
Saling Laws in High-Energy Inverse Compton SatteringSatoshi Nozawa�Josai Junior College, 1-1 Keyakidai, Sakado-shi, Saitama, 350-0295, JapanYasuharu Kohyama and Naoki ItohDepartment of Physis, Sophia University, 7-1 Kioi-ho, Chiyoda-ku, Tokyo, 102-8554, Japan(Dated: January 19, 2012)Based upon the rate equations for the photon distribution funtion obtained in the previous paper,we study the inverse Compton sattering proess for high-energy nonthermal eletrons. Assumingthe power-law eletron distribution, we �nd a saling law in the probability distribution funtionP1(s), where the peak height and peak position depend only on the power index parameter. Wesolved the rate equation analytially. It is found that the spetral intensity funtion also has thesaling law, where the peak height and peak position depend only on the power index parameter. Thepresent study will be partiularly important to the analysis of the X-ray and gamma-ray emissionmodels from various astrophysial objets suh as radio galaxies and supernova remnants.PACS numbers: 95.30.Cq,95.30.Jx,98.65.Cw,98.70.VKeywords: osmology: osmi mirowave bakground | osmology: theory | galaxies: lusters: general |radiation mehanisms: nonthermal | relativityI. INTRODUCTIONThe inverse Compton sattering is one of the most fun-damental reations whih have variety of appliations toastrophysis and osmology. They are, for example, theSunyaev-Zeldovih (SZ) e�ets[1℄ for lusters of galax-ies (CG), osmi-ray emission from radio galaxies[2℄ andlusters of galaxies[3℄, and radio to gamma-ray emissionfrom supernova remnants[4, 5℄. Therefore, theoretialstudies on the inverse Compton sattering have beendone quite extensively for the last forty years, start-ing from the works by Jones[6℄, and Blumenthal andGould[7℄ to the reent works, for example, by Fargion[8℄,Colafraneso[9, 10℄, and Petruk[11℄.In partiular, remarkable progress has been made intheoretial studies for the SZ e�ets for CG. Wright[12℄and Rephaeli[13℄ alulated the photon frequeny redis-tribution funtion in the eletron rest frame, whih isalled as the radiative transfer method. On the otherhand, Challinor and Lasenby[14℄ and Itoh, Kohyama, andNozawa[15℄ solved the relativistially ovariant Boltz-mann ollisional equation for the photon distributionfuntion, whih is alled the ovariant formalism. Al-though the two are very di�erent approahes, the ob-tained results for the SZ e�et agreed extremely well.This has been a longstanding puzzle in the �eld of therelativisti study of the SZ e�et for the last ten years.Very reently, however, Nozawa and Kohyama[16℄ (de-noted NK hereafter) showed that the two formalisms wereindeed mathematially equivalent in the approximationof the Thomson limit. This explained the reason why thetwo di�erent approahes produed same results for the SZe�et even in the relativisti energies for eletrons.�Eletroni address: snozawa�josai.a.jp

In the present paper, we extend the formalism obtainedby NK to the ase of high-energy eletrons. This exten-sion will be partiularly interesting for the analysis ofX-ray and gamma-ray emissions, for example, from ra-dio galaxies[2℄ and supernova remnants[4, 5℄, where theinverse Compton sattering of the CMB photons o� non-thermal high-energy eletrons plays an essential role. Inthe present approah, we push analyti tehniques asmuh as possible in order to obtain analyti solutions. Inontrast to the diret numerial alulation, the presentapproah will have an advantage that one may reveal es-sential physis properties behind the numerial results.In the present paper, under a spei� ondition for theeletron distribution whih is typially realized, we willshow that a universal saling law is valid for the spetralintensity funtion.
The present paper is organized as follows: Startingfrom the rate equations derived in the NK paper, wederive in Se. II the analyti expressions for the redis-tribution funtion P (s; ) and probability distributionfuntion P1(s). Assuming the power-law eletron dis-tribution, we show that P1(s) has a saling law, wherethe peak height and peak position depend only on thepower index parameter. We alulated the rate equationand obtained the analyti expression for the spetral in-tensity funtion dI(X)=d� . We show that dI(X)=d� alsohas the saling law, where the peak height and peak po-sition depend only on the power index parameter. InSe. III we apply the saling law to the observation ofthe spetral intensity in the X-ray and gamma-ray en-ergy regions. Finally, onluding remarks are given inSe. IV.
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2II. HIGH-ENERGY INVERSE COMPTONSCATTERINGA. Rate Equations in Thomson ApproximationIn the NK paper, it was shown that the ovariantformalism[15℄ and radiative transfer method[12℄ weremathematially equivalent in the following (Thomson)approximation:  !m � 1 ; (1) = 1p1� �2 ; (2)where ! is the photon energy,  is the Lorentz fator, and� and m are the veloity and rest mass of the eletron,respetively. Throughout this paper, we use the natu-ral unit ~ =  = 1, unless otherwise stated expliitly.For the osmi mirowave bakground (CMB) photons(kBTCMB = 2:348 � 10�4eV), ! < 5 � 10�3eV is wellsatis�ed. Then !=m < 1� 10�8, whih implies  � 108.Therefore as far as the CMB photons are onerned,Eq. (1) is fully valid from non-relativisti eletrons toextreme-relativisti eletrons of the order of TeV region.The rate equations for the photon distribution funtionn(x) and spetral intensity funtion I(x) were derived inthe NK paper under the assumption of Eq. (1). Here,x = !=kBTCMB is the photon energy in units of thethermal energy of the CMB. We reall the results hereto make the present paper more self-ontained. They aregiven as follows[16, 17℄:�n(x)�� = Z 1�1 dsP1(s) [n(esx)� n(x)℄ ; (3)�I(x)�� = Z 1�1 dsP1(s) �I(e�sx) � I(x)� ; (4)� = ne�T t ; (5)where I(x) = I0x3n(x), I0 = (kBTCMB)3=2�2, ne is theeletron number density, �T is the Thomson satteringross setion. In Eqs. (3) and (4), P1(s) is the probabilitydistribution funtion for the photon of a frequeny shifts, whih is de�ned by es = x0=x,P1(s) = Z 1�min d��25pe(E)P (s; �) ; (6)P (s; �) = es2�4 Z �2(s)�1(s) d�0 1(1� ��0)2 f (�0; �00) ; (7)f(�0; �00) = 38 �1 + �20�020 + 12(1� �20)(1� �020 )� ; (8)where pe(E) is the eletron distribution funtion of a mo-mentum pwhih is normalized by R10 dpp2pe(E)=m3 = 1.Variables appearing in Eqs. (6) { (8) are summarized as

follows:�min = (1� e�jsj)=(1 + e�jsj) ; (9)�00 = [1� es(1� ��0)℄=� ; (10)�1(s) = � �1 for s � 0[1� e�s(1 + �)℄=� for s > 0 ; (11)�2(s) = � [1� e�s(1� �)℄=� for s < 01 for s � 0 : (12)The total probabilities for P (s; �) and P1(s) are givenby Z +����� dsP (s; �) = 1 ; (13)Z 1�1 dsP1(s) = 1 ; (14)where �� = ln�1 + �1� �� : (15)It should be noted that the following useful relationsP (s; �)e�3s = P (�s; �) ; (16)P1(s)e�3s = P1(�s) (17)are valid.B. P (s; �) for Extreme-Relativisti EletronsIn this setion, we derive the analyti expression ofthe frequeny redistribution funtion P (s; �) for extreme-relativisti eletrons. In Eq. (7), the integral of �0 anbe done analytially. One obtains as follows: for s < 0,P (s; �) = 332�24 ��C1(�)� C2(�)es + C3(�)e2s+C4(�)(�� + s)(es + e2s) + C1(�)e3s� ; (18)and for s � 0,P (s; �) = 332�24 �C1(�) + C3(�)es � C2(�)e2s+C4(�)(�� � s)(es + e2s)� C1(�)e3s� ; (19)where the oeÆients areC1(�) = 1�42 ; (20)C2(�) = 1�4(1 + �) �4�4 � �3 � 13�2 � 3� + 9� ; (21)C3(�) = 1�4(1� �) �4�4 + �3 � 13�2 + 3� + 9� ; (22)C4(�) = 2�4 ��2 � 3� : (23)



3Note that Eqs. (18) and (19) satisfy the relation ofEq. (16). It should be also noted that Eqs. (18) and(19) agree with Eqs. (23a) and (23b) of Fargion et al.[8℄,respetively.Now let us onsider the ase for eletrons of extreme-relativisti energies E (= m2) � m2. Thus,  � 1and � � 1 are assumed. In this approximation, Eqs. (18)and (19) are written as follows: for s < 0,P (s; ) = 3324 �� 12 + 2es + 82e2s�4 (� + s) �es + e2s�+ 12 e3s� ; (24)and for s � 0,P (s; ) = 3324 � 12 + 82es + 2e2s�4 (� � s) �es + e2s�� 12 e3s� ; (25)� = 2ln(2) ; (26)where the expression P (s; ) was used instead of P (s; �).Equations (24) and (25) an be integrated analytially.One obtains as follows: for s < 0,Z 0�� dsP (s; ) = O� 12� ; (27)and for s � 0,Z �0 dsP (s; ) = 1 +O� 12� : (28)In Eq. (28), the terms ontributing to O �1=2� are thehigher-order terms. Therefore one an eliminate the or-responding terms from Eq. (25), whih gives the new ex-pression for s � 0. Then the new expression for s < 0is obtained with the relation of Eq. (16). Therefore, thetotal probabilityZ +��� dsP (s; ) = 1 +O� 12� (29)is satis�ed for P (s; ). The expliit forms are as follows:for s < 0,P (s; ) = 3324 h� 12 + 2es + 82e2s�4 (� + s) esi ; (30)and for s � 0,P (s; ) = 3324 h82es + 2e2s�4 (� � s) e2s � 12 e3si : (31)

Let us now ompare the present results with the litera-ture. It is straightforward to show that Eqs. (30) and (31)are equivalent to Eqs. (38) and (40) of Jones[6℄, respe-tively. We show the equivalene between the present for-malism and Jones's formalism in Appendix A. It shouldbe also mentioned that Eqs. (24a) and (24b) of Fargionet al.[8℄ di�er from our Eqs. (30) and (31). The di�ereneomes from O(1=2) terms as mentioned in their paper.Before losing this subsetion, it should be also notedthe following: In the present formalism, the ases s � 0and s < 0 orrespond to the Compton sattering and in-verse Compton sattering, respetively. This is beauseof the de�nition x = e�sx0, where x0 and x are the en-ergies (in units of kBTCMB) of initial and �nal photons,respetively. Equations (27) and (28) suggest that prob-ability distribution for the CMB photon sattering byhigh-energy eletrons is dominated by the Compton sat-tering proess instead of the inverse Compton satteringproess.C. Saling Law of P1(s) for Nonthermal EletronsIn order to proeed alulation for pratial applia-tions, let us speify the eletron distribution funtion.High-energy eletrons in the supernova remnants and a-tive galati nulei, for example, are most likely nonther-mal. It is standard to desribe the nonthermal distribu-tion in terms of the power-law distribution funtion ofthree parameters:pe() = � N �� ; min �  � max0 ; elsewhere ; (32)where  is the Lorentz fator and N is the normalizationonstant. In Eq. (32), � is the power index parameter,min and max are parameters of minimum and maxi-mum values for , respetively. Then, Eq. (6) an bereexpressed as follows: for s < 0,P1(s) = Z maxmax(min;e�s=2=2) dpe()P (s; ) ; (33)where P (s; ) is given by Eq. (30), and for s � 0,P1(s) = Z maxmax(min;es=2=2) dpe()P (s; ) ; (34)where P (s; ) is given by Eq. (31). In deriving Eqs. (33)and (34), � � 1 was assumed, and the phase spae fator2 was absorbed, for simpliity, by the power index � inpe().In the ase of the power-law distribution of Eq. (32),equations (33) and (34) an be integrated analytially.The expliit forms are given as follows: for �2 ln 2max <



4s < �2 ln 2min,P1(s) = 332N �� 1� + 5 �2�+5e(�+5)s=2 � 1�+5max�+ 2� + 3 �� � 1� + 32�+3e(�+3)s=2� 1�+3max �� � 1� + 3 � 2s� 4 ln 2max�� es+ 8� + 1 �2�+1e(�+1)s=2 � 1�+1max� e2s� ; (35)for �2 ln 2min < s < 0,P1(s) = 332N �� 1� + 5 � 1�+5min � 1�+5max�+ 2� + 3 � 1�+3min �� � 1� + 3 � 2s� 4 ln 2min�� 1�+3max �� � 1� + 3 � 2s� 4 ln 2max�� es+ 8� + 1 � 1�+1min � 1�+1max� e2s� ; (36)for 0 < s < 2 ln 2min,P1(s) = 332N �� 1� + 5 � 1�+5min � 1�+5max� e3s+ 2� + 3 � 1�+3min �� � 1� + 3 + 2s� 4 ln 2min�� 1�+3max �� � 1� + 3 + 2s� 4 ln 2max�� e2s+ 8� + 1 � 1�+1min � 1�+1max� es� ; (37)and for 2 ln 2min < s < 2 ln 2max,P1(s) = 332N �� 1� + 5 �2�+5e�(�+5)s=2 � 1�+5max� e3s+ 2� + 3 �� � 1� + 32�+3e�(�+3)s=2� 1�+3max �� � 1� + 3 + 2s� 4 ln 2max�� e2s+ 8� + 1 �2�+1e�(�+1)s=2 � 1�+1max� es� : (38)It should be noted that the normalization onstant isgiven by N = (� � 1)��1min (39)for the ase max !1.Let us now introdue new funtions PC(s;R) andP 0IC(s;R) in order to express Eqs. (35){(38) in uni�edforms, where R = min=max. Here, C and IC denote

the Compton sattering and Inverse Compton satter-ing, respetively. First, we de�ne PC(s;R) as follows:for �2 ln 2min < s < 0,PC(s;R) = 3 � � 11�R��1 �� 2� + 5 �1�R�+5� e3s+ 1� + 3 �� � 1� + 3 + 2s�R�+3�� � 1� + 3 + 2s+ 4 lnR�� e2s+ 1� + 1 �1�R�+1� es� ; (40)and for 0 < s < 2 ln(max=min),PC(s;R) = 3 � � 11�R��1 �� 2� + 5 �e�(�+5)s=2 �R�+5� e3s+ 1� + 3 �� � 1� + 3e�(�+3)s=2�R�+3�� � 1� + 3 + 2s+ 4 lnR�� e2s+ 1� + 1 �e�(�+1)s=2 �R�+1� es� : (41)Similarly, P 0IC(s;R) is for �2 ln(max=min) < s < 0,P 0IC(s;R) = 3 � � 11�R��1 �� 2� + 5 �e(�+5)s=2 �R�+5�+ 1� + 3 �� � 1� + 3e(�+3)s=2�R�+3�� � 1� + 3 � 2s+ 4 lnR�� es+ 1� + 1 �e(�+1)s=2 �R�+1� e2s� ; (42)and for 0 < s < 2 ln 2min,P 0IC(s;R) = 3 � � 11�R��1 �� 2� + 5 �1�R�+5�+ 1� + 3 �� � 1� + 3 � 2s�R�+3�� � 1� + 3 � 2s+ 4 lnR�� es+ 1� + 1 �1�R�+1� e2s� : (43)It is straightforward to show thatPC(s;R)e�3s = P 0IC(�s;R) (44)is satis�ed by Eqs. (40){(43).Comparing Eqs. (35){(38) with Eqs. (40){(43), theprobability distribution funtion P1(s) is desribed as fol-lows:P1(s) = 8<: PIC(s+ 2 ln 2min; R) for s < 0PC(s� 2 ln 2min; R) for s � 0 ; (45)



5where PIC(s;R) � 1646minP 0IC(s;R) : (46)Let us now onsider the ase R � min=max � 1. We�x max = 108 throughout the paper. In Fig. 1(a), weplot P1(s) as a funtion of s for a typial value � = 2:5.The solid urve, dash-dotted urve, dashed urve, anddotted urve orrespond to min = 10, 102, 103, and104, respetively. It an be seen that the height of P1(s)is independent of min. In Fig. 1(b), we plot the sameurves as a funtion of new variable sC whih is de�nedby sC = s� 2 ln 2min : (47)In Fig. 1(b) the four urves are totally indistinguishable,whih exhibits a saling law for P1(s). The reason for thissaling law is as below. For large min � 1, as shown byFigs. 1(a), 1(b), and Eqs. (45) and (46), the probabilitydistribution funtion P1(s) is dominated by PC(sC ; 0),i.e. by the Compton sattering proess.Before losing this subsetion, we study the �-dependenes on the peak position speak and peak heightP1(speak). As shown in Figs. 1(a) and 1(b), the min-dependene of P1(s) is desribed by Eq. (47), namely, s= sC+2 ln 2min. Therefore, we de�ne the peak positionby speak = s(�) + 2 ln 2min ; (48)where s(�) depends only on �. The peak position isalulated by solving the equation�P1(s)�s ����speak = 0 : (49)The analyti expressions for s(�) in the �rst-order andthird-order approximations are given as follows:s1st(�) = � (� � 1)(�2 + 4� + 11)5�3 + 23�2 + 51� + 17 ; (50)s3rd(�) = � 12(4�2 + 21� + 29)"3�2 + 14� + 19 (51)+ p(� + 1)2A3 +B2 +B� + 1 !1=3� p(� + 1)2A3 +B2 �B� + 1 !1=335 ; (52)A = 7�4 + 64�3 + 254�2 + 520� + 451 ; (53)B = 3�7 � 21�6 � 582�5 � 4378�4 � 18589�3�48333�2 � 70688�� 44036 : (54)We also solved Eq. (49) numerially and obtained thenumerial solution snum(�). In Figs. 2(a) and 2(b), we

FIG. 1: Plotting of P1(s) and P1(sC) for � = 2:5. Figures 1(a)and 1(b) are P1(s) and P1(sC), respetively. The solid urve,dash-dotted urve, dashed urve, and dotted urve orrespondto min = 10, 102, 103, and 104, respetively.plot s(�) and P1(speak), respetively. The dashed urve,dash-dotted urve, and solid urve orrespond to s1st(�),s3rd(�) and snum(�), respetively. In Fig. 2(b), the solidurve and dash-dotted urve are indistinguishable. It anbe seen from Figs. 2(a) and 2(b) that the third-order ap-proximation is suÆiently aurate for the present pur-poses.D. Saling Law for Spetral Intensity FuntionLet us now solve the rate equations of Eqs. (3) and(4) with the result of Eq. (45) for P1(s). We onsiderthe CMB photons for the initial distribution. For theinverse Compton sattering by high-energy eletrons, weare interested in high-energy spetrum suh as X-rays(� keV) and gamma-rays (� MeV). Therefore, one ansafely assume x � !kBTCMB � 1 (55)
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FIG. 2: Plotting of s(�) and P1(speak). Figures 2(a) and 2(b)are s(�) and P1(speak), respetively. The dashed urve, dash-dotted urve, and solid urve orrespond to the �rst-orderapproximation, third-order approximation, and numerial so-lution, respetively.for sattered photons. For the -parameters, we assumethe same ondition used in the saling law for P1(s),namely, 1� min � max : (56)Under these assumptions, Eqs. (3) and (4) are muh sim-pli�ed, and an be solved analytially. The derivation isstraightforward, however, it is lengthy. Therefore, wegive the derivation in Appendix B in detail, and quotethe �nal results here.Aording to Eqs. (B38) and (B40), one has the fol-

lowing results:dI(X)d� = I0 �3(� � 1)X3 Z 1X dtt 1et � 1��� 2� + 5 + 1� + 3 �� � 1� + 3 � 2 ln tX� tX + 1� + 1 t2X2�+ 6(� � 1)(�2 + 4� + 11)(� + 1)(� + 3)2(� + 5) 1X(��1)=2 Z X0 dt t(�+3)=2et � 1 # ; (57)dn(X)d� = 1646min 1I0X3 dI(X)d� ; (58)X = x42min ; (59)where I0 = (kBTCMB)3=2�2. It should be empha-sized that the funtion dI(X)=d� depends on min onlythroughX . Therefore, dI(X)=d� has the saling law. Onthe other hand, the funtion dn(X)=d� does not have thesaling law beause of the fator 1/646min in Eq. (58).For X � 1, Eq. (57) is further simpli�ed as follows:dI(X)d� = I0 6(� � 1)(�2 + 4� + 11)(� + 1)(� + 3)2(� + 5)���� + 52 � � �� + 52 �X�(��1)=2 ; (60)�(z) = 1�(z) Z 10 dt tz�1et � 1 ; (61)where �(z) is the Riemann's zeta funtion. We allEq. (60) the power-law approximation.In Fig. 3, we plot dI(X)=d� of Eq. (57) as a funtionof X for typial �-values for illustrative purposes. Thedashed urve, dash-dotted urve, and solid urve orre-spond to �=2.5, 3.5, and 4.5, respetively. The peak po-sition and peak height depend only on the power-indexparameter. It should be noted that dI(X)=d� / X forX � 1, and dI(X)=d� / X�(��1)=2 for X � 1. There-fore, the slope of the downward urves in Fig. 3 will de-termine the �-value.In Figs. 4(a) and 4(b), we plot the peak position andpeak height of the spetral intensity funtion as a fun-tion of �, respetively. The solid urves orrespond to thenumerial values. The dash-dotted urves are the resultsof analytial �tting funtions. They are given byXpeak = 1 + 1� �a0 + a1�1=4 + a2�1=2� ; (62)dI(Xpeak)d�I0 = 34 � �4 + 6� + �2�(b0 + b1� + b2�2 +�3) ; (63)� � � � 1 : (64)The �tting parameters are a0=�2.18351, a1=5.37131and a2=�2.02638 for the peak position, and b0=2.60331,b1=6.6352 and b2=5.6526 for the peak height. The er-rors of the �tting funtions in the region 2 � � � 10 areless than 0.15% and 0.10% for Xpeak and dI(Xpeak)=d� ,



7

FIG. 3: Plotting of dI(X)=d� . The dashed urve, dash-dottedurve, and solid urve orrespond to � = 2.5, 3.5, and 4.5,respetively.respetively. In Fig. 4, two urves are totally indistin-guishable.Before losing this setion, let us ompare the presentresult with the literature. In the textbook by Rybiki andLightman[18℄, the expression for the power-law approxi-mation is given by Eq. (7.31). The saling law is hiddenin the expression of Eq. (7.31). Inserting the expliitform of the normalization onstant C = ne(� � 1)��1minin Eq. (7.31), one �nally obtains as follows:dEdV d�d�1 / I0G(�)X�(��1)=2 ; (65)G(�) = 6(� � 1)(�2 + 4� + 11)(� + 1)(� + 3)2(� + 5)���� + 52 � � �� + 52 � ; (66)whih agrees with Eq. (60). The appliable range of thepower-law approximation of Eq. (7.31) is given[18℄ by42min � �1�� � 42max ; (67)where �� is a typial energy of initial photon distribution.In the ase of the CMB photon distribution, one an use�� = kBTCMB . Therefore, one obtains the ondition for

FIG. 4: Plotting of the peak position and peak height of thespetral intensity funtion as a funtion of �. The solid urvesorrespond to the numerial values. The dash-dotted urvesare the results of the analytial �tting funtions.X as follows: 1� X � 1R2 ; (68)whih again agrees with the ondition of the present pa-per. It is needless to mention that the full expression ofEq. (57) has to be used for X � O(1) as shown in Fig. 3.III. ASTROPHYSICAL APPLICATIONS OFSCALING LAWSA. X-ray regionIn the present setion, we show an appliation of thesaling law. Reently, observational studies on the in-verse Compton sattering have been done quite exten-
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FIG. 5: Plotting of dI(X)=d� as a funtion of the photonenergy ! in X-ray energy regions for a typial value �=2.5.Figures 5(a), 5(b), 5() and 5(d) orrespond to min=500,1�103, 2�103 and 3�103, respetively. The solid urve or-responds to the full alulation of Eq. (57). The dash-dottedurve is the power-law approximation of Eq. (60).sively, for example, X-ray observations from radio galax-ies with Chandra[19, 20℄.In Fig. 5, we plot dI(X)=d� as a funtion of the pho-ton energy ! in X-ray energy region for a typial value�=2.5. Figures 5(a), 5(b), 5() and 5(d) orrespond tomin=500, 1�103, 2�103 and 3�103, respetively. Thesolid urve orresponds to the full alulation of Eq. (57).The dash-dotted urve is the power-law approximation ofEq. (60). In Fig. 5, the peak height is independent of themin-values as pointed in the last setion. On the otherhand, the peak position is shifting toward to high-energyside as the min-value inreases.By measuring the slope of the downward urve inFig. 5, one an determine the �-value, beausedI(!)d� / !�(��1)=2 (69)is valid. One an also determine the �-value by mea-suring the peak height in Fig. 5 with the expression of

Eq. (63). This will serve as an independent hek forthe �-value. On the other hand, the min-value is deter-mined by measuring the peak position !peak in Fig. 5.Using the relation of !peak with Xpeak , namely,Xpeak = 142min !peakkBTCMB ; (70)the min-value is determined bymin = � 14Xpeak !peakkBTCMB �1=2 ; (71)where Xpeak is alulated by the RHS of Eq. (62) withthe measured �-value. It an be seen from Fig. 5 thatthe X-ray observations have sensitivities to min=500 �3�103 region.Before losing this subsetion, let us study the appli-ability of the power-law approximation used in the lit-erature. The ondition for the power-law approximationX � 1 reads ! � 42minkBTCMB : (72)In the ase of min = 1�103, for example, one has ! � 1keV. As shown in Fig. 5(b), the error of the power-lawapproximation is quite large in ! � O(1) keV region.B. gamma-ray regionWith the saling law for the spetral intensity fun-tion, one an extend the present formalism to the gamma-ray region. In Fig. 6, we plot the same �gure as Fig. 5for the gamma-ray region. Beause of the saling law,the fator p1000(� 31:6) should be simply multiplied tothe min-values of the keV region in order to obtain thespetral intensity funtion in the MeV region. Therefore,observations in this energy region will have sensitivitiesto min=16�103 � 95�103 region. Similarly, the fator1000 should be multiplied to the min-values of the keVregion in order to obtain the parameter values in the GeVregion. IV. CONCLUDING REMARKSIn the NK paper[16℄, we derived the frequeny redistri-bution funtion P (s; �) for a frequeny shift s and ele-tron veloity �. The form was derived in the Thomsonapproximation, however, it was mathematially equiva-lent to that in the ovariant formalism[15℄. Therefore thefrequeny redistribution funtion an be appliable fromnonrelativisti eletrons to extreme-relativisti eletrons.In the present paper, we have extended the formal-ism to extreme-relativisti eletrons. First, we derivedthe analyti expression for P (s; ) in the approximation � 1. It has been found that the present formalism isequivalent to Jones's formalism[6℄.
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FIG. 6: Plotting of dI(X)=d� as a funtion of the photonenergy ! in gamma-ray energy regions for a typial value�=2.5. Figures 6(a), 6(b), 6() and 6(d) orrespond tomin=15.8�103, 31.6�103, 63.2�103 and 94.9�103 , respe-tively. The solid urve orresponds to the full alulation ofEq. (57). The dash-dotted urve is the power-law approxima-tion of Eq. (60).By averaging P (s; ) over the nonthermal eletron dis-tribution funtion, we have alulated the probability dis-tribution funtion P1(s). As for the nonthermal distri-bution funtion, we have adopted a standard power-lawdistribution funtion of three parameters: the power in-dex �, minimum value min, and maximum value max ofthe distribution range. For the ase min � 1, we havefound a saling law in P1(s), where the peak positiondepends on s � 2 ln 2min, and the peak height dependsonly on the power index parameter �.We have alulated the spetral intensity funtion. Forthe ase of high-energy photons of x� 1, we have founda saling law in dI(x)=d� , where the funtion depends ona new variable X = x=(42min). The peak position andpeak height depend only on the power index parameter�. The min-dependene of dI(X)=d� is inluded in thevariable X .We have applied the present formalism to the observa-

tion of the spetral intensity funtion in the X-ray andgamma-ray energy regions. It has been found that thesensitivities of the observation in the X-ray and gamma-ray regions are min=500 � 3�103 and min=16�103 �95�103, respetively.Finally, we have studied the appliability of the power-law approximation used in the literature. In the ase ofmin = 1 � 103, for example, the error of the power-lawapproximation is quite large in ! � O(1) keV region.AknowledgmentsThis work is �nanially supported in part by theGrant-in-Aid of Japanese Ministry of Eduation, Cul-ture, Sports, Siene, and Tehnology under the ontrat#21540277. We would like to thank our referee for valu-able suggestions.APPENDIX A: COMPARISON WITH JONES'SFORMALISMThe double di�erential ross setions for extreme-relativisti eletrons are given by Eqs. (38) and (40) ofJones's paper[6℄ as follows:d2Ndtd� = 2�r20�12 "2q ln q + (1 + 2q)(1� q)# ; (A1)d2Ndtd� = �r202�14 �(q0 � 1)�1 + 2q0�� 2 ln q0� : (A2)The variables in Eqs. (A1) and (A2) are related to thevariables of the present paper as follows: �T = 8�r20=3,�=�1 = e�s, q = e�s=42, q0 = 42e�s, � = �CMBx,where �CMB = kBTCMB=m2. With these variables,Eqs. (A1) and (A2) are rewritten as follows:d2Ndtdx = 3�T 324 1xe�3sh� 12 + 2es + 82e2s�4 (� + s) esi ; (A3)d2Ndtdx = 3�T 324 1xe�3sh82es + 2e2s�4 (� � s) e2s � 12 e3si : (A4)Let us denote the photon distribution funtion inJones's formalism as nJ(�1). Then one hasnJ(�1)d�1 = m3e�2(~)3 �21e�1=�CMB � 1d�1= (kBTCMB)3�2(~)3 x3e3sn(esx)ds ; (A5)where n(esx) = 1=(eesx � 1). Averaging Eqs. (A3) and(A4) over the photon momentum with the distribution



10funtion, one �nally obtainsZ d2NdtdxnJ(�1)d�1 = (kBTCMB)3�2(~)3 �T x2� Z dsPJ (s; )n(esx) ; (A6)where the redistribution funtion in Jones's formalism isgiven byPJ (s; ) = 3324 h� 12 + 2es + 82e2s�4 (� + s) esi ; (A7)PJ (s; ) = 3324 h82es + 2e2s�4 (� � s) e2s � 12 e3si : (A8)Comparing Eqs. (A7) and (A8) with Eqs. (30) and (31),respetively, one �ndsP (s; ) = PJ (s; ) ; (A9)whih shows the equivalene of the two formalisms forextreme-relativisti eletrons.APPENDIX B: DERIVATION OF EQUATIONS(57) AND (58)We assume x � 1 for the sattered photons, and 1�min � max for the -parameters. Let us �rst solveEq. (3). It an be rewritten as follows:�n(x)�� =Z 2 lnmax=min�2 ln 2min dsPC �s; minmax�n �es42minx�+ Z 2 ln 2min�2 ln max=min dsPIC �s; minmax�n�es x42min��n(x) : (B1)Then we introdue the following new funtions:Z 2 ln 1=R�2 ln 2min dsPC (s;R)n �es42minx�� n1(x) + n2(x) ; (B2)Z 2 ln 2min�2 ln 1=R dsPIC (s;R)n�es x42min�� n3(x) + n4(x) ; (B3)

where R � min=max. In Eqs. (B2) and (B3), the fun-tions n1(x), ..., n4(x) are expressed as follows:n1(x) = Z 0�2 ln 2min dsPC (s; 0)n (esY ) ; (B4)n2(x) = Z 10 dsPC (s; 0)n (esY ) ; (B5)n3(x) = Z 0�1 dsPIC (s; 0)n (esX) ; (B6)n4(x) = Z 2 ln 2min0 dsPIC (s; 0)n (esX) : (B7)In deriving Eqs. (B4){(B7), we put R = 0 and used newvariables: X � x42min ; (B8)Y � 42minx : (B9)Introduing t = esY into Eqs. (B4) and (B5) and t = esXinto Eqs. (B6) and (B7), and inserting the expliit formsof Eqs. (40){(43), one obtains as follows:n1(x) = 3(� � 1) 1Y Z Yx dtn� 2� + 5 t2Y 2+ 1� + 3 �� � 1� + 3 + 2 ln tY � tY + 1� + 1on(t) ; (B10)n2(x) = 6(� � 1)(�2 + 4� + 11)(� + 1)(� + 3)2(� + 5) Y (��1)=2� Z 1Y dtt�(�+1)=2n(t) ; (B11)n3(x) = 6(� � 1)(�2 + 4� + 11)(� + 1)(� + 3)2(� + 5) 1x3 1X(��1)=2� Z X0 dt t(�+3)=2n(t) ; (B12)n4(x) = 3(� � 1)X3x3 Z xX dtt n� 2� + 5+ 1� + 3 �� � 1� + 3 � 2 ln tX� tX + 1� + 1 t2X2on(t) :(B13)Now let us onsider the CMB photon distribution fun-tion n0(t) = 1et � 1 (B14)for the initial distribution. Inserting Eq. (B14) intoEqs. (B10){(B13), one has for x� 1n1(x) = 0 ; (B15)n2(x) = 0 ; (B16)



11n3(x) = 6(� � 1)(�2 + 4� + 11)(� + 1)(� + 3)2(� + 5) 1x3 1X(��1)=2� Z X0 dt t(�+3)=2 1et � 1 ; (B17)n4(x) = 3(� � 1)X3x3 Z 1X dtt 1et � 1n� 2� + 5+ 1� + 3 �� � 1� + 3 � 2 ln tX� tX + 1� + 1 t2X2o : (B18)The last term in Eq. (B1) an be safely negleted forx� 1. Therefore, one obtains�n(x)�� = n3(x) + n4(x) : (B19)One �nally obtainsdn(X)d� = 1x3 �3(� � 1)X3 Z 1X dtt 1et � 1��� 2� + 5 + 1� + 3 �� � 1� + 3 � 2 ln tX� tX + 1� + 1 t2X2�+ 6(� � 1)(�2 + 4� + 11)(� + 1)(� + 3)2(� + 5) 1X(��1)=2 Z X0 dt t(�+3)=2et � 1 # :(B20)One an also solve Eq. (4) in a similar manner. It anbe rewritten as follows:�I(x)�� =Z 2 ln max=min�2 ln 2min dsPC �s; minmax� I �e�s x42min�+ Z 2 ln 2min�2 ln max=min dsPIC �s; minmax� I �e�s42minx��I(x) : (B21)Then we introdue the following new funtions:Z 2 ln 1=R�2 ln 2min dsPC (s;R) I �e�s x42min�� I1(x) + I2(x) ; (B22)Z 2 ln 2min�2 ln 1=R dsPIC (s;R) I �e�s42minx�� I3(x) + I4(x) : (B23)In Eqs. (B22) and (B23), the funtions I1(x), ..., I4(x)are expressed as follows:I1(x) = Z 0�2 ln 2min dsPC (s; 0) I �e�sX� ; (B24)I2(x) = Z 10 dsPC (s; 0) I �e�sX� ; (B25)I3(x) = Z 0�1 dsPIC (s; 0) I �e�sY � ; (B26)I4(x) = Z 2 ln 2min0 dsPIC (s; 0) I �e�sY � ; (B27)

where we put R = 0 and used the variables X and Y .Introduing t = e�sX into Eqs. (B24) and (B25) andt = e�sY into Eqs. (B26) and (B27), and inserting theexpliit forms of Eqs. (40){(43), one obtains as follows:I1(x) = 3(� � 1)X3 Z xX dtt4 n� 2� + 5+ 1� + 3 �� � 1� + 3 � 2 ln tX� tX + 1� + 1 t2X2oI(t) ; (B28)I2(x) = 6(� � 1)(�2 + 4� + 11)(� + 1)(� + 3)2(� + 5) 1X(��1)=2� Z X0 dt t(��3)=2I(t) ; (B29)I3(x) = 6(� � 1)(�2 + 4� + 11)(� + 1)(� + 3)2(� + 5) x3Y (��1)=2� Z 1Y dt t�(�+7)=2I(t) ; (B30)I4(x) = 3(� � 1)x3Y Z Yx dtt3 n� 2� + 5 t2Y 2+ 1� + 3 �� � 1� + 3 + 2 ln tY � tY + 1� + 1oI(t) : (B31)Now let us onsider the CMB photon distribution fun-tion I0(t) = I0t3n0(t) (B32)for the initial distribution, where I0 = (kBTCMB)3=2�2and n0(t) is given by Eq. (B14). Inserting Eq. (B32) intoEqs. (B28){(B31), one has for x� 1I1(x) = 3I0(� � 1)X3 Z 1X dtt 1et � 1n� 2� + 5+ 1� + 3 �� � 1� + 3 � 2 ln tX� tX + 1� + 1 t2X2o ; (B33)I2(x) = I0 6(� � 1)(�2 + 4� + 11)(� + 1)(� + 3)2(� + 5) 1X(��1)=2� Z X0 dt t(�+3)=2 1et � 1 ; (B34)I3(x) = 0 ; (B35)I4(x) = 0 : (B36)The last term in Eq. (B21) an be safely negleted forx� 1. Therefore, one obtains�I(x)�� = I1(x) + I2(x) : (B37)



12One �nally obtainsdI(X)d� = I0 �3(� � 1)X3 Z 1X dtt 1et � 1��� 2� + 5 + 1� + 3 �� � 1� + 3 � 2 ln tX� tX + 1� + 1 t2X2�+ 6(� � 1)(�2 + 4� + 11)(� + 1)(� + 3)2(� + 5) 1X(��1)=2 Z X0 dt t(�+3)=2et � 1 # :(B38)
Comparing Eq. (B38) with Eq. (B20), one has the fol-lowing relation:dn(X)d� = 1I0x3 dI(X)d� ; (B39)= 1646min 1I0X3 dI(X)d� : (B40)
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