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Abstract
Aging and overnutrition cause obesity in rodents and 
humans. It is well-known that obesity causes various 
diseases by producing insulin resistance (IR). Macro-
phages infiltrate the adipose tissue (AT) of obese 
individuals and cause chronic low-level inflammation 
associated with IR. Macrophage infiltration is regulated 
by the chemokines that are released from hypertrophied 
adipocytes and the immune cells in AT. Saturated fatty 
acids are recognized by toll-like receptor 4 (TLR4) and 
induce inflammatory responses in AT macrophages 
(ATMs). The inflammatory cytokines that are released 
from activated ATMs promote IR in peripheral organs, 
such as the liver, skeletal muscle and AT. Therefore, ATM 
activation is a therapeutic target for IR in obesity. The 
ubiquitin ligase Casitas b-lineage lymphoma-b (Cbl-b) 
appears to potently suppress macrophage migration and 
activation. Cbl-b is highly expressed in leukocytes and 
negatively regulates signals associated with migration and 
activation. Cbl-b deficiency enhances ATM accumulation 
and IR in aging- and diet-induced obese mice. Cbl-b 
inhibits migration-related signals and SFA-induced TLR4 
signaling in ATMs. Thus, targeting Cbl-b may be a 
potential therapeutic strategy to reduce the IR induced 
by ATM activation. In this review, we summarize the 
regulatory functions of Cbl-b in ATMs.
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Core tip: Obesity leads to the development of chronic 
inflammation and insulin resistance (IR). Adipose tissue 
macrophages (ATMs) play a crucial role in the develop-
ment of obesity-induced IR. Therefore, ATMs are attractive 
therapeutic targets for IR. Recently, we demonstrated that 
the ubiquitin ligase Casitas b-lineage lymphoma-b (Cbl-b) 
negatively regulates the migration and activation of ATMs. 
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Here, we review key aspects of Cbl-b function in the 
regulation of ATMs.
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INTRODUCTION
In 2014, more than 1.9 billion adults were overweight, 
and of these, over 600 million were obese[1]. Obesity is a 
risk factor for the development of insulin resistance (IR), 
diabetes mellitus, hepatic steatosis and hypertension[2], 
resulting in escalating healthcare costs in several developed 
countries. Thus, it is important to elucidate the mechanism 
for obesity-associated IR and develop attractive therapeutic 
strategies for treating IR. A combination of various factors, 
such as diet, lifestyle, genetic background, psychological 
stress and aging, leads to obesity. In particular, aging and 
nutritional excess play critical roles in the development of 
obesity. 

Aging causes decreases in physical activity, lean body 
mass and anti-oxidant defenses, thus increasing oxidative 
stress and the number of damaged cells[3]. These changes 
are associated with lipid accumulation in white adipose 
tissue (WAT) due to decreased energy expenditure. The 
oxidative stress induced by aging causes mitochondrial 
dysfunction and muscle atrophy. Sarcopenia, aging-induced 
skeletal muscle loss, decreases energy expenditures and 
causes obesity[4]. An excessive intake of carbohydrates 
and lipids causes the accumulation of triacylglycerols in 
adipocytes, which produces expansion of the adipocyte. 
Obesity causes inflammatory responses in WAT. It is well-
known that in addition to its roles in fat storage, AT also 
plays key roles in endocrine system. AT secretes lipids, 
adipokines and chemokines to maintain homeostasis. The 
hypertrophy of the AT alters adipokine and chemokine 
secretion[2,5]. It is well-known that diverse immune cells 
reside in WAT of both lean and obese individuals, and 
these cells release inflammatory cytokines during obesity. 
Resident eosinophils and regulatory CD4+ helper T cells 
maintain homeostasis in the AT of lean subjects[6]. In 
contrast to CD4+ T cells, CD8+ T cells increase in number 
in the AT of obese subjects and promote the inflammatory 
responses mediated by macrophages[7]. AT macrophages 
(ATMs) also release various inflammatory mediators. 
Because ATMs play a key role in obesity-associated 
inflammatory action, the suppression of ATM activation is 
a potent therapeutic strategy for treating IR induced by 
obesity. Recently, several studies demonstrated that the 
ubiquitin ligase Casitas b-lineage lymphoma-b (Cbl-b) is 
a key regulator of macrophage activation[8-10]. Here, we 
review the key roles of Cbl-b in ATM activation and the 
pathogenesis of IR in obesity.

THE UBIQUITIN LIGASE CBL-B
In mammalian cells, there are three major intracellular 
protein degradation pathways. The calpain pathway, the 
autophagy-lysosome pathway, and the ubiquitin (Ub)-
proteasome system play important roles in maintaining 
cellular homeostasis. In particular, the Ub-proteasome 
system is regulated by three types of enzymes: A Ub-
activating enzyme (E1), a Ub-conjugating enzyme (E2) 
and a Ub ligase (E3). In the initial step, the activation 
of Ub proteins by E1 enzymes is critically dependent 
on the presence of ATP. An E1 enzyme transfers a Ub 
protein to E2 enzyme. And then, the E2 enzymes shuttle 
a Ub protein to an E3 enzyme, which ubiquitinates the 
specific target protein. The proteins tagged with Ub are 
specifically degraded by the proteasome. Therefore, 
E3 enzymes are important for determining the specific 
target proteins that will be degraded by proteasome[11]. 

The Cbl proteins in mammalian (c-Cbl, Cbl-b and 
Cbl-c), which were originally identified as adaptor mol-
ecules, function as ubiquitin ligases (Figure 1). A number 
of studies show that Cbl proteins inhibit the signal trans-
duction by receptor and non-receptor tyrosine kinases[12-14]. 
The protein tyrosine kinase-binding (TKB) and really 
interesting new gene (RING) finger (RF) domains are 
highly conserved in the N-terminal domains of all Cbl 
homologues. The TKB domain, which is a specific domain 
in Cbl proteins, binds to the phosphorylated tyrosines of 
the substrates through Src-homology (SH) 2 domains[15]. 
The RF catalytic domain has the E3 ubiquitin ligase activity 
because it binds to E2 enzymes[16]. Cbl-b is a substrate 
of tyrosine kinases, and the ubiquitin ligase activity 
is regulated by the phosphorylation of some tyrosine 
residues[14,17,18]. Increasing evidence indicates that Cbl-b 
is abundantly expressed in leukocytes and decreases the 
activation of various immune cells. Therefore, loss-of-
function mutations of Cblb cause various autoimmune 
diseases[19-21]. Interestingly, a Cblb mutation was identified 
as factor associated with diabetes in a rat model of human 
type Ⅰ diabetes[20,22]. Yokoi et al[22] reported that F328L is 
a loss-of-function mutation in T cells that was identified in 
Japanese subjects. These studies reveal that the function 
of Cbl-b is connected to diabetes.

INFLAMMATORY ACTIONS OF 
MACROPHAGES IN ADIPOSE TISSUE
Various immune cells, such as macrophages, T cells, mast 
cells, natural killer cells and eosinophils, reside in WAT 
along with adipocytes. The expansion of adipocytes alters 
these populations in WAT. ATMs increase the number of 
cells in the AT of obese mice[23]. ATMs play important roles 
in the AT of lean and obese humans and rodents. In the AT 
of lean subjects, resident M2-like or alternatively activated 
ATMs preferentially maintain homeostasis by secreting anti-
inflammatory cytokines. In contrast, in obesity, the M1-like 
or classically activated ATMs in WAT induce inflammation 
mediated by the release of inflammatory cytokines and 
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chemokines. ATMs are activated by saturated fatty acids 
(SFAs) through toll-like receptor 4 (TLR4). Although TLR4 
was identified as the receptor for lipopolysaccharide (LPS), 
which is a component of the outer membrane of gram-
negative bacteria[24], SFAs also activate TLR4 signaling in 
macrophages. The global mutation or the bone marrow-
specific deficiency of TLR4 abrogated the systemic IR 
induced by the consumption of a high-fat diet (HFD)[25-27]. 
However, the molecular mechanism of TLR4 activation 
by SFAs is poorly understood. It is thought that SFAs fail 
to directly bind to TLR4[28]. A recent study[29] showed that 
SFAs activate the TLR4 signaling mediated by fetuin-A, a 
64 kDa glycoprotein released from the liver in response 
to HFD consumption. Fetuin-A mediates SFA-induced 
activation of TLR4 by directly interacting with TLR4 in 
macrophages and adipocytes[29]. Interestingly, treatment 
with the insulin sensitizer pioglitazone suppresses fetuin-A 
expression through peroxisome proliferator-activated 
receptor-g activation in hepatoma cells[30]. SFA treatments 
induce the activation of nuclear factor kB (NF-kB) and 
Jun N-terminal kinase (JNK), which are TLR4 signaling 
molecules in macrophages[26,31]. In fact, the inhibition of 
NF-kB or JNK ameliorates IR by activating ATMs in obese 
rodents[32,33]. Therefore, the regulation of ATM activation is 
a potent therapeutic target for obesity-associated IR.

CBL-B IN ATM RECRUITMENT
Aging and overnutrition cause the hypertrophy of AT, 
resulting in the accumulation of ATMs[5]. The activated 
ATMs induce peripheral and systemic IR through the 
release of inflammatory cytokines. JNK is a TLR4 signaling 
molecule and mediates the expression of inflammatory 
cytokines in macrophages. Bone marrow-specific deficiency 
of JNK1 ameliorated diet-induced IR by suppressing AT 
inflammation in mice[34]. We demonstrated that depletion 
of Cbl-b exacerbated obesity and IR induced by aging and 
HFD in mice[35,36]. We also found that ATM activation was 
enhanced in Cbl-b knockout (Cbl-b-/-) mice. In 30-wk old 
Cbl-b-/- mice, we observed hypertrophy of AT, IR, hepatic 
steatosis and β cell dysfunction (Table 1). Interestingly, 

the ATM accumulation was dramatically increased in WAT. 
This event was caused by two factors in Cbl-b-/- mice. One 
factor was the high levels of monocyte chemotactic protein 
(MCP)-1/CC chemokine ligand 2 protein in circulation and 
WAT. MCP-1 is a member of CC chemokines, and causes the 
chemotaxis of leukocytes[37]. Previous reports demonstrated 
that MCP-1 and CC chemokine receptor type 2 (CCR2), the 
receptor for MCP-1, are associated with obesity-induced 
IR, inflammation and ATM accumulation[38-41]. In addition, 
CCR2 causes hepatic infiltration of macrophages and 
steatosis in mice[42,43]. Taken together, the data indicate that 
the inhibition of CCR2 is a potent therapeutic strategy for 
treating obesity-induced inflammation and IR.

Furthermore, it is known that Cbl-b decreases the 
migration-related signaling in macrophages. Macrophage 
migration is regulated by activation of the guanine 
nucleotide exchange factor Vav1[44]. Previous studies 
demonstrated that phosphorylation of Vav1 at Tyr267 
mediated by spleen tyrosine kinase (Syk) is critical for 
Vav1 activation in leukocytes[45,46]. Cbl-b directly binds 
to Vav1 in T cells[47,48]. Although Vav1 phosphorylation is 
inhibited by Cbl-b, Cbl-b does not induce the degradation 
of Vav1. We also demonstrated that the depletion of Cbl-b 
promoted tyrosine phosphorylation in Vav1 in peritoneal 
macrophages from mice. These results indicated that 
the increased MCP-1 released from WAT and Vav1 phos-
phorylation cause ATM accumulation in Cbl-b-/- mice 
(Figure 2). In fact, treatment with an anti-MCP-1 antibody 
reduced the IR and ATM accumulation in Cbl-b-/- mice. 
Thus, Cbl-b may serve as a therapeutic target to reduce 
the IR mediated by the accumulation of ATMs.

CBL-B IN TLR4 SIGNALING
Several ubiquitin ligases have been identified as negative 
regulators of TLR4 signaling[49-52]. Triad3A is a RF ubiquitin 
ligase and directly binds to TLR4, resulting in ubiquitination 
and proteolytic degradation. Recent reports indicate that 
TLR4 signaling is inhibited by Cbl-b in macrophages and 
neutrophils[8,53]. Han et al[8] demonstrated that TLR4 
signaling induced by LPS was suppressed in macrophages 
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Figure 1  The primary structure and domain organization of human Casitas b-lineage lymphoma family proteins. Cbl-b proteins contain highly conserved 
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a TLR4 antagonist improves insulin sensitivity and ma-
crophage accumulation in the atherosclerotic lesions 
of low-density lipoprotein receptor-deficient mice. We 
demonstrated the TLR4 signaling was strongly associated 
with the development of IR in obese Cbl-b-/- mice using 
eritoran, a TLR4 antagonist[58]. The eritoran treatment 
reduced the insulin sensitivity and glucose tolerance in 
obese Cbl-b-/- mice. This phenomenon may be caused by 
a decrease in ATM accumulation. In fact, we found that 
an anti-TLR4 antibody inhibited SFA-induced TLR4 signal 
transduction in murine peritoneal macrophages. Our data 
suggest that TLR4 antagonists are potent therapeutic 
drugs that can be used to treat the IR mediated by ATM 
activation.

CONCLUSION
Obesity causes various diseases through the development 
of IR, which is a clinical feature of patients with type 
2 diabetes. Prediabetes is defined as impaired fasting 
glucose, impaired glucose tolerance and/or high levels of 
plasma glycated hemoglobin and is a critical risk factor for 
cardiovascular diseases[59]. AT inflammation is thought to 
be associated with the onset of prediabetes[60]. Therefore, to 
prevent type 2 diabetes, the development of ab effective 
therapeutic strategy for obesity-induced IR is urgently 
needed.

Aging- and diet-induced obesity causes the IR mediated 
by ATM activation. However, the mechanisms underlying 
ATM activation are poorly understood. We showed that 
Cbl-b reduces IR by suppressing macrophage migration 
and activation in mice. However, several questions remain 
about the biological implication of Cbl-b in human cells. 
The molecular mechanism underlying the effects of Cbl-b 

by Cbl-b-mediated ubiquitination and breakdown of toll/IL-1 
receptor domain-containing adapter inducing interferon-β 
(TRIF) and MyD88, which are adaptor molecules for 
TLR4 signal transduction. This suppression by Cbl-b 
was dependent on the presence of integrin αM (CD11b). 
In neutrophils, Cbl-b also suppresses LPS signaling by 
preventing the formation of the TLR4-MyD88 complex[53]. 
These reports suggest that Cbl-b is a critical regulator of 
the macrophage activation mediated by LPS-induced TLR4 
signaling. 

TLR4 activation by SFAs thought to play a pivotal role in 
ATM activation-induced IR. Diet-induced obesity increases 
the circulating levels of free FAs. SFAs directly induce IR 
in the liver, skeletal muscle and AT[54]. Furthermore, SFAs 
cause chronic inflammation through ATM activation, which 
is mediated by TLR4 signal transduction[25,26]. Recently, we 
demonstrated that the knockout of Cbl-b promoted and IR 
through ATM accumulation in HFD-fed mice[36]. In addition 
to increased ATM accumulation, inflammatory cytokine 
secretion was increased in the AT of obese Cbl-b-/- mice. 
In addition to aging, the consumption of a HFD increases 
MCP-1 expression in WAT. We found that depletion of Cbl-b 
in murine peritoneal macrophages promotes SFA-induced 
TLR4 signal transduction (Figure 3). Palmitate-induced JNK 
phosphorylation and IL-6 expression were enhanced in 
Cbl-b-deficient peritoneal macrophages. We also showed 
that TLR4 is a substrate for Cbl-b in the presence of SFAs. 
Overexpression of Cbl-b increased the ubiquitination and 
breakdown of TLR4 after palmitate treatment. Consistent 
with this finding, the TLR4 protein expression levels on the 
surface of Cbl-b-deficient peritoneal macrophages were 
increased. It is well known that LPS treatment induces 
the phosphorylation of 2 tyrosine residues of human 
TLR4[55]. The phosphorylation of TLR4 is required to 
activate signaling by promoting an interaction with Syk in 
macrophages[56]. It remains unknown whether SFAs also 
induce the TLR4 tyrosine phosphorylation in macrophages. 
Although LPS induces the ubiquitination and degradation 
of MyD88 and TRIF[8], SFAs do not induce these pathways 
in macrophages[36]. These differences between LPS and 
SFAs are not fully understood. Further investigations 
are needed to elucidate the mechanism of SFA-induced 
phosphorylation of TLR4.

Recently, Lu et al[57] reported that treatment with 

MCP1

CCR2

Cbl-b

P

Vav1

Migration

Figure 2  Casitas b-lineage lymphoma-b suppresses macrophage migration. 
Monocyte chemoattractant protein (MCP)-1 causes macrophages to infiltrate 
adipose tissue via C-C chemokine receptor 2 (CCR2). Phosphorylation (P) 
of Vav1 mediates macrophage migration, and Cbl-b negatively regulates 
macrophage migration by suppressing Vav1 phosphorylation. 

Table 1  Phenotypes of Cbl-b-/- mice

Age and diet Phenotypes Ref.

30-wk old, normal diet Adipose tissue inflammation [35]
Adiposity
Fasting hyperinsulinemia
Hepatic steatosis
Impaired glucose tolerance
Insulin resistance

13-wk old, high-fat diet Adipose tissue inflammation [36]
Adiposity
Fasting hyperleptinemia
Fasting hyperlipidemia
Fasting hypoadiponectinemia
Insulin resistance
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in macrophages is unknown. Further investigations are 
essential to identify new tyrosine kinases for Cbl-b. Recently, 
it was shown that macrophages infiltrate the fatty liver 
and AT in obesity. Cbl-b may suppress the macrophage 
activation in fatty liver. The side effects of Cbl-b activation 
remain unclear. We also showed that Cbl-b disturbed 
insulin-like growth factor signaling through ubiquitination 
and degradation of insulin receptor substrate-1 in skeletal 
muscle under unloading conditions[61]. Although we did 
not observe an enhancement of insulin signal transduction 
in lean Cbl-b-/- mice, tissue-specific Cbl-b activation may 
be important when using a drug delivery system, such 
as liposomes. A better understanding of Cbl-b-mediated 
ATM activation may provide the basis for developing novel 
therapeutic strategies that can be used to treat IR.
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