X (t+Δ)

X’ (t+Δ)
X (t+nΔ)

X’ (t+nΔ)

Figure 4.3: Computation of n steps with 2 different precisions to evaluate the error
over the whole curve segment.

The number of iterations n can be fixed, or dynamically adjusted using a failure
feedback control approach.

The way h is adjusted is basically the same:

εe = ‖X(2)(t + nh) − X(1)(t + nh)‖

h∗ = 0.9 × h
(

εt

εe

)1/5
(4.5)

55

Chapter 4. Detail of relevant numerical methods

This approach preserves the adaptability of the original method, does not sacrifice
much of the performance in terms of computation time, while exploiting the machine
precision to its limits.

56

Chapter 4. Detail of relevant numerical methods

4.3 Linear prediction and tracing algorithm

There exist many predication algorithms in order to compute and trace effectively an
initially unknown curve.

How such computations are handled are most important as it will affect the result
in the following:

• performance: computing too many points in a nearly linear region is a waste of
CPU time;

• precision: computing too few points in a parameter-sensitive region can lead to
insufficiently precise curves;

• stability: our computations are based on a Newton method, so if the predicted
point is actually too far from the solution, the computation may end up diverging.

The two first points can be handled using a variable step-size, just like in section
4.2.

The prediction approaches we used are purely linear, though depending on the
available data some more complex approaches can be used.

Next is how we may handle a computation failure. A divergence is most of the
time due to a prediction with an error too big. This is the case when the step-size is
too large for the Newton method to correct such variations. Even when the precision
appears satisfactory for the user, it is not relevant to the parameter sensitivity of the
system.

4.3.1 Prediction approach

For extremely precision-dependent and/or time-consuming computations, there exists
a variety of prediction methods based on the history of results. In our specific case,
we use a Newton method to refine the predicted values, which means that we may not
need a very high level of prediction precision, just enough to be in the convergence
domain. Also, the computation of the curve being an iterative process, we want to
pick a step size small enough to have results as close as possible to a smooth curve and
not a broken line. This condition is enough to assume the curve is locally near-linear.
Given these two considerations, we opted for a simple linear projection based on the
last two points computed and the current step size.

Another aspect of the prediction process is determining, in the variables and pa-
rameters space, which values to fix and which ones to refine. When the derivative
of the fixed component of the curve changes sign, it can happen that the projection
incorrectly predicts a value in a subspace where there is no solution. In order to avoid
such situation, we monitor the evolution of the curve and refine the values that vary
rapidly (the most likely to be included in the projected subspace).

57

Chapter 4. Detail of relevant numerical methods

4.4.1: Computation reached the point n. 4.4.2: using a linear projection,
we determine an approximation which is

refined in the subspace at parameter λ fixed.

θ<45°

4.4.3: The next step will fail if the same 4.4.4: Refining the result is successful in
parameter λ is picked. By observing the the appropriate subspace.
angle θ we have to switch to the other

parameter of the space: λ′

Figure 4.4: Dynamical selection of fixed parameters for computation of the solution.

4.3.2 Step size control

The basic idea is still the same as what is exposed in 4.2.1. We want to minimize the
error in all point of the curve while saving computation time by increasing the step
size in nearly linear regions. For this purpose, we defined the level of nonlinearity as

58

Chapter 4. Detail of relevant numerical methods

the angle between two segments of the curve (actually a broken line). By fixing a
maximum angle and a maximum step size, we set an error tolerance. We also pick a
second angle value, the target one, smaller than the maximum, so that we have enough
margin to minimize the amount of failures due to unexpected error variations.

Even if such approach greatly increases the stability of this method, there are still
cases of failure to converge, particularly in cases where the curve nonlinearity increases
rapidly. With such scenario in mind, we have implemented one last simple mechanism.
In most cases, a failure to converge is either directly related to the characteristics of
the system (like the presence of a global bifurcation, particularly collisions in hybrid
systems), or simply a step size too big. In either case, we usually can gain in precision
by simply doing a rollback and trying to recompute the one or two last points. This
way, the algorithm has multiple attempts to handle a point presenting a computation
challenge, and will be allowed to give up only when reaching a specific limit of time or
precision as desired by the user.

4.5.1: Upon reaching a highly nonlinear region, the step size is too large, yet the next
point may fall into an acceptable angle.

max angle

4.5.2: However, using the projection mentioned in 4.3.1, whatever the current
step size, we cannot find a point within the set angular tolerance.

4.5.3: Instead, we have to rollback to the last computation, and reprocess it with a
smaller step size.

Figure 4.5: Illustration on how a rollback strategy helps recover from some prediction
errors.

59

Chapter 5

Conclusion

Using an approach that is completely adapted to computer, we propose a method to
study the bifurcations of virtually any hybrid system. Given that this method can be
automatized to a high degree, this promises to unload most of the analysis work from
the user to the computer. We have covered with a particular attention how to handle
performance and precision issues, and illustrated the whole process with results of a
representative set of various kinds of switching cases in a piecewise-smooth system: the
Alpazur oscillator.

There are many hybrid systems still undergoing bifurcation analysis in the field of
mechanics or electronics and many more waiting to be considered. This method lifting
many constrains, particularly in terms of dimensions and complexity, future work may
be to analyze such systems. In other words, we first need to validate the method in
a wider range of systems. It implies a work of comparison with real-world results and
measurements. This approach is also very generic and could be applied to more than
nonlinear systems, in which case a study of efficiency and comparison to other methods
could also be of interest. Relevant industrial application related systems include multi-
cell chopper like the ones analyzed by Berthoux and Barbot in [22], PWM inverters
the like of B. Robert and C. Robert studied collision bifurcations in [23], or mechanical
ones as cam-follower rigs with impacts that Alzate, di Bernardo and al. study in [24].

As for the method itself, of course each portion of the algorithm can be improved
and handled in a different or even more efficient way, so the method is still candidate
to improvements, but beyond optimization, the most obvious step to be taken next
would be considering hybrid systems, list all the possible switching scenarios, and find
the simplest generic expression. Since this is, as we could see in our examples, one of
the most crucial part of the model construction, it would bring the final stone required
to build a stand-alone and automatized bifurcation analysis computer tool for hybrid
systems. There is also a number of models such as those featuring jumps at switching
points, changes of space or discontinuities, and which can definitely be handle using
our method. Just like for the various Alpazur extensions, it would be very interesting
to detail the model expression and specific attentions that must be considered for such

60

Chapter 5. Conclusion

systems when going through the analysis process.
A few steps, including the first derivation of the differential equations, could be

automatized further once the set of switching conditions is clearly established. The
tools for the manipulation of symbolic expressions exist, so it really is a work of testing
and verification as well.

Finally, the whole group of global bifurcations is left to study and represents a great
opportunity to see how this method can be extended further to handle bifurcations such
as collisions which characterize hybrid systems, though this might prove much harder
to automatize.

61

Bibliography

[1] di Bernardo, M.; Tse, C. [2002] “Chaos in Power Electronics: An Overview,” in
Chaos in Circuits and Systems, Series B, Vol. 11, pp. 317–340.

[2] Tse, C. [2004] Complex Behavior of Switching Power Converters (CRC press) Chap.
3, pp. 57–80.

[3] Banerjee, S.; Chakrabarty, K. [1998] “Nonlinear Modeling and Bifurcations in the
Boost Converter,” in IEEE Trans. Power Electronics Vol. 13(2), pp. 252–260.

[4] Banerjee, S.; Karthik, M.S.; Yuan, G.H.; Yorke, J.A. [2000] “Bifurcations in one-
dimensional piecewise smooth maps - theory and applications in switching circuits,”
in IEEE Trans. Circuits and Systems I Vol. 47(3), pp. 389–394.

[5] Acco, P.; Daafouz, J.; Fourniet-Prunaret, D.; Taha, A.K. [2004] “Approche hybride
de la stabilité locale de la boucle à verrouillage de phase par impulsions de charge,”
in Revue e-STA, ISSN: 1954-3522, http://www.e-sta.see.asso.fr, Vol. 1(4).

[6] Wiercigroch, M. & de Kraker, B. [2000] Applied Nonlinear Dynamics and Chaos
of Mechanical Systems with Discontinuities (World Scientific Series on Nonlinear
Science, Series A, Vol. 28)

[7] di Bernardo, M.; Budd, C.J.; Champneys, A.R.; Kowalczyk, P. [2008] Piecewise-
smooth Dynamical Systems Theory and Applications (Applied Mathematical Sci-
ences , Vol. 163)

[8] Kawakami, H. and Lozi, R. [1992] “Switched Dynamical Systems – dynamical of a
class of circuits with switch,” in Proc. RIMS Conf. “Structure and Bifurcations of
Dynamical Systems” ed. S. Ushiki (World Scientific), pp.39–58.

[9] Kousaka, T.; Ueta, T.; Kawakami, H. [1999] “Bifurcation of switched nonlinear
dynamical systems,” in IEEE Trans. Circuits and Systems II: Analog and Digital
Signal Processing Vol. 46(7), pp. 878–885.

[10] Kousaka, T.; Ueta, T.; Ma, Y.; Kawakami, H. [2006] “Control of chaos in a piece-
wise smooth nonlinear system,” in Chaos, Solitons & Fractals (Elsevier Science)
Vol. 27, pp. 1019–1025.

62

Bibliography

[11] Kabe, T.; Parui, S; Torikai, H.; Banerjee, S; Saito, T. [2007] “Analysis of Piecewise
Constant Models of Current Mode Controlled DC-DC Converters,” in IEICE Trans.
Fundamentals of Electronics, Communications and Comp. Sci. E90-A(2), pp. 448–
456.

[12] Dankowicz, H. [2007] “On the purposeful coarsening of smooth vector fields,” in
Nonlinear Dynamics (Springer Netherlands), Vol. 50(3), pp. 511–522.

[13] Hiskens, I.A.; Pai, M.A. [2000] “Trajectory sensitivity analysis of hybrid systems,”
in IEEE Transactions on Circuits and Systems I, Vol. 47(2), pp. 204–220.

[14] Carcasses, J.P.; Mira, C. [1991] “An Autonomous Ordinary Differential Equation
Generating Alternating Isoordinal Cascades of Cusps in a Bifurcation Plane,” in
Proc. Conf. European Conference on Iteration Theory: ECIT’89 (World Scientific)
pp. 25–41.

[15] Mira, C.; Taha, A.K. [1991] “Isoordinal Cascades of Cusps with Monotonic Con-
vergence in a Bifurcation Plane, Generated by a Two-Dimensional Diffeomor-
phism,” in Proc. Conf. European Conference on Iteration Theory: ECIT’89 (World
Scientific) pp. 231–238.

[16] Izhikevich, E.M. [2003] “Simple Model of Spiking Neurons,” in IEEE Trans. Neural
Networks Vol. 14(6), pp. 1569–1572.

[17] di Bernardo, M.; Feigin, M. I.; Hogan, S. J.; Homer, M. E. [1999] “Local Analysis of
C-Bifurcations in n-Dimensional Piecewise-Smooth Dynamical Systems,” in Chaos,
Solitons & Fractals (Elsevier Science) Vol. 10, No. 11, pp. 1881–1908.

[18] Banerjee, S.; Ranjan, P.; Grebogi, C. [2000] “Bifurcations in two-dimensional maps
- theory and applications in switching circuits” in IEEE Transactions on Circuits
and Systems I, Vol. 47(5), pp. 633–643.

[19] Peterka, F. [1974] “Theoretical analysis of n-multiple (1/n)-impact solutions” in
Acta Tech CSAV, Vol. 26(2), pp. 462–473.

[20] Sushko, I.; Agliari, A.; Gardini, L. [2006] “Bifurcation structure of parameter
plane for a family of unimodal piecewise smooth maps: Border-collision bifurcation
curves,” in Chaos, Solitons & Fractals (Elsevier Science) Vol. 29, pp. 756–770.

[21] Kitajima, H.; Kawakami, H. [1994] “An algorithm tracing out the tangent bifur-
cation curves and its application to Duffings equation,” in IEICE technical report.
Nonlinear problems Vol. 94(44), pp. 1–7.

[22] Bethoux, O.; Barbot, J.-P. [2002] “Multi-cell chopper direct control law preserving
optimal limit cycles,” in IEEE Trans. Control Applications Vol. 2, pp. 1258–1263.

63

Bibliography

[23] Robert, B.; Robert, C. [2002] “Border collision bifurcations in a one-dimensional
piecewise smooth map for a PWM current-programmed H-bridge inverter,” in Int.
J. Control Vol. 75(16/17), pp. 1356–1367.

[24] Alzate, R.; di Bernardo, M.; Montanaro, U.; Santini, S. [2007] “Experimental and
numerical verification of bifurcations and chaos in cam-follower impacting systems,”
in Nonlinear Dynamics (Springer Netherlands), Vol. 50, pp. 409–429

64

Appendix A

C++ code for Runge-Kutta

integration of ODE

The following files implement a standard single step 4th order Runge-Kutta integration,
and a variable n-step windowed Runge-Kutta based integration.

The input is an initial point (vector represented by a single column matrix), the
description of the system, the function we want to integrate, and a integration step
size. For the multiple step integration, a numerical error tolerance and a window size
(number of steps to compute) must be input as well.

// rungeKutta.hh file
// Description: a collection of functions dedicated to Runge-Kutta
// method-based computations

ifndef rungeKutta hh
define rungeKutta hh

#include ”../my objs/matrix/mymatrix.hh”
#include ”../my objs/system/system.hh”

/// Standard 4th order Runge-Kutta method
Mymatrix rk4 (const Mymatrix & source, const Mysystem & system, Mysystem function
f i,double dt);

/// Variable step, multiple stepped
Mymatrix *vsRk4 (const Mymatrix & source, const Mysystem & system, Mysystem function
f i,double &dt, double &error, int steps);

endif

65

Appendix A. C++ code for Runge-Kutta integration of ODE

// rungeKutta.cc file

#include ”rungeKutta.hh”

Mymatrix rk4 (const Mymatrix & source, const Mysystem & system, Mysystem function
f i,double dt) {

Mymatrix xtemp, r1, r2, r3, r4, result;
r1 = (system.*f i)(source);
xtemp = source + (dt/2.0)*r1;
r2 = (system.*f i)(xtemp);
xtemp = source + (dt/2.0)*r2;
r3 = (system.*f i)(xtemp);
xtemp = source + dt*r3;
r4 = (system.*f i)(xtemp);
result = source + (r1+2.0*(r2+r3)+r4)*(dt/6.0);
return result;

}

66

Appendix A. C++ code for Runge-Kutta integration of ODE

Mymatrix *vsRk4 (const Mymatrix & source, const Mysystem & system, Mysystem function
f i,double &dt, double &error, int steps) {

double error =0;
int iterations = 0;
Mymatrix temp simple, temp double;
if (steps¡1) {

fprintf(stderr,”Attempt to use variable step Runge-Kutta with non strictly-positive
step amount”);

exit(1);
}
Mymatrix *results;//(source.height(),steps);
results = new Mymatrix[steps];
do {

temp simple = source;
temp double = source;
for (int i=0;i¡steps;i++) {

temp simple = rk4(temp simple, system, f i,dt);
temp double = rk4(rk4(temp double, system, f i,dt/2), system, f i,dt/2);
results[i] = temp double;

}
error = Mdistance(temp simple,temp double);

if (iterations ++ > DIVERGENCE NBS) {
error = error;
return results;

}
if (fabs(error)¡fabs(error)/10) {

dt *= 5.0;
error = fabs(error)+1;

}
if (fabs(error)>fabs(error))

dt = dt/2.0;
else

dt *= (0.9*(fabs(error)/fabs(error)));
} while (fabs(error)>fabs(error));
return results;

}

67

Appendix B

Algorithm for prediction and

tracing

This method is based on the assumption that we already know at least two points
(vectors of parameter values and initial coordinates Pn−1 and Pn) of the curve we
trace, and have chosen an angle to determine the degree of smoothness we want to
achieve, which will control the prediction step size ∆.

1. compute a prediction for the next point: we used a simple linear projection

P
′

n+1 = Pn +
∆

|Pn − Pn−1|
∗ (Pn − Pn−1)

2. use the Newton method to obtain a precise Pn+1

• if Newton method fails, set ∆ = ∆/2 and return to 1.

• if the angle ̂Pn−1PnPn+1 is not straight enough, set ∆ = ∆/2 and return to
1.

• if ∆ << |Pn+1 − Pn|, set ∆ = ∆/2 and return to 1.

3. based on the effective angle, adjust ∆, trying to keep it within reasonable val-
ues (not too large nor too small, thought this mostly depends on the system
characteristics and the precision achieved)

4. keep track of the number of attempts to rollback to the computation of Pn if we
fail too many times, and abort if even such rollback does not help in computing
Pn+1 (within an acceptable time frame: tens of attempts).

68

Appendix B. Algorithm for prediction and tracing

Here is an example of flow chart of how to handle this approach:

Start
Determine

P'n+1

Newton
method

Recompute
Pn with a
smaller Δ

Is
Convergence

achieved?

Too many
failures?

Angle and
Effective step

Size OK?

End
(give up)

End
(go to next

point)

How many
rollbacks?

Refine Δ

no

yes

yes

no

yes

no

Not that many too many

69

Appendix C

C++ header of the system object

// system.hh file
// Description: describes the system considered for analysis

class Mysystem;

ifndef mysystem hh
define mysystem hh

#include ”../various/result.hh”
#include ”../matrix/mymatrix.hh”

// ********************
// Integration specific
// ********************
#define NBSTEPS 50 // size of the computation window for the variable step RK
integration
#define TOLERANCE 10e-13 // Error tolerance for a single computation window
#define DIVERGENCE NBS 10000 // Limit of integration steps before declaring the
system non-convergent
#define DIVERGENCE 100 // Limit of any element of the variable vector to assume
divergence
#define DT 0.0001 // Initial delta T used for integration, not very important since
automatically adjusted

// *************
// Fix+ specific
// *************
#define MAXITER 50 // Limit of iterations for fix and bif before giving up
#define SHIFT PARAM 10e-6 // Shift in parameter applied for differentiation

70

Appendix C. C++ header of the system object

typedef Mymatrix (Mysystem::*Mysystem function)(const Mymatrix &) const;

class Mysystem {

public:

///
/// public constructor
Mysystem ();

///
/// setters
void set parameters (const Mymatrix &);
void set X (const Mymatrix &);
void set spp (const int &);
void set current state (const int &);
void set nb states (const int &);
Mysystem operator= (const Mysystem &source);

///
/// getters
int nb states() const;
int current state() const;
int spp() const;
int sizeX() const;
Mymatrix X() const;
Mymatrix parameters() const;

///
/// increment state and return it
int inc state();

///
/// Function dX/dt (depends on the current state)
Mymatrix f i(const Mymatrix &) const;

///
/// Function d2X/dtdX (depends on the current state)
/// First column is X, second-on is dX
Mymatrix df i(const Mymatrix &) const;

71

Appendix C. C++ header of the system object

///
/// Function of the switching condition
/// Sign determines if a switch is required
/// Value gives the distance to the switching line
double switch cond(const Mymatrix &);

///
/// Function returns the element indice to drop at
/// a given state
int rnmo (int state) const;

///
/// Function to determine dXi/dX i-1 based on the
/// given state
Mymatrix dxidximo (const Myresult * result, const Mymatrix * dfi, int step) const;

///
///
/// Functions to project from Rn to Rn-1 and back
Mymatrix PiToSigma (const Mymatrix & X) const;
Mymatrix SigmaToPi (const Mymatrix & X) const;
Mymatrix PiToSigma Jacobian (const Mymatrix & Jacobian) const;

private:

int nb states; // total number of states
int current state; // ...
int spp; // nb of switches per period

Mymatrix X; // continuous variable (Horizontal vector)

Mymatrix parameters; // parameters values (Horizontal vector)

};

endif

72

	Numerical Method of Bifurcation Analysis for Piecewise-smooth Nonlinear Dynamical Systems
	Abstract
	Acknowledgment
	Contents

	Chapter 1 Introduction
	Chapter 2 Bifurcation analysis method forpiecewise-smooth dynamicalsystems
	2.1 Differential equations model featuring switchingthresholds
	2.2 Integration of the solutions
	2.3 Poincar´e map and Newton method for fixedpoints
	2.4 Critical parameter values at bifurcation points

	Chapter 3 Alpazur oscillator
	3.1 Review of the original Alpazur oscillator
	3.1.1 Presentation
	3.1.2 Analysis formulation
	3.1.3 Fixed points
	3.1.4 Bifurcation points

	3.2 3-state Alpazur oscillator
	3.2.1 Model description
	3.2.2 Fixed points
	3.2.3 Bifurcation points
	3.2.4 Results review

	3.3 Varieties of switching thresholds
	3.3.1 2-state Alpazur oscillator with affine switching condition
	3.3.2 2-state Alpazur oscillator with nonlinear switching condition
	3.3.3 2-state Alpazur oscillator with non-smooth switchingcondition

	3.4 3D Alpazur oscillator
	3.4.1 Model description
	3.4.2 Analysis formulation
	3.4.3 Fixed points
	3.4.4 Bifurcation points

	3.5 Recap

	Chapter 4 Detail of relevant numerical methods
	4.1 Numerical differentiation for derivation approximation
	4.2 Variable step Runge-Kutta based method
	4.2.1 Standard variable step Runge-Kutta method
	4.2.2 n-iteration windowed RK4

	4.3 Linear prediction and tracing algorithm
	4.3.1 Prediction approach
	4.3.2 Step size control

	Chapter 5 Conclusion
	Bibliography
	Appendix A C++ code for Runge-Kutta integration of ODE
	Appendix B Algorithm for prediction and tracing
	Appendix C C++ header of the system object

