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Abstract: In this paper, we explain how to compute bifurcation parameter values of periodic
solutions for non-autonomous nonlinear differential equations. Although various approaches
and tools are available for solving this problem nowadays, we have devised a very simple method
composed only of basic computational algorithms appearing in textbooks for beginner’s, i.e.,
Newton’s method and the Runge-Kutta method. We formulate the bifurcation problem as a
boundary value problem and use Newton’s method as a solver consistently. All derivatives
required in each iteration are obtained by solving variational equations about the state and
the parameter. Thanks to the quadratic convergence ability of Newton’s method, accurate
results can be quickly and effectively obtained without using any sophisticated mathematical
library or software. If a discontinuous periodic force is applied to the system, we can use
the same strategy to solve the bifurcation problem. The key point of this method is deriving
a differentiable composite map from the various information about the problem such as the
location of sections, the periodicity, the Poincaré mapping, etc.
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1. Introduction
Many biological, social, and engineering phenomena are dynamic, and their phenomena can be mod-
eled as dynamical systems [1]. Most dynamical systems are described by ordinary differential equations
or difference equations. In general, these systems are nonlinear and include many parameters. Small
changes in the values of their parameters may have large effects on the behaviors of the system. De-
termining a way to analyze such a dynamical system is an important problem. So far, a large number
of methods of analyzing nonlinear dynamical systems have been proposed. As is well known, the
solution to most nonlinear dynamical systems cannot be obtained analytically. This means we must
conduct numerous simulations using the different fixed sets of parameter values and initial conditions.
However, such simulations only give information about one stable solution at a time, and they tend
to take a long time to reach a solution.

The topological properties of the solutions to a dynamical system may change when a parameter
of the system changes slightly. This phenomenon is called bifurcation. Examples of bifurcation
phenomena include a transition from a stable equilibrium state to an oscillating motion or from a
regular oscillation to a chaotic state. Bifurcation analysis, which is the investigation of bifurcations
depending on the system parameters, is a way to gain deep insights into the fundamental properties of
dynamical systems. Furthermore, bifurcation analysis enables us to identify the range of a parameter
over which a system behaves stably, the total behavior of the solution in the large, and the transition
mechanisms of the dynamic responses.

A set of parameter values that cause bifurcations is called a bifurcation set, and a graph of these
sets is called a bifurcation diagram. Two or three decades ago, finding a bifurcation value was very
troublesome task; in fact, many researchers took a process of trial and error to trace a bifurcation
set manually. These days however, computational tools, for instance, AUTO and MATCONT [2–4],
can be used to perform bifurcation analyses. On the other hand, Kawakami developed a bifurcation
analysis tool thirty years ago [5], and since then, he and his co-workers have improved it [6–16] to the
point that the current version can compute any bifurcation set within a few hours. Indeed, before
this development, researchers were often forced to devote up to a whole year to make one bifurcation
diagram! Indeed, although computers have helped us to achieve our goals, the study of algorithms
remains a very important topic.

Assume that you have a nonlinear problem and want to compute its bifurcation diagram. Although
AUTO is a useful and quick tool for this task, its results are especially difficult for beginners to
understand.

In this article, we consider a dynamical system described as an ordinary differential equation or
difference equation, and explain in detail the shooting algorithm to trace the bifurcation sets appearing
in the system, in particular, a non-autonomous system with periodic forcing. Unlike the terse style
of many technical papers, we shall make a more text-book style of presentation; i.e., we will carefully
and explicitly explain our method, and we will not shy away from helpful pedagogical redundancies.

This article is organized as follows. Section 2 briefly describes the basic theory of bifurcation in
nonlinear dynamical systems. Section 3 summarizes the numerical computation for the bifurcation
analysis. It also illustrates our method by using it to analyze a typical non-autonomous system.
Section 4 is the conclusion.

2. Basic theory of bifurcation analysis
Let us consider the following autonomous system:

dx

dt
= fa(x, λ) (1)

and its forced system or the following non-autonomous system:

dx

dt
= f(t, x, λ) (2)

where t ∈ R denotes time, x ∈ Rn is a vector consisting of state variables, and λ ∈ R� denotes system
parameters. Now, let us assume that fa in Eq. (1) and f in Eq. (2) are sufficiently differentiable, i.e.,
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C∞-class. In addition, let us assume that the function f is periodic in τp so that f(t + τp, x, λ) =
f(t, x, λ), for all t. We shall also assume that a solution to Eq. (1) or (2) with the initial condition
x = x0 at t = t0 is described by x(t) = ϕ(t, x0), for all t, or x(t) = ϕ(t, λ; t0, x0), if necessary, to show
the parameters and the initial state at the initial time t0 explicitly.

2.1 Equilibrium point and variational equation in autonomous system
Now let us briefly review the case of autonomous systems obeying Eq. (1). By imposing the conditions:

fa(x, λ) = 0, (3)

one can compute the locations of the equilibrium points in the system. A point x∗ satisfying Eq. (3) is
an equilibrium point. The Jacobian matrix and its corresponding characteristic equation give enough
information to determine the stability of each equilibrium point.

Assume that x∗ is an equilibrium point. The Taylor expansion of fa in Eq. (1) about the equilibrium
point had by setting x = x∗ + ξ can be described as

d(x∗ + ξ)
dt

= fa(x∗ + ξ) = fa(x∗) +
∂fa(x)

∂x

∣∣∣∣
x=x∗

ξ + · · · , (4)

where ξ is a small perturbation. By subtracting this equation from Eq. (1), we obtain a variational
equation with respect to ξ:

dξ

dt
=

∂fa(x)
∂x

∣∣∣∣
x=x∗

ξ =
∂fa(x∗)

∂x
ξ ≡ Jcξ (5)

Suppose that the eigenvalues μi, i = 1, 2, . . . , n, are the roots of the characteristic equation for this
n × n Jacobian matrix Jc, and they determine the stability of the equilibrium point. For simplicity,
we shall assume that all eigenvalues are real and distinct, and if the corresponding eigenvectors, vi,
for i = 1, 2, . . . , n, can be obtained with a suitable scheme, the general solution of the variational
equation Eq. (5) can be written as:

ξ(t) =
n∑

i=1

cie
μitvi (6)

where ci is a constant related to the initial values of the state variables in Eq. (5). Obviously, this
general solution is stable if and only if all eigenvalues are negative. Note that this solution only
describes the local behavior around the equilibrium point. Thus, the eigenvalues of the Jacobian
matrix, Jc, express a stability index for the given equilibrium point in a continuous-time autonomous
system.

Here, we call x∗ a hyperbolic equilibrium point, if the real parts of all eigenvalues are non-zero.
A bifurcation occurs when an equilibrium point loses its hyperbolicity as a result of variation of the
system parameters. In other words, bifurcation phenomena result from changes in the stability of the
equilibrium point.

Typical bifurcations of the equilibrium point are as follows:

i The Hopf bifurcation: A couple of complex conjugate eigenvalues of the characteristic equation
becomes purely imaginary numbers. An oscillatory solution appears as a result of changing the
value of a parameter.

ii The saddle-node bifurcation: One of the eigenvalues is zero. A pair of equilibrium points appears
when the value of a parameter is changed.

In this article, we shall omit the details of this equilibrium analysis and refer the reader to the
literature [17–21].

Note that the existence and stability of equilibrium points has an effect on the dynamical behavior
of the non-autonomous system of Eq. (2). If you add a very small periodic perturbation to an
autonomous system, a periodic solution will appear around the equilibrium, and it will inherit the
stability of the equilibrium. Mathematically speaking, adding a small perturbation to an autonomous
system leads to the disappearance of all equilibrium points since dx/dt �= 0 for all t.
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2.2 Periodic solutions and fixed points in a non-autonomous system
Next, let us discuss the stability of periodic solutions. The periodic solution to Eq. (2) can be
qualitatively studied by using a Poincaré map.

2.2.1 Poincaré mapping and fixed points
Let us rewrite the solution to Eq. (2) starting from x = x0 at t = 0 as

x(t) = ϕ(t, λ; t0, x0). (7)

Thus, the solution is also periodic in τp because of the periodicity of f in Eq. (2), i.e., ϕ(t +
τp, λ; t0, x0) = ϕ(t, λ; t0, x0). We can naturally define the corresponding map:

Sλ : Rn → Rn

x0 �→ Sλ(x0) = ϕ(t + τp, λ; t0, x0). (8)

This map is actually a sampling of the orbit every τp; thus, we get

x0, Sλ(x0), S2
λ(x0), · · · , Sm

λ (x0), · · · . (9)

We call this Sλ the Poincaré mapping. A sequence (9) is obtained by neglecting information about
continuous changes in ϕ(t, λ; t0, x0) during a period satisfying t ∈ [kτp, (k + 1)τp), for k = 0, 1, 2, . . . .
Indeed, this sort of reduction is a useful. Note also that the system of interest has been converted
from a differential equation (2) into a difference equation:

x(k+1) = Sλ

(
x(k)

)
, (10)

for k = 0, 1, 2, · · · .
If an initial state, x0 ∈ Rn, satisfies the following relationship:

x0 = Sλ(x0), (11)

then this point is called a fixed point. Furthermore, if for some m �= 1,

x0 = Sm
λ (x0), (12)

and if all Sk
λ(x0), k = 0, 1, . . . , m − 1, are different each other, x0 is called an m-periodic point.

Thereby, we can obtain a one-to-one correspondence between the periodic solution of Eq. (2) and the
fixed point of the Poincaré map Sλ. The case of an m-periodic point can also be studied simply by
replacing Sλ with Sm

λ , or the mth iterate of Sλ, in Eq. (11). Therefore, for the sake of simplicity, we
shall explain only the properties of a fixed point of Sλ.

In general, we cannot obtain the explicit form of Sλ, though a limited number of continuous
dynamical systems do have one. However, it is easy enough to obtain the Poincaré mapping. For
instance, we can obtain its Poincaré map by getting the values of the state variable every τp in the
numerical simulation. Furthermore, in real electrical and electronic circuits, the voltage value of a
periodic motion can be easily sampled with a sample-hold circuit by using trigger pulses synchronized
with an external periodic force.

2.2.2 Stability of a fixed point in difference equation
Let us consider a stability index for difference equations. Equation (8) forms of itself a discrete
dynamical system (difference equation) like as follows:

z(k+1) = W
(
z(k)

)
, k = 0, 1, 2, . . . . (13)

If one can find a fixed point ζ∗ for the discrete dynamical system of Eq. (13),

ζ∗ − W (ζ∗) = 0. (14)
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As a similar framework to that of Eq. (4), we can let η(k) ∈ Rn be a small perturbation away from
the fixed point ζ∗ satisfying Eq. (14). For a small ε, we can assume that ‖η(k)‖ < ε, where ‖ · ‖ is the
Euclidean norm. If the variation around the fixed point is defined as z(k) = ζ∗ + η(k), the difference
equation of Eq. (13) is

z(k+1) = ζ∗ + η(k+1) = W
(
ζ∗ + η(k)

)
. (15)

A Taylor expansion gives

ζ∗ + η(k+1) = W (ζ∗) +
∂W

∂z

∣∣∣∣
z=ζ∗

η(k) + · · · . (16)

The following linear difference equation is obtained by neglecting high-order terms and subtracting
this equation from Eq. (14):

η(k+1) =
∂W

∂z

∣∣∣∣
z=ζ∗

η(k) =
∂W (ζ∗)

∂z
η(k) ≡ Jdη

(k) (17)

where Jd is an n× n Jacobian matrix and its elements are derivatives of the solution with respect to
the state variables.

The eigenvalue problem for a difference equation is formulated as:

Jdvi = μivi, (18)

for i = 1, 2, . . . , n. In general, this equation has n-tuple non-zero vectors vi, i = 1, 2, . . . , n. We call
μi and the corresponding vi a multiplier and eigenvector of the difference equation (17), respectively.
The multipliers are computed from the following characteristic equation:

det(Jd − μiI) = 0 (19)

and the eigenvectors are obtained directly from Eq. (18) with the specific μi.
Here, let us give an intuitive interpretation of the multiplier. In particular, let us consider the case

in which all multipliers of Eq. (19) are real and distinct. For any i, if an eigenvector vi is chosen as the
initial point, the iterative dynamics of Eq. (17) can be expressed as an uncoupled difference equation:

v
(k+1)
i = μiv

(k)
i , with v

(0)
i = vi, (20)

and it generates the following vector sequence:{
v
(0)
i , v

(1)
i , v

(2)
i , . . . , v

(k)
i , . . .

}
. (21)

Since the movement is only in this eigenvector direction, we have

v
(1)
i = μiv

(0)
i = μivi, v

(2)
i = μiv

(1)
i = μ2

i vi, . . . , v
(k)
i = μk

i vi. (22)

On the one hand, from linear systems theory, the solution at time k to a linear difference equation (17)
can be expressed as a linear combination of constants, multipliers, and eigenvectors:

η(k) =
n∑

i=1

ciμ
k
i vi

= c1μ
k
1v1 + c2μ

k
2v2 + · · · + cnμk

nvn, (23)

Cf. Eq. (6). Notice that the iteration (22) multiplies each scalar μi by a certain eigenvector. The
“multiplier” is sometimes referred to an “eigenvalue” in some literature, but “multiplier” expresses its
actual feature in this case. To prevent an explosion in the magnitude of the vector η(k), all absolute
values of μi should be less than unity.

As expected, the local stability (a topological property) of a fixed point is determined by the
multipliers. Let us go back to the Poincaré mapping Sλ. It generates a sequence like:
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x(1) = Sλ(x0), x(2) = Sλ(x(1)), . . . , x(k+1) = Sλ(x(k)), . . . . (24)

From the linearity of the variational equation defined at Eq. (17), the characteristic equation for
Eq. (19) can be written as:

det
(

∂Sλ(x∗)
∂x

− μiI

)
= 0, (25)

where x∗ is a fixed point. If all the absolute values of the multipliers are different from unity, we call
x∗ a hyperbolic fixed point of Sλ. We can topologically classify hyperbolic fixed points. For instance,
Table I shows the topological classification of the hyperbolic fixed point in a two-dimensional discrete
system. Readers should check the difference in the stability criterion between differential and difference
equations. In addition, a clear classification of hyperbolic fixed points can be found in [5, 22, 23].

Table I. Classification of fixed point.

Name Topological property Condition
sink completely stable |μ1| < 1, |μ2| < 1

source completely unstable |μ1| > 1, |μ2| > 1
saddle direct-type unstable 0 < μ1 < 1 < μ2

saddle inverse-type unstable μ1 < −1 < μ2 < 0

2.2.3 Bifurcation of periodic solution
The topological properties of fixed/periodic points might change as a result of changing the parameter
value. Moreover, another attractor may appears when the topological properties change. We call this
phenomenon bifurcation of a periodic solution.

There are three kinds of local bifurcation for periodic solutions (see Fig. 1).

i Tangent bifurcation (or saddle-node bifurcation of periodic solution, or fold bifurcation [17,
24]): This bifurcation causes a pair of a node and a saddle to disappear or emerge (Fig. 1(a)).
In circuit experiments or numerical simulations, the fixed point makes a large leap in value
when the parameter changes by one increment (this phenomenon is called a jump). Moreover,
a fixed point that jumped in this way cannot return to the original position at the bifurcation
parameter (This phenomenon is called hysteresis). At a particular parameter value λ = λ∗, one
of the multipliers of the characteristic equation satisfies the condition μi = 1 (Fig. 1(d)).

ii Period-doubling bifurcation (or flip bifurcation [17, 25]): This type of bifurcation occurs when a
real characteristic multiplier passes through a point (−1, 0) in the complex plane, i.e., μi = −1
(Fig. 1(d)). If an inverse-type saddle takes this value of the multiplier, its stability changes. As
a side effect, two-periodic points are generated around the fixed point. In general, the period
doubles. No its fixed point disappears.

iii Neimark-Sacker bifurcation (or a Hopf bifurcation in a discrete system [17, 25, 26]): Similar to
the Hopf bifurcation for an equilibrium point, the fixed point becomes unstable, and an invariant
closed curve, which corresponds to doubly periodic oscillation (quasi-periodic solution) of the
original periodic non-autonomous system, may appear in the Poincaré map (Fig. 1(c)). This
type of bifurcation occurs when a pair of multipliers μi,i′ pass transversely through points of
the unit circle except for 0 and π, i.e., μi,i′ = exp(±jθ), where j =

√−1 and θ is the argument
of the complex value.

3. Method of numerical computation
Now we will describe the methods for numerically computing bifurcations of a periodic solution.

If one has a mathematical model of Eq. (1) or (2) and it accurately describes the corresponding
dynamical system, one may want to compute accurate locations of the equilibrium point or fixed
point. Furthermore, one may want to obtain bifurcation sets in an arbitrary parameter space.

463



Fig. 1. Bifurcations of a periodic solution and the generic conditions. (a)–(c)
In each phase plane, the solid and dashed line indicate stable and unstable pe-
riodic solutions, respectively. The black and white circles denote the stable and
unstable fixed/periodic points, respectively. (d) The location of the multipliers
on the complex plane.

We shall consistently use Newton’s method to accomplish these tasks and calculate a solution
satisfying T (q∗) = 0 with sufficient accuracy, where T (q) is an arbitrary nonlinear function in which
where q = (q0, q1, . . . , qn)�, T = (T1, T2, . . . , Tn)�, and (·)� represents the transpose operation. The
Taylor expansion of the kth approximation q(k) is

T (q) = T
(
q(k)

)
+ DT

(
q(k)

)(
q(k+1) − q(k)

)
+ · · · , (26)

where DT (q(k)) = (∂Ti/∂qj) is the Jacobian matrix. A correction vector h = q(k+1) − q(k) can be
obtained by solving the following linear non-homogeneous equation:

DT
(
q(k)

)
h = −T

(
q(k)

)
(27)

Since Newton’s method generally has a quadratic convergence property except for cases such that the
first derivatives at a solution are zero, a few iterations will give an accurate solution from a rough
first-guess q(k).

3.1 Tracking the fixed point
Here, we perform Newton’s method on Eq. (11):

F (x0) := x0 − Sλ(x0) = 0, (28)

where x0 corresponds to a fixed point. In the following, the initial value in Eq. (2) is described as
x0 = (x01, x02, . . . , x0n)�. Furthermore, we have x

(k)
0 as a first-guess of the fixed point. Then the

algorithm to obtain a (k + 1)th order approximation is as follows:

x
(k+1)
0 = x

(k)
0 + h

DF
(
x

(k)
0

)
h = −F

(
x

(k)
0

)
(29)

where DF
(
x

(k)
0

)
is an n × n sized Jacobian matrix with respect to the initial value x0 given by:

DF
(
x

(k)
0

)
= I − ∂Sλ

∂x

(
x

(k)
0

)
(30)

where I is an n × n identity matrix, and ∂Sλ/∂x is the following matrix:
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∂Sλ

∂x

(
x

(k)
0

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ϕ1

∂x01

(
τp, x

(k)
0

) ∂ϕ1

∂x02

(
τp, x

(k)
0

)
· · · ∂ϕ1

∂x0n

(
τp, x

(k)
0

)
∂ϕ2

∂x01

(
τp, x

(k)
0

) . . .
...

...
. . . ∂ϕn−1

∂x0n

(
τp, x

(k)
0

)
∂ϕn

∂x01

(
τp, x

(k)
0

)
· · · · · · ∂ϕn

∂x0n

(
τp, x

(k)
0

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (31)

The second equation of Eq. (29) must be solved for h by using a suitable method like the Gauss
elimination. F

(
x

(k)
0

)
is easily obtained from the original equation (28), but how does one obtain the

actual elements in the Jacobian matrix (i.e., Eq. (31))?
As such, we should revisit Eq. (2):

dx

dt
= f(t, x, λ), (32)

where x = (x1, x2, . . . , xn)�, f(t, x) = (f1(t, x, λ), f2(t, x, λ), . . . , fn(t, x, λ))�. We should also rewrite
ϕ = (ϕ1, ϕ2, . . . , ϕn)�. We had defined the solution starting from x0 at t = t0 as:

x(t) = ϕ(t, λ; t0, x0) ≡ ϕ(t, x0). (33)

Substituting the solution of this equation into Eq. (32), we get

dϕ(t, x0)
dt

= f (t, ϕ(t, x0)) . (34)

Differentiating this equation by x0 yields

∂

∂x0

(
dϕ(t, x0)

dt

)
=

∂

∂x0
(f (t, ϕ(t, x0))) . (35)

The order of differentiation on the left-hand side is commutative, and the following equation is ob-
tained from the right-hand side:

d

dt

(
∂ϕ(t, x0)

∂x0

)
=

∂f (t, ϕ(t, x0), λ)
∂x

∂ϕ(t, x0)
∂x0

. (36)

This equation is of the following form:
dX

dt
=

∂f

∂x
X, (37)

where, X = ∂ϕ/∂x0 is the matrix solution of a variable coefficient linear differential equation. We
call Eq. (36) a variational equation for Eq. (32). Obviously,

∂ϕ(0, x0)
∂x0

= I. (38)

Therefore, by setting Eq. (38) as the initial value, we can obtain all factors in Eq. (31) by numerically
integrating Eq. (36) from t = 0 to τp. The Runge-Kutta method is a simple and powerful way of
performing such an integration. Once this is completed, Newton’s method is ready to perform. The
fixed point x0 is accurately located by iteration. To compute an m-periodic point, we can numerically
integrate Eq. (36) for 0 ≤ t < mτp instead.

3.2 Tracking bifurcation sets
Now let us compute a bifurcation curve on a two-parameter plane. The algorithm is quite simple; it
just adds one more condition to Eq. (28), that is, the characteristic equation of Eq. (25). Consider
the following simultaneous equation:

FB :=

[
x0 − Sλ(x0)

det(DSλ(x∗
0) − μ∗I)

]
= 0, (39)
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where DSλ(x∗
0) denotes the derivative of the Poincaré map, Sλ, with respect to the initial value, x0,

i.e., DSλ(x∗
0) = ∂Sλ(x0)/∂x0|x0=x∗

0
. The first equation in Eq. (39) is the condition for a point on

the map to be a fixed point, and the second equation is the condition by which the value of the
characteristic equation must be zero at a specific value of μ∗, e.g., μ = 1, for calculating the tangent
bifurcation set.

We define FB ∈ Rn+1 as:

FB(x0, λ) = [g1(x0, λ), g2(x0, λ), . . . , gn(x0, λ), χ(x0, λ, μ∗)]� (40)

where χ(x0, λ, μ∗) is the characteristic equation. Newton’s method can be used to solve Eq. (39).
Now let us return to Eq. (29):

u(k+1) = u(k) + h

DFB

(
u(k)

)
h = −FB

(
u(k)

)
(41)

where u = (x01, x02, . . . , x0n, λ)�. The Jacobian matrix is

DFB(u(k)) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂g1

∂x01

∂g1

∂x02
· · · ∂g1

∂x0n

∂g1

∂λ
∂g2

∂x01

. . .
...

...
...

. . . ∂gn−1

∂x0n

∂gn−1

∂λ
∂gn

∂x01
· · · · · · ∂gn

∂x0n

∂gn

∂λ
∂χ

∂x01
· · · · · · ∂χ

∂x0n

∂χ

∂λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − ∂ϕ1

∂x01
− ∂ϕ1

∂x02
· · · − ∂ϕ1

∂x0n
−∂ϕ1

∂λ

− ∂ϕ2

∂x01

. . .
...

...
...

. . . −∂ϕn−1

∂x0n
−∂ϕn−1

∂λ

− ∂ϕn

∂x01
· · · · · · 1 − ∂ϕn

∂x0n
−∂ϕn

∂λ
∂χ

∂x01
· · · · · · ∂χ

∂x0n

∂χ

∂λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (42)

Readers already know how to obtain derivatives like ∂ϕ/∂x0. These are of course, computed as
numerical solutions to the variational equation Eq. (36). The question now is, how do we obtain the
rest of the derivatives like ∂ϕi/∂λ and the derivatives of the characteristic equation χ(x0, λ, μ∗) with
respect to the initial value x0 and the parameter λ?

First, let us consider the derivative with respect to a parameter, ∂ϕi/∂λ. For Eq. (32), we assume
a solution including λ as a parameter:

x(t) = ϕ(t, λ; t0, x0) (43)

Differentiating both sides of this equation with respect to λ yields

∂x

∂λ
=

∂ϕ

∂λ
(44)

Substituting this into Eq. (32), we get a linear differential equation:

d

dt

(
∂ϕ

∂λ

)
=

∂f

∂x

∂ϕ

∂λ
+

∂f

∂λ
(45)

This is the variational equation with respect to the parameter, λ. In the same way as computation
of the variational equation (Eq. (36)), we can obtain the solution by using a suitable numerical
integration method.
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Next let us consider the derivatives of the characteristic equation. The characteristic equation
χ(x0, λ, μ∗) is the determinant of the following n × n matrix:

P (x0) :=
∂Sλ

∂x0
− μ∗I =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ϕ1

∂x01
− μ∗ ∂ϕ1

∂x02
· · · ∂ϕ1

∂x0n
∂ϕ2

∂x01

. . .
...

...
. . . ∂ϕn−1

∂x0n
∂ϕn

∂x01
· · · · · · ∂ϕn

∂x0n
− μ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (46)

i.e., χ(x0, λ, μ∗) := det(P ) = 0. In Eq. (42), the derivatives of the characteristic equation with respect
to the initial value x0 can be obtained by using the following formula [27]

∂χ(x0, λ, μ∗)
∂x0

=
n∑

i=1

det(Pi), (47)

where Pi are matrices that are differentiated from each element of the ith column of P with regard to
x0. As an example, if the function of Eq. (32) has a state vector x = (x1, x2, x3)� ∈ R3, the derivative
of the characteristic equation with respect to the element x01 in the initial value x0 = (x01, x02, x03)�,
is as follows:

∂χ(x0, λ, μ∗)
∂x01

=
3∑

i=1

det(Pi) =

∣∣∣∣∣∣∣∣∣∣∣

∂

∂x01

(
∂ϕ1

∂x01
− μ∗

)
∂

∂x01

∂ϕ1

∂x02

∂

∂x01

∂ϕ1

∂x03
∂ϕ2

∂x01

∂ϕ2

∂x02
− μ∗ ∂ϕ2

∂x03
∂ϕ3

∂x01

∂ϕ3

∂x02

∂ϕ3

∂x03
− μ∗

∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣

∂ϕ1

∂x01
− μ∗ ∂ϕ1

∂x02

∂ϕ1

∂x03
∂

∂x01

∂ϕ2

∂x01

∂

∂x01

(
∂ϕ2

∂x02
− μ∗

)
∂

∂x01

∂ϕ2

∂x03
∂ϕ3

∂x01

∂ϕ3

∂x02

∂ϕ3

∂x03
− μ∗

∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣

∂ϕ1

∂x01
− μ∗ ∂ϕ1

∂x02

∂ϕ1

∂x03
∂ϕ2

∂x01

∂ϕ2

∂x02
− μ∗ ∂ϕ2

∂x03
∂

∂x01

∂ϕ3

∂x01

∂

∂x01

∂ϕ3

∂x02

∂

∂x01

(
∂ϕ3

∂x03
− μ∗

)

∣∣∣∣∣∣∣∣∣∣∣
. (48)

The derivatives of the characteristic equation related to the parameter λ are the same as those in
Eq. (47). Consequently, to calculate each element of the Jacobian matrix of Eq. (42), it is necessary
to obtain the second derivatives of the Poincaré map Sλ for x0:

∂

∂x0j

(
∂Sλ

∂x0

)
=

∂

∂x0j

(
∂ϕ

∂x0

)
, (49)

for j = 1, 2, . . . , n, where x0j denotes an element in the initial value x0. Let us differentiate Eq. (36)
with respect to x0 one more time:

d

dt

{
∂

∂x0j

(
∂ϕ

∂x0

)}
=

∂f

∂x0

∂

∂x0j

(
∂ϕ

∂x0

)
+

∂

∂x0j

(
∂f

∂x0

)(
∂ϕ

∂x0

)2

, (50)

for j = 1, 2, . . . , n. This equation is also linear. The numerical solution of Eq. (36) can be substituted
for ∂ϕ/∂x0. The underlined part is a tensor. Even though its expanded form seems very complicated,
it can be computed by numerical integration. We call this equation the second variational equation.
The Appendix describes its expanded forms in detail.

All of the elements in the Jacobian matrix in Eq. (42) are now ready to be computed.
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3.3 Locating fixed points, bifurcations
Our scheme proceeds as follows:

1. First, use numerical simulations to find the location of a stable fixed point. If it is the initially
chosen point is already stable, the fixed point locating program does not have to be run. By freely
changing parameter values, you can browse several phenomena before doing the computation. If
you encounter a bifurcation, save the parameter values and the location of the Poincaré mapping
points.

2. Use Newton’s method, Eq. (28), to compute the fixed point accurately. Next, try Newton’s
method again with this result and a slightly changed parameter value. The new parameter
value will probably lead to a new location. This method is called continuation. Just before a
period-doubling bifurcation, near the parameter values memorized above, one of the multipliers
is greater than or approximately equal to −1, i.e., μi � −1 and this negative value grows as
the parameter changes. For a tangent bifurcation, the continuation fails near the bifurcation
parameter value since the Jacobian matrix in Eq. (29) is singular and μi is just slightly less than
unity. For a Neimark-Sacker bifurcation, the absolute value of the complex conjugate multipliers
exceed the unit circle and are approximately unity, i.e., |μi| ≈ 1.

3. Execute Newton’s method, Eq. (39), using the state variables and the parameter values just
before/after the bifurcations identified above. If the iterations converge, the final value is an
accurate bifurcation parameter. To obtain a two-parameter bifurcation diagram, another pa-
rameter is varied slightly, and Newton’s method is executed again using the last obtained fixed
point and parameter values. This procedure is also called continuation.

3.4 Example — Duffing Rayleigh equation
Here, we shall numerically analyze the bifurcations observed in the Duffing Rayleigh equation, a
typical example of a non-autonomous system. The Duffing Rayleigh equation describes the dynamics
of a spring containing nonlinear characteristics:

dx

dt
= y

dy

dt
= ε(1 − y2)y − x3 + B cos νt.

(51)

For B = 0, the system is a van der Pol oscillator. There is an unstable origin equilibrium point and
a stable limit cycle with ε > 0. Thus, for a certain value of B, two frequency components compete
and synchronize with each other. The system may contain a rich variety of bifurcation sets in the
parameter space because of the frequency difference between the two frequency components; there
are frequency entrainment regions called “Arnold tongues” surrounded by tangent bifurcation sets.
A quasi-periodic solution is obtained via the Neimark-Sacker bifurcation, whereas a periodic solution
in the Arnold tongue may encounter period-doubling bifurcation cascades.

Figure 2 shows a bifurcation diagram of the Duffing-Rayleigh equation in the ν-B plane with
ε = 0.2. Let us assume that ε and ν are fixed parameters. By applying the formulas (A-4) and (A-14)
to Eq. (51), we can obtain the first and second variational equations (see Table II). The variation
of B is given in Table II. ν should be an incremental parameter; however, it is hard to track the
bifurcation sets with monotonic increments in a two-dimensional parameter space since the bifurcation
sets generally form a ‘curve’. In this case, the variational parameter and incremental parameter can
be adaptively switched. Note that one should rescale the time as τ = νt to solve Eq. (39) with the
variational parameter ν.

G, I and NS in Fig. 2 show tangent, period-doubling, and Neimark-Sacker bifurcations, respectively.
Their superscripts indicates the period of the fixed/periodic point, and subscripts show the nominal
numbers.

There is a period-1 entrainment region, and it is divided up into sections by Neimark-Sacker and
tangent bifurcation sets. Moreover, there are various frequency entrainment (period locking) regions
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Table II. The variational equations of the Duffing equation.

variables computer
variables

differential eq. initial values

x = ϕ1(t, x0, y0, ε) x1 ẋ1 = x2 x0

y = ϕ2(t, x0, y0, ε) x2 ẋ2 = ε(1 − x2
2)x2 − x3

1 + B cos νt y0

∂ϕ1/∂x0 x3 ẋ3 = x4 1
∂ϕ2/∂x0 x4 ẋ4 = Px3 + Qx4 0
∂ϕ1/∂y0 x5 ẋ5 = x6 0
∂ϕ2/∂y0 x6 ẋ6 = Px5 + Qx6 1
∂ϕ1/∂B x7 ẋ7 = x8 0
∂ϕ2/∂B x8 ẋ8 = Px7 + Qx8 + cos νt 0
∂2ϕ1/∂x2

0 x9 ẋ9 = x10 0
∂2ϕ2/∂x2

0 x10 ẋ10 = Px9 + Qx10 + Rx2
3 + Sx2

4 0
∂2ϕ1/∂x0∂y0 x11 ẋ11 = x12 0
∂2ϕ2/∂x0∂y0 x12 ẋ12 = Px11 + Qx12 + Rx3x5 + Sx4x6 0
∂2ϕ1/∂y2

0 x13 ẋ13 = x14 0
∂2ϕ2/∂y2

0 x14 ẋ14 = Px13 + Qx14 + Rx2
5 + Sx2

6 0
∂2ϕ1/∂x0∂B x15 ẋ15 = x16 0
∂2ϕ2/∂x0∂B x16 ẋ16 = Px15 + Qx16 + Rx3x7 + Sx4x8 0
∂2ϕ1/∂y0∂B x17 ẋ17 = x18 0
∂2ϕ2/∂y0∂B x18 ẋ18 = Px17 + Qx18 + Rx5x7 + Sx6x8 0
P = −3x2

1, Q = ε(1 − 3x2
2), R = −6x1, S = −6εx2.

surrounded by tangent bifurcations, among them, quasi-periodic motions called beat motions and
2-torus solutions.

Figure 3 is an enlargement of Fig. 2. Around the period-2 entrainment region, there are other
odd-number period regions and they overlap each other; i.e., periodic solutions with the same param-
eter values coexist and their appearance depends on the initial value. Period-doubling cascades are
frequently found for such periodic solutions, e.g., I2

1 , and I4
1 ; one can also find I2k

1 , k = 3, 4, 5, . . . ,

near I4
1 .

3.5 Extensions of bifurcation analysis

The above bifurcation analysis is the results of many improvements. In this subsection, we will present
several extensions to Kawakami’s shooting method [5].

3.5.1 Neimark-Sacker bifurcation

The Neimark-Sacker bifurcation occurs when the complex conjugate multipliers μi,i′ move out of
the unit circle transversely as a parameter changes. As shown in subsection 3.2, the bifurcation
parameter is obtained to solve for the conditions of the fixed point and the characteristic equation
simultaneously (see Eq. (39)). However, the characteristic equation, det(DSλ(x∗

0) − μ∗I) = 0, is
not a suitable condition for the calculating a Neimark-Sacker bifurcation parameter [13], since the
multiplier is a complex number with argument θ. Therefore, we can redefine the conditions describing
Neimark-Sacker bifurcation as:

FNS :=

⎡
⎢⎣ x0 − Sλ(x0)

� [det(DSλ(x∗
0) − ejθI)

]
� [det(DSλ(x∗

0) − ejθI)
]
⎤
⎥⎦ = 0, (52)

Accordingly, we can simultaneously solve Eq. (52) for u = (x0, λ, θ) with Newton’s method. The
Jacobian matrix utilized in Newton’s method is as follows:
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Fig. 2. Bifurcation sets of periodic solutions to the Duffing Rayleigh equation
in the ν-B plane.

DFNS(u(k)) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − ∂ϕ1

∂x01
− ∂ϕ1

∂x02
· · · − ∂ϕ1

∂x0n
−∂ϕ1

∂λ
−∂ϕ1

∂θ

− ∂ϕ2

∂x01

. . .
...

...
...

...
. . . −∂ϕn−1

∂x0n
−∂ϕn−1

∂λ
−∂ϕn−1

∂θ

− ∂ϕn

∂x01
· · · · · · 1 − ∂ϕn

∂x0n
−∂ϕn

∂λ
−∂ϕn

∂θ

�
(

∂χ

∂x01

)
· · · · · · �

(
∂χ

∂x0n

)
�
(

∂χ

∂λ

)
�
(

∂χ

∂θ

)

�
(

∂χ

∂x01

)
· · · · · · �

(
∂χ

∂x0n

)
�
(

∂χ

∂λ

)
�
(

∂χ

∂θ

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(53)

We should note that ∂ϕ/∂θ can be regarded as 0 since the solution ϕ is not related to the argument of
the complex multipliers. This means that the complex argument is neither an independent variable nor
a parameter for Newton’s method. However, most computer languages cannot manipulate complex
variables directly. Therefore, Ueta et al., [28, 29] have proposed an extension in which the derivatives
of the real and imaginary parts of the characteristic equation are calculated with simple matrix
operations by utilizing the multi-linearity of the determinant and the solutions of the variational
equations [28, 29]. A script language, e.g., Mathematica, MATLAB, etc., may be quite useful because
it can directly deal with complex variables and matrix operations.

3.5.2 Discontinuous periodic forcing
Here, we will briefly introduce an extended method for analyzing bifurcations in a discontinuous
dynamical system [14, 15, 30–32]. In particular, we will focus on a non-autonomous system driven by
a discontinuous periodic force, e.g., an impulsive pulse train [30], square-wave train [31], or trapezoidal
wave train [32]. Such systems have been modeled as piecewise smooth differential equations switched
by a periodic interrupt. In this case, the system can be defined as a composite dynamical system.
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Fig. 3. Enlargement of Fig. 2.

Even though the trajectory in the composite system has a discontinuous nature at the moment of
switching, by avoiding differentiation of discontinuous points that appear in the solution, a Poincaré
map can be constructed from successive submaps. Therefore, we can directly calculate the bifurcation
values from the original equations without having to use a special coordinate transformation.

Now, let us assume that a parameter periodically switches from a low value during t0 ≤ t < t0 + τa

to a high value during t0 + τa ≤ t < t0 + τp, and vice versa (see Fig. 4). The dynamics of Eq. (2)
during the low (resp., high) value period are the same as the autonomous system of Eq. (1) except
for the parameter λs, with the constant parameter λL

s (resp., λH
s ). Thus, Eq. (2) can be defined as a

composite dynamical system so that the two corresponding autonomous systems can be periodically
switched over time.

Let us rewrite the system of Eq. (2) during a period satisfying t − t0(mod τp) ∈ [0, τp) as

dx

dt
= f(t, x, λ) =

{
fL(x, λ0, λ

L
s ), t0 ≤ t < t0 + τa,

fH(x, λ0, λ
H
s ), t0 + τa ≤ t < t0 + τp,

(54)

where λ0 ∈ R�−1 denotes common parameters for f , and λL
s , λH

s ∈ R are the parameters specifying
fL and fH , respectively. Suppose that the whole solution of Eq. (54) is described as a mixed solution
of the first and second equations of Eq. (54). Then the solution is represented by

x(t) = ϕ(t, λ; t0, x0) = ϕ(t, λ0, λ
L
s , λH

s ; t0, x0). (55)

As shown in Fig. 4, the trajectory of the solution has a discontinuous point. Let ϕL and ϕH be
solutions to the first and second equations of Eq. (54), respectively:

x(t) = ϕL(t, λ0, λ
L
s ; t0, x0), t0 ≤ t < t0 + τa, (56)

and
x(t) = ϕH(t, λ0, λ

H
s ; t0 + τa, ϕL(t0 + τa, λ0, λ

L
s ; t0, x0)), t0 + τa ≤ t < t0 + τp. (57)
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Fig. 4. Schematic diagram of a discontinuous trajectory.

To deal with the impossibility of the derivative at t = t0 and t = t0 + τa, we use the Poincaré map,

Sd : Rn → Rn

x0 �→ Sd(x0) = ϕ(t0 + τp, λ0, λ
L
s , λH

s ; t0, x0)
(58)

as a composite map Sd = Sd2 ◦ Sd1, where Sd1 and Sd2 are the following submaps:

Sd1 : Rn → Rn

x0 �→ x1 = ϕL(t0 + τa, λ0, λ
L
s ; t0, x0)

Sd2 : Rn → Rn

x1 �→ x2 = ϕH(t0 + τp, λ0, λ
H
s ; t0 + τa, x1).

(59)

The first derivative of the Poincaré map Sd of Eq. (58) with respect to the initial value x0 is composed
of the derivatives of the submaps, i.e.,

∂Sd(x0)
∂x0

=
∂Sd2(x1)

∂x1

∂Sd1(x1)
∂x0

=
∂ϕH

∂x1
(t0 + τp, λ0, λ

H
s ; t0 + τa, x1) × ∂ϕL

∂x0
(t0 + τa, λ0, λ

L
s ; t0, x0). (60)

The right side of the above equation (60) is obtained by solving the following first-order variational
equations:

d

dt

(
∂ϕL

∂x0

)
=

∂fL

∂x

(
∂ϕL

∂x0

)
with

∂ϕL

∂x0

∣∣∣∣
t=t0

= I, (61)

d

dt

(
∂ϕH

∂x1

)
=

∂fH

∂x

(
∂ϕH

∂x1

)
with

∂ϕH

∂x1

∣∣∣∣
t=t0+τa

= I, (62)

and putting t = t0 + τa and t0 + τp in the solutions of Eqs. (61) and (62), respectively.
As shown in the previous subsection, we must also compute the first and second derivatives with

respect to a bifurcation parameter and the initial value x0. If we choose a common parameter λc ∈ λ0

except for the specific parameter λL
s , λH

s in Eq. (54), the derivatives are as follows:

∂Sd

∂λc
=

∂ϕH

∂λc
(t0 + τp, λ0, λ

H
s ; t0 + τa, x1) =

∂ϕH

∂λc
+

∂ϕH

∂x1

∂ϕL

∂λc
(63)

On the one hand, the following formula are obtained by differentiating with respect to the specific
parameters λL

s and λH
s :
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∂Sd

∂λL
s

=
∂ϕH

∂λL
s

+
∂ϕH

∂x1

∂ϕL

∂λL
s

=
∂ϕH

∂x1

∂ϕL

∂λL
s

(64)

∂Sd

∂λH
s

=
∂ϕH

∂λH
s

+
∂ϕH

∂x1

∂ϕL

∂λH
s

=
∂ϕH

∂λH
s

(65)

On the other hand, we get the second derivatives of Sd with respect to x0, that is ∂/∂x0(∂Sd/∂x0),
and with respect to the bifurcation parameter λ1, i.e., ∂/∂λ1(∂Sd/∂x0), depending on the parameter
chosen, for instance, λc or λL

s or λH
s . The calculations of the second derivatives of Sd with respect to

the initial value, and bifurcation parameter are the same as Eqs. (49) and (50).
The above enables us to obtain bifurcation values directly from the original equations without

making a special coordinate transformation. Hence, we can easily trace out various bifurcation sets
in an appropriate parameter plane.

4. Conclusions
We briefly outlined bifurcation theory and described in detail a method for performing the numer-
ical computations of bifurcation analysis in a non-autonomous system with a periodic force. The
variational equations play critical roles in this shooting method for calculating bifurcation sets. The
variational equation can be obtained by using various numerical differentiation methods but, such
methods are greatly affected by numerical errors. If the values of the first variational equations in-
clude any numerical error, the multiplier of the characteristic equation will not be accurate. In such
circumstances, the first variational equation, at least, should be described explicitly. Our method can
obtain a precise bifurcation set without incurring any of the worries involved in the various numer-
ical differentiation methods. In fact, we have developed an integrated analysis environment named
“BunKi” under the support of Aihara Complexity Modeling Project, ERATO, JST [33]. The system
implements the simple shooting method described in this article on a MATLAB platform.

Researchers and graduate students of nonlinear science and bifurcation theory should be able to
understand the principles of the algorithms they use for solving bifurcation problems, or else they will
not be able to understand, let alone explain to others, the results of their analysis tools. Moreover,
such a lack of understanding makes it virtually impossible to extend an algorithm when needed. We
hope this article will help readers understand the nature of bifurcation analysis in dynamical systems.

Appendix

A. Variational equations for 2-dimensional non-autonomous systems
Consider a two-dimensional differential equation including a parameter:

dx

dt
= f1(t, x, y, λ)

dy

dt
= f2(t, x, y, λ)

(A-1)

The solution of Eq. (A-1) passing through (x0, y0) at t = 0 can be described as follows:

x(t) = ϕ1(t, x0, y0, λ)
y(t) = ϕ2(t, x0, y0, λ).

(A-2)

That is,
dϕ1

dt
= f1(t, ϕ1, ϕ2, λ)

dϕ2

dt
= f2(t, ϕ1, ϕ2, λ)

ϕ1(0, x0, y0, λ) = x0

ϕ2(0, x0, y0, λ) = y0.

(A-3)

473



A.1 The first variational equation

d

dt

⎛
⎜⎜⎝

∂ϕ1

∂x0

∂ϕ2

∂x0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

∂f1

∂x

∂f1

∂y
∂f2

∂x

∂f2

∂y

⎞
⎟⎟⎠
⎛
⎜⎜⎝

∂ϕ1

∂x0

∂ϕ2

∂x0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

∂ϕ1

∂x0

∂ϕ2

∂x0

⎞
⎟⎟⎠
∣∣∣∣∣∣∣∣
t=0

=

(
1
0

)
(A-4)

d

dt

⎛
⎜⎜⎝

∂ϕ1

∂y0

∂ϕ2

∂y0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

∂f1

∂x

∂f1

∂y
∂f2

∂x

∂f2

∂y

⎞
⎟⎟⎠
⎛
⎜⎜⎝

∂ϕ1

∂y0

∂ϕ2

∂y0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

∂ϕ1

∂y0

∂ϕ2

∂y0

⎞
⎟⎟⎠
∣∣∣∣∣∣∣∣
t=0

=

(
0
1

)
(A-5)

d

dt

⎛
⎜⎝

∂ϕ1

∂λ
∂ϕ2

∂λ

⎞
⎟⎠ =

⎛
⎜⎜⎝

∂f1

∂x

∂f1

∂y
∂f2

∂x

∂f2

∂y

⎞
⎟⎟⎠
⎛
⎜⎝

∂ϕ1

∂λ
∂ϕ2

∂λ

⎞
⎟⎠+

⎛
⎜⎝

∂f1

∂λ
∂f2

∂λ

⎞
⎟⎠ ,

⎛
⎜⎝

∂ϕ1

∂λ
∂ϕ2

∂λ

⎞
⎟⎠
∣∣∣∣∣∣∣
t=0

=

(
0
0

)
(A-6)

A.2 The second variational equation

d

dt

⎛
⎜⎜⎝

∂2ϕ1

∂x2
0

∂2ϕ2

∂x2
0

⎞
⎟⎟⎠ = Df

⎛
⎜⎜⎝

∂2ϕ1

∂x2
0

∂2ϕ2

∂x2
0

⎞
⎟⎟⎠+ (

∂

∂x0
Df)

⎛
⎜⎜⎝

∂ϕ1

∂x0

∂ϕ2

∂x0

⎞
⎟⎟⎠ (A-7)
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where Df and Dλ are the derivatives with respect to the state variables (x, y) and the parameter λ,
respectively.

(
∂

∂x0
Df) =

⎛
⎜⎜⎝

∂2f1

∂x2

∂ϕ1

∂x0
+

∂2f1

∂y∂x

∂ϕ2

∂x0

∂2f1

∂x∂y

∂ϕ1

∂x0
+

∂2f1

∂y2

∂ϕ2

∂x0

∂2f2

∂x2

∂ϕ1

∂x0
+

∂2f2

∂y∂x

∂ϕ2

∂x0

∂2f2

∂x∂y

∂ϕ1

∂x0
+

∂2f2

∂y2

∂ϕ2

∂x0

⎞
⎟⎟⎠ (A-12)

(
∂

∂y0
Df) =

⎛
⎜⎜⎝

∂2f1

∂x2

∂ϕ1

∂y0
+

∂2f1

∂y∂x

∂ϕ2

∂y0

∂2f1

∂x∂y

∂ϕ1

∂y0
+

∂2f1

∂y2

∂ϕ2

∂y0

∂2f2

∂x2

∂ϕ1

∂y0
+

∂2f2

∂y∂x

∂ϕ2

∂y0

∂2f2

∂x∂y

∂ϕ1

∂y0
+

∂2f2

∂y2

∂ϕ2

∂y0

⎞
⎟⎟⎠ (A-13)

(
∂

∂x0
Dλf) =

⎛
⎜⎜⎝

∂2f1

∂x∂λ

∂ϕ1

∂x0
+

∂2f1

∂y∂λ

∂ϕ2

∂x0

∂2f2

∂x∂λ

∂ϕ1

∂x0
+

∂2f2

∂y∂λ

∂ϕ2

∂x0

⎞
⎟⎟⎠ , (

∂

∂y0
Dλf) =

⎛
⎜⎜⎝

∂2f1

∂x∂λ

∂ϕ1

∂y0
+

∂2f1

∂y∂λ

∂ϕ2

∂y0

∂2f2

∂x∂λ

∂ϕ1

∂y0
+

∂2f2

∂y∂λ

∂ϕ2

∂y0

⎞
⎟⎟⎠ (A-14)

474



References

[1] S.H. Strogatz, Nonlinear Dynamics And Chaos: With Applications To Physics, Biology, Chem-
istry, And Engineering, Cambridge, Mass., 1994.

[2] http://indy.cs.concordia.ca/auto/

[3] http://www.matcont.ugent.be/

[4] http://www.math.pitt.edu/~bard/xpp/xpp.html

[5] H. Kawakami, “Bifurcation of periodic responses in forced dynamic nonlinear circuits: Com-
putation of bifurcation values of the system parameters,” IEEE Trans. Circuits and Systems,
vol. 31, no. 3, pp. 248–260, March 1984.

[6] Y. Katsuta and H. Kawakami, “Bifurcations of equilibriums and periodic solutions in nonlinear
autonomous system with symmetry,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci.,
vol. J75, no. 6, pp. 1035–1044, June 1992. (in Japanese)

[7] Y. Katsuta and H. Kawakami, “Bifurcations of periodic solutions in nonlinear nonautonomous
system with symmetry,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci., vol. J76,
no. 12, pp. 1753–1760, December 1993. (in Japanese)

[8] T. Yoshinaga and H. Kawakami, “Codimension two bifurcation problems in forced nonlinear
circuits,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci., vol. 73, no. 6, pp. 817–824,
June 1990.

[9] T. Yoshinaga and H. Kawakami, “Bifurcation and chaotic state in forced oscillatory circuits
containing saturable inductors,” in Nonlinear Dynamics in Circuits, eds. L. Pecora and T.
Carroll, pp. 89–119, World Scientific, Singapore, 1995.

[10] H. Kawakami and T. Yoshinaga, “Codimension two bifurcation and its computational algo-
rithm,” in Bifurcation and Chaos: Theory and Applications, ed. J. Awrejcewicz, pp. 97–132,
Springer Verlag, Berlin, Heidelberg, 1995.

[11] H. Kitajima and H. Kawakami, “An algorithm tracing out the tangent bifurcation curves and its
application to Duffing’s equation,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci.,
vol. J78, no. 7, pp. 806–810, July 1995. (in Japanese)

[12] H. Kitajima and H. Kawakami, “An algorithm for tracing out the fixed point manifold,” IEICE
Trans. Fundam. Electron. Commun. Comput. Sci., vol. J79A, no. 5, pp. 1122–1124, May 1996.

[13] T. Ueta, M. Tsueike, H. Kawakami, T. Yoshinaga, and Y. Katsuta, “A computation of bifur-
cation parameter values for limit cycles,” IEICE Trans. Fundam. Electron. Commun. Comput.
Sci., vol. E80, no. 9, pp. 1725–1728, September 1997.

[14] T. Kousaka, T. Ueta, and H. Kawakami, “Bifurcation of switched nonlinear dynamical systems,”
IEEE Trans. Circuits and Systems II, vol. 2, no. 7, pp. 878–885, July 1999.

[15] T. Yoshinaga, Y. Sano, and H. Kawakami, “A method to calculate bifurcations in synaptically
coupled Hodgkin-Huxley equations,” Int. J. Bifurcation and Chaos, vol. 9, no. 7, pp. 1451–1458,
1999.

[16] T.Ueta and H. Kawakami, “Numerical approaches to bifurcation analysis,” in Chaos in circuits
and systems, eds. G. Chen and T. Ueta, pp. 593–610, World Scientific, Singapore, 2002.

[17] Y.A. Kuznetsov, Elements of applied bifurcation theory, 3rd Edition, Springer Verlag, New York,
2004.
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