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MINIMAX THECREMS AND THE NASH EQUILIBRIA
ON GENERALIZED CONVEX SPACES
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ABSTRACT. We obtain minimax theorems and the Nash equilibrium theorem for
G-convex spaces. Our new results extend and unify a number of known results for
particular types of G-convex spaces. Finally, we compare our new results with the
celebrated minimax theorem of H. Konig.

1. INTRODUCTION

The numerous applications and generalizations of John von Neumann’s classical
minimax theorem [Ne] constitute an important chapter of modern convex analysis.
One of the main purposes of these generalizations was to eliminate the underlying
convexity structure from the original hypothesis.

On the other hand, the convexity of subsets of topological vector spaces was
extended to convex spaces by Lassonde, to C-spaces (or H-spaces) by Horvath
(H], and to G-convex spaces (or generalized convex spaces) by the author; for the
literature, see [P1-6, PK1-6]. It is known that the KKM theory, fixed point theory,
and other equilibrium results are now well-developed for these abstract convexities.

In this paper, we obtain minimax theorems and the Nash equilibrium theorem
for G-convex spaces. Our new results extend and unify a number éf known results

for particular types of G-convex spaces.

This research is partially supported by the SNU-Daewoo Research Fund in 1998.
E-mail:shpark@math.snu.ac.kr. Fax: +82-2-887-4694.

33



In Section 3, from a coincidence theorem, we deduce the von Neumann-Sion
type minimax theorems for G-convex spaces. In Section 4, from a Fan—-Browder
type fixed point theorem, we deduce the Ky Fan intersection theorem, another
minimax theorem, and the Nash equilibrium theorem for G-convex spaces. Finally,
Section 5 deals with the comparison of our results with the celebrated minimax

theorem due to H. Konig [K61,2].

2. PRELIMINARIES

A generalized convez space or a G-convez space (X, D;T") consists of a topolog-
ical space X, a nonempty subset D of X, and a multimap I' : (D) — X such
that for each A € (D) with the cardinality |A| = n + 1, there exists a continuous
function ¢4 : A, — I'(A) such that J € (4) implies ¢ 4(As) C T'(J). Note that
®ala, can be regarded as ¢ .

Here, (D) denotes the set of all nonempty finite subsets of D, A, the standard
n-simplex, and A the face of A, corresponding to J € (A). We may write
I'y =T(A) for each A € (D), and (X,T) = (X, X;T). A subset C of X is said to
be I'-convez if for each A € (D), A C C implies I'y C C. For details on G-convex
spaces, see [P1-6, PK1-6], where basic theory was extensively developed.

Major examples of other G-convex spaces than convex spaces or C-spaces are
metric spaces with Michael’s convex structure, Pasicki’s S-contractible spaces,
Horvath’s pseudoconvex spaces, Komiya’s convex spaces, Bielawski’s simplicial
convexities, Joo’s pseudoconvex spaces, and topological semilattices with path-
connected intervals. For the literature, see [PK1-6].

Recently, we gave new examples of G-convex spaces and, simultaneously, showed
that some abstract convexities of other authors are simple particular examples of
our G-convexity; see [P6]. Such examples are L-spaces of Ben-El-Mechaiekh et al.,
continuous images of C-spaces, Verma's generalized H-spaces, Kulpa’s simplicial
structures, P; -spaces of Forgo and Jod, generalized H-spaces of Staché, and me-
spaces of Llinares. Moreover, Ben-El-Mechaiekh et al. [BC] gave examples of

G-convex spaces (X,I') as follows: B’-simplicial convexity, hyperconvex metric
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spaces due to Aronszajn and Panitchpakdi, and Takahashi’s convexity in metric
spaces.

A nonempty topological space is acyclic if all of its reduced Cech homology
groups over rationals vanish. For topological spaces X and Y, a multimap T .:
X —o Y is called an acyclic map if it is upper semicontinuous (u.s.c.) with compact
acyclic values.

A polytope is a convex hull of a finite subset in a topological vector space.

Given a class X of maps, X(X,Y") denotes the set of maps F' : X —o Y belonging
to X, and X, the set of finite compositions of maps in X.

A class 2 of maps is one satisfying the following properties:

(1) A contains the class C of (single-valued) continuous functions;

(2) each F' € 2, is u.s.c. and compact-valued; and

(3) for any polytope P, each F € (P, P) has a fixed point.

Examples of 2 are C, the Kakutani maps K (with convex values and codomains
are convex spaces), the Aronszajn maps M (with Rs values), the acyclic maps
V (with acyclic values), the Powers maps V., the O’Neill maps N (continuous
with values consisting of one or m acyclic componén’ss, where m is fixed), the ap-
proachable maps A in uniform spaces, admissible maps in the sense of Gérniewicz,
permissible maps of Dzedzej, and many others.

We introduce one more classes:

F e A5(X,Y) <= for any compact subset K of X, thereis a I' € 2A(K,Y)
such that T'(z) C F(z) for each z € K.

Note that 2 C 2, C 2A5. Any subclass of AF will be called admissible. For
details, see [PK1,2].

Recall that an extended real function f : X — R on a topological space X is
lower [resp. upper] semicontinuous (Ls.c.) [resp. (u.s.c.)] if {z € X : f(z) > r}
[resp. {z € X : f(z) < r}] is open for each r € R.

We begin with the following particular form of a coincidence theorem of Park
and Kim [PK2,3, Theorem 1]:



Theorem 0. Let (X,T") be a G-convex space, Y a Hausdorff space, and F,G :
X —o Y maps satisfying

(0.1) F € AL(X,Y) is compact;

(0.2) for each y € F(X), G (y) is I'-convex; and

(0.3) F(X) C | {IntG(z) : z € X}.
Then F and G have a coincidence point xo € X; that is, F(zo) N G(zo) # 0.

The following continuous selection theorem is due to the author [P4]:

Lemma 1. Let Y be a Hausdorff space, (X,T") a G-convex space, and T : Y — X
a map satisfying

(1) T(y) is I-convex for eachy € Y; and

2) Y =U{ImtT (z):2 € X}.
Then T € C*(Y,X) C AL(Y,X). More precisely, for any nonempty compact
subset K of Y, T|k has a continuous selection f : K — X; that is, f(y) € T(y)
for all y € K, such that f(K) C I'4 for some A € (X).

3. MINIMAX THEOREMS

In this section, we obtain the von Neumann—Sion type minimax theorems for
G-convex spaces.

The following 1s basic:
Theorem 1. Let (X,T') and (Y,I") be G-convex spaces with Y Hausdorff and
F,G: X — Y maps such that

(1.1) F is compact, F(z) is I'-convex for each z € X, and X = {J{Int F~(y) :
y € Y}; and
(1.2) G (y) is I'-convex for each y € F(X) and F(X) C | J{IntG(z) : z € X }.

Then F' and G have a coincidence point.

Proof. By Lemma 1, (1.1) implies that ' € 2f(X,Y) and F is compact. Moreover,
(1.2) implies that conditions (0.2) and (0.3) are satisfied. Therefore, by Theorem
0, F and G have a coincidence point.

From Theorem 1, we deduce the following von Neumann-Sion type minimax

theorem for G-convex spaces:
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Theorem 2. Let (X,T") and (Y,I") be G-convex spaces, Y Hausdorff compact,
f: X xY — R an extended real function, and p := sup, ¢ x infyey f(z,y).
Suppose that

(2.1) f(z,)isls.c. onY and {y € Y : f(z,y) <r} is I'-convex for each z € X
and r > p; and

(2.2) f(-,y)isus.c. on X and {z € X : f(z,y) > r} is ['-convex for eachy € Y
and r > p.

Then

sup min f(z,y) = min sup flz,y).
zeX ¥EY yeY

Proof. Since f(z,-) is ls.c. on the compact space Y, p(z) = minyey f(z,y)
exists for each z € X. Since ¢(y) := sup,cx f(z,y) is ls.c. for each y € Y,
g(yo) = minyey ¢(y) exists. Note that

p(e) = mip f(2,y) < f=z,y) < sup f(z,v) = oy)
for all z € X and y € Y. Therefore, we have
< min .

sup p(z) < ming(y)

Suppose that the equality does not hold. Then there exists an r» > p such that
= sup p(z) < r < minq(y).

zeX yeY

We define multimaps F,G: X — Y by
Flz)={yeY : :f(z,y)<r}and G(z)={y €Y : f(z,y) >r}

for z € X. Then F(z) is nonempty and I''-convex by (2.1), and G(z) is open since
f(z,-) is Ls.c. Moreover,

Fyy={ceX:flz,y)<r}and G (y)={z € X : f(z,y) >r}

for y € Y. Then F~(y) is open since f(-,y) is us.c. by (2.2), and G7(y) is
nonempty and I'-convex. Now, by applying Theorem 1, there exist an o € X and
a yo € Y such that yo € F(zo) N G(zo) # 0. This leads a contradiction

f(zo,90) <1 < f(20,%0)-

This completes our proof.
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Corollary. Under the hypothesis of Theorem 2, further if X is compact, then f
has a saddle point (zg,y0) € X X Y such that

Iglea%f(z,yo) = f(zo,y0) = Iy%gf(%ﬂ)

Proof. Since f(z,-) and f(-,y) are Ls.c. and u.s.c., resp., p(z) := minyey f(z,v)
and ¢(y) := max;ex f(z,y) exist for each z € X and y € Y. Since p is u.s.c. on
X and ¢ is ls.c. on Y, we have max;ex p(z) = p(zo) and mingey ¢(y) = ¢(vo)
for some zo € X and yg € Y. Then (z¢,yo) is a saddle point by Theorem 2. This

completes our proof.

Particular Forms. We list historically well-known particular forms of Theorem
2 and Corollary in chronological order:

1. von Neumann [Ne], Kakutani [K]: X and Y are compact convex subsets of
Euclidean spaces and f is continuous.

2. Nikaidd [Ni]: Euclidean spaces in the above are replaced by Hausdorff topo-
logical vector spaces, and f is continuous in each variable.

3. Sion [S]: X and Y are convex spaces in Theorem 2 and Corollary.

4. Komiya [K, Theorem 3]: X and Y are compact convex spaces in the sense
of Komiya.

5. Bielawski [Bi, Theorem (4.13)]: X and Y are compact spaces having certain
simplicial convexities.

6. Horvath [H, Prop. 5.2]: X and Y are C-spaces with ¥ compact.

Remark. In 4 and 6 above, Hausdorfiness of Y is assumed since they used the
partition of unity argument. However, 3 and 5 were based on the corresponding

KKM theorems which need not the Hausdorffness of Y'; see Theorem 5 below.

From Theorem 0 for the subclass V of 2F, we have another minimax theorem:
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Theorem 3. Let (X,T") and (Y,I") be G-convex spaces, Y Hausdorff compact,
f: X xY — R als.c. function, and p := sup,cx infyex f(z,y). Suppose that
(3.1) for cach r > pandy €Y, {z € X : f(z,y) > r} is [-convex; and
(3.2) foreachr > pandz € X, {y € X : f(z,y) <r} is acyclic.
Then

sup mm flz,y) = rréxn sup flz,y).

Proof. As in the proof of Theorem 2, we have
sup min f(z,y) < min su z,Yy).
ze§ yey f( 2 yeY xe)% At y)
Suppose that the equality does not hold. Then there exists an r > u such that

o= 5upm1nf(:1: y)<r< mmsup fz,y).
zeX ¥€

We define multimaps F,G : X — Y by

Flz)={yeY: f(z,y) <r}and G(z) = {y € Y : f(z,y) > r}

for z € X. Then F(z) is nonempty and closed since f(z,-)is Ls.c. foreach z € X.
On the other hand, G(z) is open since f(z,-) is L.s.c. Moreover, for each y € Y,

G (y)={z e X: f(z,y) >r}
is nonempty and I'-convex by (3.1). Therefore, conditions (0.2) and (0.3) are

satisfied.
Consider the graph of F

Gr(F)={(z,y) e X x Y : f(z,y) <r}.

Since f is l.s.c., Gr(F') is closed in X x Y. Since Y is compact, F' is u.s.c. Note

that each F(z) is closed and acyclic by (3.2). Hence F is an acyclic map.
Therefore, by Theorem 0 for V instead of 27, there exists an zq € X such that

F(zo) N G(zo) # 0. This leads a contradiction as in the proof of Theorem 2.

Particular Forms. 1. von Neumann [Ne], Kakutani [K]: X and Y are compact
convex subsets of Euclidean spaces, f is continuous, and I'-convexity and acyclicity
are replaced by convexity.

2. Nikaidé [Ni]: Euclidean spaces were replaced by Hausdorff topological vector
spaces in the above.
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4. THE NASH EQUILIBRIUM THEOREM

In this section, from a Fan-Browder type fixed point result for G-convex spaces,
we deduce the Ky Fan intersection theorem, another minimax theorem, and the
Nash equilibrium theorem for G-convex spaces.

The following is known:

Lemma 2. Let (X,T') be a compact G-convex space and T : X — X a map such
that

(1) T(z) is nonempty and ['-convex for each z € X; and
(2) T~ (y) is open for eachy € X.

Then T has a fixed point.

It is known that if F' is a single-valued map, then Theorem 0 holds without
assuming the Hausdorffness of Y'; see [PK2,3, P5]. Hence, Lemma 2 follows from
Theorem 0 for the case X =Y and F = 1y, the identity map.

Lemma 2 is also equivalent to the corresponding KKM type theorem for which
Hausdorflness of the space is known to be reduntant. ‘

Given a cartesian product X = 07 X; of sets, let X' = Oj%iX;and m; : X —
X;, 7' : X — X' be the projections; we write 7;(z) = z; and 7'(z) = z*. Given
z,y € X, we let

(yivxi> = (zla ey L1, Y Tty - - 73;71)'
From Lemma 2, we have the following Ky Fan type intersection theorem:

Theorem 4. Let X = II7., X;, (X,T') be a compact G-convex space, and Aj,
As, ..., A, ben subsets of X such that
(4.1) for eachz € X and each i = 1,...,n, the set A;(z) = {y'E X : (yi,zt) €
A;} is T-convex and nonempty; and
(4.2) for eachy € X and eachi = 1,...,n, the set A;(y) = {z € X : (y;,2") €
A;} is open.
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Then (i, Ai # 0.

Proof. Define a map T': X — X by T(z) = ()i, Ai(z) for ¢ € X. Then each
T(z) is I'-convex being an intersection of I'-convex sets by (4.1). For each z € X
and each 1, there exists a ¥y € A;(z) by (4.1), or (ylgi),xi) € A;. Hence, we
have (y§1),..‘,y£1")) € i, 4i(z). This shows T(z) # 0. Moreover, T (y) =
Mz, Ai(y) is open for each y € X by (4.2). Now, the conclusion follows from

Lemma 2.

Remarks. 1. If each X; is a compact G-convex space, so is X.
2. In view of Theorem 0, condition (4.2) can be replaced by the following:
(42)" X = Uyex Int(Niz; 4:(v))-

3. For n = 2, Theorem 4 can be comparable to Theorem 1.

Particular Forms. 1. Ky Fan [F1, Theorem 2]: X; are compact convex subsets
of topological vector spaces in Theorem 4.
2. Bielawski [B, Proposition (4.12) and Theorem (4.15)]: Theorem 4 for X hav-
ing a finitely local convexity, which is a particular type of his simplicial convexity.
3. Kirk, Sims, and Yuan [KSY, Theorem 5.2]: Theorem 4 for hyperconvex

metric spaces, which are of extremely particular type of G-convex spaces.

From Theorem 4 for n = 2, we can deduce the following improved version of

Corollary to Theorem 2:

Theorem 5. Let (X,T') and (Y, I") be compact G-convex spaces and f : X xY —
R a function satisfying conditions (2.1) and (2.2). Then

(i) f has a saddle point (z9,y0) € X xY; and

(i1) we have

i SRl 2 SR
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Proof. Just follow the proofs of Theorem 2 and its Corollary using Theorem 4 for

the case n = 2 instead of Theorem 1.

Particular Forms. All of the examples given for Theorem 2 and Corollary follow
from Theorem 5. Especially, Sion [S, Theorem 3.4] is a particular form of Theorem
5, and [S, Corollary 3.5] is a non-Hausdorff version of Theorem 2 and can be

obtained from Theorem 5 by following his own method.

From Theorem 4, we also deduce the following Nash equilibrium theorem for

G-convex spaces:

Theorem 6. Let X =", X; (X,T") be a compact G-convex space, and fi,.

fn : X — R continuous functions such that

.y

(3) for each z € X, eachi1 =1,...,n, and each r € R, the set {(y;,z') € X :
fi(yi,z*) > r} is T-convex.

Then there exists a point € X such that
fi(z) = yr‘nea‘})(c‘ filys,z*) for i=1,...,n.

Proof. Let ¢ > 0 and, for each 1, let
Af ={z € X : fi(z) > max fi(yi,z') —€}.
yi€EX;

Then the sets Af,. .., A% satisfy conditions (4.1) and (4.2) of Theorem 4, and hence
N, AS # 0. Then H. = (), A is a nonempty compact set. Since H., C H.,
for €1 < €3, we have [, He # §. Then z € (eso He satisfies the conclusion.

Particular Forms. 1. Nash [N]: Each X; is a compact convex subset of a

Euclidean space in Theorem 6.

2. Fan [F2, Theorem 4]: X; are compact convex subsets of real Hausdorff

topological vector spaces in Theorem 6.
3. Bielawski [B, Theorem (4.16)]: Theorem 6 for X having a finitely local

convexity.

4. Kirk, Sims, and Yuan [KSY, Theorem 5.3]: Theorem 6 for hyperconvex
metric spaces.
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5. COMPARISONS WITH THE KONIG MINIMAX THEOREM

In 1992, H, Konig obtained a general minimax theorem based on connectedness,
which is regarded the best result in this area. Therefore, it is quite natural to
compare our results with his theorem which is obtained by quite different approach
from ours. Now we follow H. Konig [K61,2]:

Minimax theorems consider functions f : X x ¥ — R on the product of topo-

logical spaces X and Y, and the formations
« = sup inf f(z,y) < inf su z,y)=: f*.
f zegyeyf( v) yeyregf( y)=:f

The assertions are that the minimax relation f, = f* holds true under the respec-
tive assumptions.

Let us define f to fulfill the [finite] condition X (>) iff

X(HN2)= 2N ={zeX: fzy) 2\ ye B} C X
yEH

is connected for all nonvoid [finite] H C Y and for all real A > f,, and the obvious
variant X (>).
Likewise we define f to fulfill the [finite] condition Y (<) iff

Y(H,N<) = () [f2),) <A i={yeY: fle,y) <Az e H} C X
z€H

is connected for all nonvoid [finite] subsets H C X and all real A > f,, and the
obvious variant ¥ (<).

The main result of H. Konig [K&1] is as follows; see [K62]:

Theorem. Let X and Y be topological spaces with Y compact and X connected,
and let f: X xY — R fullfill the continuity condition

(C) f(-,y) € USC(X)(:= upper semicontinuous) Yy € Y and
f(z,-) € LSC(Y)(:= lower semicontinuous) Yz e X,
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or the Varia.nt

(C") feLSC(X xY).

Then f. = f* whenever f fulfills some combinations of one of the conditions
X(>) and X (>) with one of the finite conditions Y (<) and Y (<), provided that
the combination of X(>) with Y(<) the space Y is Hausdorff.

Comparing our results with the Kénig theorem, we observe the following:

(i) If each T'- and I"-convex subset is connected, Theorem 2 follows from the
Konig theorem [for the case (C), X(>) and Y(<)].

(i1) If each I'- and I''-convex subset is connected, Theorem 3 without assuming
the Hausdorffness of ¥ follows from the Konig theorem [for the case (C'), X(>)
and Y(<)].

(i1i) Theorem 5 is not comparable to the Kénig theorem [for the case (C), X (>)
and Y(<)]. Even when each I'- and I-convex subset is connected, Theorem 5
assumes the compactness of (X, T") instead of the Hausdorflness of ¥ in the Konig

theorem.

Note that a I'-convex set is not necessarily connected and we give the following

important case for the connectivity:

Proposition. In a G-convex space (X,I'), if T'(;y = {z} for each z € X, then

every ['-convex set is connected.

Proof. Let C be a I'-convex subset of (X,I') and choose a point zo € C. For any
other point z € C, we have I'(;, ;3 C C. Since there exists a continuous function
$a: A1 =[0,1) = [izy,zy for A= {z0,2} € (X) such that ¢4(0) C T} = {zo}
and ¢4(1) C I'y;y = {z}. Therefore, $4([0,1]) is a connected set in C containing

zo and z. This implies the connectivity of C.

Finally, it is well-known that R in our work can be replaced by an order com-

plete, order dense, linearly ordered space.
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