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aling Laws in High-Energy Inverse Compton S
atteringSatoshi Nozawa�Josai Junior College, 1-1 Keyakidai, Sakado-shi, Saitama, 350-0295, JapanYasuharu Kohyama and Naoki ItohDepartment of Physi
s, Sophia University, 7-1 Kioi-
ho, Chiyoda-ku, Tokyo, 102-8554, Japan(Dated: January 19, 2012)Based upon the rate equations for the photon distribution fun
tion obtained in the previous paper,we study the inverse Compton s
attering pro
ess for high-energy nonthermal ele
trons. Assumingthe power-law ele
tron distribution, we �nd a s
aling law in the probability distribution fun
tionP1(s), where the peak height and peak position depend only on the power index parameter. Wesolved the rate equation analyti
ally. It is found that the spe
tral intensity fun
tion also has thes
aling law, where the peak height and peak position depend only on the power index parameter. Thepresent study will be parti
ularly important to the analysis of the X-ray and gamma-ray emissionmodels from various astrophysi
al obje
ts su
h as radio galaxies and supernova remnants.PACS numbers: 95.30.Cq,95.30.Jx,98.65.Cw,98.70.V
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hanisms: nonthermal | relativityI. INTRODUCTIONThe inverse Compton s
attering is one of the most fun-damental rea
tions whi
h have variety of appli
ations toastrophysi
s and 
osmology. They are, for example, theSunyaev-Zeldovi
h (SZ) e�e
ts[1℄ for 
lusters of galax-ies (CG), 
osmi
-ray emission from radio galaxies[2℄ and
lusters of galaxies[3℄, and radio to gamma-ray emissionfrom supernova remnants[4, 5℄. Therefore, theoreti
alstudies on the inverse Compton s
attering have beendone quite extensively for the last forty years, start-ing from the works by Jones[6℄, and Blumenthal andGould[7℄ to the re
ent works, for example, by Fargion[8℄,Colafran
es
o[9, 10℄, and Petruk[11℄.In parti
ular, remarkable progress has been made intheoreti
al studies for the SZ e�e
ts for CG. Wright[12℄and Rephaeli[13℄ 
al
ulated the photon frequen
y redis-tribution fun
tion in the ele
tron rest frame, whi
h is
alled as the radiative transfer method. On the otherhand, Challinor and Lasenby[14℄ and Itoh, Kohyama, andNozawa[15℄ solved the relativisti
ally 
ovariant Boltz-mann 
ollisional equation for the photon distributionfun
tion, whi
h is 
alled the 
ovariant formalism. Al-though the two are very di�erent approa
hes, the ob-tained results for the SZ e�e
t agreed extremely well.This has been a longstanding puzzle in the �eld of therelativisti
 study of the SZ e�e
t for the last ten years.Very re
ently, however, Nozawa and Kohyama[16℄ (de-noted NK hereafter) showed that the two formalisms wereindeed mathemati
ally equivalent in the approximationof the Thomson limit. This explained the reason why thetwo di�erent approa
hes produ
ed same results for the SZe�e
t even in the relativisti
 energies for ele
trons.�Ele
troni
 address: snozawa�josai.a
.jp

In the present paper, we extend the formalism obtainedby NK to the 
ase of high-energy ele
trons. This exten-sion will be parti
ularly interesting for the analysis ofX-ray and gamma-ray emissions, for example, from ra-dio galaxies[2℄ and supernova remnants[4, 5℄, where theinverse Compton s
attering of the CMB photons o� non-thermal high-energy ele
trons plays an essential role. Inthe present approa
h, we push analyti
 te
hniques asmu
h as possible in order to obtain analyti
 solutions. In
ontrast to the dire
t numeri
al 
al
ulation, the presentapproa
h will have an advantage that one may reveal es-sential physi
s properties behind the numeri
al results.In the present paper, under a spe
i�
 
ondition for theele
tron distribution whi
h is typi
ally realized, we willshow that a universal s
aling law is valid for the spe
tralintensity fun
tion.
The present paper is organized as follows: Startingfrom the rate equations derived in the NK paper, wederive in Se
. II the analyti
 expressions for the redis-tribution fun
tion P (s; 
) and probability distributionfun
tion P1(s). Assuming the power-law ele
tron dis-tribution, we show that P1(s) has a s
aling law, wherethe peak height and peak position depend only on thepower index parameter. We 
al
ulated the rate equationand obtained the analyti
 expression for the spe
tral in-tensity fun
tion dI(X)=d� . We show that dI(X)=d� alsohas the s
aling law, where the peak height and peak po-sition depend only on the power index parameter. InSe
. III we apply the s
aling law to the observation ofthe spe
tral intensity in the X-ray and gamma-ray en-ergy regions. Finally, 
on
luding remarks are given inSe
. IV.
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2II. HIGH-ENERGY INVERSE COMPTONSCATTERINGA. Rate Equations in Thomson ApproximationIn the NK paper, it was shown that the 
ovariantformalism[15℄ and radiative transfer method[12℄ weremathemati
ally equivalent in the following (Thomson)approximation: 
 !m � 1 ; (1)
 = 1p1� �2 ; (2)where ! is the photon energy, 
 is the Lorentz fa
tor, and� and m are the velo
ity and rest mass of the ele
tron,respe
tively. Throughout this paper, we use the natu-ral unit ~ = 
 = 1, unless otherwise stated expli
itly.For the 
osmi
 mi
rowave ba
kground (CMB) photons(kBTCMB = 2:348 � 10�4eV), ! < 5 � 10�3eV is wellsatis�ed. Then !=m < 1� 10�8, whi
h implies 
 � 108.Therefore as far as the CMB photons are 
on
erned,Eq. (1) is fully valid from non-relativisti
 ele
trons toextreme-relativisti
 ele
trons of the order of TeV region.The rate equations for the photon distribution fun
tionn(x) and spe
tral intensity fun
tion I(x) were derived inthe NK paper under the assumption of Eq. (1). Here,x = !=kBTCMB is the photon energy in units of thethermal energy of the CMB. We re
all the results hereto make the present paper more self-
ontained. They aregiven as follows[16, 17℄:�n(x)�� = Z 1�1 dsP1(s) [n(esx)� n(x)℄ ; (3)�I(x)�� = Z 1�1 dsP1(s) �I(e�sx) � I(x)� ; (4)� = ne�T t ; (5)where I(x) = I0x3n(x), I0 = (kBTCMB)3=2�2, ne is theele
tron number density, �T is the Thomson s
attering
ross se
tion. In Eqs. (3) and (4), P1(s) is the probabilitydistribution fun
tion for the photon of a frequen
y shifts, whi
h is de�ned by es = x0=x,P1(s) = Z 1�min d��2
5pe(E)P (s; �) ; (6)P (s; �) = es2�
4 Z �2(s)�1(s) d�0 1(1� ��0)2 f (�0; �00) ; (7)f(�0; �00) = 38 �1 + �20�020 + 12(1� �20)(1� �020 )� ; (8)where pe(E) is the ele
tron distribution fun
tion of a mo-mentum pwhi
h is normalized by R10 dpp2pe(E)=m3 = 1.Variables appearing in Eqs. (6) { (8) are summarized as

follows:�min = (1� e�jsj)=(1 + e�jsj) ; (9)�00 = [1� es(1� ��0)℄=� ; (10)�1(s) = � �1 for s � 0[1� e�s(1 + �)℄=� for s > 0 ; (11)�2(s) = � [1� e�s(1� �)℄=� for s < 01 for s � 0 : (12)The total probabilities for P (s; �) and P1(s) are givenby Z +����� dsP (s; �) = 1 ; (13)Z 1�1 dsP1(s) = 1 ; (14)where �� = ln�1 + �1� �� : (15)It should be noted that the following useful relationsP (s; �)e�3s = P (�s; �) ; (16)P1(s)e�3s = P1(�s) (17)are valid.B. P (s; �) for Extreme-Relativisti
 Ele
tronsIn this se
tion, we derive the analyti
 expression ofthe frequen
y redistribution fun
tion P (s; �) for extreme-relativisti
 ele
trons. In Eq. (7), the integral of �0 
anbe done analyti
ally. One obtains as follows: for s < 0,P (s; �) = 332�2
4 ��C1(�)� C2(�)es + C3(�)e2s+C4(�)(�� + s)(es + e2s) + C1(�)e3s� ; (18)and for s � 0,P (s; �) = 332�2
4 �C1(�) + C3(�)es � C2(�)e2s+C4(�)(�� � s)(es + e2s)� C1(�)e3s� ; (19)where the 
oeÆ
ients areC1(�) = 1�4
2 ; (20)C2(�) = 1�4(1 + �) �4�4 � �3 � 13�2 � 3� + 9� ; (21)C3(�) = 1�4(1� �) �4�4 + �3 � 13�2 + 3� + 9� ; (22)C4(�) = 2�4 ��2 � 3� : (23)



3Note that Eqs. (18) and (19) satisfy the relation ofEq. (16). It should be also noted that Eqs. (18) and(19) agree with Eqs. (23a) and (23b) of Fargion et al.[8℄,respe
tively.Now let us 
onsider the 
ase for ele
trons of extreme-relativisti
 energies E (= 
m
2) � m
2. Thus, 
 � 1and � � 1 are assumed. In this approximation, Eqs. (18)and (19) are written as follows: for s < 0,P (s; 
) = 332
4 �� 1
2 + 2es + 8
2e2s�4 (�
 + s) �es + e2s�+ 1
2 e3s� ; (24)and for s � 0,P (s; 
) = 332
4 � 1
2 + 8
2es + 2e2s�4 (�
 � s) �es + e2s�� 1
2 e3s� ; (25)�
 = 2ln(2
) ; (26)where the expression P (s; 
) was used instead of P (s; �).Equations (24) and (25) 
an be integrated analyti
ally.One obtains as follows: for s < 0,Z 0��
 dsP (s; 
) = O� 1
2� ; (27)and for s � 0,Z �
0 dsP (s; 
) = 1 +O� 1
2� : (28)In Eq. (28), the terms 
ontributing to O �1=
2� are thehigher-order terms. Therefore one 
an eliminate the 
or-responding terms from Eq. (25), whi
h gives the new ex-pression for s � 0. Then the new expression for s < 0is obtained with the relation of Eq. (16). Therefore, thetotal probabilityZ +�
��
 dsP (s; 
) = 1 +O� 1
2� (29)is satis�ed for P (s; 
). The expli
it forms are as follows:for s < 0,P (s; 
) = 332
4 h� 1
2 + 2es + 8
2e2s�4 (�
 + s) esi ; (30)and for s � 0,P (s; 
) = 332
4 h8
2es + 2e2s�4 (�
 � s) e2s � 1
2 e3si : (31)

Let us now 
ompare the present results with the litera-ture. It is straightforward to show that Eqs. (30) and (31)are equivalent to Eqs. (38) and (40) of Jones[6℄, respe
-tively. We show the equivalen
e between the present for-malism and Jones's formalism in Appendix A. It shouldbe also mentioned that Eqs. (24a) and (24b) of Fargionet al.[8℄ di�er from our Eqs. (30) and (31). The di�eren
e
omes from O(1=
2) terms as mentioned in their paper.Before 
losing this subse
tion, it should be also notedthe following: In the present formalism, the 
ases s � 0and s < 0 
orrespond to the Compton s
attering and in-verse Compton s
attering, respe
tively. This is be
auseof the de�nition x = e�sx0, where x0 and x are the en-ergies (in units of kBTCMB) of initial and �nal photons,respe
tively. Equations (27) and (28) suggest that prob-ability distribution for the CMB photon s
attering byhigh-energy ele
trons is dominated by the Compton s
at-tering pro
ess instead of the inverse Compton s
atteringpro
ess.C. S
aling Law of P1(s) for Nonthermal Ele
tronsIn order to pro
eed 
al
ulation for pra
ti
al appli
a-tions, let us spe
ify the ele
tron distribution fun
tion.High-energy ele
trons in the supernova remnants and a
-tive gala
ti
 nu
lei, for example, are most likely nonther-mal. It is standard to des
ribe the nonthermal distribu-tion in terms of the power-law distribution fun
tion ofthree parameters:pe(
) = � N
 
�� ; 
min � 
 � 
max0 ; elsewhere ; (32)where 
 is the Lorentz fa
tor and N
 is the normalization
onstant. In Eq. (32), � is the power index parameter,
min and 
max are parameters of minimum and maxi-mum values for 
, respe
tively. Then, Eq. (6) 
an bereexpressed as follows: for s < 0,P1(s) = Z 
maxmax(
min;e�s=2=2) d
pe(
)P (s; 
) ; (33)where P (s; 
) is given by Eq. (30), and for s � 0,P1(s) = Z 
maxmax(
min;es=2=2) d
pe(
)P (s; 
) ; (34)where P (s; 
) is given by Eq. (31). In deriving Eqs. (33)and (34), � � 1 was assumed, and the phase spa
e fa
tor
2 was absorbed, for simpli
ity, by the power index � inpe(
).In the 
ase of the power-law distribution of Eq. (32),equations (33) and (34) 
an be integrated analyti
ally.The expli
it forms are given as follows: for �2 ln 2
max <



4s < �2 ln 2
min,P1(s) = 332N
 �� 1� + 5 �2�+5e(�+5)s=2 � 1
�+5max�+ 2� + 3 �� � 1� + 32�+3e(�+3)s=2� 1
�+3max �� � 1� + 3 � 2s� 4 ln 2
max�� es+ 8� + 1 �2�+1e(�+1)s=2 � 1
�+1max� e2s� ; (35)for �2 ln 2
min < s < 0,P1(s) = 332N
 �� 1� + 5 � 1
�+5min � 1
�+5max�+ 2� + 3 � 1
�+3min �� � 1� + 3 � 2s� 4 ln 2
min�� 1
�+3max �� � 1� + 3 � 2s� 4 ln 2
max�� es+ 8� + 1 � 1
�+1min � 1
�+1max� e2s� ; (36)for 0 < s < 2 ln 2
min,P1(s) = 332N
 �� 1� + 5 � 1
�+5min � 1
�+5max� e3s+ 2� + 3 � 1
�+3min �� � 1� + 3 + 2s� 4 ln 2
min�� 1
�+3max �� � 1� + 3 + 2s� 4 ln 2
max�� e2s+ 8� + 1 � 1
�+1min � 1
�+1max� es� ; (37)and for 2 ln 2
min < s < 2 ln 2
max,P1(s) = 332N
 �� 1� + 5 �2�+5e�(�+5)s=2 � 1
�+5max� e3s+ 2� + 3 �� � 1� + 32�+3e�(�+3)s=2� 1
�+3max �� � 1� + 3 + 2s� 4 ln 2
max�� e2s+ 8� + 1 �2�+1e�(�+1)s=2 � 1
�+1max� es� : (38)It should be noted that the normalization 
onstant isgiven by N
 = (� � 1)
��1min (39)for the 
ase 
max !1.Let us now introdu
e new fun
tions PC(s;R) andP 0IC(s;R) in order to express Eqs. (35){(38) in uni�edforms, where R = 
min=
max. Here, C and IC denote

the Compton s
attering and Inverse Compton s
atter-ing, respe
tively. First, we de�ne PC(s;R) as follows:for �2 ln 2
min < s < 0,PC(s;R) = 3 � � 11�R��1 �� 2� + 5 �1�R�+5� e3s+ 1� + 3 �� � 1� + 3 + 2s�R�+3�� � 1� + 3 + 2s+ 4 lnR�� e2s+ 1� + 1 �1�R�+1� es� ; (40)and for 0 < s < 2 ln(
max=
min),PC(s;R) = 3 � � 11�R��1 �� 2� + 5 �e�(�+5)s=2 �R�+5� e3s+ 1� + 3 �� � 1� + 3e�(�+3)s=2�R�+3�� � 1� + 3 + 2s+ 4 lnR�� e2s+ 1� + 1 �e�(�+1)s=2 �R�+1� es� : (41)Similarly, P 0IC(s;R) is for �2 ln(
max=
min) < s < 0,P 0IC(s;R) = 3 � � 11�R��1 �� 2� + 5 �e(�+5)s=2 �R�+5�+ 1� + 3 �� � 1� + 3e(�+3)s=2�R�+3�� � 1� + 3 � 2s+ 4 lnR�� es+ 1� + 1 �e(�+1)s=2 �R�+1� e2s� ; (42)and for 0 < s < 2 ln 2
min,P 0IC(s;R) = 3 � � 11�R��1 �� 2� + 5 �1�R�+5�+ 1� + 3 �� � 1� + 3 � 2s�R�+3�� � 1� + 3 � 2s+ 4 lnR�� es+ 1� + 1 �1�R�+1� e2s� : (43)It is straightforward to show thatPC(s;R)e�3s = P 0IC(�s;R) (44)is satis�ed by Eqs. (40){(43).Comparing Eqs. (35){(38) with Eqs. (40){(43), theprobability distribution fun
tion P1(s) is des
ribed as fol-lows:P1(s) = 8<: PIC(s+ 2 ln 2
min; R) for s < 0PC(s� 2 ln 2
min; R) for s � 0 ; (45)



5where PIC(s;R) � 164
6minP 0IC(s;R) : (46)Let us now 
onsider the 
ase R � 
min=
max � 1. We�x 
max = 108 throughout the paper. In Fig. 1(a), weplot P1(s) as a fun
tion of s for a typi
al value � = 2:5.The solid 
urve, dash-dotted 
urve, dashed 
urve, anddotted 
urve 
orrespond to 
min = 10, 102, 103, and104, respe
tively. It 
an be seen that the height of P1(s)is independent of 
min. In Fig. 1(b), we plot the same
urves as a fun
tion of new variable sC whi
h is de�nedby sC = s� 2 ln 2
min : (47)In Fig. 1(b) the four 
urves are totally indistinguishable,whi
h exhibits a s
aling law for P1(s). The reason for thiss
aling law is as below. For large 
min � 1, as shown byFigs. 1(a), 1(b), and Eqs. (45) and (46), the probabilitydistribution fun
tion P1(s) is dominated by PC(sC ; 0),i.e. by the Compton s
attering pro
ess.Before 
losing this subse
tion, we study the �-dependen
es on the peak position speak and peak heightP1(speak). As shown in Figs. 1(a) and 1(b), the 
min-dependen
e of P1(s) is des
ribed by Eq. (47), namely, s= sC+2 ln 2
min. Therefore, we de�ne the peak positionby speak = s(�) + 2 ln 2
min ; (48)where s(�) depends only on �. The peak position is
al
ulated by solving the equation�P1(s)�s ����speak = 0 : (49)The analyti
 expressions for s(�) in the �rst-order andthird-order approximations are given as follows:s1st(�) = � (� � 1)(�2 + 4� + 11)5�3 + 23�2 + 51� + 17 ; (50)s3rd(�) = � 12(4�2 + 21� + 29)"3�2 + 14� + 19 (51)+ p(� + 1)2A3 +B2 +B� + 1 !1=3� p(� + 1)2A3 +B2 �B� + 1 !1=335 ; (52)A = 7�4 + 64�3 + 254�2 + 520� + 451 ; (53)B = 3�7 � 21�6 � 582�5 � 4378�4 � 18589�3�48333�2 � 70688�� 44036 : (54)We also solved Eq. (49) numeri
ally and obtained thenumeri
al solution snum(�). In Figs. 2(a) and 2(b), we

FIG. 1: Plotting of P1(s) and P1(sC) for � = 2:5. Figures 1(a)and 1(b) are P1(s) and P1(sC), respe
tively. The solid 
urve,dash-dotted 
urve, dashed 
urve, and dotted 
urve 
orrespondto 
min = 10, 102, 103, and 104, respe
tively.plot s(�) and P1(speak), respe
tively. The dashed 
urve,dash-dotted 
urve, and solid 
urve 
orrespond to s1st(�),s3rd(�) and snum(�), respe
tively. In Fig. 2(b), the solid
urve and dash-dotted 
urve are indistinguishable. It 
anbe seen from Figs. 2(a) and 2(b) that the third-order ap-proximation is suÆ
iently a

urate for the present pur-poses.D. S
aling Law for Spe
tral Intensity Fun
tionLet us now solve the rate equations of Eqs. (3) and(4) with the result of Eq. (45) for P1(s). We 
onsiderthe CMB photons for the initial distribution. For theinverse Compton s
attering by high-energy ele
trons, weare interested in high-energy spe
trum su
h as X-rays(� keV) and gamma-rays (� MeV). Therefore, one 
ansafely assume x � !kBTCMB � 1 (55)
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FIG. 2: Plotting of s(�) and P1(speak). Figures 2(a) and 2(b)are s(�) and P1(speak), respe
tively. The dashed 
urve, dash-dotted 
urve, and solid 
urve 
orrespond to the �rst-orderapproximation, third-order approximation, and numeri
al so-lution, respe
tively.for s
attered photons. For the 
-parameters, we assumethe same 
ondition used in the s
aling law for P1(s),namely, 1� 
min � 
max : (56)Under these assumptions, Eqs. (3) and (4) are mu
h sim-pli�ed, and 
an be solved analyti
ally. The derivation isstraightforward, however, it is lengthy. Therefore, wegive the derivation in Appendix B in detail, and quotethe �nal results here.A

ording to Eqs. (B38) and (B40), one has the fol-

lowing results:dI(X)d� = I0 �3(� � 1)X3 Z 1X dtt 1et � 1��� 2� + 5 + 1� + 3 �� � 1� + 3 � 2 ln tX� tX + 1� + 1 t2X2�+ 6(� � 1)(�2 + 4� + 11)(� + 1)(� + 3)2(� + 5) 1X(��1)=2 Z X0 dt t(�+3)=2et � 1 # ; (57)dn(X)d� = 164
6min 1I0X3 dI(X)d� ; (58)X = x4
2min ; (59)where I0 = (kBTCMB)3=2�2. It should be empha-sized that the fun
tion dI(X)=d� depends on 
min onlythroughX . Therefore, dI(X)=d� has the s
aling law. Onthe other hand, the fun
tion dn(X)=d� does not have thes
aling law be
ause of the fa
tor 1/64
6min in Eq. (58).For X � 1, Eq. (57) is further simpli�ed as follows:dI(X)d� = I0 6(� � 1)(�2 + 4� + 11)(� + 1)(� + 3)2(� + 5)���� + 52 � � �� + 52 �X�(��1)=2 ; (60)�(z) = 1�(z) Z 10 dt tz�1et � 1 ; (61)where �(z) is the Riemann's zeta fun
tion. We 
allEq. (60) the power-law approximation.In Fig. 3, we plot dI(X)=d� of Eq. (57) as a fun
tionof X for typi
al �-values for illustrative purposes. Thedashed 
urve, dash-dotted 
urve, and solid 
urve 
orre-spond to �=2.5, 3.5, and 4.5, respe
tively. The peak po-sition and peak height depend only on the power-indexparameter. It should be noted that dI(X)=d� / X forX � 1, and dI(X)=d� / X�(��1)=2 for X � 1. There-fore, the slope of the downward 
urves in Fig. 3 will de-termine the �-value.In Figs. 4(a) and 4(b), we plot the peak position andpeak height of the spe
tral intensity fun
tion as a fun
-tion of �, respe
tively. The solid 
urves 
orrespond to thenumeri
al values. The dash-dotted 
urves are the resultsof analyti
al �tting fun
tions. They are given byXpeak = 1 + 1� �a0 + a1�1=4 + a2�1=2� ; (62)dI(Xpeak)d�I0 = 34 � �4 + 6� + �2�(b0 + b1� + b2�2 +�3) ; (63)� � � � 1 : (64)The �tting parameters are a0=�2.18351, a1=5.37131and a2=�2.02638 for the peak position, and b0=2.60331,b1=6.6352 and b2=5.6526 for the peak height. The er-rors of the �tting fun
tions in the region 2 � � � 10 areless than 0.15% and 0.10% for Xpeak and dI(Xpeak)=d� ,
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FIG. 3: Plotting of dI(X)=d� . The dashed 
urve, dash-dotted
urve, and solid 
urve 
orrespond to � = 2.5, 3.5, and 4.5,respe
tively.respe
tively. In Fig. 4, two 
urves are totally indistin-guishable.Before 
losing this se
tion, let us 
ompare the presentresult with the literature. In the textbook by Rybi
ki andLightman[18℄, the expression for the power-law approxi-mation is given by Eq. (7.31). The s
aling law is hiddenin the expression of Eq. (7.31). Inserting the expli
itform of the normalization 
onstant C = ne(� � 1)
��1minin Eq. (7.31), one �nally obtains as follows:dEdV d�d�1 / I0G(�)X�(��1)=2 ; (65)G(�) = 6(� � 1)(�2 + 4� + 11)(� + 1)(� + 3)2(� + 5)���� + 52 � � �� + 52 � ; (66)whi
h agrees with Eq. (60). The appli
able range of thepower-law approximation of Eq. (7.31) is given[18℄ by4
2min � �1�� � 4
2max ; (67)where �� is a typi
al energy of initial photon distribution.In the 
ase of the CMB photon distribution, one 
an use�� = kBTCMB . Therefore, one obtains the 
ondition for

FIG. 4: Plotting of the peak position and peak height of thespe
tral intensity fun
tion as a fun
tion of �. The solid 
urves
orrespond to the numeri
al values. The dash-dotted 
urvesare the results of the analyti
al �tting fun
tions.X as follows: 1� X � 1R2 ; (68)whi
h again agrees with the 
ondition of the present pa-per. It is needless to mention that the full expression ofEq. (57) has to be used for X � O(1) as shown in Fig. 3.III. ASTROPHYSICAL APPLICATIONS OFSCALING LAWSA. X-ray regionIn the present se
tion, we show an appli
ation of thes
aling law. Re
ently, observational studies on the in-verse Compton s
attering have been done quite exten-
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FIG. 5: Plotting of dI(X)=d� as a fun
tion of the photonenergy ! in X-ray energy regions for a typi
al value �=2.5.Figures 5(a), 5(b), 5(
) and 5(d) 
orrespond to 
min=500,1�103, 2�103 and 3�103, respe
tively. The solid 
urve 
or-responds to the full 
al
ulation of Eq. (57). The dash-dotted
urve is the power-law approximation of Eq. (60).sively, for example, X-ray observations from radio galax-ies with Chandra[19, 20℄.In Fig. 5, we plot dI(X)=d� as a fun
tion of the pho-ton energy ! in X-ray energy region for a typi
al value�=2.5. Figures 5(a), 5(b), 5(
) and 5(d) 
orrespond to
min=500, 1�103, 2�103 and 3�103, respe
tively. Thesolid 
urve 
orresponds to the full 
al
ulation of Eq. (57).The dash-dotted 
urve is the power-law approximation ofEq. (60). In Fig. 5, the peak height is independent of the
min-values as pointed in the last se
tion. On the otherhand, the peak position is shifting toward to high-energyside as the 
min-value in
reases.By measuring the slope of the downward 
urve inFig. 5, one 
an determine the �-value, be
ausedI(!)d� / !�(��1)=2 (69)is valid. One 
an also determine the �-value by mea-suring the peak height in Fig. 5 with the expression of

Eq. (63). This will serve as an independent 
he
k forthe �-value. On the other hand, the 
min-value is deter-mined by measuring the peak position !peak in Fig. 5.Using the relation of !peak with Xpeak , namely,Xpeak = 14
2min !peakkBTCMB ; (70)the 
min-value is determined by
min = � 14Xpeak !peakkBTCMB �1=2 ; (71)where Xpeak is 
al
ulated by the RHS of Eq. (62) withthe measured �-value. It 
an be seen from Fig. 5 thatthe X-ray observations have sensitivities to 
min=500 �3�103 region.Before 
losing this subse
tion, let us study the appli-
ability of the power-law approximation used in the lit-erature. The 
ondition for the power-law approximationX � 1 reads ! � 4
2minkBTCMB : (72)In the 
ase of 
min = 1�103, for example, one has ! � 1keV. As shown in Fig. 5(b), the error of the power-lawapproximation is quite large in ! � O(1) keV region.B. gamma-ray regionWith the s
aling law for the spe
tral intensity fun
-tion, one 
an extend the present formalism to the gamma-ray region. In Fig. 6, we plot the same �gure as Fig. 5for the gamma-ray region. Be
ause of the s
aling law,the fa
tor p1000(� 31:6) should be simply multiplied tothe 
min-values of the keV region in order to obtain thespe
tral intensity fun
tion in the MeV region. Therefore,observations in this energy region will have sensitivitiesto 
min=16�103 � 95�103 region. Similarly, the fa
tor1000 should be multiplied to the 
min-values of the keVregion in order to obtain the parameter values in the GeVregion. IV. CONCLUDING REMARKSIn the NK paper[16℄, we derived the frequen
y redistri-bution fun
tion P (s; �) for a frequen
y shift s and ele
-tron velo
ity �. The form was derived in the Thomsonapproximation, however, it was mathemati
ally equiva-lent to that in the 
ovariant formalism[15℄. Therefore thefrequen
y redistribution fun
tion 
an be appli
able fromnonrelativisti
 ele
trons to extreme-relativisti
 ele
trons.In the present paper, we have extended the formal-ism to extreme-relativisti
 ele
trons. First, we derivedthe analyti
 expression for P (s; 
) in the approximation
 � 1. It has been found that the present formalism isequivalent to Jones's formalism[6℄.
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FIG. 6: Plotting of dI(X)=d� as a fun
tion of the photonenergy ! in gamma-ray energy regions for a typi
al value�=2.5. Figures 6(a), 6(b), 6(
) and 6(d) 
orrespond to
min=15.8�103, 31.6�103, 63.2�103 and 94.9�103 , respe
-tively. The solid 
urve 
orresponds to the full 
al
ulation ofEq. (57). The dash-dotted 
urve is the power-law approxima-tion of Eq. (60).By averaging P (s; 
) over the nonthermal ele
tron dis-tribution fun
tion, we have 
al
ulated the probability dis-tribution fun
tion P1(s). As for the nonthermal distri-bution fun
tion, we have adopted a standard power-lawdistribution fun
tion of three parameters: the power in-dex �, minimum value 
min, and maximum value 
max ofthe distribution range. For the 
ase 
min � 1, we havefound a s
aling law in P1(s), where the peak positiondepends on s � 2 ln 2
min, and the peak height dependsonly on the power index parameter �.We have 
al
ulated the spe
tral intensity fun
tion. Forthe 
ase of high-energy photons of x� 1, we have founda s
aling law in dI(x)=d� , where the fun
tion depends ona new variable X = x=(4
2min). The peak position andpeak height depend only on the power index parameter�. The 
min-dependen
e of dI(X)=d� is in
luded in thevariable X .We have applied the present formalism to the observa-

tion of the spe
tral intensity fun
tion in the X-ray andgamma-ray energy regions. It has been found that thesensitivities of the observation in the X-ray and gamma-ray regions are 
min=500 � 3�103 and 
min=16�103 �95�103, respe
tively.Finally, we have studied the appli
ability of the power-law approximation used in the literature. In the 
ase of
min = 1 � 103, for example, the error of the power-lawapproximation is quite large in ! � O(1) keV region.A
knowledgmentsThis work is �nan
ially supported in part by theGrant-in-Aid of Japanese Ministry of Edu
ation, Cul-ture, Sports, S
ien
e, and Te
hnology under the 
ontra
t#21540277. We would like to thank our referee for valu-able suggestions.APPENDIX A: COMPARISON WITH JONES'SFORMALISMThe double di�erential 
ross se
tions for extreme-relativisti
 ele
trons are given by Eqs. (38) and (40) ofJones's paper[6℄ as follows:d2Ndtd� = 2�r20
�1
2 "2q ln q + (1 + 2q)(1� q)# ; (A1)d2Ndtd� = �r20
2�1
4 �(q0 � 1)�1 + 2q0�� 2 ln q0� : (A2)The variables in Eqs. (A1) and (A2) are related to thevariables of the present paper as follows: �T = 8�r20=3,�=�1 = e�s, q = e�s=4
2, q0 = 4
2e�s, � = �CMBx,where �CMB = kBTCMB=m
2. With these variables,Eqs. (A1) and (A2) are rewritten as follows:d2Ndtdx = 3�T 
32
4 1xe�3sh� 1
2 + 2es + 8
2e2s�4 (�
 + s) esi ; (A3)d2Ndtdx = 3�T 
32
4 1xe�3sh8
2es + 2e2s�4 (�
 � s) e2s � 1
2 e3si : (A4)Let us denote the photon distribution fun
tion inJones's formalism as nJ(�1). Then one hasnJ(�1)d�1 = m3e�2(~
)3 �21e�1=�CMB � 1d�1= (kBTCMB)3�2(~
)3 x3e3sn(esx)ds ; (A5)where n(esx) = 1=(eesx � 1). Averaging Eqs. (A3) and(A4) over the photon momentum with the distribution



10fun
tion, one �nally obtainsZ d2NdtdxnJ(�1)d�1 = (kBTCMB)3�2(~
)3 �T 
x2� Z dsPJ (s; 
)n(esx) ; (A6)where the redistribution fun
tion in Jones's formalism isgiven byPJ (s; 
) = 332
4 h� 1
2 + 2es + 8
2e2s�4 (�
 + s) esi ; (A7)PJ (s; 
) = 332
4 h8
2es + 2e2s�4 (�
 � s) e2s � 1
2 e3si : (A8)Comparing Eqs. (A7) and (A8) with Eqs. (30) and (31),respe
tively, one �ndsP (s; 
) = PJ (s; 
) ; (A9)whi
h shows the equivalen
e of the two formalisms forextreme-relativisti
 ele
trons.APPENDIX B: DERIVATION OF EQUATIONS(57) AND (58)We assume x � 1 for the s
attered photons, and 1�
min � 
max for the 
-parameters. Let us �rst solveEq. (3). It 
an be rewritten as follows:�n(x)�� =Z 2 ln
max=
min�2 ln 2
min dsPC �s; 
min
max�n �es4
2minx�+ Z 2 ln 2
min�2 ln 
max=
min dsPIC �s; 
min
max�n�es x4
2min��n(x) : (B1)Then we introdu
e the following new fun
tions:Z 2 ln 1=R�2 ln 2
min dsPC (s;R)n �es4
2minx�� n1(x) + n2(x) ; (B2)Z 2 ln 2
min�2 ln 1=R dsPIC (s;R)n�es x4
2min�� n3(x) + n4(x) ; (B3)

where R � 
min=
max. In Eqs. (B2) and (B3), the fun
-tions n1(x), ..., n4(x) are expressed as follows:n1(x) = Z 0�2 ln 2
min dsPC (s; 0)n (esY ) ; (B4)n2(x) = Z 10 dsPC (s; 0)n (esY ) ; (B5)n3(x) = Z 0�1 dsPIC (s; 0)n (esX) ; (B6)n4(x) = Z 2 ln 2
min0 dsPIC (s; 0)n (esX) : (B7)In deriving Eqs. (B4){(B7), we put R = 0 and used newvariables: X � x4
2min ; (B8)Y � 4
2minx : (B9)Introdu
ing t = esY into Eqs. (B4) and (B5) and t = esXinto Eqs. (B6) and (B7), and inserting the expli
it formsof Eqs. (40){(43), one obtains as follows:n1(x) = 3(� � 1) 1Y Z Yx dtn� 2� + 5 t2Y 2+ 1� + 3 �� � 1� + 3 + 2 ln tY � tY + 1� + 1on(t) ; (B10)n2(x) = 6(� � 1)(�2 + 4� + 11)(� + 1)(� + 3)2(� + 5) Y (��1)=2� Z 1Y dtt�(�+1)=2n(t) ; (B11)n3(x) = 6(� � 1)(�2 + 4� + 11)(� + 1)(� + 3)2(� + 5) 1x3 1X(��1)=2� Z X0 dt t(�+3)=2n(t) ; (B12)n4(x) = 3(� � 1)X3x3 Z xX dtt n� 2� + 5+ 1� + 3 �� � 1� + 3 � 2 ln tX� tX + 1� + 1 t2X2on(t) :(B13)Now let us 
onsider the CMB photon distribution fun
-tion n0(t) = 1et � 1 (B14)for the initial distribution. Inserting Eq. (B14) intoEqs. (B10){(B13), one has for x� 1n1(x) = 0 ; (B15)n2(x) = 0 ; (B16)



11n3(x) = 6(� � 1)(�2 + 4� + 11)(� + 1)(� + 3)2(� + 5) 1x3 1X(��1)=2� Z X0 dt t(�+3)=2 1et � 1 ; (B17)n4(x) = 3(� � 1)X3x3 Z 1X dtt 1et � 1n� 2� + 5+ 1� + 3 �� � 1� + 3 � 2 ln tX� tX + 1� + 1 t2X2o : (B18)The last term in Eq. (B1) 
an be safely negle
ted forx� 1. Therefore, one obtains�n(x)�� = n3(x) + n4(x) : (B19)One �nally obtainsdn(X)d� = 1x3 �3(� � 1)X3 Z 1X dtt 1et � 1��� 2� + 5 + 1� + 3 �� � 1� + 3 � 2 ln tX� tX + 1� + 1 t2X2�+ 6(� � 1)(�2 + 4� + 11)(� + 1)(� + 3)2(� + 5) 1X(��1)=2 Z X0 dt t(�+3)=2et � 1 # :(B20)One 
an also solve Eq. (4) in a similar manner. It 
anbe rewritten as follows:�I(x)�� =Z 2 ln 
max=
min�2 ln 2
min dsPC �s; 
min
max� I �e�s x4
2min�+ Z 2 ln 2
min�2 ln 
max=
min dsPIC �s; 
min
max� I �e�s4
2minx��I(x) : (B21)Then we introdu
e the following new fun
tions:Z 2 ln 1=R�2 ln 2
min dsPC (s;R) I �e�s x4
2min�� I1(x) + I2(x) ; (B22)Z 2 ln 2
min�2 ln 1=R dsPIC (s;R) I �e�s4
2minx�� I3(x) + I4(x) : (B23)In Eqs. (B22) and (B23), the fun
tions I1(x), ..., I4(x)are expressed as follows:I1(x) = Z 0�2 ln 2
min dsPC (s; 0) I �e�sX� ; (B24)I2(x) = Z 10 dsPC (s; 0) I �e�sX� ; (B25)I3(x) = Z 0�1 dsPIC (s; 0) I �e�sY � ; (B26)I4(x) = Z 2 ln 2
min0 dsPIC (s; 0) I �e�sY � ; (B27)

where we put R = 0 and used the variables X and Y .Introdu
ing t = e�sX into Eqs. (B24) and (B25) andt = e�sY into Eqs. (B26) and (B27), and inserting theexpli
it forms of Eqs. (40){(43), one obtains as follows:I1(x) = 3(� � 1)X3 Z xX dtt4 n� 2� + 5+ 1� + 3 �� � 1� + 3 � 2 ln tX� tX + 1� + 1 t2X2oI(t) ; (B28)I2(x) = 6(� � 1)(�2 + 4� + 11)(� + 1)(� + 3)2(� + 5) 1X(��1)=2� Z X0 dt t(��3)=2I(t) ; (B29)I3(x) = 6(� � 1)(�2 + 4� + 11)(� + 1)(� + 3)2(� + 5) x3Y (��1)=2� Z 1Y dt t�(�+7)=2I(t) ; (B30)I4(x) = 3(� � 1)x3Y Z Yx dtt3 n� 2� + 5 t2Y 2+ 1� + 3 �� � 1� + 3 + 2 ln tY � tY + 1� + 1oI(t) : (B31)Now let us 
onsider the CMB photon distribution fun
-tion I0(t) = I0t3n0(t) (B32)for the initial distribution, where I0 = (kBTCMB)3=2�2and n0(t) is given by Eq. (B14). Inserting Eq. (B32) intoEqs. (B28){(B31), one has for x� 1I1(x) = 3I0(� � 1)X3 Z 1X dtt 1et � 1n� 2� + 5+ 1� + 3 �� � 1� + 3 � 2 ln tX� tX + 1� + 1 t2X2o ; (B33)I2(x) = I0 6(� � 1)(�2 + 4� + 11)(� + 1)(� + 3)2(� + 5) 1X(��1)=2� Z X0 dt t(�+3)=2 1et � 1 ; (B34)I3(x) = 0 ; (B35)I4(x) = 0 : (B36)The last term in Eq. (B21) 
an be safely negle
ted forx� 1. Therefore, one obtains�I(x)�� = I1(x) + I2(x) : (B37)



12One �nally obtainsdI(X)d� = I0 �3(� � 1)X3 Z 1X dtt 1et � 1��� 2� + 5 + 1� + 3 �� � 1� + 3 � 2 ln tX� tX + 1� + 1 t2X2�+ 6(� � 1)(�2 + 4� + 11)(� + 1)(� + 3)2(� + 5) 1X(��1)=2 Z X0 dt t(�+3)=2et � 1 # :(B38)
Comparing Eq. (B38) with Eq. (B20), one has the fol-lowing relation:dn(X)d� = 1I0x3 dI(X)d� ; (B39)= 164
6min 1I0X3 dI(X)d� : (B40)
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